We are stuck:
How to compare techniques in solvers? And how to
write such a solver?

Armin Biere, Mathias Fleury, and
Karem Sakallah

2022/10/14

Viewpoint

Theory Without
Experiments: Have
We Gone Too Far?

Seeking a better understanding of computing through
amixture of theory and appropriate experimental evidence.

Viewpoint
Experiments as
Research Validation:
Have We Gone Too Far?

Reconsidering conference paper reviewers®
requirements for experimental evidence.

Jeffrey D. Uliman

Conversation with Karem
Experts are not certain that progress was made

Even Moshe Vardi!

Do you understand what is happening in the last 25

years?

SAT Competition Winners

solved instances

250

200

150

100

on the SC2020 Benchmark Suite

—6— kissat-2020

—=&— maple-lem-disc-cb-dl-v3-2019
—=— maple-lem-dist-cb-2018
—&— maple-lem-dist-2017

—4— maple-comsps-drup-2016

—— lingeling-2014
—=&— abcdsat-2015
——— lingeling-2013
——+— glucose-2012
glucose-2011
cryptominisat-2010
—— precosat-2009
—H&— minisat-2008
berkmin-2003
——A— minisat-2006
——+——1sat-2007

—6— satelite-gti-2005
—@— zchaff-2004
—@— limmat-2002

| | | |
1,000 2,000 3,000 4,000 5,000

CPU time

data produced by Armin Biere and Marijn Heule

| want to redo my paper from 2011.

Sounds good

But | need your help to understand all the new fea-

tures

that should be possible

1/15

How do we understand SAT solvers?

Empirical Study of the Anatomy of Modern Sat
Solvers

Hadi Katebi!, Karem A. Sakallah!, and Jodo P. Marques-Silva?

! EECS Department, University of Michigan
{hadik,karem}@umich.edu
? CSI/CASL, University College Dublin
jpms@ucd. ie

200 300 400 500 600 700 800
Instances

A controversial paper

This Talk: Can we do that better?

3/15

What are the features in a SAT solver?

Let’s start with...

4/15

The features

5/15

The features

5/15

The features

5/15

The features

5/15

The features

5/15

The features

5/15

The features

5/15

The features

5/15

The features

The features

5/15

The features

The features

5/15

The features

The features

5/15

The features

The features

5/15

The features

The features

5/15

The features

The features

5/15

The features

How to write such a solver?

How do | make sure that | don’t get it wrong?

Your paper got it wrong too. How do | convince re-

viewers?

6/15

Approach 1: Options

Key idea:

This is the approach used in CaDiCal (162 options!).

7/15

» Impossible to test all combinations

» Impossible to understand which options depends on what?

« Not obvious to maintain

8/15

Drawbacks

How can you know that the —=2WL is still using watched literals for
propagations?

200 300 400 500 600 300 200 1000
Instances

A controversial paper

8/15

Approach 2: Compile-Time Options

Key idea: use the C preprocessor

#ifndef NWATCHES

f#else

fendif

This is the approach used in satch (49 options!).

9/15

Impossible to test all combinations

+ Unclear how to make automatic testing

checked by the compiler

+ Not obvious to maintain and to program

10/15

Approach 3: A new Solver each time

Key idea: write one solver. Write another and look at the diff!

+static std::vector<clausex*>
+gather_reduce_candidates void

+

+ std::vector<clause*> candidates;

+ mark _reason_clauses ;

+ auto clause : clauses

-

+ clause->reason

+ ;

+ candidates.push_back ' clause ;

+

This is the approach used during Armin’s lecture (4 diffs). 11/15

» Impossible to test all combinations because only the written
combination exists

remove what you should not use

» Not obvious to maintain and to program

12/15

Discussion

Opinions?

13/15

How to measure effectiveness without
state-of-the-art implementation?

We might (or not) have found a solution for code

Well, I am not sure

We need to measure something that is not time

14/15

Many different measures:

« solved instances (PAR-1) pure performance
+ speed of solving (PAR-n) pure performance

« mems / ticks (roughly memory/cache accesses) skew heuristics to

make the look better

« assume heuristics are no-cost ... but no implementation is

14/15

Conclusion

Conclusion

No conclusion... just work to do.

15/15

	Introduction
	Motivation

	What are the features in a SAT solver?
	How to write such a solver?
	Approach 1: Options
	Approach 2: Compile-Time Options
	Approach 3: A new Solver each time

	How to measure effectiveness without state-of-the-art implementation?
	Conclusion

