
 A Verified SAT Solver with Watched Literals 
Using Imperative HOL

Mathias
Fleury

Peter
Lammich

Jasmin C.
Blanchette

�2

SAT Solving
Given a formula in conjunctive normal form

' =
^

i

_

j

Li,j

is there an assignment making the formula true?

Most used algorithm: CDCL, an improvement over DPLL

�3

Two ways to ensure correctness:

‣ certify the certificate
- certificates are huge

‣ verification of the code
- code will not be competitive
- allows to study metatheory

How reliable are SAT solvers?

�4

IsaFoL project
Isabelle Formalisation of Logic

λ →

∀
=Isa

be
lle

β

α

I certify your
proof

�5

‣ FO resolution  
 by Schlichtkrull (ITP 2016)

‣ CDCL with learn, forget, restart, and incrementality  
 by Blanchette, Fleury, Weidenbach (IJCAR 2016)

‣ GRAT certificate checker  
 by Lammich (CADE-26, 2017)

‣ A verified SAT solver with watched literals  
 by Fleury, Blanchette, Lammich (now)

IsaFoL

�5

‣ FO resolution  
 by Schlichtkrull (ITP 2016)

‣ CDCL with learn, forget, restart, and incrementality  
 by Blanchette, Fleury, Weidenbach (IJCAR 2016)

‣ GRAT certificate checker  
 by Lammich (CADE-26, 2017)

‣ A verified SAT solver with watched literals  
 by Fleury, Blanchette, Lammich (now)

IsaFoL

�6

Watched Literals Calculus

Transition system

Executable SAT solver  
Standard ML

refines

refines

refines

Refined SAT solver  
Towards efficient data structures

refines

Abstract CDCL 
Previous work

Watched Literals Algorithm  
Non-deterministic program

�6

Watched Literals Calculus

Transition system

Executable SAT solver  
Standard ML

refines

refines

refines

Refined SAT solver  
Towards efficient data structures

refines

Abstract CDCL 
Previous work

Watched Literals Algorithm  
Non-deterministic program

�7

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

ClauseCandidate model

DPLL

1. Guess
2. or propagate information
3. or take the opposite of the last guess 

if there is a conflict

�7

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

A?

ClauseCandidate model

DPLL

1. Guess
2. or propagate information
3. or take the opposite of the last guess 

if there is a conflict

�7

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

A?

ClauseCandidate model

B

DPLL

1. Guess
2. or propagate information
3. or take the opposite of the last guess 

if there is a conflict

�7

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

A?

ClauseCandidate model

B ¬C

DPLL

1. Guess
2. or propagate information
3. or take the opposite of the last guess 

if there is a conflict

�7

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

ClauseCandidate model

¬A

DPLL

1. Guess
2. or propagate information
3. or take the opposite of the last guess 

if there is a conflict

�7

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

ClauseCandidate model

¬A ¬C?

DPLL

1. Guess
2. or propagate information
3. or take the opposite of the last guess 

if there is a conflict

�7

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

ClauseCandidate model

¬A ¬C?

DPLL

1. Guess
2. or propagate information
3. or take the opposite of the last guess 

if there is a conflict

¬B

�7

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

ClauseCandidate model

¬A

CDCL = DPLL +  
 non-chronological backtracking + 
 learning

DPLL

5. ¬A

�8

C ∨ L ∈ N ⟹ M ⊨as ¬C ⟹ undefined_lit M L ⟹ 
 (M, N) ⇒CDCL (L # M, N)

in IsabellePropagate rule

�8

C ∨ L ∈ N ⟹ M ⊨as ¬C ⟹ undefined_lit M L ⟹ 
 (M, N) ⇒CDCL (L # M, N)

in IsabellePropagate rule

Problem:
Iterating over the clauses

is inefficient

�9

Abstract CDCL

Previous work

Watched Literals Calculus

Transition system

Watched Literals Algorithm  
Non-Deterministic program

Executable SAT solver  
Standard ML

refines

refines

refines

Refined SAT solver  
Towards efficient data structures

refines

�9

Abstract CDCL

Previous work

Watched Literals Calculus

Transition system
Watched Literals Algorithm  

Non-Deterministic program

Executable SAT solver  
Standard ML

refines

refines

refines

Refined SAT solver  
Towards efficient data structures

refines

�10

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

ClauseCandidate model

To update:

DPLL with Watched Literals

1. Watch one true literals
2. or watch two unset literals
3. or watch a false literals  

 if all other literals are false

�10

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

A?

ClauseCandidate model

To update:

DPLL with Watched Literals

1. Watch one true literals
2. or watch two unset literals
3. or watch a false literals  

 if all other literals are false

�10

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

A?

ClauseCandidate model

To update:

DPLL with Watched Literals

3. 4.

1. Watch one true literals
2. or watch two unset literals
3. or watch a false literals  

 if all other literals are false

�10

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

A?

ClauseCandidate model

To update:

DPLL with Watched Literals

4.

1. Watch one true literals
2. or watch two unset literals
3. or watch a false literals  

 if all other literals are false

�10

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

A?

ClauseCandidate model

To update:

DPLL with Watched Literals

1. Watch one true literals
2. or watch two unset literals
3. or watch a false literals  

 if all other literals are false

�10

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

A?

ClauseCandidate model

B

To update:

DPLL with Watched Literals

B

1. Watch one true literals
2. or watch two unset literals
3. or watch a false literals  

 if all other literals are false

�10

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

A?

ClauseCandidate model

B

To update:

DPLL with Watched Literals

2. 3.1.

1. Watch one true literals
2. or watch two unset literals
3. or watch a false literals  

 if all other literals are false

�10

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

A?

ClauseCandidate model

B

To update:

DPLL with Watched Literals

2. 3.

1. Watch one true literals
2. or watch two unset literals
3. or watch a false literals  

 if all other literals are false

�10

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

A?

ClauseCandidate model

B

To update:

DPLL with Watched Literals

3.

1. Watch one true literals
2. or watch two unset literals
3. or watch a false literals  

 if all other literals are false

�10

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

A?

ClauseCandidate model

B ¬C

To update:

DPLL with Watched Literals

3.
C

1. Watch one true literals
2. or watch two unset literals
3. or watch a false literals  

 if all other literals are false

�10

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

A?

ClauseCandidate model

B ¬C

To update:

DPLL with Watched Literals

1. Watch one true literals
2. or watch two unset literals
3. or watch a false literals  

 if all other literals are false

�10

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

ClauseCandidate model

¬A

To update:

DPLL with Watched Literals

1. Watch one true literals
2. or watch two unset literals
3. or watch a false literals  

 if all other literals are false

¬A

�10

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

ClauseCandidate model

¬A

To update:

DPLL with Watched Literals

1. Watch one true literals
2. or watch two unset literals
3. or watch a false literals  

 if all other literals are false

¬A

5. ¬A

1. Watch one true literals
2. or watch two unset literals
3. or watch a false literals  

 if all other literals are false

�11

Watched literals invariant

1. Watch one true literals
2. or watch two unset literals
3. or watch a false literals  

 if all other literals are false

�11

Watched literals invariant

unless a conflict has
been found

1. Watch one true literals
2. or watch two unset literals
3. or watch a false literals  

 if all other literals are false

�11

Watched literals invariant

unless a conflict has
been found

or an update is
pending

1. Watch one true literals
2. or watch two unset literals
3. or watch a false literals  

 if all other literals are false

�11

Watched literals invariant

unless a conflict has
been found

this literal has
been set earlier

(less wrong)

or an update is
pending

�12

Finding invariants (11 new ones)

No high-level description

sledgehammer

�12

Finding invariants (11 new ones)

No high-level description

sledgehammer

S ⇒CDCL! T

If S is well-formed and S ⇒TWL! T then
in IsabelleCorrectness theorem

�13

Abstract CDCL

Previous work

Executable SAT solver  
Standard ML

refines

refines

refines

Refined SAT solver  
Towards efficient data structures

refines

Watched Literals Algorithm  
Non-deterministic Program

Watched Literals Calculus

Transition system

�13

Abstract CDCL

Previous work

Executable SAT solver  
Standard ML

refines

refines

refines

Refined SAT solver  
Towards efficient data structures

refines
Watched Literals Algorithm  

Non-deterministic Program

Watched Literals Calculus

Transition system

Picking Next Clause

�14

propagate_conflict_literal L S :=
 WHILET
 (λT. clauses_to_update T ≠ {})

 (λT. do {
 ASSERT(clauses_to_update T ≠ {})
 C ← SPEC (λC. C ∈ clauses_to_update T);
 U ← remove_from_clauses_to_update C T;
 update_clause (L, C) U
 }
)

 S

�14

propagate_conflict_literal L S :=
 WHILET
 (λT. clauses_to_update T ≠ {})

 (λT. do {
 ASSERT(clauses_to_update T ≠ {})
 C ← SPEC (λC. C ∈ clauses_to_update T);
 U ← remove_from_clauses_to_update C T;
 update_clause (L, C) U
 }
)

 S

Refinement Framework:  
non-deterministic exception monad

�14

propagate_conflict_literal L S :=
 WHILET
 (λT. clauses_to_update T ≠ {})

 (λT. do {
 ASSERT(clauses_to_update T ≠ {})
 C ← SPEC (λC. C ∈ clauses_to_update T);
 U ← remove_from_clauses_to_update C T;
 update_clause (L, C) U
 }
)

 S

Refinement Framework:  
non-deterministic exception monad

Assertions

�14

propagate_conflict_literal L S :=
 WHILET
 (λT. clauses_to_update T ≠ {})

 (λT. do {
 ASSERT(clauses_to_update T ≠ {})
 C ← SPEC (λC. C ∈ clauses_to_update T);
 U ← remove_from_clauses_to_update C T;
 update_clause (L, C) U
 }
)

 S

Refinement Framework:  
non-deterministic exception monad

Non-deterministic 
getting of a clause

�14

propagate_conflict_literal L S :=
 WHILET
 (λT. clauses_to_update T ≠ {})

 (λT. do {
 ASSERT(clauses_to_update T ≠ {})
 C ← SPEC (λC. C ∈ clauses_to_update T);
 U ← remove_from_clauses_to_update C T;
 update_clause (L, C) U
 }
)

 S

Refinement Framework:  
non-deterministic exception monad

�15

‣ But still non deterministic (decisions)

‣ More deterministic (order of the rules)

‣ Goals of the form

�15

‣ But still non deterministic (decisions)

‣ More deterministic (order of the rules)

‣ Goals of the form

propagate_conflict_literal L S ≤ SPEC(λT. S ⇒TWL* T) in Isabelle

�16

sledgehammer

Very tempting to write fragile proofs

VCG’s goals hard to read

�17

Watched Literals Calculus

Transition system

Executable SAT solver  
Standard ML

refines

refines

refines

refines

Abstract CDCL

Previous work

Watched Literals Algorithm  
Non-deterministic Program

Refined SAT Solver

Towards efficient data structures

�17

Watched Literals Calculus

Transition system

Executable SAT solver  
Standard ML

refines

refines

refines

refines

Abstract CDCL

Previous work

Watched Literals Algorithm  
Non-deterministic Program

Refined SAT Solver

Towards efficient data structures

�18

¬A¬B

¬A B

¬C ¬B

¬B C

C

¬A

A1.

2.

3.

4.

Clauses after refinement 
(lists)

DPLL with Watched Literals

∨¬A ¬B

∨¬A B

∨¬C ¬B

∨¬B C

∨ C

∨ ¬A

∨ A1.

2.

3.

4.

Clauses (multisets)

To update: A: ¬A: 4
B: 4 ¬B: 1,2,3

C: 1,3 ¬C: 2

�19

propagate_conflict_literal L S :=
 WHILET
 (λT. clauses_to_update T ≠ {})

 (λT. do {
 ASSERT(clauses_to_update T ≠ {})
 C ← SPEC (λC. C ∈ clauses_to_update T);
 U ← remove_from_clauses_to_update C T;
 update_clause L C U
 }
)

 S

propagate_conflict_literal_list L S :=
 WHILET
 (λ(w, T). w < length (watched_by T L))

 (λ(w, T). do {
 C ← (watched_by T L) ! w;
 update_clause_list L C T
 }
)

 (S, 0)

�19

propagate_conflict_literal L S :=
 WHILET
 (λT. clauses_to_update T ≠ {})

 (λT. do {
 ASSERT(clauses_to_update T ≠ {})
 C ← SPEC (λC. C ∈ clauses_to_update T);
 U ← remove_from_clauses_to_update C T;
 update_clause L C U
 }
)

 S

propagate_conflict_literal_list L S :=
 WHILET
 (λ(w, T). w < length (watched_by T L))

 (λ(w, T). do {
 C ← (watched_by T L) ! w;
 update_clause_list L C T
 }
)

 (S, 0)
propagate_conflict_literal_list L S ≤ ⇓ conversion_between_states
 (propagate_conflict_literal L T) in Isabelle

�20

Fast code uses many invariants

Forgotten and new invariants

sledgehammer

More new invariants

Aligning goals is hard...

�21

Choice on the data structures

Choice on the heuristics

Prepare code synthesis

�22

Decision heuristic

‣ Variable-move-to-front heuristic

‣ No correctness w.r.t. a standard implementation

‣ Behaves correctly:

• returns an unset literal if there is one

• no exception (out-of-bound array accesses)

�23

Watched Literals Calculus

Transition system

Watched Literals Algorithm  
Non-deterministic program

refines

refines

refines

refines

Abstract CDCL

Previous work

Refined SAT Solver

Towards efficient data structures

Executable SAT Solver

Standard ML

�23

Watched Literals Calculus

Transition system

Watched Literals Algorithm  
Non-deterministic program

refines

refines

refines

refines

Abstract CDCL

Previous work

Refined SAT Solver

Towards efficient data structures

Executable SAT Solver

Standard ML

�24

sepref_definition executable_version
 is ‹propagate_conflict_literal_heuristics›
 :: ‹unat_lit_assnk *a state_assnd $a state_assn›
 by sepref

Synthesise imperative code and a refinement relation

�24

sepref_definition executable_version
 is ‹propagate_conflict_literal_heuristics›
 :: ‹unat_lit_assnk *a state_assnd $a state_assn›
 by sepref

Synthesise imperative code and a refinement relation

main_loop S :=  
 heap_WHILET
 (λ(finished, _). return (¬ finished))
 (λ(_, state).
 propagate state ⤜
 analyse_or_decide)
 (False, state) ⤜
 (λ(_, final_state). return final_state)

fun main_loop state = 
 fn () =>  
 let  
 val (_, final_state) = 
 heap_WHILET  
 (fn (done, _) => (fn () => not done)) 
 (fn (_, state) =>  
 (analyse_or_decide (propagate state ()) ())) 
 (false, xi) 
 (); 
 in final_state end;

�24

sepref_definition executable_version
 is ‹propagate_conflict_literal_heuristics›
 :: ‹unat_lit_assnk *a state_assnd $a state_assn›
 by sepref

Synthesise imperative code and a refinement relation

fun main_loop state = 
 fn () =>  
 let  
 val (_, final_state) = 
 heap_WHILET  
 (fn (done, _) => (fn () => not done)) 
 (fn (_, state) =>  
 (analyse_or_decide (propagate state ()) ())) 
 (false, xi) 
 (); 
 in final_state end;

�24

sepref_definition executable_version
 is ‹propagate_conflict_literal_heuristics›
 :: ‹unat_lit_assnk *a state_assnd $a state_assn›
 by sepref

Synthesise imperative code and a refinement relation
fun cdcl_twl_stgy_prog_wl_D_code x =
 (fn xi => fn () =>
 let
 val a =
 heap_WHILET (fn (a1, _) => (fn () => (not a1)))
 (fn (_, a2) =>
 (fn f_ => fn () => f_ ((unit_propagation_outer_loop_wl_D a2) ()) ())
 cdcl_twl_o_prog_wl_D_code)
 (false, xi) ();
 in
 let
 val (_, aa) = a;
 in
 (fn () => aa)
 end
 ()

�25

Clauses: resizable arrays of (fixed sized) arrays

However, no aliasing
• Indices instead of pointers

• N[C] makes a copy, so only use N[C][i]

Choice on the data structures

Transformations before generating code

No error messages

Generates imperative code

in Isabelle

�26

‹(IsaSAT_code, model_if_satisfiable)
 ∈ [λN. each_clause_is_distinct N ∧
 literals_fit_in_32_bit_integer N]a
 clauses_as_listsk $ model›

Once combined with an initialisation:

Exported code tested with an unchecked parser 
(easy and medium problems from the SAT competition 2009)

Clauses of length 0
and 1

�27

Performance of the first executable version

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●

●●●●●●
●●●●●

●●●
●●

●●●
●●

●
●●

●
●●●

●●●●
●●

●●
●
●

●●
●

●

●

●

●●

●

●

●

●

0 50 100 150

0
20

0
40

0
60

0
80

0

solved problems

tim
e

(s
)

●●●●●●●●●
●●●●

●
●●●

●
●●●●●

●●●
●●

●●
●
●

●

●●●

●
●

●●

●

●

●
●

●
●
●

●

●

●

●

●
●

●

●
●

0 50 100 150

0
20

0
40

0
60

0
80

0

●

●

●

Glucose
versat
IsaSAT

�27

Performance of IsaSAT

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●

●●●●●●
●●●●●

●●●
●●

●●●
●●

●
●●

●
●●●

●●●●
●●

●●
●
●

●●
●

●

●

●

●●

●

●

●

●

0 50 100 150

0
20

0
40

0
60

0
80

0

solved problems

tim
e

(s
)

●●●●●●●●●
●●●●

●
●●●

●
●●●●●

●●●
●●

●●
●
●

●

●●●

●
●

●●

●

●

●
●

●
●
●

●

●

●

●

●
●

●

●
●

0 50 100 150

0
20

0
40

0
60

0
80

0

●●●●●●●●●●●●●●●●
●●●●●●●

●●●
●●

●●●●
●●●

●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

0 50 100 150

0
20

0
40

0
60

0
80

0

●

●

●

Glucose
versat
IsaSAT

�27

Performance of IsaSAT

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●

●●●●●●
●●●●●

●●●
●●

●●●
●●

●
●●

●
●●●

●●●●
●●

●●
●
●

●●
●

●

●

●

●●

●

●

●

●

0 50 100 150

0
20

0
40

0
60

0
80

0

solved problems

tim
e

(s
)

●●●●●●●●●
●●●●

●
●●●

●
●●●●●

●●●
●●

●●
●
●

●

●●●

●
●

●●

●

●

●
●

●
●
●

●

●

●

●

●
●

●

●
●

0 50 100 150

0
20

0
40

0
60

0
80

0

●●●●●●●●●●●●●●●●
●●●●●●●

●●●
●●

●●●●
●●●

●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

0 50 100 150

0
20

0
40

0
60

0
80

0

●

●

●

Glucose
versat
IsaSAT

Correct up to:
‣ run-time checks
‣ checking the model is satisfiable

�28

Watched Literals Calculus

Transition system

Refined SAT Solver

Towards efficient data structures

Watched Literals Algorithm  
Non-deterministic program

Executable SAT solver  
Standard ML

refines

refines

refines

refines

Abstract CDCL

Previous work

�28

Watched Literals Calculus

Transition system

Refined SAT Solver

Towards efficient data structures

Watched Literals Algorithm  
Non-deterministic program

Executable SAT solver  
Standard ML

refines

refines

refines

refines

Abstract CDCL

Previous work

• better implementation (trail, conflict)
• dynamic decision heuristic

�28

Watched Literals Calculus

Transition system

Refined SAT Solver

Towards efficient data structures

Watched Literals Algorithm  
Non-deterministic program

Executable SAT solver  
Standard ML

refines

refines

refines

refines

Abstract CDCL

Previous work • allow learned clause minimisation

• better implementation (trail, conflict)
• dynamic decision heuristic

• learned clause minimisation

�28

Watched Literals Calculus

Transition system

Refined SAT Solver

Towards efficient data structures

Watched Literals Algorithm  
Non-deterministic program

Executable SAT solver  
Standard ML

refines

refines

refines

refines

Abstract CDCL

Previous work • allow learned clause minimisation

• better implementation (trail, conflict)
• dynamic decision heuristic

• learned clause minimisation

• more invariants

�29

How hard is it?

Paper Proof assistant
Very
abstract
CDCL

13 pages 50 pages

Abstract
CDCL 9 pages 90 pages

 (½ month) (5 months)
Watched
Literals

1 page  600 pages

(C++ code of 
MiniSat) (15 months)

�30

Concrete outcome
‣ Watched literals optimisation
‣ Verified executable SAT solver

Conclusion

Methodology
‣ Refinement using the Refinement Framework

Future work
‣ Restarts
‣ Use SAT solver in IsaFoR
‣ SAT Modulo Theories (e.g., CVC or z3)

�31

Annex

for (i = j = 1; i < out_learnt.size(); i++)
 if (reason(var(out_learnt[i])) == CRef_Undef ||
 !litRedundant(out_learnt[i]))
 out_learnt[j++] = out_learnt[i];

�32

for (i = j = 1; i < out_learnt.size(); i++)
 if (reason(var(out_learnt[i])) == CRef_Undef ||
 !litRedundant(out_learnt[i]))
 out_learnt[j++] = out_learnt[i];

�32

fun minimize_and_extract_highest_lookup_conflict_code x =
 (fn ai => fn bid => fn bic => fn bib => fn bia => fn bi => fn () =>
 let
 val a =
 heap_WHILET
 (fn (_, (a1a, (_, a2b))) =>
 (fn f_ => fn () => f_ ((length_arl_u_code heap_uint32 a2b) ()) ())
 (fn x_a => (fn () => (Word32.< (a1a, x_a)))))
 (fn (a1, (a1a, (a1b, a2b))) =>
 (fn f_ => fn () => f_
 (((fn () => Array.sub (fst a2b, Word32.toInt a1a))) ()) ())
 (fn x_a =>
 (fn f_ => fn () => f_
 ((literal_redundant_wl_lookup_code ai bid a1 a1b x_a bia) ())
 ())
 (fn (a1c, (_, a2d)) =>
 (if not a2d
 then (fn () =>
 (a1, (Word32.+ (a1a, (Word32.fromInt 1)),
 (a1c, a2b))))
 else (fn f_ => fn () => f_
 ((delete_from_lookup_conflict_code x_a a1) ()) ())
 (fn x_e =>
 (fn f_ => fn () => f_ ((arl_last heap_uint32 a2b)
 ()) ())
 (fn xa =>
 (fn f_ => fn () => f_
 ((arl_set_u heap_uint32 a2b a1a xa) ()) ())
 (fn xb =>
 (fn f_ => fn () => f_
 ((arl_butlast heap_uint32 xb) ()) ())
 (fn xc => (fn () => (x_e, (a1a, (a1c, xc))))))))))))
 (bic, ((Word32.fromInt 1), (bib, bi))) ();
 in
 let
 val (a1, (_, (a1b, a2b))) = a;

�33

What is in IsaSAT?
Conflict Analysis
‣ conflict as lookup table (Minisat)
‣ and as explicit array (Minisat’s “outl”, to simplify proofs)

Decisions
‣ Variable move to front (Splatz, cadical)

Propagations
‣ Mostly following MiniSAT (without BLIT)

�34

How much is missing?
Features (I) 10

arena based memory allocation for clauses and watchers Thank you, Norbert & Mate!

blocking literals (BLIT)

special handling of binary clause watches

literal-move-to-front watch replacement (LMTF)

learned clause minimization with poison

on-the-fly hyper-binary resolution (HBR)

learning additional units and binary clauses (multiple UIPs)

on-the-fly self-subsuming resolution (OTFS)

decision only clauses (DECO)

failed literal probing on binary implication graph roots

eager recent learned clause subsumption

Splatz @ POS’15

Features (II) 11

stamping based VMTF instead of VSIDS

subsumption for both irredundant and learned clauses

inprocessing blocked clause decomposition (BCD) enabling . . .

. . . inprocessing SAT sweeping for backbones and equivalences

equivalent literal substitution (ELS)

bounded variable elimination (BVE)

blocked clause elimination (BCE)

dynamic sticky clause reduction

exponential moving average based restart scheduling

delaying restarts

trail reuse

Splatz @ POS’15

Slides by Armin Biere

�34

How much is missing?
Features (I) 10

arena based memory allocation for clauses and watchers Thank you, Norbert & Mate!

blocking literals (BLIT)

special handling of binary clause watches

literal-move-to-front watch replacement (LMTF)

learned clause minimization with poison

on-the-fly hyper-binary resolution (HBR)

learning additional units and binary clauses (multiple UIPs)

on-the-fly self-subsuming resolution (OTFS)

decision only clauses (DECO)

failed literal probing on binary implication graph roots

eager recent learned clause subsumption

Splatz @ POS’15

Features (II) 11

stamping based VMTF instead of VSIDS

subsumption for both irredundant and learned clauses

inprocessing blocked clause decomposition (BCD) enabling . . .

. . . inprocessing SAT sweeping for backbones and equivalences

equivalent literal substitution (ELS)

bounded variable elimination (BVE)

blocked clause elimination (BCE)

dynamic sticky clause reduction

exponential moving average based restart scheduling

delaying restarts

trail reuse

Splatz @ POS’15

Code only

Slides by Armin Biere

�34

How much is missing?
Features (I) 10

arena based memory allocation for clauses and watchers Thank you, Norbert & Mate!

blocking literals (BLIT)

special handling of binary clause watches

literal-move-to-front watch replacement (LMTF)

learned clause minimization with poison

on-the-fly hyper-binary resolution (HBR)

learning additional units and binary clauses (multiple UIPs)

on-the-fly self-subsuming resolution (OTFS)

decision only clauses (DECO)

failed literal probing on binary implication graph roots

eager recent learned clause subsumption

Splatz @ POS’15

Features (II) 11

stamping based VMTF instead of VSIDS

subsumption for both irredundant and learned clauses

inprocessing blocked clause decomposition (BCD) enabling . . .

. . . inprocessing SAT sweeping for backbones and equivalences

equivalent literal substitution (ELS)

bounded variable elimination (BVE)

blocked clause elimination (BCE)

dynamic sticky clause reduction

exponential moving average based restart scheduling

delaying restarts

trail reuse

Splatz @ POS’15

Code only

Strengthening

Slides by Armin Biere

�34

How much is missing?
Features (I) 10

arena based memory allocation for clauses and watchers Thank you, Norbert & Mate!

blocking literals (BLIT)

special handling of binary clause watches

literal-move-to-front watch replacement (LMTF)

learned clause minimization with poison

on-the-fly hyper-binary resolution (HBR)

learning additional units and binary clauses (multiple UIPs)

on-the-fly self-subsuming resolution (OTFS)

decision only clauses (DECO)

failed literal probing on binary implication graph roots

eager recent learned clause subsumption

Splatz @ POS’15

Features (II) 11

stamping based VMTF instead of VSIDS

subsumption for both irredundant and learned clauses

inprocessing blocked clause decomposition (BCD) enabling . . .

. . . inprocessing SAT sweeping for backbones and equivalences

equivalent literal substitution (ELS)

bounded variable elimination (BVE)

blocked clause elimination (BCE)

dynamic sticky clause reduction

exponential moving average based restart scheduling

delaying restarts

trail reuse

Splatz @ POS’15

Code only

Strengthening

Change CDCL

Slides by Armin Biere

�34

How much is missing?
Features (I) 10

arena based memory allocation for clauses and watchers Thank you, Norbert & Mate!

blocking literals (BLIT)

special handling of binary clause watches

literal-move-to-front watch replacement (LMTF)

learned clause minimization with poison

on-the-fly hyper-binary resolution (HBR)

learning additional units and binary clauses (multiple UIPs)

on-the-fly self-subsuming resolution (OTFS)

decision only clauses (DECO)

failed literal probing on binary implication graph roots

eager recent learned clause subsumption

Splatz @ POS’15

Features (II) 11

stamping based VMTF instead of VSIDS

subsumption for both irredundant and learned clauses

inprocessing blocked clause decomposition (BCD) enabling . . .

. . . inprocessing SAT sweeping for backbones and equivalences

equivalent literal substitution (ELS)

bounded variable elimination (BVE)

blocked clause elimination (BCE)

dynamic sticky clause reduction

exponential moving average based restart scheduling

delaying restarts

trail reuse

Splatz @ POS’15

Code only

Strengthening

Change CDCL

Restarts (future)

Slides by Armin Biere

�34

How much is missing?
Features (I) 10

arena based memory allocation for clauses and watchers Thank you, Norbert & Mate!

blocking literals (BLIT)

special handling of binary clause watches

literal-move-to-front watch replacement (LMTF)

learned clause minimization with poison

on-the-fly hyper-binary resolution (HBR)

learning additional units and binary clauses (multiple UIPs)

on-the-fly self-subsuming resolution (OTFS)

decision only clauses (DECO)

failed literal probing on binary implication graph roots

eager recent learned clause subsumption

Splatz @ POS’15

Features (II) 11

stamping based VMTF instead of VSIDS

subsumption for both irredundant and learned clauses

inprocessing blocked clause decomposition (BCD) enabling . . .

. . . inprocessing SAT sweeping for backbones and equivalences

equivalent literal substitution (ELS)

bounded variable elimination (BVE)

blocked clause elimination (BCE)

dynamic sticky clause reduction

exponential moving average based restart scheduling

delaying restarts

trail reuse

Splatz @ POS’15

Code only

Strengthening

Change CDCL

Restarts (future)

Slides by Armin Biere

Change WL

�34

How much is missing?
Features (I) 10

arena based memory allocation for clauses and watchers Thank you, Norbert & Mate!

blocking literals (BLIT)

special handling of binary clause watches

literal-move-to-front watch replacement (LMTF)

learned clause minimization with poison

on-the-fly hyper-binary resolution (HBR)

learning additional units and binary clauses (multiple UIPs)

on-the-fly self-subsuming resolution (OTFS)

decision only clauses (DECO)

failed literal probing on binary implication graph roots

eager recent learned clause subsumption

Splatz @ POS’15

Features (II) 11

stamping based VMTF instead of VSIDS

subsumption for both irredundant and learned clauses

inprocessing blocked clause decomposition (BCD) enabling . . .

. . . inprocessing SAT sweeping for backbones and equivalences

equivalent literal substitution (ELS)

bounded variable elimination (BVE)

blocked clause elimination (BCE)

dynamic sticky clause reduction

exponential moving average based restart scheduling

delaying restarts

trail reuse

Splatz @ POS’15

Code only

Strengthening

Change CDCL

Restarts (future)

Slides by Armin Biere

Change WL

• Unchecked array accesses (Isabelle takes care
of it)

• No unbounded integers (in theory, not complete
anymore)

• Restarts

BAM

�35

C

B

A

Clauses NM

C

B

A

Clauses NCBAM

A first idea A better strategy

Update Strategy

BAM

�35

C

B

A

Clauses NM

C

B

A

Clauses NCBAM

A first idea A better strategy

Update Strategy

BAM

D

AM

�35

C

B

A

Clauses N

C

B

A

Clauses NCBAM

A first idea A better strategy

Update Strategy

BAM

D

AM

�35

C

B

A

Clauses N

C

B

A

Clauses NCBAM

A first idea A better strategy

Update Strategy

BAM

D

�35

C

B

Clauses N

C

B

A

Clauses NCBAM

A first idea A better strategy

Update Strategy

BAM

D

�35

C

B

Clauses N

C

B

A

Clauses NCBAM

A first idea A better strategy

Update Strategy

BAM

D

�35

C

B

Clauses N

D

DCBAM

C

B

A

Clauses NCBAM

A first idea A better strategy

Update Strategy

BAM

D

�35

C

B

Clauses N

D

DCBAM

C

B

Clauses N

A first idea A better strategy

Update Strategy

BAM

D

�35

C

B

Clauses N

D

DCBAM

C

B

Clauses N

A first idea A better strategy

Update Strategy

BAM

D

�35

C

B

Clauses N

D

DCBAM

C

B

Clauses N

A first idea A better strategy

Update Strategy

BAM

D

�35

C

B

Clauses N DCBAM Clauses N

A first idea A better strategy

Update Strategy

