

A Verified SAT Solver with Two Watched Literals

Jasmin Blanchette

Mathias Fleury

Peter Lammich Christoph Weidenbach

Technische Universität München

SAT solving

Given a CNF formula

$$\varphi = \bigwedge_{i} \bigvee_{j} L_{i,j}$$

is there a satisfying assignment?

Most used algorithm: CDCL, an improvement over DPLL

How reliable are SAT solvers?

Two ways to ensure correctness:

- certify the certificate
 - certificates are huge
- verification of the code
 - code will not be competitive
 - allows to study metatheory

	Correctness	Applicability
Run of a SAT solver	Certificate: proof of (un)satisfiability	<i>a given</i> input
Theory behind SAT solvers	Proof	every input

IsaFoL project

Isabelle Formalization of Logic

Selected IsaFoL entries

- FO resolution
 by Schlichtkrull (ITP 2016)
- CDCL with learn, forget, restart, incrementality, 2WL
 by Blanchette, Fleury, Lammich, Weidenbach (IJCAR 2016, now)
- GRAT certificate checker by Lammich (CADE 2017)
- FO ordered resolution with selection by Schlichtkrull, Blanchette, Traytel, Waldmann (IJCAR 2018?)

Selected IsaFoL entries

- FO resolution
 by Schlichtkrull (ITP 2016)
- CDCL with learn, forget, restart, incrementality, 2WL
 by Blanchette, Fleury, Lammich, Weidenbach (IJCAR 2016, now)
- GRAT certificate checker by Lammich (CADE 2017)
- FO ordered resolution with selection
 by Schlichtkrull, Blanchette, Traytel, Waldmann (IJCAR 2018?)

Why?

Eat our own dog food

case study for proof assistants and automatic provers

Build libraries for state-of-the-art research

Automated Reasoning: The Art of Generic Problem Solving (forthcoming textbook by Weidenbach)

Truth table

 $\mathbf{N} = \begin{array}{ccc} A \lor B \lor C & \neg A \lor B \lor C & \neg B \lor C & B \lor \neg C \\ \neg A \lor B & A \lor \neg B \lor \neg C & A \lor \neg C \end{array}$

$\mathbf{N} = \begin{array}{ccc} A \lor B \lor C & \neg A \lor B \lor C & \neg B \lor C & B \lor \neg C \\ \neg A \lor B & A \lor \neg B \lor \neg C & A \lor \neg C \end{array}$

Decide

Propagate

$\mathbf{N} = \begin{array}{ccc} A \lor B \lor C & \neg A \lor B \lor C & \neg B \lor C & B \lor \neg C \\ \neg A \lor B & A \lor \neg B \lor \neg C & A \lor \neg C \end{array}$

Decide

Propagate

$\mathbf{N} = \begin{array}{ccc} A \lor B \lor C & \neg A \lor B \lor C & \neg B \lor C & B \lor \neg C \\ \neg A \lor B & A \lor \neg B \lor \neg C & A \lor \neg C \end{array}$

$\mathbf{N} = \begin{array}{ccc} A \lor B \lor C & \neg A \lor B \lor C & \neg B \lor C & B \lor \neg C \\ \neg A \lor B & A \lor \neg B \lor \neg C & A \lor \neg C \end{array}$

$\begin{array}{lll} \mathbf{N} = & A \lor B \lor C & \neg A \lor B \lor C & \neg B \lor C & B \lor \neg C \\ \neg A \lor B & A \lor \neg B \lor \neg C & A \lor \neg C \end{array}$

In Isabelle

State in Isabelle

Pair path-clauses:

(M, N)

Decide in Isabelle undefined_lit $ML \implies L \in N \implies (M, N) \Rightarrow_{CDCL} (ML, N)$

DPLL+BJ

Decide

Propagate

Analyse + Backjump

DPLL+BJ

Decide

Propagate

Analyse + Backjump

Abstract CDCL

Nieuwenhuis, Oliveras, and Tinelli 2006

Learn + forget clause

infinite chain of learn and forget

Concrete CDCL

Weidenbach, 2015

How do we get a suitable C'?

How do we get a suitable C'?

First unique implication point

Theorem (no relearning):

No clause can be learned twice.

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state (M;N;U;k;D \vee L) where Backtracking is applicable and D \vee L \in (N \cup U).

More precisely, the state has the form $(M1K^{i+1}M_2K_1^kK_2 ...K_n;N;U;k;D\vee L)$ where the Ki, i > 1 are propagated literals that do not occur complemented in D, as for otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because D \vee L is false in M1Kⁱ⁺¹M2K1^kK2 ...Kn and D \vee L \in (N \cup U)

instead of deciding K1^k the literal L should be propagated by a reasonable strategy. A contradiction. Note that none of the Ki can be annotated with D \vee L.

<700 lines of proof>

in Isabelle

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state (M;N;U;k;D \vee L) where Backtracking is applicable and D \vee L \in (N \cup U).

More precisely, the state has the form $(M1K^{i+1}M_2K_1^kK_2 ...K_n;N;U;k;D\vee L)$ where the Ki, i > 1 are propagated literals that do not occur complemented in D, as for otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because $D \lor L$ is false in M1Kⁱ⁺¹M2K1^kK2 ...Kn and $D \lor L \in (N \cup U)$

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state (M;N;U;k;D \vee L) where Backtracking is applicable and D \vee L \in (N \cup U).

More precisely, the state has the form $(M1K^{i+1}M_2K_1^kK_2 ...K_n;N;U;k;D\vee L)$ where the K_i, i > 1 are propagated literals that do not occur complemented in D, as for otherwise D cannot be of level i. Furthermore, one of the K_i is the complement of L.

But now, because $D \lor L$ is false in M1Kⁱ⁺¹M2K1^kK2 ...Kn and $D \lor L \in (N \cup U)$

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state (M;N;U;k;D \vee L) where Backtracking is applicable and D \vee L \in (N \cup U).

More precisely, the state has the form $(M1K^{i+1}M_2K_1^kK_2 ...K_n;N;U;k;D\vee L)$ where the Ki, i > 1 are propagated literals that do not occur complemented in D, as for otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because $D \lor L$ is false in M1Kⁱ⁺¹M2K1^kK2 ...Kn and $D \lor L \in (N \cup U)$

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state (M;N;U;k;D \vee L) where Backtracking is applicable and D \vee L \in (N \cup U).

More precisely, the state has the form $(M1K^{i+1}M_2K_1^kK_2 ...K_n;N;U;k;D\vee L)$ where the Ki, i > 1 are propagated literals that do not occur complemented in D, as for otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because $D \lor L$ is false in M1Kⁱ⁺¹M2K1^kK2 ...Kn and $D \lor L \in (N \cup U)$

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state (M;N;U;k;D \vee L) where Backtracking is applicable and D \vee L \in (N \cup U).

More precisely, the state has the form $(M1K^{i+1}M_2K_1^kK_2 ...K_n;N;U;k;D\vee L)$ where the Ki, i > 1 are propagated literals that do not occur complemented in D, as for otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because $D \lor L$ is false in M1Kⁱ⁺¹M2K1^kK2 ...Kn and $D \lor L \in (N \cup U)$

Rules	Theory	Practice	How is it done?
Propagate	Critical	Critical	Data structure
Decide	Don't care	Critical	Heuristics

CDCL with efficient data structure Eén and Sörensson, 2004

- Key data structure: two watched literals
- Nice to have formally

Two Watched Literals

For each clause:

- Keep two literals unset or true
- If you can't:
 - propagate or
 - mark conflict or
 - ignore if one literal is true

	CDCL	Clauses	Literals	Decision
<section-header><text><text></text></text></section-header>	Abstract	Multisets of multisets	Datatype	Don't care
	Concrete	Multisets of multisets	Datatype	Don't care
	Intermediate	Lists of lists	Datatype	Don't care
	Code	Arrays of arrays	UInt32	One heuristics

	CDCL	Clauses	Literals	Decision
Refinement by	Abstract	Multisets of multisets	Datatype	Don't care
behaviour	Concrete	Multisets of multisets	Datatype	Don't care
Automatic Refinement Fran aligns programs and	amework generates nd generates condition	Datatype	Don't care	
		to prove ode arrays		One heuristics

	CDCL	Clauses	Literals	Decision
<section-header><text><text></text></text></section-header>	Abstract	Multisets of multisets	Datatype	Don't care
	Concrete	Multisets of multisets	Datatype	Don't care
	Intermediat	e Lists of lists	Datatype	Don't care
	Code	Arrays of	UInt32	One heuristics
Mapping of concrete and code operations, synthesis and precondition discharging done automatically				
ТПП	VU	VRIJE UNIVERSITEIT AMSTERDAM		max planck institut informatik 26

	CDCL	Clauses	Literals	Decision
<section-header><text><text></text></text></section-header>	Abstract	Multisets of multisets	Datatype	Don't care
	Concrete	Multisets of multisets	Datatype	Don't care
	Intermediate	Lists of lists	Datatype	Don't care
	Code	Arrays of arrays	UInt32	One heuristics
			Can al	so be changed
ПП	VU	VRIJE UNIVERSITEIT AMSTERDAM		max planck institut informatik 26

How efficient is it compared to state-of-the-art Glucose?

CODE CHIRDLESS TO IsaSAT <u>6</u> Gluccse

IsaSAT performance compared to Glucose

Some features of Glucose

	Calculus	Code
Presimplification of the problem	Not relevant	
Learned clause	Already	Partial & TODO
minimization	generalized	Faitial & TODO
Conflict Representation	Orthogonal	on-going

Some features of Glucose

	Calculus	Code
Forget + Restarts	Included	TODO
Trail reuse in Restarts	Orthogonal	TODO (partially)?
Hyper binary Resolution	Not Expressible	

How hard is it?

	Paper	Proof assistant
Abstract CDCL	13 pages	50 pages
Concrete CDCL	9 pages (½ month)	90 pages (5 months)
Two- Watched	1 page	265 pages
	(C++ code of MiniSat)	(9 months)

Conclusion

Concrete outcome

- verified SAT solver framework
- verified executable SAT solver
- improve book draft

Methodology

Refinement

Future work

SAT Modulo Theories

(e.g., CVC4, veriT, Yices, Z3)

