SAARLAND UNIVERSITY

SAARBRUCCKEN
GRADUATE SCHOOL or
COMPUTER SCIENCE

■ ■ ■ e max planck institut informatik

A Verified SAT Solver with Two Watched Literals

Jasmin Mathias Peter Christoph
Blanchette
Fleury
Lammich
Weidenbach

SAT solving

Given a CNF formula

$$
\varphi=\bigwedge_{i} \bigvee_{j} L_{i, j}
$$

is there a satisfying assignment?

Most used algorithm: CDCL, an improvement over DPLL

VRIJE
UNIVERSITEIT AMSTERDAM

How reliable are SAT solvers?

Two ways to ensure correctness:

- certify the certificate
- certificates are huge
- verification of the code
- code will not be competitive
- allows to study metatheory
Run of a SAT solver
Certificate: proof of (un)satisfiability
Theory behind SAT solvers
every input

 IsaFoL project
 Isabelle Formalization of Logic

Selected IsaFoL entries

- FO resolution
by Schlichtkrull (ITP 2016)
- CDCL with learn, forget, restart, incrementality, 2WL by Blanchette, Fleury, Lammich, Weidenbach (IJCAR 2016, now)
- GRAT certificate checker
by Lammich (CADE 2017)
- FO ordered resolution with selection
by Schlichtkrull, Blanchette, Traytel, Waldmann (IJCAR 2018?)

Selected IsaFoL entries

- FO resolution
by Schlichtkrull (ITP 2016)
- CDCL with learn, forget, restart, incrementality, 2WL
by Blanchette, Fleury, Lammich, Weidenbach (IJCAR 2016, now)
- GRAT certificate checker
by Lammich (CADE 2017)
- FO ordered resolution with selection
by Schlichtkrull, Blanchette, Traytel, Waldmann (IJCAR 2018?)

Why?

- Eat our own dog food
case study for proof assistants and automatic provers
- Build libraries for state-of-the-art research

Automated Reasoning:
The Art of Generic Problem Solving
(forthcoming textbook by Weidenbach)

Truth table

$$
\mathbf{N}=\begin{aligned}
& A \vee B \vee C \quad \neg A \vee B \vee C \neg B \vee C \quad B \vee \neg C \\
& \neg A \vee B \quad A \vee \neg B \vee \neg C \quad A \vee \neg C
\end{aligned}
$$

Decide

DPLL

$$
\mathbf{N}=\begin{aligned}
& A \vee B \vee C \quad \neg A \vee B \vee C \neg B \vee C \quad B \vee \neg C \\
& \neg A \vee B \quad A \vee \neg B \vee \neg C \quad A \vee \neg C
\end{aligned}
$$

Decide

DPLL

$$
\mathbf{N}=\begin{aligned}
& A \vee B \vee C \quad \neg A \vee B \vee C \neg B \vee C \quad B \vee \neg C \\
& \neg A \vee B \quad A \vee \neg B \vee \neg C \quad A \vee \neg C
\end{aligned}
$$

DPLL

$$
\begin{aligned}
& A \vee B \vee C \quad \neg A \vee B \vee C \neg B \vee C \quad B \vee \neg C \\
& \mathbf{N}=\quad \neg A \vee B \quad A \vee \neg B \vee \neg C \quad A \vee \neg C
\end{aligned}
$$

DPLL

$$
\begin{aligned}
& \mathbf{N}=\begin{array}{l}
A \vee B \vee C \quad \neg A \vee B \vee C \neg B \vee C \quad B \vee \neg C \\
\neg A \vee B \quad A \vee \neg B \vee \neg C \quad A \vee \neg C
\end{array} \text { 位 }
\end{aligned}
$$

B

DPLL

$$
\mathbf{N}=\begin{aligned}
& A \vee B \vee C \quad \neg A \vee B \vee C \neg B \vee C \quad B \vee \neg C \\
& \neg A \vee B \quad A \vee \neg B \vee \neg C \quad A \vee \neg C
\end{aligned}
$$

VU!

VU!

VU

VU!

VU \%

VU

VU

VU

No more transitions and conflict： UNSAT

```
In Isabelle
```

State in Isabelle

$$
\text { Pair path-clauses: } \quad(M, N)
$$

Decide in Isabelle undefined_lit $M L \Longrightarrow L \in N \Longrightarrow(M, N) \Rightarrow_{\mathrm{CDCL}}(M L, N)$

DPLL+BJ

DPLL+BJ

Propagate

Analyse + Backjump

VU
ver
AMSTERDAM

CDCL

New learned clause: A

Abstract CDCI

Nieuwenhuis, Oliveras, and Tinelli 2006

DPLL

DPLL+BJ

Backtrack

CDCL

Propagate

Analyse + Backjump

Learn + forget clause

VU
VRIJE
UNIVERSITEIT
AMSTERDAM

DPLL \longrightarrow DPLL+BJ
specialises

Propagate

CDCL

Propagate

Analyse + Backjump

Learn + forget clause

VRIJE
UNIVERSITEIT
AMSTERDAM

DPLL \longrightarrow DPLL+BJ
specialises

parametrized by
BJ_cond
in Isabelle

CDCL

Propagate

Analyse + Backjump

Learn + forget clause
submodule DPLL \subseteq DPLL+BJ where BJ_cond = BT_cond

DPLL \longrightarrow DPLL+BJ
specialises

parametrized by
BJ_cond
in Isabelle

VRIJE
UNIVERSITEIT
AMSTERDAM

CDCL

Analyse + Backjump

Learn + forget clause
submodule DPLL \subseteq DPLL+BJ where
BJ_cond = BT_cond in Isabelle

DPLL \rightarrow DPLL+BJ
discharge those assumptions
Decide

parametrized by BJ_cond in Isabelle

VRIJE
UNIVERSITEIT
AMSTERDAM

submodule DPLL \subseteq DPLL+BJ where BJ_cond = BT_cond

DPLL \longrightarrow DPLL+BJ
specialises

parametrized by
BJ_cond
in Isabelle

VRIJE
UNIVERSITEIT
AMSTERDAM

CDCL

Analyse + Backjump

Learn + forget clause

DPLL \longrightarrow DPLL+BJ
specialises

Propagate

CDCL

Propagate

Analyse + Backjump

Learn + forget clause

VRIJE
UNIVERSITEIT
AMSTERDAM

VRIJE
UNIVERSITEIT
AMSTERDAM

$$
\begin{aligned}
\mathrm{CDCL}= & \text { DPLL+BJ + Learn } \\
& + \text { Forget }
\end{aligned}
$$

DPLL \longrightarrow DPLL+BJ
specialises

extends

CDCL

Propagate

> Analyse + Backjump

Learn + forget clause

VRIJE
UNIVERSITEIT
AMSTERDAM

DPLL \longrightarrow DPLL+BJ \longleftarrow CDCL
 specialises
 termination
 termination
 non-termination

DPLL \longrightarrow DPLL+BJ specialises
 termination
 termination
 non-termination

Learn + forget clause
infinite chain of learn and forget

VRIJE
UNIVERSITEIT AMSTERDAM

DPLL \longrightarrow DPLL+BJ \longleftarrow CDCL
 specialises
 termination
 termination
 non-termination

Analyse +	Learn + forget
Backjump	clause

infinite ain of learn
and fo y

VRIJE
UNIVERSITEIT
AMSTERDAM

DPLL
 DPLL+BJ

Abstract CDCI

Nieuwenhuis, Oliveras, and Tinelli 2006

refines

Concrete CDCI

Weidenbach, 2015
refines
CDCT with efficient data structure Eén and Sörensson, 2004
refines
Executable SAT solver
(ongoing work)

Concrete CDCT

Weidenbach, 2015

vu
AMSTERDAM

Backjump

on paper

```
if C}\in\mathbf{N}\mathrm{ and M}=\neg\mathbf{C
and there is C' such that ...
(\mathbf{M},\mathbf{N})=>(\mathbf{L M}\mp@subsup{\mathbf{M}}{}{\prime},\mathbf{N})
```

How do we get a suitable C^{\prime} ?

Baclkjump
 if $\mathrm{C} \in \mathrm{N}$ and $\mathrm{M} \vDash \neg \mathrm{C}$
 and there is C^{\prime} such that ...
 $(\mathbf{M}, \mathbf{N}) \Rightarrow\left(\mathbf{L} \mathbf{M}^{\prime}, \mathbf{N}\right)$

How do we get a suitable C^{\prime} ?

- First unique implication point

CDCL_conc

Conflic

Decide
 Propagate

Jump+Learn
vu

Decide Propagate

CDCL conc

Backjump +Learn

Conflic

Analyse 1
 Analyse 2

Jump+Learn

Theorem (no relearning):

No clause can be learned twice.

Theorem (no relearning): No clause can be learned twice.

> Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state ($\mathrm{M} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} \vee \mathrm{L}$) where Backtracking is applicable and $\mathrm{D} \vee \mathrm{L} \in(\mathrm{N} \cup \mathrm{U})$.
> More precisely, the state has the form ($\left.\mathrm{M} 1 \mathrm{~K}^{\mathrm{i}+1} \mathrm{M}_{2} \mathrm{~K}_{1} \mathrm{~K}_{\mathrm{K}} 2 \ldots \mathrm{Kn} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} v \mathrm{~L}\right)$ where the $\mathrm{Ki}, \mathrm{i}>1$ are propagated literals that do not occur complemented in D , as for otherwise D cannot be of level i. Furthermore, one of the K_{i} is the complement of L.
> But now, because $D \vee L$ is false in $M 1 K^{i+1} M_{2} K_{1}{ }^{k} K 2 \ldots K n$ and $D \vee L \in(N \cup U)$
> instead of deciding $K 1 k$ the literal L should be propagated by a reasonable strategy. A contradiction. Note that none of the Ki can be annotated with $\mathrm{D} v \mathrm{~L}$.
<700 lines of proof,

Theorem (no relearning): No clause can be learned twice.

```
Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state ( \(\mathrm{M} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} \vee \mathrm{L}\) ) where Backtracking is applicable and \(\mathrm{D} \vee \mathrm{L} \in(\mathrm{N} \cup \mathrm{U})\).
More precisely, the state has the form ( \(\left.M 1 \mathrm{~K}^{i+1} \mathrm{M}_{2} \mathrm{~K}_{1} \mathrm{k}_{\mathrm{K} 2} \ldots \mathrm{Kn} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{DvL}\right)\) where the \(\mathrm{Ki}, \mathrm{i}>1\) are propagated literals that do not occur complemented in D , as for otherwise \(D\) cannot be of level \(i\). Furthermore, one of the \(K_{i}\) is the complement of \(L\).
But now, because \(D \vee L\) is false in \(M 1 K^{i+1} M_{2} K_{1}{ }^{k} K 2 \ldots K n\) and \(D \vee L \in(N \cup U)\)
instead of deciding \(K 1 k\) the literal \(L\) should be propagated by a reasonable strategy. A contradiction. Note that none of the Ki can be annotated with \(\mathrm{D} v \mathrm{~L}\).
```

VRIJE
UNIVERSITEIT
AMSTERDAM

Theorem (no relearning): No clause can be learned twice.

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state ($\mathrm{M} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} \vee \mathrm{L}$) where Backtracking is applicable and $\mathrm{D} \vee \mathrm{L} \in(\mathrm{N} \cup \mathrm{U})$.
More precisely, the state has the form ($\left.\mathrm{M}_{1} \mathrm{~K}^{\mathrm{i}+1} \mathrm{M}_{2} \mathrm{~K}_{1} \mathrm{~K}_{\mathrm{K} 2} \ldots \mathrm{Kn} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} v \mathrm{~L}\right)$ where the $\mathrm{Ki}, \mathrm{i}>1$ are propagated literals that do not occur complemented in D , as for otherwise D cannot be of level i . Furthermore, one of the Ki is the complement of L .
But now, because $D \vee L$ is false in $M 1 K^{i}+1 M_{2} K_{1}{ }^{k} K 2 \ldots K n$ and $D \vee L \in(N \cup U)$
instead of deciding $K 1 k$ the literal L should be propagated by a reasonable strategy. A contradiction. Note that none of the Ki can be annotated with $\mathrm{D} \vee \mathrm{L}$.

VRIJE
UNIVERSITEIT
AMSTERDAM

Theorem (no relearning): No clause can be learned twice.

```
Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state ( \(\mathrm{M} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} \vee \mathrm{L}\) ) where Backtracking is applicable and \(\mathrm{D} \vee \mathrm{L} \in(\mathrm{N} \cup \mathrm{U})\).
More precisely, the state has the form ( \(\left.\mathrm{M} 1 \mathrm{~K}^{\mathrm{i}+1} \mathrm{M}_{2} \mathrm{~K}_{1} \mathrm{~K}_{\mathrm{K}} 2 \ldots \mathrm{Kn} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} v \mathrm{~L}\right)\) where the \(\mathrm{Ki}, \mathrm{i}>1\) are propagated literals that do not occur complemented in D , as for otherwise D cannot be of level i . Furthermore, one of the \(\mathrm{Ki}_{\mathrm{i}}\) is the complement of L .
But now, because \(D \vee L\) is false in \(M 1 K^{i+1} M_{2} K_{1}{ }^{k} K 2 \ldots K n\) and \(D \vee L \in(N \cup U)\)
instead of deciding \(K 1 k\) the literal \(L\) should be propagated by a reasonable strategy. A contradiction. Note that none of the Ki can be annotated with \(\mathrm{D} v \mathrm{~L}\).
```


VRIJE
UNIVERSITEIT
AMSTERDAM

Theorem (no relearning): No clause can be learned twice.

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state ($\mathrm{M} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} \vee \mathrm{L}$) where Backtracking is applicable and $\mathrm{D} \vee \mathrm{L} \in(\mathrm{N} \cup \mathrm{U})$.
More precisely, the state has the form ($\left.\mathrm{M} 1 \mathrm{~K}^{\mathrm{i}+1} \mathrm{M}_{2} \mathrm{~K}_{1} \mathrm{~K}_{\mathrm{K}} 2 \ldots \mathrm{Kn} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} v \mathrm{~L}\right)$ where the $\mathrm{Ki}, \mathrm{i}>1$ are propagated literals that do not occur complemented in D , as for otherwise D cannot be of level i . Furthermore, one of the Ki is the complement of L .
But now, because $D \vee L$ is false in $M 1 K^{i}+1 M_{2} K_{1}{ }^{k} K 2 \ldots K n$ and $D \vee L \in(N \cup U)$
instead of deciding $K 1 k$ the literal L should be propagated by a reasonable strategy. A contradiction. Note that none of the Ki can be annotated with D $\vee \mathrm{L}$.

Theorem (no relearning): No clause can be learned twice.

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state ($\mathrm{M} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} \vee \mathrm{L}$) where Backtracking is applicable and $\mathrm{D} \vee \mathrm{L} \in(\mathrm{N} \cup \mathrm{U})$.
More precisely, the state has the form ($\left.\mathrm{M} 1 \mathrm{~K}^{\mathrm{i}+1} \mathrm{M}_{2} \mathrm{~K}_{1} \mathrm{~K}_{\mathrm{K} 2} \ldots \mathrm{Kn} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} v \mathrm{~L}\right)$ where the $\mathrm{Ki}, \mathrm{i}>1$ are propagated literals that do not occur complemented in D , as for otherwise D cannot be of level i . Furthermore, one of the Ki is the complement of L .
But now, because $D \vee L$ is false in $M 1 K^{i}+1 M_{2} K_{1}{ }^{k} K 2 \ldots K n$ and $D \vee L \in(N \cup U)$
instead of deciding $K 1 k$ the literal L should be propagated by a reasonable strategy. A contradiction. Note that none of the Ki can be annotated with D $\vee \mathrm{L}$.

Abstract CDCI

Nieuwenhuis, Oliveras, and Tinelli 2006

Vu

CDCL with efficient data structure

- Key data structure: two watched literals
- Nice to have formally

Two Watched Literals

For each clause:

- Keep two literals unset or true
- If you can't:
- propagate or
- mark conflict or
- ignore if one literal is true

VRIJE

CDCL
 Clauses
 Literals
 Decision

\(\left.\begin{array}{|l|llll|}\hline Refinement

by

behaviour\end{array}\right\}\) Abstract | Multisets of |
| :--- |
| multisets |\quad Datatype \quad Don't care

CDCL
 Clauses
 Literals
 Decision

Refinement by behaviour		Abstract	Multisets of multisets	Datatype	Don't care
Refinement by hand	Inductive predicate are included in each other			Datatype	Don't care
		Intermear	lists	Datatype	Don't care
Automatic Refinement	$($				
		Code	Arrays of arrays	Ulnt32	One heuristics

CDCL
 Clauses
 Literals
 Decision

CDCL
 Clauses
 Literals
 Decision

CDCL
Clauses
Literals
Decision

Refinement by behaviour	Abstract	Multisets of multisets	Datatype	Don't care
	Concrete	Multisets of multisets	Datatype	Don't care
	Intermediate	Lists of lists	Datatype	Don't care
	Code	Arrays of arrays	Ulnt32	One heuristics

Can also be changed

VRIJE
UNIVERSITEIT
AMSTERDAM

How efficient is it compared to state-of-the-art Glucose?

IsaSAT performance compared to Glucose

Some features of Glucose

Calculus
Code

Presimplification of the problem

Not relevant

Learned clause minimization

Already generalized

Partial \& TODO

Conflict Orthogonal on-going
Representation

VU

Some features of Glucose

Calculus

Code

Forget + Restarts
Included TODO

Trail reuse in Restarts

> Orthogonal TODO (partially)?

Hyper binary
Resolution
Not Expressible

How hard is it?

Abstract	Paper	Proof assistant
CDCL	13 pages	50 pages
Concrete CDCL	9 pages $(1 / 2$ month $)$	90 pages $(5$ months $)$
Two- Watched	1 page	265 pages
	(C++ code of MiniSat)	(9 months)

Conclusion

Concrete outcome

- verified SAT solver framework
- verified executable SAT solver
- improve book draft

Methodology

- Refinement

Future work

- SAT Modulo Theories (e.g., CVC4, veriT, Yices, Z3)

