
A Verified SAT Solver with  
Two Watched Literals

Mathias
Fleury

Christoph
Weidenbach

Jasmin 
Blanchette

Peter
Lammich

2

SAT solving
Given a CNF formula

' =
^

i

_

j

Li,j

is there a satisfying assignment?

Most used algorithm: CDCL, an improvement over DPLL

3

Two ways to ensure correctness:

‣ certify the certificate
- certificates are huge

‣ verification of the code
- code will not be competitive
- allows to study metatheory

How reliable are SAT solvers?

4

Correctness Applicability

Theory behind SAT solvers Proof every input

Run of a SAT solver Certificate: proof of
(un)satisfiability a given input

5

IsaFoL project
Isabelle Formalization of Logic

6

‣ FO resolution  
 by Schlichtkrull (ITP 2016)

‣ CDCL with learn, forget, restart, incrementality, 2WL  
 by Blanchette, Fleury, Lammich, Weidenbach (IJCAR 2016, now)

‣ GRAT certificate checker  
 by Lammich (CADE 2017)  

‣ FO ordered resolution with selection  
 by Schlichtkrull, Blanchette, Traytel, Waldmann (IJCAR 2018?)

Selected IsaFoL entries

6

‣ FO resolution  
 by Schlichtkrull (ITP 2016)

‣ CDCL with learn, forget, restart, incrementality, 2WL  
 by Blanchette, Fleury, Lammich, Weidenbach (IJCAR 2016, now)

‣ GRAT certificate checker  
 by Lammich (CADE 2017)  

‣ FO ordered resolution with selection  
 by Schlichtkrull, Blanchette, Traytel, Waldmann (IJCAR 2018?)

Selected IsaFoL entries

7

‣ Eat our own dog food

case study for proof assistants and automatic provers

‣ Build libraries for state-of-the-art research

Automated Reasoning:  
The Art of Generic Problem Solving 
(forthcoming textbook by Weidenbach)

Why?

8

A

BB

CCCC

? ? ? ? ? ? ? ?

A _B _ C ¬A _B _ C ¬B _ C B _ ¬C
¬A _B A _ ¬B _ ¬C A _ ¬C

N =

Truth table

Decide

¬A A

¬B B ¬B B

¬C C ¬C C ¬C C ¬C C

B

¬B B

9

A _B _ C ¬A _B _ C ¬B _ C B _ ¬C
¬A _B A _ ¬B _ ¬C A _ ¬C

N =

DPLL

Decide

Propagate

9

A

A _B _ C ¬A _B _ C ¬B _ C B _ ¬C
¬A _B A _ ¬B _ ¬C A _ ¬C

N =

DPLL

Decide

Propagate

¬A A

9

A

B

A _B _ C ¬A _B _ C ¬B _ C B _ ¬C
¬A _B A _ ¬B _ ¬C A _ ¬C

N =

DPLL

Decide

Propagate

¬A A

B

9

A

B

A _B _ C ¬A _B _ C ¬B _ C B _ ¬C
¬A _B A _ ¬B _ ¬C A _ ¬C

N =

DPLL

Decide

Propagate

¬A A

B

C

9

B

C

B

CC

A

? ? ?

B

CC

A _B _ C ¬A _B _ C ¬B _ C B _ ¬C
¬A _B A _ ¬B _ ¬C A _ ¬C

N =

DPLL

Decide

Propagate

¬A A

¬B B B

C C C

C

?
¬C

B B

10

Decide

C

A

? ? ?
Propagate

CC

State (trail)

B

¬A A

¬B B B

C C C

B B

10

Decide

C

A

? ? ?
Propagate

CC

ε

State (trail)

B

¬A A

¬B B B

C C C

B B

10

Decide

C

A

? ? ?
Propagate

CC

ε

State (trail)
¬A

B

¬A A

¬B B B

C C C

B B

10

Decide

C

A

? ? ?
Propagate

CC

ε

State (trail)
¬A

¬A ¬B

B

¬A A

¬B B B

C C C

B B

10

Decide

C

A

? ? ?
Propagate

CC

ε

State (trail)
¬A

¬A ¬B

¬A ¬B C

B

¬A A

¬B B B

C C C

B B

10

Decide

C

A

? ?
Propagate

C

ε

State (trail)
¬A

¬A ¬B

¬A ¬B C

B

¬A A

¬B B B

C C C

B B

10

Decide

C

A

? ?
Propagate

C

ε

State (trail)
¬A

¬A ¬B

¬A ¬B C

¬A B

B

¬A A

¬B B B

C C C

B

10

Decide

C

A

?
Propagate

ε

State (trail)A¬A

¬A ¬B

¬A ¬B C

¬A B

¬A B C

B

A

¬A A

¬B B B

C C C

B

10

Decide

C

A

?
Propagate

ε

State (trail)A

A B

¬A

¬A ¬B

¬A ¬B C

¬A B

¬A B C

B

A

¬A A

¬B B B

C C C

B

10

Decide

C

A

?
Propagate

ε

State (trail)A

A B

A B C

¬A

¬A ¬B

¬A ¬B C

¬A B

¬A B C

No more transitions and conflict: 
UNSAT

B

A

¬A A

¬B B B

C C C

undefined litM L =) L 2 N =) (M,N))CDCL (ML,N)

11

In Isabelle

Decide in Isabelle

State in Isabelle
(M,N)Pair path-clauses:

L

12

Decide

B

CC

B

CC

A

? ? ? Propagate

B

CC

13

Decide

B

C

A

?

Propagate

C
Analyse +
Backjump

A _ ¬C

A _ C

DPLL+BJ

13

Decide

B

C

A

?

Propagate

C
Analyse +
Backjump

A _ ¬C

A _ C

A

DPLL+BJ

13

Decide

B

C

A

?

Propagate

C
Analyse +
Backjump

A _ ¬C

A _ C

A

 New learned clause: A

Learn + forget
clause

CDCL

14

Concrete CDCL

Weidenbach, 2015

Abstract CDCL

Nieuwenhuis, Oliveras, and Tinelli 2006

CDCL with efficient data structure 
Eén and Sörensson, 2004

Executable SAT solver  
(ongoing work)

refines

refines

refines

14

Concrete CDCL

Weidenbach, 2015
Abstract CDCL

Nieuwenhuis, Oliveras, and Tinelli 2006
CDCL with efficient data structure 

Eén and Sörensson, 2004

Executable SAT solver  
(ongoing work)

refines

refines

refines

15

Decide

Propagate

Analyse +
Backjump

Learn + forget
clause

DPLL CDCL

Decide

Propagate

DPLL+BJ

Decide

Propagate

Analyse +
BackjumpBacktrack

15

Decide

Propagate

Analyse +
Backjump

Learn + forget
clause

DPLL CDCL

Decide

Propagate

DPLL+BJ

Decide

Propagate

Analyse +
BackjumpBacktrack

specialises

15

Decide

Propagate

Analyse +
Backjump

Learn + forget
clause

DPLL CDCL

Decide

Propagate

DPLL+BJ

Decide

Propagate

Analyse +
BackjumpBacktrack

specialises

parametrized by
BJ_cond in Isabelle

15

Decide

Propagate

Analyse +
Backjump

Learn + forget
clause

DPLL CDCL

Decide

Propagate

DPLL+BJ

Decide

Propagate

Analyse +
BackjumpBacktrack

submodule DPLL ⊆ DPLL+BJ where
 BJ_cond = BT_cond in Isabelle

specialises

parametrized by
BJ_cond in Isabelle

15

Decide

Propagate

Analyse +
Backjump

Learn + forget
clause

DPLL CDCL

Decide

Propagate

DPLL+BJ

Decide

Propagate

Analyse +
BackjumpBacktrack

submodule DPLL ⊆ DPLL+BJ where
 BJ_cond = BT_cond in Isabelle

specialisesdischarge those
assumptions

parametrized by
BJ_cond in Isabelle

15

Decide

Propagate

Analyse +
Backjump

Learn + forget
clause

DPLL CDCL

Decide

Propagate

DPLL+BJ

Decide

Propagate

Analyse +
BackjumpBacktrack

submodule DPLL ⊆ DPLL+BJ where
 BJ_cond = BT_cond in Isabelle

specialises

parametrized by
BJ_cond in Isabelle

15

Decide

Propagate

Analyse +
Backjump

Learn + forget
clause

DPLL CDCL

Decide

Propagate

DPLL+BJ

Decide

Propagate

Analyse +
BackjumpBacktrack

specialises

15

Decide

Propagate

Analyse +
Backjump

Learn + forget
clause

DPLL CDCL

Decide

Propagate

DPLL+BJ

Decide

Propagate

Analyse +
BackjumpBacktrack

specialises extends

15

Decide

Propagate

Analyse +
Backjump

Learn + forget
clause

DPLL CDCL

Decide

Propagate

DPLL+BJ

Decide

Propagate

Analyse +
BackjumpBacktrack

specialises extends

CDCL = DPLL+BJ + Learn  
 + Forget in Isabelle

15

Decide

Propagate

Analyse +
Backjump

Learn + forget
clause

DPLL CDCL

Decide

Propagate

DPLL+BJ

Decide

Propagate

Analyse +
BackjumpBacktrack

specialises extends

16

DPLL CDCLDPLL+BJ

termination termination non-termination

specialises extends

16

Learn + forget
clause

DPLL CDCLDPLL+BJ

termination termination non-termination

infinite chain of learn  
and forget

specialises extends

16

Learn + forget
clause

DPLL CDCLDPLL+BJ

termination termination non-termination

infinite chain of learn  
and forget

Analyse +
Backjump

specialises extends

17

Abstract CDCL

Nieuwenhuis, Oliveras, and Tinelli 2006

Concrete CDCL 
Weidenbach, 2015

CDCL with efficient data structure 
Eén and Sörensson, 2004

Executable SAT solver  
(ongoing work)

refines

refines

refines

17

Abstract CDCL

Nieuwenhuis, Oliveras, and Tinelli 2006

Concrete CDCL 
Weidenbach, 2015

CDCL with efficient data structure 
Eén and Sörensson, 2004

Executable SAT solver  
(ongoing work)

refines

refines

refines

DPLL CDCLDPLL+BJ

17

Abstract CDCL

Nieuwenhuis, Oliveras, and Tinelli 2006

Concrete CDCL 
Weidenbach, 2015

CDCL with efficient data structure 
Eén and Sörensson, 2004

Executable SAT solver  
(ongoing work)

refines

refines

refines

18

How do we get a suitable ?C 0

on paperBackjump

if C 2 N and M ✏ ¬C
and there is C0 such that ...

(M,N)) (LM0,N)

18

‣ First unique implication point

How do we get a suitable ?C 0

on paperBackjump

if C 2 N and M ✏ ¬C
and there is C0 such that ...

(M,N)) (LM0,N)

19

CDCL_conc

Conflic

Jump+Learn

Propagate

Decide Analyse 1

Analyse 2

Conflic

20

Analyse 1

Jump+Learn

CDCL_abs_learn_bj

Backjump 
+LearnPropagate

Decide

Analyse 2

CDCL_conc

Propagate

Decide

terminates

terminates

21

Theorem (no relearning):  
No clause can be learned twice.

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches
a state (M;N;U;k;D ∨ L) where Backtracking is applicable and D ∨ L ∈ (N ∪ U).

21

Theorem (no relearning):  
No clause can be learned twice.

More precisely, the state has the form (M1Ki+1M2K1kK2 ...Kn;N;U;k;D∨L) where the
Ki, i > 1 are propagated literals that do not occur complemented in D, as for
otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because D ∨ L is false in M1Ki+1M2K1kK2 ...Kn and D ∨ L ∈ (N ∪ U)

instead of deciding K1k the literal L should be propagated by a reasonable strategy.
A contradiction. Note that none of the Ki can be annotated with D ∨ L.

‹700 lines of proof› in Isabelle

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches
a state (M;N;U;k;D ∨ L) where Backtracking is applicable and D ∨ L ∈ (N ∪ U).

21

Theorem (no relearning):  
No clause can be learned twice.

More precisely, the state has the form (M1Ki+1M2K1kK2 ...Kn;N;U;k;D∨L) where the
Ki, i > 1 are propagated literals that do not occur complemented in D, as for
otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because D ∨ L is false in M1Ki+1M2K1kK2 ...Kn and D ∨ L ∈ (N ∪ U)

instead of deciding K1k the literal L should be propagated by a reasonable strategy.
A contradiction. Note that none of the Ki can be annotated with D ∨ L.

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches
a state (M;N;U;k;D ∨ L) where Backtracking is applicable and D ∨ L ∈ (N ∪ U).

21

Theorem (no relearning):  
No clause can be learned twice.

More precisely, the state has the form (M1Ki+1M2K1kK2 ...Kn;N;U;k;D∨L) where the
Ki, i > 1 are propagated literals that do not occur complemented in D, as for
otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because D ∨ L is false in M1Ki+1M2K1kK2 ...Kn and D ∨ L ∈ (N ∪ U)

instead of deciding K1k the literal L should be propagated by a reasonable strategy.
A contradiction. Note that none of the Ki can be annotated with D ∨ L.

...ε

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches
a state (M;N;U;k;D ∨ L) where Backtracking is applicable and D ∨ L ∈ (N ∪ U).

21

Theorem (no relearning):  
No clause can be learned twice.

More precisely, the state has the form (M1Ki+1M2K1kK2 ...Kn;N;U;k;D∨L) where the
Ki, i > 1 are propagated literals that do not occur complemented in D, as for
otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because D ∨ L is false in M1Ki+1M2K1kK2 ...Kn and D ∨ L ∈ (N ∪ U)

instead of deciding K1k the literal L should be propagated by a reasonable strategy.
A contradiction. Note that none of the Ki can be annotated with D ∨ L.

...ε

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches
a state (M;N;U;k;D ∨ L) where Backtracking is applicable and D ∨ L ∈ (N ∪ U).

21

Theorem (no relearning):  
No clause can be learned twice.

More precisely, the state has the form (M1Ki+1M2K1kK2 ...Kn;N;U;k;D∨L) where the
Ki, i > 1 are propagated literals that do not occur complemented in D, as for
otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because D ∨ L is false in M1Ki+1M2K1kK2 ...Kn and D ∨ L ∈ (N ∪ U)

instead of deciding K1k the literal L should be propagated by a reasonable strategy.
A contradiction. Note that none of the Ki can be annotated with D ∨ L.

...ε

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches
a state (M;N;U;k;D ∨ L) where Backtracking is applicable and D ∨ L ∈ (N ∪ U).

21

Theorem (no relearning):  
No clause can be learned twice.

More precisely, the state has the form (M1Ki+1M2K1kK2 ...Kn;N;U;k;D∨L) where the
Ki, i > 1 are propagated literals that do not occur complemented in D, as for
otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because D ∨ L is false in M1Ki+1M2K1kK2 ...Kn and D ∨ L ∈ (N ∪ U)

instead of deciding K1k the literal L should be propagated by a reasonable strategy.
A contradiction. Note that none of the Ki can be annotated with D ∨ L.

...ε

22

Abstract CDCL

Nieuwenhuis, Oliveras, and Tinelli 2006

Concrete CDCL 
Weidenbach, 2015

CDCL with efficient data structure 
Eén and Sörensson, 2004

Executable SAT solver  
(ongoing work)

refines

refines

refines

Theory

Critical

Practice

23

Decide

Propagate

Don’t care

Critical

Critical

How is it
 done?

Data structure

Heuristics

Rules

24

CDCL with efficient data structure 
Eén and Sörensson, 2004

• Key data structure: two watched literals

• Nice to have formally

25

For each clause:

• Keep two literals unset or true

• If you can’t:

‣ propagate or

‣ mark conflict or

‣ ignore if one literal is true

Two Watched Literals

26

Concrete

Intermediate

Code

Multisets of 
 multisets

Lists of 
lists

Arrays of 
arrays

Datatype

Datatype

UInt32

Refinement
by hand

Automatic
Refinement

Don’t care

Don’t care

One heuristics

Abstract

Clauses

Multisets of 
 multisets

Literals

Datatype

CDCL Decision

Don’t careRefinement
by

behaviour

26

Concrete

Intermediate

Code

Multisets of 
 multisets

Lists of 
lists

Arrays of 
arrays

Datatype

Datatype

UInt32

Refinement
by hand

Automatic
Refinement

Don’t care

Don’t care

One heuristics

Abstract

Clauses

Multisets of 
 multisets

Literals

Datatype

CDCL Decision

Don’t careRefinement
by

behaviour

Inductive predicate are included in
each other

26

Concrete

Intermediate

Code

Multisets of 
 multisets

Lists of 
lists

Arrays of 
arrays

Datatype

Datatype

UInt32

Refinement
by hand

Automatic
Refinement

Don’t care

Don’t care

One heuristics

Abstract

Clauses

Multisets of 
 multisets

Literals

Datatype

CDCL Decision

Don’t careRefinement
by

behaviour

Refinement Framework generates
aligns programs and generates conditions

to prove

26

Concrete

Intermediate

Code

Multisets of 
 multisets

Lists of 
lists

Arrays of 
arrays

Datatype

Datatype

UInt32

Refinement
by hand

Automatic
Refinement

Mapping of concrete and
code operations, synthesis and
precondition discharging done

automatically

Don’t care

Don’t care

One heuristics

Abstract

Clauses

Multisets of 
 multisets

Literals

Datatype

CDCL Decision

Don’t careRefinement
by

behaviour

26

Concrete

Intermediate

Code

Multisets of 
 multisets

Lists of 
lists

Arrays of 
arrays

Datatype

Datatype

UInt32

Refinement
by hand

Automatic
Refinement

Don’t care

Don’t care

One heuristics

Abstract

Clauses

Multisets of 
 multisets

Literals

Datatype

CDCL Decision

Don’t careRefinement
by

behaviour

Can also be changed

27

How efficient is it compared to  
state-of-the-art Glucose?

28

Learned clause 
minimization

Calculus

Conflict 
Representation

Already 
generalized

Code

Partial & TODO

on-going

Presimplification 
of the problem Not relevant

Some features of Glucose

Orthogonal

29

Forget + Restarts Included TODO

Trail reuse in 
Restarts Orthogonal TODO (partially)?

Hyper binary 
Resolution Not Expressible

Some features of Glucose

Calculus Code

30

How hard is it?

Paper Proof assistant
Abstract
CDCL 13 pages 50 pages

Concrete
CDCL 9 pages 90 pages

 (½ month) (5 months)
Two-
Watched

1 page  265 pages

(C++ code of 
MiniSat) (9 months)

31

Concrete outcome
‣ verified SAT solver framework
‣ verified executable SAT solver
‣ improve book draft

Conclusion

Methodology
‣ Refinement

Future work
‣ SAT Modulo Theories (e.g., CVC4, veriT, Yices, Z3)

