

A Verified SAT Solver Framework

Jasmin C. Blanchette Mathias Fleury

Christoph Weidenbach

SAARBRÜCKEN GRADUATE SCHOOL OF COMPUTER SCIENCE

SAT Solving

Given a formula in conjunctive normal form

$$\varphi = \bigwedge_{i} \bigvee_{j} L_{i,j}$$

is there an assignment making the formula true?

Most used algorithm: CDCL, an improvement over DPLL

SAT has many applications

Two-hundred-terabyte maths proof is largest ever

(Wednesday: "Solving Very Hard Problems: Cube-and-Conquer, a Hybrid SAT Solving Method")

How reliable are SAT solvers?

Two ways to ensure correctness:

- certify the certificate
 - certificates are huge
- verification of the code
 - code will not be competitive
 - allows to study metatheory

	Correctness	Applicability
Theory behind SAT solvers	Proof	every input
Run of a SAT solver	Certificate: proof of (un)satisfiability	<i>a given</i> input

Theorem proving: Interactive vs Automated

Automated

\$ minisat eq.atree.braun.7.unsat.cnf UNSATISFIABLE

\$ minisat eq.atree.braun.8.unsat.cnf UNKNOWN

IsaFoL

- FO resolution
 by Schlichtkrull (ITP 2016)
- CDCL with learn, forget, restart, and incrementality by Blanchette, Fleury, Weidenbach (IJCAR 2016, now)
- FO ordered resolution with selection by Blanchette, Schlichtkrull, Traytel (ongoing)
- GRAT certificate checker by Lammich (CADE-26, 2017)

IsaFoL

- FO resolution
 by Schlichtkrull (ITP 2016)
- CDCL with learn, forget, restart, and incrementality by Blanchette, Fleury, Weidenbach (IJCAR 2016, now)
- FO ordered resolution with selection by Blanchette, Schlichtkrull, Traytel (ongoing)
- GRAT certificate checker by Lammich (CADE-26, 2017)

Eat our own dog food

case study for proof assistants and automatic provers

Build libraries for state-of-the-art research

Automated Reasoning: The Art of Generic Problem Solving (forthcoming textbook by Weidenbach)

Truth Table

Truth Table

$\mathbf{N} = \begin{array}{ccc} A \lor B \lor C & \neg A \lor B \lor C & \neg B \lor C & B \lor \neg C \\ \neg A \lor B & A \lor \neg B \lor \neg C & A \lor \neg C \end{array}$

Decide

Propagate

$\mathbf{N} = \begin{array}{ccc} A \lor B \lor C & \neg A \lor B \lor C & \neg B \lor C & B \lor \neg C \\ \neg A \lor B & A \lor \neg B \lor \neg C & A \lor \neg C \end{array}$

Decide

Propagate

In Isabelle

State in Isabelle

Pair path-clauses:

(M, N)

Decide in Isabelle undefined_lit $ML \implies L \in N \implies (M, N) \Rightarrow_{\text{CDCL}} (ML, N)$

DPLL+BJ

Decide

Propagate

Analyse + Backjump

DPLL+BJ

Decide

Propagate

Analyse + Backjump

Abstract CDCL

Nieuwenhuis, Oliveras, and Tinelli 2006

Learn + forget clause

infinite chain of learn and forget

Concrete CDCL

Weidenbach, 2015

How do we get a suitable C'?

How do we get a suitable C'?

First unique implication point

Theorem (no relearning):

No clause can be learned twice.

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state (M;N;U;k;D \vee L) where Backtracking is applicable and D \vee L \in (N \cup U).

More precisely, the state has the form $(M1K^{i+1}M_2K_1^kK_2 ...K_n;N;U;k;D\vee L)$ where the Ki, i > 1 are propagated literals that do not occur complemented in D, as for otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because D \vee L is false in M1Kⁱ⁺¹M2K1^kK2 ...Kn and D \vee L \in (N \cup U)

instead of deciding K1^k the literal L should be propagated by a reasonable strategy. A contradiction. Note that none of the Ki can be annotated with $D \vee L$.

<700 lines of proof>

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state (M;N;U;k;D \vee L) where Backtracking is applicable and D \vee L \in (N \cup U).

More precisely, the state has the form $(M1K^{i+1}M_2K_1^kK_2 ...K_n;N;U;k;D\vee L)$ where the Ki, i > 1 are propagated literals that do not occur complemented in D, as for otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because $D \lor L$ is false in M1Kⁱ⁺¹M2K1^kK2 ...Kn and $D \lor L \in (N \cup U)$

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state (M;N;U;k;D \vee L) where Backtracking is applicable and D \vee L \in (N \cup U).

More precisely, the state has the form $(M1K^{i+1}M_2K_1^kK_2 ...K_n;N;U;k;D\vee L)$ where the K_i, i > 1 are propagated literals that do not occur complemented in D, as for otherwise D cannot be of level i. Furthermore, one of the K_i is the complement of L.

But now, because $D \lor L$ is false in M1Kⁱ⁺¹M2K1^kK2 ...Kn and $D \lor L \in (N \cup U)$

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state (M;N;U;k;D \vee L) where Backtracking is applicable and D \vee L \in (N \cup U).

More precisely, the state has the form $(M1K^{i+1}M_2K_1^kK_2 ...K_n;N;U;k;D\vee L)$ where the Ki, i > 1 are propagated literals that do not occur complemented in D, as for otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because $D \lor L$ is false in M1Kⁱ⁺¹M2K1^kK2 ...Kn and $D \lor L \in (N \cup U)$

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state (M;N;U;k;D \vee L) where Backtracking is applicable and D \vee L \in (N \cup U).

More precisely, the state has the form $(M1K^{i+1}M_2K_1^kK_2 ...K_n;N;U;k;D\vee L)$ where the Ki, i > 1 are propagated literals that do not occur complemented in D, as for otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because $D \lor L$ is false in M1Kⁱ⁺¹M2K1^kK2 ...Kn and $D \lor L \in (N \cup U)$

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state (M;N;U;k;D \vee L) where Backtracking is applicable and D \vee L \in (N \cup U).

More precisely, the state has the form $(M1K^{i+1}M_2K_1^kK_2 ...K_n;N;U;k;D\vee L)$ where the Ki, i > 1 are propagated literals that do not occur complemented in D, as for otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because $D \lor L$ is false in M1Kⁱ⁺¹M2K1^kK2 ...Kn and $D \lor L \in (N \cup U)$

CDCL with efficient datastructure

- Two watched literals: important for performance
- Nice to have formally

How hard is it?

	Paper	Proof assistant
Abstract CDCL	13 pages	50 pages
Concrete		
CDCL	9 pages	90 pages
	(½ month)	(5 months)
Two- Watched	1 page	265 pages
	(C++ code of MiniSat)	(9 months)
vvaiched	•	

Conclusion

Concrete outcome

- verified SAT solver framework
- verified executable SAT solver
- improve book draft

Methodology

Refinement

Future work

SAT Modulo Theories

(e.g., CVC or z3)

