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SAT Solving
Given a formula in conjunctive normal form

' =
^

i

_

j

Li,j

is there an assignment making the formula true?

Most used algorithm: CDCL, an improvement over DPLL
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(Wednesday: “Solving Very Hard Problems: Cube-and-Conquer,  
a Hybrid SAT Solving Method”)

SAT has many applications
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Two ways to ensure correctness: 

‣ certify the certificate  
- certificates are huge 

‣ verification of the code 
- code will not be competitive 
- allows to study metatheory

How reliable are SAT solvers?
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Theory behind SAT solvers

Run of a SAT solver

Correctness

Proof

Certificate: proof of 
(un)satisfiability

Applicability

every input

a given input
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Theorem proving:  
Interactive vs Automated

Interactive

Automated $ minisat eq.atree.braun.7.unsat.cnf 
   UNSATISFIABLE

$ minisat eq.atree.braun.8.unsat.cnf 
   UNKNOWN
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IsaFoL project
Isabelle Formalisation of Logic

λ →

∀
=Isa

be
lle

β

α

I certify your 
proof
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‣ FO resolution  
      by Schlichtkrull  (ITP 2016) 

‣ CDCL with learn, forget, restart, and incrementality  
      by Blanchette, Fleury, Weidenbach  (IJCAR 2016, now) 

‣ FO ordered resolution with selection  
      by Blanchette, Schlichtkrull, Traytel  (ongoing)  

‣ GRAT certificate checker  
      by Lammich (CADE-26, 2017)   

IsaFoL
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‣ Eat our own dog food 

case study for proof assistants and automatic provers 

‣ Build libraries for state-of-the-art research 

Automated Reasoning:  
The Art of Generic Problem Solving 
(forthcoming textbook by Weidenbach)



�10

A
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CCCC

? ? ? ? ? ? ? ?

A _B _ C ¬A _B _ C ¬B _ C B _ ¬C
¬A _B A _ ¬B _ ¬C A _ ¬C

N = 

Truth Table

Decide

¬A A

¬B B ¬B B

¬C C ¬C C ¬C C ¬C C

B

¬B B
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B 

C

B

CC
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? ? ?
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Propagate

¬A A

¬B B B
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C

?
¬C
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A
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State in Isabelle

B
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C C C
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Decide

C

A

?
Propagate

ε

State in IsabelleA

A B

A B C

¬A

¬A ¬B

¬A ¬B C

¬A B

¬A B C

No more transitions and conflict: 
UNSAT

B

A

¬A A

¬B B B

C C C
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In Isabelle

Decide in Isabelle

State in Isabelle
(M,N)Pair path-clauses:

L
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Decide

B

CC

B

CC

A

? ? ? Propagate

B

CC
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Decide

B
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?
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C
Analyse + 
Backjump

A _ ¬C

A _ C

DPLL+BJ
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Decide

B

C

A

?

Propagate

C
Analyse + 
Backjump

A _ ¬C

A _ C

A

         New learned clause:           A

Learn + forget 
clause

CDCL
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Concrete CDCL 

Weidenbach, 2015

Abstract CDCL 

Nieuwenhuis, Oliveras, and Tinelli 2006

CDCL with efficient data 
structure 

Eén and Sörensson, 2004

Executable SAT solver  
To appear

refines

refines

refines
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       + Forget in Isabelle
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DPLL CDCLDPLL+BJ

termination termination non-termination

specialises extends
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Learn + forget 
clause

DPLL CDCLDPLL+BJ

termination termination non-termination

infinite chain of learn  
and forget

specialises extends
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How do we get a suitable     ?C 0

on paperBackjump

if C 2 N and M ✏ ¬C
and there is C0 such that ...

(M,N) ) (LM0,N)
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‣ First unique implication point

How do we get a suitable     ?C 0

on paperBackjump

if C 2 N and M ✏ ¬C
and there is C0 such that ...

(M,N) ) (LM0,N)
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Theorem (no relearning):  
No clause can be learned twice.



Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches 
a state (M;N;U;k;D ∨ L) where Backtracking is applicable and D ∨ L ∈ (N ∪ U).
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Theorem (no relearning):  
No clause can be learned twice.

More precisely, the state has the form (M1Ki+1M2K1kK2 ...Kn;N;U;k;D∨L) where the 
Ki, i > 1 are propagated literals that do not occur complemented in D, as for 
otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because D ∨ L is false in M1Ki+1M2K1kK2 ...Kn and D ∨ L ∈ (N ∪ U)

instead of deciding K1k the literal L should be propagated by a reasonable strategy. 
A contradiction. Note that none of the Ki can be annotated with D ∨ L.

‹700 lines of proof› in Isabelle



Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches 
a state (M;N;U;k;D ∨ L) where Backtracking is applicable and D ∨ L ∈ (N ∪ U).

�21

Theorem (no relearning):  
No clause can be learned twice.

More precisely, the state has the form (M1Ki+1M2K1kK2 ...Kn;N;U;k;D∨L) where the 
Ki, i > 1 are propagated literals that do not occur complemented in D, as for 
otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because D ∨ L is false in M1Ki+1M2K1kK2 ...Kn and D ∨ L ∈ (N ∪ U)

instead of deciding K1k the literal L should be propagated by a reasonable strategy. 
A contradiction. Note that none of the Ki can be annotated with D ∨ L.



Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches 
a state (M;N;U;k;D ∨ L) where Backtracking is applicable and D ∨ L ∈ (N ∪ U).

�21

Theorem (no relearning):  
No clause can be learned twice.

More precisely, the state has the form (M1Ki+1M2K1kK2 ...Kn;N;U;k;D∨L) where the 
Ki, i > 1 are propagated literals that do not occur complemented in D, as for 
otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because D ∨ L is false in M1Ki+1M2K1kK2 ...Kn and D ∨ L ∈ (N ∪ U)

instead of deciding K1k the literal L should be propagated by a reasonable strategy. 
A contradiction. Note that none of the Ki can be annotated with D ∨ L.

...ε



Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches 
a state (M;N;U;k;D ∨ L) where Backtracking is applicable and D ∨ L ∈ (N ∪ U).

�21

Theorem (no relearning):  
No clause can be learned twice.

More precisely, the state has the form (M1Ki+1M2K1kK2 ...Kn;N;U;k;D∨L) where the 
Ki, i > 1 are propagated literals that do not occur complemented in D, as for 
otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because D ∨ L is false in M1Ki+1M2K1kK2 ...Kn and D ∨ L ∈ (N ∪ U)

instead of deciding K1k the literal L should be propagated by a reasonable strategy. 
A contradiction. Note that none of the Ki can be annotated with D ∨ L.

...ε



Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches 
a state (M;N;U;k;D ∨ L) where Backtracking is applicable and D ∨ L ∈ (N ∪ U).

�21

Theorem (no relearning):  
No clause can be learned twice.

More precisely, the state has the form (M1Ki+1M2K1kK2 ...Kn;N;U;k;D∨L) where the 
Ki, i > 1 are propagated literals that do not occur complemented in D, as for 
otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because D ∨ L is false in M1Ki+1M2K1kK2 ...Kn and D ∨ L ∈ (N ∪ U)

instead of deciding K1k the literal L should be propagated by a reasonable strategy. 
A contradiction. Note that none of the Ki can be annotated with D ∨ L.

...ε



Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches 
a state (M;N;U;k;D ∨ L) where Backtracking is applicable and D ∨ L ∈ (N ∪ U).

�21

Theorem (no relearning):  
No clause can be learned twice.

More precisely, the state has the form (M1Ki+1M2K1kK2 ...Kn;N;U;k;D∨L) where the 
Ki, i > 1 are propagated literals that do not occur complemented in D, as for 
otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because D ∨ L is false in M1Ki+1M2K1kK2 ...Kn and D ∨ L ∈ (N ∪ U)

instead of deciding K1k the literal L should be propagated by a reasonable strategy. 
A contradiction. Note that none of the Ki can be annotated with D ∨ L.

...ε



�22

Abstract CDCL 
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Weidenbach, 2015
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Executable SAT solver  
To appear
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CDCL with efficient 
datastructure

• Two watched literals: important for performance


• Nice to have formally



�24

How hard is it?

Paper Proof assistant
Abstract 
CDCL 13 pages 50 pages

Concrete 
CDCL   9 pages 90 pages

 (½ month) (5 months)
Two-
Watched 

1 page  265 pages

(C++ code of 
MiniSat) (9 months)
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Concrete outcome
‣ verified SAT solver framework 
‣ verified executable SAT solver 
‣ improve book draft

Conclusion

Methodology
‣ Refinement

Future work
‣ SAT Modulo Theories (e.g., CVC or z3)


