informatik

A Verified SAT Solver Framework

Jasmin C.
 Blanchette

VRIJE
UNIVERSITEIT
AMSTERDAM

Mathias
Fleury

Christoph
Weidenbach

SAARLAND UNIVERSITY
SAARBRÜCKEN GRADUATE SCHOOL of COMPUTER SCIENCE

SAT Solving

Given a formula in conjunctive normal form

$$
\varphi=\bigwedge_{i} \bigvee_{j} L_{i, j}
$$

is there an assignment making the formula true?

Most used algorithm: CDCL, an improvement over DPLL

VRIJE

SAT has many applications

Two-hundred-terabyte maths proof is largest ever
(Wednesday: "Solving Very Hard Problems: Cube-and-Conquer, a Hybrid SAT Solving Method")

VRIJE
UNIVERSITEIT
AMSTERDAM

How reliable are SAT solvers?

Two ways to ensure correctness:

- certify the certificate
- certificates are huge
- verification of the code
- code will not be competitive
- allows to study metatheory

Correctness

Theory behind SAT solvers Proof every input
Applicability

Theorem proving: Interactive vs Automated

Interactive

Automated
\$ minisat eq.atree.braun.7.unsat.cnf UNSATISFIABLE

\$ minisat eq.atree.braun.8.unsat.cnf UNKNOWN

I certify your proof

Isabelle Formalisation of Logic
vu

IsaFoL

- FO resolution by Schlichtkrull (ITP 2016)
- CDCL with learn, forget, restart, and incrementality by Blanchette, Fleury, Weidenbach (IJCAR 2016, now)
- FO ordered resolution with selection by Blanchette, Schlichtkrull, Traytel (ongoing)
- GRAT certificate checker
by Lammich (CADE-26, 2017)

IsaFoL

- FO resolution by Schlichtkrull (ITP 2016)
- CDCL with learn, forget, restart, and incrementality by Blanchette, Fleury, Weidenbach (IJCAR 2016, now)
- FO ordered resolution with selection by Blanchette, Schlichtkrull, Traytel (ongoing)
- GRAT certificate checker
by Lammich (CADE-26, 2017)
- Eat our own dog food
case study for proof assistants and automatic provers
- Build libraries for state-of-the-art research

Automated Reasoning:
The Art of Generic Problem Solving (forthcoming textbook by Weidenbach)

Truth Table

$$
\mathbf{N}=\begin{aligned}
& A \vee B \vee C \quad \neg A \vee B \vee C \neg B \vee C \quad B \vee \neg C \\
& \neg A \vee B \quad A \vee \neg B \vee \neg C \quad A \vee \neg C
\end{aligned}
$$

Decide

Truth Table

$$
\mathbf{N}=\begin{aligned}
& A \vee B \vee C \quad \neg A \vee B \vee C \neg B \vee C \quad B \vee \neg C \\
& \neg A \vee B \quad A \vee \neg B \vee \neg C \quad A \vee \neg C
\end{aligned}
$$

Decide

DPLL

$$
\mathbf{N}=\begin{aligned}
& A \vee B \vee C \quad \neg A \vee B \vee C \neg B \vee C \quad B \vee \neg C \\
& \neg A \vee B \quad A \vee \neg B \vee \neg C \quad A \vee \neg C
\end{aligned}
$$

Decide

DPLL

$$
\mathbf{N}=\begin{aligned}
& A \vee B \vee C \quad \neg A \vee B \vee C \neg B \vee C \quad B \vee \neg C \\
& \neg A \vee B \quad A \vee \neg B \vee \neg C \quad A \vee \neg C
\end{aligned}
$$

DPLL

$$
\begin{aligned}
& A \vee B \vee C \quad \neg A \vee B \vee C \neg B \vee C \quad B \vee \neg C \\
& \mathrm{~N}= \\
& \neg A \vee B \quad A \vee \neg B \vee \neg C \quad A \vee \neg C
\end{aligned}
$$

AMSTERDAM

DPLL

$$
\begin{aligned}
& \mathbf{N}=\begin{array}{l}
A \vee B \vee C \quad \neg A \vee B \vee C \neg B \vee C \quad B \vee \neg C \\
\neg A \vee B \quad A \vee \neg B \vee \neg C \quad A \vee \neg C
\end{array} \text { 位 }
\end{aligned}
$$

AMSTERDAM

DPLL

$$
\mathbf{N}=\begin{aligned}
& A \vee B \vee C \quad \neg A \vee B \vee C \neg B \vee C \quad B \vee \neg C \\
& \neg A \vee B \quad A \vee \neg B \vee \neg C \quad A \vee \neg C
\end{aligned}
$$

VU

VRIJE
UNIVERSITEIT
AMSTERDAM

VRIJE
UNIVERSITEIT
AMSTERDAM

No more transitions and conflict: UNSAT

```
In Isabelle
```

State in Isabelle Pair path-clauses: $\quad(M, N)$

Decide in Isabelle undefined_lit $M L \Longrightarrow L \in N \Longrightarrow(M, N) \Rightarrow_{\mathrm{CDCL}}(M L, N)$

VU
AMSTERDAM

DPLL+BJ

Analyse +
 Backjump

DPLL+BJ

Propagate

Analyse +
Backjump

CDCL

New learned clause: A

VRIJE
UNIVERSITEIT
AMSTERDAM

Abstract CDCI

Nieuwenhuis, Oliveras, and Tinelli 2006

DPLL

CDCL

Learn + forget clause

VRIJE
UNIVERSITEIT
AMSTERDAM

DPLL \longrightarrow DPLL+BJ
specialises

CDCL

Propagate

Analyse + Backjump

Learn + forget clause

VRIJE
UNIVERSITEIT
AMSTERDAM

DPLL \longrightarrow DPLL+BJ
specialises

Propagate

parametrise by
BJ_cond
in Isabelle
submodule DPLL \subseteq DPLL+BJ where

DPLL \longrightarrow DPLL+BJ
specialises

CDCL

parametrise by
BJ_cond
in Isabelle

submodule DPLL \subseteq DPLL+BJ where

DPLL $\rightarrow \longrightarrow$ DPLL+BJ
discharge those assumptions
Decide

CDCL

Propagate

Analyse + Backjump
parametrise by
BJ_cond
in Isabelle
Analyse +
Backjump

Learn + forget clause

INVENTORS FOR THE DIITTAL WORLD
submodule DPLL \subseteq DPLL+BJ where

DPLL \longrightarrow DPLL+BJ
specialises

CDCL

parametrise by
BJ_cond
in Isabelle

DPLL \longrightarrow DPLL+BJ
specialises

CDCL

Propagate

Analyse + Backjump

Learn + forget clause

VRIJE
UNIVERSITEIT
AMSTERDAM

DPLL \longrightarrow DPLL+BJ
specialises

extends

CDCL

Propagate

Analyse + Backjump

Learn + forget clause

VRIJE
UNIVERSITEIT
AMSTERDAM

$$
\begin{aligned}
\mathrm{CDCL}= & \mathrm{DPLL}+\mathrm{BJ}+\text { Learn } \\
& + \text { Forget }
\end{aligned}
$$

DPLL \longrightarrow DPLL+BJ \longleftrightarrow CDCL
specialises extends

Learn + forget clause

VRIJE
UNIVERSITEIT
AMSTERDAM

DPLL \longrightarrow DPLL+BJ
specialises

extends

CDCL

Propagate

Analyse + Backjump

Learn + forget clause

VRIJE
UNIVERSITEIT
AMSTERDAM

DPLL \longrightarrow DPLL+BJ \longleftarrow CDCL
 specialises
 termination
 termination
 non-termination

DPLL \longrightarrow DPLL+BJ specialises
 termination
 termination
 non-termination
 Learn + forget clause

infinite chain of learn and forget

DPLL \longrightarrow DPLL+BJ \longleftarrow CDCL
 specialises
 termination
 termination
 non-termination

Analyse +	Learn + forget
Backjump	clause

infinite ain of learn and fo $y_{\text {a }}$

Albstract CDCI

Nieuwenhuis, Oliveras, and Tinelli 2006

refines

Concrete CDCI
Weidenbach, 2015

CDCT with efficient data structure
Eén and Sörensson, 2004
refines

Executable SAT solver

To appear

VRIJE
UNIVERSITEIT
AMSTERDAM

DPLL

DPLL+BJ

Albstract CDCI

Nieuwenhuis, Oliveras, and Tinelli 2006

refines

Concrete CDCT

Weidenbach, 2015

CDCI with efficient data structure
Eén and Sörensson, 2004
refines

Executable SAT solver
 To appear

Concrete CDCI

Weidenbach, 2015
vu

Backjump

on paper

```
if }\textrm{C}\in\mathbb{N}\mathrm{ and }\textrm{M}\vDash\neg\textrm{C
and there is C' such that ...
(\mathbf{M},\mathbf{N})=>(\mathbf{L M}\mp@subsup{\mathbf{M}}{}{\prime},\mathbf{N})
```

How do we get a suitable C^{\prime} ?

Backjump
 if $\mathrm{C} \in \mathrm{N}$ and $\mathrm{M} \vDash \neg \mathrm{C}$
 and there is C^{\prime} such that ...
 $(\mathbf{M}, \mathbf{N}) \Rightarrow\left(\mathbf{L} \mathbf{M}^{\prime}, \mathbf{N}\right)$

How do we get a suitable C^{\prime} ?

- First unique implication point

Theorem (no relearning):

No clause can be learned twice.

Theorem (no relearning): No clause can be learned twice.

> Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state ($\mathrm{M} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} \vee \mathrm{L}$) where Backtracking is applicable and $\mathrm{D} \vee \mathrm{L} \in(\mathrm{N} \cup \mathrm{U})$.
> More precisely, the state has the form ($\left.\mathrm{M} 1 \mathrm{~K}^{\mathrm{i}+1} \mathrm{M}_{2} \mathrm{~K}_{1} \mathrm{k}_{\mathrm{K} 2} \ldots \mathrm{Kn} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} v \mathrm{~L}\right)$ where the $\mathrm{Ki}, \mathrm{i}>1$ are propagated literals that do not occur complemented in D , as for otherwise D cannot be of level i. Furthermore, one of the K_{i} is the complement of L.
> But now, because $D \vee L$ is false in $M 1 K^{i+1} M_{2} K_{1}{ }^{k} K 2 \ldots K n$ and $D \vee L \in(N \cup U)$
> instead of deciding $K 1 k$ the literal L should be propagated by a reasonable strategy. A contradiction. Note that none of the Ki can be annotated with $\mathrm{D} v \mathrm{~L}$.
<700 lines of proof,

VRIJE

Theorem (no relearning): No clause can be learned twice.

```
Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state ( \(\mathrm{M} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} \vee \mathrm{L}\) ) where Backtracking is applicable and \(\mathrm{D} \vee \mathrm{L} \in(\mathrm{N} \cup \mathrm{U})\).
More precisely, the state has the form ( \(\left.\mathrm{M} 1 \mathrm{~K}^{\mathrm{i}+1} \mathrm{M}_{2} \mathrm{~K}_{1} \mathrm{~K}_{\mathrm{K}} 2 \ldots \mathrm{Kn} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} v \mathrm{~L}\right)\) where the \(\mathrm{Ki}, \mathrm{i}>1\) are propagated literals that do not occur complemented in D , as for otherwise D cannot be of level i . Furthermore, one of the \(\mathrm{Ki}_{\mathrm{i}}\) is the complement of L .
But now, because \(D \vee L\) is false in \(M 1 K^{i+1} M_{2} K_{1}{ }^{k} K 2 \ldots K n\) and \(D \vee L \in(N \cup U)\)
instead of deciding \(K 1 k\) the literal \(L\) should be propagated by a reasonable strategy. A contradiction. Note that none of the Ki can be annotated with \(\mathrm{D} \vee \mathrm{L}\).
```

VRIJE
UNIVERSITEIT
AMSTERDAM

Theorem (no relearning): No clause can be learned twice.

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state ($\mathrm{M} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} \vee \mathrm{L}$) where Backtracking is applicable and $\mathrm{D} \vee \mathrm{L} \in(\mathrm{N} \cup \mathrm{U})$.
More precisely, the state has the form ($\left.\mathrm{M} 1 \mathrm{~K}^{\mathrm{i}+1} \mathrm{M}_{2} \mathrm{~K}_{1} \mathrm{~K}_{\mathrm{K}} 2 \ldots \mathrm{Kn} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} v \mathrm{~L}\right)$ where the $\mathrm{Ki}, \mathrm{i}>1$ are propagated literals that do not occur complemented in D , as for otherwise D cannot be of level i . Furthermore, one of the Ki is the complement of L .
But now, because $D \vee L$ is false in $M 1 K^{i}+1 M_{2} K_{1}{ }^{k} K 2 \ldots K n$ and $D \vee L \in(N \cup U)$
instead of deciding $K 1 k$ the literal L should be propagated by a reasonable strategy. A contradiction. Note that none of the Ki can be annotated with D $\vee \mathrm{L}$.

VRIJE
UNIVERSITEIT
AMSTERDAM

Theorem (no relearning): No clause can be learned twice.

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state ($\mathrm{M} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} \vee \mathrm{L}$) where Backtracking is applicable and $\mathrm{D} \vee \mathrm{L} \in(\mathrm{N} \cup \mathrm{U})$.
More precisely, the state has the form ($\left.\mathrm{M} 1 \mathrm{~K}^{\mathrm{i}+1} \mathrm{M}_{2} \mathrm{~K}_{1} \mathrm{~K}_{\mathrm{K}} 2 \ldots \mathrm{Kn} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} v \mathrm{~L}\right)$ where the $\mathrm{Ki}, \mathrm{i}>1$ are propagated literals that do not occur complemented in D , as for otherwise D cannot be of level i . Furthermore, one of the Ki is the complement of L .
But now, because $D \vee L$ is false in $M 1 K^{i}+1 M_{2} K_{1}{ }^{k} K 2 \ldots K n$ and $D \vee L \in(N \cup U)$
instead of deciding $K 1 k$ the literal L should be propagated by a reasonable strategy. A contradiction. Note that none of the Ki can be annotated with D $\vee \mathrm{L}$.

Theorem (no relearning): No clause can be learned twice.

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state ($\mathrm{M} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} \vee \mathrm{L}$) where Backtracking is applicable and $\mathrm{D} \vee \mathrm{L} \in(\mathrm{N} \cup \mathrm{U})$.
More precisely, the state has the form ($\left.\mathrm{M} 1 \mathrm{~K}^{\mathrm{i}+1} \mathrm{M}_{2} \mathrm{~K}_{1} \mathrm{~K}_{\mathrm{K}} 2 \ldots \mathrm{Kn} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} v \mathrm{~L}\right)$ where the $\mathrm{Ki}, \mathrm{i}>1$ are propagated literals that do not occur complemented in D , as for otherwise D cannot be of level i . Furthermore, one of the Ki is the complement of L .
But now, because $D \vee L$ is false in $M 1 K^{i}+1 M_{2} K_{1}{ }^{k} K 2 \ldots K n$ and $D \vee L \in(N \cup U)$
instead of deciding $K 1 k$ the literal L should be propagated by a reasonable strategy. A contradiction. Note that none of the Ki can be annotated with $\mathrm{D} \vee \mathrm{L}$.

VRIJE
UNIVERSITEIT
AMSTERDAM

Theorem (no relearning): No clause can be learned twice.

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches a state ($\mathrm{M} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} \vee \mathrm{L}$) where Backtracking is applicable and $\mathrm{D} \vee \mathrm{L} \in(\mathrm{N} \cup \mathrm{U})$.
More precisely, the state has the form ($\left.\mathrm{M} 1 \mathrm{~K}^{\mathrm{i}+1} \mathrm{M}_{2} \mathrm{~K}_{1} \mathrm{~K}_{\mathrm{K} 2} \ldots \mathrm{Kn} ; \mathrm{N} ; \mathrm{U} ; \mathrm{k} ; \mathrm{D} v \mathrm{~L}\right)$ where the $\mathrm{Ki}, \mathrm{i}>1$ are propagated literals that do not occur complemented in D , as for otherwise D cannot be of level i . Furthermore, one of the Ki is the complement of L .
But now, because $D \vee L$ is false in $M 1 K^{i}+1 M_{2} K_{1}{ }^{k} K 2 \ldots K n$ and $D \vee L \in(N \cup U)$
instead of deciding $K 1 k$ the literal L should be propagated by a reasonable strategy. A contradiction. Note that none of the Ki can be annotated with D $\vee \mathrm{L}$.

VRIJE
UNIVERSITEIT
AMSTERDAM

Albstract CDCI

Nieuwenhuis, Oliveras, and Tinelli 2006

refines

Concrete CDCI

Weidenbach, 2015
refines
CDCI with efficient datastrucure Eén and Sörensson, 2004
refines

Executable SAT solver

To appear

CDCL with efficient

datastructure

- Two watched literals: important for performance
- Nice to have formally

How hard is it?

Abstract	Paper	Proof assistant
CDCL	13 pages	50 pages
Concrete CDCL	9 pages $(1 / 2$ month $)$	90 pages $(5$ months $)$
Two- Watched	1 page (C++ code of MiniSat)	(9 months)

Conclusion

Concrete outcome

- verified SAT solver framework
- verified executable SAT solver
- improve book draft

Methodology

- Refinement

Future work

- SAT Modulo Theories (e.g., CVC or z3)

