
A Verified SAT Solver Framework

Mathias
Fleury

Christoph
Weidenbach

Jasmin C.
Blanchette

�2

SAT Solving
Given a formula in conjunctive normal form

' =
^

i

_

j

Li,j

is there an assignment making the formula true?

Most used algorithm: CDCL, an improvement over DPLL

�3

(Wednesday: “Solving Very Hard Problems: Cube-and-Conquer,  
a Hybrid SAT Solving Method”)

SAT has many applications

�4

Two ways to ensure correctness:

‣ certify the certificate
- certificates are huge

‣ verification of the code
- code will not be competitive
- allows to study metatheory

How reliable are SAT solvers?

�5

Theory behind SAT solvers

Run of a SAT solver

Correctness

Proof

Certificate: proof of
(un)satisfiability

Applicability

every input

a given input

�6

Theorem proving:  
Interactive vs Automated

Interactive

Automated $ minisat eq.atree.braun.7.unsat.cnf 
 UNSATISFIABLE

$ minisat eq.atree.braun.8.unsat.cnf 
 UNKNOWN

�7

IsaFoL project
Isabelle Formalisation of Logic

λ →

∀
=Isa

be
lle

β

α

I certify your
proof

�8

‣ FO resolution  
 by Schlichtkrull (ITP 2016)

‣ CDCL with learn, forget, restart, and incrementality  
 by Blanchette, Fleury, Weidenbach (IJCAR 2016, now)

‣ FO ordered resolution with selection  
 by Blanchette, Schlichtkrull, Traytel (ongoing)  

‣ GRAT certificate checker  
 by Lammich (CADE-26, 2017)

IsaFoL

�8

‣ FO resolution  
 by Schlichtkrull (ITP 2016)

‣ CDCL with learn, forget, restart, and incrementality  
 by Blanchette, Fleury, Weidenbach (IJCAR 2016, now)

‣ FO ordered resolution with selection  
 by Blanchette, Schlichtkrull, Traytel (ongoing)  

‣ GRAT certificate checker  
 by Lammich (CADE-26, 2017)

IsaFoL

�9

‣ Eat our own dog food

case study for proof assistants and automatic provers

‣ Build libraries for state-of-the-art research

Automated Reasoning:  
The Art of Generic Problem Solving 
(forthcoming textbook by Weidenbach)

�10

A

BB

CCCC

? ? ? ? ? ? ? ?

A _B _ C ¬A _B _ C ¬B _ C B _ ¬C
¬A _B A _ ¬B _ ¬C A _ ¬C

N =

Truth Table

Decide

¬A A

¬B B ¬B B

¬C C ¬C C ¬C C ¬C C

B

¬B B

�10

A

BB

CCCC

? ? ? ? ? ? ? ?

A _B _ C ¬A _B _ C ¬B _ C B _ ¬C
¬A _B A _ ¬B _ ¬C A _ ¬C

N =

Truth Table

Decide

¬A A

¬B B ¬B B

¬C C ¬C C ¬C C ¬C C

B

¬B B

�11

A _B _ C ¬A _B _ C ¬B _ C B _ ¬C
¬A _B A _ ¬B _ ¬C A _ ¬C

N =

DPLL

Decide

Propagate

�11

A

A _B _ C ¬A _B _ C ¬B _ C B _ ¬C
¬A _B A _ ¬B _ ¬C A _ ¬C

N =

DPLL

Decide

Propagate

¬A A

�11

A

B

A _B _ C ¬A _B _ C ¬B _ C B _ ¬C
¬A _B A _ ¬B _ ¬C A _ ¬C

N =

DPLL

Decide

Propagate

¬A A

B

�11

A

B

A _B _ C ¬A _B _ C ¬B _ C B _ ¬C
¬A _B A _ ¬B _ ¬C A _ ¬C

N =

DPLL

Decide

Propagate

¬A A

B

C

�11

B

C

B

CC

A

? ? ?

B

CC

A _B _ C ¬A _B _ C ¬B _ C B _ ¬C
¬A _B A _ ¬B _ ¬C A _ ¬C

N =

DPLL

Decide

Propagate

¬A A

¬B B B

C C C

C

?
¬C

B B

�12

Decide

C

A

? ? ?
Propagate

CC

State in Isabelle

B

¬A A

¬B B B

C C C

B B

�12

Decide

C

A

? ? ?
Propagate

CC

ε

State in Isabelle

B

¬A A

¬B B B

C C C

B B

�12

Decide

C

A

? ? ?
Propagate

CC

ε

State in Isabelle
¬A

B

¬A A

¬B B B

C C C

B B

�12

Decide

C

A

? ? ?
Propagate

CC

ε

State in Isabelle
¬A

¬A ¬B

B

¬A A

¬B B B

C C C

B B

�12

Decide

C

A

? ? ?
Propagate

CC

ε

State in Isabelle
¬A

¬A ¬B

¬A ¬B C

B

¬A A

¬B B B

C C C

B B

�12

Decide

C

A

? ?
Propagate

C

ε

State in Isabelle
¬A

¬A ¬B

¬A ¬B C

B

¬A A

¬B B B

C C C

B B

�12

Decide

C

A

? ?
Propagate

C

ε

State in Isabelle
¬A

¬A ¬B

¬A ¬B C

¬A B

B

¬A A

¬B B B

C C C

B

�12

Decide

C

A

?
Propagate

ε

State in IsabelleA¬A

¬A ¬B

¬A ¬B C

¬A B

¬A B C

B

A

¬A A

¬B B B

C C C

B

�12

Decide

C

A

?
Propagate

ε

State in IsabelleA

A B

¬A

¬A ¬B

¬A ¬B C

¬A B

¬A B C

B

A

¬A A

¬B B B

C C C

B

�12

Decide

C

A

?
Propagate

ε

State in IsabelleA

A B

A B C

¬A

¬A ¬B

¬A ¬B C

¬A B

¬A B C

No more transitions and conflict: 
UNSAT

B

A

¬A A

¬B B B

C C C

undefined litM L =) L 2 N =) (M,N))CDCL (ML,N)

�13

In Isabelle

Decide in Isabelle

State in Isabelle
(M,N)Pair path-clauses:

L

�14

Decide

B

CC

B

CC

A

? ? ? Propagate

B

CC

�15

Decide

B

C

A

?

Propagate

C
Analyse +
Backjump

A _ ¬C

A _ C

DPLL+BJ

�15

Decide

B

C

A

?

Propagate

C
Analyse +
Backjump

A _ ¬C

A _ C

A

DPLL+BJ

�15

Decide

B

C

A

?

Propagate

C
Analyse +
Backjump

A _ ¬C

A _ C

A

 New learned clause: A

Learn + forget
clause

CDCL

�16

Concrete CDCL

Weidenbach, 2015

Abstract CDCL

Nieuwenhuis, Oliveras, and Tinelli 2006

CDCL with efficient data
structure 

Eén and Sörensson, 2004

Executable SAT solver  
To appear

refines

refines

refines

�16

Concrete CDCL

Weidenbach, 2015
Abstract CDCL

Nieuwenhuis, Oliveras, and Tinelli 2006
CDCL with efficient data

structure 
Eén and Sörensson, 2004

Executable SAT solver  
To appear

refines

refines

refines

�17

Decide

Propagate

Analyse +
Backjump

Learn + forget
clause

DPLL CDCL

Decide

Propagate

DPLL+BJ

Decide

Propagate

Analyse +
BackjumpBacktrack

�17

Decide

Propagate

Analyse +
Backjump

Learn + forget
clause

DPLL CDCL

Decide

Propagate

DPLL+BJ

Decide

Propagate

Analyse +
BackjumpBacktrack

specialises

�17

Decide

Propagate

Analyse +
Backjump

Learn + forget
clause

DPLL CDCL

Decide

Propagate

DPLL+BJ

Decide

Propagate

Analyse +
BackjumpBacktrack

specialises

parametrise by
BJ_cond in Isabelle

�17

Decide

Propagate

Analyse +
Backjump

Learn + forget
clause

DPLL CDCL

Decide

Propagate

DPLL+BJ

Decide

Propagate

Analyse +
BackjumpBacktrack

submodule DPLL ⊆ DPLL+BJ where
 BJ_cond = BT_cond in Isabelle

specialises

parametrise by
BJ_cond in Isabelle

�17

Decide

Propagate

Analyse +
Backjump

Learn + forget
clause

DPLL CDCL

Decide

Propagate

DPLL+BJ

Decide

Propagate

Analyse +
BackjumpBacktrack

submodule DPLL ⊆ DPLL+BJ where
 BJ_cond = BT_cond in Isabelle

specialisesdischarge those
assumptions

parametrise by
BJ_cond in Isabelle

�17

Decide

Propagate

Analyse +
Backjump

Learn + forget
clause

DPLL CDCL

Decide

Propagate

DPLL+BJ

Decide

Propagate

Analyse +
BackjumpBacktrack

submodule DPLL ⊆ DPLL+BJ where
 BJ_cond = BT_cond in Isabelle

specialises

parametrise by
BJ_cond in Isabelle

�17

Decide

Propagate

Analyse +
Backjump

Learn + forget
clause

DPLL CDCL

Decide

Propagate

DPLL+BJ

Decide

Propagate

Analyse +
BackjumpBacktrack

specialises

�17

Decide

Propagate

Analyse +
Backjump

Learn + forget
clause

DPLL CDCL

Decide

Propagate

DPLL+BJ

Decide

Propagate

Analyse +
BackjumpBacktrack

specialises extends

�17

Decide

Propagate

Analyse +
Backjump

Learn + forget
clause

DPLL CDCL

Decide

Propagate

DPLL+BJ

Decide

Propagate

Analyse +
BackjumpBacktrack

specialises extends

CDCL = DPLL+BJ + Learn  
 + Forget in Isabelle

�17

Decide

Propagate

Analyse +
Backjump

Learn + forget
clause

DPLL CDCL

Decide

Propagate

DPLL+BJ

Decide

Propagate

Analyse +
BackjumpBacktrack

specialises extends

�18

DPLL CDCLDPLL+BJ

termination termination non-termination

specialises extends

�18

Learn + forget
clause

DPLL CDCLDPLL+BJ

termination termination non-termination

infinite chain of learn  
and forget

specialises extends

�18

Learn + forget
clause

DPLL CDCLDPLL+BJ

termination termination non-termination

infinite chain of learn  
and forget

Analyse +
Backjump

specialises extends

�19

Abstract CDCL

Nieuwenhuis, Oliveras, and Tinelli 2006

Concrete CDCL 
Weidenbach, 2015

CDCL with efficient data
structure 

Eén and Sörensson, 2004

Executable SAT solver  
To appear

refines

refines

refines

�19

Abstract CDCL

Nieuwenhuis, Oliveras, and Tinelli 2006

Concrete CDCL 
Weidenbach, 2015

CDCL with efficient data
structure 

Eén and Sörensson, 2004

Executable SAT solver  
To appear

refines

refines

refines

DPLL CDCLDPLL+BJ

�19

Abstract CDCL

Nieuwenhuis, Oliveras, and Tinelli 2006

Concrete CDCL 
Weidenbach, 2015CDCL with efficient data

structure 
Eén and Sörensson, 2004

Executable SAT solver  
To appear

refines

refines

refines

�20

How do we get a suitable ?C 0

on paperBackjump

if C 2 N and M ✏ ¬C
and there is C0 such that ...

(M,N)) (LM0,N)

�20

‣ First unique implication point

How do we get a suitable ?C 0

on paperBackjump

if C 2 N and M ✏ ¬C
and there is C0 such that ...

(M,N)) (LM0,N)

�21

Theorem (no relearning):  
No clause can be learned twice.

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches
a state (M;N;U;k;D ∨ L) where Backtracking is applicable and D ∨ L ∈ (N ∪ U).

�21

Theorem (no relearning):  
No clause can be learned twice.

More precisely, the state has the form (M1Ki+1M2K1kK2 ...Kn;N;U;k;D∨L) where the
Ki, i > 1 are propagated literals that do not occur complemented in D, as for
otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because D ∨ L is false in M1Ki+1M2K1kK2 ...Kn and D ∨ L ∈ (N ∪ U)

instead of deciding K1k the literal L should be propagated by a reasonable strategy.
A contradiction. Note that none of the Ki can be annotated with D ∨ L.

‹700 lines of proof› in Isabelle

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches
a state (M;N;U;k;D ∨ L) where Backtracking is applicable and D ∨ L ∈ (N ∪ U).

�21

Theorem (no relearning):  
No clause can be learned twice.

More precisely, the state has the form (M1Ki+1M2K1kK2 ...Kn;N;U;k;D∨L) where the
Ki, i > 1 are propagated literals that do not occur complemented in D, as for
otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because D ∨ L is false in M1Ki+1M2K1kK2 ...Kn and D ∨ L ∈ (N ∪ U)

instead of deciding K1k the literal L should be propagated by a reasonable strategy.
A contradiction. Note that none of the Ki can be annotated with D ∨ L.

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches
a state (M;N;U;k;D ∨ L) where Backtracking is applicable and D ∨ L ∈ (N ∪ U).

�21

Theorem (no relearning):  
No clause can be learned twice.

More precisely, the state has the form (M1Ki+1M2K1kK2 ...Kn;N;U;k;D∨L) where the
Ki, i > 1 are propagated literals that do not occur complemented in D, as for
otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because D ∨ L is false in M1Ki+1M2K1kK2 ...Kn and D ∨ L ∈ (N ∪ U)

instead of deciding K1k the literal L should be propagated by a reasonable strategy.
A contradiction. Note that none of the Ki can be annotated with D ∨ L.

...ε

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches
a state (M;N;U;k;D ∨ L) where Backtracking is applicable and D ∨ L ∈ (N ∪ U).

�21

Theorem (no relearning):  
No clause can be learned twice.

More precisely, the state has the form (M1Ki+1M2K1kK2 ...Kn;N;U;k;D∨L) where the
Ki, i > 1 are propagated literals that do not occur complemented in D, as for
otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because D ∨ L is false in M1Ki+1M2K1kK2 ...Kn and D ∨ L ∈ (N ∪ U)

instead of deciding K1k the literal L should be propagated by a reasonable strategy.
A contradiction. Note that none of the Ki can be annotated with D ∨ L.

...ε

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches
a state (M;N;U;k;D ∨ L) where Backtracking is applicable and D ∨ L ∈ (N ∪ U).

�21

Theorem (no relearning):  
No clause can be learned twice.

More precisely, the state has the form (M1Ki+1M2K1kK2 ...Kn;N;U;k;D∨L) where the
Ki, i > 1 are propagated literals that do not occur complemented in D, as for
otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because D ∨ L is false in M1Ki+1M2K1kK2 ...Kn and D ∨ L ∈ (N ∪ U)

instead of deciding K1k the literal L should be propagated by a reasonable strategy.
A contradiction. Note that none of the Ki can be annotated with D ∨ L.

...ε

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e., it reaches
a state (M;N;U;k;D ∨ L) where Backtracking is applicable and D ∨ L ∈ (N ∪ U).

�21

Theorem (no relearning):  
No clause can be learned twice.

More precisely, the state has the form (M1Ki+1M2K1kK2 ...Kn;N;U;k;D∨L) where the
Ki, i > 1 are propagated literals that do not occur complemented in D, as for
otherwise D cannot be of level i. Furthermore, one of the Ki is the complement of L.

But now, because D ∨ L is false in M1Ki+1M2K1kK2 ...Kn and D ∨ L ∈ (N ∪ U)

instead of deciding K1k the literal L should be propagated by a reasonable strategy.
A contradiction. Note that none of the Ki can be annotated with D ∨ L.

...ε

�22

Abstract CDCL

Nieuwenhuis, Oliveras, and Tinelli 2006

Concrete CDCL 
Weidenbach, 2015

CDCL with efficient datastrucure 
Eén and Sörensson, 2004

Executable SAT solver  
To appear

refines

refines

refines

�23

CDCL with efficient
datastructure

• Two watched literals: important for performance

• Nice to have formally

�24

How hard is it?

Paper Proof assistant
Abstract
CDCL 13 pages 50 pages

Concrete
CDCL 9 pages 90 pages

 (½ month) (5 months)
Two-
Watched

1 page  265 pages

(C++ code of 
MiniSat) (9 months)

�25

Concrete outcome
‣ verified SAT solver framework
‣ verified executable SAT solver
‣ improve book draft

Conclusion

Methodology
‣ Refinement

Future work
‣ SAT Modulo Theories (e.g., CVC or z3)

