
Porting IsaSAT to LLVM (and Inprocessing)

Mathias Fleury and Peter Lammich

CADE’29



Introduction



How do We Make SAT Solvers Correct?

DRAT Proofs • requires to check the proof for each file
• not all techniques can be represented by

current proof formats

Program Verification This talk!

• works for every input, so no overhead
• does not crash even if program runs for a year

Porting IsaSAT to LLVM (and Inprocessing) 3/13



How do We Make SAT Solvers Correct?

DRAT Proofs • requires to check the proof for each file
• not all techniques can be represented by

current proof formats

Program Verification This talk!
• works for every input, so no overhead
• does not crash even if program runs for a year

Porting IsaSAT to LLVM (and Inprocessing) 3/13



Why do We Care?

• We have abstract CDCL, we have inprocessing, but can we
combine them?

• Corner cases easy to miss known papers have flaws!

• Metatheory, study variants See session 1

• No gap between specification and implementation
most papers: “we can combine”

Porting IsaSAT to LLVM (and Inprocessing) 4/13



Why do We Care?

NB: this is not (yet) in IsaSAT

See session 12, talk by Nikolaj Bjorner

Porting IsaSAT to LLVM (and Inprocessing) 4/13



Why do We Care?

Either partial models or VE (Master thesis by Katharina Wagner)
I did not realize that either before Isabelle refused a proof

Implementation heavily tested... on total modals

NB: this is not (yet) in IsaSAT
See session 12, talk by Nikolaj Bjorner

Porting IsaSAT to LLVM (and Inprocessing) 4/13



Why do We Care?

Either partial models or VE (Master thesis by Katharina Wagner)
I did not realize that either before Isabelle refused a proof

Implementation heavily tested... on total modals
NB: this is not (yet) in IsaSAT

See session 12, talk by Nikolaj Bjorner

Porting IsaSAT to LLVM (and Inprocessing) 4/13



Why do We Care?

Either partial models or VE (Master thesis by Katharina Wagner)
I did not realize that either before Isabelle refused a proof

Implementation heavily tested... on total modals
NB: this is not (yet) in IsaSAT
See session 12, talk by Nikolaj Bjorner

Porting IsaSAT to LLVM (and Inprocessing) 4/13



Why do We Care?

• We have abstract CDCL, we have inprocessing, but can we
combine them?

• Corner cases easy to miss known papers have flaws!

• Metatheory, study variants See session 1

• No gap between specification and implementation
most papers: “we can combine”

Porting IsaSAT to LLVM (and Inprocessing) 4/13



Porting to LLVM



Correctness Theorems

Definition

Specification

Synthesis by Sepref
old (SML) or new
(LLVM)

Imperative HOL code LLVM IR code

fulfills

(IsaSATSML opts, model_if_satisfiable)
∈ [proper_lits_no_dups_⊥]

clauses_assn → option_model_assn
(IsaSATLLVM opts, model_if_satisfiable_bounded)

∈ [proper_lits]clauses_assn → option_model_assn

In LLVM: Stop if memory allocation > 263

In SML: switch to GMP (but: no compiler
supports that)
And: no machines support that

Less restricted input format
(before: still support for SAT Competition)Performance: LLVM twice as fast!

Refine approach
Porting IsaSAT to LLVM (and Inprocessing) 6/13



Correctness Theorems

Definition

Specification

Synthesis by Sepref
old (SML) or new
(LLVM)

Imperative HOL code LLVM IR code

fulfills

(IsaSATSML opts, model_if_satisfiable)
∈ [proper_lits_no_dups_⊥]

clauses_assn → option_model_assn
(IsaSATLLVM opts, model_if_satisfiable_bounded)

∈ [proper_lits]clauses_assn → option_model_assn

In LLVM: Stop if memory allocation > 263

In SML: switch to GMP (but: no compiler
supports that)
And: no machines support that

Less restricted input format
(before: still support for SAT Competition)Performance: LLVM twice as fast!

Refine approach
Porting IsaSAT to LLVM (and Inprocessing) 6/13



Correctness Theorems

Definition

Specification

Synthesis by Sepref
old (SML) or new
(LLVM)

Imperative HOL code LLVM IR code

fulfills

(IsaSATSML opts, model_if_satisfiable)
∈ [proper_lits_no_dups_⊥]

clauses_assn → option_model_assn
(IsaSATLLVM opts, model_if_satisfiable_bounded)

∈ [proper_lits]clauses_assn → option_model_assn

In LLVM: Stop if memory allocation > 263

In SML: switch to GMP (but: no compiler
supports that)
And: no machines support that

Less restricted input format
(before: still support for SAT Competition)Performance: LLVM twice as fast!

Refine approach
Porting IsaSAT to LLVM (and Inprocessing) 6/13



Correctness Theorems

Definition

Specification

Synthesis by Sepref
old (SML) or new
(LLVM)

Imperative HOL code LLVM IR code

fulfills

(IsaSATSML opts, model_if_satisfiable)
∈ [proper_lits_no_dups_⊥]

clauses_assn → option_model_assn
(IsaSATLLVM opts, model_if_satisfiable_bounded)

∈ [proper_lits]clauses_assn → option_model_assn

In LLVM: Stop if memory allocation > 263

In SML: switch to GMP (but: no compiler
supports that)
And: no machines support that

Less restricted input format
(before: still support for SAT Competition)Performance: LLVM twice as fast!

Refine approach
Porting IsaSAT to LLVM (and Inprocessing) 6/13



Correctness Theorems

Definition

Specification

Synthesis by Sepref
old (SML) or new
(LLVM)

Imperative HOL code LLVM IR code

fulfills

(IsaSATSML opts, model_if_satisfiable)
∈ [proper_lits_no_dups_⊥]

clauses_assn → option_model_assn
(IsaSATLLVM opts, model_if_satisfiable_bounded)

∈ [proper_lits]clauses_assn → option_model_assn

In LLVM: Stop if memory allocation > 263

In SML: switch to GMP (but: no compiler
supports that)
And: no machines support that

Less restricted input format
(before: still support for SAT Competition)Performance: LLVM twice as fast!

Refine approach
Porting IsaSAT to LLVM (and Inprocessing) 6/13



Correctness Theorems

Definition

Specification

Synthesis by Sepref
old (SML) or new
(LLVM)

Imperative HOL code LLVM IR code

fulfills

(IsaSATSML opts, model_if_satisfiable)
∈ [proper_lits_no_dups_⊥]

clauses_assn → option_model_assn
(IsaSATLLVM opts, model_if_satisfiable_bounded)

∈ [proper_lits]clauses_assn → option_model_assn

In LLVM: Stop if memory allocation > 263

In SML: switch to GMP (but: no compiler
supports that)
And: no machines support that

Less restricted input format
(before: still support for SAT Competition)Performance: LLVM twice as fast!

Refine approach
Porting IsaSAT to LLVM (and Inprocessing) 6/13



Correctness Theorems

Definition

Specification

Synthesis by Sepref
old (SML) or new
(LLVM)

Imperative HOL code LLVM IR code

fulfills

(IsaSATSML opts, model_if_satisfiable)
∈ [proper_lits_no_dups_⊥]

clauses_assn → option_model_assn
(IsaSATLLVM opts, model_if_satisfiable_bounded)

∈ [proper_lits]clauses_assn → option_model_assn

In LLVM: Stop if memory allocation > 263

In SML: switch to GMP (but: no compiler
supports that)
And: no machines support that

Less restricted input format
(before: still support for SAT Competition)Performance: LLVM twice as fast!

Refine approach
Porting IsaSAT to LLVM (and Inprocessing) 6/13



Correctness Theorems

Definition

Specification

Synthesis by Sepref
old (SML) or new
(LLVM)

Imperative HOL code LLVM IR code

fulfills

(IsaSATSML opts, model_if_satisfiable)
∈ [proper_lits_no_dups_⊥]

clauses_assn → option_model_assn
(IsaSATLLVM opts, model_if_satisfiable_bounded)

∈ [proper_lits]clauses_assn → option_model_assn

In LLVM: Stop if memory allocation > 263

In SML: switch to GMP (but: no compiler
supports that)
And: no machines support that

Less restricted input format
(before: still support for SAT Competition)Performance: LLVM twice as fast!

Refine approach
Porting IsaSAT to LLVM (and Inprocessing) 6/13



Correctness Theorems

Definition

Specification

Synthesis by Sepref
old (SML) or new
(LLVM)

Imperative HOL code LLVM IR code

fulfills

(IsaSATSML opts, model_if_satisfiable)
∈ [proper_lits_no_dups_⊥]

clauses_assn → option_model_assn
(IsaSATLLVM opts, model_if_satisfiable_bounded)

∈ [proper_lits]clauses_assn → option_model_assn

In LLVM: Stop if memory allocation > 263

In SML: switch to GMP (but: no compiler
supports that)
And: no machines support that

Less restricted input format
(before: still support for SAT Competition)Performance: LLVM twice as fast!

Refine approach
Porting IsaSAT to LLVM (and Inprocessing) 6/13



Lessons Learned
Aggressive reorganization of theories... but not enough

• IsaSAT is the largest development based on Isabelle/LLVM
(94kloc)

• Sepref enforces a non-parallel style (and is not very fast)

• Currently 1h 20 for the non-synthesis part, 2h with it
same for (smaller) SML version

• Synthesis rather slow and (for technical reasons) single
threaded

Porting IsaSAT to LLVM (and Inprocessing) 7/13



Lessons Learned
Local reasoning is better

Before

(A, . . . ,W , . . . )

W

After

=

(A, . . . , (A, W ), . . . )

W

This is ongoing refactoring: the new things are ported, the olds
whenever I change them

Porting IsaSAT to LLVM (and Inprocessing) 8/13



Lessons Learned
Performance bugs happen

A normal run:

c propagate : 83.48% (581.66 s)
c reduce : 0.12% (0.82 s)
c subsumption : 0.06% (0.39 s)
c pure_lits : 0.05% (0.33 s)
c binary_simp : 0.02% (0.15 s)
c GC : 0.16% (1.10 s)

(Hacked)Implementation by calling C function (via sed/grep)
optional, but very useful

But you have to trust the (unverified) statistics!

Porting IsaSAT to LLVM (and Inprocessing) 9/13



Performance Results



CDF on the SAT Competition 2022

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

30
0

sc2022−bulky
isasat−lastest−1g
isasat−first−llvm
isasat−sml
Creusat
versat

Figure: Higher is better (best: Kissat, unverified)

Porting IsaSAT to LLVM (and Inprocessing) 11/13



Conclusion



Summary

• IsaSAT is now much better
Bug: after 2 years: GC and reduction swapped!

I still suspect a heuristic bug

• We have now inprocessing with general rules specialized for
our needs See paper for Subsumption-Resolution

• We know how to improve the formalization but it won’t solve
all problems

• For Main track SAT Competition, DRAT proof (via sed to
interface LLVM to C code)

“officially”, I am not aware of any bug during proof checking

Porting IsaSAT to LLVM (and Inprocessing) 13/13



Summary

• IsaSAT is now much better

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

30
0

sc2022−bulky
isasat−lastest−1g
isasat−first−llvm
isasat−sml
Creusat
versat

• We have now inprocessing
• We know how to improve the formalization but it won’t solve

all problems

Questions?

Porting IsaSAT to LLVM (and Inprocessing) 1/2



A Personal History of Solver Verification

2011

Shankar
and

Vaucher,
CDCL,

ENTCS, PVS

Le
sc

uy
er,

CDCL,
PhD

the
sis

,

Coq Mar
ic

an
d

Ja
nic

ic,
CDCL+

2W
L,

LM
CS, Is

ab
ell

e,
SML co

de

2012

Oe, Stump, Oliver, and
Clancy,

Guru, CDCL, versat, C
code

2015

Ber
ge

r,
La

wre
nc

e,
Fo

rsb
er

g,

an
d Seis

en
be

rge
r, D

PLL
, M

inl
og

,

Has
ke

ll c
od

e

2017

Fleu
ry,

Blan
ch

ett
e,

W
eid

en
ba

ch
,

CDCL+
2W

L,
Isa

be
lle

, S
ML co

de

2019

Andrici

and

Ciobaca,

DPLL+counters,

TrueSAT,

Dafny, F# code

2021

Fleu
ry

(a
nd

La
mmich

),

CDCL+
2W

L,
Isa

be
lle

,
EDA

Cha
lle

ng
e,

LL
VM

IR
co

de

2022

Skotåm, CDCL+2W
L, creusat,

Rust code

Theory

Performance + tool demo

Tool demonstration

incomplete especially because the bottom-up approach is a good master thesisPorting IsaSAT to LLVM (and Inprocessing) 2/2



A Personal History of Solver Verification

2011

Shankar
and

Vaucher,
CDCL,

ENTCS, PVS

Le
sc

uy
er,

CDCL,
PhD

the
sis

,

Coq Mar
ic

an
d

Ja
nic

ic,
CDCL+

2W
L,

LM
CS, Is

ab
ell

e,
SML co

de

2012

Oe, Stump, Oliver, and
Clancy,

Guru, CDCL, versat, C
code

2015

Ber
ge

r,
La

wre
nc

e,
Fo

rsb
er

g,

an
d Seis

en
be

rge
r, D

PLL
, M

inl
og

,

Has
ke

ll c
od

e

2017

Fleu
ry,

Blan
ch

ett
e,

W
eid

en
ba

ch
,

CDCL+
2W

L,
Isa

be
lle

, S
ML co

de

2019

Andrici

and

Ciobaca,

DPLL+counters,

TrueSAT,

Dafny, F# code

2021

Fleu
ry

(a
nd

La
mmich

),

CDCL+
2W

L,
Isa

be
lle

,
EDA

Cha
lle

ng
e,

LL
VM

IR
co

de

2022

Skotåm, CDCL+2W
L, creusat,

Rust code

Theory

Performance + tool demo

Tool demonstration

Porting IsaSAT to LLVM (and Inprocessing) 2/2


	Introduction
	Motivation

	Porting to LLVM
	Performance Results
	Conclusion
	Appendix

