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Introduction



How do We Make SAT Solvers Correct?

DRAT Proofs • requires to check the proof for each file
• not all techniques can be represented by

current proof formats

Program Verification This talk!

• works for every input, so no overhead
• does not crash even if program runs for a year
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Why do We Care?

• We have abstract CDCL, we have inprocessing, but can we
combine them?

• Corner cases easy to miss known papers have flaws!

• Metatheory, study variants See session 1

• No gap between specification and implementation
most papers: “we can combine”
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Porting to LLVM



Correctness Theorems

Definition

Specification

Synthesis by Sepref
old (SML) or new
(LLVM)

Imperative HOL code LLVM IR code

fulfills

(IsaSATSML opts, model_if_satisfiable)
∈ [proper_lits_no_dups_⊥]

clauses_assn → option_model_assn
(IsaSATLLVM opts, model_if_satisfiable_bounded)

∈ [proper_lits]clauses_assn → option_model_assn

In LLVM: Stop if memory allocation > 263

In SML: switch to GMP (but: no compiler
supports that)
And: no machines support that

Less restricted input format
(before: still support for SAT Competition)Performance: LLVM twice as fast!

Refine approach
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Lessons Learned
Aggressive reorganization of theories... but not enough

• IsaSAT is the largest development based on Isabelle/LLVM
(94kloc)

• Sepref enforces a non-parallel style (and is not very fast)

• Currently 1h 20 for the non-synthesis part, 2h with it
same for (smaller) SML version

• Synthesis rather slow and (for technical reasons) single
threaded
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Lessons Learned
Local reasoning is better

Before

(A, . . . ,W , . . . )

W

After

=

(A, . . . , (A, W ), . . . )

W

This is ongoing refactoring: the new things are ported, the olds
whenever I change them
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Lessons Learned
Performance bugs happen

A normal run:

c propagate : 83.48% (581.66 s)
c reduce : 0.12% (0.82 s)
c subsumption : 0.06% (0.39 s)
c pure_lits : 0.05% (0.33 s)
c binary_simp : 0.02% (0.15 s)
c GC : 0.16% (1.10 s)

(Hacked)Implementation by calling C function (via sed/grep)
optional, but very useful

But you have to trust the (unverified) statistics!
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Performance Results



CDF on the SAT Competition 2022
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Figure: Higher is better (best: Kissat, unverified)
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Conclusion



Summary

• IsaSAT is now much better
Bug: after 2 years: GC and reduction swapped!

I still suspect a heuristic bug

• We have now inprocessing with general rules specialized for
our needs See paper for Subsumption-Resolution

• We know how to improve the formalization but it won’t solve
all problems

• For Main track SAT Competition, DRAT proof (via sed to
interface LLVM to C code)

“officially”, I am not aware of any bug during proof checking
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• We have now inprocessing
• We know how to improve the formalization but it won’t solve

all problems

Questions?
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