universitatfreiburg

Porting IsaSAT to LLVM (and Inprocessing)

Mathias Fleury and Peter Lammich
CADE’29

Introduction

How do We Make SAT Solvers Correct?

DRAT Proofs « requires to check the proof for each file
« not all techniques can be represented by
current proof formats

How do We Make SAT Solvers Correct?

DRAT Proofs « requires to check the proof for each file
« not all techniques can be represented by
current proof formats

Program Verification This talk!

- works for every input, so no overhead
- does not crash even if program runs for a year

Why do We Care?

« We have abstract CDCL, we have inprocessing, but can we
combine them?

- Corner cases easy to miss known papers have flaws!

- Metatheory, study variants See session 1

Why do We Care?

Definition 4.2.2 (Clause Redundancy). A witness labelled clause (w : C) is
redundant with respect to a formula F if w(C) =T and Flo | Flo fora = ~C.
This is also denoted as FAC =%, F

sat £
We formalize that part of the proof and extend it to partial truth assignments
CaDiCaL . Rule WEAKENT is defined in our caleulus based on the most gen-

eral redundancy property and so it allows to employ every clause elimination
procedure implemented in CaDiCal. including variable elimination [86], vivifica-

universitatfreiburg Porting IsaSAT to LLVM (and Inprocessing)

4/13

Why do We Care?

Definition 4.2.2 (Clause Redundancy). A witness labelled clause (w : C') is

redundant with respect to a formula F if w(C) =T and Fl|a | Flo fora=-C.
This is also denoted as FnC =2, F

sat 1 -
We formalize that part of the proof and extend it to partial truth assignments
CaDiCaL . Rule WEAKENT is defined in our caleulus based on the most gen-

eral redundancy property and so it allows to employ every clause elimination
procedure implemented in CaDiCalL including variable elimination [36], vivifica-

Either partial models or VE (Master thesis by Katharina Wagner)
| did not realize that either before Isabelle refused a proof
Implementation heavily tested... on total modals

Why do We Care?

Definition 4.2.2 (Clause Redundancy). A witness labelled clause (w : C') is

redundant with respect to a formula F if w(C) =T and Fl|a | Flo fora=-C.
This is also denoted as FnC =2, F

sat 1 -
We formalize that part of the proof and extend it to partial truth assignments
CaDiCaL . Rule WEAKENT is defined in our caleulus based on the most gen-

eral redundancy property and so it allows to employ every clause elimination
procedure implemented in CaDiCalL including variable elimination [36], vivifica-

Either partial models or VE (Master thesis by Katharina Wagner)
| did not realize that either before Isabelle refused a proof
Implementation heavily tested... on total modals

NB: this is not (yet) in IsaSAT

Why do We Care?

Definition 4.2.2 (Clause Redundancy). A witness labelled clause (w : C') is

redundant with respect to a formula F if w(C) =T and Fl|a | Flo fora=-C.
This is also denoted as FnC =2, F

sat 1 -
We formalize that part of the proof and extend it to partial truth assignments
CaDiCaL . Rule WEAKENT is defined in our caleulus based on the most gen-

eral redundancy property and so it allows to employ every clause elimination
procedure implemented in CaDiCalL including variable elimination [36], vivifica-

Either partial models or VE (Master thesis by Katharina Wagner)
| did not realize that either before Isabelle refused a proof
Implementation heavily tested... on total modals

NB: this is not (yet) in IsaSAT
See session 12, talk by Nikolaj Bjorner

Why do We Care?
+ We have abstract CDCL, we have inprocessing, but can we
combine them?
- Corner cases easy to miss known papers have flaws!
- Metatheory, study variants See session 1

+ No gap between specification and implementation
most papers: “we can combine”

Porting to LLVM

Correctness Theorems

fulfills

Specification

Correctness Theorems

universitatfreiburg

Synthesis by Sepref

old (SML) or new
(LLVM)
fulfills
Specification
Porting IsaSAT to LLVM (and Inprocessing) 6/13

Correctness Theorems

Synthesis by Sepref

old (SML) or new

(LLVM)

fulfills

Imperative HOL code Specification

o

(IsaSATgy opts, model_if_satisfiable)
€ [proper_lits_no_dups__1]
clauses_assn — option_model_assn

universitatfreiburg Porting IsaSAT to LLVM (and Inprocessing) 6/13

Correctness Theorems

Synthesis by Sepref

Definitio old (SML) or new
(L
fulfills
Imperative HOL code Specification \ LLVM IR code \

o

(IsaSATgy opts, model_if_satisfiable)
€ [proper_lits_no_dups__1]
clauses_assn — option_model_assn

UniVeI'Sitét'fl’eibul’g Porting IsaSAT to LLVM (and Inprocessing) 6/13

Correctness Theorems

Synthesis by Sepref
Definition| old (SML) or new
(LLVW\

fulfills

Imperative HOL code

Specification

[LLVM IR code |

(IsaSATgy opts, model_if_satisfiable)
€ [proper_lits_no_dups_ 1]

\\
\
clauses_assn — option_model_assn

|
(IsaSAT | ym opts, model_if_satisfiable_bounded) :
€ [proper_lits|clauses_assn — option_model_assn

Correctness Theorems

In LLVM: Stop if memory allocation > 23
In SML: switch to GMP (but: no compiler

supports that)
And: no machines support that

Specification

(IsaSATgy opts, model_if_satisfiable)
€ [proper_lits_no_dups_ 1]
clauses_assn — option_model_assn
(IsaSATym opts, model_if_satisfiable_bounded)
€ [proper_lits|clauses_assn — option_model_assn

Correctness Theorems

Less restricted input format
(before: still support for SAT Competition)

ST by Sepref
IL) or new

//,/ ‘ A S ‘\\
wlfills \\

Imperative HOL code

Specification

(IsaSATgy opts, model_if_satisfiable)

€ [proper_lits_no_dups_ 1]

clauses_assn — option_model_assn

(IsaSAT | ym opts, model_if_satisfiable_bounded)
€ [proper_lits|clauses_assn — option_model_assn

| LLVM IR code |

\
\
\

Correctness Theorems

\ Synthesis by Sepref
Performance: LLVM twice as fast! IL) or new
[(LLVM)._
fulfills
Specification

[LLVM IR code |

|
(IsaSAT | ym opts, model_if_satisfiable_bounded) :
€ [proper_lits|clauses_assn — option_model_assn

Correctness Theorems

Synthesis by Sepref

Definitio od (SML) or new
(LL
fulfills
Specification |LLVM IR code |

(IsaSAT | Lym opts, model_if_satisfiable_bounded)
€ [proper_lits|clauses_assn — option_model_assn

rsitatfreiburg Porting 1saSAT to LLVM (and Inprocessing) 6/13

Lessons Learned
Aggressive reorganization of theories... but not enough

- |saSAT is the largest development based on Isabelle/LLVM
(94kloc)

- Sepref enforces a non-parallel style (and is not very fast)

« Currently 1h 20 for the non-synthesis part, 2h with it
same for (smaller) SML version

« Synthesis rather slow and (for technical reasons) single
threaded

Lessons Learned
Local reasoning is better

Before After

(A, ..., W,...) , (A, W), o)
7 N
w w

This is ongoing refactoring: the new things are ported, the olds
whenever | change them

Lessons Learned
Performance bugs happen

A normal run:

Cc propagate : 83.48% (581.66 s)
¢ reduce : 0.127% (0.82 s)

¢ subsumption : 0.06% (0.39 s)

c pure_lits : 0.05% (0.33 s)

¢ binary_simp : 0.02% (0.15 s)

c GC : 0.16% (1.10 s)

(Hacked)Implementation by calling C function (via sed/grep)
optional, but very useful

But you have to trust the (unverified) statistics!

Performance Results

CDF on the SAT Competition 2022

100 150 200 250 30C

50

o sc2022-bulky

A isasat-lastest-1g

+Cisasat-first-llvm

* isasat-sml
Creusat

v versat

5000

Figure: Higher is better (best: Kissat, unverified)

sitatfreiburg

Porting IsaSAT to LLVM (and Inprocessing)

Conclusion

Summary

« 1saSAT is now much better
Bug: after 2 years: GC and reduction swapped!
| still suspect a heuristic bug

« We have now inprocessing with general rules specialized for
our needs See paper for Subsumption-Resolution

« We know how to improve the formalization but it won’t solve
all problems

« For Main track SAT Competition, DRAT proof (via sed to
interface LLVM to C code)

“officially”, | am not aware of any bug during proof checking

Summary

. I§aSAT is now much better

0 1000 2000 3000 4000 5000

« We have now inprocessing
« We know how to improve the formalization but it won’t solve
all problems

Questions?

A Personal History of Solver Verification

. N
. N O, . oy
& S S &
N O\’X @ « v\y ‘\5@0\/00 \?\e*
<« 00\/005 e&‘&@\/ N ° O"Q > rz}°e} o°b®
[¢) W NV er‘ Qé\ & R
Ao P O A I N N q§ NG
¢ S F FP (O S
O PP\ &P QOO O
&S L% P KOS
Ve N N (S < o
e ittt el f f f
2011 2012 2015 2017 2019 2021 2022
<,
% o) O %
B %, Q% % %%
(oSNNI 5, <x v
AN [% Yo, (2
>0, R %, % 0,
L Q' q AN (J
7L XY & & %
Q(’O ‘e, & % ©
6@, %, ‘9/)0, [eX
oy O % %, %
0, 0.2 s
O} oOé, /)9: s‘%’ O’

A Personal History of Solver Verification

’ Performance + tool demo

I 1 1
2011 2012 2015 2017 2019 ' 2021 2022

univel’si‘té‘t‘freiburg Porting IsaSAT to LLVM (and Inprocessing) 2/2

	Introduction
	Motivation

	Porting to LLVM
	Performance Results
	Conclusion
	Appendix

