Verifying solvers:
How much do you want to prove?

Mathias Fleury
2022/10/13

How do we make SAT solvers correct?

Proofs See talk by Armin and the next one by Yong, but:

« requires to check the proof for each file
« not all techniques can be represented by current
proof formats

1/29

How do we make SAT solvers correct?

Proofs See talk by Armin and the next one by Yong, but:

« requires to check the proof for each file
« not all techniques can be represented by current
proof formats

Program Verification This talk!

+ works for every input, so no overhead
+ does not crash even if run the program for a year

1/29

« Parsing is always trusted

+ Printing the answer is trusted too

+ The resulting SAT solvers live outside of their system

«+ you cannot use them in the system you do the proofs

2/29

A Personal History of Solver Verification

& NS
2 ¥ > N
x’ﬁk & _\&o Q(,Vx N
Q(}/ W~ & e [N
© 2 &8 D @
o & &K N\ S
o & &8 s S
& Ny S NS
04 a N
(9(4 ,Dk‘b E}\z & ¢ Qa@ & 6\)
PO Y O 2 & S (@
& 0«\‘4 N F N S ™
5(9 & & N ‘;X_a o & &
[S 2 S)
———————— - -~ - : ; :
2011 2012 2015 2017 2019 2021 2022
5 Q, %, Ry
3, Q 2 0,
Ny %, 5 Q. % %, 'é;))
Co 4 % A7 79
&) *Cy %, & <,
) O\ % (3 % &
Lo %, (93] % 2c e ©
> %o %, &
b %, I %6, X
% V5% -0, %0 %
% D S,) <
S ¢ % 2 %, IS
@ % b, % %%
9 O %, o G 2
% % % %, %,
< % IR &

3/29
incomplete especially because the bottom-up approach is a good master thesis

A Personal History of Solver Verification

U T U U
2011 2012 2015 2017 2019 2021 2022

3/29

What far can you go with one Master thesis?

Fleury:

Skotam:

functional code, DPLL, no restarts, propagation by
going over all clauses, decision by going over all
clauses.

Solves no problem from the SAT Comp

imperative code, CDCL, restarts, watch literals,
decision heuristic.
Solves > 150.

4/29

Top: Some theory expressed in your tool

?

Bottom Some (hopefully fast) code

5/29

Top: Some theory expressed in your tool

?

Bottom Some (hopefully fast) code

All full verifications go top-down. seL4 kernel is mixed:
Specification -> Haskell <- C

Most partial verifications go bottom-up. Most natural for each tool!

5/29

Warning: Related Work is hard (TrueSAT)

Table 1. Summary of existing verified SAT solvers.

Solver Algorithm Proof Assistant
CDCL Guru
DPLL Isabelle/HOL 0
DPLL Minlog DPLL-o
CDCL Isabe c
DPLL D

Downside

not full

nc

Incorrect representation of related work

Only bottom-up work that also proves completeness and
termination.

6/29

Warning: Related Work is hard (TrueSAT)

Table 1. Summary of existing verified SAT solvers.

Solver Algorithm

CDCL
DPLL Isabelle/HOL

DPLL Minlog DP not imperative
CDCL z imperative
DPLL Dafny

Proof Assistant

Guru

Incorrect representation of related work

Only bottom-up work that also proves completeness and
termination.

Cheating: DPLL without statefull heuristics.

6/29

The Theory Inside the TP

Express within the TP:

+ shallow embedding (reuse from the TP) rare
+ or: deep embedding redefine clauses as multiset,
models

Express theory within TP

+ each transformation must fit within the theory

The theory is what you make out of it! for PAC checker: talk about

polynomials, not about multiplier

7/29

SAT: What is the theory?

Proofs from the SAT point of view:

« The bottom-up approach: Resolutions

+ The top-down approach: (CDCL via) models

What happens if we try something more complicated?

8/29

Other Verified Solvers

SAT Checkers: (see next talk, by construction no completeness)

Ordered Resolution Solver: project to prove feasibility

9/29

Other Verified Solvers

SAT Checkers: (see next talk, by construction no completeness)

Ordered Resolution Solver: project to prove feasibility

What has been tried?

CAD issues already expressing the definitions for the
algorithms

9/29

Bottom-Up Or the Art of Proving very
little

Translation from
Rust to why3

Abstracted code for verification (unverified) [Denis,
Jourdan, Marché,
ICFEM’21]
1’. abstract

Executable source code

2. compiler - 2. verified compiler

2’: only used in a

Binary
SAT checker

10/29

Key Idea

The checker = the verification

11/29

Key Idea

Implicit Checker The checker = the verification

Every approach | am aware of: checker = resolution checker

11/29

Key Idea

The checker = the verification
Every approach | am aware of: checker = resolution checker

Theorem (Correctness)
Deriving L implies that the problem is UNSAT.

11/29

Some Invariants of a SAT Solver

Deriving the empty clause: input problem unsat
Conflicts on current level: runtime assertion
Termination: Unknown

No conflict+all assigned: checking of the model

No crash: depends on the approach

12/29

What do you have to prove?

Well-behaved: no read past end of array
Assignments: consistent and propagations are entailed

Clauses: not modified except by resolution

+ But: non trivial for minimization where the
resolution is implicit

13/29

Making the Solver more Complex: Adding Restart?

Assume you already have a working CDCL.

Adding restarts means:

1. call backtrack to level 0

That s all

14/29

Challenges

What is hard?

» Usually relies on automatic provers, which must be able to
handle the specification

« No termination

+ Closer to programs written by hand

15/29

Top-Down Approach: Proving Too much

CDCL
Refinement <

Abstracted code for verification

Executable source code

2. compile (- 2. verified compiler

Binary

16/29

Key Idea

(Pragmatic) CDCL is fully correct

17/29

Key Idea

(Pragmatic) CDCL is fully correct

Theorem (Total Correctness’)
Deriving L iff the probem is UNSAT. No conflict + total assignment =
SAT. Termination.

At some point, memory representation can cause also aborts.

17/29

Key Idea

(Pragmatic) CDCL is fully correct

Theorem (Total Correctness’)

Deriving L iff the probem is UNSAT. No conflict + total assignment =
SAT. Termination.

Theorem (Total Correctness IsaSAT-LLVM)
If the answer is not unknown, it is either SAT with a model or UNSAT.

At some point, memory representation can cause also aborts.

17/29

Key Idea

(Pragmatic) CDCL is fully correct
Theorem (Total Correctness’)
Deriving L iff the probem is UNSAT. No conflict + total assignment =

SAT. Termination.

Theorem (Total Correctness IsaSAT-LLVM)
If the answer is not unknown, it is either SAT with a model or UNSAT.

IsaSAT-SML had full correction

At some point, memory representation can cause also aborts.

17/29

Refinement in IsaSAT

Pragmatic CDCL @kiog = Inprocessing + + CDCL + Restarts

T

Pragmatic CDCL + Watched Literals xioo)

T

... + Lists + Watch Lists (12k + 10k loc)

... + Heuristics = 1saSAT (kloc)
Automatic Synthesis
LLVM'IR‘“ke il’l |Sabelle (setup = 16k loc)

Pretty-printing

LLVM IR (25k loc + 800 C code as glue) 18/29

Some Invariants of a SAT Solver

Deriving the empty clause: unsat (OR: derive conflict at level 0)
Conflicts on current level: completeness of propagations

Termination: Yes

No crash: yes (up to the assumptions on memory)

19/29

Making the Solver more Complex: Adding Restart?

Assume you already have a working CDCL.

Adding restarts means:

1. change your CDCL (to include a counter to increase restart
interval)
2. change the refinement to be based on the extended CDCL

3. add restarts with the counter. Make sure that it does not

overflow.

That s all

20/29

Challenges

What is hard?

+ you have to prove everything
« limited by the speed of your tools

« hard to find people

21/29

In retrospect over the entire project:

+ Many components that are not independent

22/29

In retrospect over the entire project:

+ Many components that are not independent

Watch list can be indexed by every literal in the set of clauses

22/29

In retrospect over the entire project:

+ Many components that are not independent

Watch list can be indexed by every literal in the set of clauses

+ Mistakes have been made: too much coupling

22/29

In retrospect over the entire project:

+ Many components that are not independent

Watch list can be indexed by every literal in the set of clauses

+ Mistakes have been made: too much coupling

Better: watch lists are defined over a set of literals that is the
same as the set of clauses

22/29

In retrospect over the entire project:

+ Many components that are not independent

+ Mistakes have been made: too much coupling

+ But: refactoring takes time.

22/29

In retrospect over the entire project:

+ Many components that are not independent

+ Mistakes have been made: too much coupling

+ But: refactoring takes time.

22/29

In retrospect over the entire project:

« Testing new features hard

« Testing improvement for code generation

22/29

What can you not express?

« aliasing
ISASAT {
TRAIL trail;
CLAUSES clauses;

s

ISASAT solver;
isasat->trail = assign(lit, solver->trail);

23/29

What can you not express?

« aliasing
ISASAT {
TRAIL trail;
CLAUSES clauses;

s

ISASAT solver;
isasat->trail = assign(lit, solver->trail);

 pointers are complicated

23/29

The Code

How do they perform?

CDF of various verified solvers on the SC2022 (7 GB, 5500 s)

24/29

How do they perform?

Solver | SAT | UNSAT
IsaSAT 175 130
Creusat | 145 79
versat 60 62

Table 1: Results on the SC2015 according to Skotam (24 GB, 1800 s)

24/29

How do they perform?

@W7+7$—%7%

CDF of various solvers on the SC2022 (7 GB, 5500 s)

24/29

How good is the code? Guru

void = (int gnv_24, int gdl_4, void * gas_37, void * gws_17) {
start_gpropagate_h: {

{

void * gpa_13;

void * gwhy_6;

void * gdls_6;

void * ghist_6;

int ghist_cur_4;

int ghist_end_4;

void * gcarraway_tmp_119;

gpa_13 = ginit_unique_unique(guwarray, gas_37, ((gAssignState_gassign_state =)gas_37)->gpa_2)

gwhy_6 = ginit_unique_unique(gwarray, gas_37, ((gAssignState_gassign_state x)gas_37)->gwhy_2)
H
gdls_6 = ginit_unique_unique(guwarray, gas_37, ((gAssignState_gassign_state =*)gas_37)->gdls_2

i
ghist_6 = ginit_unique_unique(guwarray, gas_37, ((gAssignState_gassign_state *)gas_37)->ghist

1

Tocoll
((int)gcarraway_tmp_120) {
g
fprintf(stderr,

25/29

How good is the code? IsaSA

ISASAT_STATE (ISASAT_STATE %x) {

start:

label

while_start:

i8 O

= ISASAT_STATE [0 1, [%x,]
= i1 (ISASAT_STATE %s)
i1 , label , label
while_body:
= { ISASAT_STATE, i32 } (ISASAT_STA
= { ISASAT_STATE, i32 } ,
{ ISASAT_STATE, i32 } ,
= ISASAT_STATE (i32 , ISASAT_STATE)
label
while_end:
= i8 O
(i8)

ISASAT_STATE

}

(only edit: ISASAT_STATE is unfolded in the code and remove prefix from function names)

26/29

How good is the code? CreuSAT

(f: &mut Formula, trail: &mut Trail, watches: &mut Watches) -> Result<()
i = trail.curr_i;
old_trail: Ghost<&: Trail> = ghost! { trail };
old_f: Ghost<& Formula> = ghost! { f };
old_w: Ghost<& Watches> = ghost! { watches };

i < trail.trail.len() {
1it = trail.trail[i].lit;
propagate_literal(f, trail, watches, lit) {

ok(_) => {}
Err(cref) => {
Err(cref);
}
}
i+=1;
}
trail.curr_i = i;
ok(())

}

(only edit: remove some invariants and ensures)

27/29

Conclusion

Comparison: How different are there really?

« Removing assertions from bottom-up means being more

top-down
« Very hard to remove proofs from top-down

« Link top-down with concrete code?

28/29

Conclusion

+ Only application of verified SAT solvers: finishing last at SAT
Competition, getting Masters, or PhDs

+ But: do you have applications where proof checking is not
possible?

29/29

	Introduction
	Motivation

	The Theory Inside the TP
	Bottom-Up Or the Art of Proving very little
	Top-Down Approach: Proving Too much
	The Code
	Conclusion

