
Verifying solvers:
Howmuch do you want to prove?

Mathias Fleury
2022/10/13

How do wemake SAT solvers correct?

Proofs See talk by Armin and the next one by Yong, but:
• requires to check the proof for each file
• not all techniques can be represented by current
proof formats

Program Verification This talk!
• works for every input, so no overhead
• does not crash even if run the program for a year

1/29

How do wemake SAT solvers correct?

Proofs See talk by Armin and the next one by Yong, but:
• requires to check the proof for each file
• not all techniques can be represented by current
proof formats

Program Verification This talk!
• works for every input, so no overhead
• does not crash even if run the program for a year

1/29

Restrictions

• Parsing is always trusted CakeML has somemodelisation of file systems,
but don’t try “grep aaa file >> file” at home

• Printing the answer is trusted too

• The resulting SAT solvers live outside of their system
• you cannot use them in the system you do the proofs

2/29

A Personal History of Solver Verification

2011

Shankar
and

Vaucher,
CDCL,

ENTCS, PVS

Les
cu
yer
, C
DC
L, C

oq

Ma
ric

an
d
Ja
nic
ic,

CD
CL
+2
WL
,

LM
CS
, Is
ab
ell
e, S

ML
cod

e

2012

Oe, Stump, Oliver, and
Clancy,

Guru, CDCL, versat, C code

2015

Be
rge
r,

La
wr
en
ce,

Fo
rsb
erg
,

an
d
Se
ise
nb
erg
er,

DP
LL
, M
inl
og
,

Ha
ske
ll c
od
e

2017

Fle
ury
, B
lan
ch
ett
e,
We
ide
nb
ach

,

CD
CL
+2
WL
, Is
ab
ell
e, S

ML
cod

e

2019

Andrici and Ciobaca, DPLL+coun-

ters, TrueSAT, Dafny, F# code

2021

Fle
ury

(an
d L
am
mi
ch
), C
DC
L+2

WL
,

Isa
be
lle
, E
DA

Ch
all
en
ge
, L
LVM

IR

cod
e

2022

Skotåm,
CDCL+2WL, creusat,

Rust code

Theory

Performance + tool demo

Tool demonstration

incomplete especially because the bottom-up approach is a goodmaster thesis
3/29

A Personal History of Solver Verification

2011

Shankar
and

Vaucher,
CDCL,

ENTCS, PVS

Les
cu
yer
, C
DC
L, C

oq

Ma
ric

an
d
Ja
nic
ic,

CD
CL
+2
WL
,

LM
CS
, Is
ab
ell
e, S

ML
cod

e

2012

Oe, Stump, Oliver, and
Clancy,

Guru, CDCL, versat, C code

2015

Be
rge
r,

La
wr
en
ce,

Fo
rsb
erg
,

an
d
Se
ise
nb
erg
er,

DP
LL
, M
inl
og
,

Ha
ske
ll c
od
e

2017

Fle
ury
, B
lan
ch
ett
e,
We
ide
nb
ach

,

CD
CL
+2
WL
, Is
ab
ell
e, S

ML
cod

e

2019

Andrici and Ciobaca, DPLL+coun-

ters, TrueSAT, Dafny, F# code

2021

Fle
ury

(an
d L
am
mi
ch
), C
DC
L+2

WL
,

Isa
be
lle
, E
DA

Ch
all
en
ge
, L
LVM

IR

cod
e

2022

Skotåm,
CDCL+2WL, creusat,

Rust code

Theory

Performance + tool demo

Tool demonstration

3/29

What far can you go with one Master thesis?

Fleury: functional code, DPLL, no restarts, propagation by
going over all clauses, decision by going over all
clauses. but it terminates and is complete
Solves no problem from the SAT Comp

Skotåm: imperative code, CDCL, restarts, watch literals,
decision heuristic.
Solves > 150.

4/29

Top: Some theory expressed in your tool
?

Bottom Some (hopefully fast) code

All full verifications go top-down. seL4 kernel is mixed:

Specification -> Haskell <- C

Most partial verifications go bottom-up. Most natural for each tool!

5/29

Top: Some theory expressed in your tool
?

Bottom Some (hopefully fast) code

All full verifications go top-down. seL4 kernel is mixed:

Specification -> Haskell <- C

Most partial verifications go bottom-up. Most natural for each tool!

5/29

Warning: Related Work is hard (TrueSAT)

Incorrect representation of related work

Only bottom-up work that also proves completeness and
termination.

Cheating: DPLL without statefull heuristics.

6/29

Warning: Related Work is hard (TrueSAT)

Incorrect representation of related work

Only bottom-up work that also proves completeness and
termination.

Cheating: DPLL without statefull heuristics.

6/29

The Theory Inside the TP

Express within the TP:
• shallow embedding (reuse from the TP) rare
• or: deep embedding redefine clauses as multiset,
models

Express theory within TP
• each transformation must fit within the theory

The theory is what youmake out of it! for PAC checker: talk about
polynomials, not about multiplier

7/29

SAT: What is the theory?

Proofs from the SAT point of view:

• The bottom-up approach: Resolutions
• The top-down approach: (CDCL via) models

What happens if we try something more complicated?

8/29

Other Verified Solvers

SAT Checkers: (see next talk, by construction no completeness)
Ordered Resolution Solver: project to prove feasibility no advanced

feature, purely functional code

What has been tried?

CAD issues already expressing the definitions for the
algorithms

9/29

Other Verified Solvers

SAT Checkers: (see next talk, by construction no completeness)
Ordered Resolution Solver: project to prove feasibility no advanced

feature, purely functional code

What has been tried?

CAD issues already expressing the definitions for the
algorithms

9/29

Bottom-Up Or the Art of Proving very
little

Organisation

Abstracted code for verification

Executable source code

Binary

1. export 1’. abstract

2. compiler 2’. verified compiler

Translation from
Rust to why3
(unverified) [Denis,
Jourdan, Marché,
ICFEM’21]

1’ transalation
from Guru to
C [Stump et al,
PLPV’09]

2’: only used in a
SAT checker 10/29

Key Idea

Implicit Checker The checker = the verification

Every approach I am aware of: checker = resolution checker

Theorem (Correctness)
Deriving⊥ implies that the problem is UNSAT.

11/29

Key Idea

Implicit Checker The checker = the verification

Every approach I am aware of: checker = resolution checker

Theorem (Correctness)
Deriving⊥ implies that the problem is UNSAT.

11/29

Key Idea

Implicit Checker The checker = the verification

Every approach I am aware of: checker = resolution checker

Theorem (Correctness)
Deriving⊥ implies that the problem is UNSAT.

11/29

Some Invariants of a SAT Solver

Deriving the empty clause: input problem unsat
Conflicts on current level: runtime assertion
Termination: Unknown
No conflict+all assigned: checking of the model

No crash: depends on the approach

12/29

What do you have to prove?

Well-behaved: no read past end of array

Assignments: consistent and propagations are entailed

Clauses: not modified except by resolution
• But: non trivial for minimization where the
resolution is implicit

13/29

Making the Solver more Complex: Adding Restart?

Assume you already have a working CDCL.

Adding restarts means:

1. call backtrack to level 0

That is all except for heuristics, performance debugging, ...

14/29

Challenges

What is hard?

• Usually relies on automatic provers, which must be able to
handle the specification Skotåm: swapping literals

• No termination ITP don’t like non-termination

• Closer to programs written by hand easier to try di昀昀erent strategies

15/29

Top-Down Approach: Proving Toomuch

Organisation

CDCL

Abstracted code for verification

Executable source code

Binary

Refinement

1’. export 1. pretty-print

2. compile 2’. verified compiler

1’. Hupel: use se-
mantics from 2’.
Or Lammich: LLVM
generation
1. trusted as triv-
ial translation (SML
generation)

16/29

Key Idea

Abstract Correctness (Pragmatic) CDCL is fully correct

Theorem (Total Correctness1)
Deriving⊥ i昀昀 the probem is UNSAT. No conflict + total assignment =
SAT. Termination.

Theorem (Total Correctness IsaSAT-LLVM)
If the answer is not unknown, it is either SAT with a model or UNSAT.

IsaSAT-SML had full correction SML semantics does not forbid arrays ≥ 264,
no compiler support
1At some point, memory representation can cause also aborts.

17/29

Key Idea

Abstract Correctness (Pragmatic) CDCL is fully correct

Theorem (Total Correctness1)
Deriving⊥ i昀昀 the probem is UNSAT. No conflict + total assignment =
SAT. Termination.

Theorem (Total Correctness IsaSAT-LLVM)
If the answer is not unknown, it is either SAT with a model or UNSAT.

IsaSAT-SML had full correction SML semantics does not forbid arrays ≥ 264,
no compiler support
1At some point, memory representation can cause also aborts.

17/29

Key Idea

Abstract Correctness (Pragmatic) CDCL is fully correct

Theorem (Total Correctness1)
Deriving⊥ i昀昀 the probem is UNSAT. No conflict + total assignment =
SAT. Termination.

Theorem (Total Correctness IsaSAT-LLVM)
If the answer is not unknown, it is either SAT with a model or UNSAT.

IsaSAT-SML had full correction SML semantics does not forbid arrays ≥ 264,
no compiler support
1At some point, memory representation can cause also aborts.

17/29

Key Idea

Abstract Correctness (Pragmatic) CDCL is fully correct

Theorem (Total Correctness1)
Deriving⊥ i昀昀 the probem is UNSAT. No conflict + total assignment =
SAT. Termination.

Theorem (Total Correctness IsaSAT-LLVM)
If the answer is not unknown, it is either SAT with a model or UNSAT.

IsaSAT-SML had full correction SML semantics does not forbid arrays ≥ 264,
no compiler support
1At some point, memory representation can cause also aborts.

17/29

Refinement in IsaSAT

CDCL Restarts+ +Pragmatic CDCL (4k loc) = Inprocessing +

Pragmatic CDCL + Watched Literals (8k loc)

... + Lists + Watch Lists (12k + 10k loc)

... + Heuristics = IsaSAT (37k loc)

LLVM-IR-like in Isabelle (setup = 16k loc)

LLVM IR (25k loc + 800 C code as glue)

Automatic Synthesis

Pretty-printing

18/29

Some Invariants of a SAT Solver

Deriving the empty clause: unsat (OR: derive conflict at level 0)
Conflicts on current level: completeness of propagations
Termination: Yes IsaSAT can answer unknown

if too many clauses∑c∈clauses 5 + ∣c∣ ≈ ∣clause_memory∣ ≥ 263

No crash: yes (up to the assumptions onmemory) allocation does
not fail

19/29

Making the Solver more Complex: Adding Restart?

Assume you already have a working CDCL.

Adding restarts means:

1. change your CDCL (to include a counter to increase restart
interval)

2. change the refinement to be based on the extended CDCL
3. add restarts with the counter. Make sure that it does not

overflow.

That is all except for heuristics, performance debugging, ...

20/29

Challenges

What is hard?

• you have to prove everything lots of code

• limited by the speed of your tools bring Isabelle to its knees

• hard to find people Isabelle and code synthesis can be seen as two
di昀昀erent systems

21/29

Refinements

In retrospect over the entire project:

• Many components that are not independent everything is
parametrized by the set of variables...
Watch list can be indexed by every literal in the set of clauses

• Mistakes have beenmade: toomuch coupling ... that is not
duplicated
Better: watch lists are defined over a set of literals that is the
same as the set of clauses also moving up proof that index valid

• But: refactoring takes time.

22/29

Refinements

In retrospect over the entire project:

• Many components that are not independent everything is
parametrized by the set of variables...
Watch list can be indexed by every literal in the set of clauses

• Mistakes have beenmade: toomuch coupling ... that is not
duplicated
Better: watch lists are defined over a set of literals that is the
same as the set of clauses also moving up proof that index valid

• But: refactoring takes time.

22/29

Refinements

In retrospect over the entire project:

• Many components that are not independent everything is
parametrized by the set of variables...
Watch list can be indexed by every literal in the set of clauses

• Mistakes have beenmade: toomuch coupling ... that is not
duplicated
Better: watch lists are defined over a set of literals that is the
same as the set of clauses also moving up proof that index valid

• But: refactoring takes time.

22/29

Refinements

In retrospect over the entire project:

• Many components that are not independent everything is
parametrized by the set of variables...
Watch list can be indexed by every literal in the set of clauses

• Mistakes have beenmade: toomuch coupling ... that is not
duplicated
Better: watch lists are defined over a set of literals that is the
same as the set of clauses also moving up proof that index valid

• But: refactoring takes time.

22/29

Refinements

In retrospect over the entire project:

• Many components that are not independent everything is
parametrized by the set of variables...
Watch list can be indexed by every literal in the set of clauses

• Mistakes have beenmade: toomuch coupling ... that is not
duplicated
Better: watch lists are defined over a set of literals that is the
same as the set of clauses also moving up proof that index valid

• But: refactoring takes time.

22/29

Refinements

In retrospect over the entire project:

• Many components that are not independent everything is
parametrized by the set of variables...
Watch list can be indexed by every literal in the set of clauses

• Mistakes have beenmade: toomuch coupling ... that is not
duplicated
Better: watch lists are defined over a set of literals that is the
same as the set of clauses also moving up proof that index valid

• But: refactoring takes time.

22/29

Refinements

In retrospect over the entire project:

• Testing new features hard Some I implemented and proved things that
did not work and I removed.

• Testing improvement for code generation structure was forced, not a
choice. Pointers

22/29

What can you not express?

• aliasing
struct ISASAT {

TRAIL trail;
CLAUSES clauses;

};

struct ISASAT solver;
isasat->trail = assign(lit, solver->trail);

• pointers are complicated IsaSAT: I tried to use a pointer to a state and
never managed to make it less than 10 times slower

23/29

What can you not express?

• aliasing
struct ISASAT {

TRAIL trail;
CLAUSES clauses;

};

struct ISASAT solver;
isasat->trail = assign(lit, solver->trail);

• pointers are complicated IsaSAT: I tried to use a pointer to a state and
never managed to make it less than 10 times slower

23/29

The Code

How do they perform?

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

●●●
●●●
●●●
●●●●

●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
● ●●●

●●●
●●●●

● ●●●
●●●
●●●
● ●●●●●

●●●
●●●●●

●●● ●●● ● ●●●●●
●●●
●● ●●● ●● ● ●●●●●

●● ●●●
●● ● ●●●● ● ● ● ●●●●

●●● ● ● ●●●●
●● ● ● ●●●

● IsaSAT−0o
CreuSAT
versat

CDF of various verified solvers on the SC2022 (7 GB, 5500 s)

many out-of-memory for CreuSAT
24/29

How do they perform?

Solver SAT UNSAT
IsaSAT 175 130
Creusat 145 79
versat 60 62

Table 1: Results on the SC2015 according to Skotåm (24GB, 1800 s)

24/29

How do they perform?

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●●●
●●●●

●●●●
●●●●
●●●●
●●●●
●●●●

●●●●●
●●●●
●●●●
●●●●●

●●●●
●●●●●●●

●●●●
●●●●●

●●●● ● ●●● ●● ● ●●●●●●● ● ●●●●
●●●●●●●

●●●●
●● ● ●●● ●●●● ●● ● ● ● ● ● ●● ●

● kissat−0wq
IsaSAT−0o
CreuSAT−16GB
CreuSAT
versat

CDF of various solvers on the SC2022 (7 GB, 5500 s)

many out-of-memory for CreuSAT
24/29

How good is the code? Guru

void * gpropagate_h(int gnv_24, int gdl_4, void * gas_37, void * gws_17) {
start_gpropagate_h: {

{/* match with exactly one case: gassign_state */
void * gpa_13;
void * gwhy_6;
void * gdls_6;
void * ghist_6;
int ghist_cur_4;
int ghist_end_4;
void * gcarraway_tmp_119;
gpa_13 = ginit_unique_unique(guwarray, gas_37, ((gAssignState_gassign_state *)gas_37)->gpa_2)
;
gwhy_6 = ginit_unique_unique(gwarray, gas_37, ((gAssignState_gassign_state *)gas_37)->gwhy_2)
;
gdls_6 = ginit_unique_unique(guwarray, gas_37, ((gAssignState_gassign_state *)gas_37)->gdls_2)
;
ghist_6 = ginit_unique_unique(guwarray, gas_37, ((gAssignState_gassign_state *)gas_37)->ghist_2)
;
[...]
switch ((int)gcarraway_tmp_120) {

case op_gff: {

fprintf(stderr,"abort at /Users/kain/Projects/versat/old_versions/0.6/src/unitprop.g, line 765, column 58\n"); exit(EXIT_FAILURE)

25/29

How good is the code? IsaSAT

define ISASAT_STATE @unit_propagation_outer_loop_wl_D(ISASAT_STATE %x) #0 {

start:
%x1 = call i8 @IsaSAT_Profile_PROPAGATE ()
call void @IsaSAT_Profile_LLVM_start_profile (i8 %x1)
br label %while_start

while_start:
%s = phi ISASAT_STATE [%x3, %while_body], [%x, %start]
%x2 = call i1 @literals_to_update_wl_empty_fast_code (ISASAT_STATE %s)
br i1 %x2, label %while_body, label %while_end

while_body:
%xb = call { ISASAT_STATE, i32 } @select_and_remove_from_literals_to_update_wl(ISASAT_STATE %s)
%a1 = extractvalue { ISASAT_STATE, i32 } %xb, 0
%a2 = extractvalue { ISASAT_STATE, i32 } %xb, 1
%x3 = call ISASAT_STATE @unit_propagation_inner_loop_wl_D (i32 %a2, ISASAT_STATE %a1)
br label %while_start

while_end:
%xc = call i8 @IsaSAT_Profile_PROPAGATE ()
call void @IsaSAT_Profile_LLVM_stop_profile (i8 %xc)
ret ISASAT_STATE %s

}

(only edit: ISASAT_STATE is unfolded in the code and remove prefix from function names)

26/29

How good is the code? CreuSAT

#[cfg_attr(feature = "trust_unit", trusted)]
#[ensures(f.equisat(^f))]
pub fn unit_propagate(f: &mut Formula, trail: &mut Trail, watches: &mut Watches) -> Result<(), usize> {

let mut i = trail.curr_i;
let old_trail: Ghost<&mut Trail> = ghost! { trail };
let old_f: Ghost<&mut Formula> = ghost! { f };
let old_w: Ghost<&mut Watches> = ghost! { watches };
#[invariant(trail_inv, trail.invariant(*f))]
while i < trail.trail.len() {

let lit = trail.trail[i].lit;
match propagate_literal(f, trail, watches, lit) {

Ok(_) => {}
Err(cref) => {

return Err(cref);
}

}
i += 1;

}
trail.curr_i = i;
Ok(())

}

(only edit: remove some invariants and ensures)

27/29

Conclusion

Comparison: How di昀昀erent are there really?

• Removing assertions from bottom-upmeans being more
top-down and requires more proofs where automation struggles

• Very hard to remove proofs from top-down

• Link top-down with concrete code? Currently has not been tried but I
am trying to find a student

28/29

Conclusion

• Only application of verified SAT solvers: finishing last at SAT
Competition, getting Masters, or PhDs

• But: do you have applications where proof checking is not
possible?

29/29

	Introduction
	Motivation

	The Theory Inside the TP
	Bottom-Up Or the Art of Proving very little
	Top-Down Approach: Proving Too much
	The Code
	Conclusion

