Verifying Solvers:
How Much do You Want to Prove?

Mathias Fleury
2023/06/29

How do We Make SAT Solvers Correct?

Proofs « requires to check the proof for each file
« not all techniques can be represented by current
proof formats

1/28

How do We Make SAT Solvers Correct?

Proofs « requires to check the proof for each file
« not all techniques can be represented by current
proof formats

Program Verification - works for every input, so no overhead
+ does not crash even if run the program for a year
+ end-to-end verification, so no subtle mismatch

1/28

How do We Make SAT Solvers Correct?

Proofs « requires to check the proof for each file
« not all techniques can be represented by current
proof formats

Program Verification - works for every input, so no overhead
+ does not crash even if run the program for a year
+ end-to-end verification, so no subtle mismatch

This talk waht are the challenges?

1/28

A Personal History of Solver Verification

& N\Z
NS S S & D&
o <V) \& N (OR\
& N & (OINY
o © 2r &8 & @
2 e & & SIS
& e S & e € @
Q SINS RPN L on NG
NN NaRC NP\ NS
O S N e & K
SN & Lo P AR
(@ S & Ob QN O e
& & &P f0 P& O & D
& SIS R
M & S ¢ o R
& ~ & Q O
% R (&
e R : : :
2011 2012 2015 2017 2019 2021 2022
n% O. , S
% %
& 6 o & % £ o,
/V,% ”4‘9» %, %, % % e %,
S *Cy 2% % %, Q,,°
L%, T2 %7 % @
> %o ® C: e O,
L % RNCE 8
%, 4 & 0, G %
o S50 3% 2, ¢
) & % 2,
z o4 I G
Q. %% * G %
2 2, @,
© o % %

2/28
incomplete especially because the bottom-up approach is a good master thesis

A Personal History of Solver Verification

U T U U
2011 2012 2015 Pl 2019 2021 2022

2/28

Top Some theory expressed in your tool

?

Bottom Some (hopefully fast) code

3/28

Top Some theory expressed in your tool

?

Bottom Some (hopefully fast) code

All full verifications go top-down. selL4 kernel is mixed:
Specification -> Haskell <- C

Most partial verifications go bottom-up. Most natural for each tool!

3/28

The Theory Inside the TP

Express within the TP:

+ shallow embedding (reuse from the TP) rare
+ or: deep embedding redefine clauses as multiset,
models

Express theory within TP

+ each transformation must fit within the theory

The theory is what you make out of it! for PAC checker: talk about

polynomials, not about multiplier

4/28

Sat: What Is The Theory?

Proofs from the SAT point of view:

+ The bottom-up approach: Resolutions

+ The top-down approach: (CDCL via) models

What happens if we try something more complicated?

5/28

Other Verified Solvers

SAT Checkers: (see next talk, by construction no completeness)

Ordered Resolution Solver: project to prove feasibility

Order prover verified order prover for partial and linear orders
(included in Isabelle)

6/28

Other Verified Solvers

SAT Checkers: (see next talk, by construction no completeness)

Ordered Resolution Solver: project to prove feasibility

Order prover verified order prover for partial and linear orders
(included in Isabelle)

What has been tried?
CAD issues already expressing the definitions for the

algorithms

6/28

Bottom-Up Or the Art of Proving very
little

Translation from
Rust to why3

Abstracted code for verification (unverified) [Denis,
Jourdan, Marché,
ICFEM’21]
1’. abstract

Executable source code

2. compiler - 2. verified compiler

2’: only used in a

Binary
SAT checker

7/28

Key Idea

The checker = the verification

8/28

Key Idea

Implicit Checker The checker = the verification

Every approach | am aware of: checker = resolution checker

8/28

Key Idea

The checker = the verification
Every approach | am aware of: checker = resolution checker

Theorem (Correctness)
Deriving L implies that the problem is UNSAT.

8/28

Some Invariants of a SAT Solver

Deriving the empty clause: input problem unsat
Conflicts on current level: runtime assertion
Termination: Unknown

No conflict+all assigned: checking of the model

No crash: depends on the approach

9/28

What Do You Have To Prove?

Well-behaved: no read past end of array

Clauses: not modified except by resolution

« But: non trivial for minimization where the
resolution is implicit

10/28

Making the Solver more Complex: Adding Restart?

Assume you already have a working CDCL.

Adding restarts means:

1. call backtrack to level 0

That s all

11/28

Challenges

What is hard?

» Usually relies on automatic provers, which must be able to
handle the specification

« No termination

+ Closer to programs written by hand

12/28

Top-Down Approach: Proving Too much

CDCL
Refinement <

Abstracted code for verification

Executable source code

2. compile (- 2’. verified compiler

Binary

13/28

Key Idea

(Pragmatic) CDCL is fully correct

14/28

Key Idea

(Pragmatic) CDCL is fully correct

Theorem (Total Correctness’)
Deriving L iff the probem is UNSAT. No conflict + total assignment =
SAT. Termination.

At some point, memory representation can cause also aborts.

14/28

Key Idea

(Pragmatic) CDCL is fully correct

Theorem (Total Correctness’)

Deriving L iff the probem is UNSAT. No conflict + total assignment =
SAT. Termination.

Theorem (Total Correctness IsaSAT-LLVM)
If the answer is not unknown, it is either SAT with a model or UNSAT.

At some point, memory representation can cause also aborts.

14/28

Key Idea

(Pragmatic) CDCL is fully correct
Theorem (Total Correctness’)
Deriving L iff the probem is UNSAT. No conflict + total assignment =

SAT. Termination.

Theorem (Total Correctness IsaSAT-LLVM)
If the answer is not unknown, it is either SAT with a model or UNSAT.

IsaSAT-SML had full correction

At some point, memory representation can cause also aborts.

14/28

Refinement in IsaSAT

Pragmatic CDCL @00 = INnprocessing + + CDCL + Restarts

T

Pragmatic CDCL + Watched Literals (xioq)

T

... + Lists + Watch Lists (12k + 10k loc)

... + Heuristics = 1saSAT (kloc)
Automatic Synthesis
LLVM'IR‘“ke il’l |Sabelle (setup = 16k loc)

Pretty-printing

LLVM IR (25k loc + 800 C code as glue) 15/28

Some Invariants of a SAT Solver

Deriving the empty clause: unsat (OR: derive conflict at level 0)
Conflicts on current level: completeness of propagations

Termination: Yes

No crash: yes (up to the assumptions on memory)

16/28

Making the Solver more Complex: Adding Restart?

Assume you already have a working CDCL.

Adding restarts means:

1. change your CDCL (to include a counter to increase restart
interval)
2. change the refinement to be based on the extended CDCL

3. add restarts with the counter. Make sure that it does not

overflow.

That s all

17/28

Challenges

What is hard?

+ you have to prove everything
« limited by the speed of your tools

« hard to find people

18/28

In retrospect over the entire project:

+ Many components that are not independent

19/28

In retrospect over the entire project:

+ Many components that are not independent

Watch list can be indexed by every literal in the set of clauses

19/28

In retrospect over the entire project:

+ Many components that are not independent

Watch list can be indexed by every literal in the set of clauses

+ Mistakes have been made: too much coupling

19/28

In retrospect over the entire project:

+ Many components that are not independent

Watch list can be indexed by every literal in the set of clauses

+ Mistakes have been made: too much coupling

Better: watch lists are defined over a set of literals that is the
same as the set of clauses

19/28

In retrospect over the entire project:

+ Many components that are not independent

+ Mistakes have been made: too much coupling

+ But: refactoring takes time.

19/28

In retrospect over the entire project:

+ Many components that are not independent

+ Mistakes have been made: too much coupling

+ But: refactoring takes time.

19/28

In retrospect over the entire project:

« Testing new features hard

« Testing improvement for code generation

19/28

What Can You Not Express?

« aliasing
ISASAT {
TRAIL trail;
CLAUSES clauses;

s

ISASAT solver;
isasat->trail = assign(lit, solver->trail);

20/28

What Can You Not Express?

« aliasing
ISASAT {
TRAIL trail;
CLAUSES clauses;

s

ISASAT solver;
isasat->trail = assign(lit, solver->trail);

 pointers are complicated

20/28

The Code

How Do They Perform?

Solver | SAT | UNSAT
IsaSAT 175 130
Creusat | 145 79
versat 60 62

Table 1: Results on the SC2015 according to Skotam (24 GB, 1800 s)

21/28

How Do They Perform?

o

B -

=

o

3

=

o _|

0
o IsaSAT-00
A CreuSAT

o + versat

T T T T T T
0 1000 2000 3000 4000 5000

many out-of-memory for CreuSAT

How Do They Perform?

Q

B -

N

[=}

s

«

Q

3 4

—

o

3

=

Q |

L T"kﬁsawaq

aSAT-00

+ CreuSAT-16GB
X CreuSAT

o d versat

0 1000 2000 3000 4000 5000

many out-of-memory for CreuSAT

How Do They Perform?

i o kissat=0wq
4 [hemelfleury/test/cadical/sc2022/main/1.5.2/default

o _| + _{home/fleury/test/cadical/sc2022/main/1.5.2/no—
L % /homef/fleury/test/cadical/sc2022/main/1.5.2/n —probe
IsaSAT-00
v CreuélAT—,J,Iing: 57
- CreuSAT ¥
o ? versat
T T T T T T
0 1000 2000 3000 4000 5000

many out-of-memory for CreuSAT

How Good Is The Code (I)? Guru

void = (int gnv_24, int gdl_4, void * gas_37, void * gws_17) {
start_gpropagate_h: {

{

void * gpa_13;

void * gwhy_6;

void * gdls_6;

void * ghist_6;

int ghist_cur_4;

int ghist_end_4;

void * gcarraway_tmp_119;

gpa_13 = ginit_unique_unique(guwarray, gas_37, ((gAssignState_gassign_state =)gas_37)->gpa_2)

gwhy_6 = ginit_unique_unique(gwarray, gas_37, ((gAssignState_gassign_state x)gas_37)->gwhy_2)
H
gdls_6 = ginit_unique_unique(guwarray, gas_37, ((gAssignState_gassign_state =*)gas_37)->gdls_2

i
ghist_6 = ginit_unique_unique(guwarray, gas_37, ((gAssignState_gassign_state *)gas_37)->ghist

1

Tocoll
((int)gcarraway_tmp_120) {
g
fprintf(stderr,

23/28

How Good is The Code (I1)? IsaSAT

(If times permits)

HTML version of the Isabelle files: https://people.mpi-inf.
mpg.de/~mfleury/IsaFoL/current/Weidenbach_
Book/IsaSAT/IsaSAT_Inner_Propagation_Defs.
html#IsaSAT_Inner_Propagation_Defs.unit_
propagation_update_statistics|const

Correcntess theorem: https://people.mpi-inf.mpg.de/
~mfleury/IsaFolL/current/Weidenbach_Book/IsaSAT/
IsaSAT_All_LLVM.html

24/28

https://people.mpi-inf.mpg.de/~mfleury/IsaFoL/current/Weidenbach_Book/IsaSAT/IsaSAT_Inner_Propagation_Defs.html#IsaSAT_Inner_Propagation_Defs.unit_propagation_update_statistics|const
https://people.mpi-inf.mpg.de/~mfleury/IsaFoL/current/Weidenbach_Book/IsaSAT/IsaSAT_Inner_Propagation_Defs.html#IsaSAT_Inner_Propagation_Defs.unit_propagation_update_statistics|const
https://people.mpi-inf.mpg.de/~mfleury/IsaFoL/current/Weidenbach_Book/IsaSAT/IsaSAT_Inner_Propagation_Defs.html#IsaSAT_Inner_Propagation_Defs.unit_propagation_update_statistics|const
https://people.mpi-inf.mpg.de/~mfleury/IsaFoL/current/Weidenbach_Book/IsaSAT/IsaSAT_Inner_Propagation_Defs.html#IsaSAT_Inner_Propagation_Defs.unit_propagation_update_statistics|const
https://people.mpi-inf.mpg.de/~mfleury/IsaFoL/current/Weidenbach_Book/IsaSAT/IsaSAT_Inner_Propagation_Defs.html#IsaSAT_Inner_Propagation_Defs.unit_propagation_update_statistics|const
https://people.mpi-inf.mpg.de/~mfleury/IsaFoL/current/Weidenbach_Book/IsaSAT/IsaSAT_All_LLVM.html
https://people.mpi-inf.mpg.de/~mfleury/IsaFoL/current/Weidenbach_Book/IsaSAT/IsaSAT_All_LLVM.html
https://people.mpi-inf.mpg.de/~mfleury/IsaFoL/current/Weidenbach_Book/IsaSAT/IsaSAT_All_LLVM.html

How Good Is The Code (II)? IsaSA

ISASAT_STATE (ISASAT_STATE %x) {

start:

label

while_start:

i8 O

= ISASAT_STATE [, 1, [%x,]
= i1 (ISASAT_STATE %s)
i1 , label , label
while_body:
= { ISASAT_STATE, i32 } (ISASAT_STA
= { ISASAT_STATE, i32 })
{ ISASAT_STATE, i32 } ,
= ISASAT_STATE (i32 , ISASAT_STATE)
label
while_end:
= i8 O
(i8)

ISASAT_STATE

}

(only edit: ISASAT_STATE is unfolded in the code and remove prefix from function names)

25/28

How Good Is The Code (II)? CreuSAT

(f: &mut Formula, trail: &mut Trail, watches: &mut Watches) -> Result<()
i = trail.curr_i;
old_trail: Ghost<§ Trail> = ghost! { trail };
old_f: Ghost<& Formula> = ghost! { f };
old_w: Ghost<& Watches> = ghost! { watches };

i < trail.trail.len() {
1it = trail.trail[i].lit;
propagate_literal(f, trail, watches, lit) {

ok(_) => {}
Err(cref) => {
Err(cref);
}
}
i+=1;
}
trail.curr_i = i;
ok(())

}

(only edit: remove some invariants and ensures)

26/28

Conclusion

Comparison: How different are there really?

« Removing assertions from bottom-up means being more

top-down
« Very hard to remove proofs from top-down

« Link top-down with concrete code?

27/28

Conclusion

+ Only application of verified SAT solvers: finishing last at SAT
Competition, getting Masters, or PhDs

« Unexpectedly, IsaSAT correlates the least with Kissat on SC2022
benchmarks

+ But: do you have applications where proof checking is not
possible?

+ What is the right timeout for the SAT Competition? In 2023:
5000 s solving + 9 X 5000 s checking.

28/28

	Introduction
	Motivation

	The Theory Inside the TP
	Bottom-Up Or the Art of Proving very little
	Top-Down Approach: Proving Too much
	The Code
	Conclusion

