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Why SAT?

formal verification security bioinformatics train safety

planning

automated

theorem

proving

exploit gen-

eration

termination

rewriting

Encode your problem and then ask a SAT solver (and possibly decode)
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SAT solving

CDCL + simplify

IsaSAT, the

fastest verified

solver

CaDiCaL

Theorem (Contribution 1
[IJCAR’16, NFM’19, CADE 2023])

IsaSAT is correct (answer 6=

unknown) and terminates.

where unknown = array size larger than 64-bit integer

Theorem (Contribution 2,
[Wagner’s Msc])

Fixing model is correctly

implemented but differs from

the paper

Contribution 3 [JAIR’22]

Rephasing techniques in SAT

solvers

Contribution 4 [CADE 2021, PXTP’19

and 21, JAR 19]

SMT reconstruction in

Isabelle
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Refinement in IsaSAT

CDCL Restarts+ +
λ

→

∀
=Is

ab
el
le

β

α
Pragmatic CDCL (4k loc) = Inprocessing

Pragmatic CDCL + Watched Literals (8k loc)

... + Lists + Watch Lists (12k + 10k loc)

... + Heuristics = IsaSAT (48k loc) LLVM-IR-like in Isabelle (setup = 16k loc)

LLVM IR (28k loc + 800 C code as glue)

Automatic

Synthesis
Pretty-printing

new/changed since PhD

was SML before
much bigger
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How Do They Perform?

Figure 1: CDF of various solvers on the SC2022 (7 GB, 5000 s)
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Model Reconstruction for Incremental Solving [Msc Thesis, Wagner]

How to simplify clauses when further are coming? [Fazekas, Scholl and Biere, SAT’19]

CaDiCaL does not implement Def 4.2.2.

I did not realize that either before Isabelle refused a proof

Implementation heavily tested... on total modals

SAT solvers: Verify and Back 10/27
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Guessing values

CDCL solvers work by (i) guessing a value, (ii) propagating, and (iii) fixing the assignment.

How do we guess? Old wisdom:

• set to last set value SAT subproblems remain SAT

• otherwise default to false closed world assumption

Local search solvers work by randomly flipping one literal as long as no model is found
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SAT as Optimization

New view for CDCL: maximize the partial assignment

• Objective is to maximize the size of the trail without conflict

• Save maximum consistent trail as target phases

• Intensification: use target phases and best phases

• Diversification: rephasing Autarky detection does not seem important

SAT solvers: Verify and Back 14/27



Include also Local-Search

CDCL very good at propagating

Local-Search very bad at propagation chains

Import phase from CDCL after propagating use CDCL ignoring conflicts as start point

SAT solvers: Verify and Back 15/27



Kissat, SAT Race 2019, satisfiable only
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Kissat, SAT Race 2019, all
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SMT Tactic
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Idea: Click on a Button
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Interactive Theorem Proving with Sledgehammer

Encode Problem

veriTECVC4 Z3 . . .

Backend

Extract Unsatisfiability Core

metisautosimp smt . . .

Preplay
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Interactive Theorem Proving with Sledgehammer

Encode Problem

veriTECVC4 Z3 . . .

Backend

Extract Unsatisfiability Core

metisautosimp smt with veriT/Z3 . . .

Preplay
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CVC4: Preplay Success Rate
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CVC4: Preplay Time (smt only)
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CVC4: Preplay Time (smt only)
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cvc5

With Hanna Lachnitt, and the cvc51 team [SMT’2023 workshop, submitted]

• support for Alethe proof format is ongoing with more details

• work for RARE rules: solver rules can be extended ongoing work

• detailed bitvector reconstruction

• ongoing work on the cvc5 side, not only on the Isabelle side

1yes it is CVC4 and cvc5 with this capitalization
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Conclusion

Ongoing work:

• implement reconstruction in IsaSAT incompatible with current inprocessing

• model-checking proof format and beyond and incremental with LRAT from [SAT’23]

• understanding performance of SAT solvers minimization is complete [SAT’21], options [POS’23]
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Why do Techniques Work?

with a fixed typo
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