
SAT Solvers: Verify, Improve, And Use
Them In Interactive Theorem Provers

Mathias Fleury

7th of December

mailto:fleury@cs.uni-freiburg.de


Why SAT?

formal verification security bioinformatics train safety

planning

automated

theorem

proving

exploit gen-

eration

termination

rewriting

Encode your problem and then ask a SAT solver (and possibly decode)

SAT solvers: Verify and Back 2/27



Introduction

SAT solvers: Verify and Back 3/27



Contributions

SAT solving

CDCL + simplify

IsaSAT, the

fastest verified

solver

CaDiCaL

Theorem (Contribution 1
[IJCAR’16, NFM’19, CADE 2023])

IsaSAT is correct (answer 6=

unknown) and terminates.

where unknown = array size larger than 64-bit integer

Theorem (Contribution 2,
[Wagner’s Msc])

Fixing model is correctly

implemented but differs from

the paper

Contribution 3 [JAIR’22]

Rephasing techniques in SAT

solvers

Contribution 4 [CADE 2021, PXTP’19

and 21, JAR 19]

SMT reconstruction in

Isabelle

U
se

V
e

rify

Impro
ve

SAT solvers: Verify and Back 4/27



SAT Solver Verification



Contributions

SAT solving

CDCL + simplify

IsaSAT, the

fastest verified

solver

CaDiCaL

Theorem (Contribution 1
[IJCAR’16, NFM’19, CADE 2023])

IsaSAT is correct (answer 6=

unknown) and terminates.

where unknown = array size larger than 64-bit integer

Theorem (Contribution 2,
[Wagner’s Msc])

Fixing model is correctly

implemented but differs from

the paper

Contribution 3 [JAIR’22]

Rephasing techniques in SAT

solvers

Contribution 4 [CADE 2021, PXTP’19

and 21, JAR 19]

SMT reconstruction in

Isabelle

U
se

V
e

rify

Impro
ve

SAT solvers: Verify and Back 6/27



Contributions

SAT solving

CDCL + simplify

IsaSAT, the

fastest verified

solver

CaDiCaL

Theorem (Contribution 1
[IJCAR’16, NFM’19, CADE 2023])

IsaSAT is correct (answer 6=

unknown) and terminates.

where unknown = array size larger than 64-bit integer

Theorem (Contribution 2,
[Wagner’s Msc])

Fixing model is correctly

implemented but differs from

the paper

Contribution 3 [JAIR’22]

Rephasing techniques in SAT

solvers

Contribution 4 [CADE 2021, PXTP’19

and 21, JAR 19]

SMT reconstruction in

Isabelle

SAT solvers: Verify and Back 6/27



Refinement in IsaSAT

CDCL Restarts+ +
λ

→

∀
=Is

ab
el
le

β

α
Pragmatic CDCL (4k loc) = Inprocessing

Pragmatic CDCL + Watched Literals (8k loc)

... + Lists + Watch Lists (12k + 10k loc)

... + Heuristics = IsaSAT (48k loc) LLVM-IR-like in Isabelle (setup = 16k loc)

LLVM IR (28k loc + 800 C code as glue)

Automatic

Synthesis
Pretty-printing

new/changed since PhD

was SML before
much bigger

SAT solvers: Verify and Back 7/27



Refinement in IsaSAT

CDCL Restarts+ +
λ

→

∀
=Is

ab
el
le

β

α
Pragmatic CDCL (4k loc) = Inprocessing

Pragmatic CDCL + Watched Literals (8k loc)

... + Lists + Watch Lists (12k + 10k loc)

... + Heuristics = IsaSAT (48k loc) LLVM-IR-like in Isabelle (setup = 16k loc)

LLVM IR (28k loc + 800 C code as glue)

Automatic

Synthesis
Pretty-printing

new/changed since PhD

was SML before
much bigger

SAT solvers: Verify and Back 7/27



Refinement in IsaSAT

CDCL Restarts+ +
λ

→

∀
=Is

ab
el
le

β

α
Pragmatic CDCL (4k loc) = Inprocessing

Pragmatic CDCL + Watched Literals (8k loc)

... + Lists + Watch Lists (12k + 10k loc)

... + Heuristics = IsaSAT (48k loc) LLVM-IR-like in Isabelle (setup = 16k loc)

LLVM IR (28k loc + 800 C code as glue)

Automatic

Synthesis
Pretty-printing

new/changed since PhD

was SML before
much bigger

SAT solvers: Verify and Back 7/27



How Do They Perform?

Figure 1: CDF of various solvers on the SC2022 (7 GB, 5000 s)

SAT solvers: Verify and Back 8/27



Contributions

SAT solving

CDCL + simplify

IsaSAT, the

fastest verified

solver

CaDiCaL

Theorem (Contribution 1
[IJCAR’16, NFM’19, CADE 2023])

IsaSAT is correct (answer 6=

unknown) and terminates.

where unknown = array size larger than 64-bit integer

Theorem (Contribution 2,
[Wagner’s Msc])

Fixing model is correctly

implemented but differs from

the paper

Contribution 3 [JAIR’22]

Rephasing techniques in SAT

solvers

Contribution 4 [CADE 2021, PXTP’19

and 21, JAR 19]

SMT reconstruction in

Isabelle

SAT solvers: Verify and Back 9/27



Model Reconstruction for Incremental Solving [Msc Thesis, Wagner]

How to simplify clauses when further are coming? [Fazekas, Scholl and Biere, SAT’19]

CaDiCaL does not implement Def 4.2.2.

I did not realize that either before Isabelle refused a proof

Implementation heavily tested... on total modals

SAT solvers: Verify and Back 10/27



Setting phases



Contributions

SAT solving

CDCL + simplify

IsaSAT, the

fastest verified

solver

CaDiCaL

Theorem (Contribution 1
[IJCAR’16, NFM’19, CADE 2023])

IsaSAT is correct (answer 6=

unknown) and terminates.

where unknown = array size larger than 64-bit integer

Theorem (Contribution 2,
[Wagner’s Msc])

Fixing model is correctly

implemented but differs from

the paper

Contribution 3 [JAIR’22]

Rephasing techniques in SAT

solvers

Contribution 4 [CADE 2021, PXTP’19

and 21, JAR 19]

SMT reconstruction in

Isabelle

U
se

V
e

rify

Impro
ve

SAT solvers: Verify and Back 12/27



Contributions

SAT solving

CDCL + simplify

IsaSAT, the

fastest verified

solver

CaDiCaL

Theorem (Contribution 1
[IJCAR’16, NFM’19, CADE 2023])

IsaSAT is correct (answer 6=

unknown) and terminates.

where unknown = array size larger than 64-bit integer

Theorem (Contribution 2,
[Wagner’s Msc])

Fixing model is correctly

implemented but differs from

the paper

Contribution 3 [JAIR’22]

Rephasing techniques in SAT

solvers

Contribution 4 [CADE 2021, PXTP’19

and 21, JAR 19]

SMT reconstruction in

Isabelle

SAT solvers: Verify and Back 12/27



Guessing values

CDCL solvers work by (i) guessing a value, (ii) propagating, and (iii) fixing the assignment.

How do we guess? Old wisdom:

• set to last set value SAT subproblems remain SAT

• otherwise default to false closed world assumption

Local search solvers work by randomly flipping one literal as long as no model is found

SAT solvers: Verify and Back 13/27



Guessing values

CDCL solvers work by (i) guessing a value, (ii) propagating, and (iii) fixing the assignment.

How do we guess? Old wisdom:

• set to last set value SAT subproblems remain SAT

• otherwise default to false closed world assumption

Local search solvers work by randomly flipping one literal as long as no model is found

SAT solvers: Verify and Back 13/27



SAT as Optimization

New view for CDCL: maximize the partial assignment

• Objective is to maximize the size of the trail without conflict

• Save maximum consistent trail as target phases

• Intensification: use target phases and best phases

• Diversification: rephasing Autarky detection does not seem important

SAT solvers: Verify and Back 14/27



Include also Local-Search

CDCL very good at propagating

Local-Search very bad at propagation chains

Import phase from CDCL after propagating use CDCL ignoring conflicts as start point

SAT solvers: Verify and Back 15/27



Kissat, SAT Race 2019, satisfiable only

0 1000 2000 3000 4000 5000

0
5
0

1
0
0

1
5
0

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●
●●●
●●●

●●●●●
●●●

● ●●●
●●●●●

●●●
●● ● ●●●

●● ●● ● ● ●● ●● ● ●● ● ● ●● ● ●● ● ● ● ●

● always−target
default
no−rephase
always−target−no−rephase
no−target
no−target−no−rephase
no−phase−saving

SAT solvers: Verify and Back 16/27



Kissat, SAT Race 2019, all

0 1000 2000 3000 4000 5000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●

●●●●
●●●●
●●●●

●●●●
●●●●

●●● ●●●●
●●●●●●●●

●●●●
●●● ●●● ●●●●

●●●●
●●●●●●●

● ●●●● ● ●●●●●●●●
●● ●●●●

●● ●● ● ●● ●● ● ● ●●●●
●● ● ●● ● ● ● ● ●

●

default
no−rephase
always−target
no−target
always−target−no−rephase
no−target−no−rephase
no−phase−saving

SAT solvers: Verify and Back 16/27



SMT Tactic



Contributions

SAT solving

CDCL + simplify

IsaSAT, the

fastest verified

solver

CaDiCaL

Theorem (Contribution 1
[IJCAR’16, NFM’19, CADE 2023])

IsaSAT is correct (answer 6=

unknown) and terminates.

where unknown = array size larger than 64-bit integer

Theorem (Contribution 2,
[Wagner’s Msc])

Fixing model is correctly

implemented but differs from

the paper

Contribution 3 [JAIR’22]

Rephasing techniques in SAT

solvers

Contribution 4 [CADE 2021, PXTP’19

and 21, JAR 19]

SMT reconstruction in

Isabelle

U
se

V
e

rify

Impro
ve

SAT solvers: Verify and Back 18/27



Contributions

SAT solving

CDCL + simplify

IsaSAT, the

fastest verified

solver

CaDiCaL

Theorem (Contribution 1
[IJCAR’16, NFM’19, CADE 2023])

IsaSAT is correct (answer 6=

unknown) and terminates.

where unknown = array size larger than 64-bit integer

Theorem (Contribution 2,
[Wagner’s Msc])

Fixing model is correctly

implemented but differs from

the paper

Contribution 3 [JAIR’22]

Rephasing techniques in SAT

solvers

Contribution 4 [CADE 2021, PXTP’19

and 21, JAR 19]

SMT reconstruction in

Isabelle

SAT solvers: Verify and Back 18/27



Idea: Click on a Button

SAT solvers: Verify and Back 19/27



Interactive Theorem Proving with Sledgehammer

Encode Problem

veriTECVC4 Z3 . . .

Backend

Extract Unsatisfiability Core

metisautosimp smt . . .

Preplay

SAT solvers: Verify and Back 20/27



Interactive Theorem Proving with Sledgehammer

Encode Problem

veriTECVC4 Z3 . . .

Backend

Extract Unsatisfiability Core

metisautosimp smt . . .

Preplay

SAT solvers: Verify and Back 20/27



Interactive Theorem Proving with Sledgehammer

Encode Problem

veriTECVC4 Z3 . . .

Backend

Extract Unsatisfiability Core

metisautosimp smt . . .

Preplay

SAT solvers: Verify and Back 20/27



Interactive Theorem Proving with Sledgehammer

Encode Problem

veriTECVC4 Z3 . . .

Backend

Extract Unsatisfiability Core

metisautosimp smt . . .

Preplay

SAT solvers: Verify and Back 20/27



Interactive Theorem Proving with Sledgehammer

Encode Problem

veriTECVC4 Z3 . . .

Backend

Extract Unsatisfiability Core

metisautosimp smt . . .

Preplay

SAT solvers: Verify and Back 20/27



Interactive Theorem Proving with Sledgehammer

Encode Problem

veriTECVC4 Z3 . . .

Backend

Extract Unsatisfiability Core

metisautosimp smt . . .

Preplay

SAT solvers: Verify and Back 20/27



Interactive Theorem Proving with Sledgehammer

Encode Problem

veriTECVC4 Z3 . . .

Backend

Extract Unsatisfiability Core

metisautosimp smt . . .

Preplay

SAT solvers: Verify and Back 20/27



Interactive Theorem Proving with Sledgehammer

Encode Problem

veriTECVC4 Z3 . . .

Backend

Extract Unsatisfiability Core

metisautosimp smt . . .

Preplay

SAT solvers: Verify and Back 20/27



Interactive Theorem Proving with Sledgehammer

Encode Problem

veriTECVC4 Z3 . . .

Backend

Extract Unsatisfiability Core

metisautosimp smt . . .

Preplay

SAT solvers: Verify and Back 20/27



Interactive Theorem Proving with Sledgehammer

Encode Problem

veriTECVC4 Z3 . . .

Backend

Extract Unsatisfiability Core

metisautosimp smt . . .

Preplay

SAT solvers: Verify and Back 20/27



Interactive Theorem Proving with Sledgehammer

Encode Problem

veriTECVC4 Z3 . . .

Backend

Extract Unsatisfiability Core

metisautosimp smt with veriT/Z3 . . .

Preplay

SAT solvers: Verify and Back 21/27



CVC4: Preplay Success Rate

50 55 60 65

now

before

now

before

now

before

now

before

0.4

0.9

0.3

0.8

0.3

0.8

0.6

1.5

1.1

1.4

3.6

2.5

1

1.6

0.4

1.3

0.6

3.7

1.1

2.7

Proven goals (%)

Isabelle tactics

Z3 smt

veriT smt

Preplay failure

Simplex
(2.0 kGoals)

RP
(1.7 kGoals)

PDE
(1.7 kGoals)

HOL-Lib
(13.6

kGoals)

SAT solvers: Verify and Back 22/27



CVC4: Preplay Time (smt only)

0 10 20 30 40 50 60 70 80

now

before

now

before

now

before

now

before

2.4

4.5

7.7

27.9

3.2

6.7

1.4

8.7

2.1

14.8

19.6

85

Time (seconds)

Z3 smt

veriT smt

Simplex
(2.0 kGoals)

RP
(1.7 kGoals)

PDE
(1.7 kGoals)

HOL-Lib
(13.6

kGoals)

SAT solvers: Verify and Back 23/27



CVC4: Preplay Time (smt only)

0 10 20 30 40 50 60 70 80

now

before

now

before

now

before

now

before

3

2.2

3.4

34.7

2.4

4.5

7.7

27.9

3.2

6.7

1.4

8.7

2.1

14.8

19.6

85

Time (seconds)

Z3 smt

veriT smt

veriT smt (new)

Simplex
(2.0 kGoals)

RP
(1.7 kGoals)

PDE
(1.7 kGoals)

HOL-Lib
(13.6

kGoals)

SAT solvers: Verify and Back 23/27



cvc5

With Hanna Lachnitt, and the cvc51 team [SMT’2023 workshop, submitted]

• support for Alethe proof format is ongoing with more details

• work for RARE rules: solver rules can be extended ongoing work

• detailed bitvector reconstruction

• ongoing work on the cvc5 side, not only on the Isabelle side

1yes it is CVC4 and cvc5 with this capitalization

SAT solvers: Verify and Back 24/27



Conclusion



Conclusion

Ongoing work:

• implement reconstruction in IsaSAT incompatible with current inprocessing

• model-checking proof format and beyond and incremental with LRAT from [SAT’23]

• understanding performance of SAT solvers minimization is complete [SAT’21], options [POS’23]

SAT solvers: Verify and Back 26/27



Why do Techniques Work?

with a fixed typo

SAT solvers: Verify and Back 27/27



SAT solving

CDCL + simplify

IsaSAT, the

fastest verified

solver

CaDiCaL

Theorem (Contribution 1
[IJCAR’16, NFM’19, CADE 2023])

IsaSAT is correct (answer 6=

unknown) and terminates.

where unknown = array size larger than 64-bit integer

Theorem (Contribution 2,
[Wagner’s Msc])

Fixing model is correctly

implemented but differs from

the paper

Contribution 3 [JAIR’22]

Rephasing techniques in SAT

solvers

Contribution 4 [CADE 2021, PXTP’19

and 21, JAR 19]

SMT reconstruction in

Isabelle



Appendix start

SAT solvers: Verify and Back 2/18


