
Formalization of Logical Calculi
in Isabelle/HOL

Dissertation

Dissertation zur Erlangung des Grades
des Doktors der Ingenieurwissenschaften

der Fakultät für Mathematik und Informatik
der Universität des Saarlandes

Mathias Fleury
Saarbrücken, 2019

Tag des Kolloquims: 28. Januar 2020

Dekan: Prof. Dr. Hack
Prüfungsausschuss:

Vorsitzender Prof. Dr. Smolka
Berichterstatter Prof. Dr. Biere

Assist. Prof. Dr. Blanchette
Assoc. Prof. Dr. Thiemann
Prof. Dr. Weidenbach

Akademischer Mitarbeiter Dr. Dudenhefner

Fixes

This chapter lists the (non-typo) fixes compared to the submitted version.

Theorem 3.10 the link pointed to the wrong theorem (Martin Desharnais)

i

Abstract

I develop a formal framework for propositional satifisfiability with the conflict-
driven clause learning (CDCL) procedure using the Isabelle/HOL proof as-
sistant. The framework offers a convenient way to prove metatheorems and
experiment with variants, including the Davis-Putnam-Logemann-Loveland
procedure. The most noteworthy aspects of my work are the inclusion of
rules for forget and restart and the refinement approach.

I use the formalization to develop three extensions: First, an incremental
solving extension of CDCL. Second, I verify an optimizing CDCL (OCDCL):
Given a cost function on literals, OCDCL derives an optimal model with
minimum cost. Finally, I work on model covering. Thanks to the CDCL
framework I can reuse, these extensions are easier to develop.

Through a chain of refinements, I connect the abstract CDCL calculus first
to a more concrete calculus, then to a SAT solver expressed in a simple func-
tional programming language, and finally to a SAT solver in an imperative
language, with total correctness guarantees. The imperative version relies
on the two-watched-literal data structure and other optimizations found in
modern solvers. I used the Isabelle Refinement Framework to automate the
most tedious refinement steps. After that, I extend this work with further
optimizations like blocking literals and the use of machine words as long as
possible, before switching to unbounded integers to keep completeness.

iii

Zusammenfassung

Ich entwickele ein formales Framework für propositionale Erfüllbarkeit mit
der conflict-driven clause learning (CDCL) Prozedur in dem Beweisassistenten
Isabelle/HOL. Das Framework ermöglicht es, Metatheoreme zu beweisen
und mit Varianten zu experimentieren, wie den Davis–Putnam–Logemann–
Loveland Kalkül. Ein Schwerpunkte meiner Arbeit sind die Regeln für forget,
restart und den Verfeinerungsansatz.

Ich benutzte die Formalisierung um drei Erweiterungen zu entwickeln.
Zuerst, eine inkrementele Version von CDCL. Zweitens, habe ich ein opti-
mierendes CDCL (OCDCL) verifiziert. Für eine gegebene Kostenfunktion
auf Literale, berechnet OCDCL ein model mit minimalen Kosten. Schließlich,
habe ich an Modelüberdeckung gearbeitet. Dank dem Framework sind die
Erweiterungen einfach zu entwickeln.

Durch mehrere Verfeinerungsschritte verbinde ich das abstrakte CDCL
Kalkül erst zu einem konkreterem Kalkül, dann zu einem SAT solver in einer
simplen funktionalen Sprache, bis zu einem imperativen SAT solver mit totale
Korrektheit. Die imperative Version enthält die two-watched-literals Daten-
struktur und andere Optimierungen von modernen SAT Solvern. Ich benutze
das Isabelle Refinement Framework, um die mühsamsten Schritte zu automa-
tisieren. Später habe ich diese Formalisierung mit anderen Optimierungen
erweitert, wie blocking literals and die Nutzung von Machinwörtern so lange
wie möglich, before unbegrentzte Zahlen benutzt werden, um Vollständigkeit
zu haben.

v

Acknowledgments

First and foremost, I want to thank my two supervisors Jasmin Blanchette
and Christoph Weidenbach. On the one hand, Jasmin supervises me on a
day-to-day basis. He is always ready comment on my (sometimes terrible)
drafts and he helped me a lot. On the other hand, Christoph made this work
possible. He always has multiple interesting ideas, even though I did not
have the time to implement most of them.

I am also grateful to all my colleagues at the MPI including Noran Azmy
(who briefly shared an office with me), Martin Bromberger (who introduced
me to the world of pen-and-paper games), Alberto Fiori (who was always
ready to do escape rooms), Maximilian Jaroschek, Marek Košta (who was
always ready to play “Kicker”), Sophie Tourret (who reminded me that emacs
is the best text editor and motivated me to extend it in order to be able to
use it with Isabelle), Marco Voigt (who understands how the MPI and the
MPG actually works and helped me understand it), Uwe Waldmann (who
I thankfully did never have to meet him in his function as ombudsman),
Daniel Wand (who was always ready to have a chat). Finally, even if Ching
Hoo Tang is not part of the MPI anymore, he now works for L4B that has
an office on the same floor: He was always ready to exchange opinions on
football.

A special thanks to Jennifer Müller, the secretary of the RG1 group. She
kept the group working when Christoph was travelling.

While I could not meet my colleagues from Nancy on a daily bases, they
also influenced my work, especially Stefan Merz, Pascal Fontaine, Daniel El
Ouraoui, Haniel Barbosa, Hans-Jörg Schurr. Thomas Sturm who left the MPI
to join Nancy made me think a lot about minorities in Computer Science.

I obviously had discussions with other people. I gratefully thank Dmitriy
Traytel (who cosupervised my Master’s thesis, that led to this thesis), An-
dreas Lochbihler (who has many ideas how to do large formalization and
did a lot of setup related to code generation), and Peter Lammich (who has
developed the Isabelle Refinement Framework, give me advice on how to
use Sepref when I got stuck, spent a lot of time looking at my code, and give
me many ideas how to improve my formalization).

Most of the text in this thesis has appeared previously in various publi-

vii

cation. None of this work would have been possible without my coauthors
Jasmin Blanchette, Peter Lammich, and Christoph Weidenbach. Many peo-
ple suggested improvements on these publication: Simon Cruanes, Max
Haslbeck, Marijn Heule, Benjamin Kiesl, Peter Lammich, Anders Schlicht-
krull, Hans-Jörg Schurr, Mark Summerfield, Dmitriy Traytel, Petar Vuk-
mirović, and every anonymous reviewer, in particular the reviewer who
suggested the dual rail encoding for the optimizing CDCL, that was more
elegant and easier to verify than my previous solution. The reviewers of this
thesis suggested many textual improvements.

Finally, I would like my family for always supporting me, even when I
scared them once more by not answering my phone.

viii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Plan of the Thesis . 4

1.3 Contributions . 6

2 Isabelle 9

2.1 Isabelle/Pure . 10

2.2 Isabelle/HOL . 10

2.3 Locales . 11

2.4 Isar . 12

2.5 Sledgehammer . 13

2.6 Code Generation . 14

2.7 Isabelle/jEdit . 14

3 Conflict-Driven Clause Learning 17

3.1 Abstract CDCL . 18

3.1.1 Propositional Logic . 18

3.1.2 DPLL with Backjumping 19

3.1.3 Classical DPLL . 22

3.1.4 The CDCL Calculus . 24

3.1.5 Restarts . 25

3.2 A Refined CDCL Towards an Implementation 26

3.2.1 The New DPLL Calculus 27

3.2.2 The New CDCL Calculus 28

3.2.3 A Reasonable Strategy 30

3.2.4 Connection with Abstract CDCL 34

3.2.5 A Strategy with Restart and Forget 35

3.2.6 Incremental Solving . 35

3.2.7 Backjump and Conflict Minimization 37

3.3 A Naive Functional Implementation of CDCL, IsaSAT-0 . . . 37

3.4 Summary . 39

ix

Contents

4 CDCL with Branch and Bound 41
4.1 Optimizing Conflict-Driven Clause Learning 42

4.2 Formalization of OCDCL . 46

4.2.1 Branch-and-Bound Calculus, CDCLBnB 47

4.2.2 Embedding into CDCL 49

4.2.3 Instantiation with weights, OCDCLg 50

4.2.4 OCDCL . 51

4.3 Optimal Partial Valuations . 52

4.4 Formalization of the Partial Encoding 53

4.5 Solving Further Optimization Problems 54

4.5.1 MaxSAT . 55

4.5.2 A Second Instantiation of CDCLBnB: Model Covering . 55

4.6 Extending CDCL . 57

4.6.1 Restricting CDCL or Adding Shortcuts 57

4.6.2 More General Rules . 57

4.7 Summary . 58

5 The Two-Watched-Literal Scheme 59
5.1 Code Synthesis with the Isabelle Refinement Framework . . . 60

5.1.1 Isabelle Refinement Framework 60

5.1.2 Sepref and Refinement to Imperative HOL 63

5.1.3 Code Generation of Imperative Programs 64

5.1.4 Sepref and Locales . 65

5.2 Watched Literals . 66

5.3 Refining the Calculus to an Algorithm 70

5.4 Representing Clauses as Lists 72

5.5 Storing Clauses Watched by a Literal: Watch Lists 73

5.6 Generating Code . 75

5.7 Optimizations and Heuristics 77

5.7.1 Variable Move to Front 78

5.7.2 Conflict Clause as a Lookup Table 80

5.7.3 Conflict Clause Minimization 83

5.7.4 State Representation . 84

5.7.5 Fast Polarity Checking 85

5.8 Evaluation . 87

5.9 Summary . 89

6 Optimizing My Verified SAT Solver IsaSAT 93
6.1 Refactoring IsaSAT . 94

6.2 Adding Blocking Literals . 98

x

Contents

6.3 Improving Memory Management 99

6.4 Implementing Restarts and Forgets 101

6.5 Using Machine Integers . 103

6.6 Evaluation . 104

6.7 Extracting Efficient Code . 106

6.8 Detailed TWL Invariants in Isabelle 108

6.9 Extending IsaSAT . 110

6.10 Summary . 111

7 Discussion and Conclusion 113
7.1 Discussion and Related Work 113

7.2 Summary . 123

7.3 Future Work . 124

A More Details on IsaSAT and Other SAT Solvers 127
A.1 Clauses . 127

A.1.1 IsaSAT . 128

A.1.2 Glucose . 128

A.1.3 CaDiCaL . 129

A.2 Watch Lists and Propagations 130

A.3 Decision Heuristics . 131

A.4 Clause Minimization . 131

A.5 Forget . 132

A.6 Clause Simplification . 132

A.7 Conclusion . 133

Bibliography 135

Index 155

xi

List of Figures

2.1 Isabelle/jEdit screenshot: Isabelle was not able to verify the
proof highlighted in red . 15

3.1 Connections between the abstract calculi 25

3.2 Proof tree for the clauses A ∨ B, ¬A ∨ C, and B ∨ ¬C, where
dashed edges indicate conflicts with one of the three clauses . 32

3.3 Connections involving the refined calculi 36

4.1 CDCLBnB, CDCL, and Incremental CDCL 46

4.2 OCDCL transitions and corresponding CDCL transitions for
N = {P∨Q}with cost P = cost Q = 1 and cost¬P = cost¬Q =
0 where the horizontal lines separate two successive CDCL
runs, separated by adding new clauses. 48

5.1 Evolution of the 2WL data structure on a simple example . . 67

5.2 Example of the VMTF heuristic before and after bumping. . . 79

5.3 Conversion from the lookup table to a clause, assuming C ̸=
None . 81

5.4 Comparison of performance on the problems classified easy
or medium from the SAT Competition 2009 88

5.5 Summary of all the layers used from the abstract CDCL to the
final generate code . 91

6.1 Comparison of the code of Ignore rule in Algo before and after
refactoring . 95

6.2 Different ways of writing the proof that PCUI list from Fig-
ure 6.1a refines PCUIalgo . 95

6.3 Refinement of the rule Ignore with blocking literals from Algo
to WList . 98

6.4 Example of arena module with two clauses A ∨ B ∨ C (initial
clause, ‘init’) and ¬A ∨ ¬B ∨ C ∨ D (learned clause, ‘learn’) . 99

6.5 Skipping deleted clauses during iteration over the watch list . 101

6.6 Performance of some SAT solvers (N/A if no simplification is
performed by default) . 105

xiii

List of Figures

6.7 Benchmarks of variants of IsaSAT-30 before fixing the forget
heuristic . 105

7.1 Length of various parts of the formalization (in thousands lines
of code, not accounting for empty lines) 113

xiv

1 Introduction

This thesis describes my formalization of the conflict-driven clause learning
(CDCL) procedure to decide propositional satisfiability, how I use the devel-
oped framework to capture two CDCL variants without either redefining or
reproving most invariants, and how I extend it to a fully verified executable
solver called IsaSAT. The text is based on several publications [22, 24, 47, 49].
The articles are used with the permission from my coauthors.

1.1 Motivation

Researchers in automated reasoning spend a substantial portion of their
work time developing logical calculi and proving metatheorems about them.
These proofs are typically carried out with pen and paper, which is error-
prone and can be tedious. Today’s proof assistants are easier to use than their
predecessors and can help reduce the amount of tedious work, so it makes
sense to use them for this kind of research.

In this spirit, a few colleagues and I have started an effort, called IsaFoL
(Isabelle Formalization of Logic) [9], that aims at developing libraries and
a methodology for formalizing modern research in the field, using the Isa-
belle/HOL proof assistant [108, 109]. The initial emphasis of the effort is on
established results about propositional and first-order logic [18]. The inspira-
tion for formalizing logic is the IsaFoR (Isabelle Formalization of Rewriting)
project [135], which focuses on term rewriting. My contributions to the over-
all project are results on propositional logic, the development of libraries
(e.g., for partial models), and SAT solving.

The objective of formalization work is not to eliminate paper proofs, but to
complement them with rich formal companions. Formalizations help catch
mistakes whether superficial or deep, in specifications and theorems; they
make it easy to experiment with changes or variants of concepts; and they
help clarify concepts left vague on paper.

SAT solvers are widely used to find counter-examples or prove correct-
ness in various fields. Given a propositional problem in conjunctive normal
form, they answer SAT if there is a model and UNSAT if there is no model

1

1 Introduction

of the clauses of the propositional problem. They have for example been
used to solve long-standing open problems such as the Pythagorean Triples
Problem [63] and Schur Number Five [60]. The approach used to solve both
problems is to encode them into a satisfiability (SAT) problem, before divid-
ing these very large problems in several smaller and easier problems. Then
a SAT solver is run on each smaller problem, before checking the gener-
ated proof with another tool to rule out that a bug has occurred in the SAT
solver while solving the problem. This is a common approach to increase
the trustworthiness of SAT solvers: returning independently verifiable proofs
that certify the correctness of their answers. Proof checkers have also been
verified in proof assistants [39, 76]. However, the production of proofs does
not provide total correctness guarantees: Although a correct proof guaran-
tees that a solver has produced a correct result, it is not guaranteed that the
solver will be able to produce a proof in the first place.

The CDCL (conflict-driven clause learning) procedure [8, 17, 98, 102] is the
core algorithm implemented in most SAT solvers. The input problem is a set
of clauses, where a clause is a (finite) multiset of positive or negative Boolean
variables. The aim is to assign truth values to the variables such that all
clauses are true. CDCL gradually builds a partial model until either a model
of the clauses is found or the constraints are so restrictive that no model
can exist. The partial model can be extended by propagating information
or setting (deciding) a new value. Decisions are arbitrary choices and the
opposite choice has to be explored later. If the partial model cannot be
extended to a model anymore because there is a conflict between the problem
and the model, the latter has to be adjusted: The conflict is analyzed to derive
information from it, especially how to repair the current model and how to
avoid ending up in the same dead end.

For example, consider the formula corresponding to the sentences: It is
either a dog or a cat; If it is a cat, it meows; there are no meows. A logic
translation of this formula is (dog∨ cat) ∧ (cat −→ meow) ∧ ¬meow. In turn
this formula can be transformed in a conjunctive normal form like (dog ∨
cat) ∧ (¬cat∨ meow) ∧ ¬meow. The transformation is out of the scope of this
Ph.D. thesis, but I formalized an abstract transformation in my Master’s
thesis [46]. Finally, a SAT solver can be launched on this problem. It can first
propagate the information that meow is false: It is the only way to make the
clause ¬meow fulfilled. Then, it can guess that cat is true, which leads to a
conflict: The assignment is not compatible with making (¬cat∨ meow) true.
The conflict can be analyzed to derive the new clause ¬cat. Finally, dog can
be propagated from the clause dog∨ cat, yielding the model dog meow ¬cat.

In this thesis, I present my formalization based on Weidenbach’s forth-

2

1.1 Motivation

coming textbook, tentatively called Automated Reasoning—The Art of Generic
Problem Solving. I derive his CDCL as a refinement of Nieuwenhuis, Oliv-
eras, and Tinelli’s abstract presentation of CDCL [107]. I start with a family
of formalized abstract DPLL (Davis–Putnam–Logemann–Loveland) [41] and
CDCL [8, 17, 98, 102] transition systems. These calculi are presented as non-
deterministic systems and all aspects that do not need to be specified are
kept unspecified, like how decisions are made. All calculi are proved sound
and complete, as well as terminating under a reasonable strategy. My first
extension is the development of an incremental version of CDCL. If CDCL
has found a model, it is now possible to add new constraints to find for
example a different model (e.g., in order to enumerate all models).

After developing a verified CDCL calculus, I build upon the formalization
in two different directions. First, I use the framework to capture two exten-
sions of CDCL. The aim of the IsaFoL project is not only to develop tools,
but also to be able to develop variants and extensions of already defined
calculi. In this spirit, I add rules to the CDCL calculus to find a total model
with minimal weight. Given a cost function on literals, the aim is to find an
optimal total model. In the context of a product configuration system, this
answers the question what is the cheapest possible system. Furthermore, I
add another set of rules to CDCL to find a set of covering models. In the
context of a produce configuration system, this answers the question whether
every option can be taken or if the constraints are so restrictive that some op-
tions are impossible to take. Both variants are formalized within a common
framework, CDCL with branch and bound. The normal CDCL is responsible
for the branch part: It searches for a better model (either one with lower
weight or one new model to add to the set of covering models that is built).
In turn, this new model is stored. After that, CDCL can be called again to
either find a new model or to conclude that there is no model anymore. The
calculus can also use the additional information to cut branches by finding
a conflict because some part of the search space has already been excluded.
The stored information is used by additional rules (the bound part of the
calculus) to exclude several new models ensuring that subsequent CDCL run
does not find the model again. Conflicts discovered by the additional rules
are analyzed by the normal CDCL rules to adjust the model. While formal-
izing the optimizing CDCL, I have discovered that the calculus presented
in an earlier version of the draft Automated Reasoning was wrong, because
optimality for partial models was claimed, but does not hold. To solve this
issue, I formalize an encoding to reduce the search for optimal partial models
to optimal total models.

Furthermore, I extend the formalization towards executable code and effi-

3

1 Introduction

ciency. State-of-the-art SAT solvers are extremely efficient on practical prob-
lems. This is both due to the extreme optimization of their source code and
due to theoretical ideas to efficiently identify propagations and conflicts. The
two-watched-literal scheme [102] and blocking literals [36] are examples of
a theoretical idea. The key point is to reduce the tracking of the status of
clauses (can one propagate information? is it a conflict?) to the tracking of
only two literals per clause. I develop a new calculus that includes these two
ideas. It is still presented as a non-deterministic transition system and inher-
its correctness and termination from CDCL. Several versions of two watched
literals have been developed and I verify the version used in modern SAT
solvers.

Finally, I refine this non-deterministic transition system to deterministic
code written with imperative aspects. The resulting SAT solver is called
IsaSAT. Heuristics replace the non-deterministic aspects by deterministic
aspect like how literals are decided. Moreover, sophisticated data structures
are used. The resulting code can be exported from the Isabelle/HOL proof
assistant to functional languages like Haskell, OCaml, Scala, or Standard ML,
with imperative features like arrays. It is interesting to see how efficient or
inefficient the generated code from it. Since proof checkers and SAT solvers
share similar techniques and data structures, they face similar efficiency chal-
lenges, and some of the techniques presented here to optimize the verified
SAT solver are applicable to checkers too.

There are two other formalization that also include the two-watched literals
and executable code. First, Marić [95] has not implemented blocking literals
and verified a different version of two-watched-literals. The difference is
the interleaving of propagations and update of clauses to make the key
invariant true: I propagate during the updates, and not update some clauses,
then propagate, then update other clauses, and so on. Moreover, he has
not developed efficient data structure nor heuristics. The other solver is
versat by Oe et al. [112]. It has some efficient data structure (including two
watched literals but excluding blocking literals). However, only the answer
UNSAT is verified, whereas the answer SAT requires additional runtime
checks. Termination is not proved.

1.2 Plan of the Thesis

The thesis is organized as follows.

• In Chapter 2, I introduce Isabelle/HOL, the interactive theorem prover

4

1.2 Plan of the Thesis

I use for the formalization. It is based on simple higher-order logic and
offers a readable proof format called Isar [142].

• Chapter 3 presents the formalization of CDCL: I formalize two vari-
ants, one based on Nieuwenhuis et al.’s account [107] and the other
based on Weidenbach’s presentation [140]. The latter is more concrete
and describes some aspects that are left unspecified in the former pre-
sentation. I connect these two presentations, making it possible to
inherit the proof of termination. The termination result is stronger than
Weidenbach’s version. The text is based on an article [22].

• Chapter 4 shows one extension of CDCL, namely a CDCL with branch
and bound. I instantiate this abstract calculus with two calculi: One that
derives an optimal total model and another that finds a set of covering
models. I also formalize an encoding to reduce the search from total to
the search of optimal partial models.

• In Chapter 5, I refine Weidenbach’s account of CDCL with the two-
watched-literal scheme. The resulting calculus is still presented as an
abstract non-deterministic transition system. It inherits from the cor-
rectness and the termination. After that, using the Isabelle Refinement
Framework, I refine the calculus to executable code. The resulting SAT
solver is called IsaSAT. The text is based on a paper [49].

• In Chapter 6, I extend the SAT solvers with other features. Most SAT
solvers use watched literals combined with another optimization, block-
ing literals, a technique to reduce the number of memory accesses (and
therefore, the number of cache misses). Moreover, the calculus from
Chapter 5 did not include the rules Restart and Forget. Restarts try to
avoid focusing on a hard part of the search space. Forgets limit the
number of clauses because too many of them slow down the solver.
The text is based on a paper [47].

• In Chapter 7, I discuss related work and my approach, and I compare
it to other verification attempts. I also give some ideas for future work.

Chapter 4 is independent of the Chapters 5 and 6, because they extend the
CDCL calculus from Chapter 3 in two different directions.

In this thesis, I will distinguish between “Proofs” that were done in Isabelle
and “Paper Proofs” that have been verified differently in Isabelle. The latter
happens only in Chapter 4, where the formalization path is very different
from the proof on paper. Similarly, all theorems and lemmas have been

5

1 Introduction

verified in Isabelle, except for the single “Non-Machine-Checked Lemma”
from Chapter 4.. Theorems and lemmas are marked with theorem name □✓
that is the name of the theorem in my formalization and is also an hyperlink
to an HMTL-rendered version of my Isabelle formalization.

The Isabelle functions and definitions shown throughout the thesis are real
extract of my formalization, although some definitions have been refactored,
e.g., some optimizations presented in Chapter 6 required a change of the
functions presented in Chapter 5.

1.3 Contributions

My main contributions are the following:

1. I have developed a rich framework that captures the most important
features of CDCL. The calculus is modeled as a transition system
that includes rules for forget, restart, and incremental solving and the
application of stepwise refinement to transfer results.

2. I have used the CDCL framework I developed to verify variants of
CDCL, based on a common presentation, CDCL with branch and
bound. This is, to the best of my knowledge, the first time a CDCL
formalization has been reused for such purpose. Reusing a framework
makes it possible to reduce the cost of the development and the verifi-
cation of new CDCL variants.

3. I have developed the only verified SAT solver with efficient data struc-
tures, restart, forget, blocking literals, that is complete, and whose
response (satisfiable or unsatisfiable) is correct without runtime checks.
IsaSAT is also the only solver to feature the nowadays standard version
of the two-watched-literal scheme with blocking literals.

Beyond the contributions described here, I have worked on some topics
that do not fit in this thesis. First, I have extended Isabelle’s multiset li-
brary: I use multisets to represent clauses and, therefore, I heavily rely on
them. Beyond extending the Isabelle’s library of lemmas, I have created a
simplification procedure to simplify results like A + B + C = E + A + F into
B + C = E + F by canceling the common multiset A. This makes the han-
dling of multisets easier. This work is presented in a paper with Blanchette
and Traytel [23].

Isabelle features a tactic called smt. It asks an automatic prover to prove a
proof obligation. If a proof is found, then Isabelle replays the produced proof

6

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/../
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/../

1.3 Contributions

through its kernel. This means that the external prover is not trusted. Earlier,
only the SMT solver Z3 [103] was supported [27]. I have added support for
the SMT solver veriT [29]. This work can also be useful for developers of
automated theorem provers, because a failure in proof checking can indicate
unsoundness in the prover that might be unnoticed otherwise. A prototype
is presented in an article with Barbosa, Blanchette, and Fontaine [5]. Since
that, more work has been done with Schurr to make the reconstruction faster
and to make it possible to replay larger proofs [6, 50].

More related to my formalization, I have also worked on the SAT solver
of the SMT solver SPASS-SATT [30], mostly developed by Bromberger. Be-
ing forced to write down the invariants for a SAT solvers helped me when
debugging the communication between the SAT and the SMT solver and in
particular the theory learning, where clauses need to be sorted in a specific
order to respect the invariants from the two-watched-literal data structure.

7

2 Isabelle

Isabelle [108, 109] is a generic proof assistant that supports several object
logics. The metalogic is an intuitionistic fragment of higher-order logic
(HOL) [37]. This metasystem is called Isabelle/Pure (Section 2.1). The most
used object logic is the instantiation with classical higher-order logic (Sec-
tion 2.2). In my formalization, I heavily rely on the following features of
Isabelle:

• Locales [3, 67] parameterize theories over operations and assumptions,
encouraging a modular style. They are useful to express hierarchies
of concepts and to reduce the number of parameters and assumptions
that must be treated through a formal development (Section 2.3).

• Isar [142] is a textual proof format inspired by the pioneering Mizar
system [100]. It makes it possible to write structured, readable proofs
(Section 2.4).

• Sledgehammer [21, 115] integrates first-order superposition provers and
SMT (satisfiability modulo theories) solvers in Isabelle to provide auto-
mated assistance to the user for discharging proof obligations. Sledge-
hammer calls these provers as a filter of facts. If a proof is found, the
necessary facts can be used to replay the proof in Isabelle. The SMT
solvers, and one of the superposition provers [138], are built around a
SAT solver, resulting in a situation where SAT solvers are employed to
prove their own metatheory (Section 2.5).

• The code generator makes it possible to extract functions from Isabelle
to some functional languages. The translation is simple and trusted
(Section 2.6)

• Isabelle/jEdit is the official graphical interface to interact with Isabelle
(Section 2.7)

9

2 Isabelle

2.1 Isabelle/Pure

Isabelle’s metalogic is an intuitionistic fragment of higher-order logic (HOL)
[37]. This system is called Isabelle/Pure. The types are built from type
variables ′a, ′b, . . . and n-ary type constructors, normally written in postfix
notation (e.g., ′a list). The infix type constructor ′a ⇒ ′b is interpreted as
the (total) function space from ′a to ′b. Function applications are written
in a curried style without parentheses (e.g., f x y). Anonymous functions
x 7→ tx are written λx. tx. The notation t :: τ indicates that term t has type τ.
Propositions are terms of type prop, a type with at least two values. Symbols
belonging to the signature (e.g., f) are uniformly called constants, even if
they are functions or predicates. No syntactic distinction is enforced between
terms and formulas. The metalogical operators are universal quantification∧

:: (′a ⇒ prop) ⇒ prop, implication =■⇒ :: prop⇒ prop⇒ prop, and equality
≡ :: ′a ⇒ ′a ⇒ prop. The notation

∧
x. px abbreviates

∧
(λx. px) and simi-

larly for other binder notations. Several logics have deen developed inside
Isabelle/Pure (whose metalogic is an intuionistic fragment of higher-order
logic), notably Isabelle/ZF [110] (based on the Zermelo-Fraenkel axioms) and
Isabelle/HOL [109] (based on higher-order logic with simple types).

2.2 Isabelle/HOL

Isabelle/HOL is the instantiation of Isabelle with HOL, an object logic for
classical HOL extended with rank-1 (top-level) polymorphism and Haskell-
style type classes. It axiomatizes a type bool of Boolean as well as its own set
of logical symbols (∀, ∃, False, True, ¬, ∧, ∨, −■→, ←→, =). The object logic
is embedded in the metalogic via a constant Trueprop :: bool ⇒ prop, which
is normally not printed. In practice, the distinction between the two logical
levels HOL and Pure is important operationally but not semantically; for
example, resolution in Isabelle can derive q 0 from p 0 and p x =■⇒ q x, but
it would fail if the last formula were p x −■→ q x, because the resolution rule
is defined at the Pure level. In this thesis, I will not preserve the distinction
between the metalogic and the object logic and will identify prop with bool,∧

with ∀, =■⇒ with −■→, and ≡ with =.
Isabelle adheres to the tradition that started in the 1970s by the LCF sys-

tem [54]: All inferences are derived by a small trusted kernel; types and func-
tions are defined rather than axiomatized to guard against inconsistencies.
High-level specification mechanisms let the user define important classes of
types and functions, notably inductive datatypes, inductive predicates, and

10

2.3 Locales

recursive functions. Internally, the system synthesizes appropriate low-level
definitions and derives the user specifications via primitive inferences.

Isabelle developments are organized as collections of theory files that build
on one another. Each file consists of definitions, lemmas, and proofs ex-
pressed in Isar [142], Isabelle’s input language. Isar proofs are expressed
either as a sequence of tactics (apply scripts) that manipulate the proof state
directly or in a declarative, natural-deduction format inspired by Mizar. My
formalization almost exclusively employs the more readable declarative style.

From now on, I will use the name Isabelle to mean Isabelle/HOL.

2.3 Locales

Isabelle locales are a convenient mechanism for structuring large proofs. A
locale fixes types, constants, and assumptions within a specified scope. A
schematic example follows:

locale X =
fixes c :: τ ′a
assumes A ′a,c

begin
⟨body⟩

end

The definition of locale X implicitly fixes a type ′a, explicitly fixes a constant
c whose type τ ′a may depend on ′a, and states an assumption A ′a,c :: prop
over ′a and c. Definitions made within the locale may depend on ′a and c,
and lemmas proved within the locale may additionally depend on A ′a,c. A
single locale can introduce several types, constants, and assumptions. Seen
from the outside, the lemmas proved in X are polymorphic in type variable
′a, universally quantified over c, and conditional on A ′a,c.

Locales support inheritance, union, and embedding. To embed Y into X,
or make Y a sublocale of X, we must recast an instance of Y into an instance
of X, by providing, in the context of Y, definitions of the types and constants
of X together with proofs of X’s assumptions. The command

sublocale Y ⊆ X t

emits the proof obligation A υ, t, where the type υ and the variable t :: τυ may
depend on types and constants available in Y. After the proof of A υ, t, all the
lemmas proved in X become available in Y, with ′a and c :: τ ′a instantiated
with υ and t :: τυ.

11

2 Isabelle

Sometimes an embedding is the wrong tool, especially if there are several
instantiations, because theorem names can be used only once, making it
impossible to refine the same locale several times with different parameters.
In this case, the command interpretation can be used:

locale Y
begin

interpretation a: X t
⟨proof⟩

end

Similar to the embedding via sublocales, The proof obligations A υ, t are
emitted, but the lemmas proved in X become available with the prefix a (e.g.,
a.thm for the theorem thm of X).

2.4 Isar

The original and most low-level proof style is the apply script: It is a back-
ward style and each tactic creates subgoals. It is ideal for proof exploration
and simple proofs. This proof style is, however, hard to maintain. A more
readable style states explicit statements of properties in Isar [142]. The styles
can be combined: each intermediate step can be recursively justified by ap-
ply scripts or Isar. For robustness, I use Isar where practicable. For example,
while formalizing some results that depend on multisets, I found myself
needing the basic property

lemma |A|+ |B| = |A ∪ B|+ |A ∩ B|

where A and B are finite multisets, ∪ denotes union defined such that for each
element x, the multiplicity of x in A∪ B is the maximum of the multiplicities
of x in A and B, ∩ denotes intersection, and | | denotes cardinality. This
lemma was not available in Isabelle’s underdeveloped multiset library.

A manual proof, expressed in Isar’s declarative style, might look like this:

proof –
have |A|+ |B| = |A + B| by auto
also have A ⊎ B = (A ∪ B) ⊎ (A ∩ B) unfolding multiset eq iff
proof clarify

fix a
have count (A ⊎ B) a = count A a + count B a by simp
moreover have count (A ∪ B ⊎ A ∩ B) a = count (A ∪ B) a

12

2.5 Sledgehammer

+ count (A ∩ B) a
by simp

moreover have count (A ∪ B) a = max (count A a) (count B a)
by auto

moreover have count (A ∩ B) a = min (count A a) (count B a)
by auto

ultimately show count (A ⊎ B) a = count (A ∪ B ⊎ A ∩ B) a
by auto

qed
ultimately show |A|+ |B| = |A∪ B|+ |A∩ B| by simp

qed

The count function returns the multiplicity of an element in a multiset. The ⊎
operator denotes the disjoint union operation—for each element, it computes
the sum of the multiplicities in the operands (as opposed to the maximum
for the union operator ∪).

In Isar proofs, intermediate properties are introduced using have and
proved using a tactic such as simp and auto. Proof blocks (proof . . . qed) can
be nested.

2.5 Sledgehammer

The Sledgehammer subsystem [21,115] integrates automatic theorem provers
in Isabelle/HOL, including CVC4 [7], E [129], LEO-II [10], Satallax [31],
SPASS [141], Vampire [122], veriT [29], and Z3 [103]. Upon invocation, Sledge-
hammer heuristically selects relevant lemmas from the thousands available
in loaded libraries, translates them along with the current proof obligation to
the SMT-LIB or TPTP format, and invokes the automatic provers. In case of
success, the machine-generated proof is translated to an Isar proof that can
be inserted into the formal development, so that the external provers do not
need to be trusted.

Sledgehammer is part of most Isabelle users’ workflow, and I usually in-
voke it dozens of times a day (according to the log files it produces). Sledge-
hammer is able to prove the lemma |A|+ |B| = |A ∪ B|+ |A ∩ B|: Within
30 s, the tool came back with a brief proof text, which I could insert into my
formalization:

by (metis (no types) Multiset.diff right commute add.assoc add left cancel
monoid add class.add.right neutral multiset inter commute

13

2 Isabelle

multiset inter def size union sup commute sup empty
sup multiset def)

The generated proof refers to 10 library lemmas by name and applies the
metis search tactic. However, the proof found by Sledgehammer is not very
readable and does not provide much information to the user about why the
theorem holds. The advantage of Isar proofs over one-line metis proofs is that
I can follow and understand the steps. However, for lemmas about multisets
and other background theories, I am usually content if I can get a (reasonably
maintainable) proof automatically and carry on with formalizing the more
interesting foreground theory.

2.6 Code Generation

To extract code from Isabelle in order to run it outside of Isabelle, I use
Isabelle’s code generator [57]. It allows to translate a function in Isabelle to
Haskell, OCaml, Scala, or Standard ML.

Internally it works on code equations that together form a rewriting system.
Once combined, functions can be translated and the resulting programs
are syntactically analogous to the source program in Isabelle, including its
dependencies, and uses the target language’s facilities for datatypes and
recursive functions with pattern matching. The translation is trusted. There
is no formal proof that the generated program and the original behave exactly
the same way, but the translation is simple enough to be considered correct.

The most conservative mode translates numbers to their unary (Peano)
representation. This avoids trusting the library for large integers in the
target languages but offers terrible performance. Therefore, usually a library
is imported to map Isabelle numbers to numbers in the target language.
More generally, the code generator has custom serialization to map some
operations in Isabelle to operations in the target language, like the addition
on natural numbers to the addition on unbounded integers in Standard ML.
This mapping is trusted. However, as long as Isabelle, the target language,
and the compiler agree on the semantics of the operation, it is safe.

2.7 Isabelle/jEdit

The main graphical and official interface to interact with Isabelle is based on
jEdit1 and called Isabelle/jEdit [143]. The visible part and all its dependencies

1http://www.jedit.org/

14

http://www.jedit.org/

2.7 Isabelle/jEdit

Figure 2.1: Isabelle/jEdit screenshot: Isabelle was not able to verify the proof
highlighted in red

are continuously checked by Isabelle and an error is indicated if a proof step
could not be checked. A screenshot is shown in Figure 2.1: The main part
is the theory with pretty printing of mathematical symbols. At the bottom,
there is the current goal, i.e., the proof obligations that remains to prove the
current goal holds. When a goal cannot be discharged, the failing tactic is
highlight in red.

Isabelle also provides a second way to interact the theory via the use of the
language server protocol,2 developed by Microsoft. Wenzel [144, Section 2.3]
has worked on an extension for Visual Studio Code to interact with Isabelle,
e.g., by pretty-printing the symbols. Fewer features are supported than in
Isabelle/jEdit (for example, the current goal is printed without colors).

2https://microsoft.github.io/language-server-protocol/

15

https://microsoft.github.io/language-server-protocol/

3 Conflict-Driven Clause Learning

This chapter presents my formalization of CDCL (conflict-driven clause learn-
ing), the algorithm implemented in modern propositional satisfiability (SAT)
solvers. I start with a family of formalized abstract DPLL (Davis–Putnam–
Logemann–Loveland) [41] and CDCL [8, 17, 98, 102] transition systems based
on Nieuwenhuis, Oliveras, and Tinelli’s abstract presentation of CDCL [107]
(Section 3.1). These families of calculi, called DPLL NOT+BJ and CDCL NOT,
are proved sound, complete, and terminating. Some of the calculi include
rules for learning and forgetting clauses and for restarting the search.

After that, I formalize another CDCL calculus based on Weidenbach’s
account based on Automated Reasoning and published earlier [140], called
CDCL W. It is derived as a refinement of CDCL NOT. The calculus spec-
ifies a criterion for learning clauses representing first unique implication
points [17, Chapter 3], with the guarantee that learned clauses are not redun-
dant and hence derived at most once. The correctness results (soundness,
completeness, termination) are inherited from the abstract calculus. In a mi-
nor departure from Weidenbach’s presentation, I extend the Jump rule that
repairs the model once a conflict is found to be able to express the conflict
clause minimization, which is an important technique in implementations
that shortens new learned clauses. CDCL W is closer to an implementation
and it is possible to prove complexity results on it: only 2V clauses can be
learned, where V is the number of atoms that appears in the problem. I also
extend the calculus to support incremental solving (Section 3.2).

The concrete calculus is refined further to obtain a verified, but very naive,
functional program extracted using Isabelle’s code generator (Section 3.3).
This very simple SAT solver is called IsaSAT-0.

The formalization of the DPLL and CDCL calculi and the simple functional
program consists of about 17 000 lines of Isabelle text. This includes some
theorems that are only needed during the refinements described in the next
chapters. The work was done over a period of 10 months, and I taught myself
Isabelle during that time.

17

3 Conflict-Driven Clause Learning

3.1 Abstract CDCL

The abstract CDCL calculus by Nieuwenhuis et al. [107] forms the first layer
of my refinement chain. The formalization relies on basic Isabelle libraries for
lists and multisets and on custom libraries for propositional logic. Properties
such as partial correctness and termination (given a suitable strategy) are
inherited by subsequent layers.

3.1.1 Propositional Logic

The DPLL and CDCL calculi distinguish between literals whose truth value
has been decided arbitrarily and those that are entailed by the current de-
cisions; for the latter, it is sometimes useful to know which clause entails
it. To capture this information, I introduce a type of annotated literals, pa-
rameterized by a type ′v of propositional variables and a type ′cls of clauses:

datatype ′v literal = datatype (′v, ′cls) ann literal =
Pos ′v Decided (′v literal)
| Neg ′v | Propagated (′v literal) ′cls

The simpler calculi do not use ′cls; they take ′cls = unit, a singleton type
whose unique value is (). Informally, I write A, ¬ A, and L† for positive,
negative, and decision literals, and I write LC (with C :: ′cls) or simply L (if
′cls = unit or if the clause C is irrelevant) for propagated literals. The unary
minus operator is used to negate a literal, with −(¬ A) = A.

As is customary in the literature [2, 140], clauses are represented by multi-
sets, ignoring the order of literals but not repetitions. Most of the time the
clauses will be duplicate free, meaning that clauses can be represented as
finite sets (this is the standard choice in the SAT literature [107]). A ′v clause
is a (finite) multiset over ′v literal. Clauses are often stored in sets or multisets
of clauses. To ease reading, I write clauses using logical symbols (e.g., ⊥, L,
and C ∨D for ∅, {L}, and C ⊎D, respectively). Given a clause C, I write ¬C
for the formula that corresponds to the clause’s negation. Remark that the
negation ¬C of a clause is not a clause anymore, but a multiset of clauses,
where each clause is a single literal and the negation of one of the literals
of C. The standard definition usually involves a signature Σ, the set of all
atoms. In Isabelle I simply take the set of all elements of type ′v.

Given a set or multiset I of literals, I ⊨ C is true if and only if C and I share
a literal. A model I is consistent if there is no literal L defined positively and
negatively (i.e., L ∈ I and −L ∈ I). I don’t enforce I to be consistent, but

18

3.1 Abstract CDCL

I use a predicate to require it whenever needed. Entailment is lifted to sets
and multisets of clauses or formulas: I ⊨ N ←→ ∀C ∈ N. I ⊨ C. A set or
multiset is satisfiable if there exists a consistent set or multiset of literals I
such that I ⊨ N. Finally, N ⊨ N′ ←→ ∀I. I ⊨ N −■→ I ⊨ N′. These notations
are also extended to formulas.

3.1.2 DPLL with Backjumping

Nieuwenhuis et al. present CDCL as a set of transition rules on states. A
state is a pair (M, N), where M is the trail and N is the multiset of clauses to
satisfy. In a slight abuse of terminology, I will refer to the multiset of clauses
as the “clause set.” The trail is a list of annotated literals that represents the
partial model under construction. The empty list is written ϵ. Somewhat
nonstandardly, but in accordance with Isabelle conventions for lists, the trail
grows on the left: Adding a literal L to M results in the new trail L ·M, where
· :: ′a ⇒ ′a list ⇒ ′a list. The concatenation of two lists is written M @ M′.
To lighten the notation, I often build lists from elements and other lists by
simple juxtaposition, writing MLM′ for M @ (L ·M′).

The core of the CDCL calculus is defined as a transition relation called
DPLL NOT+BJ, an extension of classical DPLL [41] with nonchronological
backtracking, or backjumping. The NOT part of the name refers to Nieuwen-
huis, Oliveras, and Tinelli. The calculus consists of three rules, starting from
an initial state (ϵ, N). In the following, I abuse notation, implicitly converting
⊨’s first operand from a list to a set and ignoring annotations on literals. A
literal L is defined in a trail M, if its value is fixed, i.e., M ⊨ L or M ⊨ −L (or
more formally, if L† ∈ M, −L† ∈ M, or there is an annotation C such that
LC ∈ M or −LC ∈ M):

Propagate (M, N) =⇒DPLL NOT+BJ (LM, N)
if N contains a clause C ∨ L such that M ⊨ ¬C and L is undefined in
M

Decide (M, N) =⇒DPLL NOT+BJ (L† M, N)
if the atom of L occurs in N and is undefined in M

Backjump (M′L† M, N) =⇒DPLL NOT+BJ (L′M, N)
if N contains a conflicting clause C (i.e., M′L† M ⊨ ¬C) and there exists
a clause C′ ∨ L′ such that N ⊨ C′ ∨ L′, M ⊨ ¬C′, and L′ is undefined in
M but occurs in N or in M′L†

The Backjump rule is more general than necessary for capturing DPLL, where
it suffices to negate the leftmost decision literal. The general rule can also

19

3 Conflict-Driven Clause Learning

express nonchronological backjumping, if C′ ∨ L′ is a new clause derived
from N (but not necessarily in N).

I represented the calculus as an inductive predicate. For the sake of mod-
ularity, I formalized the rules individually as their own predicates and com-
bined them to obtain DPLL NOT+BJ:

inductive DPLL NOT+BJ :: ′st⇒ ′st⇒ bool where
propagate S S′ =■⇒ DPLL NOT+BJ S S′

| decide S S′ =■⇒ DPLL NOT+BJ S S′

| backjump S S′ =■⇒ DPLL NOT+BJ S S′

Since there is no call to DPLL NOT+BJ in the assumptions, I could also
have used a plain definition here, but the inductive command provides
convenient introduction and elimination rules. The predicate operates on
states of type ′st. To allow for refinements, this type is kept as a parameter
of the calculus, using a locale that abstracts over it and that provides basic
operations to manipulate states:

locale dpll state =
fixes

trail :: ′st⇒ (′v, unit) ann literal list and
clauses :: ′st⇒ ′v clause multiset and
prepend trail :: (′v, unit) ann literal⇒ ′st⇒ ′st and
tl trail :: ′st⇒ ′st and
add clause :: ′v clause⇒ ′st⇒ ′st and
remove clause :: ′v clause⇒ ′st⇒ ′st

assumes
state (prepend trail L S) = (L · trail S, clauses S) and
state (tl trail S) = (tl (trail S), clauses S) and
state (add clause C S) = (trail S, add mset C (clauses S)) and
state (remove clause C S) = (trail S, remove all C (clauses S))

where state converts an abstract state of type ′st to a pair (M, N). Inside the
locale, states are compared extensionally: S ∼ S′ is true if the two states have
identical trails and clause sets (i.e., if state S = state S′). This comparison
ignores any other fields that may be present in concrete instantiations of the
abstract state type ′st. tl stands for tail and removes the first element of a list.

Each calculus rule is defined in its own locale, based on dpll state and
parameterized by additional side conditions. Complex calculi are built by
inheriting and instantiating locales providing the desired rules. For example,
the following locale provides the predicate corresponding to the Decide rule,
phrased in terms of an abstract DPLL state:

20

3.1 Abstract CDCL

locale decide ops = dpll state +
fixes decide conds :: ′st⇒ ′st⇒ bool

begin

inductive decide :: ′st⇒ ′st⇒ bool where
undefined lit (trail S) L =■⇒
atm of L ∈ atms of (clauses S) =■⇒
S′ ∼ prepend trail (Decided L) S =■⇒
decide conds S S′ =■⇒
decide S S′

end

Following a common idiom, the DPLL NOT+BJ calculus is distributed over
two locales: The first locale, DPLL NOT+BJ ops, defines the DPLL NOT+BJ
calculus; the second locale, DPLL NOT+BJ, extends it with an assumption
expressing a structural invariant over DPLL NOT+BJ that is instantiated
when proving concrete properties later. This cannot be achieved with a
single locale, because definitions may not precede assumptions. Moreover,
unfolding definitions requires discharging assumption which is trivial if the
locale does not have assumptions.

Theorem 3.1 (Termination wf dpll bj □✓). The relation DPLL NOT+BJ is well
founded.

Proof. Termination is proved by exhibiting a well-founded relation ≺ such
that S′ ≺ S whenever S =⇒DPLL NOT+BJ S′. Let S = (M, N) and S′ =
(M′, N′) with the decompositions

M = MnL†
n · · ·M1L†

1 M0 M′ = M′n′L
′†
n′ · · ·M′1L′†1 M′0

where the trail segments M0, . . . , Mn, M′0, . . . , M′n′ contain no decision literals.
Let V be the number of distinct variables occurring in the initial clause set N.
Now, let ν M = V − |M|, indicating the number of unassigned variables in
the trail M. Nieuwenhuis et al. define ≺ such that S′ ≺ S if

(1) there exists an index i ≤ n, n′ such that

[ν M′0, . . . , ν M′i−1] = [ν M0, . . . , ν Mi−1]

and ν M′i < ν Mi; or

(2) [ν M0, . . . , ν Mn] is a strict prefix of [ν M′0, . . . , ν M′n′].

21

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL/CDCL_NOT#wf_dpll_bj.html
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL/CDCL_NOT#wf_dpll_bj.html

3 Conflict-Driven Clause Learning

This order is not to be confused with the lexicographic order: I have [0] ≺ ϵ
by condition (2), whereas ϵ <lex [0]. Yet the authors justify well-foundedness
by appealing to the well-foundedness of <lex on bounded lists over finite
alphabets. In my proof, I clarify and simplify matters by mapping states S
to lists

[
|M0| , . . . , |Mn|

]
, without appealing to ν. Using the standard lexico-

graphic order, states become larger with each transition:

Propagate [k1, . . . , kn] <lex [k1, . . . , kn + 1]
Decide [k1, . . . , kn] <lex [k1, . . . , kn, 0]
Backjump [k1, . . . , kn] <lex [k1, . . . , k j + 1] with j ≤ n

The lists corresponding to possible states are bounded by the list [V, . . . , V]
consisting of V occurrences of V, thereby delimiting a finite domain D =
{[k1, . . . , kn] | k1, . . . , kn, n ≤ V}. I take ≺ to be the restriction of >lex to
D. A variant of this approach is to encode lists into a measure µV M =

∑n
i=0 |Mi|Vn−i and let S′ ≺ S ←→ µV M′ > µV M, building on the well-

foundedness of > over bounded sets of natural numbers.

A final state is a state from which no transitions are possible. Given a
relation =⇒, I write =⇒! for the right restriction of its reflexive transitive
closure to final states (i.e., S0 =⇒! S if and only if S0 =⇒∗ S ∧ ∀S′. S ≠⇒ S′).

Theorem 3.2 (Partial Correctness, full dpll backjump final state from init
state □✓). If (ϵ, N) =⇒!

DPLL NOT+BJ (M, N), then N is satisfiable if and only if
M ⊨ N.

Proof. I first prove structural invariants on arbitrary states (M′, N) reachable
from (ϵ, N), namely: (1) each variable occurs at most once in M′; (2) if
M′ = M2LM1 where L is propagated, then M1, N ⊨ L. From these invariants,
together with the constraint that (M, N) is a final state, it is easy to prove the
theorem.

We do not add explicit final states to indicate that a solution has been
found. This means that even if the empty clause ⊥ is in N, more transitions
can be done.

3.1.3 Classical DPLL

The locale machinery allows me to derive a classical DPLL calculus from
DPLL with backjumping. I call this calculus DPLL NOT. It is achieved
through a DPLL NOT locale that restricts the Backjump rule so that it per-
forms only chronological backtracking:

22

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL/CDCL_NOT.html#full_dpll_backjump_final_state_from_init_state
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL/CDCL_NOT.html#full_dpll_backjump_final_state_from_init_state
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL/CDCL_NOT.html#full_dpll_backjump_final_state_from_init_state

3.1 Abstract CDCL

Backtrack (M′L† M, N) =⇒DPLL NOT (−L ·M, N)
if N contains a conflicting clause and M′ contains no decision literals

Because of the locale parameters, DPLL NOT is strictly speaking a family of
calculi.

Lemma 3.3 (Backtracking backtrack is backjump □✓). The Backtrack rule is a
special case of the Backjump rule.

Proof. The Backjump rule depends on two clauses: a conflict clause C and
a clause C′ ∨ L′ that justifies the propagation of L′. The conflict clause is
specified by Backtrack. As for C′ ∨ L′, given a trail M′L† M decomposable as
MnL† Mn−1L†

n−1 · · ·M1L†
1 M0 where M0, . . . , Mn contain no decision literals, I

can take C′ = −L1 ∨ · · · ∨ −Ln−1.
Consequently, the inclusion DPLL NOT ⊆ DPLL NOT+BJ holds. In Isa-

belle, this is expressed as a locale instantiation: DPLL NOT is made a sublo-
cale of DPLL NOT+BJ, with a side condition restricting the application of
the Backjump rule. The partial correctness and termination theorems are in-
herited from the base locale. DPLL NOT instantiates the abstract state type ′st
with a concrete type of pairs. By discharging the locale assumptions emerg-
ing with the sublocale command, I also verify that these assumptions are
consistent. Roughly:

locale DPLL NOT =
begin

type synonym ′v state = (′v, unit, unit) ann literal list
×′v clause multiset

inductive backtrack :: ′v state⇒ ′v state⇒ bool where . . .
end

sublocale DPLL NOT ⊆ dpll state fst snd (λL (M, N). (L ·M, N))
. . .

sublocale DPLL NOT ⊆ DPLL NOT+BJ ops . . .
(λC L S S′. DPLL.backtrack S S′) . . .

sublocale DPLL NOT ⊆ DPLL NOT+BJ . . .

If a conflict cannot be resolved by backtracking, I would like to have the
option of stopping even if some variables are undefined. A state (M, N) is
conclusive if M ⊨ N or if N contains a conflicting clause and M contains no
decision literals. For DPLL NOT, all final states are conclusive, but not all
conclusive states are final.

23

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL/DPLL_NOT.html#backtrack_is_backjump
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL/DPLL_NOT.html#backtrack_is_backjump

3 Conflict-Driven Clause Learning

Theorem 3.4 (Partial Correctness full dpll normal form from init state □✓).
If (ϵ, N) =⇒∗DPLL NOT (M, N) and (M, N) is a conclusive state, N is satisfiable if
and only if M ⊨ N.

The theorem does not require stopping at the first conclusive state. In an
implementation, testing M ⊨ N can be expensive, so a solver might fail to
notice that a state is conclusive and continue for some time. In the worst
case, it will stop in a final state—which is guaranteed to exist by Theorem 3.1.
In practice, instead of testing whether M ⊨ N, implementations typically
apply the rules until every literal is set, because the cost of applying the
remaining rules (i.e., the remaining decisions) is low. When N is satisfiable,
this produces a total model.

3.1.4 The CDCL Calculus

The abstract CDCL calculus extends DPLL NOT+BJ with a pair of rules for
learning new lemmas and forgetting old ones:

Learn (M, N) =⇒CDCL NOT (M, N ⊎ {C}) if N ⊨ C and each atom of C is
in N or M

Forget (M, N ⊎ {C}) =⇒CDCL NOT (M, N) if N ⊨ C

In practice, the Learn rule is normally applied to clauses built exclusively
from atoms in M, because the learned clause is false in M. This property
eventually guarantees that the learned clause is not redundant (e.g., it is not
already contained in N).

I call this calculus CDCL NOT. In general, CDCL NOT does not terminate,
because it is possible to learn and forget the same clause infinitely often. But
for some instantiations of the parameters with suitable restrictions on Learn
and Forget, the calculus always terminates.

Theorem 3.5 (Termination of CDCL NOT wf cdclNOT no learn and forget
infinite chain □✓). Let C be an instance of the CDCL NOT calculus (i.e., C ⊆
CDCL NOT). If C admits no infinite chains consisting exclusively of Learn and
Forget transitions, then C is well founded.

In many SAT solvers, the only clauses that are ever learned are the ones
used for backtracking. If I restrict the learning so that it is always done
immediately before backjumping, I can be sure that some progress will be
made between a Learn and the next Learn or Forget. This idea is captured by
the following combined rule:

24

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL/DPLL_NOT.html#full_dpll_normal_form_from_init_state
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL/DPLL_NOT.html#full_dpll_normal_form_from_init_state
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL/CDCL_NOT.html#infinite_cdcl_NOT_exists_learn_and_forget_infinite_chain
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL/CDCL_NOT.html#infinite_cdcl_NOT_exists_learn_and_forget_infinite_chain
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL/CDCL_NOT.html#infinite_cdcl_NOT_exists_learn_and_forget_infinite_chain

3.1 Abstract CDCL

CDCL NOT
(Section 3.1.4)

DPLL NOT
(Section 3.1.3)

DPLL NOT+
BJ

(Section 3.1.2)

CDCL NOT+
restart

(Section 3.1.5)

CDCL NOT
merge

(Section 3.1.4)

CDCL NOT
merge+
restartT

(Section 3.1.5)

(a) Syntactic dependencies

CDCL NOT
(Section 3.1.4)

DPLL NOT
(Section 3.1.3)

DPLL NOT+
BJ

(Section 3.1.2)

CDCL NOT+
restart

(Section 3.1.5)

CDCL NOT
merge

(Section 3.1.4)

CDCL NOT
merge+
restartT

(Section 3.1.5)

(b) Refinements

Figure 3.1: Connections between the abstract calculi

Learn+Backjump (M′L† M, N) =⇒CDCL NOT merge (L′M, N ⊎ {C′ ∨ L′})
if C′, L, L′, M, M′, N satisfy Backjump’s side conditions

The calculus variant that performs this rule instead of Learn and Backjump is
called CDCL NOT merge. Because a single Learn+Backjump transition corre-
sponds to two transitions in CDCL NOT, the inclusion CDCL NOT merge ⊆
CDCL NOT does not hold. Instead, I have CDCL NOT merge ⊆ CDCL NOT+.
Each step of CDCL NOT merge corresponds to a single step in CDCL NOT or
a two-step sequence consisting of Backjump followed by Learn.

3.1.5 Restarts

Modern SAT solvers rely on a dynamic decision literal heuristic. They pe-
riodically restart the proof search to apply the effects of a changed heuris-
tic. This helps the calculus focus on a part of the search space where it
can make progress. Upon a restart, some learned clauses may be removed,
and the trail is reset to ϵ. Since my calculus CDCL NOT has a Forget rule,
the Restart rule needs only to clear the trail. Adding Restart to CDCL NOT

25

3 Conflict-Driven Clause Learning

yields CDCL NOT+restart. However, this calculus does not terminate, be-
cause Restart can be applied infinitely often.

A working strategy is to gradually increase the number of transitions
between successive restarts. This is formalized via a locale parameterized by
a base calculus C and an unbounded function f :: nat⇒ nat. Nieuwenhuis
et al. require f to be strictly increasing, but unboundedness is sufficient.

The extended calculus C+restartT operates on states of the form (S, n),
where S is a state in the base calculus and n counts the number of restarts.
To simplify the presentation, I assume that base states S are pairs (M, N).
The calculus C+restartT starts in the state ((ϵ, N), 0) and consists of two
rules:

Restart (S, n) =⇒C+restartT ((ϵ, N′), n + 1)
if S =⇒m

C (M′, N′) and m ≥ f n

Finish (S, n) =⇒C+restartT (S′ ′, n + 1) if S =⇒!
C S′

The symbol =⇒C represents the base calculus C ’s transition relation, and
=⇒m

C denotes an m-step transition in C. The T in restartT reminds me that I
count the number of transitions; in Section 3.2.5, I will review an alternative
strategy based on the number of conflicts or learned clauses. Termination
relies on a measure µV associated with C that may not increase from restart
to restart: If S =⇒∗C S′ =⇒restartT S′′, then µV S′′ ≤ µV S. The measure may
depend on V, the number of variables occurring in the problem.

I instantiated the locale parameter C with CDCL NOT merge and f with
the Luby sequence (1, 1, 2, 1, 1, 2, 4, . . .) [88], with the restriction that no clause
containing duplicate literals is ever learned, thereby bounding the number
of learnable clauses and hence the number of transitions taken by C.

Figure 3.1a summarizes the syntactic dependencies between the calculi
reviewed in this section. An arrow C −→ B indicates that C is defined in
terms of B. Figure 3.1b presents the refinements between the calculi. An
arrow C =⇒ B indicates that I proved C ⊆ B∗ or some stronger result—either
by locale embedding (sublocale) or by simulating C ’s behavior in terms of
B.

3.2 A Refined CDCL Towards an Implementation

The CDCL NOT calculus captures the essence of modern SAT solvers with-
out imposing a policy on when to apply specific rules. In particular, the
Backjump rule depends on a clause C′ ∨ L′ to justify the propagation of a

26

3.2 A Refined CDCL Towards an Implementation

literal, but does not specify a procedure for coming up with this clause. For
Automated Reasoning, Weidenbach developed a calculus that is more specific
in this respect, and closer to existing solver implementations, while keeping
many aspects unspecified [140]. This calculus, CDCL W, is also formalized
in Isabelle and connected to CDCL NOT.

3.2.1 The New DPLL Calculus

Independently from the previous section, I formalized DPLL as described in
Automated Reasoning. The calculus, called DPLL W, operates on states (M, N),
where M is the trail and N is the initial clause set. It consists of three rules:

Propagate (M, N) =⇒DPLL W (LM, N)
if C ∨ L ∈ N, M ⊨ ¬C, and L is undefined in M

Decide (M, N) =⇒DPLL W (L† M, N)
if L is undefined in M and occurs in N

Backtrack (M′L† M, N) =⇒DPLL W (−L ·M, N)
if N contains a conflicting clause and M′ contains no decision literals

Backtrack performs chronological backtracking: It undoes the last decision
and picks the opposite choice. Conclusive states for DPLL W are defined as
for DPLL NOT (Section 3.1.3).

The termination and partial correctness proofs given by Weidenbach depart
from Nieuwenhuis et al. I also formalized them:

Theorem 3.6 (Termination wf dpllW □✓). The relation DPLL W is well founded.

Proof. Termination is proved by exhibiting a well-founded relation that in-
cludes DPLL W. Let V be the number of distinct variables occurring in the
clause set N. The weight ν L of a literal L is 2 if L is a decision literal and 1

otherwise. The measure is

µ (Lk · · · L1, N) =
[
ν L1, . . . , ν Lk, 3, . . . , 3︸ ︷︷ ︸

V−k occurrences

]
Lists are compared using the lexicographic order, which is well founded
because there are finitely many literals and all lists have the same length. It
is easy to check that the measure decreases with each transition:

27

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/DPLL_W.html#wf_dpllW
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/DPLL_W.html#wf_dpllW

3 Conflict-Driven Clause Learning

Propagate [k1, . . . , km, 3, 3, . . . , 3] >lex [k1, . . . , km, 1, 3, . . . , 3]
Decide [k1, . . . , km, 3, 3, . . . , 3] >lex [k1, . . . , km, 2, 3, . . . , 3]
Backtrack [k1, . . . , km, 2, l1, . . . , ln] >lex [k1, . . . , km, 1, 3, . . . , 3]

Theorem 3.7 (Partial Correctness dpllW conclusive state correctness □✓). If
(ϵ, N) =⇒∗DPLL W (M, N) and (M, N) is a conclusive state, N is satisfiable if and
only if M ⊨ N.

The proof is analogous to the proof of Theorem 3.2. Some lemmas are
shared between both proofs. Moreover, I can link Weidenbach’s DPLL calcu-
lus with the version I derived from DPLL NOT+BJ in Section 3.1.3:

Theorem 3.8 (DPLL dpllW dpllNOT □✓). If S satisfies basic structural invariants,
then S =⇒DPLL W S′ if and only if S =⇒DPLL NOT S′.

This provides another way to establish Theorems 3.6 and 3.7. Conversely,
the simple measure that appears in the above termination proof can also be
used to establish the termination of the more general DPLL NOT+BJ calculus
(Theorem 3.1).

3.2.2 The New CDCL Calculus

The CDCL W calculus operates on states (M, N, U, D), where M is the trail;
N and U are the sets of initial and learned clauses, respectively; and D is a
conflict clause, or the distinguished clause ⊤ if no conflict has been detected.

In the trail M, each decision literal L is marked as such (L†—i.e., Decided L),
and each propagated literal L is annotated with the clause C that caused its
propagation (LC—i.e., Propagated L C). The level of a literal L in M is the
number of decision literals to the right of the atom of L in M, or 0 if the atom
is undefined. The level of a clause is the highest level of any of its literals,
with 0 for ⊥, and the level of a state is the maximum level (i.e., the number
of decision literals). The calculus assumes that N contains no clauses with
duplicate literals and never produces clauses containing duplicates.

The calculus starts in a state (ϵ, N, ∅,⊤). The following rules apply as
long as no conflict has been detected:

Propagate (M, N, U,⊤) =⇒CDCL W (LC∨L M, N, U,⊤)
if C ∨ L ∈ N ⊎U, M ⊨ ¬C, and L is undefined in M

Decide (M, N, U,⊤) =⇒CDCL W (L† M, N, U,⊤) if L is undefined in M
and occurs in N

28

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/DPLL_W.html#dpllW_conclusive_state
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/DPLL_W.html#dpllW_conclusive_state
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/DPLL_W.html#dpllW_dpllNOT
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/DPLL_W.html#dpllW_dpllNOT

3.2 A Refined CDCL Towards an Implementation

Conflict (M, N, U,⊤) =⇒CDCL W (M, N, U, D) if D ∈ N ⊎ U and M ⊨
¬D

Restart (M, N, U,⊤) =⇒CDCL W (ϵ, N, U,⊤) if M ̸⊨ N

Forget (M, N, U ⊎ {C},⊤) =⇒CDCL W (M, N, U,⊤)
if M ̸⊨ N and M contains no literal LC

The Propagate and Decide rules generalize their DPLL W counterparts. Once
a conflict clause has been detected and stored in the state, the following rules
cooperate to reduce it and backtrack, exploring a first unique implication
point [17, Chapter 3]:

Skip (LC M, N, U, D) =⇒CDCL W (M, N, U, D)
if D /∈ {⊥,⊤} and −L does not occur in D

Resolve (LC∨L M, N, U, D ∨−L) =⇒CDCL W (M, N, U, C ∪ D)
if D has the same level as the current state

Jump (M′K† M, N, U, D ∨ L) =⇒CDCL W (LD∨L M, N, U ⊎ {D ∨ L},⊤)
if L has the level of the current state, D has a lower level, and K and D
have the same level

Exhaustive application of these three rule corresponds to a single step by the
combined learning and nonchronological backjumping rule Learn+Backjump
from CDCL NOT merge. The Learn+Backjump rule is even more general and
can be used to express learned clause minimization [134].

In Resolve, C∪D is the same as C∨D (i.e., C⊎D), except that it keeps only
one copy of the literals that belong to both C and D. When performing prop-
agations and processing conflict clauses, the calculus relies on the invariant
that clauses never contain duplicate literals. Several other structural invari-
ants hold on all states reachable from an initial state, including the following:
The clause annotating a propagated literal of the trail is a member of N ⊎U.
Some of the invariants were not mentioned in the textbook (e.g., whenever
LC occurs in the trail, L is a literal of C). Formalizations help develop a better
understanding of the data structure and clarify the book.

Like CDCL NOT, CDCL W has a notion of conclusive state. A state (M, N,
U, D) is conclusive if D = ⊤ and M ⊨ N or if D = ⊥ and N is unsatisfiable.
The calculus always terminates, but without a suitable strategy, it can block
in an inconclusive state. At the end of the following derivation, neither Skip

29

3 Conflict-Driven Clause Learning

nor Resolve can process the conflict further:

(ϵ, {A, B}, ∅,⊤)
=⇒Decide (¬A†, {A, B}, ∅,⊤)
=⇒Decide (¬B† ¬A†, {A, B}, ∅,⊤)
=⇒Conflict (¬B† ¬A†, {A, B}, ∅, A)

3.2.3 A Reasonable Strategy

To prove correctness, I assume a reasonable strategy: Propagate and Conflict
are preferred over Decide; Restart and Forget are not applied. (I will lift
the restriction on Restart and Forget in Section 3.2.5.) The resulting calculus,
CDCL W+stgy, refines CDCL W with the assumption that derivations are
produced by a reasonable strategy. This assumption is enough to ensure that
the calculus can backjump after detecting a nontrivial conflict clause other
than ⊥. The crucial invariant is the existence of a literal with the highest
level in any conflict, so that Resolve can be applied. The textbook suggests
preferring the rule Confict to Propagate and Propagate to the other rules. But
it is not needed for any of my metatheoretical results and not compatible
with implementations that stop at the first found conflict (like MiniSat [43],
unlike the SAT solver of SPASS [30]).

Correctness. With the reasonable strategy, the calculus terminates in a
conclusive state, which makes it possible to conclude on the satisfiability of
the original formula:

Theorem 3.9 (Partial Correctness full cdclW stgy final state conclusive from
init state □✓). If (ϵ, N, ∅,⊤) =⇒!

CDCL W+stgy S′ and N contains no clauses with
duplicate literals, S′ is a conclusive state.

Once a conflict clause has been stored in the state, the clause is first reduced
by a chain of Skip and Resolve transitions. Then, there are two scenarios:
(1) the conflict is solved by a Jump, at which point the calculus may resume
propagating and deciding literals; (2) the reduced conflict is ⊥, meaning that
N is unsatisfiable—i.e., for unsatisfiable clause sets, the calculus generates a
resolution refutation.

No relearning. The CDCL W+stgy calculus is designed to have respectable
complexity bounds. One of the reasons for this is that the same clause cannot
be learned twice:

30

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL/CDCL_W.html#full_cdclW_stgy_final_state_conclusive
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL/CDCL_W.html#full_cdclW_stgy_final_state_conclusive
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL/CDCL_W.html#full_cdclW_stgy_final_state_conclusive

3.2 A Refined CDCL Towards an Implementation

Theorem 3.10 (No Relearning rtranclp cdclW stgy distinct mset □✓). If (ϵ,
N, ∅,⊤) =⇒∗CDCL W+stgy (M, N, U, D), then no Jump transition is possible from
the latter state causing the addition of a clause from N ⊎U to U.

The formalization of this theorem posed some challenges. The informal
proof in Automated Reasoning is as follows (with slightly adapted notations):

Proof. By contradiction. Assume CDCL learns the same clause
twice, i.e., it reaches a state (M, N, U, D ∨ L) where Jump is appli-
cable and D ∨ L ∈ N ⊎U. More precisely, the state has the form
(Kn · · · K2K†

1 M2K† M1, N, U, D ∨ L) where the Ki, i > 1 are propa-
gated literals that do not occur complemented in D, as otherwise
D cannot be of level i. Furthermore, one of the Ki is the comple-
ment of L. But now, because D ∨ L is false in Kn · · ·K2K†

1 M2K† M1
and D ∨ L ∈ N ⊎U instead of deciding K†

1 the literal L should be
propagated by a reasonable strategy. A contradiction. Note that
none of the Ki can be annotated with D ∨ L.

Many details are missing. To find the contradiction, I must show that there
exists a state in the derivation with the trail M2K† M1, and such that D ∨ L ∈
N ⊎ U. The textbook does not explain why such a state is guaranteed to
exist. Moreover, inductive reasoning is hidden under the ellipsis notation
(Kn · · ·K2). Such a high-level proof might be suitable for humans, but the
details are needed in Isabelle, and Sledgehammer alone cannot fill in such
large gaps, especially when induction is needed. The first version of the
formal proof was over 700 lines long and is among the most difficult proofs
I carried out about CDCL.

I later refactored the proof and the definition of CDCL W+stgy. Following
the book, each transition in CDCL W+stgy was initially normalized by apply-
ing Propagate and Conflict exhaustively. For example, I defined Decide+stgy
so that S =⇒Decide+stgy U if Propagate and Conflict cannot be applied to S and
S =⇒Decide T =⇒!

Propagate,Conflict U for some state T. However, normalization
is not necessary. It is simpler to define S =⇒Decide+stgy T as S =⇒Decide T,
with the same condition on S as before. This change shortened the proof
by about 200 lines. In a subsequent refactoring, I further departed from
the book: I proved the invariant that all propagations have been performed
before deciding a new literal. The core argument (“the literal L should be
propagated by a reasonable strategy”) remains the same, but I do not have
to reason about past transitions to argue about the existence of an earlier
state. The invariant also makes it possible to generalize the statement of

31

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL/CDCL_W_Termination.html#rtranclp_cdclW_stgy_distinct_mset
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL/CDCL_W_Termination.html#rtranclp_cdclW_stgy_distinct_mset

3 Conflict-Driven Clause Learning

¬C C

¬B

¬C C

B

¬A

¬C C

¬B

¬C C

B

A

Figure 3.2: Proof tree for the clauses A ∨ B, ¬A ∨ C, and B ∨ ¬C, where
dashed edges indicate conflicts with one of the three clauses

Theorem 3.10: I can start from any state that satisfies the invariant, not only
from an initial state. The final version of the proof is 250 lines long.

A better bound. Using Theorem 3.10 and assuming that only backjumping
has a cost (which is the same as counting the number of learned clauses), I
get a complexity of O(3V), where V is the number of different propositional
variables, but a better complexity bound can be found: O(2V). Each time
Jump is applied, a new clause is learned and at least a model is excluded.
Since there are only 2V models, the conclusion follows. Another intuitive
point of view is to look at all models seen as a tree, where each node contains
an atom L, the right branch is L and the left branch is ¬L. A decision
introduces two branches, while a propagated literal does not introduce a
branch. Each leaf represents a total model (Figure 3.2). Since there are only
2V leafs and each Jump goes to a different branch, the number of learned
clauses is bounded by 2V . This point of view is useful to understand the
argument, but not useful for a proof, because it implicitly relies on an order
of the decisions (the order given by the model tree). However, the argument
can be adapted by taking the measure:

µ′ (Lk · · · L1, N) =
[
ν′ L1, . . . , ν′ Lk, 0, . . . , 0︸ ︷︷ ︸

V−k occurrences

]
where the weight ν′ L of a literal L is 1 if L is a decision literal and 0 otherwise.
In Isabelle, I simply consider µ′ as the digits of a binary number. It is
obviously bounded by 2V . The function µ′ is not a measure for CDCL, since
it only decreases for backtrack and propagate, not when decisions are made,

32

3.2 A Refined CDCL Towards an Implementation

and even increases when applying Skip or Resolve. Surprisingly to me, the
proof does not depend on the strategy. In the worst case, the calculus will be
stuck before reaching a final state. This also explains how crude this bound
actually is: It does not depend on propagations and in particular does not
require them to be done eagerly.

The proof in Isabelle is a perfect example of how much bookkeeping is
sometimes required: In a paper, I would simply say that a CDCL run is an
interleaving of the conflict analysis (Conflict, Skip, Resolve, and Backtrack) com-
bined together and of Propagate and Decide combined together. In Isabelle,
this interleaving has to be built explicitly from all considered transitions. I
did so with a combination of recursive functions and choice operators. This
requires several inductions and, even though conceptually important, these
inductions are only a proof detail and hide the important arguments. Recur-
sive definitions cannot be defined within a proof by the function package [70],
and instead, direct calls to the recursor have to be used. This requires to do
by hand what is normally done automatically, especially proving simplifica-
tion rule for the base case. For example, if I consider the sequence of states
(s i) such that for all i si =⇒CDCL W si+1, here is the recursive function that
enumerates the position of all the Jumps occurring in (s i):

define nth bj :: nat⇒ nat where
nth bj = rec nat 0(

λ j. LEAST n.
(
n > j ∧ sn =⇒Jump sn+1

))
LEAST n. P n returns the smallest n such that P n is true—it is defined in
Isabelle’s standard library in terms of Hilbert’s choice operator. The value 0
is used to initialize the sequence, instead of the first Jump in the sequence:
LEAST n. n ≥ 0 ∧ sn =⇒Jump sn+1. If there are no Jumps in the sequences
or if there are no Jumps anymore, then the function returns an unspecified
element.

After that, two simplifications rules have to be derived by hand:

nth bj 0 = 0

nth bj (j + 1) = LEAST n.
(
n > nth bj j ∧ sn =⇒Jump sn+1

)
Deriving the theorems is not hard, but not very interesting either. To avoid

this kind of reasoning, I usually express whenever possible my invariants
as properties on states instead of properties on transitions. In the case above,
this is not avoidable, without defining an alternative calculus that groups the
rule as expected.

33

3 Conflict-Driven Clause Learning

After that, I define a similar (non-recursive) function that returns when a
conflict has been found:

define nth confl :: nat⇒ nat where
nth confl j = LEAST n.

(
n > nth bj j ∧ n < nth bj (j + 1) ∧

sn =⇒Conflict sn+1
)

Once the transitions have been decomposed, it remains to show that:

µ′(trail snth confl j) > µ′(trail snth bj j)

µ′(trail snth bj j) > µ′(trail snth confl (j+1))

This is the core point of the argument. Combined with µ′(trail snth confl j) <

2V , the final bound can be derived (by yet another induction).
In Automated Reasoning, and in my formalization, Theorem 3.10 is also

used to establish the termination of CDCL W+stgy. However, the argument
for the termination of CDCL NOT also applies to CDCL W irrespective of the
strategy, a stronger result. To lift this result, I must show that the calculus
CDCL W refines CDCL NOT.

3.2.4 Connection with Abstract CDCL

It is interesting to show that CDCL W refines CDCL NOT merge, to establish
beyond doubt that CDCL W is a CDCL calculus and to lift the termination
proof and any other general results about CDCL NOT merge. The states are
easy to connect: I interpret a CDCL W tuple (M, N, U, C) as a CDCL NOT
pair (M, N ⊎U), ignoring C.

The main difficulty is to relate the low-level conflicts-related CDCL W rules
to their high-level counterparts. My solution is to introduce an intermediate
calculus, called CDCL W merge, that combines all consecutive low-level tran-
sitions Skip, Resolve, and Jump into a single transition. This calculus refines
both CDCL W and CDCL NOT merge and is sufficiently similar to CDCL W so
that I can transfer termination and other properties from CDCL NOT merge
to CDCL W through it.

Whenever the CDCL W calculus performs a low-level sequence of transi-
tions of the form Conflict (Skip |Resolve)∗ Jump?, the CDCL W merge calculus
performs a single transition of a new rule that subsumes all four low-level
rules:

Reduce+Maybe Jump S =⇒CDCL W merge S′′

if S =⇒Conflict S′ =⇒!
Skip,Resolve, Jump S′′

34

3.2 A Refined CDCL Towards an Implementation

When simulating CDCL W merge in terms of CDCL NOT, two interesting
scenarios arise. First, Reduce+Maybe Jump’s behavior may comprise a back-
jump: The rule can be simulated using CDCL NOT merge’s Learn+Backjump
rule. The second scenario arises when the conflict clause is reduced to the
empty clause⊥, leading to a conclusive final state. Then, Reduce+Maybe Jump
has no counterpart in CDCL NOT merge. The two calculi are related as fol-
lows: If S =⇒CDCL W merge S′, either S =⇒CDCL NOT merge S′ or S is a con-
clusive state. Since CDCL NOT merge is well founded, so is CDCL W merge.
This implies that CDCL W without Restart terminates.

Since CDCL W merge is mostly a rephrasing of CDCL W, it makes sense to
restrict it to a reasonable strategy that prefers the rules Propagate and Reduce+
Maybe Jump over Decide, yielding CDCL W merge+stgy. The two strategy-
restricted calculi have the same end-to-end behavior:

S =⇒!
CDCL W merge+stgy S′ ←→ S =⇒!

CDCL W+stgy S′

3.2.5 A Strategy with Restart and Forget

I could use the same strategy for restarts as in Section 3.1.5, but I prefer
to exploit Theorem 3.10, which asserts that no relearning is possible. Since
only finitely many different duplicate-free clauses can ever be learned, it
is sufficient to increase the number of learned clauses between two restarts
to ensure termination. This criterion is the norm in many modern SAT
solvers. The lower bound on the number of learned clauses is given by an
unbounded function f :: nat ⇒ nat. In addition, I allow an arbitrary subset
of the learned clauses to be forgotten upon a restart but otherwise forbid
Forget. The calculus C+restartL that realizes these ideas is defined by the two
rules

Restart (S, n) =⇒C+restartL (S′′′, n + 1)
if S =⇒∗C S′ =⇒Restart S′′ =⇒∗Forget S′′′ and
|learned S′| − |learned S| ≥ f n

Finish (S, n) =⇒C+restartL (S′, n + 1) if S =⇒!
C S′

I formally proved that CDCL W+stgy+restartL is totally correct. Figure 3.3
summarizes the situation, following the conventions of Figure 3.1.

3.2.6 Incremental Solving

SMT solvers combine a SAT solver with theory solvers (e.g., for uninterpreted
functions and linear arithmetic). The main loop runs the SAT solver on a

35

3 Conflict-Driven Clause Learning

CDCL W
(Section 3.2.2)

CDCL NOT
merge

(Section 3.1.4)

CDCL W+
stgy

(Section 3.2.3)

CDCL W
merge

(Section 3.2.4)

CDCL W+
stgy+restartL
(Section 3.2.5)

CDCL W
merge+stgy

(Section 3.2.4)

(a) Syntactic dependencies

CDCL W
(Section 3.2.2)

CDCL NOT
merge

(Section 3.1.4)

CDCL W+
stgy

(Section 3.2.3)

CDCL W
merge

(Section 3.2.4)

CDCL W+
stgy+restartL
(Section 3.2.5)

CDCL W
merge+stgy

(Section 3.2.4)

(b) Refinements

Figure 3.3: Connections involving the refined calculi

clause set. If the SAT solver answers “unsatisfiable,” the SMT solver is done;
otherwise, the main loop asks the theory solvers to provide further, theory-
motivated clauses to exclude the current candidate model and force the SAT
solver to search for another one. This design crucially relies on incremental
SAT solving: The possibility of adding new clauses to the clause set C of a
conclusive satisfiable state and of continuing from there.

As a step towards formalizing SMT (or incremental SAT solving), I de-
signed a three-rule calculus CDCL W+stgy+incr that provides incremental
solving on top of CDCL W+stgy:

Add NonconflictC (M, N, U,⊤) =⇒CDCL W+stgy+incr S′

if M ̸⊨ ¬C and (M, N ⊎ {C}, U,⊤) =⇒!
CDCL W+stgy S′

Add ConflictC (M′LM, N, U,⊤) =⇒CDCL W+stgy+incr S′

if LM ⊨ ¬C, −L ∈ C, M′ contains no literal of C, and
(LM, N ⊎ {C}, U, C) =⇒!

CDCL W+stgy S′

I first run the CDCL W+stgy calculus on a clause set N, as usual. If N
is satisfiable, I can add a nonempty, duplicate-free clause C to the set of
clauses and apply one of the two above rules. These rules adjust the state
and relaunch CDCL W+stgy.

36

3.3 A Naive Functional Implementation of CDCL, IsaSAT-0

Theorem 3.11 (Partial Correctness incremental conclusive state □✓). If S is
conclusive and S =⇒CDCL W+stgy+incr S′, then S′ is conclusive.

The key is to prove that the structural invariants that hold for CDCL W+
stgy still hold after adding the new clause to the state. Then the proof is easy
because I can reuse the invariants I have already proved about CDCL W+
stgy.

3.2.7 Backjump and Conflict Minimization

In order to prepare the refinement to code, I slightly changed and adapted
the Jump to be able to express conflict clause minimization. It consists of
removing some literals from the conflict clause while ensuring that the clause
is still entailed by the other clauses. Typically, literals that have been deter-
mined to be false are removed from the conflict clause, because they do not
only take space in memory but do not change whether the clause can be used
to propagate a value or find a conflict. The rule with conflict minimization
is:

Jump (M′ · K† M, N, U, D ∨ L) =⇒CDCL W (LD′∨L M, N, U ⊎ {D′ ∨ L},⊤)
if L has the level of the current state, D has a lower level, D′ ⊆ D,
N ⊎U ⊨ D′ ∨ L, and D′ has the same level as K

Instead of learning the clause D ∨ L, the clause D′ ∨ L is learned, which can
be smaller.

One of the invariants on CDCL states that the analyzed clause is entailed
by the clauses, i.e. N ⊎U ⊨ N ∨ L. Therefore, the original Jump is a special
case of Jump. Minimizing the conflict clause is optional. All results described
remains true with the enhanced Jump, including the link to CDCL NOT.

3.3 A Naive Functional Implementation of CDCL,
IsaSAT-0

Sections 3.1 and 3.2 presented variants of DPLL and CDCL as parameterized
transition systems, formalized using locales and inductive predicates. I now
present a deterministic SAT solver that implements CDCL W+stgy, expressed
as a functional program in Isabelle.

When implementing a calculus, I must make many decisions regarding the
data structures and the order of rule applications. My functional SAT solver,
called IsaSAT-0, is very naive and does not feature any optimizations beyond

37

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL/CDCL_W_Incremental.html#incremental_conclusive_state
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL/CDCL_W_Incremental.html#incremental_conclusive_state

3 Conflict-Driven Clause Learning

those already present in the CDCL W+stgy calculus; in Chapter 5, I will re-
fine the calculus further to capture the two-watched-literal optimization and
present an imperative implementation relying on mutable data structures
instead of lists.

For my functional implementation, I choose to represent states by tuples
(M, N, U, D), where propositional variables are coded as natural numbers
and multisets as lists. Each transition rule in CDCL W+stgy is implemented
by a corresponding function. For example, the function that implements the
Propagate rule is given below:

definition do propagate step :: state⇒ state where
do propagate step S =
(case S of

(M, N, U,⊤)⇒
(case find first unit propagation M (N @ U) of

Some (L, C)⇒ (Propagated L C · M, N, U,⊤)
| None⇒ S)

| S ⇒ S)

The data structures are exactly those used to represent CDCL, except that
multisets have been replaced by lists. The trail is only represented by a list
of propagated or decided literals and testing the polarity of a literals is done
by iteration over the list.

The functions corresponding to the different rules are combined into a
single function that performs one step. The combinator do if not equal takes
a list of functions implementing rules and tries to apply them in turn, until
one of them has an effect on the state:

fun do cdcl step :: state⇒ state where
do cdcl step S = do if not equal [do conflict step,

do propagate step, do skip step, do resolve step,
do backtrack step, do decide step] S

The main loop applies do cdcl step until the transition has no effect, meaning
that no further CDCL transition is possible:

function do all cdclW stgy :: state⇒ state where
do all cdclW stgy S = (let S′ = do cdcl step S in

if S′ = S then S else do all cdcl stgy S′)

The main loop is a recursive program, specified using the function command
[70]. For Isabelle to accept the recursive definition of the main loop as a

38

3.4 Summary

terminating program, I must discharge a proof obligation stating that its
call graph is well founded. This is a priori unprovable: The solver is not
guaranteed to terminate if starting in an arbitrary state.

To work around this, I restrict the input by introducing a subset type
that contains a strong enough structural invariant, including the duplicate-
freedom of all the lists in the data structure. With the invariant in place, it
is easy to show that the call graph is included in the CDCL W+stgy calculus,
allowing me to reuse its termination argument. The partial correctness theo-
rem can then be lifted, meaning that the SAT solver is a decision procedure
for propositional logic.

The final step is to extract running code. Using Isabelle’s code genera-
tor [57], I can translate the program to Haskell, OCaml, Scala, or Standard
ML. The resulting program is syntactically analogous to the source program
in Isabelle, including its dependencies, and uses the target language’s facili-
ties for datatypes and recursive functions with pattern matching. Invariants
on subset types are ignored; when invoking the solver from outside Isabelle,
the caller is responsible for ensuring that the input satisfies the invariant.
The entire program is about 520 lines long in Standard ML. It is not efficient,
due to its extensive reliance on lists, but it satisfies the need for a proof of
concept.

3.4 Summary

In this chapter, I have presented my formalization of CDCL: Two accounts
have been presented and formally connected. Both presentations were for-
malized in Isabelle as abstract transition systems trying to keep some aspects
unspecified (like Decide does not specify how the literal is found). I extended
Weidenbach’s account for CDCL in two directions: First, I made it incremen-
tal. Second, I refined it to executable deterministic functional code, that can
be exported from Isabelle. This code, IsaSAT-0, featured only very naive
heuristics: propagations and conflicts were identified by iterating over all
clauses. Decisions also iterated over all clauses and stop on the first unset
literal.

The length of the formalization is about 2600 lines of shared libraries, plus
6000 lines for the formalization of CDCL [22], and 4500 lines for Nieuwenhuis
et al.’s account for CDCL [107].

I use CDCL W in two ways in the remainder of this thesis. First, I extend
it to a CDCL calculus with branch and bound (Chapter 4). This stays at
the level of a transition system. Second, I extend it towards more efficient

39

3 Conflict-Driven Clause Learning

execution by adding the two-watched-literal scheme to identify propagation
and conflict in a more efficient manner and I add more efficient heuristics
and imperative data structures (Chapters 5 and 6).

40

4 CDCL with Branch and Bound

In this chapter, I extend the formalization of CDCL presented in the pre-
vious chapter. My formalization tries to reuse as much from my previous
formalization as possible and especially tries to avoid copy-paste, thanks to
the abstractions on states developed earlier.

I introduce an optimizing CDCL, called OCDCL, based on the presentation
of Automated Reasoning (Section 4.1). Given a cost function on literals, it finds
an optimal total model. OCDCL is described as an abstract non-deterministic
transition system and has the conflict analysis for the first unique implication
point built-in. It is well suited for a formalization as its core rules are exactly
the rule of the calculus I have formalized earlier. During the formalization
I realized that an OCDCL run can also be seen as a sequence of CDCL runs
interleaved by adding new clauses. This makes it possible to reuse many
proofs form CDCL. I actually develop a framework to express CDCL exten-
sions with branch and bound, CDCLBnB. This framework is then instantiated
to get OCDCL (Section 4.2). The main idea is to consider the transitions of
CDCLBnB as special cases of CDCL transitions. This makes it possible to reuse
the proofs I have already done previously.

One limitation of OCDCL is that only optimal total models can be found.
To overcome the limitation of totality of my calculus, I use the dual rail
encoding to reduce finding a partial optimal model into a total optimal model
(Section 4.3). I also formalized this in Isabelle (Section 4.4). Formalization
and verification in proof assistants are often justified by the idea that they
can be reused and extended. This is exactly what I am doing here. In
the formalization, I eventually solve the problem of finding optimal models
with respect to the two types of valuations using the very same framework.
The OCDCL formalization amounts to around 3300 lines of proof. This is
small compared to the 2600 lines of shared libraries, plus 6000 lines for the
formalization of CDCL [22], and 4500 lines for Nieuwenhuis et al.’s account
for CDCL [107]. Thus, thirdly, I show that one of the standard arguments
supporting formal verification, the reuse of already proved results, works
out in the case of CDCL and OCDCL. The overall formalization took around
1.5 person−month of work and was easy to do. The extension to partial
valuations amounts to 1300 lines. As the formalization path is different on

41

4 CDCL with Branch and Bound

paper and in Isabelle, I distinguish the approach on paper (“Paper Proofs”
and “Paper Lemmas”) from their Isabelle counterpart (“Isabelle Lemmas”),
even if the latter is used to prove the former.

I further demonstrate the potential of reuse, by applying my framework
to two additional problems: MaxSAT [83] and covering models (Section 4.5).
First, MaxSAT considers a different optimization problem: Instead of a cost
on literals that are assigned, the cost is on clauses that are not satisfied. This
problem can be solved with OCDCL by adding new literals to the problem,
with a cost. Second, model covering tries to find a set of models such that
every literal is true in one of the models. Again the results from CDCLBnB
and the framework, respectively could be reused. The overall effort for the
two extensions was 800 and 400 lines, respectively.

Finally, I give some ideas how to extend the formalization further (Sec-
tion 4.6), either to add new rules or to restrict applications of current rules.

4.1 Optimizing Conflict-Driven Clause Learning

I assume a total cost function cost on the set of all literals Lit(Σ) over Σ into
the positive rationals, cost : Lit(Σ) → Q≥0, but my results do not depend
specifically on the non-negative rationals (including 0), e.g., they also hold for
the naturals or non-negative reals. In Isabelle, I take all values of an arbitrary
type as Lit(Σ). The cost function can be extended to a pair of a literal and a
partial valuation A by cost(L,A) := cost(L) if A |= L and cost(L,A) := 0 if
L is not defined in A. The function can be extended to (partial) valuations by
cost(A) = ∑L∈Lit(Σ) cost(A, L). I identify partial valuations with consistent
sequences M = [L1 . . . Ln] of literals. Trails are always consistent. A valuation
I is total over clauses N when all atoms of N are defined in I.

The intuition behind the extension is to have an incremental CDCL with
the usual rules as basis. The calculus is extended in two ways: First, trails
that are also models are identified as such and stored in a new component
of the state. Second, CDCL runs are pruned by adding conflict clause on the
fly, based on the best model found so far. Another way of seeing it consists
in considering the calculus as a special case of branch-and-bound algorithm:
CDCL finds a model that is stored (the branching part), while the stored
model is used to limit the depth of the search (the bounding part) by adding
conflict clauses that are subsequently analyzed by the usual CDCL rules.

The optimizing conflict-driven clause learning calculus (OCDCL) solves
the weighted SAT problem on total valuations. Compared with a normal
CDCL state, a component O is added resulting in a five tuple (M; N; U; D; O).

42

4.1 Optimizing Conflict-Driven Clause Learning

O either stores the best model so far or ⊤. I extend the cost function to ⊤ by
defining cost (⊤) = ∞ (i.e., ⊤ is the worst possible outcome). OCDCL is a
strict extension of the CDCL rules with additional rules to take the cost of
models into account. The additional component O is ignored by the original
CDCL rules.

The start state for some clause set N is (ϵ; N; ∅;⊤;⊤). The calculus
searches for models in the usual CDCL-style. Once a model is found, it
is ruled out by generating a conflict clause resulting from its negation (rule
Improve, defined below) which is then processed by the usual CDCL conflict
analysis. If a partial model M already exceeds the current cost bound, a con-
flict clause is generated (rule ConflOpt, defined below). The OCDCL calculus
always terminates by deriving the empty clause ⊥. If in this case O = ⊤,
then N was unsatisfiable. Otherwise, O contains a cost-optimal total model
for N.

The level of a literal is the number of decisions right of its atom in the trail
M. I lift the definition to clauses, by defining the level of a clause as the
maximum of the levels of its literals or 0 if it is empty.

First, there are three rules involving the last component O that implement
a branch-and-bound approach on the models:

Improve (M; N; U;⊤; O) =⇒OCDCL (M; N; U;⊤; M)

provided M |= N, M is total over N and cost(M) < cost(O).

ConflOpt (M; N; U;⊤; O) =⇒OCDCL (M; N; U;¬M; O)

provided O ̸= ⊤ and cost(M) ≥ cost(O).

Prune (M; N; U;⊤; O) =⇒OCDCL (M; N; U;¬M; O)

provided for all total trail extensions MM′ of M, cost(MM′) ≥ cost(O).

The Prune rule is not necessary for the correctness and completeness. In
practice, Prune would be an integral part of any optimizing solver where a
lower-bound on the cost of all extensions of M is maintained for efficiency.

The other rules are unchanged imports from the CDCL calculus. They
simply ignore the additional component O. The rules Propagate and Decide
extend the trail searching for a model. The rule ConflSat detects a conflict. All
three rules implement the classical CDCL-style model search until conflict or
success.

Propagate (M; N; U;⊤; O) =⇒OCDCL (LC∨L M; N; U;⊤; O)

provided C ∨ L ∈ N ∪U, M |= ¬C, L is undefined in M.

Decide (M; N; U;⊤; O) =⇒OCDCL (L† M; N; U;⊤; O)

provided L is undefined in M, contained in N.

43

4 CDCL with Branch and Bound

ConflSat (M; N; U;⊤; O) =⇒OCDCL (M; N; U; D; O)

provided D ∈ N ∪U and M |= ¬D.

Once a conflict has been found, it is analyzed to derive a new clause that
is then a first unique implication point [17].
Skip (LC∨L M; N; U; D; O) =⇒OCDCL (M; N; U; D; O)

provided D ̸∈ {⊤,⊥} and ¬L does not occur in D.

Resolve (LC∨L M; N; U; D ∨−L; O) =⇒OCDCL (M; N; U; D ∨ C; O)

provided D is of level k, where k is the number of decisions in M.

Backtrack (M2K† M1; N; U; D∨ L; O) =⇒OCDCL (LD∨L M1; N; U∪{D∨ L};
⊤; O)

provided L is of level k and D and K are of level i < k.

The typical CDCL-learned-clause mechanism in the context of searching
for (optimal) models does not apply with respect to partial valuations. Con-
sider the clause set N = {P ∨Q} and cost function cost (P) = 3, cost (¬P) =
cost (Q) = cost (¬Q) = 1. An optimal-cost model based on total valuations
is [¬P, Q] at overall cost 2, whereas an optimal-cost model based on partial
valuations is just [Q] at cost 1. The cost of undefined variables is always
considered to be 0. Now the run of an optimizing branch-and-bound CDCL
framework may start by deciding [P†] and detect that this is already a model
for N. Hence, it learns ¬P and establishes 3 as the best current bound on
an optimal-cost model. After backtracking, it can propagate Q with trail
[QP∨Q,¬P¬P] resulting in a model of cost 2 learning the clause P ∨ ¬Q. The
resulting clause set {P ∨Q,¬P, P ∨ ¬Q} is unsatisfiable and hence 2 is con-
sidered to be the cost-optimal result. The issue is that although this CDCL
run already stopped as soon as a partial valuation (trail) is a model for the
clause set, it does not compute the optimal result with respect to partial val-
uations. From the existence of a model with respect to a partial valuation [P]
I cannot conclude the clause ¬P to eliminate all further models containing P,
because P could be undefined.

Definition 1 (Reasonable OCDCL Strategy). An OCDCL strategy is reasonable
if ConflSat is preferred over ConflOpt, which is preferred over Improve, which is
preferred over Propagate, which is preferred over the remaining rules.

The idea behind preferring ConflSat over ConflOpt is simply that the latter
produces longer clauses.

Paper Lemma 4.1 (OCDCL Termination, wf ocdclW □✓). OCDCL with a reason-
able strategy terminates in a state (M; N; U;⊥; O).

44

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Optimal_Model.html#ocdcl-improve-termination
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Optimal_Model.html#ocdcl-improve-termination

4.1 Optimizing Conflict-Driven Clause Learning

Paper Proof. If the derivation started from (ϵ, N, ∅,⊤,⊤), the following func-
tion is a measure for OCDCL:

µ((M; N; U; D; O)) =

{
(3n − 1− |U|, 1, n− |M|, cost(O)) if D = ⊤
(3n − 1− |U|, 0, |M|, cost(O)) otherwise

It is decreasing for the lexicographic order. The hardest part of the proof is
the decrease when the rule Backjump is applied: 3n − 1− |U ∪ {D ∨ L}| <
3n − 1− |U| is decreasing since no clause is relearned. The proof is similar
to the one for CDCL (Theorem 3.10).

Theorem 4.2 (Correctness, full ocdclw stgy no conflicting clause from init
state □✓). An OCDCL run with a reasonable strategy starting from state (ϵ; N; ∅;
⊤; ϵ) terminates in a state (M; N; U;⊥; O). If O = ϵ then N is unsatisfiable. If
O ̸= ϵ then O |= N and for any other total model M′ with M′ |= N it holds
cost(M′) ≥ cost(O).

The rule Improve can actually be generalized to situations where M is not
total, but all literals with weights have been set.
Improve+ (M; N; U;⊤; O) =⇒OCDCL (M; N; U;⊤; MM′)

provided M |= N, the model MM′ is a total extension, cost(M) <
cost(O), and for any total extension MM′′ of the trail, it holds cost(M) =
cost(MM′′).

Paper Lemma 4.3 (OCDCL with Improve+, wf ocdclW p □✓and full ocdclW p
stgy no conflicting clause from init state □✓). The rule Improve can be replaced
by rule Improve+: All previously established OCDCL properties are preserved.

The rules ConflOpt can produce very long conflict clauses. Moreover, with-
out conflict minimization, the subsequent backtrack is only chronological, i.e.,
only the last decision literal is removed from the trail. Even with conflict
minimization, they will contain the negation of all decision literals from the
trail. It can be advantageous to generate the conflict composed of only the
literals with a non-zero weight, i.e., ¬{L ∈ M | cost L > 0} instead of ¬M.
In this case a more general Skip is required that can skip over decision: After
enough skips, the conflict will contain at least one literal of highest level mak-
ing it possible to apply the standard conflict analysis, ending with Backtrack.
As said, this is not always beneficial, e.g., the rule used in Lingeling, based
on an idea by Donald Knuth (private communication between Biere and
Knuth [12]), switches between the two options by taking the shorter clause
after the analysis of the clause.

45

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Optimal_Model.html#ocdcl-correctness
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Optimal_Model.html#ocdcl-correctness
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Optimal_Model.html#ocdcl-correctness
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Optimal_Model.html#ocdcl-improvep-termination
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Optimal_Model.html#ocdcl-improvep-termination
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Optimal_Model.html#ocdcl-improvep-correctness
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Optimal_Model.html#ocdcl-improvep-correctness
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Optimal_Model.html#ocdcl-improvep-correctness

4 CDCL with Branch and Bound

CDCL + Improve+(Section 4.2.2)CDCLBnB(Section 4.2.1)CDCL

uses to define

inherits definition and
invariants

is a run of

inherits invariants and
properties like termina-
tion

Figure 4.1: CDCLBnB, CDCL, and Incremental CDCL

The rules Restart and Forget can also be added to OCDCL with the same
well-known implications from CDCL. For example, completeness is only
preserved if the number of steps between two Restart rules is unbounded (as
described in Section 3.1.5).

4.2 Formalization of OCDCL

The formalization takes a different path in order to reuse proofs. First, I can
reuse exactly the CDCL rules and invariants to get the OCDCL rules and
invariants. This avoids defining the same concepts anew and reprove the
same lemmas.

Second, an OCDCL run can be seen as a finite sequence of CDCL runs,
separated by Improve or ConflOpt. This is very similar to the incremental
version of the calculus developed in Section 3.2.6, except that several clauses
can be added instead of a single one. I can go further with the analogy:
ConflOpt is a conflict rule, except that the clause does not appear in N or U.
Therefore, I consider a CDCL run extended with an additional set of clauses,
{¬C. cost C ≥ cost O}. With this idea, the Prune rule is now another special
case of ConflOpt. Only Improve is different: It extends the clauses, because
more models are now excluded. Figure 4.2 shows the correspondence on a
run. Figure 4.1 shows how CDCL is used twice in the formalization.

If I abstract over the additional set of clauses, by calling it T N(O), and use
a predicate is improving M M′ O to indicate that Improve can be applied, then
I obtain an abstract branch-and-bound calculus CDCLBnB (Section 4.2.1).

CDCLBnB can be seen as a generalized CDCL interleaved with adding new
clauses (Section 4.2.2). However, since it might not always be possible to cal-
culate explicitly T N(O), the calculus does not apply the reasonable strategy
for clauses in T N(O).

46

4.2 Formalization of OCDCL

The advantage of this approach is two-fold: First, I formalize a more
general calculus that can be instantiated with a different set of clauses to
obtain a different branch-and-bound CDCL. Second, and more importantly,
the resulting calculus can reuse many proofs already done on CDCL, because
it is a CDCL interleaved with adding new clauses. In particular, if applying
Improve is terminating, then CDCLBnB is also terminating, because CDCL is
also terminating.

I instantiate CDCLBnB to get a generalized version OCDCLg: The set of
clauses T N(O) is instantiated by the set {D | {¬C. cost C ≥ cost O} ⊨ D}
(Section 4.2.3). This additional set of clauses is too weak to be able to express
the rule Prune in the set of clauses. Therefore, I actually use the clauses that
are entailed by the clauses of weight larger than the optimal model found
so far, i.e. the clauses D such that {¬C | cost C ≥ cost O} ⊨ D. Finally, I
specialize OCDCLg to get OCDCL from Section 4.1 (Section 4.2.4).

4.2.1 Branch-and-Bound Calculus, CDCLBnB

I use a similar approach to my CDCL formalization with an abstract state and
selectors, except that I extend the state with a component representing infor-
mation on the optimizing branch-and-bound part of the calculus. I do not yet
specify the type of this additional component. I parameterize the calculus by
a set of clauses T N that contains the conflicting clauses that can be used by
the rules ConflOpt and Prune, and a predicate is improving M M′ O to indicate
that Improve can be applied. For weights, the predicate is improving M M′ O
means that the current trail M is a model, M′ is the information that will
be stored, and O is the currently stored information. T represents all the
clauses that are entailed. I require that:

• the atoms of T N (O) are included in the atoms of N; i.e., no new
variables are introduced.

• the clauses of T N (O) do not contain duplicate literals, because dupli-
cates are incompatible with the conflict analysis.

• if is improving M M′ O, then T N (O) ⊆ T N (M′); i.e., extending the set
of clauses is monotone.

• if is improving M M′ O, then ¬M ∈ T N (M′); i.e., the clause ¬M is
entailed by T N (M′) and can be used as conflict clause.

The rules ConflOptBnB, ImproveBnB, and BacktrackBnB are defined as follows:
ConflOptBnB (M; N; U; k;⊤; O) =⇒OCDCL (M; N; U; k;¬M; O)

47

4 CDCL with Branch and Bound

OCDCL Run Corresponding CDCL Run
(ϵ, N, ∅,⊤,⊤) (ϵ, N ∪ N0, ∅,⊤,⊤)

where N0 = ∅ and U0 = ∅
=⇒⋆

Decide (Q
†P†, N, ∅,⊤,⊤) =⇒⋆

Decide (Q
†P†, N ∪ N0, U0,⊤)

=⇒Improve (Q†P†, N, ∅,⊤, PQ) =⇒ (Q†P†, N ∪ N1, U0,⊤)
where N1 = N0 ∪ {¬P ∨ ¬Q}

=⇒ConflOpt (Q†P†, N, ∅,¬P ∨ ¬Q,
PQ)

=⇒Conflict (Q†P†, N ∪ N1,
U1,¬P ∨ ¬Q)

where U1 = {¬P ∨ ¬Q}
=⇒Backtrack ((¬Q)¬P ∨ ¬QP†, N,
{¬P ∨ ¬Q},⊤, PQ)

=⇒Backtrack (¬Q)¬P ∨ ¬QP†(, N ∪
N1, U1,⊤)

=⇒Improve ((¬Q)¬P ∨ ¬QP†, N,
{¬P ∨ ¬Q},⊤,¬PQ)

=⇒ ((¬Q)¬P ∨ ¬QP†, N ∪ N2,
U1,⊤)
where N2 = N1 ∪ {P ∨ ¬Q,
¬P ∨ Q}

=⇒ConflOpt (¬Q†P†, N, ∅, P ∨ ¬Q,
PQ)

=⇒Conflict (¬Q†P†, N ∪ N2,
U1,¬P ∨ ¬Q)

=⇒Backtrack (¬P¬P, N,
{¬P ∨ ¬Q,¬P},⊤, P¬Q)

=⇒⋆
Backtrack (¬P¬P, N ∪ N2, U2,⊤)

where U2 = U1 ∪ {¬P}
=⇒Propagate (QP∨Q¬P¬P, N,
{¬P ∨ ¬Q,¬P},⊤,¬PQ)

=⇒Propagate (QP∨Q¬P¬P, N ∪ N2,
U2,⊤)

=⇒⋆
ConflOpt+Resolve (ϵ, N,

{¬P ∨ ¬Q,¬P},⊥,¬PQ)
=⇒⋆

Conflict+Resolve (ϵ, N ∪ N2, U2,⊥)

Figure 4.2: OCDCL transitions and corresponding CDCL transitions for N =
{P ∨ Q} with cost P = cost Q = 1 and cost¬P = cost¬Q = 0
where the horizontal lines separate two successive CDCL runs,
separated by adding new clauses.

48

4.2 Formalization of OCDCL

provided ¬M ∈ T N (O)

ImproveBnB
+ (M; N; U; k;⊤; O) =⇒OCDCL (M; N; U; k;¬M; M′)

provided is improving M M′ O holds
BacktrackBnB (M2K† M1; N; U; D ∨ L; O) =⇒OCDCL (LD′∨L M1; N; U ∪
{D′ ∨ L};⊤; O)

provided L is of maximum level, D′ ⊆ D, N + U + T N (O) ⊨ D′ ∨ L, D′

and K are of same level i, and i strictly less than the maximum level
I can simply embed into my CDCL formalization the states with the

weights and reuse the previous definitions, properties, and invariants by
mapping OCDCL states (M, N, U, D, O) to CDCL states (M, N, U, D). For
example, I can reuse the Decide rule and the proofs on it. At this level,
anything can be stored in O.

Compared with the rule from Section 4.1, I make it possible to express
conflict-clause minimization: Instead of D ∨ L, a clause D′ ∨ L is learned
such that D′ ⊆ D and N + U + T N (O) ⊨ D′ ∨ L. While all other CDCL
rules are reused, the Backtrack rule is not reused for OCDCL: If I had reused
Backtrack from CDCL, only the weaker entailment N + U ⊨ D′ ∨ L would
be used. The latter version is sufficient to express conflict minimization as
implemented in most SAT solvers [134], but the former is stronger and makes
it possible for example to remove decision literals without cost from D.

I use the Improve+ rule instead of the Improve rule, because the latter is a
special case of the former. The strategy favors Conflict and Propagate over all
other rules. I do not need to favor ConflOpt over the other rules for correctness,
although doing so helps in an implementation.

4.2.2 Embedding into CDCL

In order to reuse the proofs, I did previously about CDCL, CDCLBnB is seen
as a special instance of CDCL by mapping the states (M; N; U; D; O) to the
CDCL state (M; N ∪ T N (O); U; D).

In Isabelle, the most direct solution would be to instantiate the CDCL cal-
culus with a selector returning N + T N (O) instead of just N. For technical
reasons, I cannot do so: This confuses Isabelle, because it leads to dupli-
cated theorems and notations.1 Instead, I add an explicit conversion from
(M; N; U; D; O) to (M; N + T N (O); U; D) and consider CDCL on tuples of
the latter.

Except for the Improve rule, every OCDCL rule can be mapped to a CDCL
rule: The ConflOptBnB rule corresponds to the Conflict rule (because it can

1The command inductive cases and the tactic auto stopped working.

49

4 CDCL with Branch and Bound

pick a clause from T N (O)) and the extended Backtrack rule is mapped to
CDCL’s Backtrack. On the other hand, the Improve rule has no counterpart
and requires some new proofs, but adding clauses is compatible with the
CDCL invariants.

In my formalization, I distinguish the structural from the strategy-specific
properties. The strategy-specific properties ensure that the calculus does not
get stuck in a state where I cannot conclude on the satisfiability of the clauses.
The strategy-specific properties do not necessarily hold: The clause ⊥ might
be in T N (O) without being picked by the ConflOptBnB rule. However, I
can easily prove that they hold for CDCLBnB and I can reuse the proof I have
already done for most transitions. To reuse some proofs on CDCL’s Backtrack,
I generalized some proofs by removing the assumption N + U ⊨ D′ ∨ L′

when not required. This is the only change I did on the formalization of
CDCL.

Not all transitions of CDCL can be taken by OCDCL: Propagating of
clauses in T N (O) is not possible. The structural properties are sufficient
to prove that OCDCL is terminating as long as Improve+ can be applied
only finitely often, because the CDCL calculus is terminating. At this level,
Improve+ is too abstract for us to prove that it terminates. With the additional
assumptions that Improve can always be applied when the trail is a total
model satisfying the clauses (if one exists), I show that the final set of clauses
is unsatisfiable.

Theorem 4.4 (CDCLBnB Termination, wf cdcl bnb □✓). If Improve is well founded,
then CDCLBnB is also well founded.

Theorem 4.5 (CDCLBnB Termination, full cdcl bnb stgy no conflicting clss
unsat □✓and no step cdcl bnb stgy empty conflict □✓). If Improve can be applied
when all literals are set in the trail M and M ⊨ N + U, then a run terminates in a
state (M′, N, U,⊥, O) and the resulting set of clauses is unsatisfiable.

4.2.3 Instantiation with weights, OCDCLg

Finally, I can instantiate the CDCLBnB framework with weights and save the
best current found model in O. I assume the existence of a cost function that
is monotone with respect to inclusion:

locale cost =
fixes cost :: ′v literal multiset⇒ ′c
assumes ∀C. consistent interp B ∧ distinct mset B ∧ A ⊆ B −■→

cost A ≤ cost B

50

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Optimal_Model.html#wf_cdcl_bnb
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Optimal_Model.html#wf_cdcl_bnb
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Optimal_Model.html#full_cdcl_bnb_stgy_no_conflicting_clss_unsat
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Optimal_Model.html#full_cdcl_bnb_stgy_no_conflicting_clss_unsat
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Optimal_Model.html#full_cdcl_bnb_stgy_no_conflicting_clss_unsat
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Optimal_Model.html#no_step_cdcl_bnb_stgy_empty_conflict
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Optimal_Model.html#no_step_cdcl_bnb_stgy_empty_conflict

4.2 Formalization of OCDCL

I assume that the function cost is monotone with respect to inclusion
for consistent duplicate-free models. This is natural for trails, which by
construction do not contain duplicates. The monotonicity is less restrictive
than the condition from Section 4.1, which mandates that the cost is a sum
over the literals. I take

T N(O) = {C | atom(C) ⊆ atom(N)

∧ C is not a tautology nor contains duplicates
∧ {−D | cost (D) ≥ cost (O)} ⊨ C}}

is improving M M′ O↔ M′ is a total extension of M, M ⊨ N,
any total extensions of M has the same cost, and
cost M < cost O

and then discharge the assumptions over it.
OCDCLg inherits from the invariants from CDCLBnB. For termination, I

only have to prove that Improve+ terminates to reuse the proof I already made
on CDCLBnB. The key property of OCDCLg is the following:

Isabelle Lemma 4.6 (entails too heavy clauses too heavy clauses □✓). If I is a
total consistent model of N, then either cost (I) ≥ cost (O) or I is a total model of
N ∪ T N (O).

Proof. Assume cost (I) < cost (O). First, I show that I ⊨ {−C | cost (C) ≥
cost (O)}. Let D be a clause of {−C | cost (C) ≥ cost (O)}. C is not a subset
of I (by monotonicity of cost, cost (I) ≥ cost (C)). Therefore, there is at least
a literal L in C such that −L in I. Hence I ⊨ C.

By transitivity, since I is total, I is also a model of T N (O) and therefore of
N ∪ T N (O).

This is the proof that breaks if partial models are allowed: Literals of D
might not be defined. Some additional proofs are required to specify the
content of the component O. First, the sequence of literals O is always a total
consistent model. This property cannot be inherited from the correctness of
CDCL, because it does not express any property about the component O.

4.2.4 OCDCL

Finally, I can refine the calculus to precisely the rules expressed in Section 4.1.
I define two calculi: one with only the rule Improve, and the other with both
Improve+ and Prune. In both cases, the rule ConflOpt is only applied when

51

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Optimal_Model.html#ocdcl-entails-conflicting
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Optimal_Model.html#ocdcl-entails-conflicting

4 CDCL with Branch and Bound

cost (M) > cost (O) and is therefore a special case of ConflOptBnB. The Prune
rule is also seen as a special case of ConflOptBnB. Therefore, every transition
is also a transition of OCDCLg. Moreover, since final states of both calculi are
the same, a completed run of OCDCL is also a completed run of OCDCLg.
Therefore, the correctness theorem can be inherited.

Overall, the full formalization was easy to do, once I got the idea how to see
OCDCL as a special case of a sequence CDCL runs without strategy. Formal-
izing a changing target is different than an already fixed version calculus: I
had to change my formalization several times to take into account additional
rules: The Prune rule requires to use {D | {−C | cost (C) ≥ cost (O)} ⊨ D},
while the set of clauses {−C | cost (C) ≥ cost (O)} is sufficient for Improve+.

4.3 Optimal Partial Valuations

To reduce the search from optimal partial valuations to optimal total valua-
tions, I use the dual rail encoding [32, 114]. For every proposition variable P,
it creates two variables P1 and P0 indicating that P is defined positively or
negatively. Adding the clause ¬P1 ∨ ¬P0 ensures that P is not defined posi-
tively and negatively at the same time. The resulting set is called penc (N).

More precisely, the encoding penc is defined on literals by penc(P) := (P1),
penc(¬P) := (P0), and lifted to clauses and clause sets by penc(L1 ∨ · · · ∨
Ln) := penc(L1) ∨ · · · ∨ penc(Ln), and, penc(C1 ∧ · · · ∧ Cm) := penc(C1) ∧
· · · ∧ penc(Cm). I call Σ′ the set of all newly introduced atoms.

The important property of this encoding is that ¬P1 does not entail P0: If
P is not positive, it does not have to be negative either.

Given the encoding penc(N) of N the cost function is extended to a valua-
tion A′ on Σ ∪ Σ′ by cost′(A′) = cost

({
P | P1 ∈ A′

}
∪
{
−P | P0 ∈ A′

})
.

Let

pdec (A) : P 7→

1 if A(P1) = 1
0 if A(P0) = 1
unset otherwise

,

be a function that transforms a total model of penc (N) into a model of N
and pdec− (A) does the opposite transformation, with pdec− (A)(P1) = 1 if
A(P) = 1, pdec− (A)(P1) = 0 if A(P) = 0, pdec− (A)(P0) = 1 if A(P) = 0,
pdec− (A)(P0) = 0 if A(P) = 1, unset otherwise.

Paper Lemma 4.7 (Partial and Total Valuations Coincide Modulo penc, penc
ent postp □✓and penc ent upostp □✓). Let N be a clause set.

52

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Partial_Encoding.html#ocdcl-enc-postp-model
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Partial_Encoding.html#ocdcl-enc-postp-model
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Partial_Encoding.html#ocdcl-enc-postp-model
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Partial_Encoding.html#ocdcl-enc-upostp-model
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Partial_Encoding.html#ocdcl-enc-upostp-model

4.4 Formalization of the Partial Encoding

1. If A |= N for a partial model A then pdec− (A) |= penc(N);

2. If A′ |= penc(N) for a total model A′, then pdec (A′) |= N.

Paper Lemma 4.8 (The Encoding penc Preserves Cost Optimal Models, full
encoding OCDCL correctness □✓). Let N be a clause set and cost a cost function
over literals from N. If A′ is a cost-optimal total model for penc(N) over cost′,
resulting in cost′(A′) = m, then the partial model pdec (A′) is cost-optimal for N
and cost(pdec (A′)) = m.

Proof. Assume there is a partial model A for N with cost(A) = k. The model
pdec−A is another model of N. As A′ is cost optimal, cost′(pdec− (A)) ≥
cost′(A′). Moreover, cost′(pdec (A′)) = cost(A′) and cost′(pdec (A)) =
cost(A). Ultimately, A is not better than A′ and A′ has cost m.

penc(N) contains |N| + |Σ| clauses. Recall that for n propositional vari-
ables there are 2n total valuations and 3n partial valuations.

Non-Machine-Checked Lemma 4.9 (OCDCL on the Encoding). Consider a
reasonable CDCL run on penc(N). If rule Decide is restricted to deciding either
P1 or P0 for any propositional variable, and ConflOpt only considers the decision
literals out of M as a conflict clause, then OCDCL performs at most 3n Backtrack
steps.

Paper Proof. Using the strategy on P1 or P0 there are exactly three combina-
tions that can occur on a trail: a decision P1 and ¬P0 by propagation, or the
other way round, or ¬P1 and ¬P0. In summary, for each propositional vari-
able, a run considers at most 3 cases, overall 3n cases for n different variables
in N.

4.4 Formalization of the Partial Encoding

In Isabelle, total valuations are defined by Herbrand interpretations, i.e., a
set of all true atoms (all others being implicitly false) [125], but I work on
partial models for CDCL, because they are similar to a trail. To reason on
total models, I have defined a predicate to indicate whether a model is total
or not. I distinguish between literals that can have a weight ∆Σ from the
others (Σ \ ∆Σ) that can be left unchanged by the encoding.

The proofs are very similar to the proofs described in Section 4.3. I instan-
tiate the OCDCL calculus with the cost′ function:

interpretation OCDCL where cost = cost′

53

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Partial_Encoding.html#ocdcl-partial-enc-correctness
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Partial_Encoding.html#ocdcl-partial-enc-correctness
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Partial_Encoding.html#ocdcl-partial-enc-correctness

4 CDCL with Branch and Bound

I have to prove the proof obligation that cost′ is monotone.
Finally, I can prove the correctness Theorem 4.8. The formalization is

800 lines long for the encoding, and 500 additional lines to restrict Decide.
I have not yet formalized the complexity bound of 3n of Lemma 4.9. So

far, I have only verified the correctness of the variant of ConflOpt. It can be
seen as a special case of conflict analysis and backtrack thanks to conflict
minimization:

(M1K† M2, N, U,¬(M1K† M2)) =⇒⋆
Resolve (M1K†, N, U,¬(M1K†))

=⇒⋆
Backtrack (M1¬KD′ , N, U ∪ {D′},⊤)

where D′ is the negation of the decisions of M1K† and M2 does not contain
any decision. If there are no decisions in the trail, I set the conflict to ⊥.

I have verified a weaker version of the theorem, namely one about ODPLL.
To do so, I first formalized a DPLLBnB. It was much easier than CDCLBnB,
because the ivariants are easier to manipulate. After that, I instantiated it
with weight as done here. Unlike the DPLL from Section 3.2.1 whene no
strategy is required, I have to favor propagations over decisions but there is
no need to favor backtracking over decisions.

Isabelle Lemma 4.10 (OCDCL on the Encoding, ODPLL complexity □✓). Con-
sider a reasonable ODPLL run on penc(N). If rule Decide is restricted to deciding
either P1 or P0 for any propositional variable, then ODPLL performs at most 3n

Backtrack steps.

Proof. The model generated by the decisions in the trail are not repeated as
one literal is flipped by backtrack.

Using the strategy on P1 or P0 there are exactly three combinations that
can occur as decisions on a trail: none of them, a decision P1 and ¬P0 by
propagation, or the other way round.

In summary, for each propositional variable, a run considers at most 3
cases, overall 3n cases for n different variables in N.

Lifting the first part of the argument to OCDCL is not obvious, because
a backjump to level zero is very similar to a restart, subsequently making it
possible to repeat parts of the decisions from the trail.

4.5 Solving Further Optimization Problems

In this section I show two applications of OCDCL. First, it can used to solve
MaxSAT (Section 4.5.1) by adding new variables to the problem. Instead of
considering the weight of literals, the weight of clauses is considered.

54

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/DPLL_W_Partial_Encoding.html#ODPLL-complexity
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/DPLL_W_Partial_Encoding.html#ODPLL-complexity

4.5 Solving Further Optimization Problems

Second, I apply my CDCLBnB framework to another problem, model cover-
age (Section 4.5.2). Both extensions are verified using Isabelle.

4.5.1 MaxSAT

The maximum satisfiability problem (MaxSAT) is a well-known optimization
problem [83]. It consists of two clause sets NH (hard constraints, mandatory
to satisfy) and NS (soft constraints, optional to satisfy). The set NS comes
with a cost function for clauses that are not satisfied. The aim is to find a
total model of NH with minimal cost.

Theorem 4.11 (Reduction of MaxSAT to OCDCL, partial max sat is weight
sat □✓). Let (NH, NS, cost) be a MaxSAT problem and let active : NS → Σ′ be an
injective and surjective mapping for a set Σ′ of fresh propositional variables that
assigns to each soft constraint an activation variable.

Let I be the solution found by OCDCL problem N = NH ∪ {active(C)∨C | C ∈
NS} with the cost function cost′(L) = cost(C) if active(C) = L for some C ∈ NS
and cost′(L) = 0 otherwise.

If there is no model I of N, the MaxSAT problem has no solution. Otherwise, I
without the additional atoms from Σ′ is an optimal solution to the MaxSAT problem.

Proof. • NH is satisfiable iff MaxSAT has a solution. Therefore, if there is
no model I of N, then NH is unsatisfiable.

• Let I′ = {L | L ∈ I ∧ atom(L) ̸∈ Σ′}. Let J be any other model of
(NH ∪ NS) and J′ its total extension to Σ′: J′ = J ∪ {active(C) | C ∈
NS ∧ J ⊭ C} ∪ {¬active(C) | C ∈ NS ∧ J ⊨ C} to N.

J′ satisfies NH and is a total consistent model of N. Hence, cost′ (J′) ≥
cost (I), because I is the optimal model of N. By definition, cost′ (I) =
cost (I′) and cost′ (J) = cost (J′). Therefore, I is an optimal MaxSAT
model.

4.5.2 A Second Instantiation of CDCLBnB: Model Covering

My second example demonstrates that my framework can be applied beyond
OCDCL. I consider the calculation of covering models. Again this is mo-
tivated by a product configuration scenario where a propositional variable
encodes the containment of a certain component in a product. For product
testing, finding a bucket of products is typically required such that every
component occurs at least once in the bucket. Translated into propositional
logic: given a set N of clauses I search for a set of models M such that for

55

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_MaxSAT.html#ocdcl-maxsat
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_MaxSAT.html#ocdcl-maxsat
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_MaxSAT.html#ocdcl-maxsat

4 CDCL with Branch and Bound

each propositional variable P occurring in N, M ⊨ P for at least one M ∈ M
or there is no model of N such that P holds.

In order to solve the model covering problem, I define a domination rela-
tion: A model is dominated if there is another model that contains the same
true variables and some others. More formally, if I and J are total models
for N, then I is dominated by J if {P | I ⊨ P} ⊆ {Q | J ⊨ Q}. In the context
of Horn clauses, this is written as I < J (Horn clauses have a minimal model
unlike clauses in general). If a total model is dominated by a model already
contained inM, then it is not required in a solution. The extension to CDCL
are the two additional rules:

ConflCM (M; N; U;⊤;M) =⇒MCCDCL (M; N; U;¬M;M)

provided for all total extensions MM′ with MM′ |= N, there is an I ∈ M
which dominates MM′.

Add (M; N; U; k;⊤;M) =⇒MCCDCL (M; N; U; k;⊤;M∪{M})
provided M |= N, all literals from N are defined in M and M is not

dominated by a model inM.

The full calculus called MCCDCL calculus does not necessarily compute
a minimal set of covering models. Minimization is a classical NP-complete
problem [68] and can then be done in a second step. The minimal model
covering can be computed by creating another CDCL extension, where the
set M is explicitly added as a component to a state and used for a branch-
and-bound optimization approach, similar to OCDCL [91]. This calculus
is another instance of CDCLBnB. In the formalization, I instantiate CDCLBnB
with

T N(M) = {C | atom(C) ⊆ atom(N)

∧ C is not a tautology nor contains duplicates
∧ {−D | is dominatingM D, total} ∪ N ⊨ C}

is improving M M′M↔ M = M′ and M ⊨ N
and M is not dominated byM
and M is consistent, total, duplicate free

Compared with OCDCL, T N(∅) is never empty, because it contains at least
the clause set N.

Theorem 4.12 (MCCDCL Correctness, cdclcm correctness □✓). If the clauses in
N do not contain duplicated literals, then an MCCDCL starting from (ϵ, N, ∅,⊤, ∅)

56

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Covering_Models.html#cdclcm-correctness
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/CDCL_Extensions/CDCL_W_Covering_Models.html#cdclcm-correctness

4.6 Extending CDCL

and in a state (ϵ, N, U,⊥,M), and for every variable P in N, there is a model M
of N, M ∈ M, where M ⊨ P, or there is no model satisfying both P and N.

The proof involves a lemma similar to Lemma 4.6: Every model is domi-
nated by a model inM or is still a model of N ∪ T N(M).

4.6 Extending CDCL

Over this chapter I have described one extension of CDCL, namely CDCLBnB.
In this section, I briefly describe how to extend my CDCL formalization with
new rules or new transitions. The simplest way consists in restricting the
rules, like required for decision (Section 4.2). I will also give some ideas how
to do extend CDCL (Section 4.6.2).

4.6.1 Restricting CDCL or Adding Shortcuts

Restricting rules or adding rules that combine several other rules tends to be
reasonably easy. The idea is to show that the behavior is one of the behaviors
that were previously possible (if S =⇒+

CDCL W′
T where =⇒+ is the transitive

closure of =⇒, then S =⇒+
CDCL W T) and the final states are the same (by

contraposition, if S =⇒CDCL W T, then ∃T. S =⇒∗
CDCL W′

T). For example,
a restriction of Decide is done in Section 4.2, and the Jump rule without
the conflict minimization, which is a special case of Jump with it (this was
used in the naive implementation of IsaSAT of Section 3.3). In this case, the
following stronger version holds: if S =⇒CDCL W′ T, then S =⇒CDCL W T.
The termination proof can be inherited.

Recall that one of the invariants of CDCL is that all atoms of the problem
have to appear in the set of initial clauses. It is not possible to add a literal
only to the learned clauses. In some cases, in order to prove that the required
invariants remain true for the new rules, it might be necessary to extract the
proofs that are currently inlined. The proofs corresponds to the file with
name CDCL W*.thy in the repository [48].

4.6.2 More General Rules

How to add rules to a CDCL variant and prove correctness depends on the
considered extension, but here are some ideas: In some cases, it might be
possible to simulate a new rule with restart, adding clauses or doing some
transformation, then followed by applying the usual CDCL rules. This could
be useful, for example, in an SMT solver [107], if the theory solver provides

57

4 CDCL with Branch and Bound

a clause that should be used to justify a propagation: With a restart (trail: ϵ),
followed by adding the clause and the reuse of the trail, it is possible to get
back exactly to the point where the propagation takes place. Interestingly,
this shows the connection between Restart and Backjump: The latter can be
simulated by running the first, followed by several propagations and deci-
sions to go back to the position where the learned clause can be propagated.
In this case, the termination proof must be adapted.

4.7 Summary

I have presented here a framework for CDCL with branch and bound, called
CDCLBnB. The OCDCL formalization amounts to around 3300 lines of proof.
The extension to partial valuations amounts to 1300 lines.

I have instantiated it to find optimal models (CDCL) and to find a set of
covering models. The formalization fits nicely into the framework I have
previously developed and the abstraction I have used in Isabelle to simplify
reuse and study variants and extensions.

I have also used the dual rail encoding to reduce the search of optimal
models with respect to partial valuations to the search of optimal models
with respect to total valuations.

58

5 The Two-Watched-Literal Scheme

A crucial optimization in modern SAT solvers is the two-watched-literal [102,
149] data structure. It allows for efficient unit propagation and conflict
detection—the core CDCL operations. It is much more efficient than my func-
tional implementation described in Section 3.3 that iterates over all clauses
to find them. I introduce an abstract transition system, called TWL, that cap-
tures the essence of a SAT solver with this optimization as a nondeterministic
transition system (Section 5.2). Weidenbach’s book draft only presents the
main invariant, without a precise description of the optimization and in-
variants, like the reordering in the learned clause, used in most modern
implementations I enrich the invariant based on MiniSat’s [43] source code
and prove that it is maintained by all transitions.

I refine the TWL calculus in several correctness-preserving steps. The step-
wise refinement methodology enables me to inherit invariants, correctness,
and termination from previous refinement steps. The first refinement step
implements the rules of the calculus in a more algorithmic fashion, using
the nondeterministic programming language provided by the Isabelle Refine-
ment Framework [74] (Section 5.3). The next step refines the data structure:
Multisets are replaced by lists, and clauses justifying propagations are repre-
sented by indices into a list of clauses (Section 5.4). A key ingredient for an
efficient implementation of watched literals is a data structure called watch
lists. These index the clauses by their two watched literals—literals that can
influence their clauses’ truth value in the solver’s current state. Watch lists
are introduced in a separate refinement step (Section 5.5).

Next, I use the Sepref tool [73] to synthesize imperative code for a func-
tional program, together with a refinement proof. Sepref replaces the abstract
functional data structures by concrete imperative implementations, while
leaving the algorithmic structure of the program unchanged. Isabelle’s code
generator can then be used to extract a self-contained SAT solver in impera-
tive Standard ML (Section 5.6). Finally, to obtain reasonably efficient code,
I need to implement further optimizations and heuristics (Section 5.7). In
particular, the literal selection heuristic is crucial. I use variable move to
front [15] with phase saving [119].

To measure the gap between my solver, IsaSAT-17, and the state of the art,

59

5 The Two-Watched-Literal Scheme

I compare IsaSAT’s performance with four other solvers: one of the leading
solver Glucose [1]; the well-known MiniSat [43]; the OCaml-based DPT;1

and the most efficient verified solver I know of, versat [112] (Section 5.8).
Although my solver is competitive with versat, the results are sobering.

5.1 Code Synthesis with the Isabelle Refinement
Framework

The Isabelle Refinement Framework approach is at the core of my approach:
I start from a transition system that includes the two-watched-literal scheme.
From there, I refine it by changing data structure and defining heuristics, be-
fore synthesizing imperative code. I describe how to express Isabelle function
in the nondeterminism monad (Section 5.1.1), refine them to imperative code
(Section 5.1.2), and generate code (Section 5.1.3). One issue is the interaction
between the Isabelle Refinement Framework and locales (Section 5.1.4).

5.1.1 Isabelle Refinement Framework

The Isabelle Refinement Framework [74] provides definitions, lemmas, and
tools that assist in the verification of functional and imperative programs via
stepwise refinement [146]. The framework defines a programming language
that is built on top of a nondeterminism monad. A program is a function
that returns an object of type ′a nres:

datatype ′a nres = FAIL | RES (′a set)

The set X in RES X specifies the possible values that can be returned. The
return statement is defined as a constant RETURN x = RES {x} and specifies
a single value, whereas RES {n | n > 0} indicates that an unspecified positive
number is returned. The simplest program is a semantic specification of the
possible outputs, encapsulated in a RES constructor. The following running
example is a nonexecutable specification of the function that subtracts 1 from
every element of the list xs (with 0− 1 defined as 0 on natural numbers):

definition sub1 spec :: nat list⇒ nat list nres where
sub1 spec xs = RETURN (map (λx. x− 1) xs)

Program refinement uses the same source and target language. The refine-
ment relation ≤ is defined by RES X ≤ RES Y ←→ X ⊆ Y and r ≤ FAIL for

1http://dpt.sourceforge.net/

60

http://dpt.sourceforge.net/

5.1 Code Synthesis with the Isabelle Refinement Framework

all r. For example, the concrete program RETURN 2 refines (≤) the abstract
program RES {n | n > 0}, meaning that all concrete behaviors are possible in
the abstract version. The bottom element RES {} is an unrefinable program;
the top element FAIL represents a run-time failure (e.g., a failed assertion) or
divergence.

Refinement can be used to change the program’s data structures and algo-
rithms, towards a more deterministic and usually more efficient program for
which executable code can be generated. I can refine the previous specifica-
tion to a program that uses a ‘while’ loop:

definition sub1 imp :: nat list⇒ nat list nres where
sub1 imp xs = do {
(i, zs)← WHILET (λ(i, ys). i < |ys|)
(λ(i, ys). do {

ASSERT (i < |ys|);
let zs = list update ys i ((ys ! i)− 1);
RETURN (i + 1, zs)

})
(0, xs);

RETURN zs
}

The program relies on the following constructs. The ‘do’ is a Haskell-inspired
syntax for expressing monadic computations (here, on the nondeterminism
monad). The WHILET combinator takes a condition, a loop body, and a start
value. In my example, the loop’s state is a pair of the form (i, ys). The T

subscript in the combinator’s name indicates that the loop must not diverge.
Totality is necessary for code generation. The ASSERT statement takes an
assertion that must always be true when the statement is executed. Finally,
the xs ! i operation returns the (i + 1)st element of xs, and list update xs i y
replaces the (i + 1)st element by y.

To prove the refinement lemma sub1 imp xs ≤ sub1 spec xs, I can use
the refine vcg proof method provided by the Refinement Framework. This
method heuristically aligns the statements of the two programs and generates
proof obligations, which are passed to the user. If the abstract program has
the form RES X or RETURN x, as is the case here, refine vcg applies Hoare-
logic-style rules to generate the verification conditions. For my example,
two of the resulting proof obligations correspond to the termination of the
‘while’ loop and the correctness of the assertion. I can use the measure
λ(i, ys). |ys| − i to prove termination.

61

5 The Two-Watched-Literal Scheme

The goals generated by refine vcg are often easy to discharge with standard
Isabelle tactics, but they may also point to missing lemmas or invariants. The
primary technical challenge during proof development is to handle cases
where the verification condition generator fails to properly align the pro-
grams and generates nonsensical, and usually unprovable, proof obligations.
In some cases, the tool generates error messages, but these are often cryptic.
Another hurdle is that refinement proof goals can be very large, and the
Isabelle/jEdit graphical interface is painfully slow at displaying them. I sus-
pect that this is mostly due to type annotations and other metainformation
available as tooltip, positioning of line breaks, and syntax highlighting.

In a refinement step, I can also change the types. For my small program,
if I assume that the natural numbers in the list are all nonzero, I can replace
them by integers and use the subtraction operation on integers (for which
0− 1 = −1 ̸= 0). The program remains syntactically identical except for the
type annotation:

definition sub1 imp int :: int list⇒ int list nres where
sub1 imp int xs = ⟨same body as sub1 imp⟩

I want to establish the following relation: If all elements in xs :: nat list
are nonzero and the elements of ys :: int list are positionwise numerically
equal to those of xs, then any list of integers returned by sub1 imp int ys is
positionwise numerically equal to some list returned by sub1 imp xs. The
framework lets me express preconditions and connections between types
using higher-order relations called relators:

(sub1 imp int, sub1 imp)
∈ [λxs. ∀i ∈ xs. i ̸= 0] ⟨int of nat rel⟩list rel→ ⟨⟨int of nat rel⟩list rel⟩nres rel

The relation int of nat rel :: (int× nat) set relates natural numbers with their
integer counterparts (e.g., (5 :: int, 5 :: nat) ∈ int of nat rel). The syntax of
relators mimics that of types; for example, if R is the relation for ′a, then
⟨R⟩list rel is the relation for ′a list, and ⟨R⟩nres rel is the relation for ′a nres.
The ternary relator [p] R→ S, for functions ′a⇒ ′b, lifts the relations R and
S for ′a and ′b under precondition p.

The theorem can also be written:

(∀i ∈ xs. i ̸= 0) ∧ (xs′, xs) ∈ ⟨int of nat rel⟩list rel =⇒
sub1 imp int xs′ ≤ ⇓⟨int of nat rel⟩list rel(sub1 imp xs)

The Refinement Framework uses both versions: The former version is used
when synthesizing code, while the latter is used for every other purpose.
Therefore, I have some theorems that transform the first version to the later.

62

5.1 Code Synthesis with the Isabelle Refinement Framework

5.1.2 Sepref and Refinement to Imperative HOL

The Imperative HOL library [33] defines a heap monad that can express im-
perative programs with side effects. The monad has type ′a Heap where the
result of a function has type ′a that ′a must be a countable type.

On top of Imperative HOL, a separation logic, with assertion type assn,
can be used to express relations ′a⇒ ′b⇒ assn between plain values, of type
′a, and data structures on the heap, of type ′b. For example, array assn R ::
′a list ⇒ ′b array ⇒ assn relates lists of ′a elements with mutable arrays
of ′b elements, where R :: ′a ⇒ ′b ⇒ assn is used to relate the elements.
The relation between the ! operator on lists and its heap-based counterpart
Array.nth can be expressed as follows:(

(λ(xs, i). Array.nth xs i), (λ(xs, i). RETURN (xs ! i))
)

∈ [λ(xs, i). i < |xs|] (array assn R)k × nat assnk → R

The arguments’ relations are annotated with k (“keep”) or d (“destroy”) su-
perscripts that indicate whether the previous value can still be accessed after
the operation has been performed. Reading an array leaves it unchanged,
whereas updating it destroys the old array.

The Sepref tool automates the transition from the nondeterminism monad
to the heap monad. It keeps track of the values that are destroyed and en-
sures that they are not used later in the program. Given a suitable source
program, it can automatically generate the target program and proves the
corresponding refinement lemma automatically. The main difficulty is that
some low-level operations have side conditions, which I must explicitly dis-
charge by adding assertions at the right points in the source program to
guide Sepref.

The following command generates a heap program called sub1 imp code
from the source program sub1 imp int:

sepref definition sub1 imp code is
sub1 imp int :: [λ .True] (array assn nat assn)d →

array assn nat assn
by sepref

The generated array-based program is

sub1 imp code xs = do {
(i, zs)← heap WHILET (λ(i, ys). do { zs← Array.len ys;

return (i < zs) })
(λ(i, ys). do {

63

5 The Two-Watched-Literal Scheme

z← Array.nth ys i − 1;
zs← Array.upd ys i z;
return (i + 1, zs) })

(0, xs);
return zs
}

The Refinement Framework provides a way to compose all the specifications.
The end-to-end refinement theorem, obtained by composing the refinement
lemmas, is

(sub1 imp code, sub1 spec)
∈ [λxs. ∀i ∈ xs. i ̸= 0] (array assn int of nat assn)d →

array assn int of nat assn

5.1.3 Code Generation of Imperative Programs

If I want to execute the program efficiently, I can translate it to Standard
ML using Isabelle’s code generator [57]. The following imperative code,
including its dependencies, is generated (in slightly altered form):

fun sub1_imp_code xs = (fn () =>

let

val (i, zs) =

heap_WHILET

(fn (i, ys) => fn () => i < len heap_int ys)

(fn (i, ys) => fn () =>

let val z = nth heap_int ys i - 1 in

(i + 1, upd heap_int i z ys) end)

(0, xs) ();

in zs end);

The ML idiom (fn () => . . .) () is inserted to delay the evaluation of the
body, so that the side effects occur in the intended order, although some
of them are removed during code generation. For example, the condition
without any simplification is generated as

(fn (a1, a2) =>

(fn f => fn () => f ((len heap_int a2) ()) ())

(fn x_a => (fn () => (less_nat a1 x_a))))

Code generation in Isabelle is built around a mapping from Imperative
HOL operations to concrete code in the target language. This mapping is

64

5.1 Code Synthesis with the Isabelle Refinement Framework

composed of code equations translating code and the correctness of the map-
ping cannot be verified in Isabelle. For example, accessing the n-th element
of an Imperative HOL array is mapped to accessing the n-th elements of the
target language (e.g., nth in the code above which maps around Array.sub).
These equations are the trusted code base. They cannot be proved correct with-
out a full semantics of the target language and a compiler in Isabelle from
Isabelle’s language to this language.

5.1.4 Sepref and Locales

Using Sepref and locales (either to add assumptions axioms or additional
constants) is not obvious, but there is also a documented way of doing it.
Code synthesis in locales is more complicated than normal code synthesis,
because otherwise, the assumptions of the locale would also be assumptions
on the definition, making code generation from Isabelle impossible, because
the code generator cannot discharge that the assumptions of the definition
hold. The standard idiom is the following:

locale X
begin

sepref register sub1 imp

sepref thm sub1 imp refined is
PR CONST sub1 imp int

:: [λ .True] (array assn nat assn)d → array assn nat assn
by sepref

concrete definition (in −) sub1 imp code
uses X.sub1 imp refined.refine raw
is (? f ,) ∈

prepare code thms (in −) sub1 imp code def
end

The command sepref thm is similar to sepref definition but does not intro-
duce a new definition: It simply synthesizes the code and proves the refine-
ment relation (here under the name sub1 imp refined). concrete definition
is the command in charge of creating the definition with the key difference
that this is done outside the locale: The Isabelle command (in −) locally ex-
its the locale. After that, prepare code thms takes care of some additional
code setup to be able to generate code. The latter is not necessary when the
synthesis does nat happen inside a locale.

65

5 The Two-Watched-Literal Scheme

There are two additional complications: First, the constant PR CONST
(defined to be simply the identity) is used for technical reasons to protect
functions to synthesize, if the functions depends on parameters of the locale.2

More precisely, assume that the locale X depends on some parameter N. This
is emulated by Isabelle by having the constant X.sub1 imp taking N as first
parameter. Sepref normalizes a call to sub1 imp (inside the locale) to the call
(outside of the locale) PR CONST (X.sub1 imp N). PR CONST makes sure
that (X.sub1 imp N) are considered together and N is not considered as an
argument. Second, exiting the locale can become complicated and requires
additional (sometimes very fragile) proofs.

5.2 Watched Literals

The two-watched-literal (2WL or TWL) scheme [102] is a data structure that
makes it possible to efficiently identify candidate clauses for unit propagation
and conflict. In each nonunit clause (i.e., a clause with at least two literals), I
distinguish two watched literals; the remaining literals are unwatched. Initially,
any of a nonunit clause’s literals can be chosen to be watched. The solver
maintains the following 2WL invariant for each clause:

Unless a conflict has been found, a watched literal may be false only if
the other watched literal is true and all the unwatched literals are false.

This is the invariant given by Weidenbach. It is inspired by MiniSat’s code. A
consequence of this invariant is that setting an unwatched literal will never
yield a candidate for propagation or conflict. This can dramatically reduce
the number of candidate clauses to consider.

For each literal L, the clauses that contain a watched L are chained together
in a list, called a watch list. When a literal L becomes true, the solver needs to
iterate only through the watch list for −L to find candidates for propagation
or conflict. For each candidate clause, there are four possibilities:

1. If the other watched literal is true, do nothing.

2. If one of the unwatched literals L′ is not false, restore the invariant by
updating the clause so that it watches L′ instead of −L.

3. Otherwise, consider the other watched literal L′ in the clause:

2If there is no dependency to locale parameters, PR CONST is harmful and makes it
impossible to synthesize code calling this function. Whether it is necessary is sometimes so
complicated to find out that I do not always know and wait to see if the code generation fails.

66

5.2 Watched Literals

4. ¬ L0 L1

3. ¬ L0 ¬ L1 L2

2. ¬ L2 ¬ L1 ¬ L0

1. ¬ L1 L2 L0

(a)

¬ L0 L1

L2 ¬ L1 ¬ L0

¬ L2 ¬ L1 ¬ L0

¬ L1 L2 L0

(b)

Figure 5.1: Evolution of the 2WL data structure on a simple example

3.1. If it is not set, propagate L′.

3.2. Otherwise, L′ is false, and I have found a conflict.

Propagation is performed eagerly. When a conflict is detected, the solver
stops updating the data structure and processes the conflict.

To illustrate how the solver maintains the 2WL invariant, I consider the
small problem shown in Figure 5.1. The clauses are numbered from 1 to
4. Gray cells identify the watched literals. Thus, clause 1 is ¬ L1 ∨ L2 ∨ L0,
where ¬ L1 and L2 are watched. The following scenario is possible:

1. I start with an empty trail and the clauses shown in Figure 5.1a. I
decide to make L0 true. The trail becomes L†

0. I need to consider every
clause where ¬ L0 is watched, i.e., clauses 3 and 4, in any order.

2. I first consider clause 4 for ¬ L0. I propagate L1 from it. The trail
becomes L1L†

0. I still need to consider clause 3 for ¬ L0 and the clauses
for ¬ L1.

3. I consider clause 3 for ¬ L0. Since L2 is unwatched and not false, I swap
L2 and ¬ L0, resulting in the clauses shown in Figure 5.1b. I must still
consider clauses 1, 2, and 3 for ¬ L1.

4. I consider clause 3 for ¬ L1: I propagate L2. The trail becomes L2L1L†
0.

I still need to update the clauses 1 and 2 for ¬ L1 and the clauses for
¬ L2.

67

5 The Two-Watched-Literal Scheme

5. I consider clause 2. All its literals are false—a conflict. Thanks to the
invariant’s precondition (“unless a conflict has been found”), I do not
need to update clause 1 or the clauses for ¬ L2.

Compatibility with the Jump rule is important for efficiency: When remov-
ing literals from the trail, the invariant is preserved without requiring any
update.

To capture the 2WL data structure formally, I need a notion of state that
takes into account pending updates. These can concern a specific clause
or all the clauses associated with a literal. As in the example above, I first
process the clause-specific updates; then I move to the next literal and start
updating its associated clauses.

States have the form (M, N, U, D, NP, UP, WS, Q), of type ′v stateTWL. The
pending updates are stored in the last two components: the work stack WS
is a multiset {(L, C1), . . . , (L, Cn)}, where L is a false literal and the clauses
Ci watch L and may require an update. The other literals to update are
stored in the queue Q. For example, at the end of step 4 above, WS is
{(¬ L1, ¬ L1 ∨ C ∨ L0), (¬ L1, ¬C ∨ ¬ L1 ∨ ¬ L0)} and Q is {¬C}.

Moreover, I store the unit clauses separately from the nonunit clauses. The
unit clauses are put in the NP and UP components as singleton multisets.
The nonunit clauses are put in N and U. Each nonunit clause is represented
by a value ClauseTWL W UW, where W is the multiset of watched literals, of
cardinality 2, and UW the multiset of unwatched literals.

The stateW of function converts a TWL state to a CDCL W state:

definition stateW of :: ′v stateTWL ⇒ ′v stateW where
stateW of (M, N, U, D, NP, UP, WS, Q) =
(M, image clauseW of N ⊎ NP,
image clauseW of U ⊎ UP, D)

where clauseW of (ClauseTWLW UW) = W ⊎ UW and image f N applies the
function f to each element of multiset N.

The first two TWL rules have direct counterparts in CDCL W:

Propagate (M, N, U,⊤, NP, UP, {(L, C)} ⊎WS, Q) =⇒TWL

(L′C M, N, U,⊤, NP, UP, WS, {−L′} ⊎Q)
if watched C = {L, L′}, L′ is not set in M, and
∀K ∈ unwatched C. −K ∈ M

Conflict (M, N, U,⊤, NP, UP, {(L, C)} ⊎WS, Q) =⇒TWL

(M, N, U, C, NP, UP, ∅, ∅)

68

5.2 Watched Literals

if watched C = {L, L′}, −L′ ∈ M, and
∀K ∈ unwatched C.−K ∈ M

For both rules, C cannot be a unit clause. The condition stating that ∀K ∈
unwatched C. −K ∈ M is necessary because the 2WL invariant trivially holds
for C as long as an update on C is pending.

The next rules manipulate the state’s 2WL-specific components, without
affecting its semantics as seen through the function stateW of:

Update (M, N, U,⊤, NP, UP, {(L, C)} ⊎WS, Q) =⇒TWL

(M, N′, U′,⊤, NP, UP, WS, Q)
if K ∈ unwatched C, −K /∈ M, and N′ and U′ are obtained from N and
U by replacing the clause C = ClauseTWL W UW with ClauseTWL (W −
{L} ⊎ {K})(UW− {K} ⊎ {L})

Ignore (M, N, U,⊤, NP, UP, {(L, C)} ⊎WS, Q) =⇒TWL

(M, N, U,⊤, NP, UP, WS, Q)
if watched C = {L, L′} and L′ ∈ M

Next Literal (M, N, U,⊤, NP, UP, ∅, {L} ⊎Q) =⇒TWL

(M, N, U,⊤, NP, UP,
{(L, C) | L ∈ watched C ∧ C ∈ N ⊎U}, Q)

As in W+stgy, I postpone decisions. This is achieved by requiring that
WS and Q are empty in the Decide rule. Skip and Resolve are as before,
except that they also preserve the 2WL-specific components of the state. Due
to the distinction between unit and nonunit clauses, I need two rules for
nonchronological backjumping:

Decide (M, N, U,⊤, NP, UP, ∅, ∅) =⇒TWL

(L† M, N, U,⊤, NP, UP, ∅, {−L})
if L is not defined in M and appears in N

Jump Nonunit (M′ · K† M, N, U, D ∨ L, NP, UP, ∅, ∅) =⇒TWL

(LD∨L M, N, U ⊎ {ClauseTWL {L, L′} (D′ − {L′})},⊤, NP, UP, ∅, {L})
if the conditions on Jump are satisfied by D, D′, and L, L′ ∈ D, and L′

has the highest level among D′’s literals

Jump Unit (M′ · K† M, N, U, D ∨ L, NP, UP, ∅, ∅) =⇒TWL

(LL M, N, U,⊤, NP, UP⊎ {L}, ∅, {L})
if the conditions on Jump are satisfied by D, D′ = ∅, and L

69

5 The Two-Watched-Literal Scheme

In Jump Nonunit, I need to choose a literal L′ of D′ with the highest level
among D′’s literals, or the next-highest level in D′ ∨ L (since L has a higher
level than L′). Jump Nonunit is documented in MiniSat’s code (“find the first
literal assigned at the next-highest level”). Remarkably, this important prop-
erty is mentioned neither in Weidenbach’s book draft nor in the description
of MiniSat [43].

Theorem 5.1 (Invariant cdcl twl stgy twl struct invs □✓). If the state S satisfies
the 2WL invariant and S =⇒TWL T, then T satisfies the 2WL invariant.

Theorem 5.2 (Refinement full cdcl twl stgy cdclW stgy □✓). Let S be a state
that satisfies the 2WL invariant. If S =⇒!

TWL T, then

stateW of S =⇒!
CDCL W stateW of T.

TWL refines W+stgy’s end-to-end behavior and produces final states that
are also final states for CDCL W. I can apply Theorem 3.9 to establish partial
correctness. Termination of TWL is a direct consequence of the termination
of CDCL W.

I have decided to present the calculus as a transition system, similarly to
the calculus CDCL W and not to directly in the non-determinism transition
monad, like the algorithmic version of the next section. While this would
have worked too, I found it easier to write down and reason about the transi-
tion system, in particular finding the invariants to prove that all propagations
and conflicts have been found.

5.3 Refining the Calculus to an Algorithm

I want to obtain an executable SAT solver from TWL. I do this by refining
the calculus in multiple consecutive steps until I reach an implementation.

The first step in the refinement chain is to implement the calculus as a
program in the nondeterminism monad. The program operates on states of
type ′v stateTWL, as in the TWL calculus, but it reduces some of the calculus’s
nondeterminism. The program consists of a few functions that implement
mutually disjoint sets of rules. I focus on the function that applies Propagate,
Conflict, Update, or Ignore, assuming that its first argument, the pair LC =
(L, C), has already been removed from the WS component of S:

definition PCUIalgo ::
′v lit× ′v clause⇒ ′v stateTWL ⇒ ′v stateTWL

where

70

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/Watched_Literals/Watched_Literals_Transition_System.html#cdcl_twl_stgy_twl_struct_invs
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/Watched_Literals/Watched_Literals_Transition_System.html#cdcl_twl_stgy_twl_struct_invs
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/Watched_Literals/Watched_Literals_Transition_System.html#full_cdcl_twl_stgy_cdclW_stgy
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/Watched_Literals/Watched_Literals_Transition_System.html#full_cdcl_twl_stgy_cdclW_stgy

5.3 Refining the Calculus to an Algorithm

PCUIalgo LC S = do {
let (M, N, U, D, NP, UP, WS, Q) = S;
let (L, C) = LC;
L′ ← RES {L′ | L′ ∈ watched C− {L}};
if L′ ∈ M then (∗ Ignore ∗)
RETURN S

else
if ∀L ∈ unwatched C. −L ∈ M then

if −L′ ∈ M then (∗ Conflict ∗)
RETURN (M, N, U, C, NP, UP, ∅, ∅)

else (∗ Propagate ∗)
RETURN (L′CM, N, U, D, NP, UP, WS,
{−L′} ⊎Q)

else do { (∗ Update ∗)
K ← RES {K | K ∈ unwatched C ∧ −K /∈ M};
(N′, U′)← RES {(N′, U′) |

update clss (N, U) C L K (N′, U′)};
RETURN (M, N′, U′, D, NP, UP, WS, Q)
}

}

The predicate update clss (N, U) C L K (N′, U′) updates the clause C by ex-
changing the watched literal L and the unwatched literal K in C. The clause
is updated in either N or U, yielding N′ and U′. Since propagations are
performed eagerly, WS never refers to unit clauses.

The PCUIalgo algorithm still contains abstract, nondeterministic parts. For
example, in the Update part, I leave the choice of the new watched literal K
underspecified.

For PCUIalgo, I have the following refinement theorem:

Lemma 5.3 (Refinement unit propagation inner loop body □✓). If the 2WL
invariant holds for all clauses occurring in the N and U components of S, then

PCUIalgo (L, C) S ≤ RES {T | add to WS (L, C) S =⇒PCUI T}

The PCUI subscript on the transition arrow refers to the fragment of TWL
consisting of the four rules Propagate, Conflict, Update, and Ignore, whereas
add to WS (L, C) S returns the state obtained by adding (L, C) to S’s WS
component. For the entire SAT solver, I have the following theorem:

71

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/Watched_Literals/Watched_Literals_Algorithm.html#unit_propagation_inner_loop_body
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/Watched_Literals/Watched_Literals_Algorithm.html#unit_propagation_inner_loop_body

5 The Two-Watched-Literal Scheme

Theorem 5.4 (Refinement cdcl twl stgy prog spec □✓). If the 2WL invariant
holds for all clauses occurring in the N and U components of S, then

TWLalgo S ≤ RES {T | S =⇒!
TWL T}

The state returned by the program is a final state for TWL. From Theo-
rem 5.2, I deduce that it is also a final state for W+stgy. Hence, the program
TWLalgo is a SAT solver by Theorem 3.9.

5.4 Representing Clauses as Lists

The nondeterministic program TWLalgo presented in Section 5.3 relies on
the same state type as the TWL calculus. This changes with the next re-
finement step: I now store the initial and learned clauses together in a list,
and I use indices to refer to the clauses. States are now tuples (M, NU, u, D,
NP, UP, WS′, Q):

• NU is the list of all nonunit clauses. It simultaneously refines N and
U. The initial clauses occupy indices 1 to u− 1, and the learned clauses
start at index u. The list’s first element is left unused to keep index 0
as a null clause reference.

• M is the trail, where the annotations are replaced by numeric indices.
For nonunit clauses, Li is used instead of LC if NU ! i = C, where the !
operator denotes 0-based list access. When annotating literals with unit
clauses (which are not present in NU), I use the special index 0—i.e., I
put L0 on the trail to mean LL.

• In WS′, I implement a pair (L, C) by the index of clause C. The literal
L, which is the same for all pairs in WS, is stored locally in the refined
unit propagation algorithm.

Abusing notation, I will use the letter C to refer to clause indices and will not
distinguish between a clause and its index. The annotations used in the trail
to indicate where the reason is in the clause set are similar to the pointers
that are used in most implementations.

In addition to the modifications to the state, I also transform the representa-
tion of clauses, from a pair of multisets holding the watched and unwatched
literals to a list of literals such that its first two elements are watched. Given a
nonunit clause (index) C, its watched literals are available as (NU ! C) ! 0 and
(NU ! C) ! 1. Furthermore, I set the stage for future refinements by replacing

72

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/Watched_Literals/Watched_Literals_Algorithm.html#cdcl_twl_stgy_prog_spec
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/Watched_Literals/Watched_Literals_Algorithm.html#cdcl_twl_stgy_prog_spec

5.5 Storing Clauses Watched by a Literal: Watch Lists

the test L ∈ M by a call to a function, polarity, that returns SomeTrue if L ∈ M,
Some False if −L ∈ M, and None otherwise.

The refined version of the PCUIalgo algorithm follows

definition PCUI list ::
′v lit⇒ ′v clause idx⇒ ′v state list ⇒ ′v state list

where
PCUI list L C S = do {

let (M, NU, u, D, NP, UP, WS, Q) = S;
let i = if (NU ! C) ! 0 = L then 0 else 1;
let L′ = (NU ! C) ! (1− i);
let pol′ = polarity M L′;
if pol′ = Some True then (∗ Ignore ∗)

RETURN (M, NU, u, D, NP, UP, WS, Q)
else

case find unwatched M (NU ! C) of
None⇒

if pol′ = Some False then (∗ Conflict ∗)
RETURN (M, NU, u, NU ! C, NP, UP, ∅, ∅)

else (∗ Propagate ∗)
RETURN (L′CM, NU, u, D, NP, UP, WS,
{−L′} ⊎Q)

| Some j ⇒ do { (∗ Update ∗)
let NU′ = list update NU C

(list swap (NU ! C) i j);
RETURN (M, NU′, u, D, NP, UP, WS, Q)
}

}

5.5 Storing Clauses Watched by a Literal: Watch Lists

In the Next Literal rule of the TWL calculus, the set of clauses that watch
a given literal is calculated. A refinement step eliminates this gratuitous
inefficiency: Instead of iterating over all clauses, I maintain a map from
literals to the clauses that contain them as watched literals. States now have
the form (M, NU, u, D, NP, UP, Q, W), where W :: ′v lit⇒ clause idx list maps
each literal to its watch list.

The abstract state stores all the clauses that watch the current literal L and
still require processing in its WS component. In the concrete algorithm, I
use a local variable w to traverse the watch list. After processing a clause,

73

5 The Two-Watched-Literal Scheme

there are two cases. If the clause still watches L (rules Propagate, Conflict, and
Ignore), I increment w to move to the next clause. Otherwise, the clause no
longer watches L (rule Update). I exchange the element at index w with the
watch list’s last element and shorten the list by one (function delete idx and
swap). Since the traversal order is irrelevant, this is an efficient way to delete
an element in constant time based on arrays. This technique is implemented
in many solvers.

The refined PCUI algorithm is presented below, where the syntax f (x := y)
denotes the function that maps x to y and otherwise coincides with f :

definition PCUIwlist ::
′v lit⇒ nat⇒ ′v statewlist ⇒ nat× ′v statewlist

where
PCUIwlist L w S = do {

let (M, NU, u, D, NP, UP, Q, W) = S;
let C = W L ! w;
let i = if C ! 0 = L then 0 else 1;
let L′ = (NU ! C) ! (1− i);
let pol′ = polarity M L′;
if pol′ = Some True then (∗ Ignore ∗)
RETURN (w + 1, (M, NU, u, D, NP, UP, Q, W))

else
case find unwatched M (NU ! C) of

None⇒
if pol′ = Some False then (∗ Conflict ∗)

RETURN (w + 1, (M, NU, u, NU ! C, NP, UP,
∅, W))

else (∗ Propagate ∗)
RETURN (w + 1, (L′CM, NU, u, D, NP, UP,
{−L′} ⊎Q, W))

| Some j ⇒ do { (∗ Update ∗)
let K = (NU ! C) ! j;
let NU′ = list update NU C

(list swap (NU ! C) i j);
let W ′ =

W(L := delete idx and swap (W L) w)
(K := W K · C);

RETURN (w, (M, NU′, u, D, NP, UP, Q, W ′))
}

}

74

5.6 Generating Code

When performing a chain of refinements, I often want to reuse information
from earlier refinement steps. Assume that I have previously shown the
refinement relation

g y ≤ ⇓{(t,s)∈R | I1 t∧ I2 t s} f x, (5.1)

where R relates concrete and abstract states and I1 and I2 are invariants. Now
suppose I want to refine g by the function h with relation S and invariant
J. The invariant J typically consists of a genuinely new part Jnew and a part
inherited from higher abstraction levels. I first prove the new part:

h z ≤ ⇓{(u,t)∈S | Jnew u t} g y (5.2)

Then I can combine it with equation (5.1), using the invariant I1 that does
not depend on a state s, yielding

h z ≤ ⇓{(u,t)∈S | Jnew u t∧ I1 t} g y (5.3)

Finally, I can prove the desired refinement relation h z ≤ ⇓{(u,t)∈S | J u t} g y, by
showing the inclusion

{(u, t) ∈ R | Jnew u t ∧ I1 t} ⊆ {(u, t) ∈ R | J u t} (5.4)

Because I frequently needed to combine large invariants to derive refinement
lemmas such as (5.3), I developed a specialized tactic in the Eisbach lan-
guage [99]. It takes as input the relations (5.1) and (5.2). It separates I1 and I2,
based on their syntactic dependencies, and derives the relation (5.3). Another
Eisbach tactic takes (5.3) and the desired refinement goal as arguments and
leaves (5.4) as the goal. Eisbach is very useful for such tedious but straight-
forward manipulations, especially for goals containing large formulas.

5.6 Generating Code

For technical reasons, I need an intermediate refinement step between the
introduction of watch lists (Section 5.5) and the change of data structures.
This step amounts to adding assertions in the watch list algorithms stating
that all literals belong to a fixed, finite domain. Given the set of all literals
Lin that appear in the clause set N, I need to consider only the literals that
appear in Lin or whose negation appear in Lin. I call this set Lall. The
intermediate refinement step involves stating and discharging assertions of
the form L ∈ Lall. This layer is called TWLwlist+Lall. This sets the stage for

75

5 The Two-Watched-Literal Scheme

many subsequent optimizations, by allowing me to allocate arrays that are
large enough to represent mappings from atoms or literals. Arrays are used
for watch lists (which map literals to clauses), polarity caching (which map
atoms to their polarities, corresponding to the polarity function), and other
optimizations.

Some of the data structures I need are already available in the Imperative
Collections Framework [75], while others must be developed specifically
for this project. Since the code in Imperative HOL is deterministic, I must
commit to a strategy for applying the calculus rules. The precise heuristics
and other optimizations are described in Section 5.7.

The solver state is enriched with information necessary for optimizations
and heuristics, and its components are implemented by efficient data struc-
tures. For example, literals are refined to 32-bit unsigned integers, represent-
ing a positive literal Pos i by 2 · i and a negative literal Neg i by 2 · i + 1. All
required operations, such as atom extraction and negation, can be efficiently
implemented on this representation. The use of 32-bit numbers restricts my
implementation to at most 231 atoms (which seems to be a common restric-
tion for SAT solvers).

The encoding of literals as unsigned integers can be used to represent a
map from literals by an array, indexed by the literal representation. In this
way, I implement the W function that maps literals to its watch lists by an
array of arrays. The outer array’s size is determined by the actual number of
atoms in the problem, while I use a dynamic resizing strategy for the inner
arrays that hold the watch lists. Using the same literal encoding, clauses
are represented by arrays of 32-bit integers. In contrast, the indices used as
annotations in the trail and in the WS component are unbounded integers.

Internally, the refinement of the state is done in two steps: The first step
handles the addition of the data for optimizations and heuristics, and the
second step uses Sepref to refine the functional representations of the state’s
components to efficient mutable data structures.

To obtain a complete SAT solver, I must provide code to initialize the data
structure with the 2WL invariant using the list of the atoms in the problems.
Initialization works as follows: I first go through the clauses and extract all
the atoms by taking the literal where it occurs first. Then for each clause,
either it contains at least two literals, in which case the first two are watched,
or it is a unit clause, in which case the literal is propagated (or a conflict is
marked) and the clause is added to NP. If there is a conflict, there is no need
to analyze it—the clauses are unsatisfiable.

Once I have refined TWL into an imperative program and combined it
with a function initializing the data structure from a list of clauses, I define

76

5.7 Optimizations and Heuristics

the complete imperative SAT solver as a function IsaSATcode in Imperative
HOL. The abstract specification of the solver is given by

model if satisfiable =
RES {M | if satisfiable CS then M ̸= None∧ the M ⊨ CS

else M = None}

where the (Some x) = x. This abstract program returns None if the input
clauses are unsatisfiable; otherwise, it returns Some M, where M is a model
of the clauses. By combining the refinement theorems for all refinement steps,
I obtain end-to-end correctness for the entire solver.

Theorem 5.5 (End-to-End Correctness cdcl twl stgy twl struct invs □✓). The
imperative SAT solver returns a model if its input is satisfiable:

(IsaSATcode, model if satisfiable)
∈ [no duplicate no false] clauses assnk →
option assn (list assn lit assn)

The clauses assn relation refines a multiset of multisets of literals to a list
of lists of 32-bit literals, and option assn (list assn lit assn) refines an optional
list of literals to an optional list of 32-bit literals.

Finally, I invoke Isabelle’s code generator [57] to extract Standard ML code
from the Imperative HOL program. The result is a self-contained program
consisting of about 2700 lines of code. It is extended with a simple unverified
parser for SAT problems in conjunctive normal form. To give a flavor of the
program, I show its main loop below (slightly reformatted for readability):

fun IsaSAT_code initial_state () =

let val (_, final_state) =

heap_WHILET

(fn (done, _) => fn () => not done)

(fn (_, T) =>

analyze_or_decide_code

(PCUI_and_Next_Literal T ()) ())

(false, initial_state) ()

in final_state end

5.7 Optimizations and Heuristics

My imperative SAT solver relies on a few optimizations that deserve to be
explained in more detail: an efficient decision heuristic, a representation of

77

https://m-fleury.github.io/thesis/doc/Weidenbach_Book/Watched_Literals/IsaSAT_SML.html#IsaSAT_code_full_correctness
https://m-fleury.github.io/thesis/doc/Weidenbach_Book/Watched_Literals/IsaSAT_SML.html#IsaSAT_code_full_correctness

5 The Two-Watched-Literal Scheme

conflicts as a lookup table, conflict clause minimization, and the elimination
of redundant components from the state.

5.7.1 Variable Move to Front

The variable-move-to-front (VMTF) heuristic [15], based on the move-to-front
algorithm [124], selects which atom to decide next. It offers similar perfor-
mance to the better-known variable-state-independent-decaying-sum (VSIDS)
scheme [102]. VMTF’s main advantage, from a formalization point of view,
is that it does not require floating-point arithmetic.

VMTF works on a list of atoms As, which must contain all atoms from Lin
in some order. Two operations access or modify this list: When a decision
is needed, VMTF traverses As to find the first unset atom with respect to
the trail. When an atom is heuristically determined to be important to the
problem, it is moved to the front of As so that it is found next—an operation
called rescoring.

To speed up these operations, I implement some of the optimizations
described by Biere and Fröhlich [15]:

• To efficiently remove atoms from As, I represent it by a doubly linked
list. Moreover, I store it in an array ns indexed by the atoms, enabling
fast accesses to the associated nodes. Each entry in ns has the form
(st, prev, next), where st is the timestamp indicating when the atom
was rescored, and prev and next are the linked-list “pointers,” or rather
indices in As (with None representing a null pointer).

• I extend the data structure with a next search component that stores
an atom. If As = As0 · . . . · As|As|−1, with next search = Asj, all atoms
As0, . . . , Asj−1 are set in the trail. When searching for an undefined
atom, I can start at index j.

• Timestamps enable me to efficiently unset a literal (e.g., when jumping).
Since atoms are sorted in reverse timestamp order in As, I need to
update next search only if the unset atom has a higher timestamp than
the current next search atom.

• I batch the rescoring of atoms. Atoms are not removed from As, until
the end of the next Jump when rescoring takes place: I sort the atoms
to rescore by their timestamps and prepend them to As.

The tuple vmtf = ((ns, st, fst, next search), to rescore) captures the VMTF
data structure. The ns component corresponds the doubly linked list de-

78

5.7 Optimizations and Heuristics

A

4

B

B

1

C

A

C

0

B

(a) Doubly linked list for
the VMTF heuristics for
As = [A, B, C], st = 4, and
ns = [(4,Some A,None);
(1,SomeC,Some A);
(0, None,Some A)]

A

4

C

B

B

5

A

C

0

B

(b) Doubly linked list for the VMTF
heuristics after bumping B for
As = [B, A, C] and st = 5

Figure 5.2: Example of the VMTF heuristic before and after bumping.

scribed above; st is the maximum timestamp; fst gives the first atom in As;
and to rescore is the batch of atoms that are awaiting rescoring.

In Isabelle, I define the inductive predicate vmtf As st ns that checks whether
ns stores a doubly linked list corresponding to As and the timestamps are
bounded by st. It is defined by the following introduction rules:

Empty list vmtf ϵ st ns, where ϵ denotes the empty list;

Singleton list vmtf i st ns
if i < |ns| and ns ! i = (st,None,None);

List of length 2 or more vmtf (ijAs) (st + 1) ns
if vmtf (jAs) st ns′, i ̸= j, i < |ns|, and ns is ns′ where ns ! i = (st + 1,
None, Some j) and the prev component of ns′ ! j has been updated to
Some i in ijAs to get jAs.

An example is shown in Figure 5.2. In the function that finds the next
unset literal, I iterate over the doubly linked list stored in ns:

find next undef ((ns, st, fst, next search),) M = do {
WHILET (λnext search. next search ̸= None
∧ defined atm M (the next search))

(λnext search.
RETURN (get next (A ! the next search)))

next search
}

79

5 The Two-Watched-Literal Scheme

The defined atm predicate tests whether an atom is set in the trail. The
get next i function returns the next component of the node associated with
atom i—i.e., the atom following atom i in As (or None if i is the last element
in As).

To prove this program correct, I must show the termination of the while
loop, which amounts to the well-foundedness of the relation

{(get next (ns ! the next search), next search) |
next search ̸= None}

This, in turn, amounts to showing that the chain of get next calls contains no
loops. I achieve this by showing that the chain is a traversal of the list As,
which is finite. On the example from Figure 5.2, first A would be tested, then
B, and finally C.

When implementing a heuristic such as VMTF, I must prove that it does
not fail (e.g., because of an out-of-bound array access) and that it returns a
correct result. I do not need to prove that my implementation is actually
a “VMTF” as defined by Biere and Fröhlich [15]. For example, there are
no formal guarantees that the sorting function I use to rescore the batched
atoms by their timestamps is correct; it is sufficient to show that sorting
introduces no new atoms. I actually found out later that my sorting function
was incorrect (and simply the identity) and later fixed it3.

VMTF gives only the next atom to decide (if one exists). I also need to
choose the literal’s polarity. I use the phase saving heuristic [119]. It is a
mapping φ from an atom to a polarity, implemented as an array of Booleans.
Initially, all atoms are mapped to a negative polarity. Then for each conflict,
the mapping is updated: Every atom involved in the conflict will be mapped
to the polarity it has in the trail.4

5.7.2 Conflict Clause as a Lookup Table

In the TWL calculus and the refinements shown so far, the conflict clause
is either ⊤ (None) or an actual clause (Some C). Four operations access or
modify the conflict clause:

• The Conflict rule replaces ⊤ by a conflict clause.

3As part of a research immersion lab under my supervision, a student, Maximilian Wuttke,
proved the correctness of the quicksort implementation that is now used.

4This was later changed to the standard phase saving algorithm: Whenever a propagation
is done, the mapping is updated.

80

5.7 Optimizations and Heuristics

Intermediate code Refinement relation Imperative HOL code
(b′, n′, ps′C) refines
the clause C as a
lookup table; L′

and K′ refine the
literals L and K

let n = size (the C); n′ ← size conflict code
(b′, n′, ps′C)

The 32-bit unsigned
integer n′ is equal
to the natural
number n

let D = replicate n K; D′ ← Array.new n′ K′

The array D′ has
the same length
and same content
as the list D

let D = D[1 := L]; D′ ← Array.upd 1 D′ L′

The array D′ refines
the updated list D;
both contain K at
position 1

let C′ = Some (b′, n′, ps′C′)←
(the C− {K, L}); remove from K′ L′

(b′, n′, ps′C)
(b′, n′ − 2, ps′C)
refines C′

RES {(E,None) | (E′, (b′, n′, ps′⊤))←
E ! 0 = K2 (λ . conflict with cls)
∧ E ! 1 = L K′ L′ D′

∧ |E| ≥ 2 (b′, n′, ps′C′)
∧ C′ =}
mset (drop 2 E)}

The array E′ refines
the clause C, and
(b′, n′, ps′⊤)
refines ⊤

Figure 5.3: Conversion from the lookup table to a clause, assuming C ̸= None

81

5 The Two-Watched-Literal Scheme

• The Resolve rule merges the conflict clause with another clause, remov-
ing duplicates.

• The choice between the Resolve and Skip rules depends on whether the
trail’s head appears in the conflict clause.

• The choice between Resolve and Jump requires an iteration through the
clause to evaluate the maximum level of the clause minus one literal.

Initially, I tried representing the conflict as an optional resizable array
that is converted to a nonresizable array when the clause is learned (by
rule Jump Nonunit). However, this led to many memory allocations and to
inefficient code for resolution (rule Resolve).

Inspired by MiniSat, I moved to an encoding of the conflict clause as a
lookup table. I use an array ps such that the entry at position i indicates
the polarity of atoms i in the conflict clause—i.e, whether the literal i occurs
positively, negatively, or not at all in the clause. More precisely, a conflict
clause is represented by a triple (b, n, ps), where b indicates whether the
conflict is ⊤ and n stores the size of the conflict clause. The n component is
useful to quickly test whether the conflict clause is empty, or whether it has
size one.

There are two main differences between the lookup table and the original
version. First, duplicate literals and tautologies cannot be represented. I
know from my invariants that this is not an issue. Second, the clause can
only contain atoms that are smaller than the length of the array.

To give a sense of what this involves, I describe the refinement of a small
program fragment from the abstract level, where a conflict is an optional
multiset, to the concrete level, where a conflict is a lookup table. At the end
of Jump Nonunit, I need to convert the conflict clause C to a list that I can
add to my list of clauses such that two given literals L, L′ ∈ C are watched
(i.e., are at positions 0 and 1). This conversion is specified abstractly as

RES {(D,None) | D ! 0 = L ∧ D ! 1 = L′ ∧ mset D = C
∧ |D| ≥ 2}

The condition |D| ≥ 2 ensures that the accesses to positions 0 and 1 are
well-defined. In the refined code, I convert the lookup table to an array (D in
the specification) and empty the lookup table (instead of reallocating a new
one later; this is the None in the specification).

The refinement is done in two steps. I first refine the specification to an
intermediate function that describes the implementation on the level of the

82

5.7 Optimizations and Heuristics

abstract data structures (leftmost column of Figure 5.3). In a second step, the
abstract data structures and operations are refined to concrete data structures
and operations (rightmost column of Figure 5.3). The middle column gives
the refinement relation that connects the notions of states used on either side,
before and after every statement. Each statement from the intermediate code
is mapped to a concrete function, such that the refinement relation of the
result is also the refinement relation of the arguments of the next statement.
Since intermediate and concrete functions must have the same number of
arguments, some arguments are ignored on the concrete side (indicated by
the unbound argument in the λ-abstractions).

5.7.3 Conflict Clause Minimization

I follow the minimization scheme due to Sörensson and Biere [134]. If the
conflict is E∨K, where E contains the literal L that is always kept in rule Jump,
and I can show that N ⊎U ⊨ E ∨ −K, then by resolution I have N ⊎U ⊨ E
and the conflict can be reduced to E. More precisely, minimization is a
recursive procedure that considers each literal K of the conflict distinct from
L in turn:

1. If K appears in E, then E ∨ K can be reduced to E.

2. If −K is set at level 0 in the trail, then −K is entailed by N ⊎U and
E ∨ K can be reduced to E.

3. If (−K)−K∨C appears in the trail and for each literal K′ of C, I have that
E ∨ K′ be recursively reduced to E, then E ∨ K can be reduced to E.

4. Otherwise (e.g., if K was decided), the literal K is kept.

The minimization procedure terminates because the literals K′ have been
set earlier than K. To optimize the procedure, I cache the clause’s minimiza-
tion status: “can be minimized”, “cannot be minimized” (called poison by
Van Gelder [51]), or “not determined yet.” This turns out to be the tricki-
est part of the proof. After exploring many dead ends, I found that I can
define “can be minimized” as N ⊎U ⊨ E≻MK ∨ −K, where E≻MK denotes
the subclause of E consisting only of literals that appear to the right of K in
the trail M. This is very similar to the redundancy as defined by Weiden-
bach [140] to prove that CDCL learns no redundant clause, although I did
not realize it when formalizing it.

83

5 The Two-Watched-Literal Scheme

I initially tried to work on the resolution chain instead of the redundancy
criterion: Instead of reasoning on entailment, I tried to work on the resolu-
tions used in the third step. However, this was too complicated, since the
clause has changed between two successive removals of literals.

Minimization is specified abstractly in terms of multisets and refined to an
efficient implementation using the lookup-table representation. To simplify
the code, when propagating a literal I ensure it appears at the first position
in the clause, as in MiniSat. Similarly to VMTF, I prove correctness but no
notion of optimality: I especially do not prove that all literals of level 0 are
removed.

5.7.4 State Representation

The states I am considering before generating code in Imperative HOL are
eight-tuples (M, NU, u, D, NP, UP, Q, W). However, two components are re-
dundant and can be eliminated: Unit clauses are added to NP and UP but
never accessed afterwards.

Initially, I wrote code as I have shown in Section 5.5: All function bodies
started with let (M, NU, u, D, NP, UP, WS, Q) = S. This made it convenient
to refer to the components individually, or to refine them. I could also add
information to the components during refinement. For example, since the
VMTF heuristic depends on the trail, its vmtf tuple could only be added
to the refined trail component. However, this approach works only if the
additional information depends on a single component. Moreover, it offers
no means of eliminating redundant components such as NP and UP.

After gathering some experience with the Refinement Framework, I de-
cided to move to a different scheme, following which all state manipulation
is mediated by accessor functions. I can then refine each of these functions
individually. For example, when refining (M, NU, u, D, NP, UP, WS, Q) to
the intermediate representation (M, NU, u, D, WS, Q, vmtf , φ) with heuristics
(where vmtf is the VMTF data structure and φ is the mapping used for phase
saving), the get queue function that selects the eighth tuple component is
mapped to a function that selects the sixth tuple component.

There is, however, a difficulty with this scheme. In an imperative imple-
mentation, a getter that returns a component of a state that is stored on the
heap must either copy the component or return a pointer into the state. The
first option can be very inefficient, and the alternative is not supported by
the Sepref tool, which does not permit pointer aliases. My solution is to
provide ad hoc getters to extract the relevant information from the state,
without exposing both parts of the state and the whole state simultaneously

84

5.7 Optimizations and Heuristics

(which would require aliasing). Similarly, I provide setter functions to update
components of the state.

For example, after reducing a conflict (rules Resolve and Skip), I must
distinguish between either jumping (rules Jump Unit and Jump Nonunit) or
stopping the solver by testing whether the conflict was reduced to ⊥:

the (get conflictwlist S) = ∅

(The result is unspecified if the conflict is ⊤, i.e., None.)
Since all I need is the emptiness check and not the conflict clause itself, I

can define a specialized getter:

conflict is emptywlist S←→ the (get conflictwlist S) = ∅

Then I refine it to the intermediate state with heuristics:

conflict is emptyHeur (M, NU, u, D, WS, Q, vmtf , φ)
←→ conflict is empty D

with the following auxiliary function that operates only on the D component:

conflict is empty D ←→ the D = ∅

Next, I refine the auxiliary function to use the lookup-table representation:

conflict is empty lookup (b, n, ps)←→ n = 0

Finally, this function is given to Sepref, which generates Imperative HOL
code. This, in turn, makes it possible to synthesize conflict is emptyheuristic.

The representation of states changes between refinement layers. It can
also change within a layer, to store temporary information. Consider the
number of literals of maximum level in the conflict clause. When it reaches
1, the Resolve rule no longer applies. Keeping this number around, in a
locally enriched state tuple, can be much more efficient than iterating over the
conflict clause to evaluate the maximum level. With my initial concrete notion
of state as an eight-tuple, adding this information would have required a
new layer of refinement, since the level depends simultaneously on two state
components (the trail and the conflict clause).

5.7.5 Fast Polarity Checking

SAT solvers test very often the polarity of literals. Therefore testing it by
iterating over the trail is too inefficient. In practice, solvers employ a map

85

5 The Two-Watched-Literal Scheme

from atoms to their current polarity. Since the atoms are natural numbers,
I enrich the trail data structure with a list of polarities (of type bool option),
such that the (i + 1)st element gives the polarity of atom i. The new polarity
function is defined as follows:

definition polaritylist pair
:: nat literal⇒ (nat, clause idx) ann literal list× bool option list⇒

bool option
where

polaritylist pair L (M, Ls) =
(
case Ls ! atm of L of

None⇒ None
| Some b ⇒ Some (if is pos L then b else ¬ b)

)
Given Lall the set of all valid literals (i.e., the positive and negative version

of all atoms that appear in the problem), the refinement relation between the
trail with the list of polarities and the simple trail is defined as follows:

definition traillist pair trail ref
::
((
(nat, clause idx) ann literal list× bool option list

)
× (nat, clause idx) ann literal list

)
set

where
traillist pair trail ref ={
((M′, Ls), M). M = M′ ∧ ∀L ∈ Lall. atm of L < |Ls| ∧
Ls ! atm of L = polarity M L

}
This invariant ensures that the list Ls is long enough and contains the polari-
ties. I can link the new polarity function to the simpler one. If ((M′, Ls), M) ∈
traillist pair trail ref, then

RETURN
(
polaritylist pair (M′, Ls) L

)
≤ RETURN (polarity M L) (5.5)

In a subsequent refinement step, I use Sepref to implement the list of
polarities by an array, and atoms are mapped to 32-bits unsigned integers
(uint32), as in Section 5.6. Accordingly, I define two auxiliary relations:

• The relation lit assn :: nat literal⇒ uint32 literal⇒ assn refines a literal
with natural number atoms by a literal encoded as a 32-bit unsigned
integer.

• traillist pair assn :: (nat, clause idx) ann literal list× bool option list⇒
uint32 ann literal list× bool option array⇒ assn is a relation refining the
trail data structure to use an array of polarities (instead of a list) and

86

5.8 Evaluation

annotated literals of type uint32 ann literal, using the 32-bit representa-
tion of literals. The clause indices of type clause idx remain unbounded
unsigned integers.

Sepref generates the imperative program polarity code and derives the fol-
lowing refinement theorem:

(polarity code, RETURN ◦ polaritylist pair)
∈
[
λ((M, Ls), L). atm of L < |Ls|

]
traillist pair assnk × lit assnk → id assn (5.6)

The precondition, in square brackets, ensures that I can only take the polarity
of a literal that is within bounds. The term after the arrow is the refinement
for the result, which is trivial here because the data structure for polarities
remains bool option.

Composing the refinement steps (5.5) and (5.6) yields the theorem

(polarity code, RETURN ◦ polarity) ∈ [λ(M, L). L ∈ Lall]

trail assnk × lit assnk → id assn

where trail assn combines both refinement relations for trails trail list pair assn
and traillist pair trail ref. The precondition atm of L < |Ls| is a consequence
of L ∈ Lall and the invariant traillist pair trail ref. If I invoke Sepref now and
discharge polarity code’s preconditions, all occurrences of the unoptimized
polarity function will be replaced by polarity code. After adapting the initial-
ization to allocate the array for Ls of the correct size, I can prove end-to-end
correctness as before with respect to the optimized code.

Using stepwise refinement, I integrate this optimization into the impera-
tive data structure used for the trail. This refinement step is isolated from the
rest of the development, which only relies on its final result: a more efficient
implementation of the trail and its operations. As Lammich observed else-
where [75], this kind of modularity is invaluable when designing complex
data structures.

5.8 Evaluation

In September 2017 I compared the performance of my solver, IsaSAT-17, with
Glucose 4.1 [1], MiniSat 2.2 [43] (taken from the Github repository5), DPT 2.0,
and versat [112].

5https://github.com/niklasso/minisat

87

https://github.com/niklasso/minisat

5 The Two-Watched-Literal Scheme

0 200 400 600 800

0
2
0
0

6
0
0

IsaSAT with
lookup-table conflicts

Is
aS

A
T

w
it

ho
ut

lo
ok

up
-t

ab
le

co
nfl

ic
ts

(a) IsaSAT with and without the lookup-
table conflict representation (Sec-
tion 5.7.2), without caching the number
of literals of highest level in the conflict

0 200 400 600 800

0
2
0
0

6
0
0

IsaSAT

v
e
r
s
a
t

(b) IsaSAT and versat

Figure 5.4: Comparison of performance on the problems classified easy or
medium from the SAT Competition 2009

versat, by Oe et al. [112], is specified and verified using the Guru proof as-
sistant [136], which can generate C code. versat consists of 15 000 lines of C
code. Optimized data structures are used, including for watched literals and
conflict analysis (but not for conflict minimization), and a variant of VSIDS
heuristic is in charge of decisions. However, termination is not guaranteed,
and model soundness is proved trivially by means of a run-time check of the
models (not activated by default); if this check fails, the solver’s outcome is
“unknown.”

I ran all five solvers on the 150 problems classified easy or medium from
the SAT Competition 2009, with a time limit of 900 s. Glucose solves 147

problems, spending 51 s on average per problem it solves. MiniSat solves 143

problems in 98 s. DPT solves 70 problems in 206 s on average. versat solves
53 problems in 235 s on average.

To evaluate the lookup-table-conflict representation, I ran IsaSAT without
caching of the number of literals of maximum level. IsaSAT without the
lookup table solves 43 problems in 126 s on average, while the version with
a lookup table solves only 36 problems in 127 s on average (including four
problems that the version without lookup table could not solve). IsaSAT with
every optimization solves 56 problems in 183 s on average. As an indication
of how far I have come, the functional solver implementing the CDCL W

88

5.9 Summary

calculus [25, Section 5] and my first imperative unoptimized version with
watched literals do not solve any of the problems. The solvers were run on
a Xeon E5-2680 with 256 GB of memory, with Intel Turbo Boost deactivated.
Globally, the experiments show that Glucose and MiniSat are much faster
than the other solvers and that DPT solves substantially more instances than
IsaSAT and versat, which are roughly comparable.

A more precise comparison of performance of my solver with and with-
out the lookup table is shown in Figure 5.4a. A point at coordinates (x, y)
indicates that the version with the lookup table took x seconds, whereas
the version without the table took y seconds. Points located above the main
diagonal correspond to problems for which the table pays off. Figure 5.4b
compares versat and the optimized IsaSAT: It shows that either solver solves
some problems on which the other solver times out. This is to be expected
given that the two solvers implement different decision heuristics.

There are several reasons explaining why my solver is much slower than
the state of the art. First, it lacks restarts and forgetting. This limit will be
lifted in Chapter 6. Glucose and MiniSat also use preprocessing techniques
to simplify the initial set of clauses. Other SAT solvers, such as Lingeling [12],
also use inprocessing techniques to simplify initial and learned clauses. This
makes it possible to derive new clauses that cannot be derived or are very
hard to derive.

Another difference is that Isabelle/HOL can only generate code in impure
functional languages, whereas most unverified SAT solvers are developed
in C or C++. Although I proved that all array accesses are within bounds,
functional languages nonetheless check array bounds at run-time. Moreover,
other features, such as the arbitrary-precision arithmetic (which I use for
clause indices), tend to be less efficient than their C++ counterparts.

To reduce these effects, I implemented literals by 32-bit unsigned integers
(which required some extra work to prove absence of overflows). This in-
creased the speed of my solver by a factor between two and four. In a slight
extension of the trusted base of the code generation, I convert literals directly
to machine-size integers (32- or 64-bit), instead of taking the detour through
unbounded integers. This simple change improved performance by another
factor of two.

5.9 Summary

In this chapter, I have presented a refinement from CDCL W to TWL, a cal-
culus that include the two-watched-literal scheme. Starting from the later

89

5 The Two-Watched-Literal Scheme

calculus, I refine it to an executable version. This refinement is done gradu-
ally and each step changes the data structures or specialize the behavior. The
different layers are summarized in Figure 5.5. For example, the watch lists,
although critical for performance, are added to the state only in a later step.
Finally, the complete SAT solver, IsaSAT-17, is obtained. Once combined
with an unverified parser, I can compare it to state-of-the-art SAT solver. It
is slower than state-of-the-art SAT solvers, but faster than versat. The cor-
rectness properties are inherited from the most abstract down to the version
synthesized by Sepref. However, there is no formal connection between this
version and the generated code: The code generator is trusted and cannot be
verified unless a semantic for the target language is formalized.

The whole formalization is around 28 000 lines of proof for refinement
from TWL to the last layer Heur, 15 000 lines (Heur and code generation), and
5000 lines for libraries.

In the next chapter, I will optimize IsaSAT further by adding two algorith-
mic improvements, Restart and Forget, and some other optimizations that
improve the performance a lot.

90

5.9 Summary

Refinement Name Description
Level

1 CDCL W is correct and termi-
nates.

2 TWL adds watched literals.
3 Algo enters the nondetermin-

ism transition monad.
4 TWL list uses lists instead of

multisets.
5 TWLwlist adds watch lists to the

state.
6 TWLwlist+Lall restricts literals to be in

the input problems.
7 Heur adds all heuristics.
8 IsaSAT is synthesized by

Sepref.
9 Executable code is generated by the

code generator.

Figure 5.5: Summary of all the layers used from the abstract CDCL to the
final generate code

91

6 Optimizing My Verified SAT Solver
IsaSAT

In this chapter, I optimize IsaSAT further. Because some idioms I used in
Chapter 5 made the proofs hard to maintain and slow to process, I first
refactored the Isabelle formalization (Section 6.1). The first optimization is
the use of blocking literals [36] to improve Boolean constraint propagation
(Section 6.2). The idea is to cache a literal for each clause—if the literal is true
in the current partial model of the solver, the clause can be ignored (saving a
likely cache miss by not accessing the clause).

Partly to avoid focusing on hard parts of the search space, the search
of a SAT solver is heuristically restarted and the search direction changed,
because the decision heuristic VMTF is dynamic and, therefore, leads to
different decisions. Keeping too many clauses slows down unit propaga-
tion. Hence clauses that are deemed useless are also forgotten. However,
the standard heuristics rely on the presence of meta-information in clauses
that can be efficiently accessed. To make this possible, I redesigned the
clause representation, which also allowed me to implement the position sav-
ing [52] heuristic (Section 6.3). Extending the SAT solver with restart and
forget required the extension of the calculus with watched literals: Both be-
haviors were already present in the abstract calculus CDCL W but were not
implemented in the next refinement step TWL. Heuristics are critical and
easy to verify, but hard to implement in a way that improves performance
(Section 6.4).

Using machine integers instead of unbounded integers is another useful
optimization. The new IsaSAT thus uses machine integers until the num-
bers do not fit in them anymore, in which case unbounded integers are
used to maintain completeness: theoretically, IsaSAT could have to learn
more than 264 clauses before reaching the conclusion SAT or UNSAT, which
would overflow clause counters and indices to clauses in the watch list. The
code is duplicated in the generated code but specified and refined only once
(Section 6.5): Sepref is able to synthesize both versions.

I analyze the importance of the different features and compare IsaSAT with
state-of-the-art solvers (Section 6.6). Even though the new features improve

93

6 Optimizing My Verified SAT Solver IsaSAT

the performance IsaSAT significantly, much more work is required to match
the best unverified solvers.

Finally, IsaSAT is a very large development and I will give some ideas
where to start, if someone wants to extend it (Section 6.9).

6.1 Refactoring IsaSAT

The optimizations require changes in the proofs and in the code. My first
step is a refactoring to simplify maintenance and writing of proofs.

Proof Style. The original and most low-level proof style is the apply
script: It is a forward style and each tactic creates subgoals. It is ideal for
proof exploration and simple proofs. It is, however, hard to maintain. A
more readable style states explicit statements of properties in Isar [142]. The
styles can be combined: each intermediate step can be recursively justified
by apply scripts or Isar. For robustness, I use Isar where possible.

The tactics aligning goals are inherently apply style, but I prefer Isar. I will
show the difference on the example of the refinement of PCUIalgo (Figure 6.1a)
by PCUI list (Figure 6.1b). Assume the arguments of the function are related
by the relation ((LC, S), (LC′, S′)) ∈ Rstate. The first two goals stemming from
aligning PCUIalgo with PCUI list are

∀L′ L C C′. ((LC, S), (LC′, S′)) ∈ Rstate ∧ LC = (L, C) ∧ LC′ = (L′, C′)→
(LC, LC′) ∈ Rwatched (6.1)

∀L′ L C C′. ((LC, S), (LC′, S′)) ∈ Rstate ∧ LC = (L, C) ∧ LC′ = (L′, C′)
∧ (LC, LC′) ∈ Rwatched →

RES (watched C− {L}) ≤⇓ Rother watched(RES (watched C′ − {L′})) (6.2)

where equation (6.1) relates the two lets, equation (6.2) the two RES, and
the relations Rwatched and Rother watched are two schematic variables that have
to be instantiated during the proof (e.g., by the identity). Although I strive
to use sensible variable names, they are lost when aligning the programs,
making the goals harder to understand.

A slightly modified version of Haftmann’s explore tool [56] transforms the
goals into Isar statements. The workflow to use it is the following. First, use
Sepref’s tactic to align two programs. Then, explore prints the structured
statements. Finally, those statements can be inserted in the theory, before
the goal. Figure 6.2a shows the output: equations (6.1) and (6.2) correspond

94

6.1 Refactoring IsaSAT

definition PCUIalgo where
PCUIalgo LC S = do {

let (L, C) = LC;
L′ ← RES (watched C− {L});
if L′ ∈ trail list S then

RETURN S
else . . .
}

(a) Ignore rule before refactoring

definition PCUIwlist where
PCUI list LC S = do {

let (L, C) = LC;
L′ ← RES (watched C− {L});
if L′ ∈ trail list S then
RETURN S

else . . .
}

(b) Ignore rule after refactoring

Figure 6.1: Comparison of the code of Ignore rule in Algo before and after
refactoring

have (LC, LC′) ∈ Rwatched
if LC = (L, C) and LC′ = (L′, C′)

and ((LC, S), (LC′, S′)) ∈ Rstate
for L′ L C C′

sorry
have RES (watched C− {L})
≤⇓ Rother watched
(RES (watched C′ − {L′})

if (LC, LC′) ∈ Rwatched and
LC = (L, C) and LC′ = (L′, C′)
and ((LC, S), (LS′, S′)) ∈ Rstate

for L′ L C C′ C C′

sorry

(a) Proof as generated by explore: no shar-
ing of variables and assumptions across
goals

context
fixes L′ L C C′ C C′

assumes ((LC, S), (LC′, S′)) ∈
Rstate

and LC = (L, C) and
LC′ = (L′, C′)

begin
lemma (LC, LC′) ∈ Rwatched

sorry
lemma RES (watched C− {L})
≤⇓ Rother watched
(RES (watched C′ − {L′}))

sorry
end

(b) Proof with contexts as generated
explore context, with sharing of
variables and assumptions across goals

Figure 6.2: Different ways of writing the proof that PCUI list from Figure 6.1a
refines PCUIalgo

95

6 Optimizing My Verified SAT Solver IsaSAT

to the two have statements, where have R x if P x and Q x for x stands for
the unstructured goal ∀x. (P x ∧ Q x −■→ R x). Each goal can be named and
used to solve one proof obligations arising from the alignment of the two
programs.
explore does not change the goals and hence, variables and assumptions

are not shared between proof steps, leading to duplication across goals. I
later expanded the explore to preprocess the goals before printing them:
It uses contexts (Figure 6.2b) that introduces blocks where variables and
assumptions are shared by theorems. These proofs are now faster to check
and write and minor changes are easier to do. There is no formal link between
the statements and the goal obligations: If the goal obligations changes, the
Isar statements have to be updated by hand. After big changes in the refined
functions, it can be easier to regenerate the new statements, re-add them to
the theory, and reprove them than to adapt the old one. Thankfully, this
only happens a few times, usually when significantly changing the function
anyway, which also significantly changes the proof.

Heuristics and Data Structures. At first, the implementation of heuristics
and optimized data structures was carried out in three steps:

1. use specification and abstract data structure in Heur (e.g., the conflict
clause is an optional multiset);

2. map the operations on abstract to concrete functions (e.g., the function
converting a clause to a conflict clause is refined to a specific function
converting a clause to a lookup table);

3. discharge the preconditions from step 2 with Sepref (e.g., no duplicate
literal).

In principle, if step 2 is changed, Sepref can synthesize a new version of
the code without other changes, making it easy to generate several versions
to compare heuristics and data structures. However, in practice, this never
happens because optimizing code further often requires stronger invariants,
requiring to change the proofs for step 3. Moreover, Sepref’s failures to
discharge preconditions are tedious to debug. To address this, I switched to
a different approach:

1
′. introduce the heuristics and data structures in Heur (e.g., the conflict is

a lookup table);

2
′. add assertions for preconditions on code generation to Heur.

96

6.1 Refactoring IsaSAT

The theorems used to prove steps 2 are now used during the refinement to
Heur. Sepref is also faster since the proofs of 2

′ are now mostly trivial: Either
the invariant is asserted or the synthesis should fail. In one extreme case,
Sepref took 24 minutes before failing with the old approach. After identifying
the error, the solution was to add another theorem, recall Sepref, and wait.
Thanks to this simpler approach and the entire-state based refinement, Sepref
now takes only 16 s to synthesize the code (or fail).

Layer Conception. As described in Section 5.6, IsaSAT initially relied on
a locale parametrized by Lall (layer TWLwlist+Lall), the set of all literals that
appear in the initial set of clauses or their negation. This is also the set of all
literals that can appear during the execution of the program. This set is very
useful to express conditions on the size of lists for heuristics (as described
in Section 5.7.5). However, using locales has some drawbacks: First, all
functions are defined in the same namespace. This is not an issue as long
as Isabelle is not entering and exiting locales too often, because switching
between locales is slow. However, this is exactly what happens each time
code is synthesized (as described in Section 5.1.4). A more dramatic issue is
that synthesizing the code for the whole SAT solver is complicated: Lall is
both a parameter of the functions and of the refinement relation. Therefore, a
relation refining f by g would have the form

(g, f) ∈ [λL′all.L′all = Lall] R Lall → S Lall

where R Lall is the relation refining the arguments, S Lall the relation refin-
ing the image. The precondition L′all = Lall ensures that Lall is the only
possible argument. However, such relations are not supported by Sepref:
Free variables like Lall are not instantiated during code synthesis. At first,
I used a workaround: Internally, Sepref uses an intermediate form, called
heap-nres (or hnr), which is then used for code synthesis. I could transform
the theorems into hnr-form, then use reflexivity to force the variables to be
equal, and finally use this version of the theorem for synthesis. However,
after some other changes, the setup broke and I decided to replace all the
occurrences of Lall by the set of literals in the problem itself, since they are
equal and every function already contained the assertion that the two sets
were equal. This is a bit more cumbersome, because Lall now has to be
passed as argument to every relation (e.g. traillist pair trail ref of Section 5.7.5).
However, it also simplified the code generation of the whole SAT solver and
the formalization became a bit faster to check.

97

6 Optimizing My Verified SAT Solver IsaSAT

definition PCUIalgo where
PCUIalgo LC S = do {

let (L, C) = LC;
L′ ← RES {L′ | L′ ∈ C};
if L′ ∈ trail S then

RETURN S
else do {

L′′ ← RES (watched C− {L});
if L′′ ∈ trail S then

RETURN S
else . . .
}
}

(a) Ignore part of the PCUIalgo in Algo with
blocking literals

definition PCUIwlist where
PCUIwlist L i S = do {

let (L′, C) = watch list at S L i;
let L′ = L′;
if L′ ∈ trail S then
RETURN S

else do {
L′′ ← RES (watched C− {L});
if L′′ ∈ trail S then
RETURN S

else . . .
}
}

(b) Ignore in WList with watch lists and
blocking literals

Figure 6.3: Refinement of the rule Ignore with blocking literals from Algo to
WList

6.2 Adding Blocking Literals

Blocking literals [36] are an extension of the two-watched-literal scheme
and are composed of two parts: a relaxed invariant and the caching of a
literal. Most SAT solvers implement both aspects. Blocking literals reduce
the number of memory accesses (and, therefore, of cache misses).

Invariant. IsaSAT-17’s version of the two-watched-literal scheme is in-
spired by MiniSat 1.13. The key invariant is the following [49]:

A watched literal can be false only if the other watched literal is true or
all the unwatched literals are false.

I now relax the condition by replacing “the other watched literal” by “any
other literal.” This weaker version means that there are fewer changes to
do to the watched literals: If there is a true literal, no change is required.
Accordingly, the side conditions of the Ignore rule of TWL can be relaxed
from L′ ∈ watched C to L′ ∈ C. Adapting the proof of correctness was
relatively easy. The proofs are easy to fix (after adding some key lemmas)
thanks to Sledgehammer [20], a tool that uses automatic theorem provers to
find proofs.

98

6.3 Improving Memory Management

The generalized Ignore rule is refined to the non-determinism monad (Fig-
ure 6.3a). Since the calculus has only been generalized, no change in the
refinement would have been necessary. In the code, the rule can be applied
in three different ways: Either L′, the other watched literal L′′, or another
literal from the clause is true (the last case is not shown in Figure 6.3). Any
literal (even the false watched literal L) can be chosen for L′.

Caching of a literal. Most SAT solvers contain a second part: When visiting
a clause, it is often sufficient to visit a single literal [124]. Therefore, to avoid
a likely cache miss, a literal per clause, called blocking literal, is cached in the
watch lists. If it is true, no additional work is required; otherwise, the clause
is visited: If a true literal is found, this literal is elected as new blocking
literal, requiring no update of the watch lists.

In the refinement step WList, the choice is fixed to the cached literal from
the watch list (Figure 6.3b). The identity “let L′ = L′;” helps the tactics of the
Refinement Framework to recognize L′ as the choice for RES {L′ | L′ ∈ C},
i.e. yielding the goal obligation L′ ∈ RES {L′ | L′ ∈ C}.

IsaSAT’s invariant on blocking literals forces the blocking literal to be
different from the associated watch literal (corresponding to the condition
L ̸= L′ in Figure 6.3). This is not necessary for correctness but offers better
performance (since L is always false) and enables special handling of binary
clauses: No memory access is necessary to know the content of the clause.
IsaSAT’s watched lists contain an additional Boolean indicating whether the
clause is binary.

6.3 Improving Memory Management

The representation of clauses and their metadata used for heuristics is crucial
for the performance of SAT solvers. Most solvers use two ideas: First, they
keep the metadata and clauses together. For example, MiniSat puts the
metadata before the clause. The second idea is that memory allocation puts
clauses one after the other in memory to improve locality.

init 3 A B C learn 4 ¬A ¬B C D

Figure 6.4: Example of arena module with two clauses A ∨ B ∨ C (initial
clause, ‘init’) and ¬A ∨ ¬B ∨ C ∨ D (learned clause, ‘learn’)

99

6 Optimizing My Verified SAT Solver IsaSAT

However, none of these two tricks can be directly obtained by refinement
and Isabelle offers no control over the memory allocator. Therefore, I im-
plemented both optimizations at once, similarly to the implementation in
CaDiCaL [13]. The implementation uses a large array, the arena, to allo-
cate each clause one after the other, with the metadata before the clauses
(Figure 6.4): The lengths (here 3 and 4) precede the clause. Whereas the
specifications allow the representation to contain holes between clauses, the
concrete implementation avoids it.

In IsaSAT-17, the clauses were a list of clauses, each one being a list of
literals (both lists being refined to arrays). This representation could not
be refined to an arena. Moreover, it was not compatible with removing
clauses without shifting the positions. For example, if the first clause was
removed from the list [A ∨ B ∨ C; ¬A ∨ ¬B ∨ C ∨ D], then the position of
the second clause changed. This was a problem as the indices are used in
the trail. Therefore, I first changed the representation from a list of lists
to a mapping from natural numbers to clauses. Then, every element of
the domain was mapped to a clause in the arena with the same index (for
example, in Figure 6.4, the clause 2 is A ∨ B ∨ C; 7 is ¬A ∨ ¬B ∨ C ∨D; there
are no other clauses).

Introducing arenas requires some subtle changes to the existing code base.
First, the arena contains natural numbers (clause length) and literals (clause
content). Therefore, I use a datatype (as a tagged union) that contains either a
literal or a natural number. Both types are refined to the same type, a 32-bits
word and the datatype is removed when synthesizing code. An invariant on
the whole arena describes its content. Moreover, because literals are refined
to 32-bit machine words, the length has to fit in 32 bits. However, as the
input problems can contain at most 231 different atoms and duplicate-free
tautologies, the maximum length of a clause is 232. To make it possible to
represent all clauses including those of size 232, the arena actually keeps the
number of unwatched literals (i.e., the length minus 2), unlike Figure 6.4.

While introducing the arena, I also optimized parts of the formalization. I
replaced loops on a clause starting at position C in the arena (i.e., iterations
on C + i for i in [0, length C]) by loops on the arena fragment (i.e., iteration on
i for i in [C, C + length C]). This makes it impossible to compare IsaSAT-30

with and without the memory module without changes in the formalization.
The impact of the arena was small (improvement of 2%, and a few more
problems could be solved), but arenas make it possible to add metadata for
heuristics.

100

6.4 Implementing Restarts and Forgets

Position Saving. I implemented a heuristic called position saving [52],
which requires an additional metadata. It considers a clause as a circular
buffer: When looking for a new literal, the search starts from the last searched
position instead of starting from the first non-watched literal of the clause.
The position is saved as a metadata of the clause. Similarly to CaDiCaL [13],
the heuristic is only used for long clauses (length larger than four). Otherwise,
the position field is not allocated in the arena (i.e., the size of the metadata
depends on the clause size). Incorporating the heuristic was easy thanks to
non-determinism. For example, to apply the Ignore rule, finding a true literal
is sufficient; how it is found is not specified. This makes it easy to verify a
different search algorithm.

Although there exist some benchmarks showing that this technique im-
prove the performance of solvers [14], only CaDiCaL and Lingeling [13]
implement it and I did not know if it would improve IsaSAT: The generated
code is hardly readable and hard to change it in order to test such techniques.
However, it was easy to add in Isabelle and it improves performance on most
problems (see Section 6.6).

6.4 Implementing Restarts and Forgets

CDCL-based SAT solvers have a tendency to get stuck in a fruitless area of
the search space and to clutter their memory with too many learned clauses.
Most modern SAT solvers offer two countermeasures. Restarts try to avoid
focusing on a hard part of the search space. Forgets limit the number of
clauses because too many of them slow down the solver.

Completeness is not guaranteed anymore if restart and forget are applied

to skip ← RES {n. True};
WHILE(λ(to skip, i, S). ⟨there is a clause to update or to skip > 0⟩))

(λ(to skip, i, S). do {
skip element← RES {b | b→ to skip > 0}
if skip element then RETURN(to skip− 1, i, S) (∗ do nothing ∗)
else do{

LC← ⟨some literal and clause to update⟩;
PCUIalgo LC S }

})

Figure 6.5: Skipping deleted clauses during iteration over the watch list

101

6 Optimizing My Verified SAT Solver IsaSAT

too often. To keep completeness, I delay them more and more. TWL does
not propagate clauses of length 1, because they do not fit in the two-watched-
literal scheme. The clauses are propagated by clauses of length one cannot be
removed from the trail. However, such clauses will always be repropagated
by CDCL W. Therefore, a TWL restart corresponds to a CDCL W restart and
some propagations. If decisions are also kept, then IsaSAT can reuse parts
of the trail [120]. This technique avoids redoing some work after a restart.
The trail could even be entirely reused if the decision heuristics would do
the same decisions.

When forgetting several clauses at once, called one reduction step, IsaSAT
uses the LBD [1] (least block distance) to sort the clauses by importance,
and then keeps only linearly many (linear in the number restarts). All other
learned clauses are deleted. I have not yet implemented garbage collection
for the arena, so deleted clauses currently remain in memory forever.1

After clauses have been marked as deleted, the watch lists are not garbage
collected. Instead, before accessing a clause, IsaSAT tests if the clause has
been deleted or not. However, this is an implementation-specific detail I
do not want to mirror in Algo. To address this, I changed Algo in a less
intrusive way. Before Algo was iterating over the WS component of the state
S. After the change, a finite number of no-ops was added to the while loop
(Figure 6.5). When aligning the two programs, an iteration over a deleted
clause is mapped to a no-op. More precisely, there are two tests: whether
the blocking literal is true and whether the clause is marked as deleted. If
the blocking literal is true, the state does not change (whether the clause is
deleted or not). Otherwise, the clause has to be accessed. If the clause is
deleted, it is removed from the watch list.

IsaSAT uses the EMA-14 heuristic [16], which is based on two exponential
moving averages of scores, implemented using fixed-point numbers: a “slow”
average measuring the long-term tendency of the scores and a “fast” one for
the local tendency. If the fast average is worse than the slow one, the heuris-
tic is triggered. Then, depending on the number of clauses, either restart or
reduce is triggered. The heuristic follows the unpublished implementation of
CaDiCaL [13], with fixed-point calculations. This is easier to implement than
Glucose’s queue for scores. Due to programming errors, it took several itera-
tions to get EMA-14 right: The first version never restarted while the second
did as soon as possible. Both versions were complete because the number of
conflicts between successve restart slowly increased: It was initially 50, then

1I implemented it later, but this did not significantly changed the result of the benchmarks
presented in Section 6.6.

102

6.5 Using Machine Integers

51, after that 52, ... Once I understood where the programming error was, I
fixed it and IsaSAT performed much better.

Later, I found out that I forget some bitshifting during the calculation of
the moving average. Fixing it had two effects. First, it led to noticeably more
restarts (roughly ten times more restarts), bringing the number of restarts
closer to the values printed by Glucose. Second, it decreased performance.
It is not clear if this is indicating another error in the implementation of the
heuristic (although it cannot be a correctness bug), or if this is only an issue
due to the choices of the constants.

The reuse of parts of the trail was not hard to implement, but it does not
seem to happen very often. The VMTF decision heuristic probably changes
too fast. Therefore, the decisions on the trail are very likely to be different
after a restart. I tested that on a few examples and barely anything of the
trail is reused. Most of the time, zero or one level is reused. However,
the maintenance and performance cost is low. Therefore, I kept it in the
formalization.

6.5 Using Machine Integers

When I started to work on IsaSAT, it was natural to use unbounded integers
to index clauses in the arena (refined from Isabelle’s natural numbers). First,
they are the only way to write list accesses in Isabelle (further refined to
array accesses). Second, they are also required for completeness to index the
clauses and there was also no code-generation setup for array accesses with
machine words. Finally, the Standard ML compiler I use, MLton [139], effi-
ciently implements numbers first as machine words and then as unbounded
GMP integers with one bit indicating whether something is a pointer or a
machine integer. For these reasons, using machine words seemed unneces-
sary. However, profiling showed that subtractions and additions took among
them around 10% of the time.

I decided to switch to machine words. Instead of failing upon overflow or
restarting the search from scratch with unbounded integers, IsaSAT switches
in the middle of the search:

while ¬ done ∧ ¬ overflow do
⟨invoke the 64-bit version of the solver’s body⟩;

if ¬ done then
⟨convert the state from 64-bit to unbounded integers⟩;
while ¬ done do
⟨invoke the unbounded version of the solver’s body⟩

103

6 Optimizing My Verified SAT Solver IsaSAT

The switch is done pessimistically. When the length of the arena is longer
than 264 − 216 − 5 (maximum size of a non-tautological clause without dupli-
cate literals is 216 and 5 is the maximal number of header fields), the solver
switches to unbounded integers, regardless of the size of the next clause. This
bound is large enough to make a switch unlikely in practice. In Isabelle, the
two versions of the solver’s body are just two instances of the same function
where Sepref has refined Isabelle’s natural numbers differently during the
synthesis. To synthesize machine words, Sepref must prove that numbers
cannot overflow. For example, if i is refined to the 64-bit machine word w,
then the machine-word addition w + 1 refines i + 1 if the addition does not
overflow, i.e., i + 1 < 264. The code for data structures like resizable arrays
(used for watch lists) has not been changed and, therefore, still uses un-
bounded integers. However, some code was changed to limit manipulation
on the length of resizable arrays.

IsaSAT uses 64-bit machine words instead of 32-bit machine words. They
are used in the trail but mostly in the watch lists. Using 32-bits words would
be more cache friendlier for the trail. However, this would not make any
difference for watch lists. Each element in a watch list contains a clause
index, a 32-bit literal, and a Boolean. Due to padding, there is no size
difference for 32 and 64-bit words. Moreover, the SAT Competition contains
problems that require more memory than fits in 32 bits: After hitting the
limit, IsaSAT would switch to the slower unbounded version of the solver,
whereas no switch is necessary for 64-bit indices.

6.6 Evaluation

In December 2018, I evaluated IsaSAT-30 on preprocessed problems from
the SAT Competitions 2009 to 2017 and from the SAT Race 2015 using a
timeout of 1800 s. The hardware was an Intel Xeon E5620, 2.40 GHz, 4 cores,
8 threads. Each instance was limited to 10 GB of RAM. The problems were
preprocessed by CryptoMiniSat [133]. The motivation behind this is that
preprocessing can significantly simplify the problem. Detailed results can be
found on the companion web page of the NFM paper2.

State-of-the-art solvers solve more problems than IsaSAT with the default
options (Figure 6.6). Since the instances have already been preprocessed, the
difference comes from a combination of simplifications (pre- and inprocess-
ing), better heuristics, and a better implementation. To assess the difference,
I have also benchmarked the solvers without simplification (third column of

2https://people.mpi-inf.mpg.de/~mfleury/paper/results-NFM/results.html

104

https://people.mpi-inf.mpg.de/~mfleury/paper/results-NFM/results.html

6.6 Evaluation

Default options No simplification
SAT solver Solved Average Solved Average

time (s) time (s)

CryptoMiniSat 1774 349 1637 349
Glucose 1703 320 1696 303
CaDiCaL 1677 361 1602 346
MiniSat 1388 326 1373 317
MicroSAT 1018 310 N/A
IsaSAT-30 fixed heuristic 801 359 N/A
zChaff 573 345 N/A
IsaSAT-30 without the four
optimizations

433 301 N/A

IsaSAT-17 393 220 N/A
versat 368 224 N/A

Figure 6.6: Performance of some SAT solvers (N/A if no simplification is
performed by default)

Reduction Restarts Position Machine Solved Average
saving words time memory

(s) (GB)

520 294 2.1
� 551 291 2.3

� 526 281 2.1
� � 547 289 2.3

� 666 292 2.2
� � 713 312 2.5
� � 712 294 2.4
� � � 753 306 2.7

� 433 213 1.6
� � 448 207 1.7
� � 446 212 1.6
� � � 456 204 1.7
� � 677 336 2.8
� � � 738 339 3.1
� � � 705 324 2.9
� � � � 749 338 3.2

Figure 6.7: Benchmarks of variants of IsaSAT-30 before fixing the forget
heuristic

105

6 Optimizing My Verified SAT Solver IsaSAT

Figure 6.6). For Glucose 4.0 and MiniSat 2.2 the difference is small, unlike
for CaDiCaL sc18 and CryptoMiniSat 5.6.8, who are doing much more inpro-
cessing (and the heuristics are optimized towards it). Heule’s MicroSAT [59]
aims at being very short (240 lines of code including comments). Compared
with IsaSAT, it has neither position saving nor blocking literals but is highly
optimized and its heuristics work well together. The version without the four
presented optimizations differs from IsaSAT-17 by a faster conflict analysis,
a different decision heuristic, blocking literals, and various minor optimiza-
tions. IsaSAT performs better than the only other verified SAT solver with
efficient data structures I know of, versat [112]. I also include the older
solver zChaff 04 [90], that was state-of-the-art around 2004. The results are
surprising, because they do not confirm the results of the SAT Competitions.
I believe that this is due to the limited cache provided on the MPI cluster:
Optimizations like special handling of ternary clauses are much more impor-
tant on it than they are on modern hardware, where more cache is present. I
have seen an issue like that where a change in IsaSAT caused a slowdown of
either ∼ 20% (on the cluster), ∼ 5% (on my home computer), or no difference
(on my laptop) due to differences in the cache size (and, therefore, in the
number of cache misses).

I compared the impact of reduction, restart, position saving, and machine
words (Figure 6.7). Since Standard ML is garbage-collected, the peak memory
usage depends on the system’s available memory. The results show that
restarts and machine words have a significant impact on the number of solved
problems. The results are less clear for the other features. Position saving
mostly has a positive impact. The negative influence of reduction hints at a
bad heuristic: I later tuned the heuristic by keeping clauses involved in the
conflict analysis and the results improved from 749 to 801 problems. The fact
that garbage collection of the arena is not implemented could also have an
impact, as memory is wasted.

6.7 Extracting Efficient Code

When refining the code, it is generally not clear which invariants will be
needed later. However, I noticed that improvements on data structures also
require stronger properties. Therefore, proving them early can help further
refinement but also makes the proofs more complicated. Another issue is
that the generated code is not readable, which makes it extremely hard to
change in order to test if a data structure or a heuristic improves speed.

Profiling is crucial to obtain good performance. First, it shows if there

106

6.7 Extracting Efficient Code

are some obvious gains. However, profiling Standard ML code is not easy.
MLton has a profiler which only gives the total amount of time spent in the
function (not including the function calls in its body) and not the time per
path in the call graph. So performance bugs in functions that do not dominate
run time are hard to identify. One striking example was the insertion sort
used to sort the clauses during reduction. It was the comparison function
that was dominating the run time, not the sort itself, which I changed to
quicksort.

Continuous testing also turned out to be important. It can catch perfor-
mance regression before any change in the search behavior is done, allowing
me to debug them. One extreme example was the special handling of binary
clauses: A Boolean was added to every element of the watch list, changing
the type from word64 * word32 to word64 * (word32 * bool). This change
in the critical spot of any SAT solver caused a performance loss of around
20% due to 3.5 times as many cache misses. Since the search behavior had
not changed, I took a single problem and tried to understand where the re-
gression came from. First, word64 * (word32 * bool) is less efficient than
word64 * word32 * bool as it requires a pointer for word32 * bool. This
can be alleviated by using a single constructor datatype (the code generator
generates the later version and the single constructor is optimized away).
However, there is a second issue: The tuple uses three 64-bit words, whereas
only two would be used in the equivalent C structure. I added code equa-
tions to merge the word32 * bool into a single word64 (with 31 unused bits),
solving the regression. Developers of non-verified SAT solvers face similar
issues3 but there are more tools for C and C++.

While working on the SAT solver, I added several serializations of con-
stants in Isabelle to constants in Standard ML. They are part of the trusted
code base. The additional code equations are either trying to avoid the con-
versions to unbounded integers (IntInf) and back (as would happen by
default when accessing arrays) or related to printing (statistics during the
execution). Whether or not the equations are safe is not always obvious. For
example, the code equations to access arrays without converting the numbers
to unbounded integers and back4 are safe as long as the array bounds are
checked.

However, IsaSAT is compiled with an option that deactivates array-access
bound checks. When accessing elements outside of an array, the behavior
is undefined. As long as I am using Sepref and clauses of the input do not

3e.g., https://www.msoos.org/2016/03/memory-layout-of-clauses-in-minisat/
4although the Standard ML specification encourages compilers to optimize such code

107

https://www.msoos.org/2016/03/memory-layout-of-clauses-in-minisat/

6 Optimizing My Verified SAT Solver IsaSAT

contain duplicate literals, validity of the memory accesses was proved. With-
out the custom code equations and with bound checks, only 536 problems
(average time: 283 s) are solved, instead of 749.

Equivalent C code would be more efficient. First, as already mentioned,
there are differences in the memory guarantees. Standard ML does not
provide information on the alignment. A second issue are spurious reallo-
cations. A simple example is the function fun (propa, s) => (propa + 1,

s). This simple function (counting the number of propagations) is respon-
sible for 1.7% of all allocations although I would expect no extra allocation.
A third issue is that the generated code is written in a functional style with
many unit arguments fun () => ... to ensure that side effects are done in
the right order. Not every compiler supports optimizing these additional
constructs away.

All the optimizations have an impact on the length of the formalization.
The whole formalization is around 31 000 lines of proof for refinement from
TWL to the last layer Heur, 35 000 lines (Heur and code generation), and 9000
lines for libraries. The generated Standard ML code including all auxiliary
functions is 8100 lines long.

6.8 Detailed TWL Invariants in Isabelle

In this section, I describe in detail the invariants to prove correctness of the
watched literals invariants. This can serve as a base for testing or adding
assertion when implemented an SMT solver or SAT solver where clauses are
added.

I first define two predicates, one indicating whether a literal is blocking
and whether a clause has a true literal with respect to a given literal.

definition is blit :: (′a, ′b) ann literals⇒ ′a clause⇒ ′a literal⇒ bool where
is blit M D L = (L ∈ D ∧ L ∈ M)

definition has blit :: (′a, ′b) ann literals ⇒ ′a clause ⇒ ′a literal ⇒ bool
where

has blit M D L′ = (∃L. is blit M D L ∧ get level M L ≤ get level M L′)

The restriction get level M L ≤ get level M L′ is not important in a SAT
solver, because L′ is typically a literal whose negation has been propagated
after the last decision. Therefore, L′ is always of maximum level, making
the inequality automatically true. While this is automatically true in a SAT
solver, this is the core argument of the compatibility of the two-watched-
literal scheme with Backjump and Restart.

108

6.8 Detailed TWL Invariants in Isabelle

In practice, the invariants for a clause C on watched literals do not hold
most of the time. They only hold if C does need any update:

definition twl is an exception where
twl is an exception C Q WS =
(∃L. L ∈ Q ∧ L ∈ watchedC) ∨ (∃L. (L, C) ∈WS)

When a false literal is watched and the clause does not have a blocking
literal, then this literal is of maximum level and is of level higher than all
other literals. This invariant is natural in SAT solvers, since conflicts are
always detected eagerly before any further decision is made.

fun twl lazy update :: (′a, ′b) ann literals⇒ ′a twl cls⇒ bool where
twl lazy update M (TWL ClauseW UW) =
∀L. (L ∈W ∧−L ∈ M ∧ ¬has blit M (W + UW) L) −→
(∀K ∈ UW. get level M L ≥ get level M K ∧−K ∈ M)

fun watched literals false of max level :: (′a, ′b) ann literals ⇒ ′a twl cls ⇒
bool where
watched literals false of max level M (TWL ClauseW UW) =
∀L. L ∈W ∧−L ∈ M ∧ ¬has blit M (W + UW) L −→
get level M L = count decided M

The previous function can be combined to an invariant that is always true
when executing TWL:

fun twl st inv :: ′v twl st⇒ bool where
twl st inv(M, N, U, D, NE, UE, WS, Q) =
(∀C ∈ N + U. struct wf twl clsC) ∧
(∀C ∈ N + U. D = None∧ ¬twl is an exceptionC Q WS −→
twl lazy update M C) ∧

(∀C ∈ N + U. D = None −→ watched literals false of max level M C)

An important property is the compatibility with backtrack and restarts. It
is given by the following invariant:

fun past invs :: ′v twl st⇒ bool where
past invs(M, N, U, D, NE, UE, WS, Q) =
∀M1 M2 K. M = M2@DecidedK#M1 −→ (
(∀C ∈ N + U. twl lazy update M1 C ∧
watched literals false of max level M1 C ∧
twl exception inv (M1, N, U,None, NE, UE, ∅, ∅)C)∧

109

6 Optimizing My Verified SAT Solver IsaSAT

confl cands enqueued (M1, N, U,None, NE, UE, ∅, ∅) ∧
propa cands enqueued (M1, N, U,None, NE, UE, ∅, ∅) ∧
clauses to update inv (M1, N, U,None, NE, UE, ∅, ∅)

It states that all invariants still holds after Backtrack and Restart.
Failing to fulfill the invariants can lead to unforeseen issues. One example

is an issue that is in the SAT solver from the solver SPASS-SATT 5 [30] (tech-
nically not an SMT solver, because only one theory at a time is supported):
The theory solver can give a new clause to the SAT solver to justify a propa-
gation. However, this is not done eagerly and, therefore, it can happen that
a propagation is not done at the right level. For example, if the trail is B† A†,
the theory solver can ask the SAT solver to learn and propagate the clause
¬A∨C, yielding the trail C¬A∨CB† A†. If the SAT solver backtracks or restarts
to level 1, the trail becomes A†, but the clause ¬A ∨ C is not repropagated.
While this should not lead to bugs in SPASS-SATT, it can lead to efficiency
losses. The lost clause might be repropagated after the next restart (if few
enough literals of the trail are reused) or it will be found during the next
round inprocessing (because it is associated with restart at level 0). In a SAT
solver, an important invariant is that there is at least on literal of highest level
in the conflict, which is not the case here anymore whenever such a clause
becomes a conflicting clause. However, the core of most SMT solvers can also
use the Skip rule over decisions, which solves the issue.

The invariants above are not the only invariants that have to be fulfilled.
For example, IsaSAT relies on the fact that if LC∨L is in the trail, then L has
to be at first position in the clause C ∨ L (unless the clause C ∨ L is binary).

6.9 Extending IsaSAT

The simplest case is the extension of IsaSAT with different heuristics. In this
case, only the Heur layer needs to be changed. This corresponds to the file
with name IsaSAT *.thy in the repository. In some cases, especially if the
propagation loop is changed, then also refinement of the two-watched-literal
calculus might have to change (files Watched Literals*.thy).

Currently no features are provided to add or remove literals during the
run (which is also an issue for inprocessing). The best point to change the
problem during a run is during a restart: change and simplify the problem
there, adapt the data structures, and restart the run of the solver. Remark

5https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/

spass-workbench/spass-satt/

110

https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/spass-satt/
https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/spass-satt/

6.10 Summary

that especially adding literals should be done with care, as keeping the same
number of literals is currently the essence of the termination proof. Removing
the restriction that literals fit in 32-bit words is not hard, but should be done
with care to avoid harming performance more than necessary, even though
I expect that switching to 64-bit literals to be relatively harmless, except for
the merge trick used in the watch list (Section 6.7).

I started the extension of CDCL to enumerate models: It is a system that
is similar to a very naive SMT solver, where the theory only supports partial
models and does not create any propagation (and does not add any variable).
I refined this version to the two-watched-literal scheme (without restarts and
forget) but I did not refine it past WList, although the main function calls
IsaSAT, which has already been refined (files Model Enumeration.thy and
Watched Literals * Enumeration.thy). It can also be used as a starting
point to refine OCDCL from Chapter 4 to verified executable code, because
the proof obligations will be similar. Termination comes from the fact that
either a model is found, or no model exists anymore (no variable is added,
only the negation of the decisions of the trail is added to the clauses).

6.10 Summary

In this chapter, I have optimized my verified SAT solver further by adding
two features that were already included in CDCL W, but not yet refined to
TWL, forget and restart. I have also extended the TWL calculus to include
blocking literals in a very abstract way, before extending the TWLwlist layer
to efficiently use blocking literals. The inclusion of forget required some
changes in the memory representation. Finally, the use of machine words
instead of unbounded integers in IsaSAT as long as possible improves the
performance of the overall solver.

Overall, the whole formalization is around 31 000 lines of proof for refine-
ment from TWL to the last layer Heur, 35 000 lines (Heur and code generation),
and 9000 lines for libraries. The generated Standard ML code including all
auxiliary functions is 8100 lines long. The length of the refinement did not
change with the extension, except for the new additional restarts and forget
that did not exist previously.

111

7 Discussion and Conclusion

In the final chapter of this thesis, I discuss in more details the other formal-
izations and SAT solvers, and compare them to my own work. The most
important difference is the refinement approach I used all along my formaliza-
tion to inherit, reuse properties, and extend the formalization (Section 7.1).
After a brief summary of this thesis (Section 7.2), I give some ideas of future
work (Section 7.3)

7.1 Discussion and Related Work

Discussion on the CDCL Formalization. My formalization of the DPLL
and CDCL calculi consists of about 17 000 lines of Isabelle text (Figure 7.1).
The work was done over a period of 10 months, and I taught myself Isabelle
during that time. It covers nearly all the metatheoretical material of Sections
2.6 to 2.11 of Automated Reasoning and Section 2 of Nieuwenhuis et al., includ-
ing normal form transformations and ground unordered resolution, which
I partly formalized during my Master’s thesis [46]. The formalization of
CDCL W and the functional implementation were already formalized in my
Master’s thesis [46]. However, I did not formalize CDCL NOT, Nieuwenhuis
et al.’s account of CDCL (and therefore neither the link between CDCL NOT
and CDCL W), I did not use locales, the calculus did not include conflict

Formalization part Length (kloc)

Libraries for CDCL 3
CDCL 17
CDCL Extensions 5
Libraries for refinement and
code generation

6

From TWL to TWLwlist+Lall 26
Heur and code generation 35

Figure 7.1: Length of various parts of the formalization (in thousands lines
of code, not accounting for empty lines)

113

7 Discussion and Conclusion

minimization, and I did not use the refinement approach. All of this is part
of my Ph.D. thesis.

It is difficult to quantify the cost of formalization as opposed to paper
proofs. For an abstract paper proof, formalization may take an arbitrarily
long time; indeed, Weidenbach’s eight-line proof of Theorem 3.10 initially
took 700 lines of Isabelle. In contrast, given a very detailed paper proof, one
can sometimes obtain a formalization in less time than it took to write the
paper proof [147].

A frequent hurdle to formalization is the lack of suitable libraries. I spent
considerable time adding definitions, lemmas, and automation hints to Isa-
belle’s multiset library, and the refinement to resizable arrays of arrays re-
quired an elaborate setup, but otherwise I did not need any special libraries.
I also found that organizing the proof at a high level, especially locale engi-
neering, is more challenging, and perhaps even more time-consuming, than
discharging proof obligations. Sometimes having alternate definitions of in-
variants makes them easier to use for Isabelle’s built-in tactics or less likely
to cause loops (especially, when the simplifier runs).

Given the varied level of formality of the proofs in the draft of Automated
Reasoning, it is unlikely that I will ever formalize the whole textbook. But
the insights arising from formalization have already enriched the textbook
in many ways. For the calculi described in this paper, the main issues were
that fundamental invariants were omitted and some proofs may have been
too sketchy to be accessible to the book’s intended audience.

For discharging proof obligations, I relied heavily on Sledgehammer, in-
cluding its facility for generating detailed Isar proofs [20] and the SMT-based
smt tactic [27]. I found the SMT solver CVC4 particularly useful, corroborat-
ing earlier empirical evaluations [121]. Although they were much less useful
during the Heur step of refinement. In contrast, the counterexample genera-
tors Nitpick and Quickcheck [19] were seldom useful. We often discovered
flawed conjectures by observing Sledgehammer fail to solve an easy-looking
problem. As one example among many, I lost perhaps one hour working
from the hypothesis that converting a set to a multiset and back is the iden-
tity. Because Isabelle’s multisets are finite, the property does not hold for
infinite sets A; yet Nitpick and Quickcheck fail to find a counterexample,
because they try only finite values for A (and Quickcheck cannot cope with
underspecification anyway).

Other Formalizations of Logic. Formalizing metatheoretical results about
logic in a proof assistant is an enticing, even though somewhat self-referential,

114

7.1 Discussion and Related Work

prospect. Persson’s completeness proof for intuitionistic predicate logic in
ALF [117], Shankar’s proof of Gödel’s first incompleteness theorem [131],
Harrison’s formalization of basic first-order model theory [58], Margetson
and Ridge’s formalized completeness and cut elimination theorems [92], or
more recently the completeness of a Gentzen system [26] are some landmark
results in this area.

There has been a lot of recent work related to formalizing calculi. In partic-
ular, Schlichtkrull et al. [128] have verified the Bachmair and Ganzinger’s or-
dered resolution prover, including a verified functional implementation [126,
127]. While it does not feature imperative data structure, a challenge was
the possible nontermination of the prover. Jensen et al. [66] have imple-
mented a first-order prover in Isabelle. Peltier has verified superposition in
Isabelle [116].

More related to SAT solving, Narváez [105] has verified symmetry break-
ing of formulas in CNF in the proof assistant PVS [113]. Unlike my formaliza-
tion, he has not verified an implementation to break symmetries on concrete
formulas, but his work requires several libraries, in particular graphs.

Other CDCL Formalizations. At the calculus level, I followed Nieuwenhuis
et al. (Section 3.1) and Weidenbach (Section 3.2), but other accounts exist. In
particular, Krstić and Goel [71] present a calculus that lies between CDCL
NOT and CDCL W on a scale from abstract to concrete. Unlike Nieuwenhuis
et al., they have a concrete Backjumping rule. On the other hand, whereas
Weidenbach only allows resolving the conflict (Resolution) with the clause
that was used to propagate a literal, Krstić and Goel allow any clause that
could have caused the propagation (rule Explain). Another difference is that
their Learn and Backtrack rules must explicitly check that no clause is learned
twice (cf. Theorem 3.10). The authors mention that the check is not required
in MiniSat-like implementations, but no proof of this statement is provided.

In his Ph.D. thesis, Lescuyer [82] presents the formalization of the CDCL
calculus and the core of an SMT solver in Coq. He also developed a reflexive
DPLL-based SAT solver for Coq, which can be used as a tactic in the proof
assistant. Another formalization of a CDCL-based SAT solver, including
termination but excluding two watched literals, is by Shankar and Vaucher
in PVS [132]. Most of this work was done by Vaucher during a two-month
internship, an impressive achievement.

CDCL Extensions. I am not aware of any attempt to formalize extensions
of CDCL in a proof assistant, but there are several presentations of optimizing

115

7 Discussion and Conclusion

SAT. Larossa et al. have developed a similar approach to mine [79]. They
define cost optimality with respect to models (without specifying if total or
partial models are meant), but their Improve rule only considers total models.
Our calculus is slightly more general due to the inclusion of the rule Improve+.
Moreover, the first unique implication point is built into our calculus. The
Pruning rule can be simulated by their Learn rule: ¬M ∨ c ≥ cost(O) is
entailed by the clauses.

A related problem to finding the optimal-cost partial model has been called
minimum-weight propositional satisfiability by Sebastiani et al. [130]. It
assumes that negative literals do not cost anything: In my case, the opposite
of L is ¬L or L undefined. In their case, ¬L and L undefined have the same
weight. This makes their version compatible with the learning mechanism of
CDCL.

Liberatore developed a variant of DPLL to solve this problem [86]. Each
time a variable is decided, it is first set to true, then set to false. If the current
model is larger than a given bound, then the search stops exploring the
current branch. When a new better model is found, the search is restarted
with the new lower bound. A version lifted to CDCL was implemented
in zChaff [53] to solve MaxSAT. Although Liberatore’s method can return
partial models, they are only an Herbrand model: They are entirely given by
the set of all true atoms. Therefore, the method actually builds total models.

I have presented here a variant of CDCL to find optimal models and used
the dual rail encoding to reduce the search of optimal models with respect
to partial valuations to the search of optimal models with respect to total
valuations. Both have been formalized using the proof assistant Isabelle/
HOL. This formalization fits nicely into the framework we have previously
developed and the abstraction we have used in Isabelle to simplify reuse and
studying variants and extensions.

I started the encoding for cost-minimal models with respect to partial
valuations by introducing three extra variables for each variable based on
Dominik Zimmer’s upcoming Bachelor thesis. Compared with the dual rail
encoding, the third extra variable explicitly modeled whether a variable is
defined or undefined. I performed the content of Section 4.3 and Section 4.4
with this encoding and only afterwards was pointed by a reviewer to the
dual rail encoding. It took me half a day to redo the overall formalization.
For me, this is another example that the reuse of formalizations can work.
This is further demonstrated by the application of the OCDCL results to
MaxSAT and the reuse of the formalization framework to verify the model
covering calculus MCCDCL, Section 4.5. Minimization of the model covering
set computed by MCCDCL can also be solved by an afterwards application

116

7.1 Discussion and Related Work

of a CDCL calculus with branch and bound [91], and would probably fit in
my framework.

Discussion on Refinement. I found formalizing the two watched literals
challenging. In the literature, only variants of the invariant from Section 5.2
are presented. However, there are several other key properties that are neces-
sary to prove that no work is needed when backjumping. For example, the
invariant states that “a watched literal may be false only if the other watched
literal is true,” but this is not the whole story. It would be more precise to
state that “a watched literal may be false only if the other watched literal is
true and this false literal’s level is greater than or equal to the true literal’s level.”
This version of the invariant explains why no update is required after Jump:
Either both watched literals are now unset in the trail, or only the true literal
remains.

One difficulty I faced when adding optimizations is that the “edit, compile,
run” cycle is much longer when code is developed through the Isabelle
Refinement Framework instead of directly in a programming language such
as C++. For example, the change to the conflict-clause representation took
two weeks to prove and implement, before I found out that the overall solver
gets slower. Although I could fix that problem (iterating over the conflict
representation as a hash table is too inefficient), I have yet to find a good
methodology for carrying out quick experiments.

The distinguishing feature of my work is the systematic application of
refinement to connect abstract calculi with generated code. The Refinement
Framework allows me to generate imperative code while keeping programs
underspecified for as long as possible. It makes it straightforward to change
the implementation or to derive multiple implementations from the same
abstract specification. Its support for assertions makes it possible to reuse
properties proved on an abstract level to reason about more concrete levels.

One of my initial motivations for using locales, besides the ease with which
it lets me express relationships between calculi, was that it allows abstracting
over the concrete representation of the state. My first idea was instantiating
the CDCL W locale with the more complicated TWL data structures and
convert these structures in the selectors to the data structures from CDCL W.
However, I discovered that this is often too restrictive, because some data
structures need sophisticated invariants, which I must establish at the abstract
level. I found myself having to modify the base locale each time I attempted
to refine the data structure, an extremely tedious endeavor.

In contrast, the Refinement Framework, with its focus on functions, allows

117

7 Discussion and Conclusion

me to exploit local assumptions. Consider the prepend trail function (Sec-
tion 3.1.2), which adds a literal to the trail. Whenever the function is called,
the literal is not already set and appears in the clauses. The polarity-checking
optimization (Section 5.7.5) relies on this property to avoid checking bounds
when updating the atom-to-polarity map. With the Refinement Framework,
there are enough assumptions in the context to establish the property. With a
locale, I would have to restrict the specification of prepend trail to handle only
those cases where the literals are in the set of clauses, leading to changes
in the locale definition itself and to all its uses, well beyond the polarity-
checking code.

While refining to the heap monad, I discovered several issues with my
program. I had forgotten several assertions (especially array bound checks)
and sometimes mixed up the k and d annotations, resulting in large, hard-
to-interpret proof obligations. Sepref is a very useful tool, but it provides
few safeguards or hints when something goes wrong. Moreover, the Isa-
belle/jEdit user interface can be unbearably slow at displaying large proof
obligations.

The Refinement Framework’s lack of support for pointer aliasing impacted
my solver in two main ways. First, I had to use array indices instead of
pointers to clauses. This moved the dependency between the array and the
clause from the code level to the abstract specification level. Second, array
access NU ! C must take a copy of the array at position C. I avoided this issue
by consistently using two-dimensional indexing, (NU ! C) ! i, which yields an
unsigned 32-bit integer representing a literal.

Another issue is the lack of iterators. When defining the arena module,
I cannot hide it as an implementation detail. With proper abstractions, an
arena is simply a memory allocator with a particular strategy. However, with
Isabelle, I cannot cast part of it to a clause (as done with pointers) or hide the
details on how iteration over clauses are done by using iterator and saying
that an iterator over a clause is refined to an iterator over a part of the arena.

The longest part was the refinement from the abstract algorithm to the
executable version. To improve performance, I studied the generated code
and looked for bottlenecks. This was tedious: The code is hardly readable,
with generated variable names (only function names are kept). But at least,
at every step I knew that the code was correct.

Formalizing heuristics turns out to be surprisingly hard: There is no guar-
antee that they behave correctly and it is extremely hard to compare the
behavior to other SAT solvers. For example, during restarts, the beginning
of the trail can be reused (Section 6.4). When testing it, I have remarked that
most of the time only one or two are levels are reused. I do not know if

118

7.1 Discussion and Related Work

this is normal (it could be a side effect of the VMTF decision heuristic that
often shuffles the order) or it indicates that this a performance problem in
the interplay of the heuristics.

There is a subtle point about completeness of IsaSAT: The SML semantics
does not enforce that arbitrary-sized arrays can be represented. The compiler
I use, MLton, only supports arrays with less than 263 − 1 elements, which
means that the generated version is not complete. It will fail with an ex-
ception in the unlikely case that IsaSAT uses an array of more than 263 − 1
elements.

Other Formalized SAT solvers. SAT solvers have been formalized in proof
assistants, with the aim of obtaining executable code. Marić [93,95] verified a
CDCL-based SAT solver in Isabelle/HOL, including two watched literals, as
a purely functional program. The solver is monolithic, which complicates ex-
tensions. Marić’s methodology is quite different from mine, without the use
of refinements, inductive predicates, locales, or even Sledgehammer. More
precisely, he developed.

1. A CDCL calculus: He formalized the abstract CDCL calculus by Nieuw-
enhuis et al. and, together with Janičić [93,96], the more concrete calcu-
lus by Krstić and Goel [71].

2. The two-watched-literal scheme: It is a different scheme than the one I veri-
fied. Most notably, propagations are not done immediately when possi-
ble. In my notation, this corresponds to only propagating when taking
a literal out of WS, instead of directly propagating it when adding it to
WS. This makes the invariants simpler to define.

3. A code extraction of an executable SAT solver [95]: A SAT solver was de-
rived from the refined calculus. This solver does not have any efficient
data structure and is implemented in a purely functional style. This
solver contains only very naive heuristics: For example, the decision
heuristic selects a random undefined literal.

4. A connection by hand to the C++ solver Argo [94]: Through a chain of
refinement partly on paper and partly in Isabelle, Marić connected
ArgoSAT to his functional code. This solver contains features that
are not included in the code generated from Isabelle, such as conflict
minimization, restart, and forget.

Oe et al. [112] verified an imperative and fairly efficient CDCL-based SAT
solver, expressed using the Guru language for verified programming. Opti-

119

7 Discussion and Conclusion

mized data structures are used, including for two watched literals and con-
flict analysis. However, termination is not guaranteed, and model soundness
is achieved through a run-time check and not proved. The two-watched-
literal scheme used in versat is different from IsaSAT: Instead of updating
one watched literal at a time, both can be updated at the same time.1 They
use the invariant described in Section 6.2, but do not have blocking literals.
Unlike Marić’s version and similarly to IsaSAT, literals are immediately prop-
agated. The code of versat uses bounded integers: The code actually relies
on C integers (int) to be exactly 32-bit words; otherwise, the behavior is
undefined.2 Therefore, the solver is not complete and actually crashes when
trying to solve some larger problems of the SAT competition. Technically,
they have verified a checker inside a SAT solver: only the resolutions are
certified. Proving this requires some additional proofs on the SAT solver (no
undefined behavior, no crashes). To take the example of watch lists, this re-
quires to prove that the pointer in the watch lists are valid pointers that point
to clauses entailed by or present in the problem, but there was no reason to
prove that every clause appears twice in the watch lists.

There are several formalizations of DPLL, including Berger et al. [11],
whose Haskell solver outperforms versat on large pigeonhole problems.
(CDCL is not faster than DPLL on such problems, because the learned clauses
are useless at pruning the search space.) Like versat, the resolution steps are
certified, but termination and correctness of the returned model is proved.
A partial verification is included in Roe’s Ph.D. thesis [123]. He developed
tools for Coq to automatically prove the correctness of structural invariants.
He applied it on the verification of the two-watched-literal scheme in a DPLL
solver. Only some properties have been verified (8 out of 83) and he only
focuses on the structural invariants, not on heuristics. Although his code
is obtained by parsing a C program, the data structures are non-standard
in SAT solvers. Instead of keeping clauses as an array of literals, the solver
operates on structures called clause that is a C structure containing an array
of type bool [NUM ATMS] where true at the i-th position indicates that the
atom i is watched and false that it is unwatched or not present in the clause.
Therefore, finding the watched literals requires iterating over all atoms in
the input problem. More generally, the data structures are not optimized for
efficiency, since each clause contains several arrays of type bool [NUM ATMS]

(for positive literals, negative literals, watched atoms, next watched clauses,

1I am not aware of any state-of-the-art SAT solver doing so.
2Luckily, it crashed when I used it on a 64-bit machine, making it possible to identify

that I was using the program outside of the specification. The hint was a function with 32

arguments used to initialize a variable.

120

7.1 Discussion and Related Work

previous watched clauses), like a hashmap to indicate that an atom is present.
They make iterations over any clause inefficient and the clause needs a lot of
memory.

Other Verification Approaches. Given that I had formalized CDCL in
Isabelle/HOL, it was natural to use the Isabelle Refinement Framework and
Sepref. For Coq, the Fiat tool is available [42]. Like Sepref, it applies au-
tomatic data refinement to obtain efficient implementations. However, it is
limited to purely functional implementations and does not support recursive
programs. Nor does it support assertions, which are an important mecha-
nism to move facts down the refinement chain instead of reproving them at
each level.

Gries and Volpano [55] describe a data refinement approach that, like
Sepref, automatically transforms abstract to concrete data structures, by re-
placing abstract with concrete operations. It refines imperative to imperative
programs, whereas Sepref connects functional to imperative programs. To
my knowledge, their approach does not use a theorem prover, i.e., the cor-
rectness of the transformations must be trusted.

It is not necessary to use the Isabelle Refinement Framework to do refine-
ment. It is also possible to refine functions directly with locales: Functions
are defined on simple datatypes. This is the most abstract level. Then, the lo-
cales is instantiated with a more complicated datatype or a more complicated
locale. This is the approach used in the theory for linear arithmetic [137] and
more generally in CeTA [135]. Unlike the Isabelle Refinement Framework,
there cannot be assertions or nondeterministic specification of functions. The
locale approach can be called from the nondeterminism monad (by RETURN).
However, once the nondeterminism monad is entered, the result cannot be
extracted from the heap monad.

Unlike the top-down approach used here, the verification of the seL4 micro-
kernel [69] relies on abstracting the program to verify. An abstract specifi-
cation in Isabelle is refined to an Haskell program. Then, a C program is
abstracted and connected to the Haskell program. Unbounded integers are
not supported in C and therefore achieving completeness of a SAT solver
would not be possible: If there are more than 264 clauses, integers larger than
64 bits are required. Whether a computer that with enough memory store 264

clauses exists is a different question. The goal obligations arising from such
abstraction would be similar to the ones I have already discharged. For exam-
ple, I could start with a C version of CaDiCaL and import it to Isabelle with
AutoCorres [111] and connect it to TWLwlist+Lall. CaDiCaL uses the VMTF

121

7 Discussion and Conclusion

heuristic that has similar invariants to IsaSAT, even if different variables are
considered important.

Other techniques to abstract programs exist, like Chargueraud’s charac-
teristic formulas [34]. Another option is Why3 [45] or a similar verification
condition generator like Dafny [81]. Some meta-arguments in Why3 (for
example, incrementing a 64-bit machine integer initialized with 0 will not
overflow in a reasonable amount of time; therefore, machine integers are
safe [38]) would simplify the generation of efficient code. In any case, refine-
ment helps to verify a large program.

Increasing Trust. Isabelle’s code generator does not formally connect the
generated code to the original function. On the one hand, Hupel’s verified
compiler [64, 65] from Isabelle to the semantics of the verified Standard ML
compiler CakeML could bridge the gap. However, code export from Imper-
ative HOL is not yet supported. On the other hand, HOL4 in conjunction
with CakeML makes it possible to bridge this gap and also to reason about
input and output like parsing the input file and printing the answer [72].
There is, however, no way to eliminate the array-access checks, because these
conditions cannot be embedded in the program as done by assertion and no
precondition can express that no array check is required in a function. For
example, consider the two following programs:

definition f1 :: unit⇒ nat where
f1 () = 42

definition f2 :: unit⇒ nat where
f2 () = (let = [] ! 12 in 42)

Since functions are total in HOL, both programs are well defined: [] ! 12 is
defined and returns an arbitrary (undefined) value. Moreover, the programs
are equal in HOL, because they both return 42. The execution f1 () is safe,
but not the execution of f2 in general, because f2 accesses the empty array
[] outside of the bounds. Therefore, without array checks, the execution of
f2 () is undefined, but HOL cannot distinguish both definitions. Hence, no
precondition on programs can ensure that a function is safe. One possible
solution is assertions as done in the nondeterministic exception monad. The
code in the CakeML semantics does not have assertions, making it impossible
to prove that all array bounds have been checked.

Besides the array checks, CakeML uses boxed machine words unlike ML-
ton: This means that every access to a machine word (including in arrays)

122

7.2 Summary

requires following a pointer (and possibly a cache miss), which likely leads
to a significant slowdown in the overall solver.

Certification. Instead of verifying a SAT solver, another way to obtain
trustworthy results is to have the solver produce a certificate, which can
be processed by a checker. While certificates for satisfiable formulas are
simply a valuation of the variables and can easily be generated and checked,
certificates for unsatisfiable formulas are more complicated. The de facto
standard format is DRAT (deletion resolution asymmetric tautology) [62],
which can be easily generated by solvers. The standard DRAT certificate
checker [145] is, however, an unverified C program. Recent research [39, 40,
61, 77] shows that it is now possible to have efficient verified checkers. Like
a SAT solver, checkers uses many arrays and accesses them often. Therefore,
they would likely benefit from machine words to improve performance.

Other SAT solvers. My work is related to the implementation of non-
verified SAT solvers. The overall idea of CDCL goes back to Grasp [98].
zChaff [90] pioneered the decision heuristic VSIDS. Glucose pioneered the
LBD score to rank the importance of clauses (and, in particular, which clauses
can be forgotten). The LBD score for restarts works well for unsatisfiable in-
stances. CaDiCaL, CryptoMiniSat, and Lingeling focus more on inprocessing
to simplify the clause set. Some information on the heuristics and on the
implementation is given in Annex A.

Most recent work concerned heuristics and understanding why heuristics
work well, including [35, 44, 85, 106]. There are only few recent extensions
of CDCL (“No major performance breakthrough in close to two decades”
according to Marques-Silva [97]), but one recent extension is the inclusion of
chronological backtracking implemented by Nadel and Ryvchin [104]. Möhle
and Biere presented it as an abstract transition system [101] that is closer to
the implementation than the original paper and proved correctness.

7.2 Summary

In this thesis, I have presented my formalization of the conflict-driven-clause-
learning procedure, based on two different accounts by Weidenbach and
Nieuwenhuis et al. The most important feature in the formalization is the
use of a nondeterministic transition system to represent the calculi and the
approach by refinement. This makes it possible to reuse and extend the

123

7 Discussion and Conclusion

formalization by inheriting properties. My presentation includes the restart
and forgets, that are critical in SAT implementations.

I have used the CDCL formalization as a framework to expand it further
by making it incremental and developing an abstract CDCL with branch and
bound, which is instantiated to find a total model with minimum weight
and a covering set of models. The most important feature of the CDCLBnB
framework is the reuse of the invariants and definitions from CDCL, reducing
the hurdle to verify other variants of CDCL.

After that, I refined CDCL to include two important features for efficiency,
the two-watched-literal scheme and blocking literals. These two techniques
are important for the efficiency of the implementation of the propagation rule.
I still present this system as a nondeterminism transition system, although it
allows fewer behaviors that the more abstract calculus.

Finally, after several further steps of refinement, I refined the transition sys-
tem to executable code with efficient data structures. This solver is obtained
by refining code and synthesizing code with imperative data structures from
code with only functional data structures. Once combined with a trusted
parser, it is efficient enough to solve problems from the SAT Competition
and it performs better than any other verified SAT solver.

7.3 Future Work

Lammich is currently working on synthesizing LLVM [80] code from Isa-
belle [78]. This could give more control on the generated code (e.g., the tuple
representation is more efficient). It could also enable to write structures in-
stead of tuples that must be decomposed and recomposed in each function,
and give access to more benchmarking tools. Generating LLVM changes
the trusted part of the code: Instead of trusting the translation from Isabelle
functions to Standard ML, the Isabelle version of the LLVM semantics must
be trusted. As the code generator of Isabelle is taken out of the equation,
there would no more (fn () => ...) (), that must be optimized away by
the compiler.3 However, the current setup does not support unbounded in-
tegers. Therefore, completeness cannot be kept easily. Early results indicate
that the LLVM generated version is between 30% and 50% faster than the
SML version.

3The most striking example of a missed optimization was the use of the constant 232 in
the propagation loop. MLton was not able to precalculate the value, which was instead re-
evaluated every time. In this specific case, the slowdown was massive enough to be obvious
and the fix very simple: replace 232 by its value during code generation.

124

7.3 Future Work

There are several techniques missing IsaSAT compared with state-of-the-
art SAT solvers, currently garbage collection of the arena module, but mostly
pre- and inprecessing. Besides preprocessing that can tremendously simplify
problems and is now standard in most SAT solvers, a technique called viv-
ification [84, 89] is now implemented in many SAT solvers that took part in
the SAT Competition 2018. The technique is not new [118], but it is now
included in several solvers that do not extensively focus on inprocessing.

I would like to extend my calculus to be able to represent CDCL(T), the
calculus behind SMT solvers. The theory of linear arithmetic has already been
implemented by Thiemann [28, 137]. The authors of the CeTA checker would
also be interested in using a verified SAT solver. They do not use Imperative
HOL and there is no way to extract a result from code in Imperative HOL.
Therefore, some work is required to adapt IsaSAT. One possible solution is
to use Sepref to generate functional code in Imperative HOL and generate
from it a version in HOL (i.e., outside of the nondeterminism monad).

125

A More Details on IsaSAT and Other
SAT Solvers

This chapter describes some features of other SAT solvers and compares
them to the implementation in IsaSAT. This section is independent and not
necessary to understand the rest of the thesis.

Clauses and how they are represented in memory is critical for the perfor-
mance of a SAT solver. In particular, this is the data structure that uses the
most memory. Glucose, CaDiCaL, and IsaSAT use a similar representation
for clauses (Section A.1).

Watch lists is another important point for performance. Glucose splits the
watch lists into two different lists, one for binary and one for the other clauses.
The watch lists of IsaSAT are based on the ones from CaDiCaL (Section A.2).

The decision heuristic is very important aspect of a SAT solver. For ex-
ample, with a perfect choice heuristic, solving a satisfiable instance is trivial.
Glucose, MapleSAT, and CaDiCaL use different heuristics, but it is not clear
to me which one is better (Section A.3).

The conflict minimization implemented in MiniSat and Glucose and is
similar to the one implemented in IsaSAT. However, CaDiCaL uses a more
advanced minimization algorithm: The result is the same minimized clause,
but the algorithm is faster (Section A.4).

SAT solvers spend most of their time learning new clauses. A lot of them
are discarded and the selection is important (Section A.5).

Finally, they are several algorithm to simplify the clause set and make
the work of the CDCL loop easier. These simplifications can be used at the
beginning (called preprocessing) or interleaved with the CDCL loop (called
inprocessing). Most solvers only do preprocessing, but all winners of the SAT
Competition since 2015 do (Section A.6).

A.1 Clauses

The clause representation is the central point of the performance of SAT
solvers. The representations of IsaSAT and other SAT solvers are similar,

127

A More Details on IsaSAT and Other SAT Solvers

even though only IsaSAT offers no abstraction over the clause representation:
How the clauses are represented in memory is usually only handled by the
allocator and does not impact the remaining code, while in IsaSAT, the arena
module impacts every clause access, due to a lack of pointers (which in
particular makes it impossible to write a generic memory manager).

A.1.1 IsaSAT

The arena module is presented in Section 6.3. With all heuristics, IsaSAT has
the following headers before a clause:

• the saved position (Section 6.3), which is optional and kept only for
long clauses.

• the status (initial, learned, or deleted) and whether the clause has been
used. This field is extremely wasteful as only 3 bits are used (out of 32

bits).

• the size of the clause.

• the activity of the clause and whether the clause has been used during
the conflict analysis (by rule Resolve).

• the LBD score of the clause.

The latest two fields and the Boolean indicating that the clause has been
used are used for the forget heuristic.

A.1.2 Glucose

Glucose uses a similar memory presentation to IsaSAT, with a flat memory
representation. However, it is handled using an allocator defined in the file
XAlloc, where the relevant part is the following:

template<c l a s s T>
c l a s s RegionAllocator
{

T* memory ;
u i n t 3 2 t sz ;
u i n t 3 2 t cap ;
u i n t 3 2 t wasted ;

}

128

A.1 Clauses

The pointer memory is the allocated region and clauses are added to it. Us-
ing pointers to clauses makes it possible to hide how the allocations are done.
This cannot be done in Isabelle, which makes the loops more complicated
and less clear.

A.1.3 CaDiCaL

IsaSAT’s memory representation is inspired by CaDiCaL’s. However, C++
makes the implementation easier to achieve. Clauses are defined in a class:

c l a s s Clause {
public :

i n t pos ;

i n t alignment ;

bool extended : 1 ;

/ * s e v e r a l o t h e r B o o l e a n f l a g s * /

signed i n t glue : LD MAX GLUE;

i n t s i z e ;

union {
i n t l i t e r a l s [2] ;
Clause * copy ;

} ;
}

In the code of CaDiCaL, literals[2] is only a trick (although technically
undefined behavior in C++1) and the clause can (obviously) contain more
than two literals. After that, the memory allocator takes care to allocate
the clause in a flat representation and not to allocate the field pos that
holds the information required for the position saving heuristic when the
clause is short (similarly to the representation in IsaSAT). Compared with
the representation in IsaSAT, the headers are represented in a more compact
fashion (both because not all bits of the LBD score are stored and because

1Flexible array members are part of C (since C99), but not of any C++ version

129

A More Details on IsaSAT and Other SAT Solvers

there are fewer wasted bits.) In particular, the compiler takes care of putting
the headers in the least number of bytes.

Another difference is the fact that the pointer to the clause is represented
either as a clause or a pointer if the clause was reallocated. This makes
it easier to reallocate the clause and update the reasons in the trail. The
union makes garbage collection more efficient. In IsaSAT, I found no way to
represent that: If I assume that clause indices are represented on by 64-bit
numbers, I could do it by encoding it into two 32-bit numbers and include
it in the arena. However, I do not see any way to represent this behavior
for unbounded integers. So far, I avoided introducing behaviors that differ
between the bounded and the unbounded version to be able to compare the
performance of both versions.

A.2 Watch Lists and Propagations

Glucose use two different watch lists: One only for binary clauses (i.e., a list
of blocking literals) and one for non-binary clauses (i.e., a list of blocking
literals and a pointer). This avoids testing if a clause is binary during the
propagation loop (and is more cache-friendly), but requires two loops. I
thought about doing that too in IsaSAT: At the CDCL W level, I would still
have a single list for watched list, which would get split into two at Heur.
However, I have never managed to prove that I can split a single loop into
two different loops during a refinement step. I talked to Peter Lammich, but
he did not see any simple solution to it either.

In CaDiCaL sc18 (used for the SAT Competition 2018), an element of a
watch list contains an additional redundant information whether the clause
is redundant or not:

s t r u c t Watch {
Clause * c lause ;
signed i n t b l i t ;
bool redundant ;
bool binary ;

}

Even if 31 bits are still wasted (integers signed int are 32 bits, Boolean bool

can be only one bit, and pointers are Clause* 64 bits),2 whether the clause is

2Technically the C standard does not specify how structures are represented in memory
(padding between elements) and what size integers and pointers have, but most compilers
agree on this representation on 64-bit architectures.

130

A.3 Decision Heuristics

redundant can be used during inprocessing: If an initial clause is subsumed
by a binary clause, then the latter can be promoted to an initial clause and
the former can be removed. All this information can be accessed without
cache miss. In IsaSAT the redundant information is not accessed (instead 31

bits are wasted). Since CaDiCaL sr19 (used for the SAT Race 2019), the size
is stored in the watch structure instead of a Boolean (i.e., binary is true iff
the size is exactly 2), in order to make some inprocessing procedures more
efficient.

A.3 Decision Heuristics

There are several decision heuristics, by order of invention: Glucose (and
Minisat) uses VSIDS, CaDiCaL uses VMTF (like IsaSAT), while MapleSAT
variants have LRB. The last heuristic seems especially efficient for satisfiable
instances (this is how one variant won the SAT Competition 2018 [4]).

The main reason for not implementing VSIDS or LRB in IsaSAT is that
VMTF is much simpler but does not seem to perform worse than VSIDS [15],
and especially does not require the use of floating-point arithmetic. The be-
havior of floating-point numbers has been formalized in Isabelle by Yu [148],
but it has not been used in for refinement and there is currently no setup for
code synthesis. Moreover, it is not so clear if the implementations follow ex-
actly the norm. Finding out differences is a major hurdle: Lochbihler found
a bug in PolyML while doing so [87].

A.4 Clause Minimization

The efficiency of the conflict minimization algorithm is important, because
this procedure is called extremely often.

Compared with IsaSAT, Glucose includes conflict minimization with bi-
nary clauses: by iterating over the watch lists, some literals are removed (this
is only tried if the LBD score of the conflict clause is low enough). If the
conflict clause is A ∨ B ∨ C, A is the literal of highest level, and the clause
A ∨ ¬B is a clause of the problem, then the conflict clause can be shortened
to A ∨ C by resolution. This is a special case of inprocessing, which is very
efficient since all necessary information is in the watch lists.

CaDiCaL does not minimize the conflict clause with binary clauses (this is
done during inprocessing), but the algorithm for clause minimization differs
slightly:

131

A More Details on IsaSAT and Other SAT Solvers

• it is based on a more advanced version of van Gelder’s poison idea [51]
to limit the number of recursive attempts. This, however, requires more
complicated data structures.

• it contains an idea by Knuth to abort earlier.

• the implementation is recursive and not iterative (and contains a depth
check to limit the recursion depth).

A.5 Forget

In IsaSAT, clauses are sorted by LBD and by activity and linearly-many
clauses are kept, except for initial clauses, binary clauses, clauses of LBD less
than three3, or clauses that have been used for rule Resolve. This is a move-to-
front like scheme: used clauses are always kept at least once when resolving.
The activity is the number of times a clause is used in a conflict. Using
the activity for ties seems to help on my benchmarks. CaDiCaL’s scheme is
similar, but clauses are marked as used, but clauses are also marked as used
in other parts of the solver.

MapleSAT uses a much more complicated way to decide if a clause must
be forgotten or not. The idea is use a three tiers. Tier 0 is never emptied,
i.e., clauses of Tier 0 are never deleted; Tier 1 is emptied regularly (∼ 25 000
conflicts), Tier 2 is emptied more often (∼ 10 000 conflicts). Clause can switch
from one tier to another.

A.6 Clause Simplification

There are several algorithms used to simplify the clause set. Here is a limited
list.

Removal of true/false literals If L is true, then L ∨ C can be removed from
the clause set and −L can be removed from −L ∨ D.

Variable elimination This technique tries to eliminate variables. This is usu-
ally done if the number of clauses is not increased. A special case is
pure literal deletion: If a literal appears only positively, it can be removed
and the clauses it appears in (this corresponds to setting to true).

3if the LBD calculation is correct, this supersedes the previous point, but I don’t prove
any correctness of the LBD calculation

132

A.7 Conclusion

Variable addition This is the opposite of the previous technique: clauses are
simplified by adding new literals.

Subsumption-resolution If L ∨ C and −L ∨ D is included in the clause set
and C ⊆ D, then the clause −L ∨ D is redundant and can be removed.

Subsumption If C ⊆ D, then the clause D is redundant and can be removed.

MiniSat and Glucose mostly uses techniques as preprocessing: The in-
put problems are simplified initially, then not at all, except for removal of
true/false literals (and recently vivification for Glucose).

CryptoMiniSat, Lingeling, and to a lesser extent CaDiCaL perform several
of these techniques as inprocessing. It is difficult to schedule them in a way
that does not harm performance, but can be extremely helpful for example
on benchmarks (e.g., for cryptography).

IsaSAT does not perform any simplification. There are two main problems.
First, the CDCL calculus relies on the fact than the initial clauses have not
been modified. This could be changed, but the termination proof requires
that atoms can only be deleted. The second problem is that my invariants
are not compatible with removing atoms. For example, if a literal appears a
single time in a clause that is removed, then this literal must also be removed
from the VMTF heuristic.

A.7 Conclusion

Multiple techniques have been implemented in SAT solvers for efficiency.
Some solvers switch between heuristics, like some MapleSAT variants switch
between the VSIDS and LRB decision heuristics. Overall, it is not clear how
useful some techniques are for SAT solvers.

133

Bibliography

[1] Audemard, G., Simon, L.: Predicting learnt clauses quality in modern
SAT solvers. In: C. Boutilier (ed.) IJCAI 2009, Proceedings of the
21st International Joint Conference on Artificial Intelligence, Pasadena,
California, USA, July 11-17, 2009, pp. 399–404. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (2009). URL http://ijcai.

org/Proceedings/09/Papers/074.pdf

[2] Bachmair, L., Ganzinger, H., McAllester, D., Lynch, C.: Resolution the-
orem proving. In: A. Robinson, A. Voronkov (eds.) Handbook of Auto-
mated Reasoning, vol. I, pp. 19–99. Elsevier (2001). doi:10.1016/b978-
044450813-3/50004-7

[3] Ballarin, C.: Locales: A module system for mathematical theories. J.
Autom. Reasoning 52(2), 123–153 (2013). doi:10.1007/s10817-013-9284-
7

[4] Balyo, T., Heule, M.J.H., Järvisalo, M. (eds.): SAT Competition 2018:
Solver and Benchmark Descriptions, Department of Computer Science
Series of Publications B, vol. B-2018-1. University of Helsinki (2018)

[5] Barbosa, H., Blanchette, J.C., Fleury, M., Fontaine, P.: Scalable fine-
grained proofs for formula processing. J. Autom. Reasoning (2019).
doi:10.1007/s10817-018-09502-y

[6] Barbosa, H., Blanchette, J.C., Fleury, M., Fontaine, P., Schurr, H.J.:
Better SMT proofs for easier reconstruction. In: T.C. Hales,
C. Kaliszyk, R. Kumar, S. Schulz, J. Urban (eds.) 4th Confer-
ence on Artificial Intelligence and Theorem Proving (AITP 2019)
(2019). URL http://matryoshka.gforge.inria.fr/pubs/better_

smt_proofs_abstract.pdf

[7] Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King,
T., Reynolds, A., Tinelli, C.: Cvc4. In: G. Gopalakrishnan, S. Qadeer
(eds.) Computer Aided Verification—23rd International Conference,
CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, Lecture

135

http://ijcai.org/Proceedings/09/Papers/074.pdf
http://ijcai.org/Proceedings/09/Papers/074.pdf
https://doi.org/10.1016/b978-044450813-3/50004-7
https://doi.org/10.1016/b978-044450813-3/50004-7
https://doi.org/10.1007/s10817-013-9284-7
https://doi.org/10.1007/s10817-013-9284-7
https://doi.org/10.1007/s10817-018-09502-y
http://matryoshka.gforge.inria.fr/pubs/better_smt_proofs_abstract.pdf
http://matryoshka.gforge.inria.fr/pubs/better_smt_proofs_abstract.pdf

Bibliography

Notes in Computer Science, vol. 6806, pp. 171–177. Springer (2011).
doi:10.1007/978-3-642-22110-1 14

[8] Bayardo Jr., R.J., Schrag, R.: Using CSP look-back techniques to solve
exceptionally hard SAT instances. In: E.C. Freuder (ed.) Proceedings
of the Second International Conference on Principles and Practice of
Constraint Programming, Cambridge, Massachusetts, USA, August
19-22, 1996, Lecture Notes in Computer Science, vol. 1118, pp. 46–60.
Springer (1996). doi:10.1007/3-540-61551-2 65

[9] Becker, H., Bentkamp, A., Blanchette, J.C., Fleury, M., From, A.H.,
Jensen, A.B., Lammich, P., Larsen, J.B., Michaelis, J., Nipkow, T., Peltier,
N., Popescu, A., Robillard, S., Schlichtkrull, A., Tourret, S., Traytel,
D., Villadsen, J., Petar, V.: IsaFoL: Isabelle Formalization of Logic.
https://bitbucket.org/isafol/isafol/

[10] Benzmüller, C., Sultana, N., Paulson, L.C., Theiß, F.: The higher-
order prover leo-II. J. Autom. Reasoning 55(4), 389–404 (2015).
doi:10.1007/s10817-015-9348-y

[11] Berger, U., Lawrence, A., Nordvall Forsberg, F., Seisenberger, M.: Ex-
tracting verified decision procedures: DPLL and resolution. Log. Meth.
Comput. Sci. 11(1) (2015). doi:10.2168/lmcs-11(1:6)2015

[12] Biere, A.: Splatz, Lingeling, Plingeling, Treengeling, YalSAT Entering
the SAT Competition 2016. In: T. Balyo, M.J.H. Heule, M. Järvisalo
(eds.) Proc. of SAT Competition 2016–Solver and Benchmark Descrip-
tions, Department of Computer Science Series of Publications B, vol. B-
2016-1, pp. 44–45. University of Helsinki (2016). URL http:

//fmv.jku.at/papers/Biere-SAT-Competition-2018-solvers.pdf

[13] Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT en-
tering the SAT Competition 2017. In: T. Balyo, M.J.H. Heule,
M. Järvisalo (eds.) SAT Competition 2017: Solver and Benchmark
Descriptions, Department of Computer Science Series of Publications B,
vol. B-2017-1, pp. 14–15. University of Helsinki (2017). URL http:

//fmv.jku.at/papers/Biere-SAT-Competition-2017-solvers.pdf

[14] Biere, A.: Deep bound hardware model checking instances, quadratic
propagations benchmarks and reencoded factorization problems.
In: T. Balyo, M.J.H. Heule, M. Järvisalo (eds.) SAT Competi-
tion 2017: Solver and Benchmark Descriptions, Department of Com-
puter Science Series of Publications B, vol. B-2017-1, pp. 37–38.

136

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/3-540-61551-2_65
https://bitbucket.org/isafol/isafol/
https://doi.org/10.1007/s10817-015-9348-y
https://doi.org/10.2168/lmcs-11(1:6)2015
http://fmv.jku.at/papers/Biere-SAT-Competition-2018-solvers.pdf
http://fmv.jku.at/papers/Biere-SAT-Competition-2018-solvers.pdf
http://fmv.jku.at/papers/Biere-SAT-Competition-2017-solvers.pdf
http://fmv.jku.at/papers/Biere-SAT-Competition-2017-solvers.pdf

Bibliography

University of Helsinki (2017). URL http://fmv.jku.at/papers/

Biere-SAT-Competition-2017-benchmarks.pdf

[15] Biere, A., Fröhlich, A.: Evaluating CDCL variable scoring schemes.
In: Theory and Applications of Satisfiability Testing—SAT 2015—18th
International Conference, Austin, TX, USA, September 24-27, 2015,
Proceedings, Lecture Notes in Computer Science, vol. 9340, pp. 405–422.
Springer (2015). URL 978-3-319-24318-4_29

[16] Biere, A., Fröhlich, A.: Evaluating CDCL restart schemes. In:
M.J.H. Heule, S. Weaver (eds.) Theory and Applications of Satisfia-
bility Testing—SAT 2015—18th International Conference, Austin, TX,
USA, September 24-27, 2015, Proceedings, Lecture Notes in Computer
Science, vol. 9340, pp. 405–422. EasyChair (2015). doi:10.29007/89dw

[17] Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of
Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185.
IOS Press (2009)

[18] Blanchette, J.C.: Formalizing the metatheory of logical calculi and au-
tomatic provers in Isabelle/HOL (invited talk). In: A. Mahboubi, M.O.
Myreen (eds.) Proceedings of the 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs—CPP 2019, pp. 1–13.
ACM Press (2019). doi:10.1145/3293880.3294087

[19] Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic proof and dis-
proof in Isabelle/HOL. In: C. Tinelli, V. Sofronie-Stokkermans (eds.)
Frontiers of Combining Systems, 8th International Symposium, Fro-
CoS 2011, Saarbrücken, Germany, October 5-7, 2011. Proceedings, Lec-
ture Notes in Computer Science, vol. 6989, pp. 12–27. Springer (2011).
doi:10.1007/978-3-642-24364-6 2

[20] Blanchette, J.C., Böhme, S., Fleury, M., Smolka, S.J., Steckermeier, A.:
Semi-intelligible isar proofs from machine-generated proofs. J. Autom.
Reasoning 56(2), 155–200 (2015). doi:10.1007/s10817-015-9335-3

[21] Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending sledgehammer
with SMT solvers. J. Autom. Reasoning 51(1), 109–128 (2013).
doi:10.1007/s10817-013-9278-5

[22] Blanchette, J.C., Fleury, M., Lammich, P., Weidenbach, C.: A verified
SAT solver framework with learn, forget, restart, and incrementality.

137

http://fmv.jku.at/papers/Biere-SAT-Competition-2017-benchmarks.pdf
http://fmv.jku.at/papers/Biere-SAT-Competition-2017-benchmarks.pdf
978-3-319-24318-4_29
https://doi.org/10.29007/89dw
https://doi.org/10.1145/3293880.3294087
https://doi.org/10.1007/978-3-642-24364-6_2
https://doi.org/10.1007/s10817-015-9335-3
https://doi.org/10.1007/s10817-013-9278-5

Bibliography

J. Autom. Reasoning 61(1-4), 333–365 (2018). doi:10.1007/s10817-018-
9455-7

[23] Blanchette, J.C., Fleury, M., Traytel, D.: Nested multisets, hereditary
multisets, and syntactic ordinals in Isabelle/HOL. In: D. Miller (ed.)
2nd International Conference on Formal Structures for Computation
and Deduction, FSCD 2017, September 3-9, 2017, Oxford, UK, LIPIcs,
vol. 84, pp. 11:1–11:18. Schloss Dagstuhl—Leibniz-Zentrum für Infor-
matik (2017). doi:10.4230/LIPIcs.FSCD.2017.11

[24] Blanchette, J.C., Fleury, M., Weidenbach, C.: A verified SAT solver
framework with learn, forget, restart, and incrementality. In:
N. Olivetti, A. Tiwari (eds.) Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence, Lecture Notes in Com-
puter Science, vol. 9706, pp. 25–44. International Joint Conferences on
Artificial Intelligence Organization (2017). doi:10.24963/ijcai.2017/667

[25] Blanchette, J.C., Fleury, M., Weidenbach, C.: A verified SAT solver
framework with learn, forget, restart, and incrementality. In:
N. Olivetti, A. Tiwari (eds.) Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence, Lecture Notes in Com-
puter Science, vol. 9706, pp. 25–44. International Joint Conferences on
Artificial Intelligence Organization (2017). doi:10.24963/ijcai.2017/667

[26] Blanchette, J.C., Popescu, A., Traytel, D.: Soundness and completeness
proofs by coinductive methods. J. Autom. Reasoning 58(1), 149–179

(2017). doi:10.1007/s10817-016-9391-3

[27] Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In:
M. Kaufmann, L.C. Paulson (eds.) Interactive Theorem Proving, First
International Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010.
Proceedings, Lecture Notes in Computer Science, vol. 6172, pp. 179–194.
Springer (2010). doi:10.1007/978-3-642-14052-5 14

[28] Bottesch, R., Haslbeck, M.W., Thiemann, R.: Verifying an incremen-
tal theory solver for linear arithmetic in isabelle/hol. In: Frontiers
of Combining Systems–12th International Symposium, FroCoS 2019,
London, UK, September 4-6, 2019, Proceedings, pp. 223–239 (2019).
doi:10.1007/978-3-030-29007-8 13

[29] Bouton, T., de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: veriT: An
open, trustable and efficient SMT-solver. In: R.A. Schmidt (ed.) Auto-

138

https://doi.org/10.1007/s10817-018-9455-7
https://doi.org/10.1007/s10817-018-9455-7
https://doi.org/10.4230/LIPIcs.FSCD.2017.11
https://doi.org/10.24963/ijcai.2017/667
https://doi.org/10.24963/ijcai.2017/667
https://doi.org/10.1007/s10817-016-9391-3
https://doi.org/10.1007/978-3-642-14052-5_14
https://doi.org/10.1007/978-3-030-29007-8_13

Bibliography

mated Deduction—CADE-22, 22nd International Conference on Auto-
mated Deduction, Montreal, Canada, August 2-7, 2009. Proceedings,
Lecture Notes in Computer Science, vol. 5663, pp. 151–156. Springer
(2009). doi:10.1007/978-3-642-02959-2 12

[30] Bromberger, M., Fleury, M., Schwarz, S., Weidenbach, C.: SPASS-SATT
a CDCL(LA) solver. In: P. Fontaine (ed.) Automated Deduction–
CADE 27–27th International Conference on Automated Deduction,
Natal, Brazil, August 27-30, 2019, Proceedings, pp. 111–122 (2019).
doi:10.1007/978-3-030-29436-6 7

[31] Brown, C.E.: Satallax: An automatic higher-order prover. In: B. Gram-
lich, D. Miller, U. Sattler (eds.) Automated Reasoning—6th Interna-
tional Joint Conference, IJCAR 2012, Manchester, UK, June 26-29, 2012.
Proceedings, Lecture Notes in Computer Science, vol. 7364, pp. 111–117.
Springer (2012). doi:10.1007/978-3-642-31365-3 11

[32] Bryant, R.E., Beatty, D., Brace, K., Cho, K., Sheffler, T.: COS-
MOS: A compiled simulator for MOS circuits. In: A. O’Neill,
D. Thomas (eds.) 24th ACM/IEEE conference proceedings on De-
sign automation conference—DAC ’87, pp. 9–16. ACM Press (1987).
doi:10.1145/37888.37890

[33] Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Impera-
tive functional programming with Isabelle/HOL. In: O.A. Mohamed,
C.A. Muñoz, S. Tahar (eds.) Theorem Proving in Higher Order Logics,
21st International Conference, TPHOLs 2008, Montreal, Canada, Au-
gust 18-21, 2008. Proceedings, Lecture Notes in Computer Science, vol.
5170, pp. 134–149. Springer (2008). doi:10.1007/978-3-540-71067-7 14

[34] Charguéraud, A.: Characteristic formulae for the verification of impera-
tive programs. In: Proceeding of the 16th ACM SIGPLAN international
conference on Functional programming—ICFP ’11, pp. 418–430. ACM
Press (2011). doi:10.1145/2034773.2034828

[35] Chowdhury, M.S., Müller, M., You, J.: Characterization of glue vari-
ables in CDCL SAT solving. CoRR abs/1904.11106 (2019). URL
http://arxiv.org/abs/1904.11106

[36] Chu, G., Harwood, A., Stuckey, P.J.: Cache conscious data structures for
Boolean satisfiability solvers. JSAT 6(1-3), 99–120 (2009). URL https:

//satassociation.org/jsat/index.php/jsat/article/view/71

139

https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-030-29436-6_7
https://doi.org/10.1007/978-3-642-31365-3_11
https://doi.org/10.1145/37888.37890
https://doi.org/10.1007/978-3-540-71067-7_14
https://doi.org/10.1145/2034773.2034828
http://arxiv.org/abs/1904.11106
https://satassociation.org/jsat/index.php/jsat/article/view/71
https://satassociation.org/jsat/index.php/jsat/article/view/71

Bibliography

[37] Church, A.: A formulation of the simple theory of types. J. symb. log.
5(02), 56–68 (1940). doi:10.2307/2266170

[38] Clochard, M., Filliâtre, J., Paskevich, A.: How to avoid proving the ab-
sence of integer overflows. In: Verified Software: Theories, Tools, and
Experiments—7th International Conference, VSTTE 2015, San Fran-
cisco, CA, USA, July 18-19, 2015. Revised Selected Papers, Lecture
Notes in Computer Science, vol. 9593, pp. 94–109. Springer (2015).
doi:10.1007/978-3-319-29613-5 6

[39] Cruz-Filipe, L., Heule, M.J.H., Hunt Jr., W.A., Kaufmann, M.,
Schneider-Kamp, P.: Efficient certified RAT verification. In: L.M.
de Moura (ed.) Automated Deduction—CADE 26—26th International
Conference on Automated Deduction, Gothenburg, Sweden, August
6-11, 2017, Proceedings, Lecture Notes in Computer Science, vol. 10395,
pp. 220–236. Springer (2017). doi:10.1007/978-3-319-63046-5 14

[40] Cruz-Filipe, L., Marques-Silva, J.P., Schneider-Kamp, P.: Efficient cer-
tified resolution proof checking. In: A. Legay, T. Margaria (eds.)
Tools and Algorithms for the Construction and Analysis of Systems—
23rd International Conference, TACAS 2017, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I, Lecture
Notes in Computer Science, vol. 10205, pp. 118–135. Springer (2017).
doi:10.1007/978-3-662-54577-5 7

[41] Davis, M., Logemann, G., Loveland, D.: A machine program
for theorem-proving. Commun. ACM 5(7), 394–397 (1962).
doi:10.1145/368273.368557

[42] Delaware, B., Pit-Claudel, C., Gross, J., Chlipala, A.: Fiat: Deductive
synthesis of abstract data types in a proof assistant. In: S.K. Rajamani,
D. Walker (eds.) Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages–POPL
’15, pp. 689–700. ACM Press (2015). doi:10.1145/2676726.2677006

[43] Eén, N., Sörensson, N.: An extensible SAT-solver. In: E. Giunchiglia,
A. Tacchella (eds.) Theory and Applications of Satisfiability Testing,
6th International Conference, SAT 2003. Santa Margherita Ligure, Italy,
May 5-8, 2003 Selected Revised Papers, Lecture Notes in Computer Sci-
ence, vol. 2919, pp. 502–518. Springer (2003). doi:10.1007/978-3-540-
24605-3 37

140

https://doi.org/10.2307/2266170
https://doi.org/10.1007/978-3-319-29613-5_6
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-662-54577-5_7
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/2676726.2677006
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37

Bibliography

[44] Elffers, J., Nordström, J.: Visualizing CDCL VSIDS and phase values.
In: Workshop on the Pragmatics of SAT 2019, held as part of Theory
and Applications of Satisfiability Testing—SAT 2019 (2019). URL http:

//www.pragmaticsofsat.org/2019/visualizer.pdf

[45] Filliâtre, J., Paskevich, A.: Why3—where programs meet provers. In:
Programming Languages and Systems—22nd European Symposium
on Programming, ESOP 2013, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy,
March 16-24, 2013. Proceedings, Lecture Notes in Computer Science, vol.
7792, pp. 125–128. Springer (2013). doi:10.1007/978-3-642-37036-6 8

[46] Fleury, M.: Formalisation of ground inference systems in a
proof assistant. M.Sc. thesis, École normale supérieure de
Rennes (2015). https://www.mpi-inf.mpg.de/fileadmin/inf/rg1/

Documents/fleury_master_thesis.pdf

[47] Fleury, M.: Optimizing a verified SAT solver. In: J.M. Badger, K.Y.
Rozier (eds.) NASA Formal Methods—11th International Symposium,
NFM 2019, Houston, TX, USA, May 7–9, 2019, Proceedings, vol. 11460,
pp. 148–165. Springer, Cham (2019). doi:10.1007/978-3-030-20652-9

[48] Fleury, M., Blanchette, J.C.: Formalization of Weidenbach’s
Automated Reasoning—The Art of Generic Problem Solving (2018).
https://bitbucket.org/isafol/isafol/src/master/Weidenbach_

Book/README.md, Formal proof development

[49] Fleury, M., Blanchette, J.C., Lammich, P.: A verified SAT solver
with watched literals using Imperative HOL. In: Proceedings of
the 7th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs—CPP 2018, pp. 158–171. ACM Press (2018).
doi:10.1145/3167080

[50] Fleury, M., Schurr, H.J.: Reconstructing veriT proofs in Isabelle/HOL.
In: Proceedings Sixth Workshop on Proof eXchange for Theorem Prov-
ing, PxTP 2019, Natal, Brazil, August 26, 2019, pp. 36–50 (2019).
doi:10.4204/EPTCS.301.6

[51] Gelder, A.V.: Improved conflict-clause minimization leads to improved
propositional proof traces. In: O. Kullmann (ed.) Theory and Applica-
tions of Satisfiability Testing—SAT 2009, 12th International Conference,
SAT 2009, Swansea, UK, June 30–July 3, 2009. Proceedings, Lecture

141

http://www.pragmaticsofsat.org/2019/visualizer.pdf
http://www.pragmaticsofsat.org/2019/visualizer.pdf
https://doi.org/10.1007/978-3-642-37036-6_8
https://www.mpi-inf.mpg.de/fileadmin/inf/rg1/Documents/fleury_master_thesis.pdf
https://www.mpi-inf.mpg.de/fileadmin/inf/rg1/Documents/fleury_master_thesis.pdf
https://doi.org/10.1007/978-3-030-20652-9
https://bitbucket.org/isafol/isafol/src/master/Weidenbach_Book/README.md
https://bitbucket.org/isafol/isafol/src/master/Weidenbach_Book/README.md
https://doi.org/10.1145/3167080
https://doi.org/10.4204/EPTCS.301.6

Bibliography

Notes in Computer Science, vol. 5584, pp. 141–146. Springer (2009).
doi:10.1007/978-3-642-02777-2 15

[52] Gent, I.P.: Optimal implementation of watched literals and more
general techniques. J. Artif. Intell. Res. 48, 231–252 (2013).
doi:10.1613/jair.4016

[53] Giunchiglia, E., Maratea, M.: Solving optimization problems with
DLL. In: G. Brewka, S. Coradeschi, A. Perini, P. Traverso (eds.) ECAI
2006, 17th European Conference on Artificial Intelligence, August 29–
September 1, 2006, Riva del Garda, Italy, Including Prestigious Ap-
plications of Intelligent Systems (PAIS 2006), Proceedings, Frontiers in
Artificial Intelligence and Applications, vol. 141, pp. 377–381. IOS Press
(2006)

[54] Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF, Lecture
Notes in Computer Science, vol. 78. Springer Berlin Heidelberg (1979).
doi:10.1007/3-540-09724-4

[55] Gries, D., Volpano, D.M.: The Transform—A new language construct.
Structured Programming 11(1), 1–10 (1990)

[56] Haftmann, F.: Draft toy for proof exploration (2013). URL
www.mail-archive.com/isabelle-dev@mailbroy.informatik.

tu-muenchen.de/msg04443.html

[57] Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite
systems. In: M. Blume, N. Kobayashi, G. Vidal (eds.) Functional
and Logic Programming, 10th International Symposium, FLOPS 2010,
Sendai, Japan, April 19-21, 2010. Proceedings, Lecture Notes in Computer
Science, vol. 6009, pp. 103–117. Springer (2010). doi:10.1007/978-3-642-
12251-4 9

[58] Harrison, J.: Formalizing basic first order model theory. In: J. Grundy,
M.C. Newey (eds.) Theorem Proving in Higher Order Logics, 11th
International Conference, TPHOLs’98, Canberra, Australia, September
27—October 1, 1998, Proceedings, Lecture Notes in Computer Science, vol.
1479, pp. 153–170. Springer (1998). doi:10.1007/BFb0055135

[59] Heule, M.J.H.: microsat (2014). URL https://github.com/

marijnheule/microsat. Open source development; last accessed 2019-
03-11

142

https://doi.org/10.1007/978-3-642-02777-2_15
https://doi.org/10.1613/jair.4016
https://doi.org/10.1007/3-540-09724-4
www.mail-archive.com/isabelle-dev@mailbroy.informatik.tu-muenchen.de/msg04443.html
www.mail-archive.com/isabelle-dev@mailbroy.informatik.tu-muenchen.de/msg04443.html
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/BFb0055135
https://github.com/marijnheule/microsat
https://github.com/marijnheule/microsat

Bibliography

[60] Heule, M.J.H.: Schur Number Five. In: S.A. McIlraith, K.Q. Wein-
berger (eds.) Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innovative Applications of
Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, pp. 6598–6606. AAAI Press
(2018). URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/

paper/view/16952

[61] Heule, M.J.H., Hunt, W.A., Wetzler, N.: Trimming while check-
ing clausal proofs. In: M. Ayala-Rincón, C.A. Muñoz (eds.)
2013 Formal Methods in Computer-Aided Design (FMCAD), Lecture
Notes in Computer Science, vol. 10499, pp. 269–284. IEEE (2013).
doi:10.1109/fmcad.2013.6679408

[62] Heule, M.J.H., Hunt, W.A., Wetzler, N.: Bridging the gap between easy
generation and efficient verification of unsatisfiability proofs. Softw.
Test. Verif. Reliab. 24(8), 593–607 (2014). doi:10.1002/stvr.1549

[63] Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving very hard problems:
Cube-and-conquer, a hybrid SAT solving method. In: N. Creignou,
D.L. Berre (eds.) Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, Lecture Notes in Computer Science,
vol. 9710, pp. 228–245. International Joint Conferences on Artificial
Intelligence Organization (2017). doi:10.24963/ijcai.2017/683

[64] Hupel, L.: Verified code generation from Isabelle/HOL. Ph.D. the-
sis, TUM (2019). URL https://lars.hupel.info/pub/phd-thesis_

hupel.pdf. Defense passed July 2019

[65] Hupel, L., Nipkow, T.: A verified compiler from Isabelle/HOL to
CakeML. In: A. Ahmed (ed.) Programming Languages and Systems—
27th European Symposium on Programming, ESOP 2018, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Lec-
ture Notes in Computer Science, vol. 10801, pp. 999–1026. Springer (2018).
doi:10.1007/978-3-319-89884-1 35

[66] Jensen, A.B., Larsen, J.B., Schlichtkrull, A., Villadsen, J.: Programming
and verifying a declarative first-order prover in Isabelle/HOL. AI
Commun. 31(3), 281–299 (2018). doi:10.3233/AIC-180764

143

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952
https://doi.org/10.1109/fmcad.2013.6679408
https://doi.org/10.1002/stvr.1549
https://doi.org/10.24963/ijcai.2017/683
https://lars.hupel.info/pub/phd-thesis_hupel.pdf
https://lars.hupel.info/pub/phd-thesis_hupel.pdf
https://doi.org/10.1007/978-3-319-89884-1_35
https://doi.org/10.3233/AIC-180764

Bibliography

[67] Kammüller, F., Wenzel, M., Paulson, L.C.: Locales—A sectioning con-
cept for Isabelle. In: Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin,
L. Théry (eds.) Theorem Proving in Higher Order Logics, 12th Interna-
tional Conference, TPHOLs’99, Nice, France, September, 1999, Proceed-
ings, Lecture Notes in Computer Science, vol. 1690, pp. 149–166. Springer
(1999). doi:10.1007/3-540-48256-3 11

[68] Karp, R.M.: Reducibility among combinatorial problems. In: R.E.
Miller, J.W. Thatcher (eds.) Proceedings of a symposium on the Com-
plexity of Computer Computations, held March 20-22, 1972, at the IBM
Thomas J. Watson Research Center, Yorktown Heights, New York, USA,
The IBM Research Symposia Series, pp. 85–103. Plenum Press, New
York (1972). URL http://www.cs.berkeley.edu/\%7Eluca/cs172/

karp.pdf

[69] Klein, G., Norrish, M., Sewell, T., Tuch, H., Winwood, S., An-
dronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R.: seL4: Formal verification
of an operating-system kernel. Commun. ACM 53(6), 107 (2010).
doi:10.1145/1743546.1743574

[70] Krauss, A.: Partial recursive functions in higher-order logic. In: U. Fur-
bach, N. Shankar (eds.) Automated Reasoning, Third International
Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006,
Proceedings, Lecture Notes in Computer Science, vol. 4130, pp. 589–603.
Springer (2006). doi:10.1007/11814771 48

[71] Krstić, S., Goel, A.: Architecting solvers for SAT modulo theories:
Nelson-Oppen with DPLL. In: B. Konev, F. Wolter (eds.) Frontiers
of Combining Systems, 6th International Symposium, FroCoS 2007,
Liverpool, UK, September 10-12, 2007, Proceedings, Lecture Notes in
Computer Science, vol. 4720, pp. 1–27. Springer (2007). doi:10.1007/978-
3-540-74621-8 1

[72] Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified
implementation of ml. In: Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages—POPL
’14, Lecture Notes in Computer Science, vol. 10900, pp. 646–662. ACM
Press (2014). doi:10.1145/2535838.2535841

[73] Lammich, P.: Refinement to Imperative/HOL. In: C. Urban,
X. Zhang (eds.) Interactive Theorem Proving—6th International Con-

144

https://doi.org/10.1007/3-540-48256-3_11
http://www.cs.berkeley.edu/\%7Eluca/cs172/karp.pdf
http://www.cs.berkeley.edu/\%7Eluca/cs172/karp.pdf
https://doi.org/10.1145/1743546.1743574
https://doi.org/10.1007/11814771_48
https://doi.org/10.1007/978-3-540-74621-8_1
https://doi.org/10.1007/978-3-540-74621-8_1
https://doi.org/10.1145/2535838.2535841

Bibliography

ference, ITP 2015, Nanjing, China, August 24-27, 2015, Proceedings,
Lecture Notes in Computer Science, vol. 9236, pp. 253–269. Springer
(2015). doi:10.1007/978-3-319-22102-1 17

[74] Lammich, P.: Refinement based verification of imperative data struc-
tures. In: S. Blazy, C. Paulin-Mohring, D. Pichardie (eds.) Proceed-
ings of the 5th ACM SIGPLAN Conference on Certified Programs and
Proofs—CPP 2016, Lecture Notes in Computer Science, vol. 7998, pp.
84–99. ACM Press (2016). doi:10.1145/2854065.2854067

[75] Lammich, P.: Refinement based verification of imperative data struc-
tures. In: J. Avigad, A. Chlipala (eds.) Proceedings of the 5th ACM
SIGPLAN Conference on Certified Programs and Proofs—CPP 2016,
pp. 27–36. ACM Press (2016). doi:10.1145/2854065.2854067

[76] Lammich, P.: Efficient verified (UN)SAT certificate checking. In:
L. de Moura (ed.) Automated Deduction—CADE 26—26th Interna-
tional Conference on Automated Deduction, Gothenburg, Sweden, Au-
gust 6-11, 2017, Proceedings, Lecture Notes in Computer Science, vol.
10395, pp. 237–254. Springer (2017). doi:10.1007/978-3-319-63046-5 15

[77] Lammich, P.: The GRAT tool chain—efficient (UN)SAT certificate check-
ing with formal correctness guarantees. In: S. Gaspers, T. Walsh
(eds.) Theory and Applications of Satisfiability Testing—SAT 2017—
20th International Conference, Melbourne, VIC, Australia, August 28–
September 1, 2017, Proceedings, Lecture Notes in Computer Science, vol.
10491, pp. 457–463. Springer (2017). doi:10.1007/978-3-319-66263-3 29

[78] Lammich, P.: Generating verified LLVM from Isabelle/HOL. In:
10th International Conference on Interactive Theorem Proving, ITP
2019, September 9-12, 2019, Portland, OR, USA, LIPIcs, vol. 141, pp.
22:1–22:19. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2019).
doi:10.4230/LIPIcs.ITP.2019.22

[79] Larrosa, J., Nieuwenhuis, R., Oliveras, A., Rodrı́guez-Carbonell, E.: A
framework for certified boolean branch-and-bound optimization. J.
Autom. Reasoning 46(1), 81–102 (2010). doi:10.1007/s10817-010-9176-z

[80] Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong
program analysis & transformation. In: International Symposium on
Code Generation and Optimization, 2004. CGO 2004., pp. 75–88. IEEE
(2004). doi:10.1109/cgo.2004.1281665

145

https://doi.org/10.1007/978-3-319-22102-1_17
https://doi.org/10.1145/2854065.2854067
https://doi.org/10.1145/2854065.2854067
https://doi.org/10.1007/978-3-319-63046-5_15
https://doi.org/10.1007/978-3-319-66263-3_29
https://doi.org/10.4230/LIPIcs.ITP.2019.22
https://doi.org/10.1007/s10817-010-9176-z
https://doi.org/10.1109/cgo.2004.1281665

Bibliography

[81] Leino, K.R.M.: Dafny: An automatic program verifier for functional
correctness. In: Logic for Programming, Artificial Intelligence, and
Reasoning—16th International Conference, LPAR-16, Dakar, Senegal,
April 25-May 1, 2010, Revised Selected Papers, Lecture Notes in Com-
puter Science, vol. 6355, pp. 348–370. Springer (2010). doi:10.1007/978-
3-642-17511-4 20

[82] Lescuyer, S.: Formalizing and Implementing a Reflexive Tactic for Au-
tomated Deduction in Coq. Theses, Université Paris Sud—Paris XI
(2011). URL https://tel.archives-ouvertes.fr/tel-00713668

[83] Li, C., Manyà, F.: MaxSAT, hard and soft constraints. In: Handbook of
Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185,
pp. 613–631. IOS Press (2009). doi:10.3233/978-1-58603-929-5-613

[84] Li, C., Xiao, F., Luo, M., Manyà, F., Lü, Z., Li, Y.: Clause vivification by
unit propagation in CDCL SAT solvers. CoRR abs/1807.11061 (2018).
URL http://arxiv.org/abs/1807.11061

[85] Liang, J.H., Ganesh, V., Zulkoski, E., Zaman, A., Czarnecki, K.: Under-
standing VSIDS branching heuristics in conflict-driven clause-learning
SAT solvers. In: N. Piterman (ed.) Hardware and Software: Verifi-
cation and Testing–11th International Haifa Verification Conference,
HVC 2015, Haifa, Israel, November 17-19, 2015, Proceedings, Lecture
Notes in Computer Science, vol. 9434, pp. 225–241. Springer (2015).
doi:10.1007/978-3-319-26287-1 14

[86] Liberatore, P.: Algorithms and experiments on finding minimal models.
Tech. Rep. 09-99, Dipartimento di Informatica e Sistemistica, Univer-
sità di Roma “La Sapienza” (1999). URL http://www.dis.uniroma1.

it/%7eliberato/papers/libe-99.ps.gz

[87] Lochbihler, A.: Fast machine words in Isabelle/HOL. In: Interactive
Theorem Proving–9th International Conference, ITP 2018, Held as Part
of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12,
2018, Proceedings, pp. 388–410 (2018). doi:10.1007/978-3-319-94821-
8 23

[88] Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Ve-
gas algorithms. Information Processing Letters 47(4), 173–180 (1993).
doi:10.1016/0020-0190(93)90029-9

146

https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://tel.archives-ouvertes.fr/tel-00713668
https://doi.org/10.3233/978-1-58603-929-5-613
http://arxiv.org/abs/1807.11061
https://doi.org/10.1007/978-3-319-26287-1_14
http://www.dis.uniroma1.it/%7eliberato/papers/libe-99.ps.gz
http://www.dis.uniroma1.it/%7eliberato/papers/libe-99.ps.gz
https://doi.org/10.1007/978-3-319-94821-8_23
https://doi.org/10.1007/978-3-319-94821-8_23
https://doi.org/10.1016/0020-0190(93)90029-9

Bibliography

[89] Luo, M., Li, C.M., Xiao, F., Manyà, F., Lü, Z.: An effective learnt
clause minimization approach for CDCL SAT solvers. In: C. Sierra
(ed.) Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, pp. 703–711. International Joint Conferences on
Artificial Intelligence Organization (2017). doi:10.24963/ijcai.2017/98

[90] Mahajan, Y.S., Fu, Z., Malik, S.: zChaff 2004: An efficient SAT solver.
In: H.H. Hoos, D.G. Mitchell (eds.) Theory and Applications of Sat-
isfiability Testing, 7th International Conference, SAT 2004, Vancou-
ver, BC, Canada, May 10-13, 2004, Revised Selected Papers, Lecture
Notes in Computer Science, vol. 3542, pp. 360–375. Springer (2004).
doi:10.1007/11527695 27

[91] Manquinho, V., Marques-Silva, J.P.: Satisfiability-based algorithms for
pseudo-boolean optimization using gomory cuts and search restarts.
In: 17th IEEE International Conference on Tools with Artificial Intelli-
gence (ICTAI’05), pp. 150–155. IEEE (2005). doi:10.1109/ictai.2005.113

[92] Margetson, J., Ridge, T.: Completeness theorem. Archive of Formal
Proofs (2004). http://isa-afp.org/entries/Completeness.shtml,
Formal proof development

[93] Marić, F.: Formal verification of modern SAT solvers. Archive
of Formal Proofs (2008). http://isa-afp.org/entries/

SATSolverVerification.shtml, Formal proof development

[94] Marić, F.: Formalization and implementation of modern SAT solvers. J.
Autom. Reasoning 43(1), 81–119 (2009). doi:10.1007/s10817-009-9127-8

[95] Marić, F.: Formal verification of a modern SAT solver by shallow em-
bedding into Isabelle/HOL. Theoretical Computer Science 411(50),
4333–4356 (2010). doi:10.1016/j.tcs.2010.09.014

[96] Marić, F., Janičić, P.: Formalization of abstract state transition sys-
tems for SAT. Log.Meth.Comput.Sci. 7(3) (2011). doi:10.2168/lmcs-
7(3:19)2011

[97] Marques-Silva, J.P.: SAT: Disruption, demise & resurgence (2019). URL
http://www.pragmaticsofsat.org/2019/disruption.pdf. Work-
shop on the Pragmatics of SAT 2019, held as part of Theory and Appli-
cations of Satisfiability Testing—SAT 2019

147

https://doi.org/10.24963/ijcai.2017/98
https://doi.org/10.1007/11527695_27
https://doi.org/10.1109/ictai.2005.113
http://isa-afp.org/entries/Completeness.shtml
http://isa-afp.org/entries/SATSolverVerification.shtml
http://isa-afp.org/entries/SATSolverVerification.shtml
https://doi.org/10.1007/s10817-009-9127-8
https://doi.org/10.1016/j.tcs.2010.09.014
https://doi.org/10.2168/lmcs-7(3:19)2011
https://doi.org/10.2168/lmcs-7(3:19)2011
http://www.pragmaticsofsat.org/2019/disruption.pdf

Bibliography

[98] Marques Silva, J.P., Sakallah, K.: GRASP—a new search algorithm for
satisfiability. In: Proceedings of International Conference on Com-
puter Aided Design, pp. 220–227. IEEE Comput. Soc. Press (1996).
doi:10.1109/iccad.1996.569607

[99] Matichuk, D., Murray, T., Wenzel, M.: Eisbach: A proof method
language for Isabelle. J. Autom. Reasoning 56(3), 261–282 (2016).
doi:10.1007/s10817-015-9360-2

[100] Matuszewski, R., Rudnicki, P.: Mizar: The first 30 years. Mechanized
Mathematics and Its Applications 4(1), 3–24 (2005). doi:10.1.1.151.6028

[101] Möhle, S., Biere, A.: Backing backtracking. In: M. Janota, I. Lynce
(eds.) Theory and Applications of Satisfiability Testing—SAT 2019—
22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12,
2019, Proceedings, Lecture Notes in Computer Science, vol. 11628, pp.
250–266. Springer (2019). doi:10.1007/978-3-030-24258-9 18

[102] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff:
engineering an efficient SAT solver. In: Proceedings of the 38th confer-
ence on Design automation—DAC ’01, pp. 530–535. ACM Press (2001).
doi:10.1145/378239.379017

[103] de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: C.R. Ra-
makrishnan, J. Rehof (eds.) Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings, Lecture Notes in Computer Science, vol. 4963, pp. 337–340.
Springer (2008). doi:10.1007/978-3-540-78800-3 24

[104] Nadel, A., Ryvchin, V.: Chronological backtracking. In: O. Beyersdorff,
C.M. Wintersteiger (eds.) Theory and Applications of Satisfiability
Testing—SAT 2018—21st International Conference, SAT 2018, Held as
Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July
9-12, 2018, Proceedings, Lecture Notes in Computer Science, vol. 10929,
pp. 111–121. Springer (2018). doi:10.1007/978-3-319-94144-8 7

[105] Narváez, D.E.: Formalizing CNF SAT symmetry breaking in PVS. In:
J.M. Badger, K.Y. Rozier (eds.) NASA Formal Methods—11th Inter-
national Symposium, NFM 2019, Houston, TX, USA, May 7-9, 2019,
Proceedings, Lecture Notes in Computer Science, vol. 11460, pp. 341–354.
Springer (2019). doi:10.1007/978-3-030-20652-9 23

148

https://doi.org/10.1109/iccad.1996.569607
https://doi.org/10.1007/s10817-015-9360-2
https://doi.org/10.1.1.151.6028
https://doi.org/10.1007/978-3-030-24258-9_18
https://doi.org/10.1145/378239.379017
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-94144-8_7
https://doi.org/10.1007/978-3-030-20652-9_23

Bibliography

[106] Newsham, Z., Ganesh, V., Fischmeister, S., Audemard, G., Simon, L.:
Impact of community structure on SAT solver performance. In: C. Sinz,
U. Egly (eds.) Theory and Applications of Satisfiability Testing—SAT
2014—17th International Conference, Held as Part of the Vienna Sum-
mer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings,
Lecture Notes in Computer Science, vol. 8561, pp. 252–268. Springer
(2014). doi:10.1007/978-3-319-09284-3 20

[107] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and
SAT modulo theories: From an abstract Davis–Putnam–Logemann–
Loveland procedure to DPLL(T). JACM 53(6), 937–977 (2006).
doi:10.1145/1217856.1217859

[108] Nipkow, T., Klein, G.: Concrete Semantics. Springer International
Publishing (2014). doi:10.1007/978-3-319-10542-0

[109] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof As-
sistant for Higher-Order Logic, Lecture Notes in Computer Science, vol.
2283. Springer Berlin Heidelberg (2002). doi:10.1007/3-540-45949-9

[110] Noel, P.A.J.: Experimenting with Isabelle in ZF set theory. J. Autom.
Reasoning 10(1), 15–58 (1993). doi:10.1007/bf00881863

[111] Noschinski, L., Rizkallah, C., Mehlhorn, K.: Verification of certifying
computations through AutoCorres and Simpl. In: J.M. Badger, K.Y.
Rozier (eds.) NASA Formal Methods—6th International Symposium,
NFM 2014, Houston, TX, USA, April 29–May 1, 2014. Proceedings,
Lecture Notes in Computer Science, vol. 8430, pp. 46–61. Springer (2014).
doi:10.1007/978-3-319-06200-6 4

[112] Oe, D., Stump, A., Oliver, C., Clancy, K.: versat: A verified modern
SAT solver. In: Lecture Notes in Computer Science, Lecture Notes in
Computer Science, vol. 7148, pp. 363–378. Springer Berlin Heidelberg
(2012). doi:10.1007/978-3-642-27940-9 24

[113] Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification
system. In: Automated Deduction–CADE-11, 11th International Con-
ference on Automated Deduction, Saratoga Springs, NY, USA, June
15-18, 1992, Proceedings, pp. 748–752 (1992). doi:10.1007/3-540-55602-
8 217

149

https://doi.org/10.1007/978-3-319-09284-3_20
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/bf00881863
https://doi.org/10.1007/978-3-319-06200-6_4
https://doi.org/10.1007/978-3-642-27940-9_24
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/3-540-55602-8_217

Bibliography

[114] Palopoli, L., Pirri, F., Pizzuti, C.: Algorithms for selective enumer-
ation of prime implicants. Artif. Intell. 111(1-2), 41–72 (1999).
doi:10.1016/s0004-3702(99)00035-1

[115] Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledge-
hammer, a practical link between automatic and interactive theorem
provers. In: Proceedings of the 2nd Workshop on Practical Aspects of
Automated Reasoning, PAAR-2010, Edinburgh, Scotland, UK, July 14,
2010, EPiC Series in Computing, vol. 9, pp. 1–10. EasyChair (2010). URL
http://www.easychair.org/publications/paper/52675

[116] Peltier, N.: A variant of the superposition calculus. Archive of For-
mal Proofs (2016). http://isa-afp.org/entries/SuperCalc.html,
Formal proof development

[117] Persson, H.H.J.: Constructive completeness of intuitionistic predicate
logic. Licenciate thesis, Chalmers University of Technology (1996)

[118] Piette, C., Hamadi, Y., Sais, L.: Vivifying propositional clausal formu-
lae. In: M. Ghallab, C.D. Spyropoulos, N. Fakotakis, N.M. Avouris
(eds.) ECAI 2008—18th European Conference on Artificial Intelligence,
Patras, Greece, July 21-25, 2008, Proceedings, Frontiers in Artificial In-
telligence and Applications, vol. 178, pp. 525–529. IOS Press (2008).
doi:10.3233/978-1-58603-891-5-525

[119] Pipatsrisawat, K., Darwiche, A.: A lightweight component caching
scheme for satisfiability solvers. In: J.P. Marques-Silva, K.A. Sakallah
(eds.) Theory and Applications of Satisfiability Testing—SAT 2007, 10th
International Conference, Lisbon, Portugal, May 28-31, 2007, Proceed-
ings, Lecture Notes in Computer Science, vol. 4501, pp. 294–299. Springer
(2007). doi:10.1007/978-3-540-72788-0 28

[120] Ramos, A., van der Tak, P., Heule, M.J.H.: Between restarts and back-
jumps. In: K.A. Sakallah, L. Simon (eds.) Theory and Applications of
Satisfiability Testing—SAT 2011—14th International Conference, SAT
2011, Ann Arbor, MI, USA, June 19-22, 2011. Proceedings, Lecture
Notes in Computer Science, vol. 6695, pp. 216–229. Springer (2011).
doi:10.1007/978-3-642-21581-0 18

[121] Reynolds, A., Tinelli, C., de Moura, L.: Finding conflicting in-
stances of quantified formulas in SMT. In: 2014 Formal Methods
in Computer-Aided Design (FMCAD), pp. 195–202. IEEE (2014).
doi:10.1109/fmcad.2014.6987613

150

https://doi.org/10.1016/s0004-3702(99)00035-1
http://www.easychair.org/publications/paper/52675
http://isa-afp.org/entries/SuperCalc.html
https://doi.org/10.3233/978-1-58603-891-5-525
https://doi.org/10.1007/978-3-540-72788-0_28
https://doi.org/10.1007/978-3-642-21581-0_18
https://doi.org/10.1109/fmcad.2014.6987613

Bibliography

[122] Riazanov, A., Voronkov, A.: The design and implementation of VAM-
PIRE. AI Commun. 15(2-3), 91–110 (2002). URL http://content.

iospress.com/articles/ai-communications/aic259

[123] Roe, K., Smith, S.F.: Using the coq theorem prover to verify complex
data structure invariants. Ph.D. thesis, Johns Hopkins University
(2018). URL https://www.cs.jhu.edu/~roe/root.pdf

[124] Ryan, L.: Efficient algorithms for clause-learning SAT solvers. Master’s
thesis, Simon Fraser University (2004). URL https://www.cs.sfu.ca/

~mitchell/papers/ryan-thesis.ps

[125] Schlichtkrull, A.: Formalization of the resolution calculus for first-order
logic. In: J.C. Blanchette, S. Merz (eds.) Interactive Theorem Proving—
7th International Conference, ITP 2016, Nancy, France, August 22-25,
2016, Proceedings, Lecture Notes in Computer Science, vol. 9807, pp.
341–357. Springer (2016). doi:10.1007/978-3-319-43144-4 21

[126] Schlichtkrull, A., Blanchette, J.C., Traytel, D.: A verified functional im-
plementation of Bachmair and Ganzinger’s ordered resolution prover.
Archive of Formal Proofs 2018 (2018). URL https://www.isa-afp.

org/entries/Functional_Ordered_Resolution_Prover.html

[127] Schlichtkrull, A., Blanchette, J.C., Traytel, D.: A verified prover based
on ordered resolution. In: A. Mahboubi, M.O. Myreen (eds.) Pro-
ceedings of the 8th ACM SIGPLAN International Conference on Certi-
fied Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15,
2019, pp. 152–165. ACM (2019). doi:10.1145/3293880.3294100. URL
https://doi.org/10.1145/3293880.3294100

[128] Schlichtkrull, A., Blanchette, J.C., Traytel, D., Waldmann, U.: For-
malizing Bachmair and Ganzinger’s ordered resolution prover. In:
D. Galmiche, S. Schulz, R. Sebastiani (eds.) Automated Reasoning—
9th International Joint Conference, IJCAR 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,
Proceedings, Lecture Notes in Computer Science, vol. 10900, pp. 89–107.
Springer (2018). doi:10.1007/978-3-319-94205-6 7

[129] Schulz, S.: E—a brainiac theorem prover. AI Commun. 15(2-
3), 111–126 (2002). URL http://content.iospress.com/articles/

ai-communications/aic260

151

http://content.iospress.com/articles/ai-communications/aic259
http://content.iospress.com/articles/ai-communications/aic259
https://www.cs.jhu.edu/~roe/root.pdf
https://www.cs.sfu.ca/~mitchell/papers/ryan-thesis.ps
https://www.cs.sfu.ca/~mitchell/papers/ryan-thesis.ps
https://doi.org/10.1007/978-3-319-43144-4_21
https://www.isa-afp.org/entries/Functional_Ordered_Resolution_Prover.html
https://www.isa-afp.org/entries/Functional_Ordered_Resolution_Prover.html
https://doi.org/10.1145/3293880.3294100
https://doi.org/10.1145/3293880.3294100
https://doi.org/10.1007/978-3-319-94205-6_7
http://content.iospress.com/articles/ai-communications/aic260
http://content.iospress.com/articles/ai-communications/aic260

Bibliography

[130] Sebastiani, R., Giorgini, P., Mylopoulos, J.: Simple and minimum-
cost satisfiability for goal models. In: A. Persson, J. Stirna (eds.)
Advanced Information Systems Engineering, 16th International Con-
ference, CAiSE 2004, Riga, Latvia, June 7-11, 2004, Proceedings, Lec-
ture Notes in Computer Science, vol. 3084, pp. 20–35. Springer (2004).
doi:10.1007/978-3-540-25975-6 4

[131] Shankar, N.: Metamathematics, Machines, and Gödels’s Proof, Cam-
bridge Tracts in Theoretical Computer Science, vol. 38. Cambridge Univer-
sity Press (1994). doi:10.1017/cbo9780511569883

[132] Shankar, N., Vaucher, M.: The mechanical verification of a DPLL-based
satisfiability solver. Electron. Notes Theor. Comput. Sci. 269, 3–17

(2011). doi:10.1016/j.entcs.2011.03.002

[133] Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to crypto-
graphic problems. In: O. Kullmann (ed.) Lecture Notes in Computer
Science, Lecture Notes in Computer Science, vol. 5584, pp. 244–257.
Springer Berlin Heidelberg (2009). doi:10.1007/978-3-642-02777-2 24

[134] Sörensson, N., Biere, A.: Minimizing learned clauses. In: O. Kullmann
(ed.) Theory and Applications of Satisfiability Testing—SAT 2009, 12th
International Conference, SAT 2009, Swansea, UK, June 30—July 3,
2009. Proceedings, Lecture Notes in Computer Science, vol. 5584, pp.
237–243. Springer (2009). doi:10.1007/978-3-642-02777-2 23

[135] Sternagel, C., Thiemann, R.: An Isabelle/HOL formalization of rewrit-
ing for certified termination analysis. http://cl-informatik.uibk.

ac.at/software/ceta/

[136] Stump, A., Deters, M., Petcher, A., Schiller, T., Simpson, T.: Ver-
ified programming in guru. In: T. Altenkirch, T.D. Millstein
(eds.) Proceedings of the 3rd workshop on Programming languages
meets program verification—PLPV ’09, pp. 49–58. ACM Press (2008).
doi:10.1145/1481848.1481856

[137] Thiemann, R.: Extending a verified simplex algorithm. In: G. Barthe,
K. Korovin, S. Schulz, M. Suda, G. Sutcliffe, M. Veanes (eds.) LPAR-22

Workshop and Short Paper Proceedings, Kalpa Publications in Comput-
ing, vol. 9, pp. 37–48. EasyChair (2018). doi:10.29007/5vlq

152

https://doi.org/10.1007/978-3-540-25975-6_4
https://doi.org/10.1017/cbo9780511569883
https://doi.org/10.1016/j.entcs.2011.03.002
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/978-3-642-02777-2_23
http://cl-informatik.uibk.ac.at/software/ceta/
http://cl-informatik.uibk.ac.at/software/ceta/
https://doi.org/10.1145/1481848.1481856
https://doi.org/10.29007/5vlq

Bibliography

[138] Voronkov, A.: AVATAR: The architecture for first-order theorem
provers. In: A. Biere, R. Bloem (eds.) Computer Aided Verification—
26th International Conference, CAV 2014, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceed-
ings, Lecture Notes in Computer Science, vol. 8559, pp. 696–710. Springer
(2014). doi:10.1007/978-3-319-08867-9 46

[139] Weeks, S.: Whole-program compilation in MLton. In: Proceedings of
the ACM Workshop on ML, 2006, Portland, Oregon, USA, September
16, 2006, p. 1. ACM Press (2006). doi:10.1145/1159876.1159877

[140] Weidenbach, C.: Automated reasoning building blocks. In: Correct
System Design—Symposium in Honor of Ernst-Rüdiger Olderog on
the Occasion of His 60th Birthday, Oldenburg, Germany, September
8-9, 2015. Proceedings, Lecture Notes in Computer Science, vol. 9360, pp.
172–188. Springer (2015). doi:10.1007/978-3-319-23506-6 12

[141] Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wis-
chnewski, P.: SPASS version 3.5. In: R.A. Schmidt (ed.) Automated
Deduction—CADE-22, 22nd International Conference on Automated
Deduction, Montreal, Canada, August 2-7, 2009. Proceedings, Lecture
Notes in Computer Science, vol. 5663, pp. 140–145. Springer (2009).
doi:10.1007/978-3-642-02959-2 10

[142] Wenzel, M.: Isabelle/Isar—A generic framework for human-readable
proof documents. In: R. Matuszewski, A. Zalewska (eds.) From Insight
to Proof: Festschrift in Honour of Andrzej Trybulec, Studies in Logic,
Grammar, and Rhetoric, vol. 10(23). University of Białystok (2007). URL
https://www21.in.tum.de/~wenzelm/papers/isar-framework.pdf

[143] Wenzel, M.: System description: Isabelle/jEdit in 2014. In:
C. Benzmüller, B.W. Paleo (eds.) Proceedings Eleventh Work-
shop on User Interfaces for Theorem Provers, UITP 2014, Vienna,
Austria, 17th July 2014., EPTCS, vol. 167, pp. 84–94 (2014).
doi:10.4204/EPTCS.167.10

[144] Wenzel, M.: Further scaling of Isabelle technology. In: T. Nip-
kow, L.C. Paulson, M. Wenzel (eds.) Isabelle Workshop 2018

(2018). URL https://files.sketis.net/Isabelle_Workshop_2018/

Isabelle_2018_paper_1.pdf

[145] Wetzler, N., Heule, M.J.H., Hunt Jr., W.A.: DRAT-trim: Efficient check-
ing and trimming using expressive clausal proofs. In: C. Sinz, U. Egly

153

https://doi.org/10.1007/978-3-319-08867-9_46
https://doi.org/10.1145/1159876.1159877
https://doi.org/10.1007/978-3-319-23506-6_12
https://doi.org/10.1007/978-3-642-02959-2_10
https://www21.in.tum.de/~wenzelm/papers/isar-framework.pdf
https://doi.org/10.4204/EPTCS.167.10
https://files.sketis.net/Isabelle_Workshop_2018/Isabelle_2018_paper_1.pdf
https://files.sketis.net/Isabelle_Workshop_2018/Isabelle_2018_paper_1.pdf

Bibliography

(eds.) Theory and Applications of Satisfiability Testing—SAT 2014—
17th International Conference, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, Lec-
ture Notes in Computer Science, vol. 8561, pp. 422–429. Springer (2014).
doi:10.1007/978-3-319-09284-3 31

[146] Wirth, N.: Program development by stepwise refinement. Commun.
ACM 14(4), 221–227 (1971). doi:10.1145/362575.362577

[147] Woodcock, J., Banach, R.: The verification grand challenge. J. Univers.
Comput. Sci. 13(5), 661–668 (2007). doi:10.3217/jucs-013-05-0661

[148] Yu, L.: A formal model of IEEE floating point arithmetic. Archive
of Formal Proofs (2013). http://isa-afp.org/entries/IEEE_

Floating_Point.html, Formal proof development

[149] Zhang, H.: SATO: an efficient propositional prover. In: W. McCune
(ed.) Automated Deduction–CADE-14, 14th International Conference
on Automated Deduction, Townsville, North Queensland, Australia,
July 13-17, 1997, Proceedings, Lecture Notes in Computer Science, vol.
1249, pp. 272–275. Springer (1997). doi:10.1007/3-540-63104-6 28

.

154

https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1145/362575.362577
https://doi.org/10.3217/jucs-013-05-0661
http://isa-afp.org/entries/IEEE_Floating_Point.html
http://isa-afp.org/entries/IEEE_Floating_Point.html
https://doi.org/10.1007/3-540-63104-6_28

Index

blocking literal, 98

CDCL NOT, 24

CDCL W, 28

CDCL W+stgy+incr, 35

CDCL W+stgy, 30

CDCL NOT merge, 25

CDCL W merge, 34

CDCLBnB, 47

code generator, 14

conflict minimization, 37, 83

DPLL NOT, 22

DPLL NOT+BJ, 19

DPLL W, 27

dual rail encoding, 52

explore, 94

Imperative HOL, 63

Isabelle Refinement Framework, 60

Isar, 12

literal, 18

locale, 11

OCDCL, 42

OCDCLg, 50

PCUIalgo, 70

PCUI list, 72

polarity checking, 85

position saving, 101

reasonable strategy, 30

Sepref, 63

Sledgehammer, 13

trail reuse, 103

TWL, 68

variable move to front, 78

VMTF, 78

watch lists, 73

155

	1 Introduction
	1.1 Motivation
	1.2 Plan of the Thesis
	1.3 Contributions

	2 Isabelle
	2.1 Isabelle/Pure
	2.2 Isabelle/HOL
	2.3 Locales
	2.4 Isar
	2.5 Sledgehammer
	2.6 Code Generation
	2.7 Isabelle/jEdit

	3 Conflict-Driven Clause Learning
	3.1 Abstract CDCL
	3.1.1 Propositional Logic
	3.1.2 DPLL with Backjumping
	3.1.3 Classical DPLL
	3.1.4 The CDCL Calculus
	3.1.5 Restarts

	3.2 A Refined CDCL Towards an Implementation
	3.2.1 The New DPLL Calculus
	3.2.2 The New CDCL Calculus
	3.2.3 A Reasonable Strategy
	Correctness.
	No relearning.
	A better bound.

	3.2.4 Connection with Abstract CDCL
	3.2.5 A Strategy with Restart and Forget
	3.2.6 Incremental Solving
	3.2.7 Backjump and Conflict Minimization

	3.3 A Naive Functional Implementation of CDCL, IsaSAT-0
	3.4 Summary

	4 CDCL with Branch and Bound
	4.1 Optimizing Conflict-Driven Clause Learning
	4.2 Formalization of OCDCL
	4.2.1 Branch-and-Bound Calculus, CDCLBnB
	4.2.2 Embedding into CDCL
	4.2.3 Instantiation with weights, OCDCLg
	4.2.4 OCDCL

	4.3 Optimal Partial Valuations
	4.4 Formalization of the Partial Encoding
	4.5 Solving Further Optimization Problems
	4.5.1 MaxSAT
	4.5.2 A Second Instantiation of CDCLBnB: Model Covering

	4.6 Extending CDCL
	4.6.1 Restricting CDCL or Adding Shortcuts
	4.6.2 More General Rules

	4.7 Summary

	5 The Two-Watched-Literal Scheme
	5.1 Code Synthesis with the Isabelle Refinement Framework
	5.1.1 Isabelle Refinement Framework
	5.1.2 Sepref and Refinement to Imperative HOL
	5.1.3 Code Generation of Imperative Programs
	5.1.4 Sepref and Locales

	5.2 Watched Literals
	5.3 Refining the Calculus to an Algorithm
	5.4 Representing Clauses as Lists
	5.5 Storing Clauses Watched by a Literal: Watch Lists
	5.6 Generating Code
	5.7 Optimizations and Heuristics
	5.7.1 Variable Move to Front
	5.7.2 Conflict Clause as a Lookup Table
	5.7.3 Conflict Clause Minimization
	5.7.4 State Representation
	5.7.5 Fast Polarity Checking

	5.8 Evaluation
	5.9 Summary

	6 Optimizing My Verified SAT Solver IsaSAT
	6.1 Refactoring IsaSAT
	Proof Style.
	Heuristics and Data Structures.
	Layer Conception.

	6.2 Adding Blocking Literals
	Invariant.
	Caching of a literal.

	6.3 Improving Memory Management
	Position Saving.

	6.4 Implementing Restarts and Forgets
	6.5 Using Machine Integers
	6.6 Evaluation
	6.7 Extracting Efficient Code
	6.8 Detailed TWL Invariants in Isabelle
	6.9 Extending IsaSAT
	6.10 Summary

	7 Discussion and Conclusion
	7.1 Discussion and Related Work
	Discussion on the CDCL Formalization.
	Other Formalizations of Logic.
	Other CDCL Formalizations.
	CDCL Extensions.
	Discussion on Refinement.
	Other Formalized SAT solvers.
	Other Verification Approaches.
	Increasing Trust.
	Certification.
	Other SAT solvers.

	7.2 Summary
	7.3 Future Work

	A More Details on IsaSAT and Other SAT Solvers
	A.1 Clauses
	A.1.1 IsaSAT
	A.1.2 Glucose
	A.1.3 CaDiCaL

	A.2 Watch Lists and Propagations
	A.3 Decision Heuristics
	A.4 Clause Minimization
	A.5 Forget
	A.6 Clause Simplification
	A.7 Conclusion

	Bibliography
	Index

