
A more Pragmatic CDCL for IsaSAT
and targetting LLVM (Short Paper)

Mathias Fleury� 1,2,3 and Peter Lammich 4,5

1 University Freiburg, Freiburg, Germany
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

3 Johannes Kepler University Linz, Linz, Austria
4 University of Manchester, Manchester, UK
5 University of Twente, Twente, Netherlands

Abstract. IsaSAT is the most advanced verified SAT solver, but it did
not yet feature inprocessing (to simplify and strengthen clauses). In order
to improve performance, we enriched the base calculus to not only do
CDCL but also inprocess clauses. We also replaced the target of our code
synthesis by Isabelle/LLVM. With these improvements, we can solve 4
times more SAT Competition 2022 problems than the original IsaSAT
version, and 4.5 times more problems than any other verified SAT solver
we are aware of. Additionally, our changes significantly reduce the trusted
code base of our verification.

1 Introduction

SAT solving is a very important tool that has been extensively used in various
applications like mathematics or cryptography. To ensure the correctness of the
answer provided by a SAT solver, there are two approaches: either producing a
certificate that can be checked independently or verifying a SAT solver. The first
approach has been extensively studied and works very well in practice [19,26,28]
– only checked proofs are counted in the SAT Competition [2].

The second approach, i.e., verifying a whole SAT solver is orders of mag-
nitudes more complex than checking a certificate. To this end, the goal of the
IsaFoL (Isabelle Formalization of Logic) [3] effort is to develop methodology and
libraries for formalizing modern research in automated reasoning. In this con-
text, we have verified a CDCL calculus (conflict-driven clause learning) and a
two-watched literals data structure (Sect. 2). To show that they are useful, we
have developed the verified SAT solver IsaSAT [8], which we later optimized [12].
To our surprise, it won the EDA Challenge 2021 defeating all the non-verified
solvers, but, as expected, it finished last at the SAT Competition 2022 [2]. How-
ever, the former used a much shorter timeout (200 s, not announced before the
competition) whereas the latter uses 5000 s.

In this paper, we present our new developments in IsaSAT, which make
our solver arguably the most advanced formally verified SAT solver to date:
inprocessing and verifying fast LLVM code [20] rather than slow functional code.

http://orcid.org/0000-0002-1705-3083
http://orcid.org/0000-0003-3576-0504

2

Inprocessing is a critical feature of modern SAT solvers (e.g., every winner of
the SAT Competition since 2013 includes it). In order to use it in our formally
verified solver, we had to extend our verified CDCL calculus: Our new PCDCL
calculus includes features to encompass various inprocessing techniques, even if
we have not yet implemented every possible technique (Sect. 3).

We generate IsaSAT by exporting a model in the interactive theorem prover
Isabelle [22] to executable code. Earlier we used Isabelle’s default code gen-
erator to export to Standard ML (SML). However, the performance was not
sufficient – especially memory consumption was very high. Thus, we switched to
Isabelle/LLVM [18], which generates LLVM intermediate representation (LLVM
IR). Apart from allowing faster imperative code, it also reduced the trusted
code base (Sect. 4), replacing the rather niche MLton [27] compiler by only the
backend of the widely used LLVM.

Porting our entire development to Isabelle/LLVM required some changes
and some cleanup. Moreover, when we implemented and verified inprocessing,
we realized that some design decisions need to be improved. In Sect. 5, we report
on our experiences and lessons learned while porting and extending IsaSAT.

Finally, we have benchmarked IsaSAT on the problems from the SAT Compe-
tition 2022. We show that just porting IsaSAT from SML to Isabelle/LLVM sig-
nificantly improved the performance, and the new inprocessing techniques com-
bined with heuristic improvements give us another significant increase, demon-
strating the usefulness of our PCDCL calculus (Sect. 6).

This presentation is an extended version of our (non-peer-reviewed) system
description from the EDA Challenge 2021 [13] and the SAT Competition 2022 [6].
Compared to that version, we have provided much more details on PCDCL, our
experience porting the development to LLVM, and performance tests.

2 Preliminaries

CDCL. CDCL is a procedure that builds a partial assignment called a trail
either by guessing (called deciding) or propagating information. If the partial
assignment is a model, the algorithm stops. If there is a conflict between the
partial assignment and a clause, the partial assignment is repaired and a new
clause is learned. For more details (beyond the scope of this paper), we refer the
reader to the Handbook of Satisfiability [7].

We use a transition system for our formalization of CDCL [8]. Its state con-
sists of the trail M , the (multi)sets of initial and learned clauses (N and U),
and the conflict clause to analyze (or None if there is none). We show one rule,
decide, that adds L to the current assignment M :

inductive decide :: ′st ⇒ ′st ⇒ bool where
undefined_lit M L =■⇒ |L| ∈ |N | =■⇒
decide (M,N,U,None) (L ·M,N,U,None)

If no conflict has been found so far (None), we add the new literal L at the
beginning of the trail M . We prove that our set of rules is terminating and
correct [8].

3

Code Synthesis. To generate the IsaSAT code, we start from the abstract
rules like decide and gradually refine it to some deterministic functions using
the Refinement Framework [16]. Then, we rely on Sepref [17] to synthesize code:
It takes an (Isabelle) function and synthesizes a new version, replacing functional
data structures (like lists) by imperative data structures (like arrays). There are
two versions of the tool. The older version, which we used before [8, 12], uses
Imperative HOL [9] and Isabelle’s standard (trusted) code generator [14] to ex-
port code into various functional languages. We used Standard ML (SML) with
the compiler MLton [27], because it offers (by far) the best performance for
our use case. The new Sepref is part of the Isabelle/LLVM library (developed
by the second author) and generates LLVM IR from a model of LLVM IR in-
side the theorem prover. The code generator interprets a shallow embedding of
Isabelle/LLVM as equivalent to similar looking LLVM code. This reduces the
trusted code base in two ways: first, the trusted pretty printer is simpler, and,
second, instead of the rather niche full compiler MLton, we use only the backend
of the widely used LLVM [20].

The biggest difference is that Imperative HOL allows arbitrary large arrays
and integers, whereas Isabelle/LLVM is more realistic, requiring integers (in
particular array offsets, see Sect. 5.1) to have a fixed bit-width.

Related Work. Our goal is to produce a fully verified SAT solver, without any
runtime checks, that both terminates and returns a correct model while using
efficient data structures. No other solver achieves all three goals. The SAT solver
TrueSAT from Andrici and Ciobaca [1] relies on the original DPLL and uses
less efficient data structures (including counters instead of watch lists), but it
terminates. Historically, this would roughly correspond to SAT solver from the
early 90s. However, it only uses stateless heuristics, and it is not clear if the
approach can be extended to CDCL (where the solver learns and keeps new
clauses) or to stateful heuristics (like VSIDS [21]). The solvers versat [23] and
Creusat [25] go into a similar direction with CDCL instead of DPLL, but prove
a weaker correctness property: they only show that an UNSAT result is correct,
while a SAT result requires an additional check. Also, termination is not proved.
Only proving this partial property makes many proofs considerably easier, in
particular adding restarts. Oe et al’s solver versat [23] was the first partially
verified solver that could run benchmarks from the SAT Competition. More
recently, Skotåm [25] has verified in his Master’s thesis the SAT solver CreuSAT
using the Creusot framework (relying on Why3 internally). While CreuSAT is
much faster than versat in our tests, its correctness relies on (trusted) SMT
solvers, and the proofs are not checked by a small kernel like our Isabelle code.
However, the verification also takes much less time (a few minutes compared to
several hours).

Modern SAT solvers use inprocessing to make the subsequent CDCL run
heuristically faster [15]. In particular, clauses are strengthened and global trans-
formation (e.g., to remove variables) are applied. Two techniques (that we do not
support), variable elimination and addition, slowly change the models of the for-
mula by changing the set of variable. The SAT solver then reconstructs a model

4

of the original formula at the end. Fazekas et al. [11] made it compatible with
incremental SAT solving. All others inprocessing technique fit into our extended
CDCL described in the next section.

3 Pragmatic CDCL for Inprocessing

SAT solvers nowadays apply a combination of CDCL (most of the time) and
inprocessing (sometimes). Therefore, we extended our calculus similarly. At the
core, we have our terminating CDCL. We also allow for formula transformation
and restarts. We call the combination pragmatic CDCL or PCDCL.

Splitting the Clause Set. Inprocessing makes it possible to strengthen and
simplify clauses. However, we want models from the final set of clauses to remain
models from the initial set of clauses. Deleting clauses is not possible: if we start
with the clauses A∨C and B∨¬B, removing the tautology means that the model
A of A ∨ C is not a model of the initial clause set anymore. Hence we want to
keep the literal B without considering the tautology for propagation/conflict.

To solve the issue we split our set of clauses into two parts: clauses that
are useful for propagation and clauses that can be ignored but are kept for
their literals. Thus we keep the set of all literals A constant. For our proof of
refinement to the original CDCL, we have to make sure that the new behavior is
also possible in the original calculus – in particular we do not miss propagations
or conflicts. In the case of tautologies, this is simple (they are never used). If
we consider subsumption, like A ∨ B subsumes A ∨ B ∨ C, whenever the latter
propagates, then the former is a conflict. Therefore, the behavior is compatible.

While the idea of splitting our clauses seems surprising, the additional clause
sets are only required for the connection to our CDCL transition system, and
we entirely remove them when generating the code. Moreover, the refinement
is easier as we do not have to update our heuristics to remove literals (and
potentially shorten arrays). Finally, this is similar to the behavior of SAT solvers
like Kissat [4]: while the clauses are removed, all literals of the problem are set.

In our original refinement, we have split the clauses to distinguish between
clauses of length 1 (where we cannot distinguish two distinct literals and thus
they cannot fit into our two-watched literals data structures) and longer clauses,
but the aim was only distinguishing on the length.

One important point to notice is that the role of our clause sets changes. In
our original CDCL, N was the (immutable) set of initial clauses and U contains
the redundant clauses that can be removed at any point: N ensures that we do
gain new models during our transformations. Now, the set changes: strengthening
an irredundant clause from N also shortens the clause that is in there. Therefore,
a naive version could remove literals.

Overall we have 4 sets of clauses: the irredundant clauses N and the redun-
dant U clauses, and each one is divided into the active clauses (Na and Ua) and
the inactive (discarded) clauses (Nd and Ud). For example, tautologies or sub-
sumed clauses are discarded, but remain in N , so literals are never removed. In

5

our development there are actually three sets (containing a literal set at level 0
or tautologies, subsumed clauses, and false clauses) to reduce the number of case
distinction in some proofs. We never demote irredundant clauses to redundant
ones, but we can promote them.

Inprocessing Rules. Our aim when picking the rule is to be general (like we
can learn any useful clause) and then we specialize rules to specific techniques.
We will show this with the example of subsumption-resolution [7]. When do-
ing subsumption-resolution, we resolve two clauses together if the conclusion is
shorter. Then we can remove either one or both of the antecedents. For example,
resolving A∨B ∨C with A∨¬C produces the clause A∨B with subsumes the
former clause. If the latter clause was A ∨ B ∨ ¬C, the resolved clauses would
actually subsume both clauses.

One of the most important inprocessing rule learns any possible clause. To
simplify the presentation, we will only give the rules operating on the learned
clauses, but similar rules exists for the initial set of clauses.

inductive cdcl_■learn_■clause :: ′prag_st ⇒ ′prag_st ⇒ bool where
|C| ⊆ |N +Nd| =■⇒ count_decidedM = 0 =■⇒
N ∧Nd ⊨ C =■⇒ ¬tautologyC =■⇒ distinctC =■⇒
cdcl_■subsumed (M,N,U,None, Nd, Ud)

(M,N,U ∧ C,None, Nd, Ud)

The side conditions not only include that the clause is entailed and duplicate-
free, but also the clause is not a tautology and we do not break CDCL invariants
(count_decidedM = 0). Then we can deactivate subsumed clauses:

inductive cdcl_■subsumed :: ′prag_st ⇒ ′prag_st ⇒ bool where
C ⊆ D =■⇒ count_decidedM = 0 =■⇒
cdcl_■subsumed (M,N,U ∧ C ∧D,None, Nd, Ud)

(M,N,U ∧ C,None, Nd, D ∧ Ud)

We combine these rules to express subsumption-resolution: We first learn the
clause obtained by resolution. Then we can remove the antecedents. If either
antecedent is in N , we also have promoted the conclusion from N to U . The
advantage of our approach is that we can express other inprocessing techniques
without adding new rules, only by specializing them.

Overall we have 9 rules with some overlap with CDCL (propagation and
conflict), but mostly simplification of clauses (removing true clauses and false
literals from clauses) and pure literal deletion: When a literal always appears
positively (or always negatively), we can set this literal to be true unconditionally
(later removing all clauses containing it): every model after adding the clause is
also a model of the original set of clauses but not the opposite. This is the first
transformation that does not preserve models in IsaSAT or any other verified
SAT solvers.

6

Refinement of Subsumption-Resolution. While the definition of subsump-
tion resolution is very simple, the refinement to code was challenging.

We verified forward subsumption [7] following CaDiCaL [5] (unbounded how-
ever, so all clauses selected heuristically are checked). We sort clauses by size
and check if the current candidate is subsumed by one of the smaller clauses.
Because we use two-watched literals, we need to distinguish between the binary
clauses (than can produce new units) and the other clauses. At the end, we im-
plemented two forward subsumption passes: one for binary clauses only and the
other for larger clauses.

To subsume the candidates, we build occurrence lists and populate them with
binary clauses, whereas Kissat [5] reuses watch lists. Moreover, for efficiency,
we need a new marking data structure for efficient detection of subsuming-
resolution.

4 Correctness of the Code and Completeness

Our specification model_if_satisfiable takes the multiset of clauses and returns a
model (if there is one) or None if the clauses are unsatisfiable. Our implementa-
tion IsaSATSML opts takes an array containing the clauses and returns an optional
array containing the assignment, assuming that the clauses do not contain dupli-
cated literals or the empty clause (precondition proper_lits_no_dups_⊥). The
additional argument opts activates and deactivates certain techniques for solving.
The following theorem states that our implementation refines the specification:

Theorem 1 (SML End-to-End Correctness) The following refinement re-
lation holds:

(IsaSATSML opts, model_if_satisfiable)
∈ [proper_lits_no_dups_⊥] clauses_assn → option_model_assn

The LLVM version is nearly the same. It can handle duplicated literals and
the empty clause. Moreover, the new specification model_if_satisfiable_bounded
allows for an unknown result if arrays would grow larger than the size permitted
by the fixed bit-width. While this limit does not exist in Imperative_HOL,
it exists in practice as no machine supports arrays that large. Therefore, we
technically weakened our theorem, but did not change practical guarantees on
the generated code. For IsaSATSML we start [12] with 64-bit unsigned integers
and only switch to GMP integers if the arrays grow too large.

Theorem 2 (LLVM End-to-End Correctness) The following refinement re-
lation holds:

(IsaSATLLVM opts, RETURN ◦ model_if_satisfiable_bounded)
∈ [proper_lits] clauses_assn → option_model_assn

Moreover, the change from SML to LLVM reduces the trusted code base:
The Isabelle/LLVM model is closer to the actual LLVM, such that the trusted

7

pretty-printer is simpler. LLVM is also more low-level, such that fewer parts of
the compiler have to be trusted. Finally, the LLVM compiler is more widely used
and tested than the rather niche MLton compiler we used before.

5 Experience Porting the Development to LLVM

We report on the challenges we faced when updating the huge IsaSAT formaliza-
tion (Sect. 5.1). Moreover, we report on the unverified parts of IsaSAT (Sect. 5.2),
and finally compile some lessons learned (Sect. 5.3).

5.1 Required Changes

Before porting the development to LLVM, we removed our only remaining source
of unbounded integers: the clause indices during the garbage collection. As
garbage collection does not happen very often, we did not expect this to make
a difference. Surprisingly, it turns out to have a performance impact.

Isabelle/LLVM is an entire tool set, including a fork of the original Sepref
tool. While related to the original Sepref tool, there are different libraries, and
the development of the two versions has diverged.

Initially, we tried to support both versions of Sepref. We ended up with two
sets of files for code synthesis, and duplication of some libraries (to provide
constants defined in Isabelle/LLVM but not in SeprefSML). This significantly
complicated our refinement approach, although we made it conceptually cleaner
during the porting. Then, we realized that IsaSATLLVM was much faster than
IsaSATSML (we observed a factor 2 on our test files), and decided to discontinue
the SML backend.

With this, also some workarounds for SML specific performance issues (like
the tuple uint32 * bool * uint64 being much less efficient than combining
the uint32 and the Boolean into a single 64-bit number) became obsolete.

Compilation. We have experimented with compilation flags before to improve
performance. We know from the SML code that we need to increase the level of
inlining, because many small functions make the verification easier. The same
applies for LLVM and the easiest solution is to use link-time optimization that
increases the inlining level as a side effect. However, this makes profiling impos-
sible – exactly like the SML code. So there is no regression here.

Tuples. In 2021, we observed a major performance regression of the synthe-
sis, caused by a new feature in SeprefLLVM: pointer-equality tracking caused
quadratic behaviour for case-splits of tuples. As our solver state is a large tuple,
synthesis became impossible (several dozen minutes for simple functions).

To avoid the issue, we decided to work around on the abstract level, using
getter and setter functions for the state’s components, rather than case splitting.
Now, every function on the state would first get the required components, update
them, and then put them back. For example:

8

definition rescore_■conflict :: clause_index ⇒ isasat ⇒ isasat where
rescore_■conflict C S = do{
let (M,S) = extract_■trail S;
... (*reads the trail M and can change it*) ...
let S = update_■trail M S;
RETURN S

}

This makes synthesis much faster. However, the ownership model of Sepref does
not allow aliasing, nor do our refinement relations allow leaving a ’gap’ in the
state where we moved out an element. As an easy work-around, we resorted to
placing dummy-values, like empty lists, in the state, hoping that LLVM would
optimize away the allocations and deallocations for these values. However, this
did not happen: In the hot-spot of the SAT solver, the propagation loop, the
dummy value for the trail was recreated and freed each time. Thus, we locally
resorted to unfolding our code to make sure that we need only one free in the
inner propagation loop. We leave a more principled solution of this problem
(possibly changing Sepref) to future work.

We even attempted to go one step further (as the state-of-the-art SAT solver
Kissat [4] does) and simply passing a pointer to the state structure as argument.
Once we had already changed our refinement with accessors, we simply had
to change them to work on a pointer. However, we never managed to make
the synthesized code efficient. We observed a factor of 10 slower code. Hand-
optimizing the accessors (basically making sure that LLVM understands that
we care only about one component) reduced this to factor 2 slower. Once we
realized that the LLVM optimizer was replacing the pointer by the structure
passed directly as argument, we gave up on that approach.

5.2 Unverified Parts

In the generated SAT solver, there are some parts that we cannot verify. First, the
parser is not verified, because the file system has no model in Isabelle (unlike
CakeML, where conditions apply however). To this end, we link the verified
code with an unverified C program, which provides the parser and command
line interface.

Second, Isabelle/LLVM does not support any output (like statistics, or the
DRAT proofs [28] required for the SAT Competition). For the SML version, we
could use a feature of Isabelle’s code generator to (axiomatically) implement
a function by some external function (e.g. a function that does nothing in the
model, by a printing function). As Isabelle/LLVM does not yet have such a
feature, we resorted to post-processing the generated code (i.e., a function that
does nothing in the model, is replaced by a printing function or even a function
storing some literals for DRAT proofs). Note that this post-processing is not
required for IsaSAT to work (but it won’t print DRAT proofs).

9

5.3 Lessons Learned

Lesson 1: Embrace Duplication. We have already highlighted the impor-
tance of the set of all possible literals A, in particular to establish a bound on the
size of various arrays. At first, we tried to avoid duplicating this set across the
different components on the specification side. This, however, resulted in a closer
coupling of the various refinement proofs, impeding modularity: data structures
that, conceptually, are just a small part of the whole state, have to be formalized
on the whole state, just to have the set A available. We solved this problem by
duplicating the set A on the abstract level for all new data structures. Note that
this duplication is removed in a later refinement stage.

Lesson 2: The Limits are Isabelle Files. Checking our Isabelle files takes
nearly two hours. This can be explained by three factors: 1. the heuristic and code
synthesis amounts to 91 000 loc, making it a very large formalization; 2. the syn-
thesis is single-threaded (for technical reasons); 3. Sepref encourages a style that
is not very parallel: every refinement starts with a call to a tactic refine_vcg
that generates the goals (meaning that all successive tactics have to wait). To
improve performance we have attempted [12] to generate more standard proofs
in Isar (by generating the text corresponding to the theorems to prove), but it
is not clear that this style is faster as huge number of variables are generated
(this style is required for more complicated proofs, however).

In order to improve Isabelle’s performance and speed-up the testing of new
heuristics in IsaSATLLVM, we have split the files into three parts: the shared def-
initions of the functions to refine, the (single-threaded) synthesis, and the cor-
rectness proof of the refinement. Even with these optimizations, proof checking
still takes 2 hours. There is also no clear improvement path. The old SML ver-
sion has a similar problem, but it is overall faster because it has fewer features,
making it less critical.

Lesson 3: Performance Bugs exist. In order to improve performance, we
need to measure and observe performance. To solve that problem, IsaSAT prints
statistics and produces some timing information. The statistics during the run
made identifying scheduling bugs for the different techniques possible – we ac-
cidentally ran some techniques way too often or barely ever. Especially because
we increase the interval between two inprocessing rounds geometrically, a simple
statistics at the end of the run is not sufficient. One interesting performance
bug we found was that we accidentally inverted reducing clauses (marking them
as removed) and garbage collection (physically removing them). Therefore, we
would nearly always physically delete clauses. We never saw this issue, because
we also printed the statistics inverted. To help debugging performance, we pro-
duce some timing information by measuring time in the C program:

c propagate : 83.48% (581.66 s)
c reduce : 0.12% (0.82 s)
c subsumption : 0.06% (0.39 s)
c pure_lits : 0.05% (0.33 s)

10

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

30
0

sc2022−bulky
isasat−lastest−1g
isasat−first−llvm
isasat−sml
Creusat
versat

Fig. 1. CDF of the performance of SAT solvers

c binary_simp : 0.02% (0.15 s)
c GC : 0.16% (1.10 s)

This helps to identify bottlenecks but also outliers where one technique is par-
ticularly slow and requires some limits or a change in the scheduling to avoid
slowing down the solver too much. This makes it possible to identify errors like
allocations in loops. The overall timing matches what we expect from other
SAT solvers (although usually they spend more time on inprocessing and less on
propagation).

6 Performance

In order to study the performance we have run 3 different IsaSAT versions:
the original SML solver (using MLton with the LLVM backend), the first port
of the IsaSAT solver, and the current version with inprocessing and various
other improvements on heuristics that do not require any change on our PCDCL
calculus, notably rephasing and target phases [10] (but no local search) and the
alternation between aggressive restarts (heuristically seems better for UNSAT)
and few restarts (seems better for SAT) following the ideas of Chanseok Oh [24].

We run all the benchmarks from the SAT Competition 2022 on an Intel Xeon
E5-2620 v4 CPU at 2.10GHz (with turbo-mode disabled) with a memory limit
of 7GB and a timeout of 5000 s. For comparison, we have included versat [23]
and CreuSAT [25]. For completeness, we have included Kissat [6] (more precisely
the bulky version submitted for the anniversary track).

The results are given in Fig. 1 as a CDF (the higher the curve, the more solved
problems). The first surprise is that CreuSAT performs similarly to IsaSATSML
(37 vs 40 solved problems), worse than expected given the results reported in the

11

Master’s thesis [25] that tested on the 2015 benchmarks. We suspect that is due
to the garbage collection and the fact that problems from the SAT Competition
have become harder.

There is a clear improvement when going from the SML version to the LLVM
version (98 solved), while the latest version solves 166. The SML version produces
335 out-of-memory errors (OOMs), the base LLVM version is more memory
efficient (23 OOMs) like the latest IsaSAT version (19 OOMs) or CaDiCaL that
has the same memory layout (17 OOMs). However, there is still a large gap to
reach the performance level of Kissat and its inprocessing techniques.

7 Conclusion

We have reported on updating our verified SAT solver IsaSAT to a more powerful
base calculus (our pragmatic CDCL) which can express inprocessing, and to the
more efficient Isabelle/LLVM backend. We have also compiled important lessons
learned from proof-engineering and maintaining large formalizations like IsaSAT
(∼200 kloc of proofs).

Our changes made IsaSAT solve 4 times more problems (166/40), making it
the most efficient verified SAT solver. At the same time, our verification is more
complete than the next fastest verified solvers.

Most techniques (including the two most important, vivification and probing)
either fit into our new PCDCL base calculus or do not require any change (like
random walk [10] that is conjectured to be the reason for the major performance
improvement in 2020). One major technique that we cannot currently express is
variable elimination, because models are changed and need to be fixed. We leave
the required extensions to our PCDCL for future work.

Acknowledgments The work presented here was done over several years and
several work places. The first author was supported for some time by Austrian
Science Fund (FWF), NFN S11408-N23 (RiSE), and the LIT AI Lab funded by
the State of Upper Austria. We thank the anonymous reviewers for their detailed
comments.

References

[1] Andrici, C.C., S, tefan Ciobâcă: A verified implementation of the DPLL algorithm
in Dafny. Mathematics 10(13), 1–26 (June 2022), https://ideas.repec.org/a/
gam/jmathe/v10y2022i13p2264-d850381.html

[2] Balyo, T., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.): Proceedings of SAT
Competition 2022: Solver and Benchmark Descriptions. Department of Computer
Science Series of Publications B, Department of Computer Science, University of
Helsinki, Finland (2022)

[3] Becker, H., Blanchette, J.C., Fleury, M., From, A.H., Jensen, A.B., Lammich, P.,
Larsen, J.B., Michaelis, J., Nipkow, T., Popescu, A., Schlichtkrull, A., Tourret,
S., Traytel, D., Villadsen, J.: IsaFoL: Isabelle Formalization of Logic, https:
//bitbucket.org/isafol/isafol/

https://ideas.repec.org/a/gam/jmathe/v10y2022i13p2264-d850381.html
https://ideas.repec.org/a/gam/jmathe/v10y2022i13p2264-d850381.html
https://bitbucket.org/isafol/isafol/
https://bitbucket.org/isafol/isafol/

12

[4] Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

[5] Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2021. In: Proc. of SAT
Competition 2021 – Solver and Benchmark Descriptions (2021), submitted.

[6] Biere, A., Fleury, M.: Gimsatul, IsaSAT and Kissat entering the SAT Competition
2022. In: Balyo, T., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of
SAT Competition 2022 – Solver and Benchmark Descriptions. Department of
Computer Science Series of Publications B, vol. B-2022-1, pp. 10–11. University
of Helsinki (2022)

[7] Biere, A., Järvisalo, M., Kiesl, B.: Preprocessing in SAT solving. In: Biere, A.,
Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers
in Artificial Intelligence and Applications, vol. 336, pp. 391 – 435. IOS Press, 2nd
edition edn. (2021). https://doi.org/10.3233/FAIA200992

[8] Blanchette, J.C., Fleury, M., Lammich, P., Weidenbach, C.: A verified SAT solver
framework with learn, forget, restart, and incrementality. J. Autom. Reason. 61(1-
4), 333–365 (2018). https://doi.org/10.1007/s10817-018-9455-7

[9] Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative
functional programming with Isabelle/HOL. In: Mohamed, O.A., Muñoz, C.A.,
Tahar, S. (eds.) Theorem Proving in Higher Order Logics, 21st International
Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceed-
ings. LNCS, vol. 5170, pp. 134–149. Springer (2008). https://doi.org/10.1007/
978-3-540-71067-7_14

[10] Cai, S., Zhang, X., Fleury, M., Biere, A.: Better decision heuristics in CDCL
through local search and target phases. J. Artif. Intell. Res. 74, 1515–1563 (2022).
https://doi.org/10.1613/jair.1.13666

[11] Fazekas, K., Biere, A., Scholl, C.: Incremental inprocessing in SAT solving. In:
Janota, M., Lynce, I. (eds.) Theory and Applications of Satisfiability Testing -
SAT 2019 - 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-
12, 2019, Proceedings. LNCS, vol. 11628, pp. 136–154. Springer (2019). https:
//doi.org/10.1007/978-3-030-24258-9_9

[12] Fleury, M.: Optimizing a verified SAT solver. In: Badger, J.M., Rozier, K.Y. (eds.)
NASA Formal Methods - 11th International Symposium, NFM 2019, Houston,
TX, USA, May 7-9, 2019, Proceedings. LNCS, vol. 11460, pp. 148–165. Springer
(2019). https://doi.org/10.1007/978-3-030-20652-9_10

[13] Fleury, M.: IsaSAT and Kissat entering the EDA Challenge 2021 (2021),
https://www.eda-ai.org/results/, system description accepted at the
EDA Challenge 2021. Available at https://m-fleury.github.io/ox-hugo/
Fleury-EDA-Challenge-2021.pdf

[14] Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems.
In: Blume, M., Kobayashi, N., Vidal, G. (eds.) Functional and Logic Pro-
gramming, 10th International Symposium, FLOPS 2010, Sendai, Japan, April
19-21, 2010. Proceedings. LNCS, vol. 6009, pp. 103–117. Springer (2010).
https://doi.org/10.1007/978-3-642-12251-4_9, https://doi.org/10.1007/
978-3-642-12251-4_9

[15] Järvisalo, M., Heule, M., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) Automated Reasoning - 6th International Joint Conference,

https://doi.org/10.3233/FAIA200992
https://doi.org/10.3233/FAIA200992
https://doi.org/10.1007/s10817-018-9455-7
https://doi.org/10.1007/s10817-018-9455-7
https://doi.org/10.1007/978-3-540-71067-7_14
https://doi.org/10.1007/978-3-540-71067-7_14
https://doi.org/10.1007/978-3-540-71067-7_14
https://doi.org/10.1007/978-3-540-71067-7_14
https://doi.org/10.1613/jair.1.13666
https://doi.org/10.1613/jair.1.13666
https://doi.org/10.1007/978-3-030-24258-9_9
https://doi.org/10.1007/978-3-030-24258-9_9
https://doi.org/10.1007/978-3-030-24258-9_9
https://doi.org/10.1007/978-3-030-24258-9_9
https://doi.org/10.1007/978-3-030-20652-9_10
https://doi.org/10.1007/978-3-030-20652-9_10
https://www.eda-ai.org/results/
https://m-fleury.github.io/ox-hugo/Fleury-EDA-Challenge-2021.pdf
https://m-fleury.github.io/ox-hugo/Fleury-EDA-Challenge-2021.pdf
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9

13

IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings. LNCS, vol. 7364,
pp. 355–370. Springer (2012). https://doi.org/10.1007/978-3-642-31365-3_
28, https://doi.org/10.1007/978-3-642-31365-3_28

[16] Lammich, P.: Automatic data refinement. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 84–99. Springer (2013).
https://doi.org/10.1007/978-3-642-39634-2_9

[17] Lammich, P.: Refinement to Imperative/HOL. In: Urban, C., Zhang, X. (eds.)
ITP 2015. LNCS, vol. 9236, pp. 253–269. Springer (2015). https://doi.org/10.
1007/s10817-017-9437-1

[18] Lammich, P.: Generating verified LLVM from Isabelle/HOL. In: Harrison, J.,
O’Leary, J., Tolmach, A. (eds.) 10th International Conference on Interactive The-
orem Proving, ITP 2019, September 9-12, 2019, Portland, OR, USA. LIPIcs,
vol. 141, pp. 22:1–22:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2019). https://doi.org/10.4230/LIPIcs.ITP.2019.22

[19] Lammich, P.: Efficient verified (UN)SAT certificate checking. J. Autom. Reason.
64(3), 513–532 (2020). https://doi.org/10.1007/s10817-019-09525-z

[20] Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: International Symposium on Code Generation and Op-
timization, 2004. CGO 2004. pp. 75–88. IEEE (2004). https://doi.org/10.1109/
cgo.2004.1281665

[21] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001. pp. 530–535. ACM
(2001). https://doi.org/10.1145/378239.379017

[22] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

[23] Oe, D., Stump, A., Oliver, C., Clancy, K.: versat: A verified modern SAT solver. In:
Kuncak, V., Rybalchenko, A. (eds.) Verification, Model Checking, and Abstract
Interpretation, LNCS, vol. 7148, pp. 363–378. Springer Berlin Heidelberg (2012).
https://doi.org/10.1007/978-3-642-27940-9_24

[24] Oh, C.: Between SAT and UNSAT: the fundamental difference in CDCL SAT. In:
Theory and Applications of Satisfiability Testing–SAT 2015–18th International
Conference, Austin, TX, USA, September 24-27, 2015, Proceedings. pp. 307–323
(2015). https://doi.org/10.1007/978-3-319-24318-4_23

[25] Skotåm, S.H.: CreuSAT – Using Rust and Creusot to create the world’s fastest
deductively verified SAT solver. Master’s thesis, University of Oslo (2022), https:
//www.duo.uio.no/handle/10852/96757

[26] Tan, Y.K., Heule, M.J.H., Myreen, M.O.: cake_lpr: Verified propagation redun-
dancy checking in cakeml. In: Groote, J.F., Larsen, K.G. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems - 27th International Confer-
ence, TACAS 2021, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March
27 - April 1, 2021, Proceedings, Part II. LNCS, vol. 12652, pp. 223–241. Springer
(2021). https://doi.org/10.1007/978-3-030-72013-1_12

[27] Weeks, S.: Whole-program compilation in MLton. In: Proceedings of the ACM
Workshop on ML, 2006, Portland, Oregon, USA, September 16, 2006. p. 1. ACM
Press (2006). https://doi.org/10.1145/1159876.1159877

[28] Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: Efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 422–429. Springer (2014)

https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-642-39634-2_9
https://doi.org/10.1007/978-3-642-39634-2_9
https://doi.org/10.1007/s10817-017-9437-1
https://doi.org/10.1007/s10817-017-9437-1
https://doi.org/10.1007/s10817-017-9437-1
https://doi.org/10.1007/s10817-017-9437-1
https://doi.org/10.4230/LIPIcs.ITP.2019.22
https://doi.org/10.4230/LIPIcs.ITP.2019.22
https://doi.org/10.1007/s10817-019-09525-z
https://doi.org/10.1007/s10817-019-09525-z
https://doi.org/10.1109/cgo.2004.1281665
https://doi.org/10.1109/cgo.2004.1281665
https://doi.org/10.1109/cgo.2004.1281665
https://doi.org/10.1109/cgo.2004.1281665
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://doi.org/10.1007/978-3-642-27940-9_24
https://doi.org/10.1007/978-3-642-27940-9_24
https://doi.org/10.1007/978-3-319-24318-4_23
https://doi.org/10.1007/978-3-319-24318-4_23
https://www.duo.uio.no/handle/10852/96757
https://www.duo.uio.no/handle/10852/96757
https://doi.org/10.1007/978-3-030-72013-1_12
https://doi.org/10.1007/978-3-030-72013-1_12
https://doi.org/10.1145/1159876.1159877
https://doi.org/10.1145/1159876.1159877

	A more Pragmatic CDCL for IsaSAT and targetting LLVM (Short Paper)
	1 Introduction
	2 Preliminaries
	3 Pragmatic CDCL for Inprocessing
	4 Correctness of the Code and Completeness
	5 Experience Porting the Development to LLVM
	5.1 Required Changes
	5.2 Unverified Parts
	5.3 Lessons Learned

	6 Performance
	7 Conclusion

