

Extending an Isabelle Formalisation of CDCL to Optimising CDCL

Mathias Fleury

joint work with Christoph Weidenbach

SAARBRÜCKEN GRADUATE SCHOOL OF COMPUTER SCIENCE

max planck institut informatik

SC Saarland Informatics Campus

Let's find a model with minimal weight

Optimal partial model:

Optimal total model: -

How reliable is the theory?

Conference version

Branch and Bound for Boolean Optimization and the Generation of Optimality Certificates Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell (SAT 2009)

A literal l is true in I if $l \in I$, false in I if $\neg l \in I$, and undefined in I otherwise.

A clause set S is true in I if all its clauses are true in I. Then I is called a *model* of S, and we write $I \models S$ (and similarly if a literal or clause is true in I).

How reliable is the theory?

Conference version

Branch and Bound for Boolean Optimization and the Generation of Optimality Certificates Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell (SAT 2009)

A literal l is true in I if $l \in I$, false in I if $\neg l \in I$, and undefined in I otherwise.

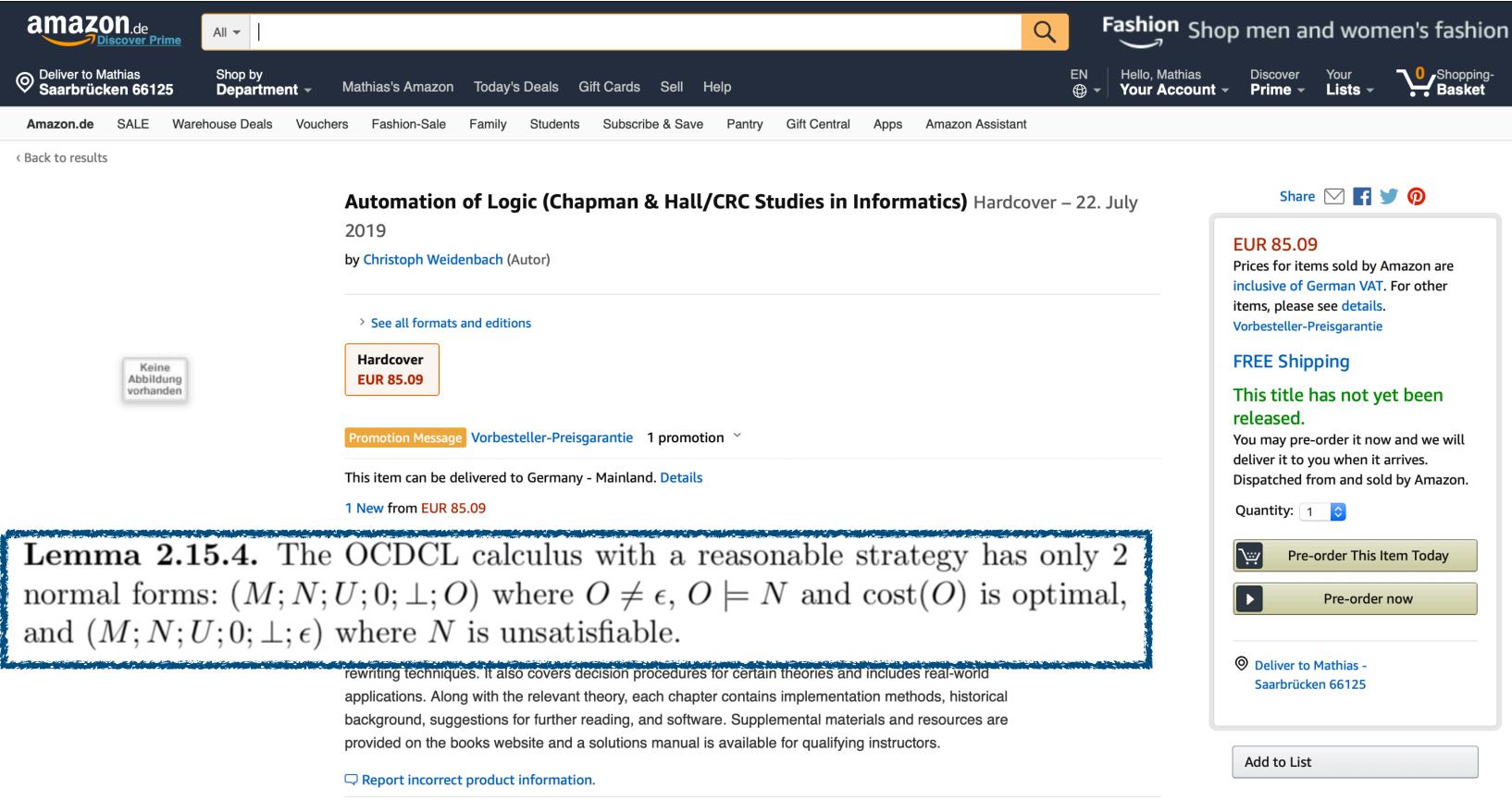
A clause set S is true in I if all its clauses are true in I. Then I is called a *model* of S, and we write $I \models S$ (and similarly if a literal or clause is true in I).

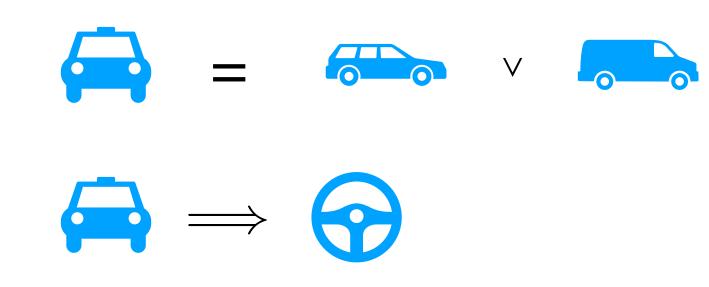
Journal version

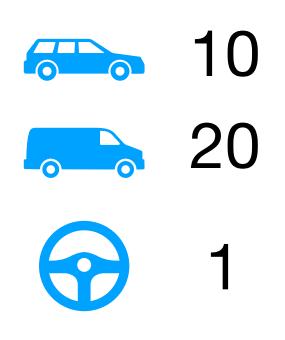
A Framework for Certified Boolean Branch-and-Bound Optimization Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell (JAR 2011)

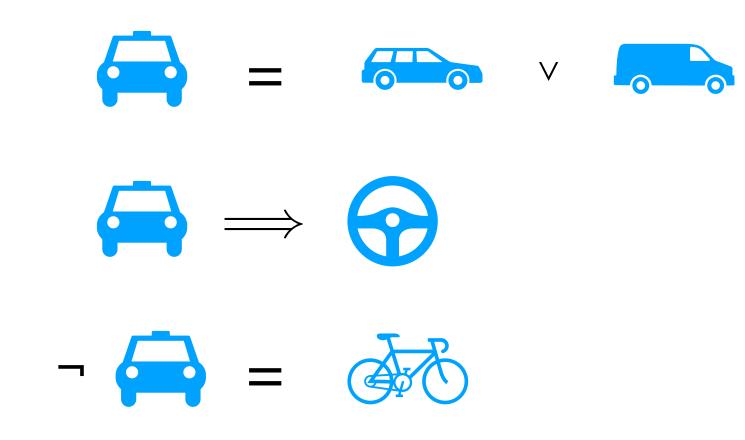
literals of a clause C are false in I. A clause set S is true in I if all its clauses are true in I; if I is also total, then I is called a *total model* of S, and we write $I \models S$.

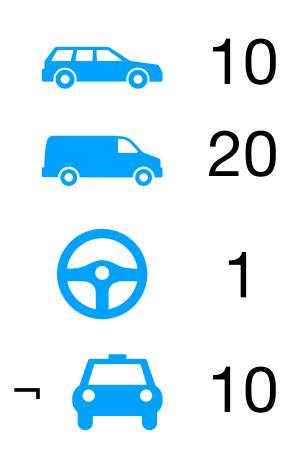
How reliable is the theory?



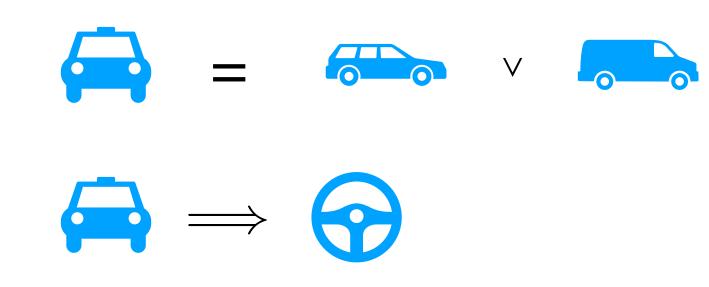


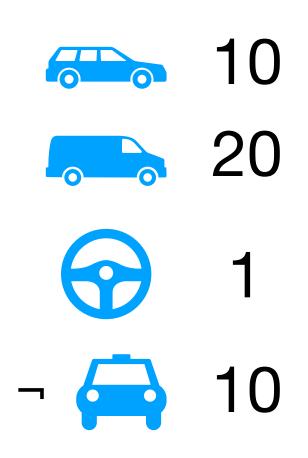


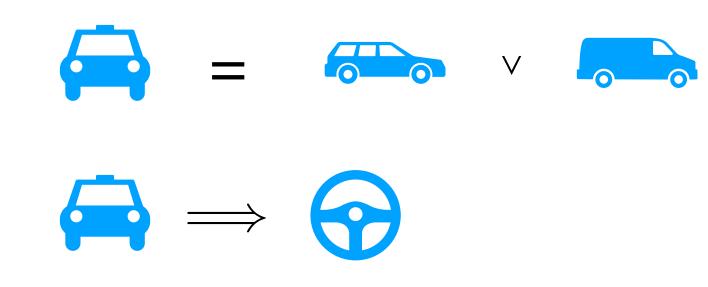


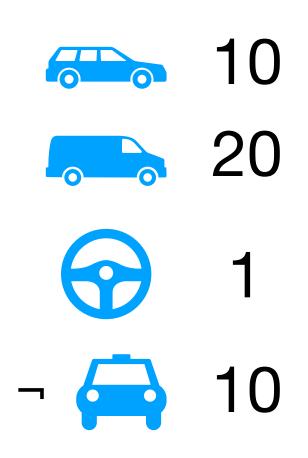


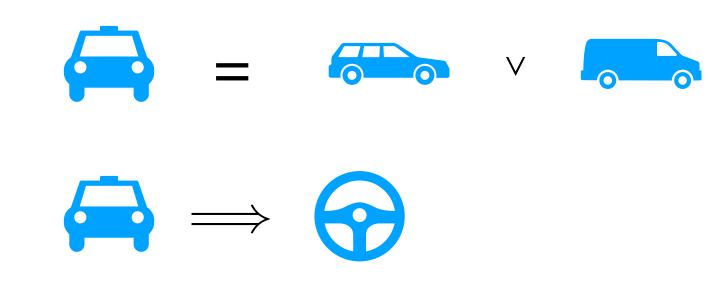
OCDCL = CDCL + identify better models + conflicts based on weights

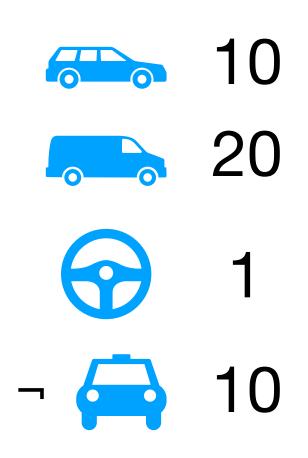


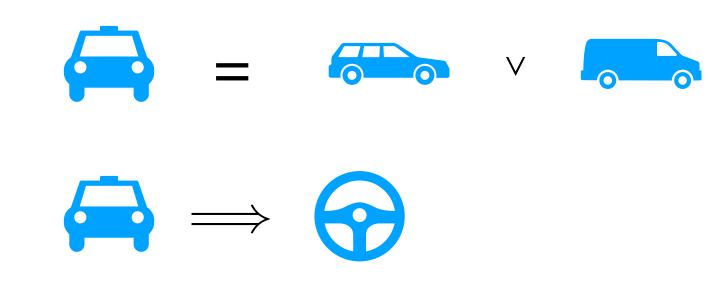


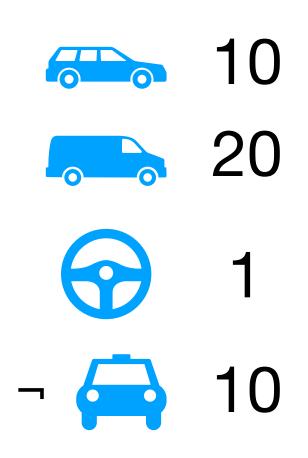


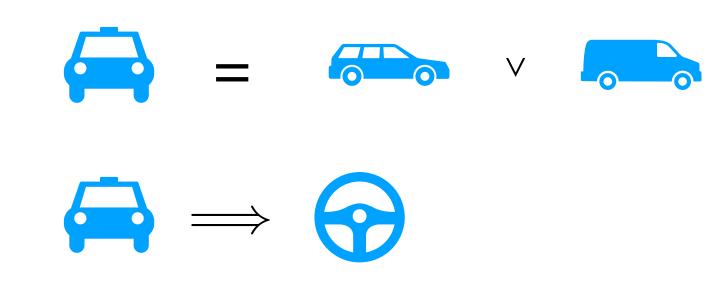


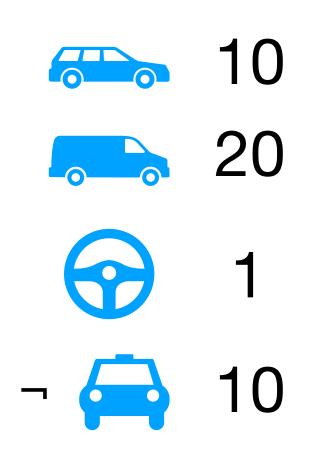


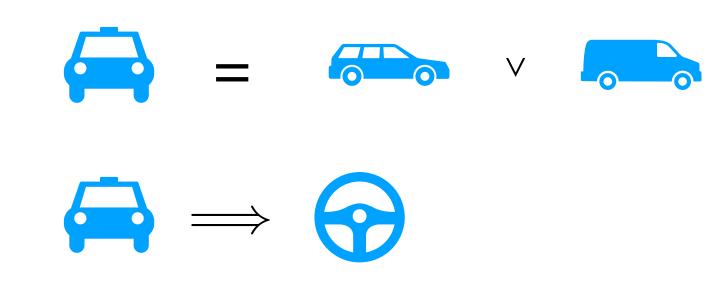


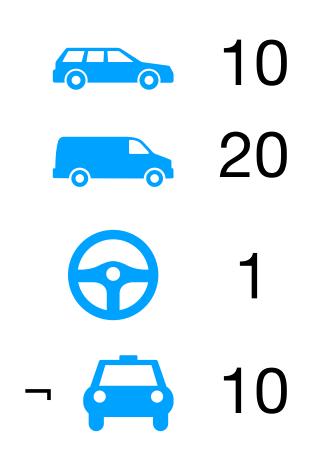


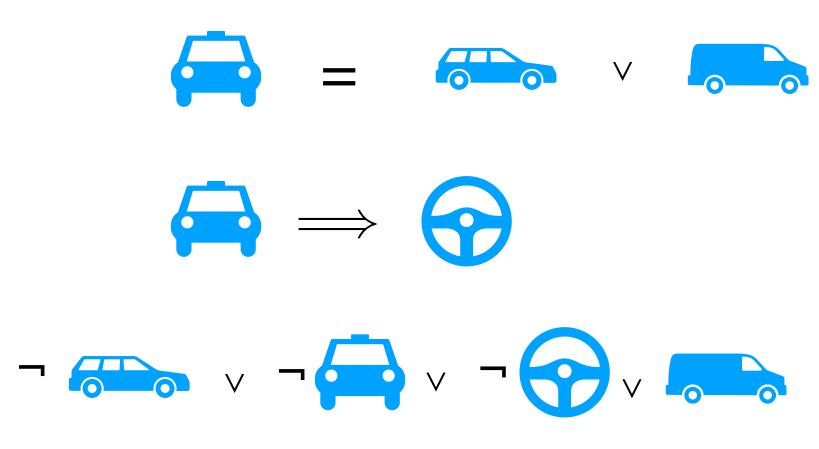


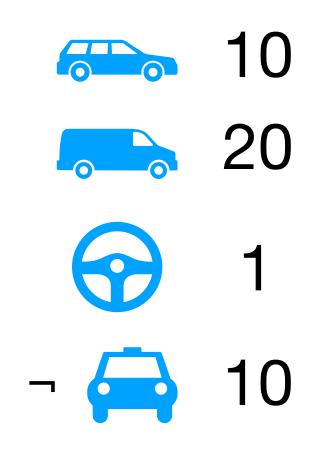


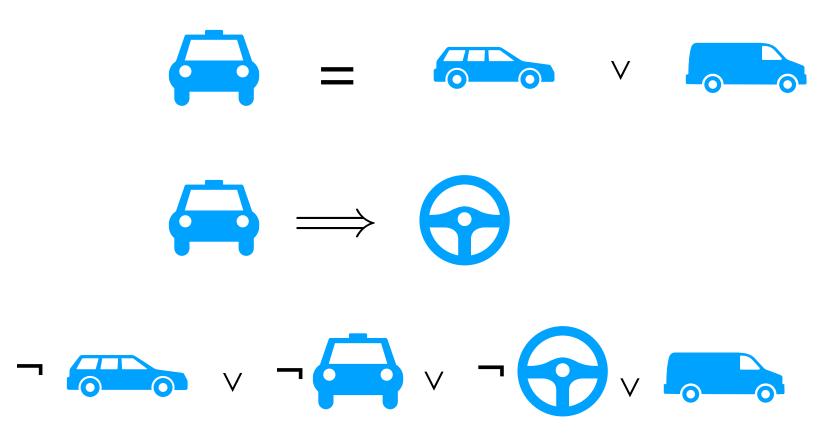


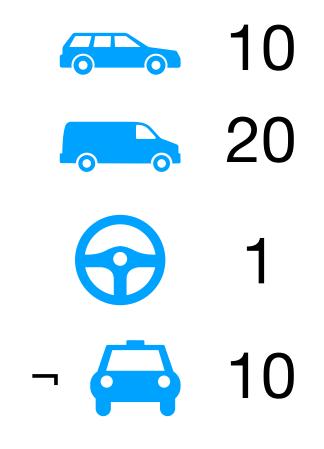


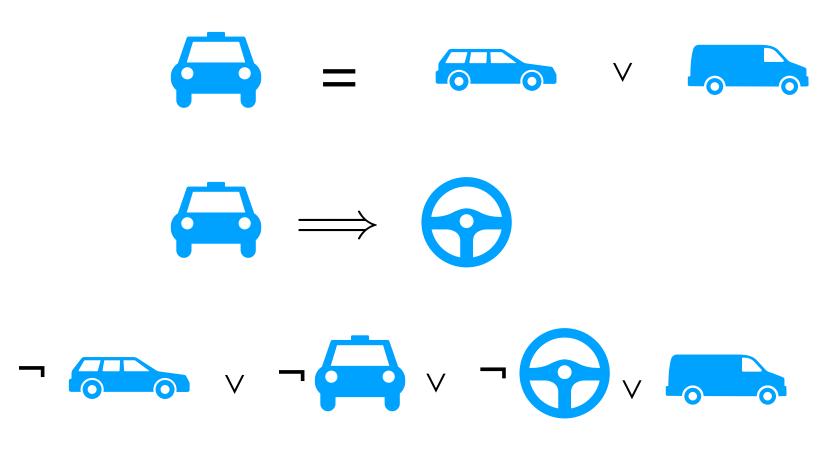


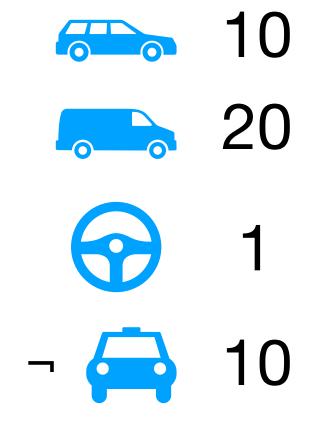


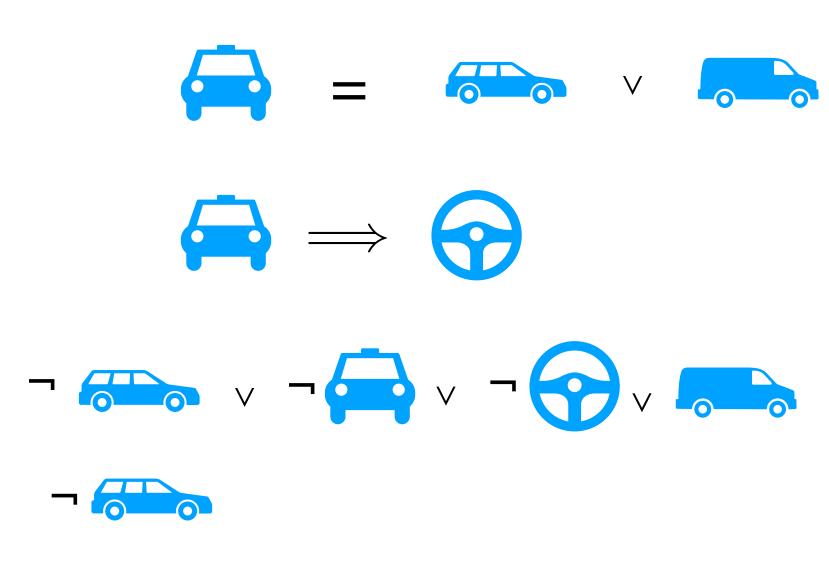


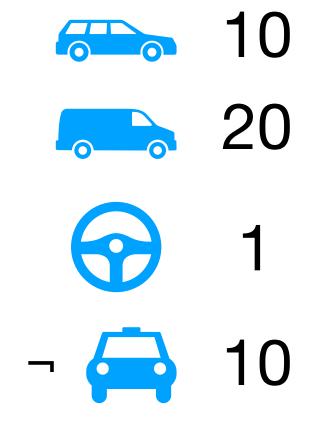


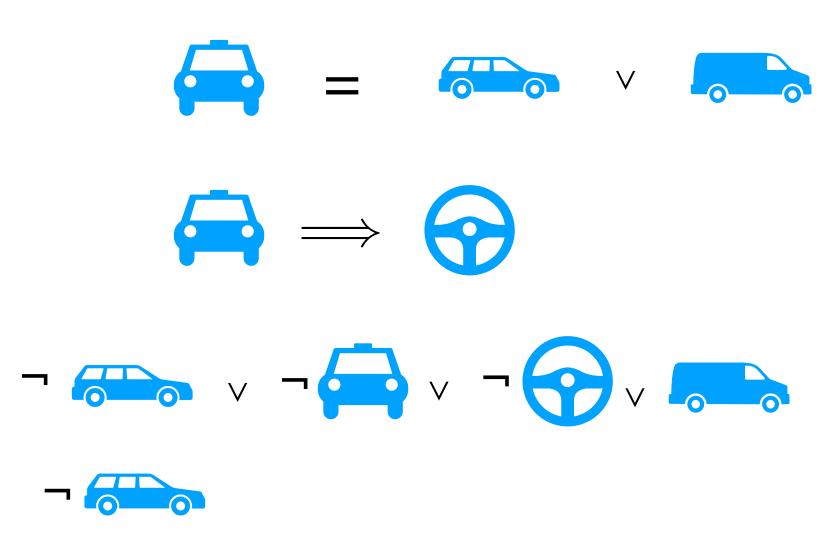


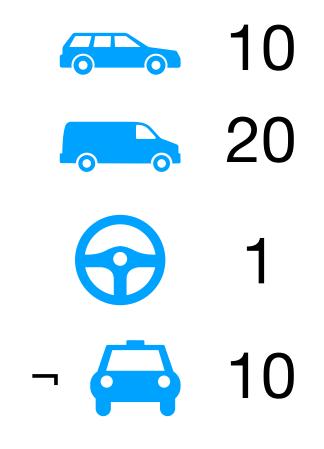


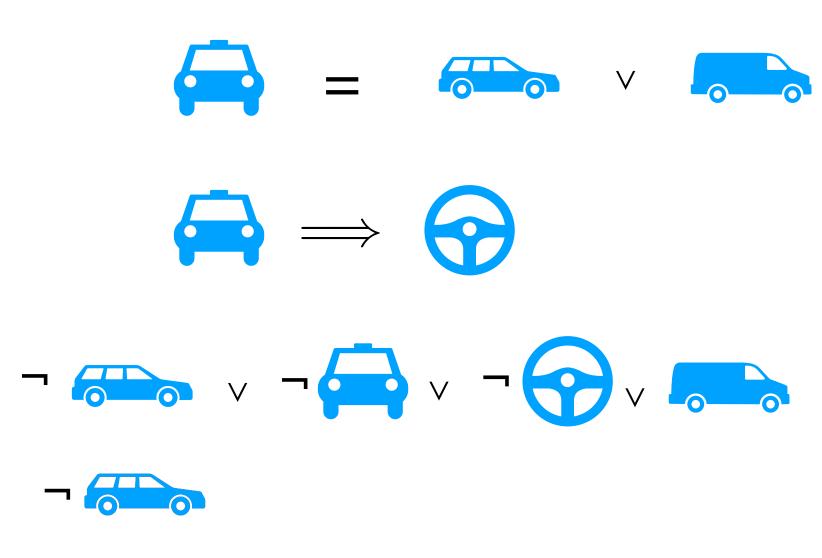


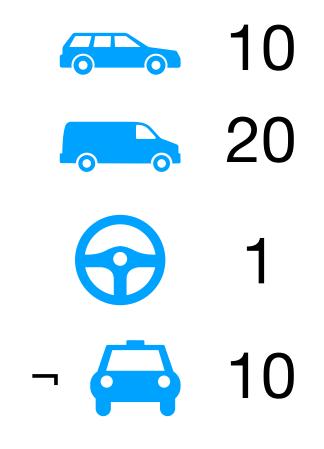












How lazy do you like your formalisation?

Christoph's view: $OCDCL_W = CDCL + in$ copy-paste of proofs

OCDCL_W = CDCL + improve + conflict rules

How lazy do you like your formalisation?

Christoph's view: copy-paste of proofs My first idea: OCDCL = CDCL + improve + $\{-M. \text{ cost } M \ge \min_{\text{cost}} \}$ reuse CDCL proofs

- $OCDCL_W = CDCL + improve + conflict rules$

How lazy do you like your formalisation?

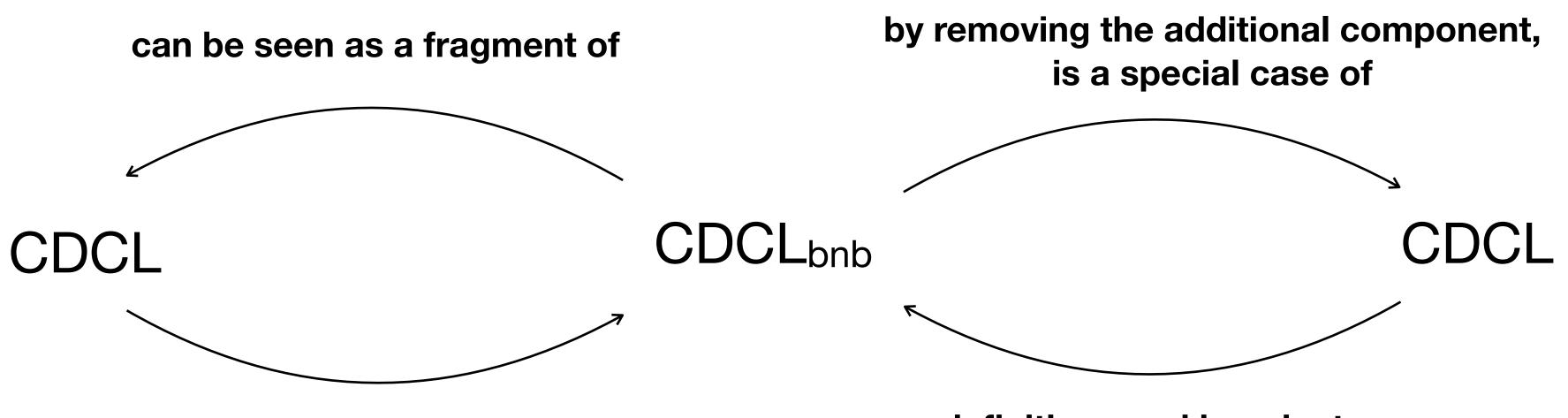
- My first idea: OCDCL = CDCL + improve + $\{-M. \cos t M \ge min_cost\}$
 - reuse CDCL proofs
- My second idea: $CDCL_{bnb} = CDCL + improve + \mathcal{T}(min_cost)$
 - reuse CDCL proofs

How lazy do you like your formalisation?

CDCL_{bnb} = CDCL + improve + 7(min_cost)

 $\label{eq:const} \begin{aligned} & \mathsf{OCDCL} = \mathsf{CDCL}_{\mathsf{bnb}} \text{ where} \\ & \mathcal{T}(\mathsf{min_cost}) = \{\mathsf{-M. \ cost \ M \geq min_cost}\} \end{aligned}$

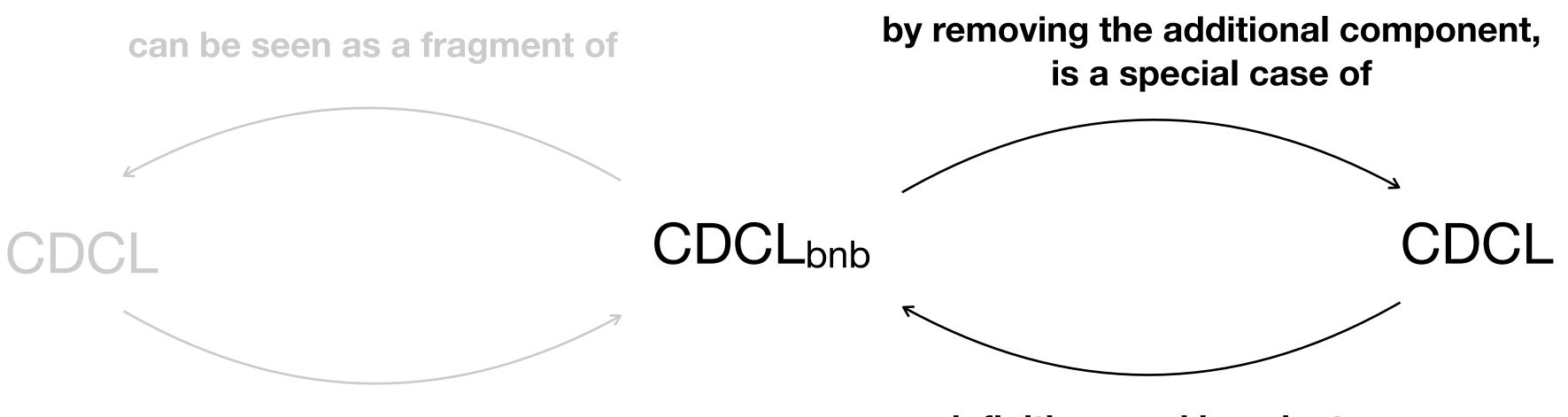
OCDCL_W = OCDCL + restrictions



properties

Reuse!

definitions and invariants



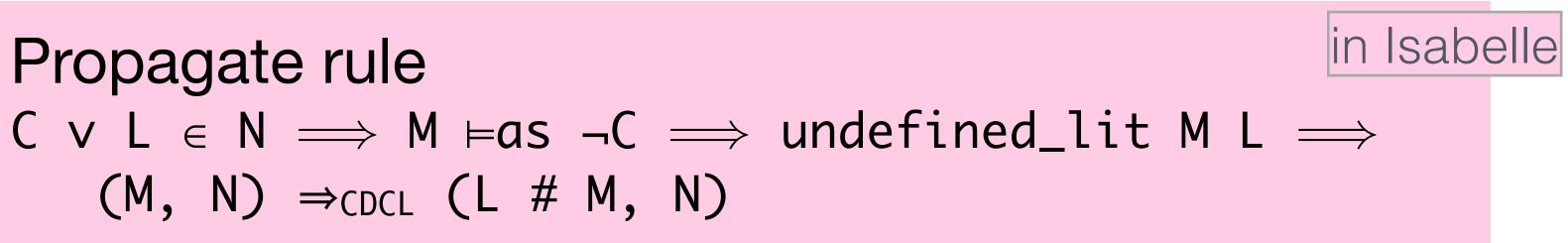
properties

Reuse!

definitions and invariants

Propagate rule $C \vee L \in N \implies M \models as \neg C$ $(M, N, 0) \Rightarrow CDCLbnb (L$

Propagate rule $(M, N) \Rightarrow_{CDCL} (L \# M, N)$

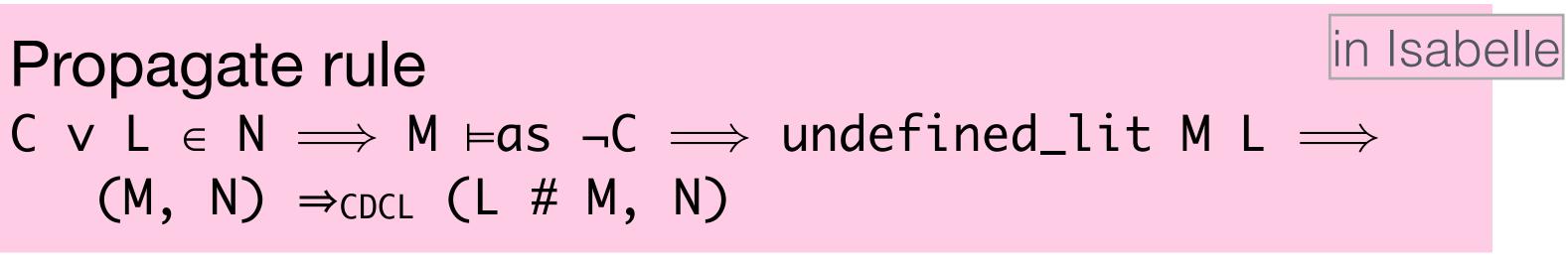


in Isabelle in Isabelle
$$\implies$$
 undefined_lit M L \implies # M, N, O)

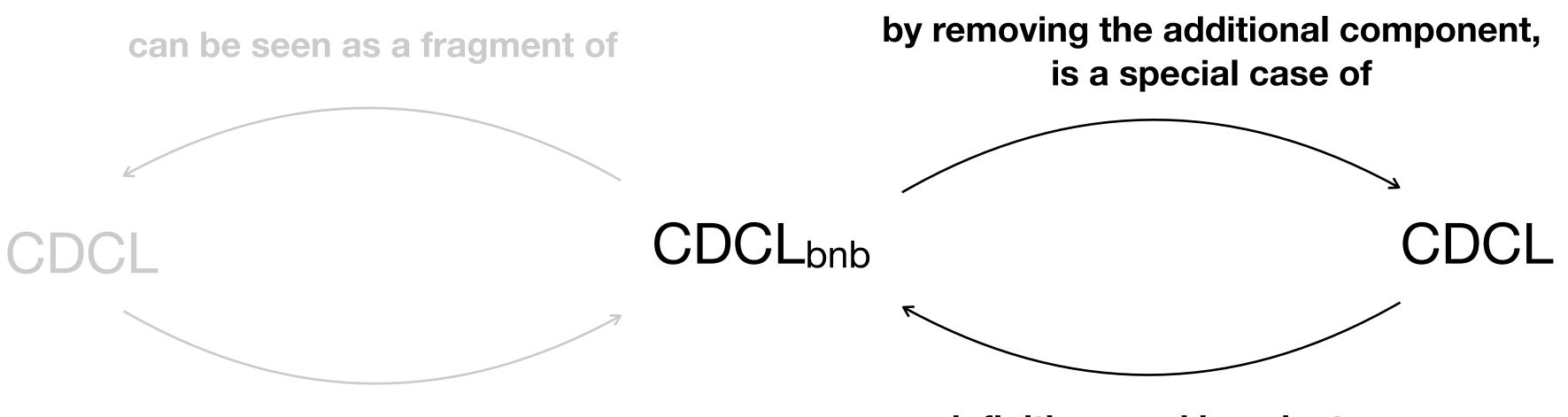
Propagate rule $(M, N) \Rightarrow_{CDCL} (L \# M, N)$

> obtained for free, thanks to abstraction over the state! also invariants and theorems can be reused

Propagate rule $C \vee L \in N \implies M \models as \neg C$ (M, N, O) \Rightarrow CDCLbnb (L

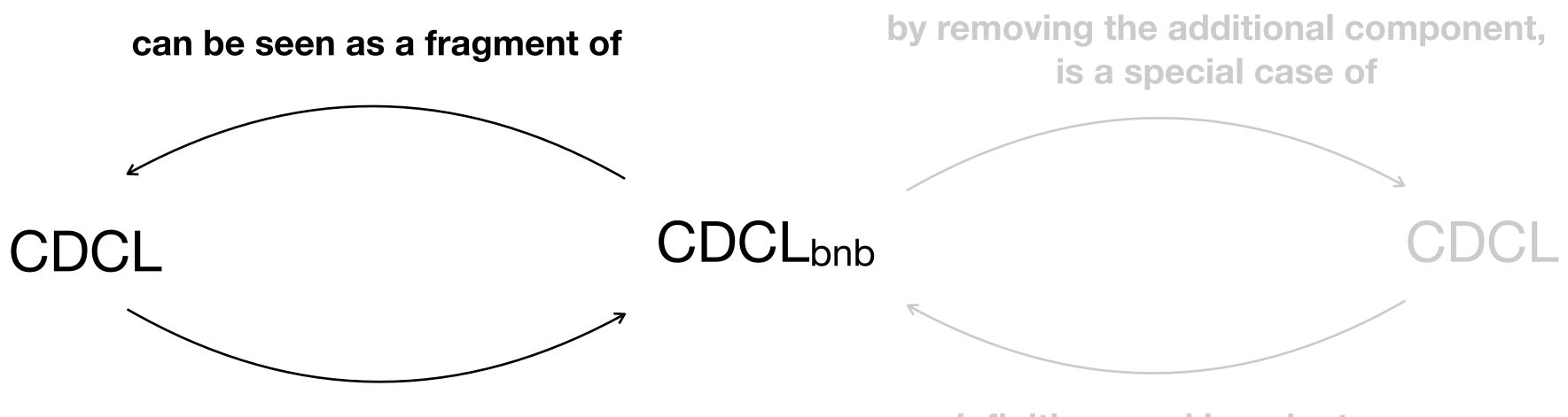


in Isabelle in Isabelle in Isabelle
$$\implies$$
 undefined_lit M L \implies # M, N, O)



properties

definitions and invariants



properties

Reuse!

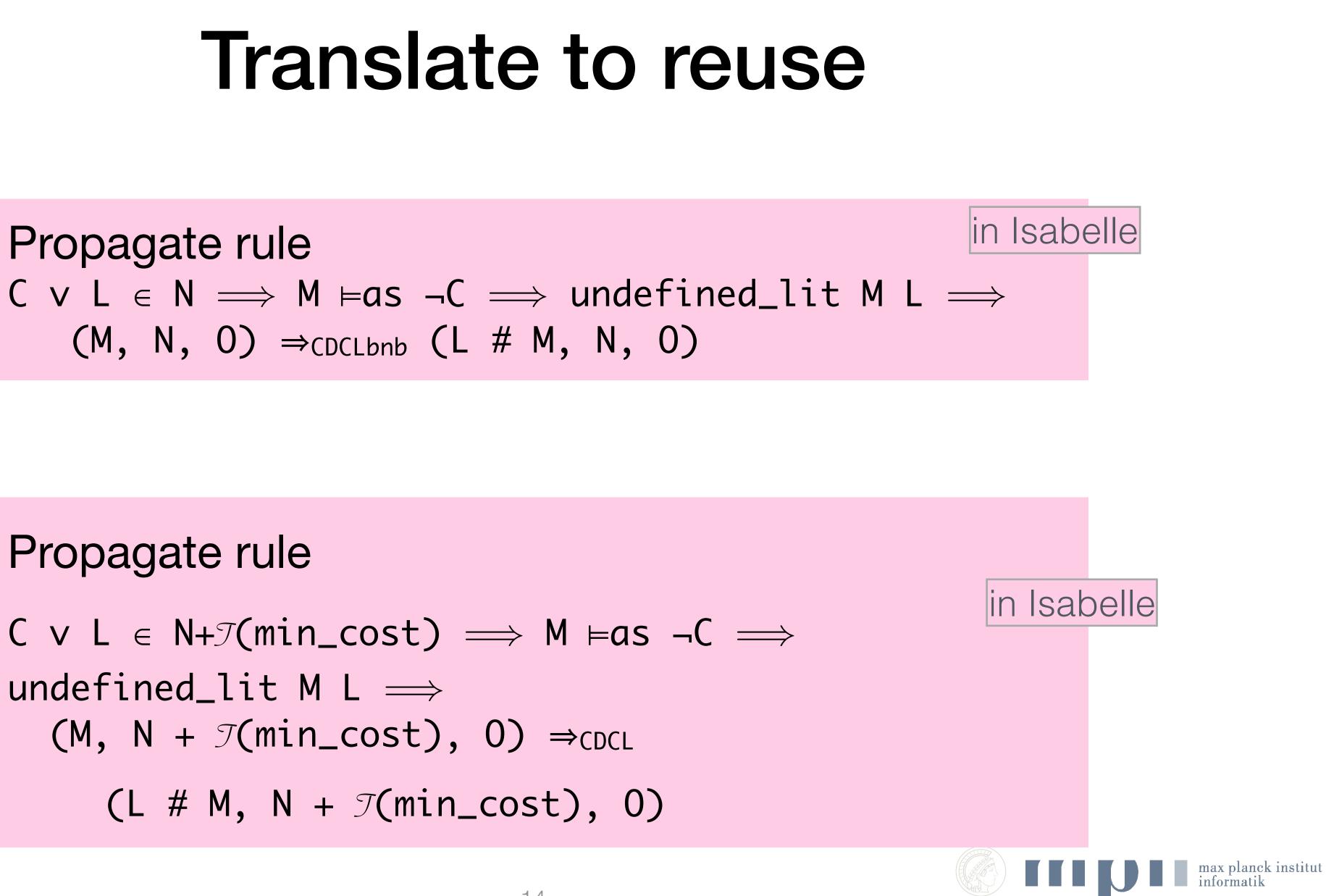
definitions and invariants

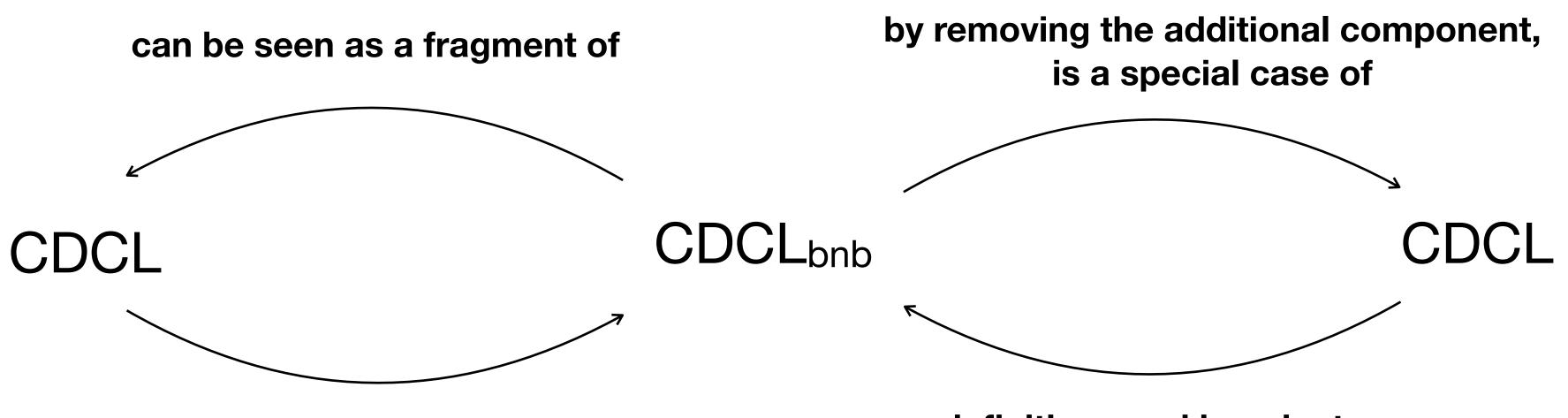
Propagate rule $(M, N, 0) \Rightarrow_{CDCLbnb} (L \# M, N, 0)$

Propagate rule

 $C \vee L \in N+\mathcal{I}(\min_cost) \implies M \models as \neg C \implies$ undefined_lit M L \implies $(M, N + \mathcal{T}(\min_cost), 0) \Rightarrow_{CDCL}$

 $(L # M, N + \mathcal{I}(min_cost), 0)$





properties

definitions and invariants

ignore the additional component

 $CDCL_{bnb} = CDCL + improve +$ 𝒯(min_cost)

Inherited:

Definitions (for free)

no strategy but terminating

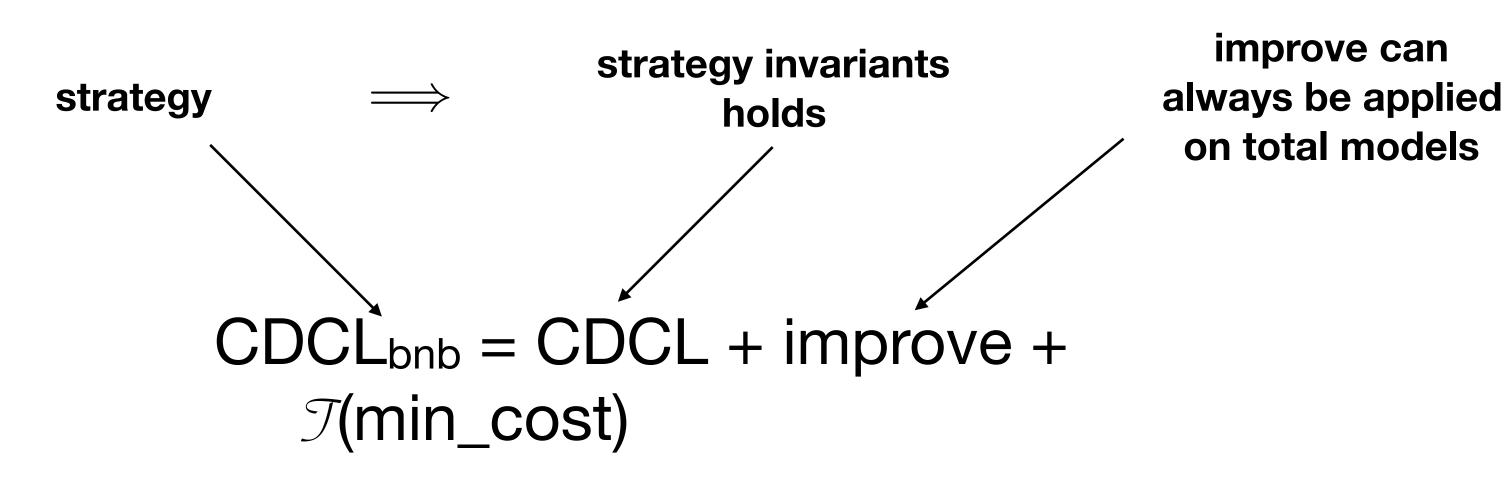
$CDCL_{bnb} = CDCL + improve +$ $\mathcal{T}(min_cost)$

Inherited:

Termination (for free)

well-founded for most applications

ree) Definitions (for free)



Inherited:

Termination (for free)Definitions (for free)Ends with an unsat set (nearly for free)

max planck institut informatik

CDCL_{bnb} does not know anything about what is optimised!

Inherited:

Termination (for free) Definitions (for free) Ends with an unsat set (nearly for free)

max planck institut informatik

Why does it work?

$\begin{aligned} & OCDCL = CDCL_{bnb} \text{ where} \\ & \mathcal{T}(\min_cost) = \{-M. \ cost \ M \geq \min_cost\} \end{aligned}$

Why does it work?

OCDCL = CDCL_{bnb} where

Lemma

then I is a model of N+7(min_cost)

 $\mathcal{T}(\min_cost) = \{-M. cost M \ge \min_cost\}$

If I is a total model of N with cost < min_cost,

Why does it work?

Lemma

then I is a model of N+7(min_cost)

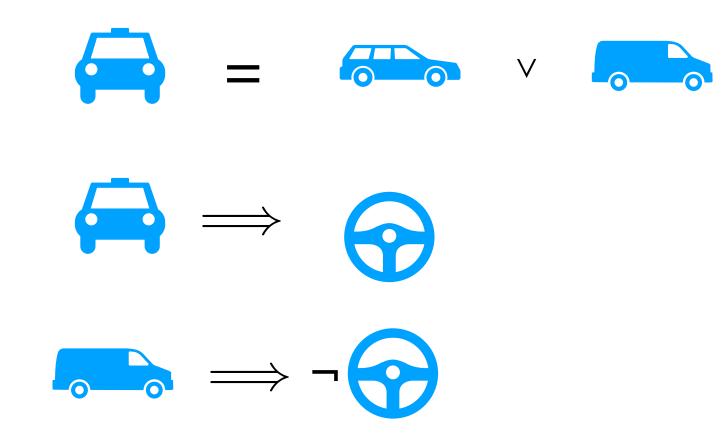
Fails for partial models!

If I is a total model of N with cost < min_cost,

OCDCL_W = OCDCL + restrictions

make sure that the rules on paper and in Isabelle are the same

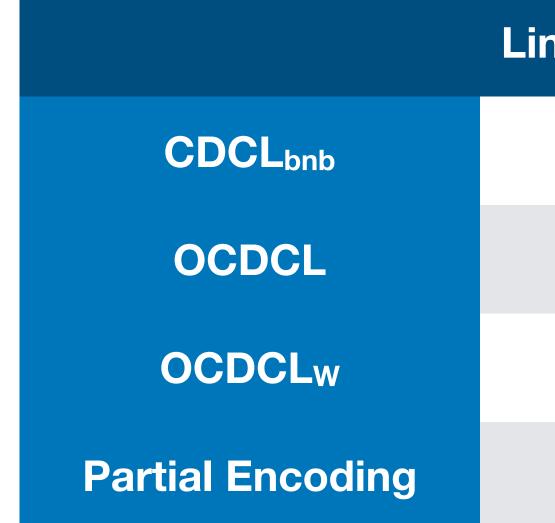
Another application: **Dead features**



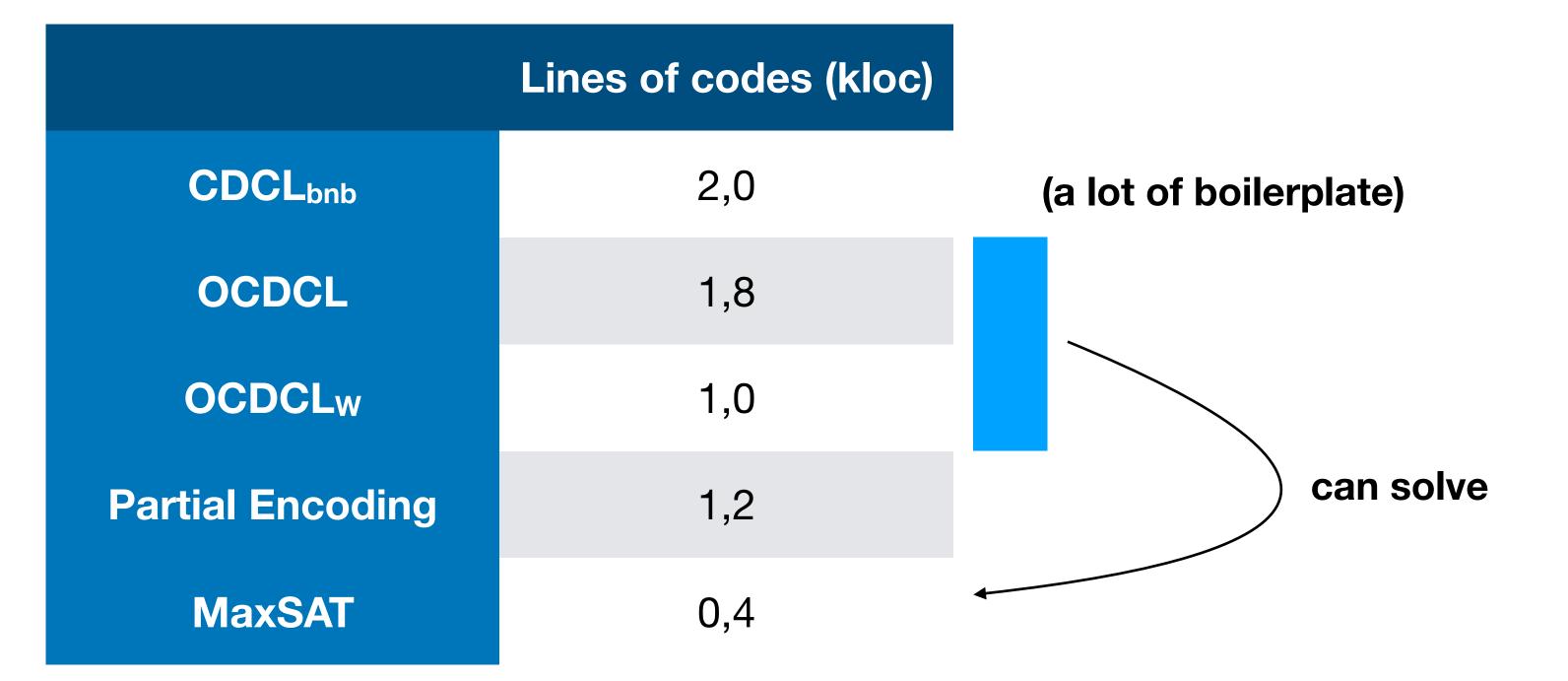
Can every option be true?

Christoph's view:

- $CDCLcm_W = CDCL + improve + conflict rules$
- copy-paste of proofs
- My idea: CDCLcm = CDCL_{bnb} where $\mathcal{T}(models_founds) = \{-M. there is a model with$ more trues in models_founds}



	ines of codes (kloc)
(a lot of boilerplate)	2,0
	1,8
	1,0
	1,2



Conclusion

Concrete outcome

- CDCL with branch and bound

Methodology

- Locales, locales, locales
- Be lazy!

Future work

▶ CDCL(*I*)

Via an encoding, also partial optimal models

Conclusion

Concrete outcome

CDCL with branch and bound

 $\begin{array}{l} OCDCL = CDCL_{bnb} \text{ where} \\ \mathcal{T}(min_cost) = \{-M. \ cost \ M \geq min_cost\} \end{array}$

OCDCL = CDCL_{bnb} where $\mathcal{T}(\min_cost) = \{-D, \{M, cost M \ge \min_cost\} \models D\}$

Future work

• $CDCL(\mathcal{I})$

Conclusion

Concrete outcome

- CDCL with branch and bound

Methodology

- Locales, locales, locales
- Be lazy!

Future work

▶ CDCL(*I*)

Via an encoding, also partial optimal models

Conclusion: How about CDCL(7)?

But isn't CDCL(7) exactly: CDCL_{bnb} where $\mathcal{T} = \{ clauses entailed theory \}$

Not exactly, because the wrong conflict clause (negation of the trail) is used

Translate to reuse

Propagate rule $C \vee L \in N + (\mathcal{I}(\min_cost)) \implies M \models as \neg C \implies$ undefined_lit M L \implies $(M, N + \mathcal{I}(\min_cost), 0) \Rightarrow CDCLbnb$ (L # M, N + 7(min_cost), 0)

