
Extending an Isabelle Formalisation  
 of CDCL to Optimising CDCL

Mathias Fleury

joint work with Christoph Weidenbach

Let’s find a model with minimal weight

∨ 10
20

Optimal partial model:

Optimal total model:

4
13

¬

¬

¬

!2

How reliable is the theory?

Conference version
Branch and Bound for Boolean Optimization and  
the Generation of Optimality Certificates  
Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell (SAT 2009)

!3

How reliable is the theory?

Conference version

Journal version

Branch and Bound for Boolean Optimization and  
the Generation of Optimality Certificates  
Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell (SAT 2009)

A Framework for Certified Boolean Branch-and-Bound Optimization
Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell (JAR 2011)

!3

How reliable is the theory?

!4

= ∨

⟹

10
20

1

Let’s optimise our problem

!5

= ∨

⟹

10
20

¬ 10

1
¬ =

Let’s optimise our problem

!5

Let’s optimise our problem

OCDCL = CDCL + identify better models 
 + conflicts based on weights

!6

Let’s optimise our problem

= ∨

⟹

10
20

¬ 10

1

Optimal model

!7

Let’s optimise our problem

= ∨

⟹

10
20

¬ 10

1

Optimal model

!7

Let’s optimise our problem

= ∨

⟹

10
20

¬ 10

1

Optimal model

!7

Let’s optimise our problem

= ∨

⟹

10
20

¬ 10

1

Optimal model

!7

Let’s optimise our problem

= ∨

⟹

10
20

¬ 10

1

¬

Optimal model

!7

Let’s optimise our problem

= ∨

⟹

10
20

¬ 10

1

¬ ¬

Optimal model 11

!7

Let’s optimise our problem

= ∨

⟹

10
20

¬ 10

1

¬ ¬

Optimal model 11

¬∨¬ ¬∨ ∨

!7

Let’s optimise our problem

= ∨

⟹

10
20

¬ 10

1

¬

Optimal model 11

¬∨¬ ¬∨ ∨

!7

Let’s optimise our problem

= ∨

⟹

10
20

¬ 10

1

¬

Optimal model 11

¬∨¬ ¬∨ ∨

!7

Let’s optimise our problem

= ∨

⟹

10
20

¬ 10

1

¬

Optimal model 11

¬∨¬ ¬∨ ∨

¬

!7

Let’s optimise our problem

= ∨

⟹

10
20

¬ 10

1

¬

Optimal model 11

¬∨¬ ¬∨ ∨

¬

¬

!7

Let’s optimise our problem

= ∨

⟹

10
20

¬ 10

1

¬

Optimal model 11

¬∨¬ ¬∨ ∨

¬

¬

!7

How lazy do you like your 
formalisation?

OCDCLW = CDCL + improve + conflict rules

Christoph’s view:

copy-paste of proofs

!8

How lazy do you like your 
formalisation?

OCDCLW = CDCL + improve + conflict rules

Christoph’s view:

copy-paste of proofs

My first idea:

reuse CDCL proofs

OCDCL = CDCL + improve + 
 {-M. cost M ≥ min_cost}

!8

How lazy do you like your 
formalisation?

My first idea:

reuse CDCL proofs

OCDCL = CDCL + improve + 
 {-M. cost M ≥ min_cost}

My second idea:
CDCLbnb = CDCL + improve + 
 T(min_cost)

!9

reuse CDCL proofs

How lazy do you like your 
formalisation?

CDCLbnb = CDCL + improve + 
 T(min_cost)

OCDCL = CDCLbnb where 
 T(min_cost) = {-M. cost M ≥ min_cost}

OCDCLW = OCDCL + restrictions

!10

Reuse!

CDCLbnb CDCL

by removing the additional component, 
is a special case of

definitions and invariants

CDCL

properties

!11

can be seen as a fragment of

Reuse!

CDCLbnb CDCL

by removing the additional component, 
is a special case of

definitions and invariants

CDCL

properties

!11

can be seen as a fragment of

Reuse!

C ∨ L ∈ N ⟹ M ⊨as ¬C ⟹ undefined_lit M L ⟹ 
 (M, N) ⇒CDCL (L # M, N)

in IsabellePropagate rule

C ∨ L ∈ N ⟹ M ⊨as ¬C ⟹ undefined_lit M L ⟹ 
 (M, N, O) ⇒CDCLbnb (L # M, N, O)

in IsabellePropagate rule

!12

Reuse!

C ∨ L ∈ N ⟹ M ⊨as ¬C ⟹ undefined_lit M L ⟹ 
 (M, N) ⇒CDCL (L # M, N)

in IsabellePropagate rule

C ∨ L ∈ N ⟹ M ⊨as ¬C ⟹ undefined_lit M L ⟹ 
 (M, N, O) ⇒CDCLbnb (L # M, N, O)

in IsabellePropagate rule

obtained for free, thanks to abstraction over the state! 
also invariants and theorems can be reused

!12

Reuse!

CDCLbnb CDCL

by removing the additional component, 
is a special case of

definitions and invariants

CDCL

properties

!13

can be seen as a fragment of

Reuse!

CDCLbnb CDCL

by removing the additional component, 
is a special case of

definitions and invariants

CDCL

properties

!13

can be seen as a fragment of

Translate to reuse

C ∨ L ∈ N+T(min_cost) ⟹ M ⊨as ¬C ⟹ 
undefined_lit M L ⟹ 
 (M, N + T(min_cost), O) ⇒CDCL  

 (L # M, N + T(min_cost), O)

in Isabelle
Propagate rule

C ∨ L ∈ N ⟹ M ⊨as ¬C ⟹ undefined_lit M L ⟹ 
 (M, N, O) ⇒CDCLbnb (L # M, N, O)

in IsabellePropagate rule

!14

Reuse!

CDCLbnb CDCL

by removing the additional component, 
is a special case of

can be seen as a fragment of

definitions and invariants

CDCL

properties

!15

CDCLbnb = CDCL + improve + 
 T(min_cost)

ignore the additional 
component

Inherited:

Definitions (for free)

!16

Reuse in practise!

CDCLbnb = CDCL + improve + 
 T(min_cost)

no strategy 
but terminating well-founded 

for most applications

Termination (for free)

Inherited:

Reuse in practise!

!17

Definitions (for free)

CDCLbnb = CDCL + improve + 
 T(min_cost)

strategy
strategy invariants 

holds
improve can 

always be applied 
on total models

Ends with an unsat set (nearly for free)

Inherited:

Termination (for free)

⟹

Definitions (for free)

!18

Reuse in practise!

CDCLbnb = CDCL + improve + 
 T(min_cost)

strategy
strategy invariants 

holds
improve can 

always be applied 
on total models

Ends with an unsat set (nearly for free)

Inherited:

Termination (for free)

⟹

Definitions (for free)

!18

Reuse in practise!

CDCLbnb does not know anything about what is optimised!

OCDCL = CDCLbnb where 
 T(min_cost) = {-M. cost M ≥ min_cost}

Why does it work?

!19

OCDCL = CDCLbnb where 
 T(min_cost) = {-M. cost M ≥ min_cost}

If I is a total model of N with cost < min_cost, 
then I is a model of N+T(min_cost)

Why does it work?

!19

Lemma

If I is a total model of N with cost < min_cost, 
then I is a model of N+T(min_cost)

Why does it work?

!20

Lemma

Fails for partial models!

How lazy do you like your 
formalisation?

OCDCLW = OCDCL + restrictions

!21

make sure that the rules on paper 
and in Isabelle are the same

Another application: 
Dead features

= ∨

⟹

⟹ ¬

Can every option be true?

!22

How lazy do you like your 
formalisation?

CDCLcmW = CDCL + improve + conflict rules

Christoph’s view:

copy-paste of proofs

My idea:
CDCLcm = CDCLbnb where 
 T(models_founds) = {-M. there is a model with 
 more trues in models_founds}

!23

How lazy do you like your 
formalisation?

!24

How lazy do you like your 
formalisation?

Lines of codes (kloc)

CDCLbnb 2,0

OCDCL 1,8

OCDCLW 1,0

Partial Encoding 1,2

(a lot of boilerplate)

!24

How lazy do you like your 
formalisation?

Lines of codes (kloc)

CDCLbnb 2,0

OCDCL 1,8

OCDCLW 1,0

Partial Encoding 1,2

MaxSAT 0,4

can solve

(a lot of boilerplate)

!24

Concrete outcome
‣ CDCL with branch and bound
‣ Via an encoding, also partial optimal models

Conclusion

Methodology
‣ Locales, locales, locales
‣ Be lazy!

Future work
‣ CDCL(T)

!25

Concrete outcome
‣ CDCL with branch and bound
‣ Via an encoding, also partial optimal models

Conclusion

Methodology
‣ Locales, locales, locales
‣ Be lazy!

Future work
‣ CDCL(T)

!25

OCDCL = CDCLbnb where 
 T(min_cost) = {-M. cost M ≥ min_cost}

OCDCL = CDCLbnb where 
 T(min_cost) = {-D. {M. cost M ≥ min_cost} ⊧ D}

Concrete outcome
‣ CDCL with branch and bound
‣ Via an encoding, also partial optimal models

Conclusion

Methodology
‣ Locales, locales, locales
‣ Be lazy!

Future work
‣ CDCL(T)

!25

Conclusion: How about CDCL(T)?

CDCLbnb where 
 T = {clauses entailed theory}

But isn’t CDCL(T) exactly:

Not exactly, because the wrong conflict 
clause (negation of the trail) is used

!26

Translate to reuse

C ∨ L ∈ N + T(min_cost) ⟹ M ⊨as ¬C ⟹ 
undefined_lit M L ⟹ 
 (M, N + T(min_cost), O) ⇒CDCLbnb  

 (L # M, N + T(min_cost), O)

in Isabelle
Propagate rule

Theory propagation

!27

