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How reliable is the theory?

Conference version
Branch and Bound for Boolean Optimization and  
the Generation of Optimality Certificates  
Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell (SAT 2009)
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How reliable is the theory?

Conference version

Journal version

Branch and Bound for Boolean Optimization and  
the Generation of Optimality Certificates  
Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell (SAT 2009)

A Framework for Certified Boolean Branch-and-Bound Optimization
Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell (JAR 2011)
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Let’s optimise our problem

OCDCL = CDCL + identify better models 
        + conflicts based on weights
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How lazy do you like your 
formalisation?

OCDCLW = CDCL + improve + conflict rules

Christoph’s view:

copy-paste of proofs
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How lazy do you like your 
formalisation?

My first idea:

reuse CDCL proofs

OCDCL = CDCL + improve + 
      {-M. cost M ≥ min_cost}

My second idea:
CDCLbnb = CDCL + improve + 
     T(min_cost)
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reuse CDCL proofs 



How lazy do you like your 
formalisation?

CDCLbnb = CDCL + improve + 
     T(min_cost)

OCDCL = CDCLbnb where 
   T(min_cost) = {-M. cost M ≥ min_cost}

OCDCLW = OCDCL + restrictions
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Reuse!

CDCLbnb CDCL

by removing the additional component, 
is a special case of

definitions and invariants

CDCL

properties
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Reuse!

C ∨ L ∈ N ⟹ M ⊨as ¬C ⟹ undefined_lit M L ⟹ 
   (M, N) ⇒CDCL (L # M, N)

in IsabellePropagate rule

C ∨ L ∈ N ⟹ M ⊨as ¬C ⟹ undefined_lit M L ⟹ 
   (M, N, O) ⇒CDCLbnb (L # M, N, O)

in IsabellePropagate rule
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Reuse!

C ∨ L ∈ N ⟹ M ⊨as ¬C ⟹ undefined_lit M L ⟹ 
   (M, N) ⇒CDCL (L # M, N)

in IsabellePropagate rule

C ∨ L ∈ N ⟹ M ⊨as ¬C ⟹ undefined_lit M L ⟹ 
   (M, N, O) ⇒CDCLbnb (L # M, N, O)

in IsabellePropagate rule

obtained for free, thanks to abstraction over the state! 
also invariants and theorems can be reused
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Translate to reuse

C ∨ L ∈ N+T(min_cost) ⟹ M ⊨as ¬C ⟹ 
undefined_lit M L ⟹ 
  (M, N + T(min_cost), O) ⇒CDCL  

       (L # M, N + T(min_cost), O)

in Isabelle
Propagate rule

C ∨ L ∈ N ⟹ M ⊨as ¬C ⟹ undefined_lit M L ⟹ 
   (M, N, O) ⇒CDCLbnb (L # M, N, O)

in IsabellePropagate rule
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Reuse!

CDCLbnb CDCL

by removing the additional component, 
is a special case of

can be seen as a fragment of

definitions and invariants

CDCL

properties
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CDCLbnb = CDCL + improve + 
     T(min_cost)

ignore the additional 
component

Inherited:

Definitions (for free)
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Reuse in practise!



CDCLbnb = CDCL + improve + 
     T(min_cost)

no strategy 
but terminating well-founded 

for most applications

Termination (for free)

Inherited:

Reuse in practise!
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Definitions (for free)



CDCLbnb = CDCL + improve + 
     T(min_cost)

strategy
strategy invariants 

holds
improve can 

always be applied 
on total models

Ends with an unsat set (nearly for free)

Inherited:

Termination (for free)

⟹

Definitions (for free)
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CDCLbnb = CDCL + improve + 
     T(min_cost)

strategy
strategy invariants 

holds
improve can 

always be applied 
on total models

Ends with an unsat set (nearly for free)

Inherited:

Termination (for free)

⟹

Definitions (for free)
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Reuse in practise!

CDCLbnb does not know anything about what is optimised!



OCDCL = CDCLbnb where 
   T(min_cost) = {-M. cost M ≥ min_cost}

Why does it work?
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OCDCL = CDCLbnb where 
   T(min_cost) = {-M. cost M ≥ min_cost}

If I is a total model of N with cost < min_cost, 
then I is a model of N+T(min_cost)

Why does it work?
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If I is a total model of N with cost < min_cost, 
then I is a model of N+T(min_cost)

Why does it work?
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Lemma

Fails for partial models!



How lazy do you like your 
formalisation?

OCDCLW = OCDCL + restrictions
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make sure that the rules on paper 
and in Isabelle are the same



Another application: 
Dead features
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Can every option be true?
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How lazy do you like your 
formalisation?

CDCLcmW = CDCL + improve + conflict rules

Christoph’s view:

copy-paste of proofs

My idea:
CDCLcm = CDCLbnb where 
   T(models_founds) = {-M. there is a model with 
         more trues in models_founds}
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How lazy do you like your 
formalisation?
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How lazy do you like your 
formalisation?

Lines of codes (kloc)

CDCLbnb 2,0

OCDCL 1,8

OCDCLW 1,0

Partial Encoding 1,2

(a lot of boilerplate)
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How lazy do you like your 
formalisation?

Lines of codes (kloc)

CDCLbnb 2,0

OCDCL 1,8

OCDCLW 1,0

Partial Encoding 1,2

MaxSAT 0,4

can solve

(a lot of boilerplate)
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Concrete outcome
‣ CDCL with branch and bound 
‣ Via an encoding, also partial optimal models

Conclusion

Methodology
‣ Locales, locales, locales 
‣ Be lazy!

Future work
‣ CDCL(T)
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OCDCL = CDCLbnb where 
   T(min_cost) = {-M. cost M ≥ min_cost}

OCDCL = CDCLbnb where 
   T(min_cost) = {-D. {M. cost M ≥ min_cost} ⊧ D}
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‣ CDCL with branch and bound 
‣ Via an encoding, also partial optimal models

Conclusion

Methodology
‣ Locales, locales, locales 
‣ Be lazy!

Future work
‣ CDCL(T)
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Conclusion: How about CDCL(T)?

CDCLbnb where 
   T = {clauses entailed theory}

But isn’t CDCL(T) exactly:

Not exactly, because the wrong conflict 
clause (negation of the trail) is used
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Translate to reuse

C ∨ L ∈ N + T(min_cost) ⟹ M ⊨as ¬C ⟹ 
undefined_lit M L ⟹ 
  (M, N + T(min_cost), O) ⇒CDCLbnb  

       (L # M, N + T(min_cost), O)

in Isabelle
Propagate rule

Theory propagation
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