
Improving the SMT Proof Reconstruction1

Pipeline in Isabelle/HOL2

Hanna Lachnitt #

Stanford University, Stanford, USA
Mathias Fleury #

University of Freiburg, Freiburg, Germany
3

Haniel Barbosa #

Universidade Federal de Minas Gerais, Belo Horizonte,
Brazil

Jibiana Jakpor #

Stanford University, Stanford, USA
4

Bruno Andreotti #

Universidade Federal de Minas Gerais, Belo Horizonte,
Brazil

Andrew Reynolds #

University of Iowa, Iowa, USA
5

Hans-Jörg Schurr #

University of Iowa, Iowa, USA
Clark Barrett #

Stanford University, Stanford, USA
6

Cesare Tinelli #

University of Iowa, Iowa, USA
7

8

Abstract9

Sledgehammer is a tool that increases the level of automation in the Isabelle/HOL proof assistant by asking10

external automatic theorem provers (ATPs), including SMT solvers, to prove the current goal. When the external11

ATP succeeds it must provide enough evidence that the goal holds for Isabelle to be able to reprove it internally12

based on that evidence. In particular, Isabelle can do this by replaying fine-grained proof certificates from13

proof-producing SMT solvers as long as they are expressed in the Alethe format, which until now was supported14

only by the veriT SMT solver. We report on our experience adding proof reconstruction support for the cvc515

SMT solver in Isabelle by extending cvc5 to produce proofs in the Alethe format and then adapting Isabelle to16

reconstruct those proofs. We discuss several difficulties and pitfalls we encountered and describe a set of tools17

and techniques we developed to improve the process. A notable outcome of this effort is that Isabelle can now be18

used as an independent proof checker for SMT problems written in the SMT-LIB standard. We evaluate cvc5’s19

integration on a set of SMT-LIB benchmarks originating from Isabelle as well as on a set of Isabelle proofs. Our20

results confirm that this integration complements and improves Sledgehammer’s capabilities.21

2012 ACM Subject Classification Theory of computation → Automated reasoning22

Keywords and phrases interactive theorem proving, proof assistants, Isabelle/HOL, SMT, certification,23

proof certificates, proof reconstruction, proof automation24

Digital Object Identifier 10.4230/LIPIcs.ITP.2025.2625

Funding This work was supported in part by the Stanford Center for Automated Reasoning, a gift from Amazon26

Web Services, a gift from Intel Corporation, and the Defense Advanced Research Projects Agency (DARPA)27

under contract FA8750-24-2-1001. Any opinions, findings, and conclusions or recommendations expressed here28

are those of the authors and do not necessarily reflect the views of DARPA.29

1 Introduction30

Interactive theorem provers (ITPs) such as Isabelle/HOL [34] are used in many applications ranging31

from formal mathematics to software and hardware verification [28]. One reason for their popularity32

is the high assurance they offer, which, however, comes at the cost of requiring users to develop fine-33

grained machine-checkable proofs. To increase their usability, ITPs implement various automation34

tactics that allow users to concentrate on high-level arguments without being impeded by simpler but35

tedious proof obligations. A particularly successful approach is to provide automation via integration36

with fast external automatic theorem provers (ATPs), such as satisfiability modulo theories (SMT)37

solvers [23].38

© Hanna Lachnitt;
licensed under Creative Commons License CC-BY 4.0

16th International Conference on Interactive Theorem Proving (ITP 2025).
Editors: Yannick Forster and Chantal Keller; Article No. 26; pp. 26:1–26:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lachnitt@cs.stanford.edu
https://orcid.org/0000-0002-1825-0097
mailto:fleury@cs.uni-freiburg.de
https://orcid.org/0000-0002-1705-3083
mailto:hbarbosa@dcc.ufmg.br
https://orcid.org/0000-0003-0188-2300
mailto:jjakpor@stanford.edu
https://orcid.org/0009-0000-2840-3109
mailto:bruno.andreotti@dcc.ufmg.br
https://orcid.org/0009-0004-7835-6493
mailto:andrew-reynolds@uiowa.edu
https://orcid.org/0000-0002-3529-8682
mailto:hansjoerg-schurr@uiowa.edu
https://orcid.org/0000-0002-0829-5056
mailto:barrett@cs.stanford.edu
https://orcid.org/0000-0002-9522-3084
mailto:cesare-tinelli@uiowa.edu
https://orcid.org/0000-0002-6726-775
https://doi.org/10.4230/LIPIcs.ITP.2025.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Improving the SMT Proof Reconstruction Pipeline in Isabelle/HOL

Isabelle

lemma

reconstructor encoder

Proof Goal

SMT solver

translation solver
internal
proof

SMT-LIB problemAlethe proof

Figure 1 Supporting a new solver in the Isabelle smt tactic by translation to Alethe.

Isabelle/HOL provides access to SMT solvers in the form of the smt tactic [10]. Through that39

tactic, a proof goal is translated into a problem in the SMT-LIB format [9] and given to either the40

z3 [18] or the veriT [13] solver. If successful, these solvers can produce proof certificates that can be41

reconstructed in Isabelle, that is, used to construct a complete proof of the original goal fully within42

Isabelle/HOL. The smt tactic is particularly useful in combination with Isabelle’s Sledgehammer43

component [10], which automatically selects additional facts from the current proof context that it44

expects to be useful in proving the goal dispatched to the external ATP. Experiments have shown that45

the smt tactic is regularly recommended by Sledgehammer as the fastest method to prove Isabelle/HOL46

goals automatically [23].47

Because different solvers have different strengths, the best results are obtained with Sledgehammer48

by using a portfolio of SMT solvers. Adding a new SMT solver to Sledgehammer’s portfolio thus49

has the potential to directly and positively impact the user experience, and so it should ideally be50

as straightforward as possible. Since proof reconstruction is specific to a particular proof certificate51

format, integrating a new proof-producing SMT solver requires a choice between two possible52

alternatives: (i) integrate the solver’s own proof format into Isabelle’s reconstruction pipeline, or (ii)53

extend the solver to use a format already supported by Isabelle. Unfortunately, the two options are54

not equally feasible. Supporting a new proof certificate format in Isabelle is rather challenging [37]55

as it requires writing a custom parser and adding a reconstruction function for each proof rule. This56

is an immense manual effort that requires considerable expertise in both the proof format and the57

Isabelle code base. In this work, we thus focus on the second option.58

Before this work, Isabelle supported two proof formats for SMT: a coarse-grained one produced59

by the version of the z3 solver used by the smt tactic [17], and the fine-grained Alethe proof format60

supported by the veriT solver [7]. The z3 proof format is not the best vehicle for a new SMT solver61

integration for a number of reasons. Even the authors of the z3 integration in Isabelle point out that it62

is difficult to reconstruct z3 proof certificates due to their coarseness [12]. Furthermore, there are63

some known bugs that the developers do not plan to address soon [22], and the format has limited64

documentation. The Alethe format seems to be a better choice, both in contrast with the z3 format65

option and in its own right. Although originally developed specifically for veriT, after its integration66

into Isabelle, it has evolved into a stand-alone proof format [36], with its own independent proof67

checker Carcara [1] and a detailed specification [7], both of which are publicly available. Alethe68

supports reasonably fine-grained natural-deduction-style proofs, is based on the SMT-LIB language,69

and is designed to be easy to parse and extend.70

H. Lachnitt et al. 26:3

Figure 1 shows an overview of our chosen approach. For efficiency, we produce proof certificates71

in Alethe via an internal translation in the CVC5 solver itself, though in principle, this could also be72

done by an external tool. In theory, the main advantage of our approach is that even though building73

a translation to Alethe requires a significant amount of work, it can be done independently from74

the proof assistant, and so does not need significant expertise in Isabelle development. Ideally, the75

existing Isabelle infrastructure supporting Alethe should be reusable as is.76

Unfortunately, our experience in practice revealed something quite different. We discovered77

several issues, including: (i) Isabelle’s Alethe reconstruction was missing several proof rules available78

in the full Alethe standard; (ii) ambiguities in the Alethe documentation made it difficult to ensure79

that solver outputs matched the input expected by Isabelle; and (iii) Isabelle’s reconstruction was80

in some cases over-specialized towards the output generated by veriT rather than output that is just81

compliant with the Alethe standard. As we investigated these issues, we further discovered that: (iv)82

the different parts of Isabelle’s reconstruction code were tightly coupled—it was difficult to fix a83

bug in one part without understanding all components; (v) proof generation and proof reconstruction84

could not be tested separately, making for long and difficult debug cycles; and (vi) there were not85

enough or sufficiently diverse test cases to ensure that each proof rule in the full Alethe standard was86

appropriately supported.87

As a result, we refocused a large portion of our work on addressing the issues above. We88

refactored the Isabelle reconstruction code to improve its modularity and provide clean interfaces.89

We contributed extensions and clarifications to the Alethe standard. Finally, we developed an analysis90

and debugging toolkit aimed at improving the workflows both for members of the Isabelle community91

as well as SMT solver developers looking to integrate their solver into Isabelle. To our knowledge,92

our work is the first project that targets reusing an existing format for a new solver. This also allows93

us to compare the effectiveness of different solvers for proof automation in a more granular and direct94

way. Our contributions can be summarized as follows:95

1. We show that translation to Alethe from a modern full-featured proof-producing SMT solver like96

CVC5 is possible with minimal overhead.97

2. We present an extensively refactored smt tactic implementation in Isabelle/HOL, with a focus98

on modularity and support for the full Alethe standard, including some new rules and language99

features.100

3. We extend the smt tactic with a plug-in capability so that it can easily integrate Isabelle lemmas101

for simple rules not easily translated to Alethe. We demonstrate the utility of this feature by using102

it to reconstruct CVC5 rewrite rules.103

4. We present a toolkit for Isabelle users and developers for gaining insight into the smt back end.104

5. We conduct a thorough experimental evaluation showing the effectiveness of our approach and105

providing a baseline for future solvers to compare against.106

We start in Section 2 with some background on different tools and concepts relevant for this work.107

Section 3 describes how we instrumented CVC5 to produce proofs in Alethe, Section 4 describes how108

we refactored the Isabelle smt tactic, and Section 5 describes our toolkit for analyzing and debugging.109

Finally, we present an experimental evaluation of our work in Section 6 and conclude in Section 7.110

2 Preliminaries and Related Work111

2.1 Satisfiability modulo theories and proofs112

The underlying logic of SMT is many-sorted first-order logic with equality (see e.g., [21]). We assume113

the usual definitions of well-sorted terms, literals, and formulas in this logic. We also assume the114

usual definitions of satisfiability and unsatisfiability with respect to one or more theories. SMT solvers115

ITP 2025

26:4 Improving the SMT Proof Reconstruction Pipeline in Isabelle/HOL

determine the satisfiability of input formulas with respect to specific sets of supported background116

theories. Examples of SMT solvers include CVC5 [5], veriT [13], and z3 [18].117

A refutation proof in a theory T is a series of inference steps starting from an input formula φ and118

terminating with the unsatisfiable formula ⊥. Such a proof certifies the unsatisfiability of φ in T . A119

proof format encompasses a list of proof rules specifying how specific conclusions can be drawn from120

specific assumptions and under what conditions. A (refutation) proof certificate is a realization of a121

refutation proof in a particular proof format consisting of a number of proof steps. We require each122

step in a proof certificate to be an application of a proof rule from the corresponding proof format.123

As an example, the Cooperating Proof Calculus (CPC) defines a set of proof rules used internally by124

the CVC5 SMT solver [2], and a CPC proof certificate is a sequence of steps based on those rules.125

Despite the fact that several SMT solvers can produce proof certificates [8, 14, 17, 25, 36], no standard126

proof format has emerged in the SMT community yet. A program that checks the well-formedness of127

a proof certificate is called a proof checker.128

A useful informal notion for capturing the difficulty of checking a proof is its granularity, which129

roughly corresponds to the computational complexity of checking that a step is correct. In particular,130

steps (and thus the proofs containing them) are fine-grained if they can be checked efficiently, and131

coarse-grained otherwise. We are deliberately vague about what efficiently means in this context, but132

one suitable general definition would be requiring polynomial time in the worst case. We will often133

refer to very coarse-grained steps as holes. An elaborator is a tool that transforms coarse-grained134

steps into fine-grained steps. A translator transforms proof certificates from one proof format to135

another. Elaboration and translation are often performed simultaneously.136

One way to define simple fine-grained rules in a user-friendly way is the domain-specific language137

RARE [33]. It is based on the SMT-LIB language and is designed for non-experts. Most rules that138

capture basic simplifications of SMT-LIB terms can be expressed in RARE. On top of this, RARE’s139

abstract types allow type-generic rules. For example, reflexivity can be expressed as a single rule that140

applies to all SMT-LIB terms. Lachnitt et al. [29] show that Isabelle lemmas can be generated from141

RARE rules automatically.142

2.2 Alethe143

The Alethe proof format evolved from what was initially a custom proof certificate format for the144

veriT SMT solver. Its syntax is based on SMT-LIB [9]. Each step in an Alethe proof is either an145

assumption, an anchor opening a new subproof, or a regular step. Steps have a rule label, indicating146

the rule applied in that step, and a conclusion clause of the form (cl F1 · · · Fn), where n ≥ 0 and147

each Fi is a formula. Additionally they might have premises and arguments. Anchors introduce an148

additional context and can have a context argument to express transformations under binders like149

quantifiers. Assumptions either repeat input assertions or add new assumptions locally in a subproof.150

Alethe has a natural-language specification that defines a total of 103 proof rules [7]. The SMT151

theory currently supported is the (quantified) theory of linear (real and integer) arithmetic with152

uninterpreted functions. Only two kinds of proof steps in Alethe proofs are considered holes. The first153

one is applications of a rule called hole, which is used to represent steps that do not correspond to154

any other Alethe rule. The second one is application of a rule called lia_generic, which is used155

to introduce any valid disjunction of integer linear inequalities, without any hints for proof checking.156

These steps are considered holes because they are extremely coarse-grained — filling them in can157

require super-polynomial work in principle.158

Carcara [1] is an independent proof checker and elaborator for Alethe written in Rust. It can159

elaborate most lia_generic steps from veriT proofs by calling CVC5, which can output a fine-160

grained proof for unsatisfiable linear integer arithmetic queries. Carcara itself is not verified, meaning161

that it must be considered part of the trusted computing base when it is used to check proof certificates.162

H. Lachnitt et al. 26:5

Proof
Certificate

String

Parser

SMT
AST

Processor

Isabelle
Terms

Replayer

Proof

Reconstruction
Function

term

theorem

Figure 2 The architecture of the smt tactic in Isabelle/HOL

2.3 Isabelle/HOL163

Isabelle/HOL is a proof assistant based on higher-order logic with top-level polymorphism [32]. It164

follows the LCF [34] dogma; that is, its kernel only allows a small set of inference rules. From these,165

tactics can be built, which are programs that discharge proof goals. Techniques that can find proofs166

automatically help the user concentrate on the creative argument of their proof, without dealing with167

more tedious parts. Sledgehammer is a tool inside of Isabelle that calls external solvers to improve168

automation. To maintain high trustworthiness and avoid extending the trusted computing base beyond169

the Isabelle kernel, any result found by an outside tool has to be proven again inside Isabelle, based170

on some sort of directions from the external prover. This process is called replay and can easily fail171

unless the ATP provides detailed directions. These are typically in the form of a proof certificate,172

allowing Isabelle to implement a specialized tactic for each proof rule.173

The smt tactic has been developed in Isabelle to interact with SMT solvers and replay their proof174

certificates. Figure 1 shows how the tactic works at a high level. The current goal (which is to be175

proven valid in the current context) is negated and encoded into an SMT-LIB problem together with a176

selection of premises from the context. The premises can be definitions or previously-stated lemmas177

and are selected by Sledgehammer based on relevance heuristics. A big part of the encoding consists178

in bridging the expressiveness gap between higher-order logic and the SMT solver’s many-sorted179

first-order logic. If the external solver finds a proof, the smt tactic checks that the assumptions in the180

returned proof certificate match the original premises, and if every proof step is correct. For the latter181

check, a set of specialized tactics, which we call reconstruction functions, are called. Each specific182

tactic called depends on the proof rule used in the step being checked. For the most part, there are183

separate tactics for each of the proof rules in the Alethe standard.184

Figure 2 provides more details on the proof reconstruction process for Alethe proof certificates.185

First, a parser translates the certificate from a string to an AST capturing Alethe terms. Then, the186

proof processor transforms it to a different AST now using Isabelle terms. Finally, the replay function187

builds an Isabelle context which contains variable and type definitions. It checks if the assumptions188

in the Alethe proof correspond to the original assertions selected by Sledgehammer. Then, for each189

proof step, it calls the appropriate reconstruction function for the corresponding Alethe proof rule,190

producing an Isabelle theorem stating the soundness of the proof step with respect to a formalization191

in Isabelle/HOL of Alethe’s theory (i.e., linear arithmetic with uninterpreted functions).192

2.4 Related work193

Solvers for the Boolean satisfiability (SAT) problem support proof certificates of various granularities.194

External and internal elaborators and translators between coarse-grained formats, such as DRAT,195

intermediate formats like FRAT, and more fine-grained formats like LRAT or GRAT have been196

implemented [4, 16], although producing detailed proofs directly has recently become faster than197

producing coarse-grained proofs and then elaborating them [35]. Certified checkers for these formats198

ITP 2025

26:6 Improving the SMT Proof Reconstruction Pipeline in Isabelle/HOL

exist in several ITPs [16, 30, 31].199

While several proof formats exist for SMT solvers, translations between them have not been the200

focus of community efforts, probably because no one format has prevailed yet. Instead, most proof201

formats are specific to individual solvers [13, 17, 26]. CVC5’s internal elaboration capabilities allow202

the user to either output coarse-grained proofs quickly, or fine-grained proofs at the cost of some203

performance overhead [8,33]. CVC5 also features internal translations to different formats such as the204

LFSC [38] and CPC formats [3]. SMTCoq translates LFSC proofs into the certificate format used by205

Rocq [20]. There are also ongoing efforts to translate proof certificates from various theorem provers206

to Dedukti [15, 24].207

While many checkers for SMT proof certificates exist, certified checkers or checkers written208

in a trusted environment are more rare. They include SMTCoq (verification in Rocq) and the209

reconstruction in Isabelle by Schurr et al. [37] that we extend in this work. Schurr et al. rely on veriT’s210

fine-grained proofs, but show that proof granularity is a trade-off and acknowledge that some steps211

are not fine-grained enough. For example, Alethe allows proof steps whose conclusion can contain212

equalities that have been implicitly reordered. In contrast, CVC5 proofs are more fine-grained and213

provide such extra operations explicitly as proof steps. However, some other rules establish facts not214

needed by Isabelle. For example, the bind rule, which renames bound variables, is superfluous in215

Isabelle which uses De Bruijn indices.216

Blanchette et al. [10] extended Sledgehammer so that it could call SMT solvers as oracles, i.e.217

using one of Isabelle’s internal tactics and without replaying a proof certificate. The authors point218

out that only after working together with SMT solver developers were they able to obtain reasonable219

results. This work represents the groundwork for our project.220

The proof reconstruction approach for the incorporation of external provers into ITPs was221

pioneered by Böhme and Webers’ reconstruction of z3 proofs [12]. The closest work to ours is222

the aforementioned paper by Schurr et al. [37], which extends the original reconstruction of veriT223

proofs [23] by fine-tuning veriT and Isabelle, compressing proofs, and supporting somewhat fine-224

grained simplification rules. Along the way, they recognized that documentation on the proof format225

was needed, which resulted in the Alethe specification.226

There have been several large-scale evaluations of proof automation in Isabelle. Böhme et al. [11]227

compared three first-order theorem provers on goals from seven Isabelle theory files, creating the228

original Judgement Day benchmark set. The aforementioned work by Blanchette et al. [10] extended229

the set and for the first time also included SMT solvers in an evaluation. Desharnais et al. [19] set a230

new standard by generating a set of 5000 benchmarks from 50 randomly selected Isabelle libraries.231

To our knowledge, our work is the first to contain a comparative evaluation, over the same232

problems, of two solvers that use the same reconstruction functions, enabling more interesting and233

detailed comparisons, as we discuss in Section 6.234

3 Adding Alethe Support to an SMT Solver235

While Alethe is intended as a generic SMT proof format, we encountered a number of limitations236

when instrumenting CVC5 to produce Alethe proofs. The main issues came from the specificity of237

the Alethe proof calculus to the particular way in which veriT operates, which is a consequence of238

Alethe having evolved from the original veriT proof format. As we discuss below, we addressed these239

issues either with particular translation schemas or by adding new proof rules when a translation240

was not suitable. Other relevant setbacks were due to errors, ambiguities, or missing assumptions in241

the format’s evolving specification. We made numerous improvements to the Alethe specification to242

H. Lachnitt et al. 26:7

CPC proof rule:

F1 F1 → F2 modus_ponens
F2

Alethe translation:

(cl F1)
(cl (F1 → F2))

implies
(cl ¬F1 F2)

resolution(cl F2)

Figure 3 An Example of a CPC rule without a straightforward Alethe translation.

mitigate these issues for future endeavors in producing Alethe proofs from SMT solvers.1243

3.1 Rules without a direct counterpart244

The most common issue when attempting to produce Alethe proofs in CVC5 was the lack of direct245

counterparts for some rules in the CPC format, which closely follows CVC5’s internal calculus. This246

was addressed in most cases with a dedicated translation routine. For example, Figure 3 contains the247

CPC modus_ponens rule which concludes the formula F2 from the premises F1 and F1 → F2.248

Since there is no corresponding rule in Alethe, the same conclusion must be derived via a combination249

of other rule applications, as shown in the figure. This example also illustrates how in Alethe there is250

an emphasis on clausal forms and inference by resolution, with auxiliary rules that derive clauses251

from more general formulas, whereas in CPC there is more emphasis on Natural Deduction-style252

rules which apply directly to general formulas. As a result, numerous CPC rules have to be converted253

to Alethe by first applying Alethe rules that convert CPC rule premises to valid clauses and then254

applying the Alethe resolution rule to those clauses. The expansion of single CPC inferences to255

multiple Alethe inferences can lead to noticeably larger sizes for the resulting Alethe proof.256

The above case is actually relatively benign. Some cases showed more serious incompatibil-257

ities between the Alethe and CPC proof calculi. A specific example is the way they handle the258

normalization of associative commutative (AC) operators, which involves flattening and removal of259

duplicates. In Alethe, the ac_simp rule establishes an equality between a term and its normalized260

form, where all nested occurrences of AC operators are flattened to completion.2 In CPC, on the261

other hand, a similar normalization is performed by the ACI_NORM rule, but only on the top-level262

applications of the AC operator in the original term. To translate an ACI_NORM step concluding263

t0 = t1, we make use of the fact that ac_simp is strictly more powerful, so it can be used to derive264

two intermediate conclusions of the form t0 = t′ and t1 = t′, where t′ is the result of the more265

aggressive normalization achieved by ac_simp. The CPC conclusion t0 = t1 can then be derived266

via Alethe rules for symmetry and transitivity of equality. Alternatively, a rule could be added to267

Alethe to represent a more local version of AC simplification. This could be a possible avenue for268

improving the performance of CVC5 proof reconstruction in Isabelle.269

3.2 Costly translation270

In some cases, there is no reasonable way to translate a CPC step into Alethe — because it would271

require a huge number of steps, for example. In those cases, we extended the Alethe calculus itself.272

We only considered this as a last resort, however, since adding a rule to the standard impacts all of its273

users.274

1 We also fixed bugs we found in the veriT solver and added support for the updates to the Alethe standard, which
were reflected in the release of veriT 2024.12.

2 The motivation for this rule is to directly represent a performance-critical simplification [6, Sec. 4.6] at the cost of a
more coarse-grained rule.

ITP 2025

26:8 Improving the SMT Proof Reconstruction Pipeline in Isabelle/HOL

An example of a set of CPC rules that could not be directly represented or otherwise conveniently275

translated to Alethe is the set containing variants of ARITH_MULT_POS, which allows the two sides276

of an (in)equality to be multiplied by a positive factor. For equalities, the rule is as follows:277

ARITH_MULT_POS
(m > 0 ∧ l = r) → m ∗ l = m ∗ r

278

While Alethe does include arithmetic rules, they usually only work on normalized (linear)279

inequalities, so for the rule above it would be necessary to break up the equality into two inequalities,280

normalize both m ∗ l and m ∗ r, and then perform the arithmetic step via Alethe’s la_generic281

rule, which is unfortunately expensive to check [1]. Moreover, using this translation would add a282

number of steps linear in the degree of nesting present in the input formula, which can be large. We283

deemed this unacceptable. We instead introduced new rules in Alethe which capture the rule above284

and each of its variants.285

Another example of a CPC rule that is difficult to implement in Alethe is ARITH_POLY_NORM,286

which infers the equality s = t of any two terms s and t that can be normalized to the same sum of287

monomials. Since this rule performs a full normalization on the given terms s and t, a translation288

into Alethe would require a full proof of how the two terms are normalized according to particular289

arithmetic simplifications. Thus, in this case too, we added a corresponding Alethe rule with the same290

semantics as the CPC rule.291

3.3 Consistent decimal representation292

A subtle aspect of Alethe, inherited from the SMT-LIB language, is that the sort of a number literal293

depends on the SMT-LIB logic associated with the problem. For example, the literal 123 is an294

integer in most logics, including those that permit real numbers. However, in logics with reals but295

not integers, the same literal becomes a real number. To complicate matters further, decimal literals296

(e.g., 2.45) are allowed in SMT-LIB only in logics with real numbers whereas they are allowed in297

Alethe also in proofs that do not involve reals. For example, the la_generic rule uses decimal298

coefficients to certify the validity of a set of linear inequalities in both real and integer arithmetic.299

To simplify this situation, we changed the Alethe standard to be not so liberal with the type300

assigned to numeric literal. Specifically, now a numeral (e.g., 123) is always an integer, while a301

decimal (e.g., 12.0) is always a real. Furthermore, both numerals and decimals are allowed in rules,302

independently of the logic set in the input problem. Finally, Alethe now has a dedicated syntax for303

writing rational constants in fractional form. In SMT-LIB, they must be written using the division304

operator, e.g., (/ 1 3). This complicates parsing, since the entire term must be parsed to detect305

that it is to be treated as a constant. In Alethe, this rational number can now be written as the single306

literal 1/3 and parsed directly as a (real) constant.307

3.4 Incompatibility308

The only case we encountered where a translation from CPC to Alethe is not possible is when the309

CPC proof contains steps introducing fresh terms without a proper justification, which is not allowed310

in Alethe. Each such step results in a hole in the Alethe proof. This case is exceedingly rare, however,311

and thus does not significantly impact our results. Nevertheless, finding a good long-term solution for312

such incompatibilities is an important ongoing challenge.313

4 Refactoring the Isabelle SMT Code Base314

As mentioned earlier, our work revealed several problems with the code and architecture in Isabelle’s315

Standard ML implementation of the smt tactic. We discuss our efforts to address these in this section.316

H. Lachnitt et al. 26:9

4.1 Decoupling parts of the code317

A common occurrence we encountered was needing to examine many different parts of the code base318

in order to fix a single bug or issue. This is a heavy burden for maintainers and potential developers,319

as they first must become experts on the whole system before being able to make a change. It would320

be much better if the code were more modular so that local changes could be made without having to321

understand everything else.322

One might hope, for instance, that the code implementing reconstruction could be modified by323

a non-expert who just needs to add support for a single new feature or fix a bug with one operator.324

Unfortunately, this is not the case. For one thing, some transformations are done during parsing that325

affect what is seen in reconstruction in non-intuitive ways. For example, the SMT-LIB term (xor326

x y) is converted during parsing to the disequality ¬(y = x). This is to avoid introducing an xor327

operator in Isabelle. Therefore, a new developer looking to make a change to how xor is handled in328

the reconstruction function would be confused to discover that xor no longer appears after parsing.329

To address such issues, we typically took one of two courses of action. In the cases where such330

design decisions seemed unjustified, we changed them. When changing was deemed too risky or331

difficult, we instead produced better documentation to explain the non-intuitive design decisions.332

Fortunately, in many cases, we were able to successfully decouple different parts of the code. For333

instance, previously, the Alethe node data structure inside of Isabelle did not fully mirror the Alethe334

grammar. Specifically, in the grammar, both anchor steps and normal steps can have arguments, called335

step arguments and context arguments, respectively. The Alethe node data structure inside of Isabelle336

only contained a single field for arguments, which was used for both step and context arguments.337

Furthermore, for some steps, the proof postprocessor needs to communicate additional information338

to the reconstruction function. Any such information was also transmitted using the same argument339

field. Thus, the field was used for three different purposes. A developer working on the reconstruction340

function would have had to understand all the possible ways the argument field could be populated341

and take the appropriate context-dependent action. In this case, we changed the implementation so342

that the Alethe node data structure uses different fields for the different kinds of information.343

We also tried to use strong modular design principles when adding new features. For example,344

in some cases, different strategies work better for the same Alethe rule, depending on which solver345

it comes from. This can happen, for example, when a rule is quite general and two solvers tend to346

use it in different ways. To address this, we made it easy to have the reconstruction code dispatch to347

different routines based on which solver generated the proof. As another example, we refactored a348

monolithic debug tracing capability to instead support debug traces for different components that can349

be turned on or off independently.350

In general, a major goal of our work was to make it possible to work on or test many parts of the351

reconstruction pipeline separately and independently. We describe several tools we developed to aid352

with this goal in Section 5.353

4.2 Supporting (new) Alethe features354

As we dug into the reconstruction code in Isabelle, we discovered that only a fragment of the full355

Alethe standard was supported. Worse still, there was no explicit indication of which fragment was356

supported exactly, and even active developers did not know for sure. Finally, it was unclear whether357

some parts of the code were there for backwards compatibility with older versions of veriT or whether358

the code was dead and should be removed.359

We took several steps to address these issues. First of all, we added support for parts of the360

standard that were clearly missing. An example of this is the tautology rule, which was always pruned361

from veriT proof certificates due to a veriT option that was always enabled when called by Isabelle.362

ITP 2025

26:10 Improving the SMT Proof Reconstruction Pipeline in Isabelle/HOL

As another example, reasoning about xor had not been implemented because none of the input363

problems from Isabelle contained it and veriT did not generate it. This, however, might not be the364

case for other solvers. We also discovered that some rules, such as div_simplify, were missing365

even though they do show up in veriT proofs. We attribute this to the fact that an insufficiently diverse366

set of test cases were used for the veriT reconstruction. We now support all of these rules as well as367

several others we discovered to be unsupported.368

It was trickier to find and fix the rules that were only partially supported. For this, we created369

a library of regression tests. We discovered that many errors came from rules involving variadic370

operators. Terms such as (and a b c) are transformed into nested binary applications during371

parsing. This makes it harder to reconstruct rules that need to distinguish between applications of372

operators to multiple arguments and their equivalent representation as nested binary applications.373

We also discovered cases where the Isabelle reconstruction supported proofs inconsistent with374

the Alethe standard. It was unclear whether this was the result of bugs or inconsistencies in veriT or375

of old code supporting previous versions of veriT or Alethe. Such code made it difficult to upgrade376

to a newer version of veriT, where these inconsistencies had been fixed. It also led to difficulties in377

the CVC5 integration. We made the decision to remove and update any code incompatible with the378

current Alethe standard and encouraged the veriT developers to fix any resulting discrepancies.379

4.3 Supporting fine-grained rules automatically380

For some proof steps, especially those that are very fine-grained, providing a full translation into381

Alethe is overkill. In this section, we discuss how the proof rules generating these steps can be382

supported much more easily. This functionality is also useful when updating a solver to a new version383

containing additional proof rules or when supporting a completely new solver that outputs Alethe384

proof certificates but extends it with some custom rules.385

We assume in Section 3 that a solver has a fixed proof calculus with rules that are rarely changed.386

However, this often only holds for coarse-grained proof rules. More fine-grained rules are more likely387

to change frequently for solvers under active development. A good example of this is the set of term388

rewriting rules. Modern SMT solvers have hundreds of different rewrite rules for simplifying and389

normalizing terms. Developers frequently add new rules or modify previous ones as part of their390

ongoing performance tuning efforts. The approach implemented in CVC5 is to use a DSL called391

RARE, initially proposed by Nötzli et al. [33], which makes it easy to add or modify the rewrite rules392

used by the proof calculus.393

For a large subset of rewrite rules expressible in RARE, we offer an automatic solution for394

supporting them that does not require knowledge of the SMT solver or of the Isabelle ML code at all.395

Lachnitt et al. [29] already showed how the Isabelle plug-in IsaRARE can automatically translate396

a rewrite rule in RARE to a lemma in Isabelle. We build on this work by adding infrastructure397

that can automatically use IsaRARE-generated lemmas (or even hand-written lemmas) for proof398

reconstruction. All that is required is to register such lemmas with the reconstruction algorithm using399

a simple interface we provide.400

Note that even if a solver does not use RARE, this feature could still be useful for supporting a401

solver’s fine-grained proof rules, as RARE is easy to learn and the reconstruction interface we provide402

for it is easy to use.403

5 Toolbox404

In the course of our efforts, we developed a suite of tools to aid with debugging and analysis. In this405

section, we describe these tools, which we hope will be useful for future developers and maintainers406

of the proof reconstruction code in Isabelle.407

H. Lachnitt et al. 26:11

5.1 Isabelle internal testing tools408

We call any testing code implemented in Isabelle that doesn’t interact with an external ATP internal.409

Before our work, internal testing tools were very limited, and debugging was a tedious process.410

Developers were able to see the generated SMT-LIB problem and the proof certificate coming back411

from an external SMT solver. And, they could see when a reconstruction function failed and could412

also see the Isabelle term corresponding to the conclusion of a proof step. While these utilities were413

useful, there were two significant problems with this workflow.414

First, if the conclusion had not been translated correctly, it was not easy to determine which part415

of the integration was responsible for the mistake. For example, the context arguments of bind steps416

can rename bound variables. These arguments were, however, not fully parsed in Isabelle according417

to the Alethe standard — a problem that had not been detected earlier since veriT would only output418

certain combinations. The available internal debugging information would point to a failure in a419

reconstruction function, but the problem was actually during replay, where the code for adding new420

variables to the context was implemented.421

Second, since the contracts between different modules were not clearly defined, it was not always422

clear what to expect when looking at a reconstruction function. For example, the parser sometimes423

removes or changes proof steps to increase performance. This is done, e.g., for subproofs that merely424

rename variables. For an inexperienced developer, this could come as a surprise if they did not know425

about this functionality.426

The standard approach for debugging such issues was to add print statements to figure out which427

part of the code had failed. Thus, we added a general trace-based debugging capability. Tracing can428

be turned off or on for each part of the pipeline independently and with different verbosity levels. We429

then added output traces that show not only relevant variables with their values but also explain what430

the code is doing.431

5.2 Checking SMT proof certificates432

We have implemented a new function in Isabelle called check_smt that can check proof certificates433

generated by SMT solvers. check_smt takes two arguments: a file containing an SMT problem in434

SMT-LIB format and a file containing a proof certificate for that problem in Alethe format. The435

function parses the SMT-LIB input file, declares the constants and types in a new Isabelle context,436

imports the assumptions, and then checks the proof certificate via reconstruction.437

While in principle the function is easy to implement (ignoring the inconveniences created by438

SMT-LIB’s very liberal rules on what can be an identifier), its development is complicated by the439

need to check that the assumptions in the proof certificate match the assertions in the SMT-LIB440

problem. When the smt tactic produces an SMT-LIB file, it always gives names to each formula441

being asserted, and solvers use these names in their proof certificates. This makes it easy to recognize442

the assumptions again during proof reconstruction. However, there is no guarantee that the file and443

certificate read by check_smt will follow the same policy. To address this, we added the capability to444

match assertions with assumptions syntactically. If that fails, we allow Isabelle to do some lightweight445

reasoning (using the auto tactic) to try to match assumptions with assertions. In effect, check_smt446

makes it possible to use Isabelle as a trusted proof checker for SMT (see Section 6.1). It also makes it447

easy to create diverse test cases for reconstruction simply by generating SMT-LIB problems.448

5.3 Testing reconstruction functions449

While adding the capability to check external proofs helps to decouple the translation of proofs from450

their reconstruction, when the process fails, it might still not be clear if the error originates in the451

ITP 2025

26:12 Improving the SMT Proof Reconstruction Pipeline in Isabelle/HOL

Original Problem
(set-logic QF_UF)
(declare-fun a () Bool)
(declare-fun b () Bool)
(declare-fun c () Bool)
(assert (= c b))
(assert (and (= a b) (=> a c)))
(assert (not (= a c)))

Original Proof
(assume a0 (= c b))
(assume a1 (and (= a b) (=> a c)))
(assume a2 (not (= a c)))
(step s1 (cl (= a b))

:rule and :premises (a1) :args (0))
(step s2 (cl (=> a c))

:rule and :premises (a1) :args (1))
(step s3 (cl (= b c))

:rule symm :premises (a0))
(step s4 (cl (= a c))

:rule trans :premises (s1 s3))
(step s5 (cl)

:rule resolution :premises (s4 a2))

Sliced Problem
(set-logic QF_UF)
(declare-fun a () Bool)
(declare-fun b () Bool)
(declare-fun c () Bool)
(assert (= c b))
(assert (and (= a b) (=> a c)))
(assert (not (= a c)))

Sliced Proof
(step p1 (cl (= a b)))

:rule hole :args ("trust"))
(step p2 (cl (= b c))

:rule hole :args ("trust"))
(step s4 (cl (= a c))

:rule trans :premises (p1 p2))
(step n2 (cl)

:rule hole :args ("trust")
:premises (s4))

Figure 4 Basic configuration of slice. The slicing is done on step s4 with depth limit 1.

reconstruction function, the certificate parser, or an incorrectly built context during replay.452

For instance, we had trouble replaying a certain rule, and only after a long and tedious debugging453

session did it become clear that the reconstruction function was not the issue. Instead, the replay had454

not properly deleted an underscore in an internal representation of a term.455

To aid with debugging in such situations, we introduce a new Isabelle method that can be used456

with most rules and that directly applies a reconstruction function to a lemma written in Isabelle.457

Users can then write an Isabelle lemma corresponding to the expected result of parsing an Alethe458

proof step and check that the reconstruction function works correctly. The main challenge was459

to emulate the context built up during the normal reconstruction process. To keep this simple the460

method does not support for now rules that introduce subproofs since those rules create nontrivial461

dependencies on contexts.462

The new functionality allowed us to discover several bugs in the reconstruction functions and463

significantly helped in the development of new rules. In general, it also allows examples to be kept as464

regression tests, since complete proofs are more fragile and may change during a solver update.465

5.4 Slicing proof steps466

While it is helpful to check the reconstruction functions directly on Isabelle terms, this is mostly467

useful with hand-written tests. Checking the reconstruction of a step in an actual proof certificate468

would require translating that step to an Isabelle term. Even though this is possible, it is quite tedious469

and error-prone, and it becomes infeasible once variables have to be added to the context, e.g., as470

a consequence of reconstructing a subproof. This approach is thus not well suited for extensive471

testing of individual steps coming from actual proofs. Note also that, although our check_smt tool472

can be used to check the parser, processor, and replayer all at once, it is not suitable for testing the473

reconstruction function on a specific proof step: one would have to rely on that step being present in474

an end-to-end proof of an SMT-LIB input problem and, even then, the reconstruction could fail for475

reasons unrelated to the targeted proof step, or time out before reaching it.476

H. Lachnitt et al. 26:13

To fill this gap, we developed a new subtool in the Carcara checker called slice that slices Alethe477

proofs with respect to any proof step in them. Specifically, slice takes a problem Q, a proof P , the478

identifier s of a target proof step in P , and a depth limit d. It then produces a new problem Q′ and479

new proof P ′. In the most basic configuration of slice, Q′ is the same as Q while proof P ′ contains480

only the steps needed to generate step s, as well as the anchors of any subproofs of P that rely on481

s. The input value d indicates the maximum depth that P ′ can have as a proof tree with root s. If s482

has a deeper proof tree in P , the proof is cut at depth s by justifying any steps at that depth in P ′ as483

the application of the hole rule with argument "trust". Such steps are skipped during testing in484

Isabelle. The hole rule is similarly applied to step s to conclude the empty clause (cl) from it.3485

Checking the new proof P ′ can be used to reveal any problems with step s directly and results in a486

unit test for the proof rule used in that step. An example of a sliced proof with depth limit 1 is shown487

in Figure 4, where we can see that neither the original assumptions nor step s2 appear in the sliced488

proof, as they are not relevant for justifying target step s4.489

Maximally Sliced Problem
(set-logic QF_UF)
(declare-fun a () Bool)
(declare-fun b () Bool)
(declare-fun c () Bool)
(assert (= a b))
(assert (= b c))
(assert (not (= a c)))

Maximally Sliced Proof
(assume a0 (= a b))
(assume a1 (= b c))
(assume a2 (not (= a c)))
(step s4 (cl (= a c))

:rule trans :premises (a0 a1))
(step s5 (cl)

:rule resolution :premises (a2 s4))

Figure 5 Optimized sliced problem and proof. The slicing is done on step s4.

An alternative configuration of slice allows the generation of even smaller problems and sliced490

proofs by focusing entirely on the targeted step. It can be used for a large class of steps not embedded491

in subproofs. In these cases, P ′ can be minimized by simply adding the premises and negated492

conclusion of the target step s as assumptions. An example is shown in Figure 5, where all the493

assertions in the original problem from Figure 4 are discarded and a new SMT problem Q′ is built494

out of the premises of step s4. These premises then become assumptions in the sliced proof.495

We considered extending this configuration to steps within subproofs by always adding as an496

assumption either the negated conclusion of the target step s or that of the last step t in the subproof497

in which s appears. Unfortunately, a combination of the limitations of the Isabelle reconstruction and498

the Alethe standard currently prevents us from taking advantage of this improvement. In future work,499

we plan to address this issue, which would extend the scope of this configuration.500

6 Evaluation501

In this section, we report on three evaluations of our work on the proof reconstruction pipeline in502

Isabelle. We first show how our check_smt tool can be used to turn Isabelle into a proof checker for503

SMT solvers. Second, we demonstrate the functionality of the Carcara slice command, which allows504

us to essentially do unit testing for specific proof rules. Finally, we report end-to-end results of using505

Sledgehammer with the new addition of CVC5, showing that it allows us to solve more goals.506

3 Alethe proofs can only be refutations and so are required to end with the empty clause.

ITP 2025

26:14 Improving the SMT Proof Reconstruction Pipeline in Isabelle/HOL

Table 1 Solved benchmarks with a 5min timeout. Time and size are measured only on benchmarks solved
by all solvers (common). Time is total, cumulative time (in seconds). The size is the average proof size.

Benchmark Set common
CVC5 CPC CVC5 Alethe veriT Alethe

solved time size solved time size solved time size
max facts 16 1291 1333 80 53 1327 82 115 1305 505 101
max facts 32 1644 1741 123 62 1735 125 136 1657 1809 119
max facts 64 1981 2140 541 78 2130 549 177 2003 3430 147
max facts 128 2306 2526 991 87 2524 998 202 2331 2526 175
max facts 256 2535 2789 1928 101 2788 1942 242 2564 3590 175
max facts 512 2604 2895 2735 109 2892 2734 264 2646 5615 197
max facts 1024 2551 2926 4451 110 2924 4484 270 2607 7647 195

6.1 Using Isabelle as a proof checker507

In their “Seventeen Provers Under the Hammer” evaluation, Desharnais et al. [19] generate several508

benchmark sets from 50 randomly selected files from Isabelle’s Archive of Formal Proofs, selecting509

100 goals per file (they avoid selecting consecutive goals because those are often similar to each510

other). Using these 5000 goals, several families of SMT-LIB benchmarks are generated (they also511

generate non-SMT-LIB benchmarks, but we ignore those here). The families vary based on how many512

facts are selected and added from Isabelle’s definitions and lemmas. In general, adding more facts513

increases the chance that the solver will prove the goal, although adding too many of them increases514

the risk of slowing down the search. The families are called “max facts n” for different values of n.515

Each family is based on the same set of 5000 goals, and benchmarks are generated by using the MePo516

relevance filter to add n facts to each goal. The value of n varies from 16 up to 1024.517

For this experiment, we use our check_smt tool to run veriT and CVC5 on these benchmarks,518

have both of them generate Alethe proof certificates, and then check these proof certificates via519

reconstruction in Isabelle. Since we are only interested in comparing solvers using the Alethe pipeline,520

we did not run z3 as part of this experiment. All experiments are run on a cluster equipped with521

Intel(R) Xeon E5-2637 v4 CPUs and 8GB of memory per job.522

We test the success of our translation approach with problems originating from Isabelle rather523

than on benchmarks from the SMT-LIB library, since Isabelle-generated benchmarks have a different524

structural profile than those generally found in SMT-LIB. For example, SMT-LIB benchmarks often525

contain huge (nested) conjunctions, while Isabelle-generated benchmarks do not. As another example,526

all Isabelle benchmarks that mention natural numbers use a particular encoding into integers, while527

SMT-LIB benchmarks use more heterogeneous encodings.528

6.1.1 Solving and translating529

To test the efficiency of the Alethe translation in CVC5, we run CVC5 twice, once producing proof530

certificates in its native format, CPC, and once producing Alethe proof certificates. We also run531

veriT. Table 1 reports the results. For each family of benchmarks, we report the number solved by532

each solver within a 5 minute time limit, where solved means that the solver successfully proves the533

problem unsatisfiable and prints a proof certificate. We also report the number of benchmarks solved534

by all three solvers (common) as well as, for each solver, the total time taken on the common set of535

solved benchmarks and the average proof size on that subset.536

The first observation is that there is essentially no overhead in the time taken to generate Alethe537

certificates compared to that required to generate CPC certificates, suggesting that the translation538

is not particularly expensive time-wise. A small number of cases cannot be translated into Alethe539

H. Lachnitt et al. 26:15

Table 2 Reconstruction Success. The average (reconstruction) time in ms only takes benchmarks into
account that were solved both by veriT and CVC5 and does not take the solving time into account.

Benchmark Set
CVC5 Alethe veriT Alethe

solved recon unique avg time solved recon unique avg time
max facts 16 1327 1326 45 386 1305 1295 14 131
max facts 32 1735 1727 101 344 1657 1643 17 127
max facts 64 2130 2121 168 417 2003 1980 27 156
max facts 128 2524 2508 236 522 2331 2307 35 209
max facts 256 2788 2767 271 693 2564 2536 40 209
max facts 512 2892 2869 311 874 2646 2608 50 246
max facts 1024 2924 2906 407 1303 2607 2560 61 334

due to the issue mentioned in Section 3.4. Note that the cases where the time for Alethe proofs is540

slightly lower can be explained by the fact that CPC proofs are a bit more verbose in their symbol541

declarations, so printing can take a bit longer.542

Our second observation is that CVC5 is up to an order of magnitude more efficient at solving and543

constructing proofs than veriT. It also solves more problems, suggesting that the addition of CVC5 to544

Isabelle’s proof reconstruction pipeline will benefit Isabelle users, at least in some cases.545

Our third observation is that the proofs produced by CVC5 in Alethe format are larger than both546

those produced by CVC5 in CPC format and those produced by veriT, possibly due to the translation547

from native CPC to Alethe in CVC5. It should be added, however, that our size measure is pretty crude548

as it simply counts the number of lines in a proof and not, for instance, the size of individual steps549

or their number. Note that more steps can be good, if that means that the proof is more fine-grained550

and so reconstruction is easier. However, the proof parser on the Isabelle side is rather inefficient, so551

producing proofs that are too detailed can result in performance losses due to parsing.552

Compared with Desharnais et al.’s results, where both CVC5 and veriT peaked at 512 facts, CVC5553

now does better with 1024 facts than with 512 (veriT still peaks at 512). This suggests that CVC5 got554

better at filtering out unnecessary assumptions. To rule out differences resulting from a larger timeout,555

we did a similar analysis to that in Table 1, but with a 30 second timeout, and saw the same trends.556

6.1.2 Reconstruction557

For each solved benchmark, we attempt to reconstruct the proof in Isabelle. Table 2 reports the results.558

For each family, we repeat the number solved from Table 1 and then report, of those, the number559

of proof certificates that are successfully reconstructed (recon) in Isabelle, as well as the number560

uniquely solved (unique) and the average time (avg time) taken on the commonly solved benchmarks.561

Each benchmark is given a timeout of 20 min.562

Our first observation on these experiments is that most proofs are successfully reconstructed,563

suggesting that the Alethe pipeline is functioning well for these benchmarks. Proofs that fail to recon-564

struct often time out during reconstruction of holes or harder to check rules (such as la_generic).565

Further work could elaborate some of these rules into smaller steps.566

A second observation is that Isabelle takes significantly longer to reconstruct CVC5 Alethe proofs567

than it does to reconstruct veriT proofs. This is due to several factors. First of all, CVC5 proofs568

are a bit larger on average, partly due to the translation from CVC5’s native format, as mentioned569

above. Second, the Isabelle translation was co-developed with the veriT proof generation, and the570

two systems were tuned and optimized together. We do expect that additional work and optimization571

will improve the CVC5 workflow as well.572

ITP 2025

26:16 Improving the SMT Proof Reconstruction Pipeline in Isabelle/HOL

Table 3 Reconstruction success when using automatically generated lemmas and when using a general
simplification tactic

Benchmark Set total reconstructed gen reconstructed lemma time gen time lemma
max facts 16 1650 1638 1650 76 66
max facts 32 1085 1085 1066 64 80
max facts 64 1259 1256 1246 214 227
max facts 128 1329 1327 1317 74 87
max facts 256 1381 1381 1365 78 89
max facts 512 1386 1371 1354 99 104
max facts 1024 1378 1331 1311 87 99

Finally, we observe that, on average, a higher percentage of the CVC5 proofs are successfully573

reconstructed. This suggests that a potential benefit of larger proof sizes is some additional detail that574

helps the reconstruction succeed.575

6.2 Slicing576

Our second experiment demonstrates that proof steps can be supported without writing reconstruction577

functions and provides a case study for the functionality of our slicing tool.578

We focus on CVC5’s term rewrite rules, which are supported via automtically generated lemmas579

as explained in Section 4.3. For our experiment, we use every rewrite rule that appears at least once580

in the CVC5 Alethe proofs of the Seventeen Prover benchmark sets. Then, we randomly select up to581

50 instances of each rewrite rule.582

We use our slice tool to generate benchmarks for each selected rewrite step and then check the583

resulting problems and proofs with check_smt. We compare two ways of reconstructing the proofs.584

The first, which we call gen, uses a general tactic that first tries the simplifier with additional facts that585

we manually select for the goal. If that fails, it calls auto_tac. In general, we tried to be generous with586

the power this tactic has. In the second approach, we add lemmas proven by Lachnitt et al. as part of587

their effort to verify CVC5’s term rewriting rules and use their tool IsaRARE to generate lemmas for588

any newly added rules. We also instruct CVC5 to add the instantiations for the variables in the lemma589

and reconstruct the step by matching against the lemma. This can be slow since the right lemma590

needs to be fetched and the instantiation can be more costly than the matching the simplifier does.591

The results are summarized in Table 3. They show that using lemma during reconstruction is592

faster and more robust, which is a confirmation of the value of developing custom reconstruction593

lemmas rather than just relying on generic Isabelle techniques.594

6.3 CVC5 as a Sledgehammer back end595

Our final experiment looks at how the integration of CVC5 affects overall Sledgehammer performance.596

Sledgehammer is somewhat complex; however, it roughly works as follows. Given a goal to prove597

in Isabelle, it first calls a number of ATPs in parallel to attempt to solve the goal. Note that in this598

first phase, no proofs are requested and no reconstruction is attempted. Instead, whenever an ATP599

succeeds, it is asked for an unsatisfiable core, i.e., a (preferably small) subset of the problem that is600

unsatisfiable on its own. Next, all of the collected unsatisfiable cores are passed to a set of built-in601

simplification tactics in Isabelle, which often can then produce an Isabelle proof. When this fails,602

these problems are sent to the smt tactic which calls all of the available proof-producing SMT solvers603

and attempts to reconstruct any proof certificate obtained.604

H. Lachnitt et al. 26:17

For our experiment, we use Mirabelle [11], a tool that automates calls to Sledgehammer. We605

run the experiment on Isabelle’s HOL Library.4 Following Schurr et al. [37], we set the timeout to606

10 s for the entire call to the smt tactic. In general, we followed their setup as closely as possible.607

Unfortunately, some Mirabelle options are no longer available in the latest version of Isabelle.608

Our results5 show that for the HOL Library, the smt tactic is called 267 times. Of these 267609

queries, 257 can be solved by reconstrucing veriT proof certificates, and 119 can be solved by610

reconstructing z3 certificates. Together veriT and z3 succeed on 259. On the other hand, proof611

reconstruction using CVC5 succeeds on 243, including half (4/8) of the remaining problems unsolved612

by veriT and z3. Overall, CVC5 is significantly more successful than z3 but not as successful as613

veriT. We expect this is largely due to the observation already made that CVC5 proofs are slightly614

larger and take a bit longer to reconstruct. With only a 10 second timeout, veriT has an advantage.615

We expect that with a longer timeout or with more optimization effort, CVC5 would catch up and616

probably surpass veriT, as is seen in the first experiment which has a longer timeout.617

7 Conclusion and Future Work618

We reported on our experience adding CVC5 as a new external ATP in Isabelle’s proof reconstruction619

pipeline. We found and fixed various problems in the reconstruction and in the Alethe standard. We620

also developed a toolkit that could benefit future users and developers of proof reconstruction in621

Isabelle. Our evaluation shows that CVC5 improves the capabilities of Isabelle’s smt tactic.622

Isabelle currently uses strategies for CVC5 based on the configuration used in the annual SMT-623

COMP competition. However, as mentioned in Section 6.1, Isabelle-generated problems are often624

quite different from those in SMT-COMP, which are selected from the SMT-LIB library. Thus, one625

promising direction for future work is to explore what strategies yield the best results on Isabelle626

benchmarks specifically. Furthermore, for some reconstruction tasks, CVC5 and veriT might have627

different needs. Currently, the reconstruction code in Isabelle is optimized for veriT. Additionally,628

Isabelle compresses certain proof elements such as subproofs that rename variables. That benefits629

veriT more since the solver renames all variables in a proof as a first step. This was implemented630

to speed up reconstruction after first results with veriT were not performant enough. It would be631

interesting to see what optimizations could improve CVC5’s performance in a similar fashion.632

This paper focuses on comparing Alethe proof certificates from veriT and CVC5 to provide a633

baseline for additional solvers that may decide to adopt the Alethe format. However, CVC5 supports634

more theories than Alethe currently does, including the theory of bit-vectors which is essential in many635

verification applications. The machine-word library in Isabelle and its extension in AFP have been636

used for important and safety-critical projects such as the verification of the seL4 microkernel [27].637

Thus, improved automation for machine words is highly desirable. CVC5 has a strong bit-vector638

solver capable of producing proof certificates. Therefore, another promising direction for future work639

is to extend Alethe with bit-vector rules, translate CVC5 bit-vector proofs, and add reconstruction640

functionality to Isabelle. Other theories that CVC5 supports that might be interesting targets for641

reconstruction are the theory of strings and regular expressions and the theory of finite sets.642

4 Schurr et al.’s original experiments with veriT also included three AFP entries, but there were not many calls to the
smt tactic for those files, so we decided to use only the HOL Library.

5 Run on an Intel i9-12900 with 128 GB RAM, running 3 Mirabelle instances at the same time with a limit of 30 GB
given to the underlying Standard ML implementation.

ITP 2025

26:18 Improving the SMT Proof Reconstruction Pipeline in Isabelle/HOL

References643

1 Bruno Andreotti, Hanna Lachnitt, and Haniel Barbosa. Carcara: An efficient proof checker and elaborator644

for SMT proofs in the Alethe format. In Sriram Sankaranarayanan and Natasha Sharygina, editors, Tools645

and Algorithms for the Construction and Analysis of Systems - 29th International Conference, TACAS646

2023, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022,647

Paris, France, April 22-27, 2023, Proceedings, Part I, volume 13993 of Lecture Notes in Computer648

Science, pages 367–386. Springer, 2023. doi:10.1007/978-3-031-30823-9_19.649

2 The authors of cvc5. cvc5’s C++ API. https://cvc5.github.io/docs-ci/docs-main/650

api/cpp/enums/proofrule.html, 2025. [Online; accessed 12-Feburary-2025].651

3 The authors of cvc5. Proof production. https://cvc5.github.io/docs-ci/docs-main/652

proofs/proofs.html, 2025. [Online; accessed 10-Mar-2025].653

4 Seulkee Baek, Mario Carneiro, and Marijn J. H. Heule. A flexible proof format for SAT solver-elaborator654

communication. Log. Methods Comput. Sci., 18(2), 2022. URL: https://doi.org/10.46298/655

lmcs-18(2:3)2022, doi:10.46298/LMCS-18(2:3)2022.656

5 Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman657

Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew658

Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A versatile and industrial-strength SMT659

solver. In Dana Fisman and Grigore Rosu, editors, Tools and Algorithms for the Construction and660

Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part of the European Joint661

Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,662

Proceedings, Part I, volume 13243 of Lecture Notes in Computer Science, pages 415–442. Springer, 2022.663

doi:10.1007/978-3-030-99524-9_24.664

6 Haniel Barbosa, Jasmin Christian Blanchette, Mathias Fleury, and Pascal Fontaine. Scalable fine-665

grained proofs for formula processing. Journal of Automated Reasoning, 64(3):485–510, 2020. doi:666

10.1007/s10817-018-09502-y.667

7 Haniel Barbosa, Mathias Fleury, Pascal Fontaine, and Hans-Jörg Schurr. The Alethe Proof Format. An668

Evolving Specification and Reference. https://verit.gitlabpages.uliege.be/alethe/669

specification.pdf, 2024. [Online; accessed 22-November-2025].670

8 Haniel Barbosa, Andrew Reynolds, Gereon Kremer, Hanna Lachnitt, Aina Niemetz, Andres Nötzli, Alex671

Ozdemir, Mathias Preiner, Arjun Viswanathan, Scott Viteri, Yoni Zohar, Cesare Tinelli, and Clark Barrett.672

Flexible proof production in an industrial-strength SMT solver. In Jasmin Blanchette, Laura Kovács, and673

Dirk Pattinson, editors, Automated Reasoning - 11th International Joint Conference, IJCAR 2022, Haifa,674

Israel, August 8-10, 2022, Proceedings, volume 13385 of Lecture Notes in Computer Science, pages675

15–35. Springer, 2022. doi:10.1007/978-3-031-10769-6_3.676

9 Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).677

www.SMT-LIB.org, 2016.678

10 Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. Extending Sledgehammer679

with SMT solvers. J. Autom. Reason., 51(1):109–128, 2013. URL: https://doi.org/10.1007/680

s10817-013-9278-5, doi:10.1007/S10817-013-9278-5.681

11 Sascha Böhme and Tobias Nipkow. Sledgehammer: Judgement day. In Jürgen Giesl and Reiner Hähnle,682

editors, Automated Reasoning, 5th International Joint Conference, IJCAR 2010, Edinburgh, UK, July683

16-19, 2010. Proceedings, volume 6173 of Lecture Notes in Computer Science, pages 107–121. Springer,684

2010. doi:10.1007/978-3-642-14203-1_9.685

12 Sascha Böhme and Tjark Weber. Fast LCF-style proof reconstruction for Z3. In Interactive Theorem686

Proving: First International Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings 1,687

pages 179–194. Springer, 2010.688

13 Thomas Bouton, Diego Caminha Barbosa De Oliveira, David Déharbe, and Pascal Fontaine. veriT:689

An open, trustable and efficient SMT-solver. In Renate A. Schmidt, editor, Automated Deduction -690

CADE-22, 22nd International Conference on Automated Deduction, Montreal, Canada, August 2-7,691

2009. Proceedings, volume 5663 of Lecture Notes in Computer Science, pages 151–156. Springer, 2009.692

doi:10.1007/978-3-642-02959-2_12.693

https://doi.org/10.1007/978-3-031-30823-9_19
https://cvc5.github.io/docs-ci/docs-main/api/cpp/enums/proofrule.html
https://cvc5.github.io/docs-ci/docs-main/api/cpp/enums/proofrule.html
https://cvc5.github.io/docs-ci/docs-main/api/cpp/enums/proofrule.html
https://cvc5.github.io/docs-ci/docs-main/proofs/proofs.html
https://cvc5.github.io/docs-ci/docs-main/proofs/proofs.html
https://cvc5.github.io/docs-ci/docs-main/proofs/proofs.html
https://doi.org/10.46298/lmcs-18(2:3)2022
https://doi.org/10.46298/lmcs-18(2:3)2022
https://doi.org/10.46298/lmcs-18(2:3)2022
https://doi.org/10.46298/LMCS-18(2:3)2022
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/s10817-018-09502-y
https://doi.org/10.1007/s10817-018-09502-y
https://doi.org/10.1007/s10817-018-09502-y
https://verit.gitlabpages.uliege.be/alethe/specification.pdf
https://verit.gitlabpages.uliege.be/alethe/specification.pdf
https://verit.gitlabpages.uliege.be/alethe/specification.pdf
https://doi.org/10.1007/978-3-031-10769-6_3
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/S10817-013-9278-5
https://doi.org/10.1007/978-3-642-14203-1_9
https://doi.org/10.1007/978-3-642-02959-2_12

H. Lachnitt et al. 26:19

14 Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol: An interpolating SMT solver. In694

Alastair F. Donaldson and David Parker, editors, Model Checking Software - 19th International Workshop,695

SPIN 2012, Oxford, UK, July 23-24, 2012. Proceedings, volume 7385 of Lecture Notes in Computer696

Science, pages 248–254. Springer, 2012. doi:10.1007/978-3-642-31759-0_19.697

15 Alessio Coltellacci, Stephan Merz, and Gilles Dowek. Reconstruction of SMT proofs with Lambdapi. In698

Giles Reger and Yoni Zohar, editors, Proceedings of the 22nd International Workshop on Satisfiability699

Modulo Theories co-located with the 36th International Conference on Computer Aided Verification (CAV700

2024), Montreal, Canada, July, 22-23, 2024, volume 3725 of CEUR Workshop Proceedings, pages 13–23.701

CEUR-WS.org, 2024. URL: https://ceur-ws.org/Vol-3725/paper8.pdf.702

16 Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter Schneider-Kamp.703

Efficient certified RAT verification. In Leonardo de Moura, editor, Automated Deduction - CADE 26704

- 26th International Conference on Automated Deduction, Gothenburg, Sweden, August 6-11, 2017,705

Proceedings, volume 10395 of Lecture Notes in Computer Science, pages 220–236. Springer, 2017.706

doi:10.1007/978-3-319-63046-5_14.707

17 Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Proofs and refutations, and Z3. In Piotr Rudnicki,708

Geoff Sutcliffe, Boris Konev, Renate A. Schmidt, and Stephan Schulz, editors, Proceedings of the709

LPAR 2008 Workshops, Knowledge Exchange: Automated Provers and Proof Assistants, and the 7th710

International Workshop on the Implementation of Logics, Doha, Qatar, November 22, 2008, volume 418711

of CEUR Workshop Proceedings. CEUR-WS.org, 2008. URL: https://ceur-ws.org/Vol-418/712

paper10.pdf.713

18 Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver. In C. R. Ramakrishnan714

and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems, 14th715

International Conference, TACAS 2008, Held as Part of the Joint European Conferences on Theory716

and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings,717

volume 4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008. doi:10.1007/718

978-3-540-78800-3_24.719

19 Martin Desharnais, Petar Vukmirovic, Jasmin Blanchette, and Makarius Wenzel. Seventeen provers under720

the hammer. In June Andronick and Leonardo de Moura, editors, 13th International Conference on721

Interactive Theorem Proving, ITP 2022, August 7-10, 2022, Haifa, Israel, volume 237 of LIPIcs, pages722

8:1–8:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.723

4230/LIPIcs.ITP.2022.8, doi:10.4230/LIPICS.ITP.2022.8.724

20 Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew Reynolds, and Clark725

Barrett. Smtcoq: A plug-in for integrating SMT solvers into Coq. In Rupak Majumdar and Viktor Kuncak,726

editors, Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Germany,727

July 24-28, 2017, Proceedings, Part II, volume 10427 of Lecture Notes in Computer Science, pages728

126–133. Springer, 2017. doi:10.1007/978-3-319-63390-9_7.729

21 Herbert B. Enderton. A mathematical introduction to logic. Academic Press, 1972.730

22 Mathias Fleury and Nikolaj Bjorner. Internal variables in proofs. https://github.com/731

Z3Prover/z3/issues/5073, 2021. [Online; accessed 22-November-2025].732

23 Mathias Fleury and Hans-Jörg Schurr. Reconstructing veriT proofs in Isabelle/HOL. In Giselle Reis and733

Haniel Barbosa, editors, Proceedings Sixth Workshop on Proof eXchange for Theorem Proving, PxTP734

2019, Natal, Brazil, August 26, 2019, volume 301 of EPTCS, pages 36–50, 2019. doi:10.4204/735

EPTCS.301.6.736

24 Mohamed Yacine El Haddad, Guillaume Burel, and Frédéric Blanqui. EKSTRAKTO A tool to reconstruct737

Dedukti proofs from TSTP files (extended abstract). In Giselle Reis and Haniel Barbosa, editors,738

Proceedings Sixth Workshop on Proof eXchange for Theorem Proving, PxTP 2019, Natal, Brazil, August739

26, 2019, volume 301 of EPTCS, pages 27–35, 2019. URL: https://doi.org/10.4204/EPTCS.740

301.5.741

25 S Hitharth, Cayden Codel, Hanna Lachnitt, and Bruno Dutertre. Extending DRAT to SMT. pages 18–28.742

TU Wien Academic Press, 2024.743

26 Jochen Hoenicke and Tanja Schindler. A simple proof format for SMT. In David Déharbe and Antti744

E. J. Hyvärinen, editors, Proceedings of the 20th Internal Workshop on Satisfiability Modulo Theories745

ITP 2025

https://doi.org/10.1007/978-3-642-31759-0_19
https://ceur-ws.org/Vol-3725/paper8.pdf
https://doi.org/10.1007/978-3-319-63046-5_14
https://ceur-ws.org/Vol-418/paper10.pdf
https://ceur-ws.org/Vol-418/paper10.pdf
https://ceur-ws.org/Vol-418/paper10.pdf
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.4230/LIPIcs.ITP.2022.8
https://doi.org/10.4230/LIPIcs.ITP.2022.8
https://doi.org/10.4230/LIPIcs.ITP.2022.8
https://doi.org/10.4230/LIPICS.ITP.2022.8
https://doi.org/10.1007/978-3-319-63390-9_7
https://github.com/Z3Prover/z3/issues/5073
https://github.com/Z3Prover/z3/issues/5073
https://github.com/Z3Prover/z3/issues/5073
https://doi.org/10.4204/EPTCS.301.6
https://doi.org/10.4204/EPTCS.301.6
https://doi.org/10.4204/EPTCS.301.6
https://doi.org/10.4204/EPTCS.301.5
https://doi.org/10.4204/EPTCS.301.5
https://doi.org/10.4204/EPTCS.301.5

26:20 Improving the SMT Proof Reconstruction Pipeline in Isabelle/HOL

co-located with the 11th International Joint Conference on Automated Reasoning (IJCAR 2022) part of746

the 8th Federated Logic Conference (FLoC 2022), Haifa, Israel, August 11-12, 2022, volume 3185 of747

CEUR Workshop Proceedings, pages 54–70. CEUR-WS.org, 2022. URL: https://ceur-ws.org/748

Vol-3185/paper9527.pdf.749

27 Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika750

Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, et al. sel4: Formal verification of an os751

kernel. In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles, pages752

207–220, 2009.753

28 Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David A. Cock, Philip Derrin, Dham-754

mika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch,755

and Simon Winwood. seL4: formal verification of an os kernel. In Jeanna Neefe Matthews and756

Thomas E. Anderson, editors, Proceedings of the 22nd ACM Symposium on Operating Systems Prin-757

ciples 2009, SOSP 2009, Big Sky, Montana, USA, October 11-14, 2009, pages 207–220. ACM, 2009.758

doi:10.1145/1629575.1629596.759

29 Hanna Lachnitt, Mathias Fleury, Leni Aniva, Andrew Reynolds, Haniel Barbosa, Andres Nötzli, Clark760

Barrett, and Cesare Tinelli. IsaRare: Automatic verification of SMT rewrites in Isabelle/HOL. In761

Bernd Finkbeiner and Laura Kovács, editors, Tools and Algorithms for the Construction and Analysis of762

Systems - 30th International Conference, TACAS 2024, Held as Part of the European Joint Conferences763

on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024,764

Proceedings, Part I, volume 14570 of Lecture Notes in Computer Science, pages 311–330. Springer, 2024.765

doi:10.1007/978-3-031-57246-3_17.766

30 Peter Lammich. The GRAT tool chain - efficient (UN)SAT certificate checking with formal correctness767

guarantees. In Serge Gaspers and Toby Walsh, editors, Theory and Applications of Satisfiability Testing -768

SAT 2017 - 20th International Conference, Melbourne, VIC, Australia, August 28 - September 1, 2017,769

Proceedings, volume 10491 of Lecture Notes in Computer Science, pages 457–463. Springer, 2017. URL:770

https://doi.org/10.1007/978-3-319-66263-3_29.771

31 Peter Lammich. Fast and verified UNSAT certificate checking. In Christoph Benzmüller, Marijn772

J. H. Heule, and Renate A. Schmidt, editors, Automated Reasoning - 12th International Joint Con-773

ference, IJCAR 2024, Nancy, France, July 3-6, 2024, Proceedings, Part I, volume 14739 of Lecture774

Notes in Computer Science, pages 439–457. Springer, 2024. URL: https://doi.org/10.1007/775

978-3-031-63498-7_26.776

32 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant for777

Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002. doi:778

10.1007/3-540-45949-9.779

33 Andres Nötzli, Haniel Barbosa, Aina Niemetz, Mathias Preiner, Andrew Reynolds, Clark Barrett,780

and Cesare Tinelli. Reconstructing fine-grained proofs of rewrites using a domain-specific lan-781

guage. In Alberto Griggio and Neha Rungta, editors, 22nd Formal Methods in Computer-Aided782

Design, FMCAD 2022, Trento, Italy, October 17-21, 2022, pages 65–74. IEEE, 2022. URL:783

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_12, doi:10.34727/784

2022/ISBN.978-3-85448-053-2_12.785

34 Lawrence C. Paulson, Tobias Nipkow, and Makarius Wenzel. From LCF to Isabelle/HOL. CoRR,786

abs/1907.02836, 2019. URL: http://arxiv.org/abs/1907.02836, arXiv:1907.02836.787

35 Florian Pollitt, Mathias Fleury, and Armin Biere. Faster LRAT checking than solving with CaDiCaL.788

In Meena Mahajan and Friedrich Slivovsky, editors, 26th International Conference on Theory and789

Applications of Satisfiability Testing, SAT 2023, July 4-8, 2023, Alghero, Italy, volume 271 of LIPIcs,790

pages 21:1–21:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.791

org/10.4230/LIPIcs.SAT.2023.21, doi:10.4230/LIPICS.SAT.2023.21.792

36 Hans-Jörg Schurr, Mathias Fleury, Haniel Barbosa, and Pascal Fontaine. Alethe: Towards a generic SMT793

proof format (extended abstract). In Chantal Keller and Mathias Fleury, editors, Proceedings Seventh794

Workshop on Proof eXchange for Theorem Proving, PxTP 2021, Pittsburg, PA, USA, July 11, 2021, volume795

336 of EPTCS, pages 49–54, 2021. doi:10.4204/EPTCS.336.6.796

https://ceur-ws.org/Vol-3185/paper9527.pdf
https://ceur-ws.org/Vol-3185/paper9527.pdf
https://ceur-ws.org/Vol-3185/paper9527.pdf
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1007/978-3-031-57246-3_17
https://doi.org/10.1007/978-3-319-66263-3_29
https://doi.org/10.1007/978-3-031-63498-7_26
https://doi.org/10.1007/978-3-031-63498-7_26
https://doi.org/10.1007/978-3-031-63498-7_26
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_12
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_12
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_12
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_12
http://arxiv.org/abs/1907.02836
https://arxiv.org/abs/1907.02836
https://doi.org/10.4230/LIPIcs.SAT.2023.21
https://doi.org/10.4230/LIPIcs.SAT.2023.21
https://doi.org/10.4230/LIPIcs.SAT.2023.21
https://doi.org/10.4230/LIPICS.SAT.2023.21
https://doi.org/10.4204/EPTCS.336.6

H. Lachnitt et al. 26:21

37 Hans-Jörg Schurr, Mathias Fleury, and Martin Desharnais. Reliable reconstruction of fine-grained proofs797

in a proof assistant. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction - CADE 28 -798

28th International Conference on Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings,799

volume 12699 of Lecture Notes in Computer Science, pages 450–467. Springer, 2021. doi:10.1007/800

978-3-030-79876-5_26.801

38 Aaron Stump, Duckki Oe, Andrew Reynolds, Liana Hadarean, and Cesare Tinelli. SMT proof checking802

using a logical framework. Formal Methods in System Design, 42(1):91–118, 2013. URL: http:803

//dx.doi.org/10.1007/s10703-012-0163-3, doi:10.1007/s10703-012-0163-3.804

ITP 2025

https://doi.org/10.1007/978-3-030-79876-5_26
https://doi.org/10.1007/978-3-030-79876-5_26
https://doi.org/10.1007/978-3-030-79876-5_26
http://dx.doi.org/10.1007/s10703-012-0163-3
http://dx.doi.org/10.1007/s10703-012-0163-3
http://dx.doi.org/10.1007/s10703-012-0163-3
https://doi.org/10.1007/s10703-012-0163-3

	1 Introduction
	2 Preliminaries and Related Work
	2.1 Satisfiability modulo theories and proofs
	2.2 Alethe
	2.3 Isabelle/HOL
	2.4 Related work

	3 Adding Alethe Support to an SMT Solver
	3.1 Rules without a direct counterpart
	3.2 Costly translation
	3.3 Consistent decimal representation
	3.4 Incompatibility

	4 Refactoring the Isabelle SMT Code Base
	4.1 Decoupling parts of the code
	4.2 Supporting (new) Alethe features
	4.3 Supporting fine-grained rules automatically

	5 Toolbox
	5.1 Isabelle internal testing tools
	5.2 Checking SMT proof certificates
	5.3 Testing reconstruction functions
	5.4 Slicing proof steps

	6 Evaluation
	6.1 Using Isabelle as a proof checker
	6.1.1 Solving and translating
	6.1.2 Reconstruction

	6.2 Slicing
	6.3 cvc5 as a Sledgehammer back end

	7 Conclusion and Future Work

