
Faster LRAT Checking than Solving with CaDiCaL1

Florian Pollitt #2

University Freiburg, Germany3

Mathias Fleury #4

University Freiburg, Germany5

Armin Biere #6

University Freiburg, Germany7

Abstract8

DRAT is the standard proof format used in the SAT Competition. It is easy to generate but checking9

proofs often takes even more time than solving the problem. An alternative is to use the LRAT10

proof system. While LRAT is easier and way more efficient to check, it is more complex to generate11

directly. Due to this complexity LRAT is not supported natively by any state-of-the-art SAT solver.12

Therefore Carneiro and Heule proposed the mixed proof format FRAT which still suffers from13

costly intermediate translation. We present an extension to the state-of-the-art solver CaDiCaL14

which is able to generate LRAT natively for all procedures implemented in CaDiCaL. We further15

present Lrat-Trim, a tool which not only trims and checks LRAT proofs in both ASCII and binary16

format but also produces clausal cores and has been tested thoroughly. Our experiments on recent17

competition benchmarks show that our approach reduces time of proof generation and certification18

substantially compared to competing approaches using intermediate DRAT or FRAT proofs.19

2012 ACM Subject Classification Theory of computation → Automated reasoning20

Keywords and phrases SAT solving, Proof Checking, DRAT, LRAT, FRAT21

Digital Object Identifier 10.4230/LIPIcs.SAT.2023.2022

Category Tool Paper23

Supplementary Material Dataset (Log files): https://cca.informatik.uni-freiburg.de/lrat/ [20]24

Acknowledgements We thank reviewers of SAT’23 and MBMV’23 for their detailed comments as25

well as Mario Carneiro for making FRAT-rs publicly available.26

1 Introduction27

Proof production became an essential part in SAT solving. For instance, unsatisfiable problems28

only count as solved in the SAT Competition if a certifiable proof is provided. Proofs do29

increase trust in solving results by providing certificates that can be checked independently.30

To increase trust even further proof checkers can also be entirely verified [6, 16].31

In the past the only format allowed in the SAT Competition was DRAT [23], even though32

the SAT Competition 2023 announced to allow additional formats. However, checking DRAT33

proofs often takes several times the amount of solving time. The problem with DRAT is34

that the format is not detailed enough to avoid search during checking. Both the solver and35

the checker have to propagate clauses (actually using similar data structures). To reduce36

this overhead (and simplify verification) all verified proof checkers expect an enriched format.37

The DRAT proof is augmented and converted by an (untrusted) external program into such38

an enriched format, e.g., LRAT [6] or GRAT [16], which contains enough information to39

avoid search and can then be checked easily by the verified proof checker.40

On top of the actual clause contents (its literals) the LRAT [6] format requires the41

following additional information: (i) clause identifiers (ids) are used to reference clauses and42

to make clause deletion steps more concise; (ii) clause antecedent ids used in the resolution43

© Florian Pollitt, Mathias Fleury, and Armin Biere;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023).
Editors: Meena Mahajan and Friedrich Slivovsky; Article No. 20; pp. 20:1–20:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pollittf@informatik.uni-freiburg.de
mailto:fleury@cs.uni-freiburg.de
https://orcid.org/0000-0002-1705-3083
mailto:biere@cs.uni-freiburg.de
https://orcid.org/0000-0001-7170-9242
https://doi.org/10.4230/LIPIcs.SAT.2023.20
https://cca.informatik.uni-freiburg.de/lrat/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Faster LRAT Checking than Solving with CaDiCaL

chain when deriving an added clause through reverse unit propagation (RUP) [12], i.e., as44

asymmetric tautology (AT) [14]; (iii) the ID and further resolution paths to refute the45

resolvent of the added clause with all clauses containing a RAT (blocking) literal in case the46

added clause relies on the stronger resolution asymmetric tautology (RAT) property [15].47

These RAT literals would be needed to model more powerful reasoning (such as blocked48

clause addition or symmetry breaking etc.) but neither our SAT solver CaDiCaL [4] nor49

any top performing SAT solver in the SAT Competition over the last 2 years actually used50

such reasoning. Therefore, our efforts to extend CaDiCaL did not need to address the full51

power of RAT and we can focus on producing “LRUP” proofs, i.e., reverse-unit-propagation52

(RUP) proofs, but still need to augment these proofs with ids and resolution chains.53

A similar attempt [1] by Carneiro and Heule led to a new proof format, FRAT, that sits54

between LRAT (because it allows for justifications) and DRAT (because it still allows steps55

without justification). Their aim was to fill out most “gaps” and leave “harder” to implement56

cases as black box to be filled in by an (untrusted) proof checker, i.e., by their FRAT-rs tool57

used to convert an FRAT proof to a fully justified LRAT proof. In a recent paper [18] this58

limitation of the FRAT producing CaDiCaL [1] forced a parallel proof-producing version of59

the award winning SAT solver Mallob to deactivate all steps not covered by FRAT, i.e.,60

most inprocessing, as native LRAT proof generation is needed.61

In this tool paper, we present an extension of our SAT solver CaDiCaL [4] to generate62

the richer LRAT format directly. Our focus is on three different aspects: (A) producing63

LRAT proofs for all solver configurations on all benchmarks, (B) comparable performance64

and, further, (C) making sure the solver behaves the same with/without proof generation.65

Our goal (A) lead us to reimplement LRAT generation in the conflict analysis and all66

inprocessing techniques of CaDiCaL, some of which were not covered in the FRAT [1]67

producing implementation, such as equivalent literal subsumption (Section 3).68

Like other SAT solvers, CaDiCaL generates a vast number of proof steps from which at69

the end, a significant fraction turns out to be unnecessary for the derivation of the empty70

clause. Thus most tools that process DRAT or FRAT will trim these unnecessary steps71

from the proof. However, we are not aware of a tool that does this for LRAT. Therefore we72

implemented a new tool called Lrat-Trim to trim proofs down and improve the performance73

of checking the proof with the verified checker Cake_Lpr [21] (Section 4).74

To validate robustness of our approach we extended CaDiCaL to internally check75

LRAT proofs too and fuzzed the extended solver. This allowed us to use the model-based76

tester Mobical (which comes with CaDiCaL) to find, debug, and fix bugs much more77

efficiently. We further ran the extended new solver on the unsatisfiable problems from the78

SAT Competition 2022. We observed (almost) no slow-down without proof production (0.3%)79

and only a small slow-down for producing LRAT (5%). Proof checking performance was80

improved considerably compared to the two competing approaches DRAT and FRAT (see81

Section 5). Checking (and producing) our LRAT proofs has an overhead of 30% over pure82

solving, compared to 125% for FRAT and 180% in the SAT Competition mode (i.e., slower83

than producing them). Without negligible overhead over plain solving with CaDiCaL, we84

managed to check proofs faster than they are produced for a state-of-the-art SAT solver.85

Our CaDiCaL extension is available at https://github.com/florianpollitt/radical86

and will shortly be merged into the main CaDiCaL repository. Note that a preliminary87

version of this paper was presented at the MBMV workshop [19] as work in progress.88

Compared to that shorter version, we have improved and present Lrat-Trim, give an89

extensive evaluation on the entire problem set of the SAT Competition 2022 (not just a90

single problem) and in general provide more details on the implementation.91

https://github.com/florianpollitt/radical

F. Pollitt, M. Fleury, and A. Biere 20:3

2 Preliminaries92

For an introduction to SAT solving please refer to the Handbook of Satisfiability [5]. In our93

context it is sufficient to recall that SAT solvers build a partial assignment and along the94

way learn new clauses preserving satisfiability until either the assignment satisfies all clauses95

or the empty clause is derived, meaning that the problem is unsatisfiable.96

A DRAT [23] proof is the sequence of all clauses learned (or in general deduced) by the97

SAT solver interleaved with clause deletion steps, which are used to help the proof checker98

to focus on the same clauses the solver would see at this point of the proof. This design99

principle helps DRAT [23] to easily capture all techniques currently used by SAT solvers100

without the need to provide more complex justification e.g. in the form of resolution chains.101

The LRAT [6] proof format has more detailed information: Each clause is associated102

with a clause identifier and claimed to be the result of resolving/propagating several clauses103

in the given order. The list of antecedent clause ids forms a justification and is part of such104

an addition step in LRAT. In the rest of the paper we focus on finding these justification.105

3 Implementation106

The LRAT extension to CaDiCaL was implemented by the first author as part of his master107

project and proceeded in four stages: First, the internal proof checker in CaDiCaL for108

DRAT clauses was extended to produce LRAT proofs, which is quite inefficient but can109

still be enabled through the --lrat-external option. Second, a separate internal LRAT110

checker was added to CaDiCaL to validate proofs on-the-fly while running the solver. Third,111

we implemented LRAT production for CaDiCaL without any inprocessing. Finally, all112

different inprocessing techniques were instrumented to generate LRAT proof chains directly.113

Thanks to the second stage, proofs could be validated on-the-fly, dramatically reducing the114

implementation effort (particularly for debugging). The implementation of these four stages115

took around two months in total but the last two stages only two weeks.116

The resolution chain for justifying a new clause can be computed alongside normal CDCL117

search with little computational overhead but clause minimization and shrinking are a bit118

more involved (Section 3.1). Proof production in preprocessing and inprocessing were of119

varying degree of difficulty. The most interesting inprocessing technique from this point of120

view is equivalent literal substitution which we discuss in Section 3.2.121

3.1 Conflict Analysis122

Most clauses derived by a SAT solver originate from clauses learned during conflict analysis.123

When the solver finds a mismatch between the current partial assignment and the clauses,124

i.e., a conflicting clause which is falsified, then this conflict is analyzed and a clause is learned125

which forces the solver to adjust the partial assignment. In the standard implementation of126

conflict analysis the learned clause is derived by resolving individual reason clauses in reverse127

assignment order, starting with the conflicting clause, which in turn immediately gives the128

necessary justification for the (non-minimized first UIP [24]) learned clause.129

We have adapted our code to generate chains for various technique relying on conflict130

analysis such as hyper binary resolution [13] and vivification [17]. It is crucial to distinguish131

between techniques that eliminate false literals (thus, necessitating an extension of the proof132

chain) and those that do not.133

One recent addition to improve conflict analysis is the concept of “shrinking” [9,10] which134

can be interpreted as a more advanced version of “minimization” [8]. Minimization only135

SAT 2023

20:4 Faster LRAT Checking than Solving with CaDiCaL

removes literals from the learned clause following resolution paths in the implication graph,136

but does not add any literals. The additional idea in shrinking is to continue trying to resolve137

literals on a particular decision level until all but one (the first UIP on that level) is left,138

however, without being allowed to add literals from a lower decision level.139

Our approach differs from the FRAT flow [1]. Their solver performs a post-process140

analysis of the final learned clause Cmini+shrink to rediscover the necessary propagation by141

traversing the implication graph, which repeats conflict analysis work. In contrast, we split142

the justification process into two parts. First, we derive the justification for the clause CUIP143

alongside conflict analysis with little to no overhead. Then, we derive the missing resolution144

steps between CUIP and the shrunken and minimized clause Cmini+shrink as a post-process145

analysis. We identify literals that differ and add the required reason clauses. Although we146

still traverse parts of the implication graph, we avoid repeating the conflict analysis.147

Our Algorithm 1 shows the postprocessing step only. The first step has already derived148

the justification ChainUIP for the first UIP clause Coriginal from conflict analysis. Our149

postprocessing step calculates the justification chain in Chainmini+shrink . For each removed150

literal L (in Coriginal but not in Cshrunken), we extend the chain with additional justification151

steps (Line 3).152

The function calculate_LRAT_Chain(L) (Line 5) extends the chains with the required153

reason and preserves the resolution order. It goes recursively over all literals of the reasons154

and extends the chain with the reason. If the function reaches a previously used reason155

(already_added), it can stop the analysis to avoid duplicated reasons in the chain. Our156

calculation stops when we reach literals that appear in Cshrunken (L ̸∈ Chainnew). After157

calculating the justification chain for minimization and shrink, we merge the two chains158

ChainUIP and Chainnew (Line 4). Starting with an empty chain provides a valid proof when159

removing unit literals during both phases.160

Data: currently build LRAT chain ChainUIP
Data: the clause before Coriginal and after minimization and shrinking Cshrunken
Result: resulting LRAT chain Chainfull

1 foreach literal L in Coriginal do
2 if L not in Cshrunken then
3 calculate_LRAT_Chain(L)

4 Chainfull := Chainmini+shrink + ChainUIP

5 calculate_LRAT_Chain (Literal K)

6 C := reason of K in the current assignment

7 foreach Literal L in C different from K do
8 already_added := reason of L in Chainmini+shrink

9 if ¬already_added and L ̸∈ Cshrunken then
10 calculate_LRAT_Chain(L)

11 append C to Chainmini+shrink

Algorithm 1 Recursively calculating the prefix LRAT chain for shrinking and minimizing.

F. Pollitt, M. Fleury, and A. Biere 20:5

Our approach can potentially lead to duplicated unit clauses: We add unit clauses to the161

chain during conflict analysis. We can guarantee no duplicates here, but the same unit clause162

might also be added during post process analysis, which means it is actually needed earlier163

in Chainmini+shrink and we could remove it from ChainUIP . Note that this cannot happen164

for larger clauses since they can appear at most once as a reason for some assignment. Since165

removing these unit clauses afterwards would be rather costly, we actually collect unit clauses166

separately and put them at the start of the merged chain after the post process analysis for167

Cshrunken is finished. Like this, we can avoid duplicates and still get a correct justification168

chain for Cshrunken.169

3.2 Equivalence Literal Substitution170

While the justification process for clauses derived during variable elimination and other171

preprocessing techniques that rely on propagation and conflict analysis is similar to normal172

learning, producing LRAT proof justifications for equivalent literal substitution [5] is more173

involved.174

Equivalent literal substitution detects and replaces equivalent literals by a chosen repre-175

sentative. For example, if the problem includes the three clauses (¬A ∨ B), (¬B ∨ C) and176

(¬C ∨ A) we know that A, B and C are equivalent and we can replace all occurrences of177

either literal by one of the others. As is common we use Tarjan’s algorithm [22] to detect178

cycles in the graph spanned by the binary clauses (i.e., the binary implication graph) and179

fix a representative for each cycle [5]. In the DRAT proof we can simply dump all changed180

clauses and delete the old ones.181

For LRAT we have to produce the resolution chains. After fixing representatives, proof182

chains have to be produced for every changed clause separately. We derive the justification for183

each changed or removed literal, similarly as for the shrunken clause in conflict analysis 3.1.184

Fixing the representative is a rather arbitrary choice (the smallest absolute value in this185

implementation). We considered changing this to the first visited literal during DFS in186

Tarjan’s Algorithm, in order to allow reusing some computation and potentially shorten187

proofs, but in the end decided against changing solver behavior.188

4 Trimming LRAT proofs189

In preliminary experiments we observed that the FRAT flow [1] produced significantly smaller190

proofs. FRAT-rs trims the proof during translation to LRAT, i.e., it omits clauses that are191

not needed to derive the empty clause, allowing for much more efficient proof checking. We192

concluded that we needed a tool to do such trimming on LRAT directly in order to obtain193

an efficient pure LRAT proof generation and checking flow.194

Even though trimming is effective, it is not obvious how to cheaply achieve such reduction195

for DRAT proofs because dependencies between proof steps are lacking. Luckily, in LRAT196

these dependencies are explicit. Therefore we implemented Lrat-Trim [2], an open-source197

LRAT proof trimming and checking tool. It often reduces proofs by a factor of 2 to 3, again198

emphasizing how many useless clauses a SAT solver actually derives during search.199

Trimming LRAT proofs consists of a backward reachability analysis starting from the200

empty clause towards the clauses of the original CNF, marking reached clauses as needed.201

Clauses unmarked after this traversal are redundant and can be trimmed. This algorithm is202

implemented by depth first search (DFS) along antecedent clauses in justification chains.203

It also determines the last usage of each clause ID and remaps original clause ids to a204

consecutive ID range. On completion we can dump the proofs back to a file in a forward205

SAT 2023

20:6 Faster LRAT Checking than Solving with CaDiCaL

manner, only writing needed clauses and their antecedents and skipping redundant clauses.206

While doing this we can eagerly mark clauses once they are not used anymore.207

Before starting to write proof lines, we check whether there are redundant original clauses208

and if so write a single deletion line with all unused original clause ids. This minimizes the209

life-span of clauses in the trimmed LRAT proof, both for added and original clauses. Note210

that Lrat-Trim, in contrast to DRAT-Trim, does not require access to the original CNF211

nor looks at literals of clauses to trim proofs.212

We also implemented a checking mode in Lrat-Trim which, given the original CNF213

and an LRAT proof, checks that the resolution chains of added clauses can be resolved to214

produce the claimed clauses. It also checks that clauses are not used after they are deleted215

in a deletion step. This checking mode comes in two flavors. The default is to first trim216

the clauses with the trimming algorithm described above and only check needed clauses.217

Alternatively Lrat-Trim supports forward checking, which checks added clauses on-the-fly218

during parsing and in particular allows to delete clauses in deletion steps eagerly.219

On the one hand, forward checking reduces maximum memory usage to at most that of220

the solving process, whereas backward checking needs to keep the whole proof in memory221

which is usually much more than maximum usage during solving. On the other hand, forward222

checking substantially increases checking time, as all clauses have to be checked without223

trimming information, irrespective of being needed or not.224

During the development of Lrat-Trim substantial effort went into making parsing as225

fast and robust as possible and also provide meaningful error messages during parsing and226

checking. The parsing code amounts to roughly 900 lines of C code out of 2400 lines for the227

whole tool (including comments but formatted with ClangFormat).228

All three proof formats (DRAT, FRAT and LRAT) have a binary version. We implemented229

the binary format for LRAT (both in CaDiCaL and in Lrat-Trim) which is only supported230

by CLRAT [7], a formally verified checker for LRAT using ACL2. We are grateful to Peter231

Lammich who provided us a tool that converts LRAT proofs (with some extra requirements232

on proofs) to GRAT [16] that his checker can check. However, GRAT is stricter as duplicate233

or extraneous ids are not allowed. We leave it to future work to produce stricter proofs.234

5 Experiments235

While checking for our extensions not to change solver behavior with and without proof236

generation, i.e., validating (C), we realized that two changes to the solver became necessary.237

First, scheduling of garbage collection during bounded-variable elimination depends on the238

number of bytes allocated for clauses, which changed with LRAT proof generation, as clauses239

require an ID and thus became larger. Therefore, our CaDiCaL extension always uses240

clause ids, which is not expected to have major impact on performance nor memory usage.241

The second change is due to the way conflicts were derived in equivalent literal detection.242

Originally detection was aborted on such a conflict, which we now simply delay until detection243

finishes. Then the conflicting literal is propagated to yield a proper LRAT proof.244

Our goal (A) of being able to always generate correct proofs was tested by intensive245

fuzzing of our solver, proof generation, and proof checking. We attempted to apply the246

same approach to the FRAT extension of CaDiCaL [1] but immediately experienced failing247

proofs, due to several reasons, particularly with respect to handling unit clauses in the input248

CNF. We also observed that chains often listed the same clause id multiple times. Reducing249

these occurrences might lead to a substantial speedup, since justifying one literal can pull in250

several more clauses (e.g., if some of the literals have been removed by minimization).251

F. Pollitt, M. Fleury, and A. Biere 20:7

 0

 2000

 4000

 6000

 8000

 10000

 0 20 40 60 80 100 120

ti
m

e

problems solved

full time
solving and trimming time

solving time

(a) Checking FRAT proofs of our new CaDiCaL
version 1.5.1 from UFR but in the configuration of
CaDiCaL version 1.2.1 used in [1].

 0

 2000

 4000

 6000

 8000

 10000

 0 20 40 60 80 100 120

ti
m

e

problems solved

full time
solving and trimming time

solving time

(b) Checking LRAT proofs of our new CaDiCaL
version 1.5.1 from UFR but in the configuration of
CaDiCaL version 1.2.1 used in [1].

 0

 20

 40

 60

 80

 100

 120

 0 2000 4000 6000 8000 10000

p
ro

b
le

m
s

so
lv

e
d

time

nocheck
LRAT-trim+check

LRAT (UFR)
LRAT in FRAT strict

LRAT without trimming
LRAT in FRAT default

(c) Comparing trimmers Lrat-Trim vs. FRAT-rs
(LRAT in FRAT) using CaDiCaL 1.5.1 proofs be-
fore checking with Cake_Lpr, except for the run
“LRAT-trim+check” which checks with Lrat-Trim.

 0

 20

 40

 60

 80

 100

 120

 0 2000 4000 6000 8000 10000

p
ro

b
le

m
s

so
lv

e
d

time

nocheck
LRAT (UFR)

LRAT in FRAT
LRAT without trimming

FRAT
DRAT (SAT Competition)

(d) CDF of all the solving and checking flows with
the vertical black line indicating the 5,000 seconds
timeout used for the solver, showing that our flow is
the fastest with fewer timeouts.

Figure 1 Performance on unsatisfiable instances from the SAT Competition 2022.

After fuzzing, we ran our LRAT flow on the problems of the SAT Competition 2022 and252

found three issues: (i) Cake_Lpr did not accept some input files, because they contained253

trailing empty lines, which we then removed manually; (ii) Cake_Lpr requires a very large254

amount of memory (around the size of the proof file); (iii) one node of the cluster showed255

irregular behavior, when many proofs were written to the temporary disk at the same time,256

which lead to corrupted proof files resulting in an Lrat-Trim error. Reducing the number of257

jobs per node fixed this issue and we did not discover any further problem with the generated258

proofs, validating (A) and showing again the effectiveness of fuzzing.259

To compare performance, i.e., showing that we achieved (B), of our extended version260

to the base version of CaDiCaL (added clause ids taking up space without being used),261

we let both versions write generated proofs to /dev/null in order to ensure that we do262

not introduce any bias due to file I/O limits as LRAT proofs exceed DRAT proofs in size263

substantially. This yielded an average overhead of 5% for our new LRAT proof production264

versus DRAT in base CaDiCaL.265

For the remaining empirical analysis we have chosen to focus on the 127 benchmarks from266

the SAT Competition 2022, which were shown to be unsatisfiable during the competition.267

First, we tried to determine how much proofs can be reduced with our new tool Lrat-Trim.268

It turns out, that some proofs were reduced to one percent, i.e., 99% of the output is not269

useful for deriving the contradiction. These problems stem from the sudoku-N30 family. In270

other proofs 80% and more clauses are needed – most of these problems have a short runtime271

SAT 2023

20:8 Faster LRAT Checking than Solving with CaDiCaL

(around 200 s), contain a large amount of fixed variables and accordingly many clauses are272

simplified by removing these units, where each removal contributes a proof step.273

In order to determine the performance of our new solving and checking flow, we compared274

the following three workflows: (i) the (competition) DRAT workflow, i.e., generating the275

DRAT proof, converting it to LRAT with DRAT-Trim, then checking that proof; (ii) the276

FRAT workflow, i.e., generating the FRAT proof, converting it to LRAT with FRAT-rs,277

then checking it; (iii) our new LRAT flow including generating, trimming, and checking the278

proof. All workflows use binary proof formats, except for feeding Cake_Lpr at the end.279

We also ported the FRAT extensions [1] to the newest CaDiCaL version, but did not280

try to fix any issues. Nevertheless, we ran the ported version (see Figure 1a) which is now281

able to use the latest heuristics used in CaDiCaL, except for shrinking which had to be282

deactivated as it is not supported by the original FRAT code [1].283

The first observation we can make is that the overhead of trimming and proof checking284

is quite consistent among our configurations, but wildly differs for FRAT: If many clauses285

without justification are used for the proof, the translation needs a lot of search – although,286

as expected, less than using the conversion to DRAT(see Figure 5a in appendix).287

To our surprise, we observed several timeouts though. They all seem to origin from288

one family submitted by AWS in 2022, where solving took less than 600 s, but elaboration289

(translation) never finishes. In comparison, DRAT-Trim also needs a very long time (6 000 s),290

but stays well below the time limit. It is unclear what the problem is and thus we tested one291

instance aws-c-common:aws_priority_queue_s_sift_either on a (twice as fast) computer292

where it took nearly 10 h to convert the 400 MB FRAT proof to a 3.8 GB LRAT proof. We293

have reported the issue on GitHub,1 but have not heard back yet.294

A comparison of Lrat-Trim with FRAT-rs in both normal mode and super strict mode295

is shown in Figure 1c. We used the feature of our extended version of CaDiCaL to generate296

proofs both in LRAT and in FRAT, where in FRAT, every step is properly justified. The297

results show that Lrat-Trim scales much better than FRAT-rs, although there was a bug298

which we reported that made FRAT-rs significantly slower when not using the super strict299

mode. Furthermore, Lrat-Trim can also check proofs directly and it turns out that the300

additional overhead of this (untrusted) checking compared to parsing and trimming is small.301

Overall, our new LRAT proof flow performs best, with reasonably small overhead on302

solving. To ease visual comparison, we printed all different configurations into a single graph303

(Figure 1d). The fastest option is (of course) “no-checking” but our new method is not too far304

behind. Figure 2 shows that the overhead (cost) of proof checking compared to not checking305

any proofs. Our approach performs best taking only 30% more time than pure solving. The306

existing competing approaches are much slower with DRAT incurring an overhead of 180%307

and FRAT still requiring 125% more time than solving, i.e., both more than doubling overall308

certification time, while our approach has faster checking than solving.309

As a sanity check, we also tested our LRAT proof flow using the default shrinking (see310

Fig 3). We observed that our new approach remains faster compared to the FRAT proof311

flow, confirming our initial findings.312

6 Conclusion313

We have implemented native LRAT proof production in our SAT solver CaDiCaL. Even314

though direct production of LRAT proofs slows down the solver slightly this loss is by far315

1 https://github.com/digama0/frat/issues/18

https://github.com/digama0/frat/issues/18

F. Pollitt, M. Fleury, and A. Biere 20:9

 0

 50

 100

 150

 200

 250

 300

 20 40 60 80 100 120

o
v
e
rh

e
a
d

 o
f

ch
e
ck

in
g

 i
n
 p

e
rc

e
n
t

problem number

DRAT
avg

FRAT
avg

LRAT
avg

base

Figure 2 Overhead of the whole checking flow using FRAT, DRAT and our new LRAT flow on
top of plain solving (without proof generation and checking), with averages shown as horizontal lines
(LRAT 30% overhead, FRAT 125% and DRAT 180% overhead).

 0

 20

 40

 60

 80

 100

 120

 0 2000 4000 6000 8000 10000

p
ro

b
le

m
s

so
lv

e
d

time

nocheck
LRAT (UFR)

FRAT w/o shrinking
LRAT without trimming

DRAT (SAT Competition)

Figure 3 CDF all methods with vertical line indicating timeout of the solver with default options
(i.e., with shrinking not supported by the CaDiCaL).

SAT 2023

20:10 Faster LRAT Checking than Solving with CaDiCaL

offset by the reduction in proof checking time, both compared to DRAT and FRAT proofs.316

At the end our certification flow adds only 30% overhead compared to pure solving while317

other approaches take more than twice the time for certification.318

It might be interesting to apply this work to recent results on distributed proof generation319

in the context of the cloud solver Mallob [18] as well as our multi-core solver in Gim-320

satul [11]. We also see the question of how to handle clause ids for virtual binary clauses as321

a technical challenge. Such clauses occur in both Gimsatul [11] and the state-of-the-art322

sequential solver kissat [3].323

References324

1 Seulkee Baek, Mario Carneiro, and Marijn J. H. Heule. A flexible proof format for SAT solver-325

elaborator communication. Log. Methods Comput. Sci., 18(2), 2022. doi:10.46298/lmcs-18(2:326

3)2022.327

2 Armin Biere. Lrat trimmer, Last access, March 2023. Source code. URL: https://github.328

com/arminbiere/lrat-trim.329

3 Armin Biere and Mathias Fleury. Gimsatul, IsaSAT and Kissat entering the SAT Competition330

2022. In Tomas Balyo, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors,331

Proc. of SAT Competition 2022 – Solver and Benchmark Descriptions, volume B-2022-1 of332

Department of Computer Science Series of Publications B, pages 10–11. University of Helsinki,333

2022.334

4 Armin Biere, Mathias Fleury, and Mathias Heisinger. CaDiCaL, Kissat, Paracooba entering335

the SAT Competition 2021. In Marijn J. H. Heule, Matti Järvisalo, and Martin Suda, editors,336

SAT Competition 2021, 2021.337

5 Armin Biere, Matti Järvisalo, and Bejamin Kiesl. Preprocessing in SAT solving. In Armin Biere,338

Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,339

volume 336 of Frontiers in Artificial Intelligence and Applications, pages 391 – 435. IOS Press,340

2nd edition edition, 2021.341

6 Luís Cruz-Filipe, Marijn J. H. Heule, Jr. Hunt, Warren A., Matt Kaufmann, and Peter342

Schneider-Kamp. Efficient certified RAT verification. In Leonardo de Moura, editor, Automated343

Deduction - CADE 26 - 26th International Conference on Automated Deduction, Gothenburg,344

Sweden, August 6-11, 2017, Proceedings, volume 10395 of Lecture Notes in Computer Science,345

pages 220–236. Springer, 2017. doi:10.1007/978-3-319-63046-5_14.346

7 Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt, Matt Kaufmann, and Peter Schneider-347

Kamp. Efficient certified RAT verification. In Leonardo de Moura, editor, Automated Deduction348

– CADE 26, pages 220–236, Cham, 2017. Springer International Publishing.349

8 Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and clause350

elimination. In Fahiem Bacchus and Toby Walsh, editors, Theory and Applications of Satisfia-351

bility Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June 19-23, 2005,352

Proceedings, volume 3569 of Lecture Notes in Computer Science, pages 61–75. Springer, 2005.353

9 Nick Feng and Fahiem Bacchus. Clause size reduction with all-UIP learning. In Luca Pulina354

and Martina Seidl, editors, Theory and Applications of Satisfiability Testing - SAT 2020 - 23rd355

International Conference, Alghero, Italy, July 3-10, 2020, Proceedings, volume 12178 of Lecture356

Notes in Computer Science, pages 28–45. Springer, 2020. doi:10.1007/978-3-030-51825-7_3.357

10 Mathias Fleury and Armin Biere. Efficient All-UIP learned clause minimization. In Chu-358

Min Li and Felip Manyà, editors, Theory and Applications of Satisfiability Testing - SAT359

2021 - 24th International Conference, Barcelona, Spain, July 5-9, 2021, Proceedings, volume360

12831 of Lecture Notes in Computer Science, pages 171–187. Springer, 2021. doi:10.1007/361

978-3-030-80223-3_12.362

11 Mathias Fleury and Armin Biere. Scalable proof producing multi-threaded SAT solving363

with Gimsatul through sharing instead of copying clauses. CoRR, abs/2207.13577, 2022.364

arXiv:2207.13577, doi:10.48550/arXiv.2207.13577.365

https://doi.org/10.46298/lmcs-18(2:3)2022
https://doi.org/10.46298/lmcs-18(2:3)2022
https://doi.org/10.46298/lmcs-18(2:3)2022
https://github.com/arminbiere/lrat-trim
https://github.com/arminbiere/lrat-trim
https://github.com/arminbiere/lrat-trim
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-030-51825-7_3
https://doi.org/10.1007/978-3-030-80223-3_12
https://doi.org/10.1007/978-3-030-80223-3_12
https://doi.org/10.1007/978-3-030-80223-3_12
http://arxiv.org/abs/2207.13577
https://doi.org/10.48550/arXiv.2207.13577

F. Pollitt, M. Fleury, and A. Biere 20:11

12 Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In International Sym-366

posium on Artificial Intelligence and Mathematics, ISAIM 2008, Fort Lauderdale, Florida, USA,367

January 2-4, 2008, 2008. URL: http://isaim2008.unl.edu/PAPERS/TechnicalProgram/368

ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf.369

13 Marijn Heule, Matti Järvisalo, and Armin Biere. Revisiting hyper binary resolution. In Carla P.370

Gomes and Meinolf Sellmann, editors, Integration of AI and OR Techniques in Constraint Pro-371

gramming for Combinatorial Optimization Problems, 10th International Conference, CPAIOR372

2013, Yorktown Heights, NY, USA, May 18-22, 2013. Proceedings, volume 7874 of Lecture Notes373

in Computer Science, pages 77–93. Springer, 2013. doi:10.1007/978-3-642-38171-3_6.374

14 Marijn J. H. Heule, Matti Järvisalo, and Armin Biere. Clause elimination procedures for CNF375

formulas. In Christian G. Fermüller and Andrei Voronkov, editors, Logic for Programming,376

Artificial Intelligence, and Reasoning - 17th International Conference, LPAR-17, Yogyakarta,377

Indonesia, October 10-15, 2010. Proceedings, volume 6397 of Lecture Notes in Computer378

Science, pages 357–371. Springer, 2010. doi:10.1007/978-3-642-16242-8_26.379

15 Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. Inprocessing rules. In Bernhard Gramlich,380

Dale Miller, and Uli Sattler, editors, Automated Reasoning - 6th International Joint Conference,381

IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings, volume 7364 of Lecture Notes382

in Computer Science, pages 355–370. Springer, 2012. doi:10.1007/978-3-642-31365-3_28.383

16 Peter Lammich. Efficient verified (UN)SAT certificate checking. J. Autom. Reason., 64(3):513–384

532, 2020. doi:10.1007/s10817-019-09525-z.385

17 Chu-Min Li, Fan Xiao, Mao Luo, Felip Manyà, Zhipeng Lü, and Yu Li. Clause vivification386

by unit propagation in CDCL SAT solvers. Artif. Intell., 279, 2020. doi:10.1016/j.artint.387

2019.103197.388

18 Dawn Michaelson, Dominik Schreiber, Marijn J. Heule Heule, Benjamin Kiesl-Reiter, and389

Michael W. Whalen. Unsatisfiability proofs for distributed clause-sharing SAT solvers. In Dana390

Fisman and Grigore Rosu, editors, Tools and Algorithms for the Construction and Analysis of391

Systems - 28th International Conference, TACAS 2023, Lecture Notes in Computer Science,392

2023. Accepted, to appear.393

19 Florian Pollitt, Mathias Fleury, and Armin Biere. Efficient proof checking with lrat in cadical394

(work in progress). In Armin Biere and Daniel Große, editors, 24th GMM/ITG/GI Workshop395

on Methods and Description Languages for Modelling and Verification of Circuits and Systems,396

MBMV 2023, Freiburg, Germany, March 23-23, 2023, pages 64–67. VDE, 2023. Accepted. URL:397

https://cca.informatik.uni-freiburg.de/papers/PolittFleuryBiere-MBMV23.pdf.398

20 Florian Pollitt, Mathias Fleury, and Armin Biere. Native LRAT in CaDiCaL for faster proof399

checking, 2023. URL: https://cca.informatik.uni-freiburg.de/lrat.400

21 Yong Kiam Tan, Marijn J. H. Heule, and Magnus O. Myreen. cake_lpr: Verified propagation401

redundancy checking in cakeml. In Jan Friso Groote and Kim Guldstrand Larsen, editors, Tools402

and Algorithms for the Construction and Analysis of Systems - 27th International Conference,403

TACAS 2021, Held as Part of the European Joint Conferences on Theory and Practice of404

Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings,405

Part II, volume 12652 of Lecture Notes in Computer Science, pages 223–241. Springer, 2021.406

doi:10.1007/978-3-030-72013-1_12.407

22 Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,408

1(2):146–160, 1972. doi:10.1137/0201010.409

23 Nathan Wetzler, Marijn J. H. Heule, and Jr. Hunt, Warren A. DRAT-trim: Efficient checking410

and trimming using expressive clausal proofs. In Carsten Sinz and Uwe Egly, editors, Theory411

and Applications of Satisfiability Testing - SAT 2014 - 17th International Conference, Held412

as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.413

Proceedings, volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer,414

2014. doi:10.1007/978-3-319-09284-3_31.415

24 Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik. Efficient416

conflict driven learning in Boolean satisfiability solver. In Rolf Ernst, editor, Proceedings of417

SAT 2023

http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf
http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf
http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf
https://doi.org/10.1007/978-3-642-38171-3_6
https://doi.org/10.1007/978-3-642-16242-8_26
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/s10817-019-09525-z
https://doi.org/10.1016/j.artint.2019.103197
https://doi.org/10.1016/j.artint.2019.103197
https://doi.org/10.1016/j.artint.2019.103197
https://cca.informatik.uni-freiburg.de/papers/PolittFleuryBiere-MBMV23.pdf
https://cca.informatik.uni-freiburg.de/lrat
https://doi.org/10.1007/978-3-030-72013-1_12
https://doi.org/10.1137/0201010
https://doi.org/10.1007/978-3-319-09284-3_31

20:12 Faster LRAT Checking than Solving with CaDiCaL

the 2001 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2001,418

San Jose, CA, USA, November 4-8, 2001, pages 279–285. IEEE Computer Society, 2001.419

doi:10.1109/ICCAD.2001.968634.420

https://doi.org/10.1109/ICCAD.2001.968634

F. Pollitt, M. Fleury, and A. Biere 20:13

A More experiments421

In this appendix we present some additional plots which did not fit into the main part of the422

paper, might shed more light on some of the experimental data, but we do not consider to423

be essential.424

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120

si
ze

 o
f

th
e
 A

S
C

II
 p

ro
o
f

a
ft

e
r

tr
im

m
in

g
 (

%
)

Problems

proof size reduction

Figure 4 Trimming reduction of the ASCII proof files on solved unsatisfiable instances from the
SAT Competition 2022.

 0

 2000

 4000

 6000

 8000

 10000

 0 20 40 60 80 100 120

ti
m

e

problems solved

solving+converting time
solving time

(a) DRAT conversion to LRAT
(without full verification)

 0

 2000

 4000

 6000

 8000

 10000

 0 20 40 60 80 100 120

ti
m

e

problems solved

full time
solving and trimming time

solving time

(b) Original FRAT version in CaDiCaL 1.2.1
(compared to our ported version in Figure 1a)

 0

 2000

 4000

 6000

 8000

 10000

 0 20 40 60 80 100 120

ti
m

e

problems solved

full time
solving and trimming time

solving time

(c) Direct LRAT production
with CaDiCaL 1.5.1

 0

 2000

 4000

 6000

 8000

 10000

 0 20 40 60 80 100 120

ti
m

e

problems solved

full time
solving time

(d) LRAT with CaDiCaL 1.5.1 without trimming
the proof with checking

Figure 5 Performance on the same set of problems of the SAT Competition 2022 (not all of them
are solved), showing that the verification part is not the most critical.

SAT 2023

20:14 Faster LRAT Checking than Solving with CaDiCaL

 0

 5x109

 1x1010

 1.5x1010

 2x1010

 2.5x1010

 3x1010

 3.5x1010

 4x1010

 4.5x1010

 0 20 40 60 80 100 120a
b

so
lu

te
 s

iz
e
 o

f
th

e
 p

ro
o
f

b
e
fo

re
 a

n
d

 a
ft

e
r

tr
im

m
in

g

problems

size before trimming
size after trimming

Figure 6 Size of the proofs in Bytes.

 0

 2000

 4000

 6000

 8000

 10000

 0 20 40 60 80 100 120

ti
m

e

problems solved

full time
solving and trimming time

solving time

Figure 7 CaDiCaL 1.5.1 on 127 solved unsatisfiable instances of SAT Competition 2022.

	1 Introduction
	2 Preliminaries
	3 Implementation
	3.1 Conflict Analysis
	3.2 Equivalence Literal Substitution

	4 Trimming LRAT proofs
	5 Experiments
	6 Conclusion
	A More experiments

