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Abstract

Ensuring the correctness of system is very important to ensure the safety
and functionality of those systems. Many verification approach rely on SAT
solver either by translating the problem to check and asking a SAT solver or
by translating only partially and slowly refining it, like SMT solvers.

The first contribution from this thesis is about understanding and improv-
ing SAT solvers. We benchmark old SAT solver since early 90s and observe
the performance improvement. Solvers have become better and better over
the years both on old and on new benchmarks. We also improve SAT solvers
not only by changing the way the search direction but also by extracting
more information from the input.

However, verification by translating and trusting another system is unsatis-
factory. Instead we use certificates that we check independently. We analyze
those from our parallel SAT solver Gimsatul. Interestingly we observe that
the proof size is independent of the number of threads. However, checking
is very costly, as the checker still needs to reconstruct information. There-
fore, we extend our state-of-the-art single-threaded SAT solver CaDiCaL
to produce an enriched proof that is checkable without search. Beyond, we
also work on a proof format beyond SAT to verify hardware multipliers. The
verified proof checker Pastèque verified in the Isabelle proof assistant checks
the proofs produced by PACtrim for those systems.

Proof assistants verify each step of a human-produced proof. They check
if programs match their specifications. We have fully verified the SAT solver
IsaSAT and have now added simplifications that occur during execution and
improved it by changing the target programming language, while actually
increasing trust.

Finally we are working on the collaboration between SMT solvers and the
theorem prover Isabelle. The proof assistant is skeptical but it can check the
proofs produced by the SMT solvers (instead of asking the user to produce
one). We implement reconstruction for proofs produced by veriT and are
now working on cvc5 that gives more details and produces proof for more
expressive logics, like bit-vectors.
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1 Introduction

The accuracy of computers is critical as human reliance on automated sys-
tems grows. A notable example of things going awry is the Intel Pentium
bug, or the FDIV bug, a design flaw in the floating-point unit (FPU) of In-
tel’s 1994 Pentium processor that resulted in inaccurate results for certain
floating-point division operations.

One way to prevent the FDIV bug is exhaustive testing. For 32-bit numbers,
it would be possible to do so, because 232 × 232 is approximately 9 billion
cases which at current CPU speed of around 5 GHz is easily doable. However,
this was not an option in 1994 with frequencies of 66 MHz and the testing
approach is not feasible for 64-bit numbers anyway. Therefore, we need
formal verification to check that our systems are correct.

One solution to ensure correctness is to use systems that is mechanically
proven to be correct, by convincing a computer that every possible execution
path is correct (e.g., no memory corruption, even when running for an entire
year which is not reachable with testing). Designing such systems is however
very complicated and they are often less flexible for different options and
usually slower than unverified systems.

Overall, we distinguish 6 levels of trust, going from the minimum (testing,
which can still miss bugs) to perfectly correct systems (not achievable today):

1. Carefully designing the system with code review, testing, and docu-
mentation.

2. Translating the current problem and asking formal tools with multiple
backend engines (like SAT solvers) for a proof or counterexample and
waiting for one of them to claim that the system to verify is correct.

3. Producing a proof checked independently by another non-verified sys-
tem, where the input is the system to verify.

4. Producing a proof that is checked by a verified system.

5. Completely verifying the solvers, ensuring that every possible input
problem yields a correct result.
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1 Introduction

6. Running checkers and verified solvers on fully verified hardware (run-
ning them several times on different machines to take into account
environmental factors like random bit flipping due to solar radiation).

Since the FDIV bug, as far as publicly known, Intel has away switched from
Level 1 and it now employs mostly Level 2 (although some of the tools used
internally are able to produce proofs, like SAT solvers). Level 6 remains
unattainable today.

The work presented here begins with a formal engine at Level 2: If the
formal engine is not good enough, it makes no sense to care about proofs. My
focus is on understanding and improving SAT solvers. They handle a simple
input language (propositional logic) without integers or quantifiers but this
problem is already NP-complete. These solvers form the foundation for more
intricate systems such as bounded-model checking and SMT solvers.

Even if SAT solvers are tools used in the Level 2, the development changed
over time along the 6 steps of verification. In 2010, Brummayer, Lonsing,
and Biere [14] found that nearly all SAT solvers were buggy by fuzzing
them (generating random inputs). Therefore, to increase trust the SAT solver
community went to Level 3 with the production of certificates that can be
checked. It took a while before the right proof format (easy to generate,
expressive enough, and not too hard to check) and the DRAT format became
mandatory in the SAT Competition. Then, the proof checkers were verified
(and some bugs were found in the non-verified one). Nowadays, there is
again a push to generalize the proof format again in order to support more
general steps.

My first contribution involves understanding and enhancing SAT solvers,
including tracking their progress. There is a yearly contribution but progress
is not tracked through annual competitions. In collaboration with Biere, Fro-
leyks, and Heule [H2]1, we analyze the performance of SAT solvers on older
and newer benchmarks. Our findings reveal that more recent solvers solve
significantly more problems – both on old and on new benchmarks. There-
fore, the progress is not just about better performing on the newest bench-
marks at the cost of the old ones. Besides this, I also worked on improving
the performance with the extraction of lost information during translation to
the input proof format and reducing memory usage (Chapter 4).

My second contribution builds upon my PhD thesis with various improve-
ments of my fully verified SAT solver IsaSAT (Level 5). This brings SAT
solving to Level 5. SAT solvers typically consist of two primary components,

1To make the distinction easier, the publications included in the Habilitation are prefixed
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the solving (CDCL) engine and a simplification engine. My SAT solver,
IsaSAT, now incorporates both, though it supports fewer techniques than
other unverified state-of-the-art solvers. Additionally, I modified the target
language of synthesis of IsaSAT to the intermediate language used by LLVM.
This significantly improve the performance.

To verify such a system, I employed the interactive theorem prover Isabelle.
It relies on user inputs to guide proof discovery by providing complex invari-
ants and properties, intermediate proof steps, while the interactive theorem
prover ensures the proof is correct (by trusting only a small kernel) and all
cases have been covered. In the case of IsaSAT, I proved that the solver
terminates, potentially with an unknown answer if a lot of memory is used
(Chapter 4).

The main challenge of full verification lies in its time-consuming nature
and lower performance compared to the best solvers. However, the trade-
off is that each problem’s result must be checked (with verified checkers at
Level 4) instead – and DRAT checking sometimes takes more than solving.
In order to speed-up verification, verified checkers rely on hints that must
be found. With Pollitt and Biere, we extended the SAT solver CaDiCaL to
directly produce the hints without performance loss. I also worked on the
parallel solver, Gimsatul, where we discovered that proof size was largely
independent of the number of threads. In addition to my work on certificates,
I collaborated with Kaufmann on developing a verified checker for verifying
multipliers based on handling polynomials (Chapter 3).

My final contribution involves integrating interactive verification and proof
generation by enabling the use of SMT solver proofs in theorem provers. In
collaboration with Schurr and Desharnais, we incorporate the SMT solver
veriT into Isabelle. Additionally, I work with various coauthors to establish
a standard for the proof language, Alethe, which is now used by the SMT
solver cvc5 for its proof format (with additional proof details). cvc5 seeks to
further enhance their system by incorporating user-defined rules, called RaRE
rules, during compilation. This feature simplifies the process of extending
the solver. To facilitate this integration, I supervised Hanna Lachnitt’s work
on automatically translating RaRE rules to Isabelle (but most of them still
require a proof!). While complete integration of cvc5 into Isabelle is ongoing,
the set of RaRE rules has not yet been finalized (as discussed in Chapter 5).

In subsequent chapters, I delve deeper into each topic, discussing main
ideas and results. For more information, consult the corresponding publica-
tions.
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2 Understanding and Improving SAT
Solvers

The performance of SAT solvers has significantly improved over time, en-
abling them to solve problems with millions of variables that were previ-
ously unattainable, even if some smaller ones remain out of reach for the
best solvers. SAT solving started in the 60s with DP [20] and DPLL [19].

SAT solvers check for satisfiability of a problem in propositional logic with
some restriction on the input. The input format is based on a concatenation
of clauses. Each clause is disjunction of literals and each literal is a positive
or a negative variables. The SAT problem is about either finding a model,
namely a mapping such that in each clause the model assigns at least one
literal to true, or proving that no such model exists. For example, if the
clauses are a ∨ ¬b ∨ c and ¬a, then a (partial) model is ¬a and c. A total
assignment would be ¬a and b and c, assigning a value to all variables.

SAT is the traditional NP-hard problem that interests many theoreticians:
after guessing the problem with an oracle, checking that a model is correct
is polynomial in the input (as it is sufficient to iterate over all clauses). All
other NP-complete problems can be translated in polynomial time to SAT. In
practice however, SAT solvers can solve many problems efficiently.

SAT solvers consist of three main components: search, reduce, and simplify
rounds. During the search phase, a problem is typically deemed satisfiable
or unsatisfiable. Solvers spend most of the time in search and its algorithm,
called CDCL, is the most important part of any implementation to solve the
SAT problems.

The search process constructs a partial assignment called trail, propagating
current information or guessing values. Propagation happens when there is
a single extension of the partial assignment that is compatible with a clause.
For example, if the clause a ∨ b and the partial assignment contains ¬b, then
the only way to satisfy the clause is to set a to true. The clause a ∨ b is the
reason of the propagation. If the partial assignment becomes incompatible
with the formula (like in the previous if the assignment also contains ¬a, it is
impossible to satisfy a ∨ b), then backjumping adapts it. Earlier solvers from
the 60s would only switch the last decision, while subsequent improvements
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SAT solver

CDCL Simplify

many techniques
including
variable elimina-
tion [H7]

Decide [H6]

Propagate Conflict analysis [H10]

alternation

no conflict

conflict

adapting
the trail

Figure 2.1: Abstract representation of the different parts of a SAT solvers

like CDCL [18] actually learn new clauses that explain how to fix the trail,
preventing the solver from encountering the same dead-end again.

Search produces thousands of clauses per second. The solve discards most
of these to reduce memory pressure during reduction rounds. While the
clauses might still be useful to reduce the search space, the solver deem
some as not useful. There are many heuristics on this, the most efficient
seems to be the LBD score [15], giving each clause a score how useful the
clause is to propagate information, nowadays combined with a second chance
algorithm [12].

Learning clauses makes the solver exponentially more efficient in theory,
but SAT remains NP-complete and therefore exponential in the worst case.
Additionally, even if a problem has a polynomial solution, it does not mean
that a solver will find the optimal solution.

The simplification phase attempts to remove duplicated information in the
clauses, either by removing clauses (although all learned clauses are redun-
dant). It can also learn clauses in ways that CDCL is not able to, like finding
out that literals are equivalent. Many recent papers focus on developing new
techniques for this phase including vivification that appeared in 2016 and
is based on an older idea called distillation (but applied to all clauses) or
ERE [5]. Most solvers like MapleSAT or Glucose only perform simplifi-
cation at the beginning, but with the rise of CaDiCaL and Kissat, nearly
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all solvers now interleave search and simplification, known as inprocess-
ing. There are two approaches: removing redundancy in the clauses (with
techniques like subsumption, vivification, ...) and deeper problem transfor-
mations like variable elimination that eliminates one variable by producing
all resolvents or variable addition that does the opposite. The former is the
most important technique today, but the latter (as preprocessing technique)
won the SAT Competition 2023.

One crucial factor for satisfiable problems is the guess direction during
search. If the problem is satisfiable, then the problem has a model and
the best choice for guesses is a value of that model. However, finding a
model is exactly solving the problem and hence is hard. Since the SAT solver
Minisat [17], the default direction is to set variables to the last direction and
false if the variable was never set. While this choice improves performance in
the SAT Competition (closed-world assumption), it makes finding solutions
with all literals set to true nearly impossible. The largest problems in the SAT
Competition are 1.5 GB files that are easy to solve with the current heuristics
of defaulting to the false value.

Performance is best measured in the SAT Competition and SAT Races
(either/or depending on the exact year), an annual event that identifies the
fastest SAT solvers on a new set of benchmarks. Each SAT solver author
must submit some new benchmarks. Over the years the results showed
improvements and subsequent solvers include techniques and ideas from the
winners of the past years, like bounded variable elimination: it was initially
included in a separate preprocessor Satellite, then included into Minisat

and this technique is now included into (nearly) all solvers (to the best of my
knowledge, only my verified SAT solver from Chapter 4 does not include it
in the last SAT Competition).

Own Contributions

Evolution of SAT Solvers [H2]. To review the history of SAT solvers,
we gathered all winners from the SAT Competition since 2002, as well as
some historically significant solvers. We ran these solvers on benchmark
sets from 2002, 2011, 2021, and 2022. This large benchmark set is to ensure
that performance are not only due to adapting strategies on the newest
benchmarks without any improvement.

This project consisted of three main steps. First, we obtained the source
code for each solver; recent ones were easily accessible from the SAT Compe-
tition webpage, while older solvers required contacting their authors (who

9



2 Understanding and Improving SAT Solvers

usually only had it in some computers or backups). Second, we modified
the code to ensure compatibility with modern compiler versions, addressing
issues such as 32-bit integer operations still functioning on 64-bit systems.
We solved one nasty bug in CryptoMiniSAT by using stable sorting in-
stead of standard methods (the bug was probably already there, but it was
not visible, because it depends on the implementation in the C++ standard
library). Lastly, we verified consistent results across all runs.

A limitation of this approach is the need to restore code in the future when
compilers become more strict regarding C or C++ code. We even noticed
some differences between gcc-9 and gcc-11 versions. Unfortunately, one
solver proved unfixable. We also do not attempt to fix all issues present in
the source code (by using fuzzing or producing proofs) and it is unlikely
that the old solvers are error-free. Some of the issues we encountered lead to
solver ignoring part of the input files, so them solving a different problem.

There is some bias in the benchmarks, because solvers have been trained
on the SAT Competition. However, it is unlikely that recent solvers have
been trained on old problems (2011 and before) and it is impossible that old
solvers have been trained on new problems.

The results over all four set of benchmarks indicate significant improve-
ments in SAT solvers over time, with consistent progress across the years.
This demonstrates that advancements are not solely due to training on recent
benchmarks but rather a combination of various factors, including improved
heuristics and algorithm to have better scaling for larger problems.

There is another experiment by Fichte et al [9]. They tried new solvers
on old hardware and new old solvers on new hardware. The first version
of their work did not check for consistency of the results (and we found
problems deemed both SAT and UNSAT). They have updated the work and
they sorted out solvers that had too many incorrect results, but still included
known-wrong solvers. Their experiments is not available (and they have
not answered our question in private communication); so we cannot check
ourselves, but comparing only correct results (and attempting to understand
why some are wrong) is the minimum we expect from such experiment. And
the minimum you would expect when using SAT solvers for the Level 2 of
verification.

Intriguingly, similar experiments in different contexts (MaxSAT and SMT
solvers) reveal that SAT solver progress does not necessarily translate to
improvements in related tools like MaxSAT and SMT solvers. In the latter
case, one possible explanation is that most of the search time is not spend in
SAT solvers, but for the former it is less clear.
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Reducing Memory-Usage by Learnt Clauses [H10]. Reducing the size of
learnt clauses is crucial as the solver uses less memory and makes use more
often of shorter clauses, which are more beneficial than longer ones. One
method for achieving this is learnt clause minimization [16]. It eliminates a
literal from the conflict clause by resolving (rewriting) with reasons along the
trail, if the resolution do not require adding any new literal to the conflict. In
essence, the algorithm is doing rewriting along the reasons of the trail and it
reduces a clause to a subset of it.

In 2020, a CaDiCaL hack by Feng and Bacchus [8] won the planning (ap-
plication) track by a significant margin with a different approach: resolving
along the trail only if it results in a smaller clause size, leading to much less
memory usage, even if this requires adding new literals to the clause. Only
the size of the end result is important. However, this solver did not perform
well in the main track.

We implement a variant called shrinking that adds new literals only if it
does not increase the LBD score of the clause (the standard approximation for
usefulness in modern SAT solvers). We implement it efficiently to be compat-
ible with the cache used by minimization. For each level, our implementation
goes twice (once for shrinking and once for minimization if shrinking failed)
over the clause, without erasing the cache used for minimization, reducing
the complexity. As this technique relies on resolving clauses, it can generate
proof using the standard proof format.

Additionally, we prove that the minimization algorithm is complete: it
removes all redundant literals (redundant with respect to the clauses used by
this technique, namely the reasons, not to all clauses of the input problem).
We also test the more advanced minimization criteria to detect earlier when
literals are not removable, although this did not affect performance much.
However, we can formally explain why the same minimization are possible.

Overall, shrinking has minimal impact on the main track of the SAT Com-
petition in the three SAT solvers we implemented it in. However, it had
a significant impact on the planning track – but less than the original im-
plementation than much more aggressively shorten clauses (and performs
worse on the main track). Its main advantage seems to be for problems con-
taining many binary clauses: Shrinking reduces binary implication chains
on one level to a single literal. In theory this could reduce the usefulness of
the clause, but binary clauses are never deleted, so reducing a chain to its
antecedent has no impact on usefulness (the subsequent propagation chain
will always be possible, which is not the case if the propagation includes
larger clauses that are regularly deleted).
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2 Understanding and Improving SAT Solvers

Changing the Search Direction [H6]. Restarts are a crucial component of
SAT solvers, enabling them to alter the current search direction by modify-
ing ongoing guesses, thereby leading to different assignments. This feature
is essential for discovering superior proofs from a proof-theoretical stand-
point, and in practice, it helps avoid the heavy-tail phenomenon where the
solver becomes trapped in an unsatisfiable portion of the search space that
backtracking cannot easily escape without exploring the entire subspace.

In this paper, we propose a novel perspective on CDCL, viewing it as an
optimization problem that involves maximizing the conflict-free segment of
the trail. To accomplish this objective, we limit the number of restarts to allow
for more extensive exploration of assignment and enforce the SAT solver to
revisit the same section of the search space by consistently setting literals in
the phase of the most optimal conflict-free assignment discovered thus far.

Always forcing the solver to go into a single direction is however very detri-
mental to performance. Therefore, we alternate between the modes where we
actively restrict the solver to go into the same direction and the usual mode
where the solver uses the standard phase saving (search direction for each
variable). In order to search into more directions, we use another method
called rephasing. The solver periodically resets all saved phases and changes
them. As this can be detrimental to CDCL, we implement rephasing in geo-
metrically increasing intervals of conflicts to ensure determinism. Rephasing
is also an effective solution for finding solutions to problems with all literals
set to true or false since both directions are attempted.

During rephasing, we alternate between different goals: all true, all false,
flipping, and assigning the phases to the best assignment found so far, in-
tending to help the solver focus on the unsatisfiable part of the formula. If
the formula comprises a satisfiable and an unsatisfiable segment, once a
model for the satisfiable portion is identified, the solver will concentrate on
the remaining formula (as a byproduct of heuristics that enhance variable
importance). However, rephasing ultimately overwrites the assignment of
the satisfiable part. Therefore, we implemented autarky detection to identify
and remove solved portions of the formula in such cases.

Finally, both techniques facilitate the integration of CDCL solvers with
local search (SLS), which involves flipping one literal in a full assignment
if it is not a model. It can only deem a formula satisfiable. SLS solvers are
poor at detecting propagation chains since they must flip the correct literals
throughout the entire chain. We utilize the CDCL assignment as a starting
point, given that propagation has already been carried out. Both CDCL
solvers and SLS work together by using the assignment identified by the SLS
solver as a search initiation point for CDCL.
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Biere and I [7], along with Cai and Zhang [4], independently proposed this
idea of improving a partial assignment produced by CDCL with local search
and using the improved assignment for CDCL again. Although the specific
implementation varies slightly (with one group remembering the best partial
assignment and the other utilizing CDCL when enough literals are set and
ignoring conflict to find a total assignment that serves as the starting point
for the SLS solver), the concept is identical, and we all observed for the first
time that SAT solvers perform better with this combination, enabling them
to solve more problems than either of CDCL and SLS can individually.

Extracting More Information from the CNF [H7]. SAT solvers only take
formulas in CNF as input. However, this makes it hard to recover some
information, like definitions. The most important simplification technique is
bounded-variable elimination (BVE). The idea is to eliminate one variable
by resolving all clauses that include it and removing the clauses with that
literal. Technically this is a decision procedure, but the memory usage can
explode before the problem is either reduced to the empty formula or the
empty problem. Hence, elimination is bounded to not increase the number
of clauses (or only by a small margin).

Recognizing definition does not help the CDCL part of the SAT solver, but
it can improve the performance of bounded-variable elimination. Instead of
resolving all clauses together, it is sufficient to resolve with the clauses that
are the definitions. This reduces the number of new clauses and makes BVE
more efficient.

For example, a = (b∨ c) corresponds to the three clauses ¬a∨ b∨ c and a∨
¬b and a ∨ ¬c. With simplification, we might end up with the strengthened
clause ¬a ∨ b and still have to recognize the definitions. Then instead of
resolving all clauses together (defining and all other clauses), the solver only
needs to resolve all other clauses with the defining clauses.

The usual way to extract definitions is to use a syntactic criteria and rec-
ognize the definitions. However, this does not work for more complicated
gates and has issues with strengthened clauses. Therefore, we worked on a
better definition extraction mechanism: We use a simple SAT solver, called
Kitten, with a subset of the clauses (the environment).

For performance reasons only a small environment is given to Kitten and
the subsolver is only run for a small amount of time. If the problem is
unsatisfiable, then the unsatisfiable core (i.e., the subset of all clauses that
lead to concluding false) are exactly the clauses of the definition.

Our experiments show that deactivating Kitten reduces the number of elim-
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2 Understanding and Improving SAT Solvers

inated variables (as expected), without much performance impact. Actually
syntactic detection is still useful as it is much faster and AND-gate detection
is the most important for the SAT Competition problems (in 2020, there are
around 150 problems (out of 400) where 20% of the eliminated variable are
defined by an AND).

Future Work

There is an increasing number of techniques that overlap and can simplify
clauses in similar ways. A lot of the art of programming efficient SAT solvers
to combine all of them with limited time budget, as nearly every technique
is sometimes useless while requiring a huge amount of time.

We are currently working with Karem Sakallah and others to produce
a modular solver in which we can test techniques independently of each
other. We also want to explain why techniques work or not. Interestingly
while attempting to produce scalable benchmark, we found a performance
regression in Kissat. We investigated it and found the difference to be one
of the inprocessing techniques, vivification.

We are also working on various new technique to extract information that
is hidden in CNF files and on other techniques to improve solving time. One
of the solver where we implemented most of the techniques is the SAT solver
CaDiCaL which I help maintaining. CaDiCaL contains many techniques
building on top of CDCL like a unit propagator where external reasons can
be given, similar to how SAT solvers work.

It is however not sufficient to understand the different techniques but
understanding the scheduling is critical. This is one of the major differences
between Kissat and CaDiCaL, but it is not clear if Kissat is faster thanks
to this or despite of it.
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3 Beyond Verification: Certification

When using formal tools like SAT solvers for verification, it is very important
that they are correct: If they are not, then the entire verification aim is
threatened. Checking the answer satisfiable is easy, because it is sufficient to
iterate over all clauses and check that a literal is true (this is polynomial in the
input size). However, checking UNSAT answers is not. One partial solution
would be possible to ask for two independent SAT solvers to produce the
same answer but compiler bugs can lead to the wrong answer1 and the
propagation loop of many SAT solvers is very similar – and it would very
hard to define what “independent” solvers are.

One solution to check the UNSAT answer is proof production, correspond-
ing to Level 3 or 4 depending of the used checker. Proof production is now
mandatory for the SAT Competition and only checked proofs are counted as
solved. There are currently 2 SAT formats allowed in the SAT Competition
DRAT (can be checked with DRAT-trim to prerocess add the missing hints +
cake lpr or GRAT) and veriPB proof format (checked by veriPB).

One advantage of producing proofs is that we can derive information about
the search process, like whether learnt clauses were useful enough or not.
Actually the information about usefulness must be reconstructed (heuristi-
cally). The information was used for example for CrystalBall: The proof
was produced without any deletion. Then criteria were produced to classify
useful enough clauses, before being used in the SAT solver CrystalBall.

The requirement to have two solvers to agree is useful when there are
no proofs. Usually fuzzing (that is producing random input to stress all
execution paths in the solver) is used to find bugs, but it can also be used to
compare two solvers. When one solver answers SAT and the other UNSAT,
it is very easy to know which solver is wrong (as SAT with a model is very
easy to check). This approach is used for MaxSAT solvers – and similarly to
SAT solvers a few years ago, all MaxSAT solvers are buggy. They are just
robust enough to not trigger different outcomes on the MaxSAT competition.

1It happened in the SAT Competition 2013 https://groups.google.com/g/minisat/c/

YHEWCFqxyFg
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3 Beyond Verification: Certification

Own Contribution

Parallel Proofs [H8, 1]. One approach for parallel SAT solving is clause
sharing. This can be done between SAT-solver cores (clause exchange) or
the clauses can be shared in memory. The former approach is less invasive
as it is sufficient to take the best SAT solvers from the last competition. It
also makes it very easy to vary the strategies, as different SAT solvers always
implement different strategies. The latter approach requires more changes in
the SAT solver: clause sharing means that putting the two watched literals at
the beginning is not possible anymore since different cores can have different
watched literals and hence different literals at the beginning.

It is possible to produce proofs for parallel SAT solvers, but there is no
format that supports clause exchange (which is tricky because you need
proper ordering of additions and production). Therefore, proofs have to be
in a single file that can be checked by a single-core checker.

The easiest approach is to let each SAT solver core produce its own proof
and ensuring that clause exchange happens only after the clause has been
added to the proof (and not deleted yet). Physical clause sharing has an
advantage: there is no need to repeat clauses for each shared clause as long
as they are in a single memory location. This means much shorter proofs as
there is a single creation and a single deletion.

We experimented with proof checking of the certificates. We observed two
interesting properties: constant size and checking efficiency. First the proof
size seemed independent of the number of threads. This is an interesting
observation, because it means that the parallel cores do not exchange clauses
that the other has already derived. This seems to indicate that the proof
found by the SAT solver has a similar size. We observed the same property
for speed: the number of CPU cycle seemed constant (so 2 cores are twice as
fast as 1 core and half as fast as 4).

Second sharing in proofs is very important for efficiency. This is not very
surprising: The checker has an active set of clauses. This set of clauses is the
union of all active sets of all the cores and the clauses whose deletion has
been forgotten.

LRAT Proofs [H5, H4]. Verified proof checkers could use the DRAT proof
directly. However, checking this still involves search (propagation). To avoid
this, they all rely on an extended format where the propagations are actually
given. However, finding the hints (which is basically exactly the same as
checking the proof) can take more time that the solver needed to find the
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proof. One way to bridge the gap is to produce the enriched proof format
directly.

One previous work ended up in the creation of a mixed format, between
DRAT and full hints, called FRAT. It is optionally to produce the hints, even
if it is better for performance to produce as many of them as possible. The
proof format is actually not completely compatible with DRAT and it requires
a new checker. The implementation in CaDiCaL actually failed to produce
hints in various inprocessing techniques.

We reimplemented the proof production and added support for all the
techniques. We also properly fuzzed our solver and had to support units
in the input format (which the FRAT implementation did not support at
all). Therefore, CaDiCaL can now produce CLRAT (binary LRAT proofs)
containing all the required hints. Unlike DRAT, we observe a performance
cost, mostly due to actually writing the huge proofs on disk. The issue we
found where the proof checking is actually taking nearly 24 h2 is interesting
still open today.

The implementation requires some additions to CaDiCaL like always
activated clause IDs, but otherwise our approach attempts to be no-cost
when LRAT proofs are not activated.

Overall, the entire workflow solving+trimming+checking is much faster
than either using the FRAT checker or DRAT. It is the first time that a state-
of-the-art solver is natively producing LRAT proofs.

Beyond SAT: Multipliers [H9]. With Daniela Kaufman and other, we have
worked on a different system that needed arithmetic proofs. In an effort to
verify the correctness of hardware multipliers, the circuit is transformed to a
series of polynomial corresponding basically to each gate in the implementa-
tion. In order to prove that the correctness equation is actually fulfilled, the
implementation relies on Gröbner bases. The transformation even had to be
reimplemented, because the existing implementation were too slow.

In order to produce certificates, we implemented a non-verified and a
verified checker. They check that the each polynomial transformation is
correct. We did no need any verification of Gröbner bases for this work, just
that the manipulation of the polynomials is actually correct. We did not find
bugs in the rules we devised, but found some missing checks in the PACtrim
checker for the introduction of new variables.

The implementation of the checker was rather straight-forward, once we
had sorted out how to make polynomials work. The Isabelle implementation

2https://github.com/digama0/frat/issues/18

17

https://github.com/digama0/frat/issues/18


3 Beyond Verification: Certification

is very general, but much of the low-level (like extracting a coefficient) did
not work out automatically. However, Sledgehammer was able to fill the
holes most of the times.

Future Research Topics

Certifying more systems is very important to ensure correctness. We are
currently working on certificates for incremental SAT solving: devising a
proof format (and verifying that it is useful) is a necessary first step before
being able to verify a checker.

One challenge is to make the entire certification less “develop new tool
for each application” and more “let’s reuse the same building blocks”. The
Isabelle Archive of Formal Proof contains many existing data structures that
can be useful and the Isabelle Refinement Library to replace abstract struc-
tures by concrete ones. However, not all data structures are associated with
a good imperative implementation and memory handling can become very
complicated. For Pastèque we ended up with string sharing, which required
a refinement that basically added a mapping from integers to a string, with
handling of out-of-memory in the mapping. It would be better to have an
automated approach (at least for sharing without modifying a variable).
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4 Verified SAT Solving

The highest level of trust we can reach is nowadays is fully verifying the SAT
solver. This means that we verify that the given answer is correct whatever
input problem.

There are two approaches to this problem. The first and easier approach
consists in partially verifying the solver by proving that the UNSAT is correct.
All attempts I am aware of [13, 3] check that the derivation of learned clauses
are correct until the empty clause is derived: in a certain sense, the proof of
correctness checks that a proof checker would manage to verify each step.
But a check is needed to verify that a found model is also correct for the
satisfiable answer. The program can also rely on run-time invariants.

The second approach is the one I used during my PhD: start with a formal-
ization of CDCL (slightly modified to allow for learned clause minimization)
and refine it towards code. The advantage is that this is an effort towards
understanding the theory and the invariants of the code. Similar approaches
exists but none has gone as far as generating code that can be used on prob-
lems of the SAT Competitions.

Given that the two approaches come from different communities, the ap-
proach is different: partial verification is done bottom-up, starting from
the code and checking that a specification is met with formal engines from
Level 2, whereas full verification are done top-down, starting from CDCL
down to code synthesis or extraction with interactive theorem provers. The
former approach gives more control over the code (as it is written by the
user). However, there is no deeper reason why bottom-up is not possible in
Isabelle (for example, AutoCorres imports C code in Isabelle).

Partial verification sometimes needs additional checks or work-arounds.
For example, an invariant of clause learning is that the conflict is found as
early as possible. In IsaSAT we prove this by showing that propagation and
conflict are eagerly found. Partial verification is not able to do that currently
and instead either aborts or simply restarts the search ignoring the conflict.
In the worst-case, this can lead to non-termination, but this does not harm
the partial verification. In IsaSAT we actually need and prove termination.

Full verification of an entire SAT solver is a very long task and we had
to decide what techniques we want to represent. For example, our CDCL
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4 Verified SAT Solving

calculus does not support shrinking (from Chapter 2), because we did not
consider it important enough yet to implement it. A technique with a much
bigger impact on the code synthesis is chronological backtracking [11].

Surprisingly to us, no partial verification has ever verified the most im-
portant preprocessing technique, namely variable elimination: as it resolves
clauses together, verification is simple. And fixing the assignment if the
problem is deemed satisfiable is done outside of the correctness property.

IsaSAT is implemented via a refinement approach: We start from a CDCL
calculus and slowly refine the representation by replacing data structures
(like multisets for clauses are become lists) and changing the behavior (de-
cision can take any literal, and we replace this by a heuristic that gives a
deterministic answer). At the last step, the Sepref tool replaces the functional
data structure by imperative ones (like arrays instead of lists). Finally the
code is exported to Standard ML and we execute the resulting solver.

One of the easy to implement but hard to verify is the memory represen-
tation for clauses [10]. IsaSAT uses an arena: clauses (with the headers) are
all allocated one after the other. This is very easy to do in a SAT solver as it
simply requires to change the allocation but no difference in usage. In the
proof assistant this is not possible, as we cannot control memory allocation.
Therefore, we went for an explicit representation (the arena is really a big
array containing all clauses).

Own Contributions

Inprocessing in IsaSAT [H3]. In order to improve the performance of
IsaSAT, we changed two major things: (i) the CDCL calculus to support
clause strengthening and (ii) we changed the target code of the synthesis
from Standard ML to LLVM IR (the language used by the Clang compiler
used by Apple).

The first change was creating a new calculus called Pragmatic CDCL, PCDCL.
At the core, it still runs CDCL but it supports additional rules like learning
any (non-tautological) clause but also dropping clause. We also added the
possibility to add non-implied clauses. We used this for pure literal deletion:
when a literal appears only positively in the initial set of clauses, we can
actually set it to true unconditionally. We also implement the deletion of
clauses. This requires to prove that we do not change the possible models.

Interestingly, as implemented pure literal deletion actually created invalid
DRAT certificates. While the technique is correct (we have proved so!),
IsaSAT generates proofs (without any claims that the proofs are correct)
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in order to take part in the main track of the SAT Competition1. However,
the DRAT proof format does not distinguish between initial and learned
clauses. Therefore, the pure literal might not be pure with respect to all
clauses, leading to incorrect proofs – although IsaSAT gives the correct
answer.

Example 4.1. Consider the problem A, ¬A, B ∨ C. The literal B appears only
positively. Therefore, we can actually learn B (and therefore remove the clause
B ∨ C).

However, the SAT solver could learn ¬B∨C (the problem is UNSAT). The literal
B still appears only positively, but it now also appears negatively in the learned
clauses. DRAT checkers are not able to verify this addition of B and thus proof
checking fails, even the addition does not change the status of the problem.

The “bug” from Example 4.1 was actually discovered during the SAT Com-
petition. This is not a correctness issue of our solver, just a technique that
cannot be represented in DRAT.

To validate that our PCDCL is useful, we implemented forward subsumption-
resolution, i.e., detecting when resolving two clauses yields a new shorter
clause. Along the way, the solver must remember which clauses are redun-
dant (and can be removed) and which clauses are irredundant (must be kept
for consistency).

Model Reconstruction In a master thesis I supervised, Katharina Wagener
worked on model reconstruction: some simplification techniques like variable
elimination used by SAT solvers subtly changes the model, but there is an
easy way to fix the model if there is one (not change is required if there is no
solution). While this is verification Level 1, the work was done in Isabelle:
This is the highest level of trust that can be reached at Level 1 – and this is
the first step towards adding model reconstruction in IsaSAT.

The idea of reconstruction is that redundant clauses can be removed and
fixing the model requires only to flip some literals from the explanation from
the justification why a literal can be removed.

During this work, we discovered an unexpected mismatch between the
presentation on paper and the implementation claims. First, redundancy
as defined by the paper is not the most general criterion that is expected.
In particular, variable elimination does not work in all cases. There are
three possibles fixes: giving up on expressing variable elimination, changing

1this is a mandatory requirement. Hence we have some “printing” functions that we are
replaced by printing when compiling IsaSAT.
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Figure 4.1: Performance comparison of SAT solvers as CDF of the SAT Com-
petition 2022, with 7 GB RAM, 5000 s timeout (higher is better),
with Kissat, Minisat 2006, the fully verified SAT solver IsaSAT,
and the partially verified CreuSAT and versat.

the witness (in particular, this means that the implementation becomes more
complicated), or restricting the construction to total models (over all variables
that have ever been present in the formula). Thankfully the implementation
actually uses total modals, so the implemented model reconstruction is cor-
rect (at least in theory).

Future Work

Verifying SAT solvers does not mean that we verify every aspect. In particu-
lar for heuristics, there is no properties on the detailed implementation. For
example, we implement bumping to increase the importance of the variables
(important for the next decision) and we only bump variables from the for-
mula, so the construction is correct. However, we do not verify that we bump
the right variables. We recently discovered that we bumped the variables
that are present in the conflict clause, while CaDiCaL does not. Changing
the implementation (which did not required changing any proofs), actually
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improved the performance, see Figure 4.1. This small change makes IsaSAT
better than Minisat 2006 (with preprocessing).

We are currently working on include model reconstruction into IsaSAT. It
turns out that we have to change our invariants slighlty in particular related
to subsumption. With model reconstruction, the solution is actually better
than the current theory, where our PCDCL keeps the clauses (but does not
use them except for expressing invariants).

Since IsaSAT is the largest project where code generation is applied, it is
exercising code generation of ITPs. Switching from SML generation to LLVM
IR generation improved performance, but it came with a huge refactoring
cost. In the future, we would like to improve the performance of the code
generation (as the synthesis of some functions is actually taking several
minutes), but also better understand if the code generation is missing any
important optimization. LLVM IR now supports code generation to parallel
code, but it is currently not simple to use it for IsaSAT, because it is based
on splitting an array into two, one part to each process.
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5 Using SMT Proofs in Isabelle

Proving in theorem prover, whether Isabelle or any other, is tedious, because
the builtin tactics are not very strong. To reduce the pain, it is possible to rely
on external tools to provide a proof. This happens most of the time through
Sledgehammer: It selects relevant goals in Isabelle and translates them
into the logic supported by some external automatic tools, before “importing”
some information that the external tools gives about the found proof.

Historically one of the first approach was to use external superposition
solvers as “fact filters” and then use Isabelle’s builtin ordered resolution
Metis prover to refind the proof (and replay the proof through the Isabelle
kernel to have a fully correct proof). This approach turned out to no be
strong enough. Therefore, Isabelle nowadays uses the proof provided by
the superposition solvers: It first tries if the UNSAT core (only the theorems
needed to prove the goal) is sufficient for a built-in technique. If not, it
redirects the proof to avoid a proof by contradiction, and it transform then
each step into a proof step in the builtin proof language Isar. Each of those
steps is simpler than the entire proof, which makes it more likely for a builtin
tactic to solve the goal.

There is another community of people developing automatic theorem
prover, called SMT solvers. They are based on a very different principle.
They call SAT solver on an abstracted version of the input problem and
slowly constrain the abstracted problem more until either a model of the
abstracted problem is also a model of the concrete problem or the abstracted
problem is deemed unsatisfiable, meaning that the concrete problem is also
unsatisfiable. For this, they have to guess instantiation of quantifiers.

SMT solvers all support problems in the format defined by the SMT-Lib
(with some extensions). Many different logic fragments are defined and
solvers can support only some of them. Problems generated by Isabelle
heavily rely on quantifiers, while no array can be generated. There are three
major SMT solvers cvc5, veriT, and z3 supporting this fragment and able
to generate proofs. The most active development currently is happening on
cvc5, but veriT has more readable and simpler code1.

1and I contributed one SAT technique to the builtin SAT solver, position saving.
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5 Using SMT Proofs in Isabelle

Proof generation is very debated topic, because it is much more compli-
cated than in the SAT case, where dumping clauses is sufficient as all clauses
are derived by resolution anyway. Z3 is generating proof in a variant of natu-
ral deduction. Another suggested format for the proof solver SMTInterpol

is resolution based [2]. The last proof format is called Alethe (see below).
It is very pragmatic: it makes it easy to generate proofs of transformation
under quantifiers, thanks to its support of contexts. They make it possible
to start a proof without knowing the result of the transformation yet. The
drawback is that it is not easy to express global transformation like symmetry
breaking.

Own Contribution

veriT Reconstruction [H11] and Alethe [6]. I have participated in the
implementation of the reconstruction of veriT proofs in SMT proofs. As
mentioned, we check the proof written in the proof format Alethe instead
of trusting it like done in other approaches. I was also part of the proper
definition of a semantics of the proof format [6].

The main motivation of this work is improving the success rate of the
reconstruction: the SMT solver CVC4 supports techniques for instantiation
that are not supported by z3, making it impossible to use Isabelle’s SMT
tactic (as z3 does not find a proof, there is nothing to reconstruct in Isabelle!).
On the other hand, veriT does support those techniques.

The work was at the intersection of working on veriT and Isabelle. There-
fore, we identified 4 strategies for veriT in order to maximize the perfor-
mance on Isabelle problems. They mostly differ by the instantiation tech-
niques used.

As we are working hand-in-hand with veriT developers, they added infor-
mation to the proof format like the coefficients when proving unsatisfiability
of a set of linear equations. The coefficients always exist due to the technique
implemented in veriT and Isabelle’s builtin strategy for linear arithmetic is
only able to reconstruct the steps when the coefficient are integers. Providing
coefficients (as rational numbers) makes it possible is Isabelle to check the
steps.

In order to improve the speed of the reconstruction, we compressed the
proofs by removing some substeps and compressing some idioms. Most
removed steps are actually renaming steps. In Alethe, transforming ∀x. P x
into ∀veriT vr0. P veriT vr0 involves:
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1. under the assumption that x = veriT vr0, a proof that P x = P veriT vr0.
This can actually involves multiple steps.

2. from Step 1 the conclusion that (∀x. P x) = (∀veriT vr0. P veriT vr0)

3. a logical tautology on equality (∀x. P x) = (∀veriT vr0. P veriT vr0) ∨
¬(∀x. P x) ∨ (∀veriT vr0. P veriT vr0)

4. finally the conclusion that ∀veriT vr0. P veriT vr0 holds from the Steps 3

and 2 and the fact that ∀x. P x holds.

However, in Isabelle names are just placeholder (only de Brujn indices are
used in terms). Therefore, ∀x. P x and ∀veriT vr0. P veriT vr0 are already
equal (as equality ignores the “name hints” given to the variables).

Overall, this work improves the success rate of replaying proof in Sledge-
hammer. It also improves the amount of time required to reconstruct the
proof – actually in HOL-Library, even with the newly solved goals, the re-
construction is still faster.

IsaRARE [H1]. One problem of SMT solvers is that it is hard to decide
which rewrite rules should be used. This is where RARE rules come in: the
SMT solver cvc5 is parametrized over rules (at compile time), but they can
easily be changed by recompiling the SMT solver to try new rules. Actually
the SMT solver applies all rules together and finds during proof production
which rules have been applied – leading to possibly several rewriting steps
in the final proof or none if the step can is not necessary to derive ⊥.

However, having many rules make it complicated to have correctness of
the rules, especially since the semantics of the SMT-LIB is rather complicated.
Therefore, we developed a tool called IsaRARE to translate RARE rules to
Isabelle. The rules are written to support all theories, including bit-vectors.

Lachnitt (partially under my supervision) developed the translation for
IsaRARE. This is very complicated as the semantics of the SMT-LIB and of
Isabelle differ. In particular, a lot of constraints in the SMT-LIB are basically
dependent types, that Isabelle does not support: extract i j b extracts the
bits from j to i in the bit-vector b, yielding a bit-vector of size i-j+1. In
order to do this in Isabelle, we have to add type annotations. In particular
the definition of concat is highly complicated (and it is not possible to define
for more than 2 arguments in Isabelle).

During the translation and the subsequent usage of Nitpick, several bugs
were identified and fixed. However, not all rules have yet been proved –
especially, the proofs can become very complicated over bit-vectors.
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Future Research Topics

The logical next step is to fully support the reconstruction of cvc5 proofs.
While veriT makes it possible to find many proofs already, they are still
proofs that veriT is not able to find fast enough. Therefore, this would
improve the reconstruction rate. Another open question is how stable proofs
are: currently, Isabelle relies on a rather old Z3 version. While it would be
nice to update it, because it now supports more features, there are two issues:

1. the proof output is not maintained and we discovered that some proofs
contain extra variables.2

2. the proof format has slightly changed since in an undocumented way.

Updating Z3 would give an idea if the tools are still able to find proofs
again (as they depend on very few facts usually). Moreover, it remains to be
seen how many proof formats will be produced in the next year. In particular
there is ongoing work for a new proof format for Z3 that will be more DRAT-
like (in particular, no dependencies between steps are indicated, requiring to
trim the proofs).

2https://github.com/Z3Prover/z3/issues/5073
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6 Conclusion

In the last chapters, I have encapsulated my contributions to the field of
automated reasoning. These contributions can be categorized into four areas,
aligned with the different levels of verification. My first contribution involves
enhancing base tools, specifically SAT solvers. Beyond contributing to a
better understanding of the evolution since the 1990s and highlighting that
improved performance is not solely due to different benchmarks, I have
also worked on improving their efficiency. This was achieved by optimizing
the main CDCL loop’s performance through altered search directions and
extracting information from CNF to identify definitions.

My second contribution focuses on boosting trust in these tools. I con-
tributed to improving the proof format generated by SAT solvers, demon-
strating the possibility of creating a proof containing all the necessary hints
for verified proof checkers with minimal overhead. Although extending
this to the SAT solver Kissat remains unclear, we have produced proofs
for the parallel SAT solver Gimsatul and found that proof length remained
roughly constant, regardless of thread numbers. However, proof checking
times proved substantial. Additionally, I worked on certifying proofs beyond
SAT with Pastèque.

My third contribution consists of developing the only verified SAT solver,
IsaSAT. As the only fully verified solver capable of competing in the main
track of the SAT Competition alongside non-verified solvers, it achieves the
highest level of trust currently possible. The significant performance gap
observed since the previous version from my PhD thesis can be attributed
to the porting to Isabelle LLVM (enabling the use of the superior Clang
compiler) and the addition of inprocessing.

My final contribution centers around proof usage, particularly when ver-
ifying IsaSAT. I aim to utilize external tools such as SMT solvers with-
out blindly trusting them. Therefore, Isabelle checks the correctness of the
dumped proofs, improving efficiency and the number of checked proofs,
thereby reducing human interaction as each failed attempt now requires
less manual intervention for completion. I have also worked on defining a
proper standard for the proof format and am currently collaborating with
Hanna Lachnitt on the reconstruction in cvc5, including machine words
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(bitvectors).
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Abstract. In 2020 Feng & Bacchus revisited variants of the all-UIP
learning strategy, which considerably improved performance of their ver-
sion of CaDiCaL submitted to the SAT Competition 2020, particularly
on large planning instances. We improve on their algorithm by tightly
integrating this idea with learned clause minimization. This yields a
clean shrinking algorithm with complexity linear in the size of the impli-
cation graph. It is fast enough to unconditionally shrink learned clauses
until completion. We further define trail redundancy and show that our
version of shrinking removes all redundant literals. Independent experi-
ments with the three SAT solvers CaDiCaL, Kissat, and Satch confirm
the effectiveness of our approach.

1 Introduction

Learned clause minimization [18] is a standard feature in modern SAT solvers. It
allows to learn shorter clauses which not only reduces memory usage but arguably
also helps to prune the search space. However, completeness of minimization
was never formalized nor proven. Using Horn SAT [9] we define trail redundancy
through entailment with respect to the reasons in the trail and show that the
standard minimization algorithm removes all redundant literals (Sect. 2).

Minimization, in its original form [18], only removes literals from the initial
deduced clause during conflict analysis, i.e., the 1st-unique-implication-point
clause [21]. In 2020 Feng & Bacchus [11] revisited the all-UIP heuristics with the
goal to reduce the size of the deduced clause even further by allowing to add new
literals. In this paper we call such advanced minimization techniques shrinking.
In order to avoid spending too much time in such shrinking procedures the authors
of [11] had to limit its effectiveness. They also described and implemented several
variants in the SAT solver CaDiCaL [2]. One variant was winning the planning
track of the SAT Competition 2020. The benchmarks in this track require to
learn clauses with many literals on each decision level.

As Feng & Bacchus [11] consider minimization and all-UIP shrinking sepa-
rately, they apply minimization first, then all-UIP shrinking, and finally again
minimization (depending on the deployed strategy/variant), while we integrate
both techniques into one simple algorithm. In contrast, their variants process
literals of the deduced clause from highest to lowest decision level and eagerly
introduce literals on lower levels. Thus their approach has to be guarded against
actually producing larger clauses and can not be run unconditionally (Sect. 3).

7 Understanding and Improving SAT Solvers
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We integrate minimization and shrinking in one procedure with linear com-
plexity in the size of the implication graph (Sect. 4). Processing literals of the
deduced clause from lowest to highest level allows us to reuse the minimization
cache, without compromising on completeness, thus making it possible to run
the shrinking algorithm unconditionally until completion. On the theoretical
side we prove that our form of shrinking fulfills the trail redundancy criteria.

Experiments with our SAT solvers Kissat, CaDiCaL, and Satch show
the effectiveness of our approach and all-UIP shrinking in general. Shrinking
decreases the number of learned literals, particularly on the recent planning
track. We also study the amount of time used by the different parts of the
transformation from a conflicting clause to the shrunken learned clause (Sect. 5).

Regarding related work we refer to the Handbook of Satisfiability [7], particu-
larly for an introduction to CDCL [17], the main algorithm used by state-of-the-
art SAT solvers. This work is based on the classical minimization algorithm [18],
which Van Gelder [19] improved by making it linear (in the number of literals)
in the implication graph without changing the resulting minimized clause. The
original all-UIP scheme [21] was never considered to be efficient enough to be part
of SAT solvers, until the work by Feng & Bacchus [11]. We refer to their work
for a detailed discussion on all-UIPs. Note that, Feng & Bacchus [11] consider
their algorithm to be independent of minimization, more like a post-processing
step, while we combine shrinking and minimization for improved efficiency. The
technical report with the proofs of all theorems is available [13].

2 Minimization

We first present a formalization of what minimization actually achieves through
the notion of “trail redundancy”. Then the classical deduced clause minimization
algorithm is revisited. It identifies literals that are removable and others literals
called poison that are not. The algorithm uses a syntactic criterion, but removes
exactly the trail redundant literals. We present five existing criteria to detect
(ir)redundancy earlier and prove their correctness.

When a SAT solver identifies a conflicting clause, i.e., a clause in which
all literals are assigned to false, it analyzes the clause and first deduces a 1st-
unique-implication-point clause [17,21]. This deduced clause is the starting point
for minimization and shrinking. The goal is to reduce the size of this clause
by removing as many literals as possible. The following redundancy criterion
specifies if a literal is removable from the deduced clause.

Definition 1 (Semantic Trail Redundancy). Given the formula FM com-
posed only of the reason annotating propagated literals in the trail M and the
conflicting clause D such that M � ¬D. The literal L ∈ ¬M is called redundant
iff FM � ¬L ∨ (D \ {L}).

For this definition we only consider redundancy with respect to the reasons
in the trail (ignoring other clauses in the formula). Note that, most SAT solvers
only use the first clause in the watch lists to propagate, even though “better”
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clauses might trigger the same propagation. For instance PrecoSAT scans
watch lists to find such cases [3]. However, due to potential cyclic dependencies,
deducing the shortest learned clause is difficult [20].

Theorem 2 (Redundant Literals are Removable). If L∨D is the deduced
clause and L is redundant, then D is conflicting and entailed.

Our next theorem states that the order of removal does not impact the out-
come and that it is possible to cache whether a literal is (ir)redundant.

Theorem 3. Literals stay (ir)redundant after removal of redundant literals.

The reason L ∨ C annotates the propagation literal LL∨C in the trail. Mini-
mizing the deduced clause consists in recursively resolving with the reasons: If
the clause becomes smaller, it is used. Duplicate literals are removed from the
clause. Algorithm 1 shows a recursive implementation that resolve away the
literal L without addition of literals. The minimization algorithm applies to
every conflicting clause but is only applied to the deduced clause [21], namely
the deduced clause after the first unique implication point was derived.

The minimization algorithm is standard in SAT solvers with several improve-
ments. First, they use efficient data structures to efficiently check if a literal
is in the deduced clause. Second, they use caching: if a literal was deemed
(un)removable before, the same outcome is used again. Caching successes and
failures [19] make the algorithm linear in the size of the implication graph. Lit-
erals that can not be removed are called poison.

Our definition of trail redundancy is semantic, while the minimization algo-
rithm uses relies on syntactic criteria to determine if a literal is removable or not.
We show that both criteria are equivalent by using a result of Horn satisfiability.

Definition 4 (Transition System by Dowling and Gallier [9]). Consider
the following rewriting system defined for Horn formulas, starting from the start
symbol I

1. For every clause L∨¬L1 ∨ · · · ∨¬Ln, we consider the associated rewrite rule
¬L→ ¬L1 · · · ¬Ln (where n can be zero).

2. For every clause ¬L1∨· · ·∨¬Ln, we consider the rewrite rule I → ¬L1 · · · ¬Ln.

In Definition 4, given our SAT context the step ¬L1 · · · ¬Ln, represents the
entailed clause ¬L1 ∨ · · · ∨ ¬Ln. One rewriting step is a resolution step.

Theorem 5 (Dowling and Gallier [9]). Given a satisfiable Horn formula, a
literal is true iff it can be rewritten to ⊥.

The transition system from Definition 4 is not linear. As far we are aware,
this is the first description of minimization algorithm in terms of Horn SAT.

Theorem 6. Algorithm 1 is the same as the transition system from Definition 4.

7 Understanding and Improving SAT Solvers
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Function IsLiteralRedundant(L, d, C)

Input: Literal L assigned to true, recursion depth d, deduced clause C
Output : Whether L can be removed

if L is a decision then
return false

D ∨ L ←− reason(L);
foreach literal K ∈ D do

if ¬IsLiteralRedundant(¬K, d + 1, C) then
return false

return true

Function MinimizeSlice(B, C)

Input: A clause C (passed by reference) and a subset B of C to minimize
Output : The minimized clause with redundant literals in B removed

foreach K ∈ B do
R ←− ∅
if IsLiteralRedundant(¬K, 0, C) then

R ←− R ∪ {K}
C ←− C\R

Algorithm 1: Basic recursive minimization algorithm similar to [18].

Theorem 7 (Equivalence Syntactic and Semantic Redundancy). Both
notions of redundancy are equivalent. In particular, every redundant literal is
also removable.

In our formalization of learned clause minimization for our verified SAT solver
IsaSAT [12], we use a different definition of redundancy, namely FM � ¬L∨D<ML

where D<ML are all the literals of D that appear before L in the trail M . This
definition is equivalent but it makes more explicit that only literals that appear
before L are relevant. We have not formalized completeness while working on
IsaSAT since we only cared about correctness.

Theorem 8. A literal L is redundant iff FM � ¬L ∨D<ML.

Our implementation relies on the alternative definition: It sorts the literals in the
clause by its position on the trail. Each literal, starting from the lowest position,
is checked. If it is not redundant, it is marked as present in the deduced clause
for efficient checking. This reduces the number of flags (like testing if a literal
is present in the deduced clause) to reset. Instead we could use d: When d = 0,
the condition “L is in the deduced clause” does not apply.

Thanks to caching both successes and failures, the complexity is linear in the
number of literals of the trail. Compared to our simple break conditions, more
advanced criteria are possible.

Theorem 9 (Poison Criteria).

1. If a literal appears on the trail before any other literal of the deduced clause
on a decision level, then it is not redundant.
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Function IsLiteralRedundantEfficient(L, d, C)

Input: Literal L assigned to true, recursion depth d, deduced clause C
Output : Whether L can be removed

if status of L is cached in minimization cache then
return cached value

if any advanced poison criterion from Theorem 9 applies (uses d ) then
return false

if L is root-level assigned (unit) or ¬L ∈ C then
return true

if L is a decision then
return false

D ∨ L ←− reason(L)
foreach K ∈ D do

if ¬IsLiteralRedundantEfficient(¬K, d + 1, C) then

Cache false for L
return false

Cache true for L
return true

Algorithm 2: Advanced minimization algorithm equivalent to Algorithm 1.

2. Literals with a decision level not in the deduced clause are not redundant.
3. Literals that are alone on a given decision level are not redundant (Knuth).

The proof relies on the fact that the SAT solver propagates literals eagerly. This
is not the case globally if the SAT solver uses chronological backtracking [15,16]
but remains correct for the reason clauses. The second and third point are widely
used (e.g., in MiniSAT and Glucose), whereas the first one is a novelty of
CaDiCaL and is not described so far. Root-level assigned false literals can also
appear in deduced clauses and be removed without recursing over their reasons.

Theorem 10. Literals at level 0 are redundant.

Algorithm 2 combines the two ideas that are described here, the caching and
the advanced poison criteria. The ideas 1 and 3 from Theorem 9 require data
structures that are not present in every SAT solver, namely the position τ of
each literal in the trail. Doing so was not necessary until now, but it is required
for shrinking. In our solvers, we also use the depth to limit the number of the
recursive calls and avoid stack overflows. The implementation in MiniSAT [10]
(and all derived solvers like Glucose [1]) uses a non-recursive version, but it
requires two functions, one for depth zero and another for the recursive case.

3 Shrinking

After detecting conflicting clauses, the SAT solver analyzes them and deduces
the first unique-implication point or 1-UIP [7], where only one literal remains

7 Understanding and Improving SAT Solvers
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Function MinAllUIPShrinkSlice(B, C)

Input: Slice B of literals of the deduced clause C on the (slice) level
Output : B unchanged or shrunken if min-alluip is successful

E ←− ∅
while |B| > 1 do

Remove from B last assigned literal ¬L
D ∨ L ←− reason(L)
if ∃K ∈ D\C assigned at lower level not already in C then

E ←− E ∪ {L}
else

B ←− B ∪ {K ∈ D | K assigned on slice level}
Replace in deduced clause C original B with B ∪ E

Function MinAllUipShrinking(C)

Input: The deduced clause C (passed by reference)
Output : The shrunken clause using the min-alluip strategy

C′ ←− C
foreach Level i of literals in the deduced clause – highest to lowest do

B ←− {L ∈ C | L assigned at level i}
MinAllUIPShrinkSlice(B, C)

Replace C with saved original deduced clause C′ unless |C| < |C′|

Algorithm 3: Shrinking algorithm min-alluip from Feng&Bacchus [11].

on the current (largest) decision level. This is the first point where the clause is
propagating, fixing the current search direction. The idea of 1-UIP can be applied
on every level in order to produce shorter clauses. We call this process shrinking.
It differs from minimization because it adds new literals to the deduced clause.

If fully applied, shrinking derives a subset of the decision-only clause. There-
fore, it is limited. Feng & Bacchus [11] (abbreviated F&B from now on) have
used various heuristics like not adding literals of low importance, without a clear
winner across all implementations. We focus on their min-alluip variant. It
applies the 1-UIP on every level. For each literal in the clause, the solver resolves
with its reason unless a literals from a new level is added, thus making sure that
the LBD or “glue” [1] is not increased, an important metric, which seems to
relate well to the “quality” of learned clauses. In their implementation, if the
clause becomes longer, the minimized clause would be used instead.

Algorithm 3 shows the implementation of min-alluip. It considers the set of
all literals of the deduced clause on the same level, or slice (same as a block if
no chronological backtracking [15,16] is allowed). Each slice is shrunken starting
from the highest level. It resolves each literal of the slice with its reason or fails
when adding new literals on lower levels. Because SAT solvers propagate eagerly,
|B| ≥ 1 is an invariant of the while loop (and L cannot be a decision literal).

The key difference between shrinking and minimization is that reaching the
UIP is a global property, namely of all literals on a level, and not of a single
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A†
2 B2 C2

A†
3 B3 C3

A†
4 B4 C4

A†
5

Fig. 1. Conflict example

literal. This means that testing redundancy is a depth-first search algorithm
while shrinking is a breadth-first search algorithm on the implication graph.

Example 11. Consider the implication graph from Figure 1. The algorithm starts
with the highest level, namely with B4 and A4. The level is reduced to A4

introducing the already present B3. On the next level, C3 cannot be removed
because it would import level 2. The resulting clause ¬A5∨¬A4∨¬A3 is smaller
and is used instead of the original clause.

F&B unfortunately do not provide source code nor binaries used in their
experiments. Therefore we focus on their version of CaDiCaL submitted [14]
to the SAT Competition 2020. It implements only one of their strategies, which,
as far we can tell, matches the variant min-alluip [11] described above, while
code for the other variants is incomplete or missing.

4 Minimizing and Shrinking

In contrast to F&B our algorithm minimizes literal slices of the deduced clause
assigned on a certain level starting from the lowest to highest level. This enables
us to remove all redundant literals on-the-fly. After presenting our algorithm
we study its complexity and then discuss its implementation in our SAT solvers
CaDiCaL, Kissat, and Satch.

The main loop of our Algorithm 4 interleaves shrinking and (if shrinking
failed) minimization. For each slice of literals in the deduced clauses assigned
on a certain level we then attempt to reach the 1-UIP, similarly to Algorithm 3.
If this fails, we minimize the slice. This also allows to lift some restriction on
shrinking: only non-redundant literals interrupt the search for the 1-UIP. We
start from the lowest level to keep completeness of minimization.

Example 12. Consider the implication graph from Figure 1. The algorithm starts
with the slice of literals on the lowest decision level, namely with B3 and C3. No
UIP can be found because it would import level 2. Level 1 is shrunken to A4.
The shrunken clause is ¬A5 ∨ ¬A4 ∨ ¬B3 ∨ C3

7 Understanding and Improving SAT Solvers
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Function ShrinkingSlice(B, C)

Input: Slice B of literals of the deduced clause C on a single (slice) level
Output : B unchanged or shrunken to UIP if our new method is successful

while |B| > 1 do

Remove from B last assigned literal ¬L
D ∨ L ←− reason(L)
if ∃K ∈ D\C at lower level and ¬IsLiteralRedundant(¬K, 1, C)

then

return with failure (keep original B in C)
else

B ←− B ∪ {K ∈ D | K on slice level}
Replace in deduced clause C original B with the remaining UIP in B

Function Shrinking(C)

Input: The deduced clause C (passed by reference)
Output :The shrunken and minimized clause using our new strategy

foreach Level i of literals in the deduced clause – lowest to highest do

B ←− {L ∈ C | L assigned at level i}
ShrinkingSlice(B, C)

if shrinking the slice failed then MinimizeSlice(B, C);

Algorithm 4: Our new method for integrated shrinking with minimization.

As mentioned before, for efficiency a cache is maintained during minimization
to know whether a literal is redundant or not.

Theorem 13 (Shrinking and Redundancy). Redundant literals remain re-
dundant during shrinking.

Theorem 13 ignores irredundant literals because new literals are added to the
deduced clause, allowing for more removable literals. This explains why F&B
propose (in one variant of shrinking) to minimize again after shrinking. For the
same reason we do not check if literals are redundant on the current level, since
added literals (e.g., new 1st UIPs) invalidate the literals marked as “poisoned”.
Instead, we check for redundancy of literals on lower levels and on current level
only after shrinking them, when the literals on the slice level are fixed.

Example 14 (Minimization during shrinking). Consider the following trail

A†
1B

B1∨¬A1
1 A†

2B
B2∨¬B1∨¬A2
2 A†

3

where † marks a decision and the deduced clause is ¬A1 ∨¬B2 ∨¬A3. Shrinking
cannot remove B2 because it would introduce the new literal B1 on lower levels,
unless it is determined to actually be redundant (A1 is in the deduced clause).

To keep the complexity linear, when interleaving minimization with shrinking
as shown in Algorithm 4, we maintain a global shared minimization cache, not
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reset between minimizing different slices. A more complicated solution consists
in minimizing up-front (as in the implementation of F&B in [14]), followed by
shrinking, and if shrinking succeeds, reset the poison literals on the current level.

Resetting only literals on the current level is important for reducing the run-
time complexity from quadratic to linear in the size of the implication graph. As
we are shrinking “in order” (from lowest to highest decision level) we can keep
cached poisoned (and removable) literals from previous levels, thus matching the
overall linear complexity of (advanced) minimization.

Our solution also avoids updating the minimization cache more than once
during shrinking. When a slice is successfully reduced to a single literal, all
shrunken literals are marked as redundant in the minimization cache. The
process is complete in the sense that no redundant literals remain.

Theorem 15 (Completeness). All redundant literals are removed.

This result relies on the fact that during the outer loop no literal on a lower
level is added to the deduced clause. If this would be allowed (as in Algorithm 3),
the poisoned flag has to be reset and minimization redone, yielding a quadratic
algorithm. However, the theorem says nothing about minimality of the shrunken
clause if we allow to add new literals, as in the following example.

Example 16 (Smaller Deduced Clause). Consider the trail

A†
1B

B1∨¬A1
1 CC1∨¬B1

1 A†
2B

B2∨¬A2
2 CC2∨¬B2∨¬B1

2 A†
3

and the deduced clause ¬C1∨¬B2∨¬C2∨¬A3. The clause is neither minimized
nor shrunken by our algorithm, but can be shrunken to the smaller ¬B1 ∨¬B2 ∨
¬A3.

In Algorithm 4, on the one hand, shrinking could use a priority queue (im-
plemented as binary heap) to determine the last assigned literal in B. Then for
each slice, we have a complexity of O(nb log nb) for shrinking where nb is the
number of literals at the slice level in the implication graph. On the other hand,
minimization of all slices is linear in the size of the implication graph. Overall
the complexity is O(glue · n log n) where the “glue” is the number of different
slices (and a number that SAT solvers try to reduce heuristically) and n the
maximum of the nb. However, note that, bumping heuristics require sorting of
the involved literals anyhow either implicitly or explicitly [6].

Instead of representing the slice B as a priority queue, implemented as binary
heap, to iterate over its literals, it is also possible to iterate over the trail directly
as it is common in conflict analysis to deduce the 1st-UIP clause. Without
chronological backtracking, the slices on the trail are disjoint and iterating over
the trail is efficient and gives linear complexityO(|glue|×|max trail slice length|),
i.e., linear in the size of the implication graph.

With chronological backtracking slices on the trail are not guaranteed to be
disjoint. Therefore, in the worst case, iterating over a slice along the trail might
require to iterate over the complete trail. In principle, this could give a quadratic

7 Understanding and Improving SAT Solvers
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complexity for chronological backtracking without using a priority queue for B.
In our experiments both variants produced almost identical run-times and thus
we argue that the simpler variant of going over the trail should be preferred.

We have implemented the algorithm from the previous section in our SAT
solvers CaDiCaL [5], Kissat [5], and Satch [4]. The implementation is part
of our latest release in the file shrink.c (shrink.cpp for CaDiCaL).1 Note
that, Satch is a simple implementation of the CDCL loop with restarts and
was written to explain CDCL. It does not feature any in- nor preprocessing yet.

We either traverse the trail directly or use a radix heap [8] as priority queue.
Unlike the implementation by F&B, our priority queue contains only the literals
from the current slice until either shrinking fails or the 1-UIP is found. It allows
for efficient popping and pushing trail positions. Note that, radix heaps require
popped elements to be strictly decreasing, and as the analysis follows reverse trail
order, we first compute the maximum trail position of literals in the considered
slice and then index literals by their offsets on the tail from this maximum trail
position. The literal position in the trail is not cached in every SAT solver, but
was already maintained in Kissat and CaDiCaL.

5 Experiments

We have implemented our algorithm in the SAT solvers CaDiCaL, Kissat
(the winner of the SAT Competition 2020), and Satch and evaluated them on
benchmark instances from the SAT Competition 2020 on an 8-core Intel Xeon
E5-2620 v4 CPUs running at 2.10 GHz (turbo-mode disabled). For both tracks
we used a memory limit of 128 GB (as in the SAT Competition 2020). We tested
3 configurations, shrink (shrinking and minimizing), minimize, and no-minimize
(neither shrinking nor minimizing). Due to space constraint we only give graphs
for some solvers but findings are consistent across all of them.

Tables 1 for Kissat and Satch show that minimization is more important
than shrinking, but the latter still improves performance for Kissat. In the
planning track, running time decreases significantly, whereas the impact on the
main track is smaller. Compared to the main track, the planning problems require
much more memory and memory usage drops substantially with shrinking. For
Satch, we observe a slight performance decrease. Figures 2 and 3 show that
even if shrinking solves only a few more problems, the speedup is significant.

In all our SAT solvers we distinguish between focused mode (many restarts)
and stable mode (few restarts). Note that CaDiCaL uses the number of conflicts
to switch between these modes which is rather imprecise: in stable mode decision
frequency is lower while the conflicts frequency is higher compared to focused
mode and accordingly the fraction of running time spent in conflict analysis and
thus minimization and shrinking increases in stable mode compared to focused
mode. To improve precision both Kissat and Satch measure the time by esti-
mating the number of possible cache misses instead, called “ticks” [5]. By default

1 Source code and log files are available at http://fmv.jku.at/sat_shrinking.
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Table 1. Results for new solvers on the SAT Competition 2020 benchmarks

Average
Solver Track Configuration Solved PAR-2 clause size

Kissat

Main Track
(400 problems)

shrink 270 1561735 46
minimize 267 1 566 688 110
no-minimize 235 1 891 872 183

Planning Track
(200 problems)

shrink 85 1197799 5 398
minimize 83 1 222 535 13 076
no-minimize 74 1 325 957 16 637

Satch

Main Track
(400 problems)

shrink 196 2 271 119 46
minimize 203 2240351 144
no-minimize 159 2 621 070 370

Planning Track
(200 problems)

shrink 85 1212977 5 043
minimize 80 1 250 861 11 854
no-minimize 72 1 338 592 15 474

CaDiCaL
1.4.0

Main Track
(400 problems)

shrink 240 1 870 484 90
minimize 233 1 939 998 121
no-minimize 194 2 280 897 153

Planning Track
(200 problems)

shrink 73 1 334 718 4 885
minimize 64 1 454 186 7 799
no-minimize 42 1 615 676 11 767

Kissat also counts the number of such ticks during shrinking and minimization.
To avoid the bias introduced by this technique in terms of influencing mode
switching we deactivated this feature in our experiments (only for Kissat).

We analyzed the results on the main track in more details over all instances
(i.e., until timeout or memory out), not only over solved instances. The amount
of time (in percentage of the total) more than doubles when activating shrinking:
it goes from 6.3 % to 14.3 % of the total amount of time (Figure 5). However,
the size of the clauses is reduced with a similar ratio: It drops from 110 to 46
(183 without minimization). On the planning track, it drops from 13 076 to 5 398
literals on average (16 637 without minimization).

To compare our method to the min-alluip implementation, which is based on
CaDiCaL 1.2.1, we backported our shrinking algorithm to CaDiCaL 1.2.1 too.
The results are in Table. 2. The only difference is the shrinking algorithm, hence
there are not differences for the minimize and no-minimize configuration. The
F&B version performs slightly better than our version. An interesting observation
is that CaDiCaL 1.2.1 learns much larger clauses than Kissat and Satch
but also larger than the latest CaDiCaL version. The effect can be partially
explained by the stable mode that is much longer than on the other solvers. We
have also experimented with minimizing separately from shrinking instead of
combining them. As long as the cache is shared there is very little performance
difference. Figure 7 shows the CDF for the main track.

7 Understanding and Improving SAT Solvers
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Fig. 2. Kissat solving time on the planning track.
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Fig. 3. Satch solving time on the planning track.
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Fig. 4. Absolute sizes of learned clauses of Kissat on main track.

	0

	10

	20

	30

	40

	50

	60

	70

	80

	0 	50 	100 	150 	200 	250 	300 	350 	400

shrink	(planning)
minimize	(planning)

shrink	(main)
minimize	(main)

Fig. 5. Amount of time in percent spent during shrinking and minimization of Kissat.
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Table 2. Results for solvers based on CaDiCaL 1.2.1 on the SAT Competition 2020
benchmarks with a memory limit of 128 GB, following the SAT Competition

Average
Solver Track Configuration Solved PAR-2 clause size

shrinking
(this paper)

Main Track
(400 problems)

shrink 235 1 897 387 92
minimize 230 1 972 949 135
no-minimize 208 2 184 920 187

Planning Track
(200 problems)

shrink 73 1 351 542 5 373
minimize 63 1 454 871 6 433
no-minimize 39 1 643 665 9 874

min-alluip
[11, 14]

Main Track shrink 237 1 904 745 104

Planning Track shrink 81 1 271 930 3 261

Figure 6 shows percentages of removable literals on the planning track. Shrink-
ing removes more literals than the subsequent minimization (and more than
minimization alone).

We have mentioned the complexity difference between using a radix heap
and iterating over the trail. We have implemented both versions in our three
SAT solvers. We compare both version but could not observe any significant
difference. We believe that this is due to the fact that finding the next literal is
actually very efficient: it is in the trail (that is in cache anyways) and we check
a single flag. We attempted to force the worst case by enforcing chronological
backtracking, but performance remained similar.

6 Conclusion

We presented a simple linear algorithm which integrates minimization and shrink-
ing and is guaranteed to remove all redundant literals. In practice it can be run
to completion unconditionally. Our implementation and evaluation with sev-
eral SAT solvers show the benefit of our approach and confirm effectiveness of
shrinking in general.

An open question is how to extend our notion of trail redundancy to capture
that new literals can be added in order to reduce size. This would allow to
formulate completeness of shrinking in the same way as we did for minimization.
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Abstract Bounded variable elimination is one of the most important preprocessing
techniques in SAT solving. It benefits from discovering functional dependencies in
the form of definitions encoded in the CNF. While the common approach pioneered
in SatELite relies on syntactic pattern matching, our new approach uses cores
produced by an embedded SAT solver, Kitten. In contrast to a similar semantic
technique implemented in Lingeling based on BDD algorithms to generate irre-
dundant CNFs, our new approach is able to generate DRAT proofs. We further
discuss design choices for our embedded SAT solver Kitten. Experiments with
Kissat show the effectiveness of this approach.

1 Dedication

We dedicate this rather technical SAT paper to the memory of Ed Clarke. He was
one of the first to see the tremendous potential of SAT solving not only in model
checking, but more general in verification and beyond. His vision to use SAT
for model checking, the encouragement and guidance he gave to two Post-Docs
working on this topic (the 2nd author and Yunshan Zhu), which then lead to our
multiple awards winning joint work on Bounded Model Checking [5–9,16], clearly
plays a pivotal role in the history of the SAT revolution we are witnessing today.

Bounded Model Checking turned out not only to become the first practical ap-
plication of SAT but also, even though highly debated initially, lead to a paradigm
shift in using formal verification, trading completeness for scalability. This contro-
versy can also be seen as the starting point of other highly-influential work in the
model checking community, particularly Ken McMilan’s work on interpolation [30]
and then the development of the IC3 algorithm by Aaron Bradley [14], which both
also rely on SAT solving but try to keep completeness without sacrifying scalability
too much.
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This success of SAT in model checking motivated new research on SAT solving,
including the seminal work at Princeton yielding the Chaff [32] SAT solver, which
is standing on the shoulders of another seminal work around the Grasp solver from
Michigan [36], and also turbo-charged the use of decision procedures originating
in the automated theorem proving community in the form of SMT. This SAT
revolution is a corner stone of the more broader adoption of automated reasoning
in many applications, from classical hardware to software verification as well as
scheduling cloud jobs. We believe without Ed this would not have happened.

2 Introduction

Preprocessing and particularly inprocessing [26] is a key feature of modern SAT
solvers, the latter being part of every winner of the SAT competition since 2013.
Arguably the most important pre- and inprocessing technique is bounded variable
elimination (BVE). Even though in its unbounded form, elimination is a decision
procedure for SAT, in the context of preprocessing bounded variable it is not run
until completion. The idea of BVE is to iteratively eliminate one variable from
the problem by resolving every occurrence away without adding redundant clauses.
Furthermore, the difference between the number of added and removed clauses is
bounded in practical implementation (Section 3).

Definability is a concept that reduces the number of clauses to add. It consists
in recognizing a definition of x such that x↔ f(a1, . . . , an) from the input formula
in conjunctive normal form (CNF). The simplest example are gates like x↔ a1∧a2
that can be efficiently detected. Detecting gates reduces the number of resolvents
because not all clauses have to be resolved together. A simple approach is to
syntactically recognize gates as encoded in the CNF input. This approach is for
example used in CaDiCaL [10] and CryptoMiniSat [39].

This syntactic approach (Section 4) is limited though and fails to recognize
“irregular” gates not characterized by a simple gate type (such as And gates). It
also fails to detect gates after elimination of one of the input variables. Recently
semantic approaches based on Padoa’s theorem [34] have been developed with
applications in model counting [28] and a similar technique exists for (D)QBF
reasoning [35,37]. In both approaches a SAT solver is used as oracle to find gate
clauses. In this paper we follow this line of research and extend our SAT solver
Kissat [12] to detect gates semantically. It uses a simple SAT solver called Kitten,
called as an oracle to find gate clauses (Section 5). Our definition of gate detection
is equivalent to previous approaches, even though our method never explicitly
reconstructs the function (Section 6).

Our technique discovers gates but it does not need to know which are the inputs
(Section 7). One interesting property about gates is that we do not need to resolve
gate clauses among themselves. However, this only holds if the full clause is found
and not a subset of the clause. If those clauses are forgotten, an unsatisfiable
problem can become satisfiable (Section 8). Syntactic detection of gates is faster
and detects most useful gates. So Kissat first finds gates syntactically and then
calls Kitten to find other gates semantically (Section 9).

It turns out that the performance of the sub-solver Kitten has a non-negligible
impact on the overall performance, as it is frequently called to find definitions
with different environment clauses in which a candidate variable to be eliminated
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occurs. Basically Kitten is a very simple CDCL solver with watched literals but
for instance without blocking literals. A key feature of Kitten for semantic gate
detection is that it can be “cleared” efficiently avoiding reallocation of internal
data structures (Section 10). It further can be instructed to keep antecedents of
learned clauses in memory and thus can compute clausal cores in memory.

Experiments on benchmarks from the SAT Competition 2020 show that our
new elimination method has only a minor impact on performance and runtime,
but it does eliminate substantially more variables, even after syntactic extraction
is employed first. Thus definition extraction is effective (Section 11).

We finish with related work (Section 12). The idea of not generating redundant
unnecessary clauses relates to blocked clause elimination (BCE), a simplification
technique that can remove clauses. Iser [24] also used a SAT solver in the context
of gate identification, but he does not use it to identify a gate, but only to check
“right uniqueness” of already identified set of clauses.

This paper is an substantially extended version of our very brief presentation
in the system description [12] of Kissat from the SAT Competition 2021 and
an extension of our (unpublished) Pragmatics of SAT Workshop 2021 (POS’21)

presentation [11]. Compared to the system description, we have significantly
extended all explanations and give more details about Kitten. Last but not least
we report detailed experiments.

3 Bounded Variable Elimination

In principle, eliminating variables from a formula reduces the search space in solv-
ing the formula exponentially with the number of removed variables. However,
this argument is only sound as long the formula does not increase in size geomet-
rically with the number of eliminated variables. Otherwise we would have found a
procedure to polynomially solve SAT.

Thus the basic idea of bounded variable elimination is to only eliminate variables
in a formula, for which the resulting formula is not bigger than the original formula,
i.e., where the size increase due to variable elimination is bounded. This procedure
can be implemented efficiently and in practice is considered the most effective
preprocessing technique, particularly for industrial instances.

The basic approach works as follows. Let x be a variable considered to be
eliminated from the CNF F . We split F syntactically into three parts

F = Fx ∧ Fx̄︸ ︷︷ ︸
E(F,x)

∧∆(F, x),

where Fℓ is the CNF of clauses of F which contain literal ℓ, with ℓ ∈ {x, x̄} and
∆(F, x) contains the remaining clauses without x nor x̄. We call E(F, x) = (Fx∧Fx̄)
the environment of x. As usual tautologies do not have to be considered, where a
clause is called tautological or trivial if it contains a variable x and its negation x̄.

Let x be a variable and Hx and Hx̄ CNFs where clauses in Hℓ all contain ℓ, we
define the1 set of resolvents of Hx and Hx̄ over x as follows:

Hx ⊗Hx̄ = {(C ∨D) | (C ∨ x) ∈ Hx, (D ∨ x̄) ∈ Hx̄, and (C ∨D) not a tautology}.
1 If two clauses can be resolved over two different variables, the resulting resolvents are

tautological. Thus the resolution operator “⊗” does not really need to be parameterized by x.
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As usual we interpret a CNF also as a set of clauses. The goal of variable elimination
is to resolve all clauses of Fx̄ with all clauses of Fx and replace E(F, x) with the
obtained resolvents, that is replacing the formula F by (Fx ⊗ Fx̄) ∧∆(F, x).

The process described so far is just a reformulation of “clause distribution”
from the original DP procedure [17]. What turns it into the most important
preprocessing techniques of today’s SAT solvers is the idea of eliminating a variable
if the difference between the number of added (resolvent) clauses and removed
clauses (containing the eliminated variable x) is bounded [2, 3, 18, 40]. There are
various possibilities to set this bound, and even increase it dynamically [33], which
are orthogonal to the discussion of this paper.

Enforcing that the size of the formula does not grow too much during variable
elimination restricts the number of variables that can be eliminated and thus the
effectiveness of variable elimination. It is therefore beneficial to determine whether
certain resolvents are redundant, i.e., implied by the resulting formula, and do not
need to be added. This will allow additional variables to be eliminated, for which
the size limit is hit without considering redundant resolvents.

Finally, as the elimination of a variable produces a formula which is satisfiability
equivalent but not logically equivalent to the original formula (unless the formula
is unsatisfiable), we need a way to reconstruct models of the original formula
given a model of the simplified formula. This can be achieved by saving the
eliminated clauses on a “reconstruction stack” and the interested reader might
want to consult [13, 21,26] for further details.

4 Gate Extraction

Already when introducing the SatELite preprocessor [18], it was proposed to
extract subsets of “gate clauses” from Fx and Fx̄ that encode “circuit gates” with
output x, also called definitions of x. Resolving these gate clauses against each
other results in tautological (trivial) resolvents, and, in particular, this situation
allows the solver to ignore resolvents between non-gate clauses (since those are
implied). Assume that F can be decomposed as follows

F ≡
Fx︷ ︸︸ ︷

Gx ∧Hx ∧
Fx̄︷ ︸︸ ︷

Gx̄ ∧Hx̄ ∧∆(F, x)

where G ≡ Gx ∧Gx̄ are the gate clauses, i.e., the Tseitin encoding of a circuit gate
with output x, Hx and Hx̄ the remaining non-gate clauses of F containing x and
x̄ respectively, and ∆(F, x) the remaining clauses without x nor x̄. The original
technique from SatELite [18] would then use

F ≡ (Fx ⊗ Fx̄) ∧∆(F, x) ≡ (Gx ⊗Hx̄) ∧ (Gx̄ ⊗Hx) ∧∆(F, x)

and only consider the smaller set of resolvents on the right, as both Gx ⊗ Gx̄ as
well Hx⊗Hx̄ can be omitted from Fx⊗Fx̄, even though the former are tautological
resolvents and thus ignored anyhow. To give a concrete example consider the
following formula containing three gate clauses, encoding an And gate x = a ∧ b,
and four non-gate clauses.

F = (ā ∨ b̄ ∨ x)︸ ︷︷ ︸
Gx

∧(a ∨ x̄)∧(b ∨ x̄)︸ ︷︷ ︸
Gx̄

∧
Hx︷ ︸︸ ︷

(c ∨ x)∧(d ∨ x)∧
Hx̄︷ ︸︸ ︷

(e ∨ x̄)∧(f ∨ x̄)∧(c̄ ∨ d̄ ∨ ē ∨ f̄)︸ ︷︷ ︸
∆(F,x)
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Resolving all clauses with x or x̄ results in the following CNF.

F ′′ ≡
(ā ∨ b̄ ∨ a) ∧ (ā ∨ b̄ ∨ b) ∧ tautological Gx ⊗Gx̄ resolvents

(ā ∨ b̄ ∨ e) ∧ (ā ∨ b̄ ∨ f) ∧ kept Gx ⊗Hx̄ resolvents

(a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d) ∧ kept Gx̄ ⊗Hx resolvents

(c ∨ e) ∧ (c ∨ f) ∧ (d ∨ e) ∧ (d ∨ f) ∧ redundant Hx ⊗Hx̄ resolvents

(c̄ ∨ d̄ ∨ ē ∨ f̄) kept ∆(F, x)

Eliminating x in the original CNF F of 8 clauses results in CNF F ′′ with
13 clauses in total, but includes 2 tautological clauses, thus actually only has 11
non-tautological clauses. Without further ignoring the 4 redundant resolvents in
Hx ⊗ Hx̄ bounded variable elimination (even up to allowing for introducing two
more clauses) would still not eliminate x. If the And gate is detected and non-gate
clauses are not resolved against non-gate clauses, we end up with 7 clauses and x

is eliminated.
Finding such gate clauses was originally based on syntactic pattern matching,

by in essence trying to invert the Tseitin encoding. This is best explained for
And gates. Given an elimination candidate x and ℓ ∈ {x, x̄}. We go over all “base
clauses” C = (ℓ ∨ ℓ1 ∨ · · · ∨ ℓn) and check whether F also contains all (ℓ̄ ∨ ℓ̄i) for
i = 1 . . . n. If this is the case, we found the n-ary And gate ℓ = (ℓ̄1 ∧ · · · ∧ ℓ̄n) with
gate clauses Gℓ = {C} and Gℓ̄ = {(ℓ̄∨ ℓ̄i) | i = 1 . . . n}. If ℓ = x then x is the output
of an And gate. If ℓ = x̄, then x is the output of an Or gate x = (ℓ1∨· · ·∨ ℓn). For
the special case n = 1 this amounts to extracting bi-implications (equivalences).
According to our benchmarks (Section 11), extracting And gates this way already
gives the largest benefit but similar syntactical extraction techniques exist for Xor

or IfThenElse gates.
Detecting gates syntactically, however, is not very robust and our SAT solver

Lingeling [4] implements a very different technique inspired by BDD algorithms.
It converts the environment clauses into a BDD (actually a function table), elim-
inates variables there, and translates the result back to a CNF using Minato’s
algorithm [19, 31], which produces a redundancy-free CNF. More details are pro-
vided in the preprocessing chapter of the 2nd edition of the Handbook of SAT [13].

Figure 1 shows a CDF of the number of solved instances of the last Lingeling

release with and without this technique. On these problems from the SAT Com-
petition 2020, deactivating this technique (smallve0) gives better performance.
Remember that Lingeling is not developed anymore and was not trained on
competition problems since 2016. Figure 2 gives the amount of time spent during
variable elimination. As Lingeling’s semantic variable elimination algorithm is
arguably too costly, we take this as an additional motivation to look into different
algorithms for semantic gate detection. The second issue with the implementation
is that it cannot produce a DRAT proof of the transformation.

5 Definition Mining With a SAT Solver

Instead of only syntactically extracting definitions, our new version of Kissat tries
to extract gate clauses semantically by checking satisfiability of the conjunction

7 Understanding and Improving SAT Solvers
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of the co-factors (Fx|x̄) and (Fx̄|x) of F , i.e., the formula that is obtained by
removing the occurrences of x in Fx and of x̄ in Fx̄ and then conjoining the result.
Alternatively one can obtain the candidate formula to be checked for unsatisfiability
by removing all occurrences of the literals x and x̄ from the environment E(F, x).
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Mining Definitions in Kissat with Kittens 7

If this formula is unsatisfiable, we compute a clausal core which in turn can be
mapped back to original gate clauses Gx and Gx̄ in the environment (by adding
back x resp. x̄ to the clauses generated in the first step).

Note that we ignore ∆(F, x) here and focus on environment clauses only. In
principle, however, we can replace ∆(F, x) in F by (x ∨ ∆(F, x)) ∧ (x̄ ∨ ∆(F, x))
to obtain a CNF (after distributing the variables over ∆(F, x)) where all clauses
either contain x or x̄. Thus the following discussion extends to the seemingly more
general case where also ∆(F, x) is used as “don’t care” for gate extraction.

Let Gℓ for ℓ ∈ {x, x̄} be the identified clauses of Fℓ mapped back from the clausal
core computed by the SAT solver and Hℓ the remaining clauses, i.e., Fℓ = Gℓ ∧Hℓ.
Then it turns out that Fx⊗Fx̄ can be reduced to (Gx⊗Gx̄)∧(Gx⊗Hx̄)∧(Gx̄⊗Hx).
In particular (Hx ⊗Hx̄) can be omitted.2 The net effect is that fewer resolvents
are generated and thus more variables can be eliminated.

To see that non-gate versus non-gate resolvents can be omitted assume that
A ∧B is unsatisfiable and thus Ā ∨ B̄ is valid. Therefore for any C or D we have

(A ∨ C) ∧ (B ∨D) ≡ (A ∨ C) ∧ (B ∨D) ∧ (Ā ∨ B̄).

With two resolution steps we can then show that the right-hand side implies (C∨D)
and thus can be added to the left-hand side.

(A ∨ C) ∧ (B ∨D) ≡ (A ∨ C) ∧ (B ∨D) ∧ (C ∨D)

Setting (A,B,C,D) = (Gx|x̄, Gx̄|x, Hx̄|x, Hx|x̄) shows the rest, more specifically,
that C ∨D = Hx̄ ∨Hx|x̄ can be ignored, independent of A ∨B = Gx|x̄, Gx̄|x:

Fx ⊗ Fx̄ ≡ (Gx ⊗Gx̄) ∧ (Gx ⊗Hx̄) ∧ (Gx̄ ⊗Hx) ∧ (Hx ⊗Hx̄)

≡ (Gx|x̄ ∨Gx̄|x) ∧ (Gx|x̄ ∨Hx̄|x) ∧ (Gx̄|x ∨Hx|x̄) ∧ (Hx|x̄ ∨Hx̄|x)
= (A ∨B) ∧ (A ∨ C) ∧ (B ∨D) ∧ (C ∨D)

≡ (A ∨B) ∧ (A ∨ C) ∧ (B ∨D)

= (Gx ⊗Gx̄) ∧ (Gx ⊗Hx̄) ∧ (Gx̄ ⊗Hx)

For the previous example the conjunction of the co-factors of the 7 environment
clauses E(F, x) results in the following unsatisfiable formula

(ā ∨ b̄) ∧ (a) ∧ (b) ∧ (c) ∧ (d) ∧ (e) ∧ (f).

The first three clauses form a clausal core and after adding back x and x̄ enable
extracting the same gate clauses as before, which in turn enables bounded variable
elimination. If only one co-factor contains clauses, e.g., Hx̄, then we can learn the
unit literal x. This rarely happens in our experiments though. This technique is
a generalization of failed literal probing [29] where multiple decisions are allowed
instead of deciding and propagating just one literal.

2 Resolvents among gate clauses are not necessarily tautological though (see Section 8).

7 Understanding and Improving SAT Solvers
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6 Relating Functional Dependency and Cores

In previous work [28,34,37] the following condition for “definability” was used and
we are going to show that in essence it boils down to the same idea. A variable x

has a functional dependency in F on an (ordered) sub-set of variables D of F with
x ̸∈ D, i.e., the set D of other variables on which the value of x is functionally
dependent, iff the following formula is valid

(D = D′) ∧ F ∧ F ′ → x = x′ (1)

with F ′ a copy of F where each variable y is replaced by a new variable y′. The
intuitive meaning is that there is only one solution for x given the same inputs
(D = D′), whatever the value of the other variables.

The short-hands D = D′ and x = x′ denote formulas which enforce that
the corresponding original variable and its primed copy assume the same value
(through for instance a conjunction of bi-implications). Therefore, there is a
functional dependency of x on D iff the following formula is unsatisfiable.

(D = D′) ∧ F ∧ F ′ ∧ (x̄ = x′)

The key remark is that x̄ = x′ and x = x′ are equivalent because the formula
is symmetric in x and x′. In our concrete application, we are not interested in
determining the exact set of variables D, because we do not have restrictions
on dependencies (unlike in QBF [37] or #SAT [28]). Hence we can pick D, i.e.,
the variables on which x is supposed to depend, to consist of an arbitrary set
of variables occurring in F except x. In practice we will restrict D to the set of
variables in the environment of E(F, x) different from x and this way obtain a
sufficient but not necessary condition for definability of x over F .

Under this assumption, we prove that our core based condition is the same as
definability. First determine CNFs P , N and R such that

F ≡ (x ∨ P ) ∧ (x̄ ∨N) ∧R

where neither x nor x̄ occurs in R. Then simplify (D = D′) ∧ F ′ ∧ (x̄ = x′) to

(F ∧ F ′)[D′ 7→ D][x′ 7→ x̄] = F ∧ (F ′[D′ 7→ D][x′ 7→ x̄])

= F ∧
((
(x′ ∨ P ′) ∧ (x′ ∨N ′) ∧R′) [D′ 7→ D][x′ 7→ x̄]

)

= F ∧
((
(x′ ∨ P ) ∧ (x′ ∨N) ∧R

)
[x′ 7→ x̄]

)

= F ∧ ((x̄ ∨ P ) ∧ (x ∨N) ∧R)

using equivalent literal substitution (see for instance [13]). This yields the following
satisfiability equivalent formula to our core condition in Eqn. (1)

F ∧ (F [x 7→ x̄]),

where on the right x is replaced by its negation x̄ and accordingly x̄ with x. As F

is a CNF this formula contains each clause with x twice, once as in F and once
with x (and x̄) negated. These two copies of each clause can thus be resolved on x

and each resolvent subsumes both antecedents (through self-subsuming resolution).
Clauses in F ′ which do not contain x′ nor x̄′ become identical after substitution
to their counterpart in F .
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Mining Definitions in Kissat with Kittens 9

Therefore the resulting formula after substitution is logically equivalent to the
formula obtained from F by removing all the environment clauses E(F, x) (clauses
with x or x̄) and replacing them with (Fx|x̄) ∧ (Fx̄|x).

To summarize, in order to determine that x is dependent on the variables D in
E(F, x) it is sufficient to check unsatisfiability of

(Fx|x̄) ∧ (Fx̄|x) ∧∆(F, x)

Example 1 (Example of the Proof) Consider the following formula and apply the
proof described above: F = (ā ∨ b̄ ∨ x)︸ ︷︷ ︸

Gx

∧ (a ∨ x̄) ∧ (b ∨ x̄)︸ ︷︷ ︸
Gx̄

as defined above. The

formula

(D = D′) (a = a′ ∧ b = b′ ∧ c = c′)

∧ F ((ā ∨ b̄ ∨ x) ∧ (a ∨ x̄) ∧ (b ∨ x̄) ∧ (c ∨ x))

∧ F ′ ((ā′ ∨ b̄′ ∨ x′) ∧ (a′ ∨ x̄′) ∧ (b′ ∨ x̄′) ∧ (c′ ∨ x′))

→ x = x′

is satisfiable iff its negation is unsatisfiable

(D = D′) (a = a′ ∧ b = b′ ∧ c = c′)

∧ F ((ā ∨ b̄ ∨ x) ∧ (a ∨ x̄) ∧ (b ∨ x̄) ∧ (c ∨ x))

∧ F ′ ((ā′ ∨ b̄′ ∨ x′) ∧ (a′ ∨ x̄′) ∧ (b′ ∨ x̄′) ∧ (c′ ∨ x′))

∧ x = x′

as the formula is symmetrical in x and x′, is unsatisfiable iff the following is too

(D = D′) (a = a′ ∧ b = b′ ∧ c = c′)

∧ F ((ā ∨ b̄ ∨ x) ∧ (a ∨ x̄) ∧ (b ∨ x̄) ∧ (c ∨ x))

∧ F ′ ((ā′ ∨ b̄′ ∨ x′) ∧ (a′ ∨ x̄′) ∧ (b′ ∨ x̄′) ∧ (c′ ∨ x′))

∧ x̄ = x′

We replace equivalent variables:

F ((ā ∨ b̄ ∨ x) ∧ (a ∨ x̄) ∧ (b ∨ x̄) ∧ (c ∨ x))

∧ F ′[x′ 7→ x̄] ((ā ∨ b̄ ∨ x̄) ∧ (a ∨ x) ∧ (b ∨ x) ∧ (c ∨ x̄))

Now we resolve each clause of F with its F ′ counterpart, yielding a clause subsuming
its antecedents

((ā ∨ b̄) ∧ (a) ∧ (b) ∧ (c))

and we can use Kitten to determine that these clauses are unsatisfiable and to
produce the following clausal core

(ā ∨ b̄) ∧ (a) ∧ (b)

7 Understanding and Improving SAT Solvers
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In our approach we focus on the environment E(F, x) ⊆ F and only extract
definitions implied by E(F, x), which reduces the effort spent in Kitten, but in
principle we might want to take additional clauses of F or all of ∆(F, x) into account
to find all definitions (see Example 2 below). We further do not need a conjecture
about D a-priori, actually do not even need to determine D for our application at
all. It is sufficient to extract gate clauses from the proof of unsatisfiability. Their
variables make up D (excluding x).

Example 2 (Missing Environment) Our extraction without additional clauses can
miss definitions. Consider for example, the circuit corresponding to x= a ∧ a= b,
where we add b (resp. b̄) to each clause containing x (resp. x̄) and are looking for
the definition of x. The CNF is F = (x̄ ∨ a ∨ b) ∧ (x ∨ ā ∨ b̄) ∧ (ā ∨ b) ∧ (a ∨ b̄).
Obviously from F , we know that x = a or x = b are both definitions of x.

Fx|x ∧ Fx̄|x̄ = (a ∨ b) ∧ (ā ∨ b̄)

∆(F, x) = (ā ∨ b) ∧ (a ∨ b̄)

Without the additional two clauses in ∆(F, x), the problem is satisfiable, but
becomes unsatisfiable with them. Therefore, our approach without all clauses
would miss definability. Remark that in this case, we would actually be able to
find the definition of x by first deriving the definition a and eliminating it.

7 Actually Determining the Definition

In order to apply gate information to variable elimination we do not need to extract
the actual gate f(D) of x nor need to know the set of input variables D of the
gate f . For other applications it might still be interesting to characterize the
possibilities of picking f though. Let L = G|x be the positive co-factor of the gate
clauses G and U = G|x̄ the negation of its negative co-factor, where, to simplify
the argument, we use Gx|x = Gx̄|x̄ = ⊤, and thus

G|x ≡ (Gx ∧Gx̄)|x ≡ Gx|x ∧Gx̄|x ≡ Gx̄|x ≡ L

and
G|x̄ ≡ (Gx ∧Gx̄)|x̄ ≡ Gx|x̄ ∧Gx|x̄ ≡ Gx|x̄ ≡ U.

This notation allows us to derive the following “Shannon decomposition” of G:

G ≡ (x̄ ∨ G|x) ∧ (x ∨ G|x̄) ≡ (x̄ ∨ Gx̄|x) ∧ (x ∨ Gx|x̄) ≡ (x̄ ∨ L) ∧ (x ∨ U)

First note that L implies U (written L |= U) as L ∧ U is the same as Gx̄|x ∧Gx|x̄
and thus unsatisfiable. Now pick an arbitrary f with L ≤ f ≤ U between the lower
bound L and the upper bound U , i.e., L |= f and f |= U . We are going to show
that G |= x = f .

The lower bound gives x̄∨L |= x̄∨f and as G |= x̄∨L we get G |= x̄∨f by modus
ponens. Similarly we have x ∨ U |= x ∨ f̄ by contraposition of the upper bound
assumption, i.e., U |= f̄ , and derive G |= x ∨ f̄ , which concludes the proof. If f is
given explicitly we can pick D as the set of variables occurring in f . If f is given
semantically, for instance as function table or BDD, then y ∈ D iff f |y ̸≡ f |ȳ, which
can be determined by checking equivalence between co-factors. Similar arguments
can be used for characterizing gate extraction from BDDs [20,41].
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8 Resolving Gate Against Gate Clauses

As we have explained above the idea of gate extraction is that we only need to
resolve clauses with the definition of the gate. However, we still need to resolve
the gate clauses amongst themselves in two cases. First if extracted semantically
(Section 8.1). Second if instead of finding a clause, we actually find a shorter (sub-
suming) clause (Section 8.2). Both cases are easy to detect in an implementation.

8.1 Semantical Gate Extraction

Semantic definition extraction does not necessarily produce gate clauses which are
tautological, i.e., Gx ⊗ Gx̄ could be non-empty. If these resolvents among gate
clauses are not added to the clause set, variable elimination is not satisfiability
preserving. Consider the following (unsatisfiable) formula:

F = (x ∨ b)︸ ︷︷ ︸
Gx

∧ (x̄ ∨ a) ∧ (x̄ ∨ ā ∨ b̄)︸ ︷︷ ︸
Gx̄

∧ (x ∨ ā)︸ ︷︷ ︸
Hx

∧
∆(F,x)︷ ︸︸ ︷

(ā ∨ c) ∧ (a ∨ b̄) ∧ (b ∨ c̄)

As shown, Kitten found the (actually minimum unsatisfiable) clausal core (b) ∧
(a) ∧ (ā ∨ b̄) in the conjunction of the co-factors of the environment of x, even
though there is a shorter core (a) ∧ (ā), which after adding back x̄ and x encodes
a bi-implication. The reader should be aware that the extracted gate clauses do
not encode a Nand gate (second clause has x̄ and not x).

This example was produced through fuzzing [15], by comparing a version of
Kissat which correctly resolves gate clauses and one which does not. In this
example the fuzzer produced an option setting where extraction of equivalences
(bi-implications) was disabled before semantic definition extraction was tried, and
then Kitten simply focused on the larger core.

Gx ⊗Gx̄ = a ∨ b

Gx ⊗Hx̄ = ⊤
Gx̄ ⊗Hx = (a ∨ ā)∧ (ā ∨ b̄)

Hx ⊗Hx̄ = ⊤

Thus the correct result after elimination is

F ′′ = (a ∨ b)︸ ︷︷ ︸
Gx⊗Gx̄

∧ (ā ∨ b̄)︸ ︷︷ ︸
Gx̄⊗Hx

∧
∆(F,x)︷ ︸︸ ︷

(ā ∨ c) ∧ (a ∨ b̄) ∧ (b ∨ c̄) .

The last four clauses are satisfiable (setting a = b = c = ⊥) but the whole F ′′ as F

is unsatisfiable. Therefore the first clause obtained from resolving gate with gate
clauses has to be added.

7 Understanding and Improving SAT Solvers
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8.2 Syntactical Gate Resolving

We have used fuzzing again to show that the requirement to add gate against gate
resolvents is not unique to semantic gate extraction, but also applies to syntactic
gate extraction if for instance one allows the solver to use shorter subsuming
clauses instead of the exact Tseitin clauses (a common case in Xor extraction [38]).
Consider the following encoding of “x = (if a then b else c)”, encoded as:

Gx = (x ∨ ā ∨ b̄) ∧ (x ∨ a ∨ c̄)
Gx̄ = (x̄ ∨ c) ∧ (x̄ ∨ ā ∨ b)
F ′ = (b ∨ ā ∨ c) ∧ (a ∨ c) ∧ (a ∨ c̄) ∧ (ā ∨ c̄)

By resolving on x, we obtain:

Gx ⊗Gx̄ = (ā ∨ b̄ ∨ c) ∧ (a ∨ b̄ ∨ c̄)

Gx ⊗Hx̄ = ⊤
Gx̄ ⊗Hx = ⊤
Hx ⊗Hx̄ = ⊤

If we do not include the resolvents, then b actually becomes pure and the entire
formula is satisfiable with a = ⊥ and b = c = ⊤. However the formula is actually
unsatisfiable. The resolvent of Gx ⊗Gx̄ contains the clause ā ∨ b̄ ∨ c. By resolving
with the first clause b ∨ ā ∨ c of F ′, we obtain the clause ā ∨ c meaning that the
clauses are unsatisfiable, because we now have all binary clauses over a and c.

9 Scheduling Variable in the main SAT solver Kissat

Identifying gate clauses syntactically is more efficient than identifying UNSAT cores
with a SAT solver, even when using a smaller one like Kitten. Hence, Kissat first
uses syntactic pattern matching for a Tseitin encoding of an And, Equivalence,
Xor, or IfThenElse gate with the given variable as output, and only if this fails,
the inner SAT solver is called. In turn, if this fails due to hitting some limits, the
standard elimination criterion is used. This is illustrated in Algorithm 1.

Until 2020, the order of scheduling variables as candidates to be eliminated
was done using a priority queue implemented as binary heap, where variables with
smaller number of occurrences are tried to be eliminated first. Since the 2021
version, we have (by default) disabled the heap and replaced it with iterating
over all active literals; i.e., the variables that have neither been removed nor have
already been eliminated. This actually improves performance of Kissat (Figure 3).
Of course it avoids updating the heap when removing clauses and probably has
other positive effects we still need to investigate in future work.

10 Core-producing lean embedded SAT solver Kitten

In order to check satisfiability and compute clausal cores of these co-factors of
the environment of a variable we have implemented a simple embedded sub-solver
Kitten with in-memory proof tracing and fast allocation and deallocation. If
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Function FindGateClauses(F , x)

Input: The clauses F and the variable x
Output :The pair (G,H) of gate and non-gate clauses of F to be resolved

let E = E(F, x) = clauses of F with x or x̄
if F contains Tseitin encoding of a gate with output x then

let G be the clauses of the Tseitin encoding of the gate
return (G,E\G)

if call to Kitten on (Fx)|x̄ ∧ (Fx̄)|x returns UNSAT then
determine G from clausal core (adding back x and x̄)
return (G,E\G)

return (E, ∅)

Function BoundedVariableElimination(F , x, k)

Input: The clauses F , the variable x, bound k on additional resolvents
Output : Simplify clauses of F in place if resolvents sufficiently bounded

let (G,H) = FindGateClauses(F , x)
let Gℓ = clauses of G with ℓ (ℓ ∈ {x, x̄})
let Hℓ = clauses of H with ℓ (ℓ ∈ {x, x̄})
let R = (Gx ⊗Gx̄) ∧ (Gx ⊗Hx̄) ∧ (Gx̄ ⊗Hx)
let E = clauses of F with x or x̄
if |R| − |E| ≤ k then

replace F by R ∧ F ′ where F ′ are the clauses in F without x nor x̄

Algorithm 1: Variable elimination in Kissat.
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Fig. 3 Performance of Kissat with and without heap to schedule variable elimination

the conjunction of the co-factors of the environment are unsatisfiable we reduce
through the API in Kitten its formula to the clausal core, shuffle clauses and run
Kitten a second time which usually results in a smaller core and thus fewer gate
clauses (increasing chances that the variable is eliminated).

If only one co-factor contains core clauses, then we can derive a unit clause. In
this case the learned clauses in Kitten are traversed to produce a DRAT proof
trace sequence for this unit. This is one benefit of using a proof tracing sub-solver
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in contrast to the BDD inspired approach in Lingeling [4] discussed at the end
of Section 4, which cannot produce DRAT proofs.

Kitten is a very simple SAT solver. Instead of using complicated data struc-
tures that take a long time to initialize, Kitten uses watched literals (without
blocking literals) and the variable-move-to-front heuristic for decisions. It does not
feature garbage collection (no “reduce”) nor simplification of added unit clauses.
The latter makes it easier to keep track of unsat cores.

To speed up solving and reduce memory usage, Kitten renumbers literals
of the given clauses to consecutive literals. Allocations are very fast reusing the
internal memory allocator of Kissat instead of allocating new memory. However,
even though allocation is fast, it is better to reuse the space allocated Kitten

within one elimination round. In order to reuse Kitten for the next variable we
only clear the necessary content of memory, by for instance clearing stacks for
watch lists and the clause arena, instead of deleting and reallocating the solver.

11 Experiments

We have evaluated Kissat on the benchmark instances from the SAT Competition
2020 on 8-core Intel Xeon E5-2620 v4 CPUs running at 2.10GHz (turbo-mode
disabled). We used a memory limit of 7GB (unlike the SAT Competition 2020).

In our first experiment, we have run Kissat with and without gates for variable
elimination. The results are presented in Figure 4 and the difference is rather
negligible. While the default version performs slightly better, the difference is too
small to be significant. However performance is also not worse. The graph also
includes the configuration realloc-kitten-eachtime where instead of clearing and
reusing the same Kitten instance during elimination rounds, Kissat reallocates
a new Kitten solver for each variable. Thus avoiding this reallocation turns out
to be important at the beginning, even if the impact seems to wear off over time.

We also plotted the amount of time used in the entire elimination procedure
(not only the time spent in Kitten). Figure 5 shows that the time spent in Kitten

is similar for most problems but in extreme cases is much larger even though the
effect is not critical most of the time. However, if we activate preprocessing as
described in the next paragraph, we observed extreme cases (like newpol34-4)
where the elimination took more than 90% of the time. However, these problems
are not solved by any Kissat configuration anyhow.

We have further compared efficiency of different techniques by looking at how
many variables they have eliminated compared to the total number of eliminated
variables (Figure 6). We can see that And-gate elimination is by far the most im-
portant, but semantically extracting definitions is second. Extracting IfThenElse

gates is not essential. Still, for all extraction techniques, there are a few problems
where nearly all eliminated variables are of the given type. We assume that this
is due to the structure and the encoding of those problems. Figure 7 shows the
same numbers in relation to the total number of variables of the input problem
and not compared to the number of eliminated variables, with the same conclusion:
And-gate elimination is more important than any other technique.

To evaluate our new elimination technique in more detail, we implemented a
preprocessing phase in Kissat, by running explicit preprocessing rounds initially.
Each round is composed of probing, vivification, and variable elimination. For
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Fig. 4 Kissat with various options of gates and definitions in variable elimination
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Fig. 5 Percentage of time spent in variable elimination and gate extraction relative to the
overall individual running time per benchmark for all 400 SAT Competition 2020 main track
instances with time limit 5000 seconds, including benchmarks for which the various versions
timed-out. The 100% upper bound on the y-axis reached for some instances means that all
time was spent in variable elimination.

our experiments, we use three rounds of preprocessing (or fewer if a fix-point is
reached earlier). Then we do not run Kissat until completion and stop at the first
decision. In the default implementation, there is no preprocessing and the same
techniques are only called as inprocessing after a few hundred conflicts.

We first compare Kissat with definitions and gates (the “base line”) to the
version without definitions. To do so, we show the percentage of removed variables
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Fig. 6 Percentage of variables eliminated relative to the overall number of eliminated variables
of individual benchmarks for all 400 SAT Competition 2020 main track instances, with time
limit 5000 seconds, including benchmarks, for which the various versions timed-out. The upper
bound 100% on the y-axis reached by some instances means that for all eliminated variables
we found (syntactic or semantic) gates and used these during elimination.

in a scatter plot (Figure 8). More variables are eliminated in the version with
definitions. In two extreme cases, more than 90% of the variables are eliminated.

An interesting case is deactivating syntactic extraction of gates3 while keeping
definition mining through Kitten (Figure 9). The resulting figure is similar to
Figure 8, indicating that Kitten-based definition mining finds those gates too.
Note that Kitten does not necessarily find the minimal (smallest) unsat core, nor
is it guaranteed to find a minimum core (an MUS). Thus it could in some cases
only find large gates even though small gates exists and thus not eliminate as many
variables as possible.

The difference in the number of eliminated variables is much higher if we
also deactivate and-gate detection (Figure 10). With few exceptions the base
line removes more variables. Also note that variable elimination is not confluent:
eliminating variables in a different order might lead to different results and the
number of eliminated variables differs.

Finally, we deactivated syntactic (no-gates) as well as semantic (no-definitions)
gate extraction and compare it to the base line (Figure 11). Much fewer variables
are eliminated, as most eliminations need to introduce more clauses.

3 Using Kissat’s --no-gate option also deactivates semantic definition extraction. Thus we
spelled out all gate types as option in our experiments.
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Fig. 8 Deactivating Kitten reduces the number of eliminated variables
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Fig. 9 Kissat’s definition extraction can find gates
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Fig. 10 Deactivating And-gate detection leads to fewer eliminated variables

12 Related Work

Our approach is mainly motivated by the use of definitions in recent work on
model counting [28] and QBF solving [37], where the authors also use core-based
techniques, but extract gates explicitly. We showed the connection to this work
and claim our restricted formulation is much more concise, because we do not have
to extract exactly the variables the definitions depends on.

The approach presented in this article is also the first to use a “little” SAT
solver inside a “big” SAT solver to extract definitions, while this related work
discussed above uses an ordinary (big) SAT solver to find definitions but for harder
problems with a much higher complexity. In circuit synthesis a related approach
uses interpolation to find Boolean functions in relations [27].
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Fig. 11 No gate nor definition extraction compared to Kissat’s base line

Another line of work is related to blocked clause elimination [23,25], a simplifi-
cation technique used by SAT solvers to remove clauses. A clause is blocked if and
only if all resolvents with one literal of the clause are tautologies.

Blocked clauses can be removed from the formula, shifting some work from
solving (fewer clauses) to model reconstruction (the model after removal might not
be a model anymore). However, detecting gates makes it possible to produce fewer
clauses even if the solver subsequently uses BCE. Let’s look at the earlier example
from Section 4:

F ′′ ≡
(ā ∨ b̄ ∨ a) ∧ (ā ∨ b̄ ∨ b) ∧ tautological Gx ⊗Gx̄ resolvents

(ā ∨ b̄ ∨ e) ∧ (ā ∨ b̄ ∨ f) ∧ kept Gx ⊗Hx̄ resolvents

(a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d) ∧ kept Gx̄ ⊗Hx resolvents

(c ∨ e) ∧ (c ∨ f) ∧ (d ∨ e) ∧ (d ∨ f) ∧ redundant Hx ⊗Hx̄ resolvents

(c̄ ∨ d̄ ∨ ē ∨ f̄) kept ∆(F, x)

BCE cannot remove the redundant clause a ∨ c because it is neither blocked with
respect to a (due to clause ā∨b̄∨e) nor to c (due to clause c̄∨d̄∨ē∨f̄). By producing
fewer clauses during elimination, our method actually makes BCE stronger.

Iser [24] used the “blockedness criterion” to identify gates in addition to a SAT
solver (or another approach). He first uses BCE to check that left-uniqueness of
the equations, before using the SAT solver to check right-uniqueness. He does not
use the SAT solver to identify the clauses, but only to check whether the already
identified clauses are right-unique. Iser reports on experiments but does not report
on performance changes, only on the amount of time spent in his various strategies.

This work by Iser is also motivated by performing blocked clause decomposi-
tion [22], which has the goal to split a CNF in two parts, where the first part is a
set of clauses which can be completely eliminated by blocked clause elimination,
and the other part contains the remaining clauses. The first “blocked clause set”
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is of course satisfiable and models can be generated in linear time. This allows to
treat that part almost as a circuit [1]. However, blocked clause decomposition is
often costly and the second remaining part of clauses often remains big.

13 Conclusion

We compute cores with a simple little SAT solver Kitten embedded in a large
SAT solver Kissat to semantically find definitions after syntactic gate detection
fails in order to eliminate more variables. The cost of calling Kitten is limited
by focusing on the environment clauses of elimination candidates and its cheap
enough to be used whenever syntactic gate detection fails, while it still allows to
produce proofs in the DRAT format when needed.

On the considered benchmark set the performance of Kissat is unfortunately
not really improved by semantic definition extraction even though the technique
is efficient and effective in finding many additional semantic definitions as well as
eliminating more variables. The same applies to syntactic gate detection, which
in principle is shown to be subsumed by our new semantic approach.

As future work we want to consider further usage of such an embedded SAT
solver and started already to apply it to SAT sweeping [12]. We also want to
apply our approach and Kitten to extract definitions for preprocessing in model
counting and QBF.

Acknowledgment. This work is supported by Austrian Science Fund (FWF), NFN
S11408-N23 (RiSE) and the LIT AI Lab funded by the State of Upper Austria. We
thank Friedrich Slivovsky for fruitful discussions on Section 6 and Joseph Reeves,
Markus Iser, and the anonymous reviewers for comments.

References
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Abstract

On practical applications, state-of-the-art SAT solvers dominantly use the conflict-
driven clause learning (CDCL) paradigm. An alternative for satisfiable instances is local
search solvers, which is more successful on random and hard combinatorial instances.
Although there have been attempts to combine these methods in one framework, a
tight integration which improves the state of the art on a broad set of application
instances has been missing. We present a combination of techniques that achieves
such an improvement. Our first contribution is to maximize in a local search fashion
the assignment trail in CDCL, by sticking to and extending promising assignments
via a technique called target phases. Second, we relax the CDCL framework by again
extending promising branches to complete assignments while ignoring conflicts. These
assignments are then used as starting point of local search which tries to find improved
assignments with fewer unsatisfied clauses. Third, these improved assignments are
imported back to the CDCL loop where they are used to determine the value assigned
to decision variables. Finally, the conflict frequency of variables in local search can be
exploited during variable selection in branching heuristics of CDCL. We implemented
these techniques to improve three representative CDCL solvers (Glucose, MapleLcm
DistChronoBT, and Kissat). Experiments on benchmarks from the main tracks
of the last three SAT Competitions from 2019 to 2021 and an additional benchmark
set from spectrum allocation show that the techniques bring significant improvements,
particularly and not surprisingly, on satisfiable real-world application instances. We
claim that these techniques were essential to the large increase in performance witnessed
in the SAT Competition 2020 where Kissat and Relaxed LcmdCbDl NewTech
were leading the field followed by CryptoMiniSAT-Ccnr, which also incorporated
similar ideas.

©2022 AI Access Foundation. All rights reserved.
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1. Introduction

The satisfiability problem (SAT) asks to determine whether a given propositional formula
is satisfiable or not. Propositional formulas are usually represented in conjunctive normal
form (CNF). A growing number of problem domains are successfully tackled by SAT solvers,
including electronic design automation (EDA) (Silva & Sakallah, 2000), particularly hard-
ware verification (Prasad, Biere, & Gupta, 2005) and model checking (Vizel, Weissenbacher,
& Malik, 2015; Biere & Kröning, 2018), mathematical theorem proving (Heule, Kullmann,
& Marek, 2016), AI planning (Kautz & Selman, 1992), and spectrum allocation (Newman,
Fréchette, & Leyton-Brown, 2018), among others. Additionally, SAT solvers are also often
used as a core component of more complex tools such as solvers for satisfiability modulo the-
ory (SMT) (Barrett, Sebastiani, Seshia, & Tinelli, 2021), which form a crucial component
of state-of-the-art program analysis and software verification.

Many approaches have been proposed to solve SAT, but conflict-driven clause learning
(CDCL) and local search are the most popular ones. Since their inception in the mid-90s,
CDCL-based SAT solvers have been applied, in many cases with remarkable success, to a
number of practical applications, because CDCL solvers are so effective in practice.

The local search paradigm is an incomplete method only able to solve satisfiable in-
stances. Local search solvers begin with a complete assignment and iteratively modify it,
typically by flipping the value of a single variable, until a model is found or a resource limit
(usually time) is reached. Although local search solvers usually have worse performance
than CDCL on practical instances, they can be more successful on random and hard combi-
natorial instances (Li & Li, 2012; Cai, Luo, & Su, 2015; Biere, Fazekas, Fleury, & Heisinger,
2020). Many techniques, including clause learning (Fang & Ruml, 2004) and unit propaga-
tion (Hirsch & Kojevnikov, 2005), have been tried to improve local search algorithms but
they are still not competitive. Recent studies show that given a promising initial solution
for local search helps to improve the performance on some benchmarks (Zhang, Sun, Zhu,
Li, Cai, Xiong, & Zhang, 2020; Cai, Luo, Zhang, & Zhang, 2021). In this paper we go one
step further and the two components exchange information.

It is usually believed that one limitation of CDCL solvers is that they frequently restart
(in order to find short proofs) and therefore they usually work with partial short assign-
ments (Ryvchin & Strichman, 2008; Oh, 2015). We argue that this makes finding complete
assignments harder. Comparatively, local search solvers explicitly work on complete assign-
ments.

There have been several attempts to combine both approaches. However, in previous
hybrid solvers, both solvers, the CDCL and the local search solver, are opaque to each other,
at most exchange some partial information in one direction and therefore usually see each
other as a black box. These early hybrid solvers invoke the respective solver according to
different situations (Mazure, Sais, & Grégoire, 1998; Habet, Li, Devendeville, & Vasquez,
2002; Letombe & Marques-Silva, 2008; Balint, Henn, & Gableske, 2009; Audemard, Lagniez,
Mazure, & Sais, 2010) as discussed in Section 8 on related work.

This work is devoted to a tighter cooperation of CDCL and local search for SAT, with
CDCL acting as the main solver and local search mainly used as a tool to improve branching
heuristics in the CDCL solver. Occasionally the local search solver finds satisfying assign-
ments too (particularly for random formulas where CDCL performs worse) but, of course,
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cannot determine unsatisfiability on its own. In contrast to earlier work, the solvers work
hand in hand and information flows frequently in both directions. Our main overall goal
is thus to decrease the running time of CDCL solvers on real-world application instances,
especially for satisfiable instances, by teaming it up with a local search solver as a “sidekick”.

Our first two contributions are inspired by the concept of “promising branches” originat-
ing in the Glucose solver, where it was used to schedule, actually prohibit, solver restarts.
In Section 3 we explicitly expand such promising branches in two different ways during
CDCL solving, instead of just avoiding restarts, as proposed in Glucose. Our vehicle to
improve models is to change the heuristic to determine values assigned to selected decision
variables. Current state of the art relies on saving the previous value to which a variable
was assigned (for instance through propagation) and reuse that value as saved phase (Pi-
patsrisawat & Darwiche, 2007) in case the variable is selected as decision. We present two
different mechanisms which in regular intervals try to find improved sets of values.

Our first contribution and first mechanism to expand promising branches is called
target phases and tries to maximize the size of the partial assignment (the trail size) explored
during a CDCL run consistent under unit-propagation, forcing the CDCL solver to repeat
the phases which led to the previously largest assignment. A larger assignment consistent
under unit-propagation is considered an improvement, recorded, and then used for selecting
values assigned to decision variables. Targeting these recorded phases forces the CDCL
solver to stay close to this assignment with the hope to reach larger and larger assignments,
thus gradually increasing the size of the assignment (the trail) until a full consistent thus
satisfying assignment is found.

While target phases follow the local search principle to optimize a global criterion lo-
cally, our second contribution and second mechanism explores these promising branches
directly by calling a local search solver on an extension of the current assignment, which
is “relaxed”, thus complete but not necessarily unit-propagation consistent. Promising
branches of sufficient length are extended to a complete assignment by the default CDCL
decision heuristic mechanism. We use unit-propagation to complete the model, while ignor-
ing all conflicts along the way, because unit propagations are hard to find for local search.
Then, a local search solver is called to find a model nearby. If the local search cannot find
a model within a given time limit the CDCL search process resumes.

In order to make use of the effort spent in a failed local search attempt, which did
not find a model (the usual case), our third contribution consists of saving the best
assignment found during local search as new improved set of values and reuse it for the
phase selection heuristics during assigning values to decision variables. This use of local
search can also be considered as a “rephasing” technique (Section 4), which resets saved
phases in regular intervals and thus implements a diversification strategy.

Besides the phases of the best assignment, statistics gathered during local search can pro-
vide additional information useful for guiding CDCL. As fourth contribution we propose
to enhance the CDCL variable selection heuristic by giving more focus to those variables
with high activity during local search. The idea is that variables for which it is “difficult”
to find a consistent value should be given higher preference to be selected as decision during
CDCL, as this might settle their value in a satisfying assignment early on or guide the solver
to a short proof of unsatisfiability. As an approximation of this difficulty, we propose to use
the variables’ conflict frequency during local search, that is, its frequency of appearing in
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unsatisfied clauses. This information is used to modify the variables’ activity in the VSIDS
heuristic and the variables’ learning rate in the LRB heuristic (Section 5).

To counteract the effect of losing satisfying assignments during rephasing of parts of
the formula, that is, for instance of some disconnected component, we further propose to
find autarkies (Section 6) during rephasing. The idea is that a partial assignments which
satisfies all clauses it touches allows to remove the touched clauses. We also discuss how to
reconstruct models of the original formula from models of the simplified formula.

All these ideas are primarily trying to improve promising partial assignments further and
they are indeed, according to our experiments, successful in substantially reducing solving
time on satisfiable instances. They can further be implemented and incorporated into a
SAT solver in such a way that solving time on unsatisfiable formulas in general degrades
only slightly if at all, yielding a clear overall performance gain.

We have implemented our proposed techniques in four state-of-the-art CDCL solvers,
including the latest version of Glucose (Audemard & Simon, 2009) (from the SAT Compe-
tition 2019), and the winners of the Main track of SAT Competition 2019 and 2020, namely
MapleLcmDistChronoBT-DL (Kochemazov, Zaikin, Kondratiev, & Semenov, 2019),
and Kissat and CaDiCaL (Biere et al., 2020). The experimental results clearly show that
these techniques enable solving a remarkable number of additional instances in the main
track benchmarks of the last three SAT Competitions from 2019 to 2021 (following the
evaluation guidelines set out by the SAT Practitioner Manifesto (Biere, Järvisalo, Le Berre,
Meel, & Mengel, 2020)). Moreover, the improved versions of the three CDCL solvers also
give better results on an additional real-world benchmark arising from a spectrum repacking
problem in the context of bandwidth auction.

As the experiments clearly show, exploration of promising branches either through target
phases or through local search are very helpful to solve satisfiable instances, with a slight
degradation on unsatisfiable instances (usually solving 2 or 3 fewer unsatisfiable instances
on SAT Competition Benchmarks). Using conflict frequency of variables to enhance the
CDCL branching strategy has to a large extent positive effects on satisfiable instances too
and gives improvements on few unsatisfiable instances. Overall, our proposed techniques
significantly improve the performance of CDCL solvers, leading to a remarkable increase in
the total number of solved instances, which we also claim is the main reason for the large
jump in performance of the top solvers in the SAT Competition 2020, where Kissat and
Relaxed LcmdCbDl NewTech were leading the field followed by CryptoMiniSAT-
Ccnr, which also incorporated similar ideas. In the latest SAT Competition 2021 variants
of Kissat were dominating.

This work combines, on the one hand, our previous (partially unpublished) work on tar-
get phases (Biere, 2019), rephasing (Biere, 2017a, 2018), and using local search (Biere, 2019;
Soos & Biere, 2019) to improve CDCL assignments which was presented at the workshop
on Pragmatics of SAT in 2020 (POS’20) (Biere & Fleury, 2020) and, on the other hand,
our paper published at SAT’20 on a deeper integration of local search into CDCL (Cai &
Zhang, 2021), including “relaxed” CDCL, local search based rephasing and using conflict
frequency to enhance branching heuristics. This publication received a best paper award
at SAT’20 and its ideas can be dated back to our ReasonLS solver in the SAT Competi-
tions 2018 (Cai & Zhang, 2018) and four relaxed CDCL solvers in the SAT Competitions
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2019 (Cai & Zhang, 2019), and an earlier work on MaxSAT solvers that pass assignments
between a decimation algorithm and a local search algorithm (Cai, Luo, & Zhang, 2017).

We discovered that both lines of works, while having been developed independently,
have the same underlying ideas and give similar quite remarkable improvements. This is
also the reason we decided to join forces on writing this article in order to provide a more
complete understanding of the ideas. Compared to our previously reported empirical results
we have further implemented both line of works in Glucose and provide more details.

2. Preliminaries

In this section we define the notion of formulas we need (Section 2.1). CDCL is a procedure
to solve satisfiability problems in CNF (Section 2.2). In particular we recall how decisions
work in most implementations. Unlike CDCL that builds a partial assignment, local search
solvers work on adapting full assignments (Section 2.3). Finally, we give the setup for the
experiments and the SAT solvers we used for our experiments (Section 2.4)

2.1 Preliminary Definitions and Notations on Formulas

Let V = {x1, x2, . . . , xn} be a set of Boolean variables, a literal is either a variable x or
its negation ¬x. A clause is a disjunction of literals. A conjunctive normal form (CNF)
formula F = C1 ∧ C2 ∧ · · · ∧ Cm is a conjunction of clauses. For simplicity we assume
non-tautological clauses, that is, there is no variable x which occurs positively (x ∈ C) and
negative (¬x ∈ C) in the same clause.

A (partial) mapping α : V → {0, 1} is called an assignment. If α maps all variables
to a Boolean value, it is complete; otherwise, it is a partial. The size of an assignment α,
denoted as |α|, is the number of assigned variables in it. The value of a variable x under an
assignment α is denoted as α[x]. An assignment α satisfies a clause iff at least one literal
evaluates to true under α, and satisfies a CNF formula iff it satisfies all its clauses. A
CNF formula F is satisfiable iff there is at least one satisfying assignment. Such a satisfying
assignment is also called a model. The empty clause ⊥ is always unsatisfiable, and represents
a conflict. SAT is the problem of deciding whether a given CNF formula is satisfiable.

A key procedure in CDCL solvers is unit propagation. Whenever a clause has one unset
literal and all others false, the unset variable is assigned to satisfy this clause. This process
is run until fixpoint or until an empty clause (a clause false under the current assignment)
is produced, also called conflict.

2.2 CDCL Solvers

For the sake of the presentation in this article, see (Marques Silva, Lynce, & Malik, 2021)
for a more generic overview on CDCL, we consider CDCL SAT solvers to be composed of
a propagate-and-learn and a guessing part. CDCL solvers do propagate-and-learn eagerly
in practice (Section 2.2.1) and implementations do not differ much. However, the guessing
policy and also the search-restart policy (Section 2.2.2) are both considered to be important
for performance and differ across implementations.
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Algorithm 1: Typical CDCL algorithm: CDCL(F, α)

dl← 0; //decision level1

if UnitPropagation(F, α)==CONFLICT then return UNSAT2

while ∃ unassigned variables do3

/* PickBranchVar picks a variable to assign not in α */

x← PickBranchVar(F, α);4

/* PickBranchDirection picks the respective value */

v ← PickBranchDirection(F, x, α);5

dl← dl + 1;6

α← α ∪ {(x, v)};7

if UnitPropagation(F, α)=CONFLICT then8

bl← ConflictAnalysisAndLearning(F, α);9

if bl < 0 then10

return UNSAT;11

else12

Backtrack(F, α, bl);13

dl← bl;14

return SAT;15

2.2.1 Overall Organization

Algorithm 1 shows the standard procedure of a CDCL solver, where α is the current as-
signment, dl is the current decision level and bl denotes the backtrack level. Arguments to
the functions are assumed to be passed by reference.

The UnitPropagation procedure performs Boolean constraint propagation on the formula
and identifies potential conflicts. Once a conflict is derived, it is analyzed and a clause is
derived by the ConflictAnalysisAndLearning function. This learned clause is then added to
the clause database. Finally, Backtrack adapts the search to the newly learned clause. The
branching heuristics consists of two procedures, where PickBranchVar selects a variable to
assign and PickBranchDirection the respective phase.

Note that Algorithm 1 shows a simplified skeleton of a typical CDCL algorithm. It is
still missing several important techniques, including restarts, clause deletion policies, and
learned clause simplification, among others, as explained in (Marques Silva et al., 2021).

2.2.2 Decision Heuristics and Backtracking

There is a long history of research on branching heuristics in SAT. The choice of the branch-
ing heuristics is still considered today to have a large impact on the performance of SAT
solvers. See for instance (Biere & Fröhlich, 2015) for a survey on the effect of branching
heuristics. Here we briefly discuss three branching heuristics, that is, variants of function
PickBranchVar of Algorithm 1, which are relevant to this article.

Variable State Independent Decaying Sum (VSIDS) is known to be the first
heuristics to use information from recent conflicts instead of all present clauses (Moskewicz,
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Madigan, Zhao, Zhang, & Malik, 2001). It relies on the concept of “variable activity”. We
describe the version used in MiniSAT (Eén & Sörensson, 2003) and most modern implemen-
tations of CDCL. Each variable has an activity attached to it. Each time a variable occurs
in resolved clauses during conflict analysis, the solver increases its activity. This is referred
to as bumping, effectively decaying the activity of all other variables. When selecting a
branching variable, VSIDS picks the variable with the maximum activity score.

Learning-Rate Branching (LRB) (Liang, Ganesh, Poupart, & Czarnecki, 2016)
frames branching as an optimization problem that picks a variable to maximize a metric
called learning rate. The learning rate of a variable x at interval I is P (x,I)

|I| , where I is the
sequence of conflicts that occurred between the assignment of x until it transitioned back to
unassigned, P (x, I) measures the number of conflicts in I, for which x occurred in at least
one clause during resolving the corresponding learned clause, and |I| matches the number of
learned clauses generated in interval I. Furthermore, the authors of LRB interpret variable
selection as optimization problem which is solved via a multi-armed bandit algorithm.

Move to front (VMTF) (Ryan, 2004; Biere & Fröhlich, 2015) is a heuristic to focus
aggressively on literals involved in the most recent conflicts. It provides a simpler and more
efficient implementation that focuses on the literals involved in the last conflicts. The idea
is to mark the last learned literals as the most important – they are moved to the front of
the queue and will be selected next (last in first out).

Phase Saving. Most modern decision heuristics, particularly all presented above, pick a
variable first and then use another heuristic to determine its value, or phase, that it should
be set to (i.e., whether the variable should be decided positively or negatively). This is
function PickBranchDirection of Algorithm 1. Picking the right phase is actually the
most important heuristic for satisfiable instances, because the solver can pick variables in
arbitrary order if the phases form already a model (satisfying assignment).

Formerly, some state-of-the-art SAT solvers like Chaff (Moskewicz et al., 2001) used
information based on the number of occurrences (Moskewicz et al., 2001) with the aim
of increasing the number of satisfied clauses under the current assignment, but this is
expensive. Other SAT solvers like MiniSAT (e.g., in the version submitted to the SAT
Competition 2005) always set literals to false. Instead of using information on the clauses,
phase saving (Pipatsrisawat & Darwiche, 2007) captures information on the search process
and caches how variables are set during propagation or backtracking. This saved value is
later used to set the phase when deciding that variable, bringing the SAT solver back to a
similar region of the search space. This simple (it only requires an array and is cheap to
update) and easy-to-calculate heuristic has a quite remarkable positive effect on performance
and is now standard in most modern SAT solvers.

With phase saving, the solver focuses on the region of the search space explored be-
fore. The heuristic is not only important for satisfiable instances, but also for unsatisfiable
instances. For instance, if the formula is composed of independent components, phase sav-
ing cheaply allows the solver to focus on one component instead of working on multiple
components at the same time. In particular, if the problem includes disjoint satisfiable
components, the interplay between the decision and phase saving heuristics achieves that
each component is solved independently and satisfying assignments of previously solved
components are maintained.
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Rephasing. Clearly, phase saving should be considered an intensification strategy and
by applying general heuristic search principles should benefit from complementing it with
a corresponding diversification strategy. Accordingly, the idea of rephasing is to regularly
reset saved phases. In principle, saved phases can be set arbitrarily, as phase selection does
not influence correctness nor termination of CDCL.

The SAT solvers PrecoSAT (Biere, 2010) and PicoSAT (Biere, 2010) use a Jeroslow-
Wang score (Jeroslow & Wang, 1990) to change the saved phases either on all or on irre-
dundant only) clauses in regular intervals, following a Luby sequence. The motivation is
to adapt the saved phases to the current formula. The SAT solver StrangeNight (Soos,
2013) flips values with a certain probability depending on the depth of the assignment.
The motivation here is to avoid the heavy-tail phenomenon. Manthey reported experi-
ments (Manthey, 2010, Section 3.1) for the SAT solver Riss (Balint, Belov, Järvisalo, &
Sinz, 2015) with negative results. However, to the best of our knowledge, this is the first
time that several rephasing heuristics were compared and used.

Restarts. For efficiency of SAT solvers on practical instances, restarts turn out to be
important. In particular, fast restarts (Ramos, van der Tak, & Heule, 2011) are now com-
mon. Originally “Luby restarts” were heavily used because they are a priori optimal strat-
egy (Luby, Sinclair, & Zuckerman, 1993). However, in recent years, most implementations
switched to Glucose-style restarts (Audemard & Simon, 2012a), basically, a requirement
for prevailing in the SAT Competition. Biere and Fröhlich’s presentation acts as a survey
on various restart heuristics (Biere & Fröhlich, 2015). To keep completeness of SAT solvers,
either restarts must be delayed more and more (for instance following a Luby sequence), or
alternatively the number of clauses kept during database reduction needs to be increased
(as it is usually done for Glucose-style restarts).

The potential overhead generated by frequent restarts in performing the same deci-
sions and propagations over and over again can be lessened by cheaply reusing parts of
the trail (Ramos et al., 2011). In order to find models, the solver must generate long as-
signments. For Luby-style restarts, this is realized by means of the (non-monotonically)
increasing intervals between successive restarts.

For Glucose-style restarts, the intervals are not necessarily increasing and hence there
are no guarantees that long assignments will be generated. To overcome that drawback,
as implemented in Glucose (Audemard & Simon, 2012b), restarts can be blocked and
delayed whenever the current assignment looks promising, for example, if the trail length
has increased by a predefined factor since the latest restart (Audemard & Simon, 2012b).
Delaying restarts is mostly useful for satisfiable problems.

Another option is to alternate restart policies (Oh, 2015) and restart less or even suppress
restarts for some time in regular intervals during the search process. The latter was shown
to be beneficial for satisfiable instances in particular and can be considered as one corner
stone to the large improvement of SAT solvers witnessed in the SAT Competition 2016.

2.3 Local Search Solvers

Local search algorithms (Hoos & Stützle, 2004) explore the search space using a neighbor-
hood relation. They start somewhere in the search space and the space is explored following
a neighboring relation until some criterion is met. In the context of SAT, the search space
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is the set of complete assignments which is characterized as the set of strings {0, 1}n, where
n is the number of variables in the formula.

For SAT, the most natural neighborhood maps candidate solutions to their set of Ham-
ming neighbors, that is, candidate solutions that differ in exactly one variable, until a model
is found. In this view, a step in SAT local search consists of flipping the value assigned to
a single variable. A survey by the first author (Cai, 2015) provides more details on local
search SAT solvers.

2.4 Experiment Preliminaries

This sections describes the set up to evaluate our proposed methods, including a description
of the SAT solvers, benchmarks, running environment and experimental methodology.

Base Solvers. We choose several state-of-the-art CDCL solvers as the base solvers for our
studies, namely Glucose v4.0 (Audemard & Simon, 2009), CaDiCaL 0v9 for evaluating
target phases, which in essence is the version submitted to the SAT Competition 2020 (Biere
et al., 2020), MapleLcmDistChronoBT-DL v2.1 (Kochemazov et al., 2019), and Kis-
sat sat (Biere et al., 2020). Glucose is a milestone of modern CDCL solvers and has
won several gold medals in SAT Competitions. MapleLcmDistChronoBT-DL won the
SAT Race 2019 and Kissat sat won the Main Track of SAT Competition 2020.

We choose CCAnr (Cai et al., 2015) as the local search solver to integrate into the
CDCL solvers Glucose and MapleLcmDistChronoBT-DL, while Kissat sat already
includes a simple local search procedure inspired by ProbSAT (Balint & Schöning, 2012)
and particularly YalSAT (Biere, 2014). CCAnr is a local search solver with the aim for
solving structured SAT instances and has shown competitive results on various structured
instances from SAT competitions and applications.

Benchmarks. The experiments are carried out on the main track benchmarks of the
SAT Competitions and one SAT Race of the last three years (2019 – 2021). Additionally,
we evaluate the solvers on an important application benchmark suite consisting of 10 000
instances1 from the spectrum repacking in the context of bandwidth auction which resulted
in about 7 billion dollar revenue (Newman et al., 2018).

Experiment Setup. We conducted all experiments on a cluster of computers with Intel
Xeon Platinum 8153 @2.00 GHz CPUs and 1 024 GB RAM under the operating system
CentOS 7.7.1908. For each instance, each solver run with a cutoff time of 5 000 s. For each
solver and benchmark year, we report the number of solved SAT/UNSAT instances and the
total solved instances, denoted as ‘#SAT’, ‘#UNSAT’, and ‘#Solved’, and the penalized
run time average ‘Avg’ PAR2 score (as used in SAT Competitions), where the run time of
a failed run is penalized by twice the cutoff time.

We show the results as tables and a cumulative distribution function (CDF, and not
as a cactus plot), that is, as a graph showing the number of solved instances depending
on the time. The higher the curve, the better the solver. The source codes2 and detailed
experiment results3 are available online.

1. https://www.cs.ubc.ca/labs/beta/www-projects/SATFC/cacm_cnfs.tar.gz

2. http://lcs.ios.ac.cn/~caisw/Code/JAIR-SATcodes.zip

3. http://lcs.ios.ac.cn/~caisw/Code/JAIR-SATtables.zip
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3. Exploring Promising Branches

CDCL attempts to produce short proofs and hence often restarts. To focus the search
towards models, we force the CDCL part to improve models by using target phasing fol-
lowing ideas from local search. This forces CDCL to stay close to the target assignment
(Section 3.1). Another way to improve models is to use a local solver directly to explore
promising directions (Section 3.2) during the CDCL search.

3.1 Exploring Promising Branches By Directing CDCL

Fast restarts are important for the performance of SAT solvers, but make solving satisfiable
instances harder. To mitigate this issue, restarts can be blocked in Glucose. If the search
direction is promising (i.e., the current assignment has become much larger), instead of
restarting, the search continues (and the conflict count since the last restart is reset, which
prohibits restarts for the next 50 conflicts) (Audemard & Simon, 2012b).

The intuition is that promising assignments should be extended towards full assignments
(and hopefully a model of the formula) instead of being discarded by restarting. We refine
this idea further in our target phasing heuristic that saves promising models separately
instead of just extending them.

Target Phasing. The target phasing heuristic follows the idea of extending an assignment
to a full model. As for phase saving, an additional implicit (but partial) assignment is kept,
with the key difference that the target assignment is updated less frequently during the
search. It follows an idea from local search: the target is the assignment the solver tries to
fulfill and one mutation corresponds to finding a better assignment. Unlike most local search
methods, we still use and prioritize unit propagations over the target: propagations ignore
the saved target assignment. Only decisions follow the previously saved target phases. More
precisely, target phasing consists of the following three parts.

1. First, an implicit target assignment is saved. Whenever the current assignment be-
comes more promising (better) than the saved one, the latter is replaced. The current
assignment, as represented by the “trail” of the solver is more promising if it assigns
more variables (in terms of the size of the “trail”) without leading to a conflict after
propagation. Then the entire current assignment, that is, the trail, becomes the new
target assignment. The replacement is done before each decision if there is no conflict.

2. Second, when picking the phase to assign to a decision variable, we do not use the
saved value (as usually done with phase saving) but instead the value given by the
target assignment. If the target phase of the selected variable is unassigned, the
solver defaults to the value provided by phase saving or even to the default phase if
the variable was never assigned yet.

3. Third, the target assignment is reset after each rephasing to the initial all-unassigned
state. This diversification strategy encourages the solver to find larger and larger
target assignments until the next rephasing and has proved to be useful empirically.

Example 1. To better understand the technique, we give a sketchy example. Assume we
start from the empty trail ε, the target phase ¬B¬E, and the saved phase ABCDEF . Then
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we decide the variable A. It has no value in the target phases, so we go for the default true
phase. Then we propagate to get the trail A+¬BC and the saved phases A¬BCDEF . We
have found no conflict and a more promising model, so the new target phase is A¬BC.

Then we decide another variable D which is set to the default positive value as for A.
We get the trail A+¬BCD+¬E and the saved phases A¬BCD¬EF . We find a conflict
and the trail becomes ¬E. We now decide another variable B which is set according to its
target phase thus to false (as ¬B was saved as target phase).

Restart Policy. To increase the chance of finding a model, the solver must work on
relatively long assignments. However, this increases the risk of encountering heavy-tailed
behavior (Gomes, Selman, Crato, & Kautz, 2000) and to miss short proofs. To circumvent
this problem, we alternate between focused mode (with Glucose-style fast restarts) and
stable mode (with fewer restarts)4 in the spirit of the work by Chanseok Oh (Oh, 2015).
Maple is based on Glucose, but the restart mechanism does not include its blocked
literals and it has a mechanism to avoid some of the restarts when it is using LRB as
decision heuristic.

The 2018 version of CaDiCaL did not restart at all in stable mode. Since 2019, Luby
restarts are used with a relatively large base interval (1 024 compared to MiniSAT’s default
value of 100). The same restart strategy is used for Kissat. Alternating between these
two restart policies allows us to use a shorter minimum of conflicts between two successive
restarts. Instead of the Glucose default of 50, CaDiCaL has a base restart interval of
2 in focused mode and Kissat even 1 (but increasing logarithmically). The duration of
each search mode interval is increased geometrically. In Kissat the conflict interval is in
O(n · log2n) after n mode switches though instead of O(n2) (Biere et al., 2020).

3.2 Exploring Promising Branches By Local Search During CDCL

The previous section used CDCL to improve promising models, but a local search solver
can achieve the same effect.

First, we provide the motivation of our method. By using reasoning techniques, CDCL
solvers are able to prune most of the branches of the search tree. This is useful for solving
unsatisfiable instances — to prove a formula is unsatisfiable, a CDCL solver needs to exam-
ine the whole search space, and therefore the more of the search tree is pruned, the more
efficient the solver is. However, when solving satisfiable formulas, some promising branches
are not immediately explored. This makes CDCL solvers miss opportunities for finding a
solution. The exploration of promising branches can improve CDCL solvers on satisfiable
formulas, and a natural way to do so is to employ local search at such branches.

Now, we present a method to explore promising branches by plugging a local search
solver into the CDCL solver, which can improve the ability to find solutions while keeping
the completeness of the CDCL solver. The framework of our method is described as follows
(Figure 1).

During CDCL, whenever a node is reached with a promising assignment, the search is
paused. The algorithm enters a non-backtracking mode, which uses unit propagation and

4. The stable mode was initially called “stable phase” (Biere, 2018), which is a confusing name (due to
rephasing), so we have decided to rename it, as can already be seen in the system description of the SAT
Competition 2020 (Biere et al., 2020)
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a decision heuristic to assign the remaining variables without backtracking, relaxing the
condition to stop on the first identified conflict clauses. At the end, this leads to a complete
assignment β, which the local search solver uses to search for a model nearby. If the local
search fails to find a model within a certain time budget, then the algorithm goes back to
the normal CDCL search from the node where it was paused (we call this a breakpoint).

We need to identify which branches (i.e., partial assignments) deserve exploration. We
propose two conditions below, and any assignment α satisfying at least one of them is
considered as promising and will be explored:

• A certain ratio of variables is assigned, that is, |α||V | > p and there is no conflict under
α, where p is a parameter and is set to 0.4 according to preliminary experiments on
a random sample of instances from recent SAT Competitions.

• A length ratio similar to the best saved assignment, that is, |α|
|α longest| > q and there

is no conflict under α, where q is set to 0.9 for the same reason.

In order to ensure that the search space of adjacent local search calls is sufficiently
different, we disallow local search for a certain number of k restarts, where k is set to 500
for Glucose, and 400 for Maple.

As a starting point for local search we first have to create a full assignment. The
simplest solution would be to use some saved information. However, it is difficult for local
search to achieve unit propagation (as it would require to flip the right literals, making it
very unlikely to find propagation chains). Hence we relax CDCL and complete the current
partial assignment by alternating decisions and propagations while ignoring all conflicts.
Notably, our implementation uses the same Boolean constraint propagation procedure5

and therefore, also updates the watched literals and the blocking literals of the clause. The
current implementation performs unit propagation whenever possible, and decides variables
by randomly picking an unassigned variable and assigning a value to it using phase saving
(as CDCL does) when propagation cannot continue. Note that the conflicting variables
in the relaxed propagation keep their value and are not changed. This approach reuses
the propagation loop and phase saving heuristics (although ignores conflicts). We call this
approach relaxed CDCL because it allows some branches to be extended to a leaf even
meeting conflicts, but does not change the data structures and the completeness. We could
even reuse the decision heuristic to select variables. Besides the watched literals, the non-
backtracking phase does not change the data structures used for CDCL search process.

After obtaining a complete assignment through this relaxed CDCL procedure, the local
search solver is called on all problem clauses and all the permanently added learned clauses
(i.e., of low LBD and thus heuristically important). On the contrary, Kissat uses only
the irredundant ones. However, inprocessing is heavily used, hence it removes subsumed
clauses and replaces them by smaller ones. Therefore, the short learnt clauses kept forever
in Glucose have a high chance to be in the irredundant clauses, achieving a similar effect.

In general, the time spent in local search has to be limited. To keep the solving process
deterministic, we count memory-accesses to estimate time, instead of relying on explicit
time limit. Kissat schedules based on the number of memory accesses, but instead of
counting each access, the number of cache line accesses is estimated (e.g., accessing a clause

5. Technically we duplicated the code to ignore conflicts, but otherwise there are no differences.
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Figure 1: Overall procedure of relaxed CDCL

counts as one, whether one or all elements are evaluated), and the time spent on random
walk is increasing in increasing intervals. For our relaxed CDCL implementation, we simply
count the accesses to the vector saving the candidate variables. The limit is set to 5× 107

and fixed during search.

4. Rephasing Heuristics

Exploring promising branches is already a useful addition to CDCL, but it is too stubborn
in particular in combination with target phases. In this section, we propose two rephasing
heuristics to provide more diversification. By rephasing we mean to globally reset or change
saved values, and we call a variant of such transformations a rephasing heuristic. The first
variant uses the improved assignment produced by the local seach solver (Section 4.1). To
introduce more scrambling, we also make use of a structured rephasing, for example, setting
all phases to true/false (Section. 4.2).

4.1 Local-search Rephasing

In Section 3.2 we proposed a method to plug a local search solver into CDCL solvers, where
the CDCL solver helps the local search solver by providing a sensible starting point, from
which local search is hoped to find a satisfying assignment in small number of steps. Now,
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we propose a rephasing heuristic to import back an improved assignment obtained by the
local search process, which is referred to as local-search rephasing (LS rephasing for short).

Algorithm 2: Relaxed CDCL Algorithm with Local-search Rephasing

dl← 0, α← ∅, α longest← ∅ ;1

if UnitPropagation(F, α)=CONFLICT then2

return UNSAT3

while ∃ unassigned variables do4

x← PickBranchVar(F, α);5

v ← PickBranchDirection(F, α);6

dl← dl + 1;7

α← α ∪ {(x, v)};8

if UnitPropagation(F, α)=CONFLICT then9

bl← ConflictAnalysis(F, α);10

if bl < 0 then11

return UNSAT12

else13

α longest← max(α longest, α);14

Backtrack(F, α, bl), dl← bl;15

/* lines 16-22 corresponds to the technique in Section 3.2 */

else if (|α|/|V | > p OR |α|/|α longest| > q) then16

β ← α;17

while β is not complete do18

x← PickBranchVar(F, β);19

v ← PickBranchDirection(F, β);20

β ← β ∪ {(x, v)};21

UnitPropagation(F, β);22

if LocalSearch(β, terminate condition) then23

return SAT24

if Meet Restart Conditions then25

Backtrack(F, α, 0) ;26

dl← 0;27

RephaseFromLocalSearch(); //corresponds to Section 4.128

return SAT;29

Algorithm 2 describes a CDCL solver that implements the idea of exploring promising
branches via local search, as well as the LS rephasing heuristic. Every time the CDCL solver
restarts (which is forced by a certain schedule and simply backtracks to decision level zero),
the LS rephasing heuristic overwrites the saved phases of all variables with assignments
produced by local search. To this end, we record the best assignment (with the fewest
unsatisfied clauses) in each run of the local search solver, and when we say the assignment
of a local search procedure (run), we refer to the best assignment in this procedure.
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Phase Name α longest LS α latest LS α best LS no change

Probability 20% 65% 5% 10%

Table 1: Probability of different phases in our local-search rephasing mechanism.

For our LS rephasing technique, we consider the following assignments, all of which
come from the assignments of the local search procedures.

• α longest LS: This refers to the assignment of the local search procedure in which
the initial solution is extended based on α longest, where α longest is the longest
assignment met during past CDCL search. Thus, whenever α longest is updated, the
algorithm calls the local search solver and updates α longest LS.

• α latest LS: This is the assignment of the latest local search procedure.

• α best LS: Among all local search assignments so far, we denote the best one (with
the fewest unsatisfied clauses) as α best LS.

Local-search Rephasing: Whenever CDCL is restarted, we overwrite the saved
phases. We reset all variables with one complete assignment which is selected according to
the rephasing probabilities given in Table 1. Such changes are always allowed, because they
do not impact the underlying CDCL calculus, its correctness, nor termination.

As can be seen, the LS rephasing considers both intensification and diversification —
α longest LS and α best LS serve for the aim to derive longer models, while α latest LS
adds diversification, as different local search procedures start with initial assignments built
upon different branches. Given how fast restarts are scheduled in modern SAT solvers,
the rephasing is done quite often, and with a certain probability (25%), it goes in the
directions given by either α longest LS or α best LS, making it rather aggressive. Overall, it
is expected this LS rephasing technique would work well particularly for satisfiable instances,
and our experiment results confirm this. To determine the precise percentage we tried every
combination (with a 5% increment).

One implementation detail worth mentioning is the restarting policy in Glucose. Its
default configuration adapts the strategy according to statistics gathered during the first
100 000 conflicts. We do not change that. However, it blocks restarts (Audemard & Simon,
2012b) as mentioned before. In our first implementation, the restart frequency was so slow
that the effect of rephasing was not good. So we remove the blocking restart method from
Glucose and only use the LBD quality-based restart policy as Maple to increase the
restart frequency and instead rely on our methods to derive longer models. In particular,
we removed the restarts from the strategy adaption used by Glucose.

4.2 Fixed Rephasing

The previous section introduced some diversification. However, it is still very search related.
In this section, we introduce a more structured version of rephasing that not only considers
the past search behavior, but also changes the phases independently to cover more parts of
the search space.
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4.2.1 Rephasing Options

Rephasing heuristics diversify the exploration of the search space, which can be helpful
for satisfiable instances (we could get close to a model). They can also help to variegate
learned clauses. We conjecture that this, in turn, improves the efficiency of inprocessing
(e.g., learning additional important clauses, like small glue clauses).

Rephasing to a Fixed Value. Our first rephasing heuristic consists in setting all saved
phases to a single value, either the original value (phase ‘O’) – remember, unlike MiniSat,
our tools CaDiCaL and Kissat default to the value true – or the opposite value (the
inverted value, phase ‘I’). This alternation is helpful in finding models when most values
have a certain sign, but this depends on the order in which literals are decided. For example,
modifying the SAT solver Glucose (Audemard & Simon, 2009) to apply those rephasings
does not make solving certain adversarial factorization problems (Biere, 2017b) completely
trivial (some conflicts are still required), but they are now solved extremely fast, while being
hard for the default version of Glucose.

Flipping Values. Our second rephasing heuristic consists in flipping the saved values
(phase ‘F’), unlike the previous heuristic in which all saved values are set to a single value,
namely either true or false. This allows exploring the “opposite” region of the search space.
The motivation behind this heuristic comes from machine learning: Flipping corresponds to
diversification with a very different model. It can also support inprocessing by, for example,
simulating hyper binary resolution (Heule, Järvisalo, & Biere, 2013), because a literal can
be decided and later its opposite.

Randomizing Values. In order to diversify the exploration of the search space even more,
we additionally randomize the saved phase (phase ‘#’). The basic idea is that for satisfiable
instances and with some luck, the randomized saved phases will now form an assignment
that is close enough to a model of the problem we want to solve. The assignment can then
be adapted by means of CDCL to a model. If the randomization is done uniformly, the
saved phases will eventually be close to a model. In the same spirit, we also tried to shuffle
the scores of the variable decision heuristics (and the VMTF queue) in CaDiCaL, which,
however, only produced negative results and is switched off by default.

Local Search. With a limited local search (phase ‘W’, standing for walk) we attempt to
reduce the number of unsatisfied clauses under the assignment formed by the current saved
phases or a saved assignment. Our local search implements the ProbSAT strategy (Balint,
2014). During local search an assignment falsifying the least number of clauses is kept as
saved phases and this way used for decisions in the CDCL loop. The idea is that the solver
can focus on the unsatisfiable part of the clause set. Beside our solvers, CryptoMini-
Sat (Soos, Nohl, & Castelluccia, 2009) uses local search in a similar way (Soos & Biere,
2019). The search is in essence similar to the one described in the previous section, but it
works on a different model: Instead of exploring the current promising assignment while
executing CDCL, it alternates between the best model found so far and the current model
formed by the saved phases.

This method is very similar to the one described in Section 4.1 but scheduled differently,
less frequently, alternating with the other rephasing procedures and originally (and inde-
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pendently) employed in the SAT solvers CaDiCaL and Kissat of the last author, Biere,
who developed it first.

Best Phasing. The key idea of best phasing (phase ‘B’) is that good current assignments
are close to models. The solver caches the best assignment found so far (with respect
to the length of the trail until the last decision if it generated a conflict). During each
backtrack and before each restart, the current partial assignment is saved if it improves the
best-so-far found assignment. This heuristic simply replaces the saved phases by the values
of the best assignment ever in contrast to target phases which are reset during rephasing.
For unsatisfiable instances, this corresponds to focusing on the unsatisfiable region of the
search space. This differs from the rephasing heuristic used in the previous section where
the model is never reset. The intuition behind that choice is that the best model can get
stuck to a local optimum, hence resetting it can help changing the search direction.

Note that the length of the trail might not be a perfect measure in the context of
techniques like on-the-fly self-subsuming resolution (OTFS) (Han & Somenzi, 2009; Hamadi,
Jabbour, & Sais, 2009) or in combination with chronological backtracking (Nadel & Ryvchin,
2018; Möhle & Biere, 2019). Furthermore, inprocessing needs to be taken into account. In
Kissat we actually measure the number of assigned variables plus the number of fixed,
substituted, or eliminated variables. The best assignment is reset after each best phasing
(in ‘B’, and only then).

4.2.2 Rephasing Strategies

The rephasing heuristics define how to change the saved phases, but they do not have to
be applied on all variables and an order has to be defined.

Autarkies. As explained above, one motivation for phase saving is that it caches the
phases needed to satisfy some components of an input problem allowing the solver to focus
on the unsatisfiable part. If saved values are changed by some of the rephasing heuris-
tics described above, this property does not hold anymore potentially harming satisfiable
instances that can be split into components. To avoid that, we detect such cases, called
autarkies, in Kissat, enabling the removal of satisfied components (See Section 6).

Rephasing Strategies. We schedule the different rephasing heuristics in geometrically
increasing intervals, unlike the heuristics described in the previous section that are applied
after each and every restart. Consequently, we spend more and more time exploring the
search space in any given direction. An extreme case would be to start with the inverted
phase ‘I’ and an infinitely long interval: We would then explore the search space like
MiniSAT without any rephasing. We describe the order in which we apply the heuristics
in Section 7, but the idea is to apply them in geometrically increasing intervals.

5. Directing the Branching Heuristic with Local Search

In the current presentation, CDCL and the local search solver only exchange assignments,
but no information on the search process. In particular, there is no exchange on the variables
that are usually involved in conflict clauses, while both solvers use this information: the
branching heuristic of CDCL focuses on such variables (the more often it is in a conflict,
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the more you should focus on it) and the local search solver prefers to flip those variables.
To transmit information to CDCL, we use the conflict frequency of variables in the latest
local search procedure.

Definition 2 (Conflict frequency). In a local search process, the conflict frequency of a
variable x, denoted as ls confl freq(x), is the ratio of flips in which x appears in at least one
unsatisfied clause.

The intuition behind the definition is that the unsatisfied clauses have a similar role to
the conflicts during CDCL, so we use that information to adapt the scores in the branching
heuristics of CDCL. To update the scores in the branching heuristics, we first multiply
ls confl freq(x) with a constant integer (100 in this work), and the resulting number is
denoted as ls conflict num(x). After each restart of the CDCL solver, ls conflict num(x) is
used to modify the activity score of the variable x for VSIDS and learning rate for LRB.

VSIDS: for each variable x, its activity score is increased by ls conflict num(x).

LRB: for each variable x, the number of learned clause during its period I is increased
by the number of conflicts ls conflict num(x). That is, both P (x, I) and L(I) are
increased by ls conflict num(x).

The bumping is not done immediately, but only be executed after the next restart, that
is, while doing the local-search rephasing described in Section 4.1. We delay rephasing to
avoid changing the exploration direction that is done by the CDCL solver currently: As
important variables might have been already set, they cannot be decided again, limiting
the effect of the search redirecting.

6. Autarky Detection

When the initial problem is composed of several independent subproblems and one such
subprolbem is satisfied, the SAT solver will focus on the other parts. With phase saving,
the component will remain satisfied. One limitation of rephasing is that the satisfying
values for these components are lost. To overcome the issue, it is possible to rephase only
some variables without changing the phase of satisfied components or to explicitly identify
components, called autarkies, that are satisfied by the current assignment and remove them
from the overall formula (Section 6.1). If the overall problem is deemed satisfiable, the full
model is reconstructed at the end (Section 6.2).

6.1 Algorithm

An autarky is a assignment that fulfills parts of the formula without touching other parts
of the formula. This allows for the fulfilled part to be removed from the overall formula
without changing the status (SAT or UNSAT). More formally:

Definition 3 (Autarky). An autarky is an assignment α such that every clause C of F is
either entailed (α � C) or disjoint (α ∩ ¬C = ∅).

We use an algorithm originally proposed by Kullmann and described in a publication
by Kiesl et al. (Kiesl, Heule, & Biere, 2019). Instead of forcing the autark assignment we
simply eliminate the clauses touched by the autarky as well as the variables assigned by it.
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Algorithm 3: Algorithm to identify and adapt an autarky from a model

Data: An assignment α and a formula F
Result: An autarky and the adapted formula

while there is a clause C ∈ F such that α 2 C and α ∩ ¬C 6= ∅ do1

α := α \ ¬C2

foreach literal ` ∈ α do3

remove all clauses C from F with ` ∈ C;4

add the unit clause ` to the reconstruction stack with ` as witness;5

return (α, F )6

Algorithm 4: Implementation of the algorithm to identify an autarky from a model

Data: An assignment α and a formula F
Result: An autarky

αS := α;1

while αS 6= ∅ do2

` := pop αS ;3

foreach clause C in F containing ` such that α 2 C and ¬C ∩ α 6= ∅ do4

αS := αS ∪ (¬C ∩ α);5

α := α \ ¬C6

return α7

The algorithm is given in Algorithm 3. It is composed of two loops. The first one reduces
the current assignment by removing all literals that falsify any clause. If the remaining
assignment is not empty, then an autarky was found and the formula can be trimmed by
removing all entailed clauses from the set of clauses.

Theorem 4 (Correctness). Given an assignment α and α0 ⊆ α be any autarky. After
running Algorithm 3, the resulting assignment α′ contains α0 and is an autarky.

Proof. Let βi be the updated α after going through the first loop i times. Our first goal
is to prove α0 ⊆ βi. Note that α0 ⊆ β0 by assumption, as β0 is the original α. For the
induction step assume α0 ⊆ βi and that there is still a clause C ∈ F with βi 2 C and
βi ∩ ¬C 6= ∅. Since α0 ⊆ βi the first condition shows α0 2 C which implies α0 ∩ ¬C = ∅
as α0 is an autarky. Therefore α0 = (α0\¬C) ⊆ (βi\¬C) = βi+1. To prove that α′ is an
autarky if the loop terminates after n iterations with βn = α′ follows immediately as the
negation of the loop condition matches the definition of autarky.

Now, we can prove that Algorithm 3 not only derives an autarky, but the maximal
autarky contained in the initial assignment, possibly the empty assignment.

Corollary 5 (Maximal Autarky). Each assignment α has a unique maximum autarky with
α′ ⊆ α among all autarkies α′′ ⊆ α. This maximum α′ is computed by Algorithm 3.
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Proof. Assume α0, α1 ⊆ α are autarkies. Theorem 4 shows that α′ ⊇ (α0 ∪ α1). Therefore
there can not be two different maximal autarkies.

Algorithm 4 is a refined version with more implementation details of the first loop of
Algorithm 3. The solver relies on the occurrence lists to efficiently find all clauses containing
a given literal. This is not too costly as redundant learned clauses can be ignored. The
algorithm terminates because αS can contain each literal at most once during execution.

Theorem 6 (Complexity). The complexity of Algorithm 3 is O(
∑

C∈F |C|2).

Proof. The algorithm iterates over every occurrence of a literal in the clauses at most twice
during the execution: once if coming from the initial α and potentially a second time if the
literal was removed from the assignment α. Therefore, every clause will be read at most
twice for each of its literals, and each clause check requires iterating over all the literals.

The implementation in our SAT solver Kissat is made more efficient by first running
the loop of Algorithm 3 without adding literals to αS (called work in the actual code6).
This reduces the number of clauses to visit. Our actual implementation in our SAT solver
Kissat is slightly more complicated, because binary clauses are only represented implicitly.
Additionally, whenever α becomes empty the execution is stopped immediately as the inner
loop condition in Algorithm 4 will be false for all literals.

Performance is further improved by the fact that all irredundant clauses follow each other
in memory (without interleaved redundant clauses), improving processor cache efficiency.
In our experiments with the SAT solver Kissat, the time spent to identify autarkies is small
enough to not be a problem in general and the algorithm can be run until completion, even
for very large instances.

6.2 Model Reconstruction

Whenever a non-trivial (non-empty) autarky is found the formula is simplified by removing
clauses satisfied by the autarky. Then the solver continues searching for a model. However,
if this is successful and a model for the simplified formula is found later, that model does
not necessarily satisfy the original formula before applying the autarky assignment and
removing the touched clauses.

A similar situation occurs when lifting models to the original formula after variable
elimination or removing blocked clauses. The standard solution is to use a reconstruction
stack on which removed clauses paired with witnesses (in the form of cubes resp. partial
assignments) are pushed. During model reconstruction these clauses are consulted and the
model is fixed by applying the witness assignment in case such a clause turns out not to be
satisfied. This technique was first described in (Järvisalo & Biere, 2010) but goes back to
to Niklas Sörensson who proposed it in the context of MiniSAT. For more details please
refer to the recent Handbook chapter on preprocessing (Biere, Järvisalo, & Kiesl, 2021).

Thus the implementation of our autarky algorithms also has to properly fill the recon-
struction stack. The main question is which witness should be used and whether a single
witness clause pair is sufficient. For Algorithm 3 we decided to simply add the literals ` ∈ α
6. see file autarky.c available at fmv.jku.at/kissat and in particular the function propagate clause that

trims the model for non-binary clauses.
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satisfied by the autarky α as units to the reconstruction stack with itself as witness. After
removing all the clauses satisfied by the autarky these literals do not occur in the formula
anymore and thus we can simply force them to be true during reconstruction.

In principle this has the same effect as learning these units as redundant (PR) clauses
as proposed in (Heule, Kiesl, & Biere, 2020) and then removing the same clauses but now
because they are satisfied by these units. Unfortunately, this approach would require more
sophisticated proof checking, as adding those units is not model preserving, while adding
the units only on the reconstruction stack does not influence proof generation and checking.

However, Algorithm 3 is not compatible with incremental SAT solving (Fazekas, Biere,
& Scholl, 2019) as those unit witnesses are clearly dependent on each other. It is possible to
simply use the full autarky as witness instead, but that blows up the reconstruction stack
(quadratically in the worst case) particularly if the autarky is large.

This potentially exploding reconstruction stack is a problem we also saw in the context
of globally blocked clauses (Kiesl et al., 2019), also in practice, as well as for covered
clause elimination (Barnett, Cerna, & Biere, 2020). We leave it to future work to come up
with a space efficient method for autarky reconstruction in incremental SAT Solving. This
probably requires a non-clausal reconstruction stack (Barnett & Biere, 2021).

7. Experiments

We have implemented the techniques described in the previous sections in several solvers.
Even though technically different, they have the same motivation and share ideas, and all
have the same goal to enhance the decision heuristics of CDCL. The results presented in
this section show that these improved heuristics yield better performance, particularly for
satisfiable instances.

We implemented target phasing and fixed rephasing in CaDiCaL, Glucose, and Kis-
sat (Section 7.1), while the deep combination between CDCL and local search is imple-
mented in Glucose, Maple, and Kissat (Section 7.2). We further combine the techniques
of both lines of research in Glucose and Kissat (Section 7.3).

7.1 Directed CDCL

Our heuristics for directed CDCL have been implemented in the SAT solvers CaDiCaL
and Kissat and ported to the SAT solver Glucose.

7.1.1 Implementation

Default Policies. We assume that assignments saved either as best or as target phases
are good candidates for expansion, and thus finding models faster. Hence, we spend most
time on ‘B’ phases.

In CaDiCaL the search mode is based on the number of conflicts found so far. In focused
mode, the default rephasing policy is ‘OI(BWOBWI)ω’ (Original, Inverted; then Best, Walk,
Original rephasing is repeated). The ‘OI’ at the beginning speeds up finding models where
all literals are set to either true or false (the phase ‘I’ starts after the very first conflict).
In stable mode, the policy is ‘(IBWFBW#BWOBW)ω’ (Flipped and # for random rephasing). By
default, CaDiCaL provides a mode to target satisfiable instances, which only uses target
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phasing and stable mode. However, in these experiments, we keep the alternation between
stable and focused mode.

In Kissat, the default rephasing policy is ‘(BWOBWIBW#BWF)ω’. Unlike CaDiCaL, Kis-
sat determines the time spent in focused and stable mode by estimating the number
of memory accesses (instead of measuring the time directly in order to be deterministic
across runs). More precisely, the number of cache misses is estimated, refining on Knuth’s
“mems” (Knuth, 2006). Unlike CaDiCaL, in the satisfiable configuration (‘--sat’) sub-
mitted to the SAT competition, Kissat alternates between focused and stable mode and
always uses target phasing. We have experimented with various parameters to decide how
to schedule the rephasing, but the results seems rather robust (even starting with rephasing
every 500 conflicts does not lead to worse performance).

All our implementations use the alternation of stable mode with Luby-style restarts
and focused mode with Glucose-style restarts. The idea of stable mode is to change less
overall. Hence, Kissat and CaDiCaL use chronological backtracking (Nadel & Ryvchin,
2018; Möhle & Biere, 2019). Both solvers also use two separate decision queues as suggested
by Oh (Oh, 2015). They use VMTF (Biere & Fröhlich, 2015) in focused and VSIDS in stable
mode. VMTF during focused mode makes the solver more agile whereas VSIDS with a low
bumping is more stable.

Kissat is the only solver to include autarky detection and elimination. We experimented
and found no obvious performance gain or loss. It turns out that autarky detection is fast
enough to be executed until completion.

Implementation in Glucose. To have a common platform for comparison between both
lines of research, we also implemented our heuristics in the SAT solver Glucose. However,
to avoid too many changes to the base solver we did not implement a separate different
decision queue for stable mode. Instead, to increase stability, we decrease the bonus that
bumped variables get by setting the variable decay to a smaller value. In focused mode
we do the opposite and increase the decay compared to the default value in order to follow
more closely the search process. To have a more balanced alternation between stable and
focused mode, we measure time in the same way as Kissat.

Two details of this implementation effort should be mentioned. First, implementing the
alternation of stable and focused mode was easy, but performance significantly dropped to
the point that our implementation became much worse than the original implementation
of Glucose. We resolved that issue by bumping not only the resolved literals and the
literals in the learned clause but also the literals in the reasons of the literals in the learned
clause, following the idea pioneered by MapleSAT (Liang et al., 2016), which is also used in
our other solvers. Experiments with CaDiCaL confirmed the importance of this heuristic.
Second, we had to change the types of data structure to save the target phase. Glucose
uses a vector of Booleans, but for target phases, it is necessary to use a vector of tri-states
(with third possible unassigned value, beside true and false).

7.1.2 Rephasing and Target Phases

For CaDiCaL and Kissat we have tested 7 configurations.

always-target (resp. no-target) always (resp. never) uses target phases to set the value of
decision variables. By default, target phasing is only activated in stable mode.
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Figure 2: CDF for the solver Kissat on benchmarks from the SAT Race 2019 (left) and
SAT Competition 2020 (right)
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Figure 3: CDF for the solver CaDiCaL on benchmarks from the SAT Race 2019 (left) and
SAT Competition 2020 (right)
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Figure 4: CDF for the solver Glucose on benchmarks from the SAT Race 2019 (left) and
SAT Competition 2020 (right)

1539

7 Understanding and Improving SAT Solvers

106



Cai, Zhang, Fleury & Biere

no-rephasing never uses rephasing.

default (called phases) is an alternating approach. It uses target phasing in stable mode
and standard phase saving in focused mode.

no-phase-saving does not use any phase/target saving, nor rephasing, and simply sets the
variable to the inital phase, true.

For instance, the no-target configuration does not feature any target phasing but uses
rephasing, the always-target configuration always uses target phasing even in focused mode,
whereas no-rephase uses target phasing only during stable mode but never rephases the save
phases. All these configurations use save phasing to save the values.

Results for Kissat and CaDiCaL are presented in Figures 2 and 3 and in Tables 2 and 4.
The effect in the SAT Competition 2021 and SAT Competition 2020 are very similar. Thus,
for conciseness, we do not include the CDF for the SAT Competition 2021.7

First Kissat performs better than CaDiCaL. Second, we see that no-phase-saving solves
the least number of problems, confirming previous results. Third, on satisfiable instances,
pure phase saving no-target-no-rephase performs worse than any other configuration, but on
all instances, it performs better than always-target-no-rephase.

Fourth, target phasing without rephasing (configuration always-target-no-rephase) does
not perform better than no target phasing without rephasing no-rephase. Intuitively, this
makes sense because target phasing strongly constrains the search in a direction and rephas-
ing resets target phasing making it possible to explore different regions of the search space.

Fifth, our default alternating strategy manages to retain the best side of no-target and
always-target: It solves most satisfiable instances and it is not too harmful on unsatisfiable
instances. Sixth, no-phase-saving performs particularly bad in Kissat.

Glucose. The results of Glucose give a slightly different picture, see Figure 4 and Ta-
ble 3, with some interesting results.8 First, it seems that target phasing degrades perfor-
mance on unsatisfiable benchmarks, where target phasing is detrimental and our alternating
approach is not able to compensate.9

Also the impact of the new heuristics is smaller than for Kissat and CaDiCaL. One
possible explanation is that further tuning of constants like variable decay during focused
and stable mode or a dedicated separated decision heuristic is required to get more out of
our heuristics. Third, rephasing is less helpful than for Kissat and CaDiCaL. Fourth,
the phases configuration (the same alternating scheduling as for Kissat) solves most SAT
problems, albeit by a very small margin. The performance of no-phase-saving is surprising
and seems to be due to stable mode: Deactivating it significantly reduces performance on
unsatisfiable problems. Remember that no-phase-saving uses the alternation between stable
and focused mode unlike original.

Interpretation. Overall, the performance increases on satisfiable instances. Generally,
rephasing with target phasing improves the performance of the solver and makes it more

7. Note to the reviewers, Figures 5 and 6 are part of the appendix.
8. As for the previous case, the CDF from the SAT Competition 2021 is part of the appendix in Figure 7.
9. In our implementation in Glucose 3, this was less detrimental.
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solver #SAT #UNSAT #Solved PAR2

SAT Race 2019(400)

CaDiCaL-default 148 92 240 4 688.13
CaDiCaL-always-target 147 85 232 4 774.77
CaDiCaL-no-target 127 97 224 5 028.43
CaDiCaL-no-rephase 129 96 225 5 052.92
CaDiCaL-no-rephase-no-target 131 98 229 4 913.18
CaDiCaL-always-target-no-rephase 126 80 206 5 478.14
CaDiCaL-no-phase-saving-no-target 126 88 214 5 313.91

SAT Competition 2020(400)

CaDiCaL-default 113 104 217 5 316
CaDiCaL-always-target 120 100 220 5 217
CaDiCaL-no-target 90 107 197 5 687
CaDiCaL-no-rephase 70 107 177 6 165
CaDiCaL-no-rephase-no-target 72 110 182 6 094
CaDiCaL-always-target-no-rephase 71 92 163 6 489
CaDiCaL-no-phase-saving-no-target 74 104 178 6 174

SAT Competition 2021(400)

CaDiCaL-default 115 139 254 4 310
CaDiCaL-always-target 126 134 260 4 243
CaDiCaL-no-target 116 141 257 4 260
CaDiCaL-no-rephase 104 139 243 4 606
CaDiCaL-no-rephase-no-target 107 145 252 4 387
CaDiCaL-always-target-no-rephase 99 122 221 5 151
CaDiCaL-no-phase-saving-no-target 90 137 227 4 966

Table 2: Summary of the performance of the SAT solvers CaDiCaL

robust to solve problems where a model with only true variables exists.10 Performance on
unsatisfiable instances degrades slightly except for Glucose.

On the other hand the default alternating approach (target phases during stable mode,
usual phase saving during focused mode) achieves a good compromise on a combination of
satisfiable and unsatisfiable problems. Rephasing alone does not seem to help as much for
Glucose as for the other solvers tested here.

Attempts to unify the rephasing strategies is ongoing work and we did not find a simple
overall winning strategy yet. Note that these solvers are of course not identical, (e.g., time
spent in stable and focused mode, the number and frequency of deleted learned clauses, the
details of the variable scoring mechanism, which inprocessing approaches are used, etc.).
Our experience is however, that using best rephasing every second or third time rephasing
is scheduled gives better results.

10. This kind of problem is unlikely to be selected at the SAT Competition, because very few solvers are
able to solve such instances.
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solver #SAT #UNSAT #Solved PAR2

SAT Race 2019(400)

Glucose-phases 142 78 220 5 107
Glucose-always-target 136 77 213 5 247
Glucose-no-target 133 85 218 5 116
Glucose-no-phase-saving 136 78 214 5 234
Glucose-no-rephase-no-target 130 84 214 5 184
Glucose-always-target-no-rephase 130 72 202 5 535
Glucose-no-phase-saving-no-rephase 128 74 202 5 525

SAT Competition 2020(400)

Glucose-phases 120 89 209 5 404
Glucose-always-target 115 84 199 5 624
Glucose-no-target 84 95 179 6 112
Glucose-no-phase-saving 113 85 198 5 585
Glucose-no-rephase-no-target 78 100 178 6 089
Glucose-always-target-no-rephase 69 77 146 6 791
Glucose-no-phase-saving-no-rephase 59 79 138 6 980

SAT Competition 2021(400)

Glucose-phases 107 117 224 4 963
Glucose-always-target 111 113 224 4 991
Glucose-no-target 103 128 231 4 799
Glucose-no-phase-saving 105 116 221 5 101
Glucose-no-rephase-no-target 106 128 234 4 716
Glucose-always-target-no-rephase 96 99 195 5 655
Glucose-no-phase-saving-no-rephase 83 119 202 5 605

Table 3: Summary of the performance of the SAT solvers Glucose

7.2 Techniques With Local Search

The techniques of deep combination of CDCL and local search include (1) exploring promis-
ing branches by local search (denoted as rx, Section 3.2); (2) local-search rephasing (denoted
as rp, Section 4.1) and (3) directing the branching heuristics with local search conflict fre-
quency (denoted as cf, Section 5). The experiment setup is described in Section 2.4.

For Glucose and MapleLcmDistChronoBT-DL-v2.1, we implement all the three
techniques in this work. For Kissat, we only implement the cf technique because it already
has a local search solver. We focus on Kissat sat, the version of Kissat that focuses on
satisfiable instances. Nevertheless, it is easy to apply the cf technique to Kissat, which is
what we do in this work.

Evaluations on Benchmarks of SAT Competitions. The results of evaluations of all
the base solvers and the different versions with our techniques are reported in Table 5. The
CDFs of these experiments are included in the appendix. According to the results, we have
some observations.
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solver #SAT #UNSAT #Solved PAR2

SAT Race 2019(400)

Kissat-default 159 96 255 4 213
Kissat-always-target 160 90 250 4 255
Kissat-no-target 147 98 245 4 404
Kissat-no-rephase 150 99 249 4 352
Kissat-no-rephase-no-target 139 98 237 4 609
Kissat-always-target-no-rephase 148 88 236 4 607
Kissat-no-phase-saving-no-target 135 91 226 4 939

SAT Competition 2020(400)

Kissat-default 129 120 249 4 304
Kissat-always-target 143 113 256 4 123
Kissat-no-target 123 118 241 4 497
Kissat-no-rephase 107 118 225 4 974
Kissat-no-rephase-no-target 99 119 218 5 142
Kissat-always-target-no-rephase 109 108 217 5 171
Kissat-no-phase-saving-no-target 78 110 188 5 785

SAT Competition 2021(400)

Kissat-default 125 151 276 3 638
Kissat-always-target 135 141 276 3 681
Kissat-no-target 120 149 269 3 896
Kissat-no-rephase 114 151 265 3 985
Kissat-no-rephase-no-target 108 149 257 4 164
Kissat-always-target-no-rephase 118 130 248 4 293
Kissat-no-phase-saving-no-target 94 137 231 4 780

Table 4: Summary of the performance of the SAT solvers Kissat

• The rx technique improves Glucose and MapleLcmDistChronoBT-DL-v2.1 on
solving satisfiable instances, particularly for the benchmarks of 2020 (increased by
17 and 35 for #SAT). On the other hand, the Glucose+rx and Maple-DL+rx
have slightly worse performance than the original versions on unsatisfiable instances,
and the decrease on #UNSAT is only 2 on average, considering both solvers on all
benchmarks.

• By adding the rp technique, Glucose+rx+rp and Maple-DL+rx+rp gain further
improvement on #SAT, which is significant for all benchmarks. The increase on satis-
fiable instances is between 6 and 38 problems. Howover, some unsatisfiable instances
(less than 4) are lost.

• The impact of the cf technique can be seen from the comparisons of Glucose+rx+rp
vs. Glucose+rx+rp+cf, Maple-DL+rx+rp vs. Maple-DL+rx+rp+cf, and Kis-
sat sat vs. Kissat sat +cf. The results are mixed: On the 2020 benchmarks for
Maple the increase is significant for satisfiable instaces. Similar results appear for
the 2019 benchmarks with Glucose. Interestingly, the performance for unsatisfiable
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solver #SAT #UNSAT #Solved PAR2

SAT Competition 2019(400)

Glucose 4.0 115 86 201 5 531
Glucose+rx 120 85 205 5 430
Glucose+rx+rp 131 86 217 5 191
Glucose+rx+rp+cf 143 87 230 4 915

Maple-DL-v2.1 143 97 240 4 602
Maple-DL+rx 146 93 239 4 602
Maple-DL+rx+rp 152 91 243 4 535
Maple-DL+rx+rp+cf 154 95 249 4 377

Kissat SAT 160 90 250 4 255
Kissat SAT +cf 163 91 254 4 189

CCAnr1.0 13 0 13 9 678

SAT Competition 2020(400)

Glucose 4.0 77 93 170 6 325
Glucose+rx 94 90 184 5 939
Glucose+rx+rp 132 91 223 4 942
Glucose+rx+rp+cf 126 98 224 4 978

Maple-DL-v2.1 86 104 190 5 837
Maple-DL+rx 121 105 226 4 978
Maple-DL+rx+rp 141 101 242 4 512
Maple-DL+rx+rp+cf 151 106 257 4 171

Kissat SAT 143 113 256 4 123
Kissat SAT+cf 146 113 259 4 055

CCAnr1.0 45 0 45 8 979

SAT Competition 2021(400)

Glucose 4.0 96 126 222 5 094
Glucose+rx 103 125 228 4 966
Glucose+rx+rp 120 121 241 4 631
Glucose+rx+rp+cf 125 126 251 4 312

Maple-DL-v2.1 104 133 237 4 703
Maple-DL+rx 108 125 233 4 724
Maple-DL+rx+rp 129 121 250 4 364
Maple-DL+rx+rp+cf 130 123 253 4 293

Kissat SAT 135 141 276 3 681
Kissat SAT+cf 138 142 280 3 594
CCAnr1.0 24 0 24 9 409

Table 5: Experiment results on benchmarks from SAT Competitions 2019-2021, where
Maple-DL-v2.1 is short for MapleLcmDistChronoBT-DL-v2.1

insteances increases back to the original level or is even slightly better. Kissat sat
sees an increase of performance too.
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Glucose-4.2.1 Maple Kissat sat CCAnr
. + . + . +cf .

#SAT 7 330 8 075 8 084 8 759 8 192 8 214 7 853
#UNSAT 187 197 215 218 207 211 0

#Solved 7 517 8 272 8 299 8 977 8 399 8 425 7 853
Avg (s) 2 555.85 1 850.58 1 867.13 1 243.66 1 760.55 1 734.61 2 215.35

Table 6: Compared with state-of-the-art solvers on FCC. The default version is marked as
“.”, whereas “+” stands for +rx+rp+cf

• By implementing all the three techniques, very large improvements are obtained for
Glucose and MapleLcmDistChronoBT-DL-v2.1 for all the benchmarks. Par-
ticularly, Glucose+rx+rp+cf solves 54 additional instances than the original solver,
and Maple-DL+rx+rp+cf solves 67 additional instances than its original solver for
the SAT Competition 2020 benchmark (which has 400 instances). We note that
Maple-DL+rx+rp+cf is a simplified and optimized version of our solver Relaxed -
LcmdCbDl NewTech which won the gold medal of Main Track SAT category and
the silver medal of the Main Track ALL category in SAT Competition 2020.

Evaluations on Benchmarks of Spectrum Repacking. We also carry out experi-
ments on a suite of instances arising from an important real world project — the spectrum
repacking project in US Federal Communication Commission (FCC). The instances of this
project was available on-line.11 (Newman et al., 2018). This benchmark contains 10 000
instances, including both satisfiable and unsatisfiable instances. We compare each base
CDCL solver with its final version using our techniques, as well as the underlying local
search solver CCAnr.

The results on this benchmark suite are reported in Table 6. According to the results,
for each of the base CDCL solvers, the improved version with our techniques has better
performance than the base solver. Particularly, the Maple-DL+rx+rp+cf solver solves the
most instances (8759+218=8977), significantly better than all the other solvers.

Further Analyses on the Cooperation. We perform more analyses to study the role
of local search in the hybrid solvers based on Glucose and MapleLcmDistChronoBT-
DL. This experiment does not include Kissat sat as we do not apply the relaxed CDCL
framework to it and the statistics in this experiment are not applicable to Kissat sat +cf.
Some important information is provided in Table 7.

We can see that the local search solver returns a solution for some instances, and this
number varies considerably with the benchmarks. A natural question is whether the im-
provements come mainly from the complementation of CDCL and local search solvers that
they solve different instances? If this were true, then a simple portfolio that runs both
CDCL and local search solvers would work similarly to the hybrid solvers in this work.
To answer this question, we compare the instances solved by the hybrid solvers with those
by the base CDCL solver and the local search solver (both the CDCL and the local search

11. https://www.cs.ubc.ca/labs/beta/www-projects/SATFC/cacm_cnfs.tar.gz
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Analysis for SAT Analysis for UNSAT

solver #byLS #SAT bonus #LS call LS time(%) #LS call LS time(%)

SAT Competition 2019(400)

Glucose+rx 9 10 33.94 11.7 22.99 6.95
Glucose+rx+rp 6 19 25.83 10.87 19.78 5.99
Glucose+rx+rp+cf 5 31 26.24 11.75 22.52 6.29

Maple+rx 14 7 12.66 2.67 12.94 1.98
Maple+rx+rp 12 16 12.73 2.91 16.79 2.13
Maple+rx+rp+cf 12 15 11.21 3.05 17.23 2.22

SAT Competition 2020(400)

Glucose+rx 30 6 15.55 12.2 22.18 11.35
Glucose+rx+rp 21 32 13.67 11.36 12.14 10.57
Glucose+rx+rp+cf 20 31 13.26 11.37 12.65 10.32

Maple+rx 19 13 14.21 6.69 10.24 5.25
Maple+rx+rp 21 30 10.89 6.32 13.09 5.67
Maple+rx+rp+cf 23 36 10.95 6.05 14.17 5.42

SAT Competition 2021(400)

Glucose+rx 23 7 24.32 13.8 24.9 6.13
Glucose+rx+rp 21 25 16.43 14.07 19.56 5.37
Glucose+rx+rp+cf 17 27 20.1 14.1 14.66 5.53

Maple+rx 17 8 7.47 6.09 5.62 1.69
Maple+rx+rp 17 23 12.84 5.84 6.35 1.71
Maple+rx+rp+cf 14 26 12.73 6.26 5.76 1.69

Table 7: Analyses on the impact of Local Search on the CDCL solvers. Maple is short for
Maple-DL to save space, #byLS is the number of instances for which the solution
is given by the local search solver, #SAT bonus is the number of instances for
which both base CDCL solver and Local Search solver fail to solve but the hybrid
solver finds a satisfiable solution. #LS call is the average number of calls on Local
Search, while LS time is the average value of the proportion of time (in percentage
%) spent on local search in the whole run, and these two figures are calculated for
satisfiable and unsatisfiable instances respectively.

solver are given 5000 seconds for each instance). We observe that, there is a large number of
instances (denoted by #SAT bonus) that both CDCL and local search solvers fail to solve
but can be solved by the hybrid solvers. For these instances, even a virtual best solver that
picks the solver with the best result for each instance would fail. For Glucose, this number
reaches 31, 31, and 27 for the three benchmarks respectively, while for MapleLcmDist
ChronoBT-DL, this number reaches 15, and 36, and 26 respectively. This clearly indicates
that our new cooperation techniques have essential contributions to the good performance
of the hybrid solvers.
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We have also calculated the number of calls of the local search solver in each run. This
figure usually ranges from 10 to 25 calls per run for these benchmarks. As for the run time
of local search, which can be seen as the price paid for the benefit of using local search,
we calculate the portion of the time spent on local search. This figure is between 6% and
20% for the satisfiable instances, and it drops significantly on unsatisfiable instances, which
is usually less than 7%. This is consistent with the observations that the number of local
search calls is not necessarily fewer on unsatisfiable instances, because the portion of the
time on local search also depends on the total time of the hybrid solver.

On average the time for solving unsatisfiable instances is about 1.5× to 2× the time it
takes to solve satisfiable instances for both Glucose+rx+rp+cf and Maple-DL+rx+rp+cf.
In a nutshell, the price is acceptable and usually small for the unsatisfiable instances, which
also partly explains that our techniques do not have an obvious negative impact on solving
unsatisfiable instances although they incline to the satisfiable side.

7.3 Combination of Our Techniques

Finally, we also combined our techniques in a single SAT solver to be able to compare them.
Even though they were developed independently, but with the same overall motivation in
mind, and also differ on the technical level, the similar positive effects can be observed.

The results are given in Table 8. Overall we can see that both approaches improve the
performance of Glucose and in particular on SAT problems. In more details, the (slightly
simplified12) version of target phasing and rephasing is outperformed by the +rx+rp+cf,
especially on the SAT 2020 and 2021 benchmarks. Interestingly, the combination of all
techniques outperforms both versions.

In an attempt to better understand the phenomenon, we deactivate +cf from the com-
bination for Kissat, introducing a performance regression. Understanding the difference
better is left to future work.

8. Related Work

There has been interest in combining systemic search and local search for solving SAT.
Indeed, it was even included as one of the challenges in Selman et al (Selman, Kautz, &
McAllester, 1997). Previous attempts can be categorized into two families according to the
type (DPLL/CDCL or local search) of the main body solver.

A family of hybrid solvers use a local search solver as the main body solver. Unit-
Walk (Hirsch & Kojevnikov, 2005) is among one the first local-search algorithms that try
to include a technique mimicing propagation from CDCL, called unit clause elimination.
An incomplete hybrid solver hybridGM (Balint et al., 2009) calls CDCL search around
local minima with only one unsatisfied clause. Audemard et al. proposed a hybrid solver
named Sathys (Audemard, Lagniez, Mazure, & Sais, 2009; Audemard et al., 2010). Each
time the local search solver reaches a local minimum, a CDCL solver is launched. Some
reasoning techniques or information from CDCL solvers have been used to improve local

12. Missing is in particular the scaling of the random walk at the beginning of walking phases and the better
scheduling of which model is extended when walking.
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solver #SAT #UNSAT #Solved PAR2

SAT Competition 2019(400)

Glucose 4.0 115 86 201 5531.29
Glucose+rx+rp+cf 143 87 230 4915.2
Glucose phases 142 78 220 5107.06
Glucose+all 151 71 222 5045.35

Kissat 159 96 255 4212.63
Kissat +cf 159 99 258 4157.38

Kissat SAT 160 90 250 4255.0
Kissat SAT +cf 163 91 254 4189.04

SAT Competition 2020(400)

Glucose 4.0 77 93 170 6325.36
Glucose+rx+rp+cf 126 98 224 4977.58
Glucose phases 120 89 209 5404.23
Glucose+all 142 97 239 4616.08

Kissat 129 120 249 4304.49
Kissat +cf 140 124 264 4042.65

Kissat SAT 143 113 256 4122.68
Kissat SAT+cf 146 113 259 4055.31

SAT Competition 2021(400)

Glucose 4.0 96 126 222 5094.43
Glucose+rx+rp+cf 125 126 251 4312.46
Glucose phases 107 117 224 4962.6
Glucose+all 130 124 254 4230.77

Kissat 125 151 276 3637.79
Kissat+cf 130 152 282 3562.96

Kissat SAT 135 141 276 3681.33
Kissat SAT+cf 138 142 280 3594.41

Table 8: Experiment results of combination techniques on benchmarks from SAT Compe-
titions 2019-2021

search solvers. Resolution techniques were integrated to local search solvers (Cha & Iwama,
1996; Anbulagan, Pham, Slaney, & Sattar, 2005).

Recently, Lorenz and Wörz developed a hybrid solver GapSAT (Lorenz & Wörz, 2020),
which used a CDCL solver as a preprocessor before running the local search solver ProbSat.
The experiments showed that the learned clauses produced by the CDCL solver were useful
to improve the local search solver on random instances.

The other family of hybrid solvers focuses on boosting CDCL solvers by local search,
and this work belongs to this line. One simple way of hybridizing is to call local search
before CDCL is run, trying to solve the instance by the local search solver alone. This gives
the same benefits as a portfolio approach. Additionally, information derived during the
local search, such as variable ordering, can be used in the following CDCL solver call. The
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hybrid solvers Sparrow2Riss (Balint & Manthey, 2018), CCAnr+Glucose (Cai, Luo, &
Su, 2014) and SGSeq (Li & Habet, 2014) belong to this family. In contrast to our approach,
there is no information flow back from CDCL to the local search solver. We actually switch
between local search and CDCL in regular intervals and further exchange information in
both directions in an “inprocessing” fashion (Järvisalo, Heule, & Biere, 2012).

Some works use local search to find a subformula for CDCL to solve. The local search
solver (Mazure et al., 1998) finds a part of the formula which is satisfiable, which helps
to divide the formula into two parts for the DPLL solver to allow the SAT solver to focus
on the unsatisfiable part. In Hinotos (Letombe & Marques-Silva, 2008), a local search
identifies a subset of clauses to be passed to a CDCL solver in an incremental way.

Although these previous attempts have been made to combine the strength of CDCL and
local search, they did not lead to hybrid solvers essentially better than CDCL solvers on ap-
plication instances. This work, for the first time, meets the standard of the challenge “create
a new algorithm that outperforms the best previous examples of both approaches” (Selman
et al., 1997) on standard application benchmarks from SAT Competitions.

9. Conclusion

This work takes a large step towards deep cooperation of CDCL and local search by pre-
senting four techniques for effectively using local search to improve CDCL solvers. The
first idea extends promising branches from being pruned by targeting phases of large con-
sistent assignments. The second idea relaxes CDCL by extending such promising branches
in order to let local search find a satisfying assignment nearby. The third idea is to utilize
assignments minimizing the number of unsatisfiable clauses found during local search and
use them as saved phases in the phase selection heuristic. Finally, we proposed to enhance
the branching strategy of CDCL solvers by considering the conflict frequency of variables in
the local search process. These techniques significantly improve the performance of state-
of-the-art CDCL solvers on real-world application benchmarks. As generic techniques they
are expected to improve other CDCL solvers too.

This is the first time that the combination of stochastic search and systematic search
techniques leads to substantial improvement of the state of the art on application bench-
marks, compared to using only one technique alone, thus positively resolving Challenge 7
of the “Ten Challenges in Propositional Reasoning and Search” (Selman et al., 1997).
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Appendix

In this section, two classes of CDF plots are listed for component effectiveness analysis.
The first three figures evaluate the directly CDCL guided exploring methods. Figures 5-7
show the results of different strategy combinations on the top of Kissat, CaDiCaL and
Glucose respectively. The last three figures compare the effectiveness of the local search
related strategies, which are implemented based on Glucose and Maple. Figures 8-10
show the results of the different benchmarks form SAT RACE 2019, SAT Competition 2020
and SAT Competition 2021.
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Figure 5: CDF for the solver Kissat on benchmarks from the SAT Competition 2021
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Figure 6: CDF for the solver CaDiCaL on benchmarks from the SAT Competition 2021
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Figure 8: CDF for the solvers Glucose (left) and Maple (right) about the relaxed CDCL,
local search rephasing and conflict frequency on benchmarks from the SAT Race
2019
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Figure 9: CDF for the solvers Glucose (left) and Maple (right) about the relaxed CDCL,
local search rephasing and conflict frequency on benchmarks from the SAT Com-
petition 2020
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Figure 10: CDF for the solvers Glucose (left) and Maple (right) about the relaxed CDCL,
local search rephasing and conflict frequency on benchmarks from the SAT Com-
petition 2021
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Abstract
The virtual SAT Solver Museum is an effort towards preserving historical SAT solvers, by collecting and
porting their source code to modern compilers and evaluating them on representative benchmark sets
on the same hardware. This allows us to compare historic and modern solvers in the same environment.
Our results clearly show a remarkable improvement of SAT solver performance in the last 30 years.
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1. Introduction

It has been stated that “No major performance breakthrough [happened in SAT solving] in close
to two decades”. Notable proponents of this claim are Karem Sakallah at the recent Simons
Institute’s seminar in 2023 and Joao Marques-Silva during his invited talk at POS 2019 [1, Slide 12
(or 53 of the total number)]. The SAT Museum exists to document the history of SAT solving
and to show in contrast to these claims that indeed “SAT solvers are getting faster and faster”.

The SAT Museum is curated by two authors of this paper; Armin Biere and Marijn Heule have
put considerable effort into collecting and restoring the SAT solvers that have been published
since the first SAT competitions more than two decades ago. Some results of this effort have been
presented as a lightening talk at POS’20, as well as in the form of a (comparatively) high-impact
tweet with preliminary plots for the SAT Competition 2020 benchmarks on Twitter.

Even though a first SAT competition was conducted more than 3 decades ago in 1992 [2], the
current regular series of annual SAT competitions was started in 2002 [3] by Laurent Simon
and Daniel Le Berre and in most years attracts dozens of SAT solver submissions. The SAT
competition provides a fair environment where solvers compete on the same benchmarks
and hardware. These competitions have been credited as a main driving force in advancing
SAT-solving technology and are a well-recognized show-case with high visibility and impact
far beyond the core SAT community.

Each year, the benchmark suite consists of a combination of old and new benchmarks. In
recent years, at least 75% of the benchmarks were new, and no more than 14 out of 400 originated
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from the same research group to ensure diversity. For more information on the competition we
refer to the yearly SAT competition proceedings, e.g., the SAT Competition 2022 proceedings [4],
or to the last article describing the SAT Competition in 2020 [5].

To asses the progress in solver performance, we consider all winning solvers since the SAT
Competition 2002, whose code we could find on the SAT Competition website or obtain through
personal communication. Note, that there was no requirement to publish source code nor even
binaries in earlier incarnations of the SAT Competition (Section 3). Besides providing data on
competition winners we also include two historically important solvers: Boehm1, the winner of
the first SAT competition in 1992 [2], as well as Grasp [6] from 1997.

We run on the same hardware (from 2016) all collected and patched solvers on six benchmark
sets from SAT competitions spanning more than two decades, namely 2002, 2011, 2019, 2020,
2021, and 2022. We report results on each set separately, in order to address an argument brought
forward by Laurent Simon at a recent POS workshop, that the benchmark selection method of
more recent competitions might give a bias towards newer solvers and which arguably might
not be observable on the SAT Competition 2011 benchmark set for example. Our data on the
SAT Competition 2011 benchmark set refutes this argument as it clearly shows the same solver
progress which we observed in other years.

While in general we see a big improvement in solver performance in these 30 years across all
considered benchmark sets, the yearly improvement is mostly rather slow, except for perfor-
mance jumps in some years, which arguably happen with a frequency of 3 to 5 years. Analyzing
the reasons for this apparent progress, i.e., both with respect to algorithms, heuristics and
implementation, and in particular distilling the core ideas leading to these performance jumps
is considered an important follow-up work but out of the scope of this first study.

2. Preliminaries

For the sake of understanding this paper, no special knowledge of SAT is required and we refer
to the Handbook of Satisfiability [7] for more details. In short, CDCL [8] and its predecessor
DPLL [9] work on a partial assignment trying to satisfy a set of clauses. When a conflict
(mismatch between the assignment and the constraints) arises, the partial model is adapted and
CDCL learns new clauses to prevent the same conflict in the future.

On top of CDCL or DPLL, the set of clauses can be simplified by transforming the problem
more significantly. In earlier solvers, these techniques were employed as preprocessing before
running CDCL, whereas nowadays they are run interleaved with CDCL as inprocessing. We
refer to the corresponding preprocessing chapter [10] in the SAT handbook for details.

In general, this work considers SAT solvers (some of them developed by the first author),
which are run on problems from the SAT Competition (last two authors were frequently part of
the committee running it and selecting benchmarks).

Therefore, a major thread to validity of this work, as noted by one reviewer, is that its authors
are all stake holders in the SAT Competition, either as participants or as organizers. Showing
newer solvers to be better clearly serves their interest to support the competition and how its
artifacts are used in the scientific discourse on SAT. Nevertheless, we argue, that our carefully
executed and extensive experiments are convincing and allow to reach the favorable conclusion,
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that SAT solvers are getting faster and faster.
The second major thread to validity is related to the fact that new solvers during development

are trained on at-that-time current set of benchmarks: To join the competition, developers
check that new technique work on previous competition benchmarks. For example, Kissat-mab-
hywalk-2022, the winner of 2022, is based on the 2021 winner (which in turn is based on the
2020 winner). And unsurprisingly, it performs better on the 2021 benchmarks than the 2021
winner. However, none of them has seen the 2022 benchmarks. It is also unlikely that it was
trained to perform well on the 2002 benchmarks. To counteract this potential thread to validity,
we have used a large benchmark, spanning more than two decades of competitions.

3. The Solvers

In this section, we list all tested solvers attempting to highlight some of their contributions. We
selected most SAT Competition winners and some others for their historical significance.

Before Preprocessing. In context of the SAT solver Grasp [6] CDCL was proposed, even
though the term CDCL was only later introduced [11]. The decision heuristic at that time
attempted to satisfy as many clauses as possible and is considered to be very costly to compute
in each search node. Improving such decisions heuristics was also the main topic for the DPLL
and thus pre-CDCL SAT solvers participating in the first SAT competition in 1992, from which
we include the winning solver Boehm1 [2]. The next historically most significant SAT solver is
Chaff [12]. It introduced various techniques that are now commonly used in all SAT solvers,
such as watched literals for efficient propagation and the VSIDS decision heuristic to quickly
find good decisions. We also consider its 2004 variant [13].

In 2002, the solver Limmat [14] won the competition (by one instance in a tie-breaking round).
It follows the ideas of zChaff (at a time when the source code was not available). In 2003 the
Siege SAT solver [11] finished 3rd in the SAT Competition (but run hors concours). Its main
features are blocking literals and the variable-move-to-front (VMTF) decision heuristic.

The SAT solver Berkmin [15] improved the Chaff bumping heuristics by more explicitly
picking literals in recently learned clauses and also taking into account literals that appear
during the conflict analysis and not only those appearing in the final conflict clause. Around
this time, restarts were still mostly random. In 2003 the SAT solver MiniSat [16] appeared1,
introducing essential algorithmic and implementation optimizations, including learned clause
minimization, exponential VSIDS, and lazy priority queue updates. It won for the first time
in 2006. The solver is further considered an attempt at providing clean code by removing
redundant features present in other SAT solvers.

CDCL and Preprocessing. In 2005 actually SatElite-GTI, a combination of the SatElite
preprocessor [17] with MiniSat as back-end solver, won the competition by a big margin, i.e.,
contributing to one of those performance jumps we will see. In that year, MiniSat 2005 was also
awarded, but it lost to the combination with SatElite. After this success many winning solvers
followed this recipe and included SatElite as preprocessor, until in 2008 MiniSat’s version 2.0
1This seminal paper received the first test-of-time award of the SAT conference in 2022.
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won the competition. It is the first MiniSat version which combines CDCL with preprocessing
in one code base and executable.

In 2006 MiniSat dominated the (first) SAT Race 2006 and in 2007 the idea of rapid restarts
and phase saving helped the Rsat solver to win the SAT Competition 2007. This technique
afterwards became standard in all solvers. Also on the CDCL side the fruits of using the glue
(LBD) metric [18] of learned clauses to improve reduction of the learned clause data base as
well as improved dynamic restart schemes let the Glucose solver [18] win in 2011 and 2012.

The Glucose solver accordingly formed the basis of the development of the MapleSAT solver
series winning the competition three times in a row from 2016-2018. In 2016 it introduced
the idea of interleaving different policies for SAT (fewer restarts / longer assignments) and
UNSAT (more restart / short assignments) proposed by Chanseok Oh [19], contradicting earlier
intuitions that restarts mostly help solvers to avoid heavy-tail phenomenon [20] in satisfiable
formulas. The solver further included the new LRB decision heuristic and recursive reason side
bumping [21] in 2016 [22].

In 2017 vivification [23] was incorporated into MapleSAT in the form of simplifying (aka
“inprocessing” - see below) of learned clauses, while before vivification was only applied to
original / irredundant clauses during preprocessing. In 2018 the next variant of MapleSAT won
the competition, again extended by a different set of authors, by switching between the default
CDCL version of non-chronological backtracking and chronological backtracking [24, 25]. In
the SAT Race 2019 MapleSAT was again successful by filtering out redundant learned clauses
through hashing [26] and enforcing deterministic switches between LRB and VSIDS [27].

Inprocessing Solvers. While the earlier listed solvers did not perform any global transfor-
mation on the formula or only do so at the beginning, a different line of work is to include
techniques such as probing, subsumption, and blocked clauses during search.

In 2009, the winning SAT solver PrecoSAT [28] implemented this form of formula simplifica-
tion during search as the first of its kind. This would later be called inprocessing [29]. While
inprocessing can improve performance, when and for how long to schedule and preempt various
inprocessing algorithms becomes both important and difficult to get right.

In 2010, CryptoMiniSat [30] won the competition. It is mainly known for its special handling
of XOR clauses (parity or equivalence constraints) which are featured prominently but actually
were never used as CryptoMiniSat 2010 could not recover XORs with more than 2 inputs
from the CNF. Beyond that CryptoMiniSat features probing and hyper binary resolution in an
inprocessing fashion. Initially based on MiniSat, development is still continuing today.

The solver Lingeling (winning 2013 [31] and 2014 [32]) utilized advanced inprocessing tech-
niques, including equivalence reasoning and blocked clause elimination. These developments
were enabled by the proper theoretical foundations for model reconstruction [29]. In 2015,
the SAT solver abcdSAT [33] won the SAT Race 2014. It uses Lingeling as a preprocessor and
Glucose as main solver and featured a new strategy to keep recently used clauses.

Finally, in 2020, the SAT solver Kissat [34] was introduced. Compared to its predecessor
CaDiCaL [35], Kissat has fewer features, particularly inprocessors, which however are scheduled
more aggressively. While the performance improvement in 2020 is usually attributed to the
inclusion of a local search solver and target phases [36], it is worth noting that CaDiCaL was
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actually the first solver to explore this. Successors of Kissat won the following two years; in
2021, a version with a more stable decision heuristic [37], and in 2022, an implementation
featuring aggressive random walks [38].

4. Collecting and Porting Solvers

In our view the most important outcome of this study is to collect solvers which either in the
competition or otherwise are important to the history of SAT solving. Furthermore we ported
these legacy solvers to modern compilers. This finally also allowed us to run and compare them,
also with more recent solvers, in a clean apple-to-apple comparison on the same hardware and
on the same set of benchmarks to asses the progress in the last quarter of a century.

We started this endeavor in 2019, probably right on time, as collecting original solvers is
becoming harder than we imagined. Most of the historic solvers still have webpages but links
to actual code are dysfunctional. Some webpages disappeared completely. In these cases we
reached out to the original authors, which dug through their old computers or found other
ways to help us out to retrieve source code or binaries (see acknowledgments at the end).

On top of collecting original source code and binaries, we also provide patches to several
legacy solvers, which allow us to compile them with modern compilers (we used gcc/g++ 9.4.0
for our experiments). Most of these issues were due to the g++ compiler becoming over the
years more picky about what C++ constructs are accepted. Besides removing some warnings in
theses patches, they also contain several fixes addressing bugs of some solvers, which led to
incorrect results, but which after debugging were only due to hard coded limits in parsers or in
the case of zChaff due to the code not being 64-bit clean. Patches will have to be updated for
newer version of the gcc/g++, similar to the restoration process in an ordinary museum.

Besides porting solvers, we also fixed the parser of the solver Boehm1 to support DIMACS
and to parse more than 1 000 variables. The implementation of the solver is actually recursive.
During experiments we considered increasing the stack size to reduce the number of errors, but
finally decided against this option and kept the default stack size (of 8 MB). In the end no solver
run showed any discrepancy on the 6 competition benchmark sets we used in the experiments.

5. Performance Results

We ran all the benchmarks on 8-core Intel Xeon E5-2620 v4 CPUs running at 2.10 GHz (turbo-
mode disabled) with a memory limit of 127 GB and a time limit of 5 000 seconds as in recent
SAT competitions even though on slightly slower hardware. All data, including solvers, patches,
log files and plots, is available at https://cca.informatik.uni-freiburg.de/satmuseum and [39].

Regarding results we want to stress again that SAT solver developers train on previous
competitions: The winner of the 2022 competition is based on the winner from 2021, had access
and most likely has been trained on the 2021 benchmarks to find better heuristics than its
predecessor from 2021, which has not been trained on them nor on more recent problems sets.

We use CDFs (cumulative distribution function) and not cactus plots: the higher the solver
the more problems solved and the more to the left the faster the solver. Our results are shown
in Fig. 1 for the SAT Competition 2002, in Fig. 2 for the SAT Competition 2011, in Fig. 3 for the
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SAT Competition 2019, in Fig. 4 for the SAT Competition 2020, in Fig. 5 for the SAT Competition
2021, and in Fig. 6 for the SAT Competition 2022. The conclusion is clear: consistently across
all benchmarks of several years, recent solvers are better than old solvers with some minor
variability. More recent solvers do solve more instances.

Nevertheless, there seems to be several major performance jumps in the reported results:
one when preprocessing was introduced around 2006 and a second inconsistent one: 2019 on
2021/2022 benchmarks and 2016 on older benchmark sets with a minor improvement in 2020.
The second jump can be attributed to a combination of local search (after 2019 in CaDiCaL and
Kissat), rephasing (after 2016), and more aggressive bounded variable elimination.

The behavior of solvers varies across benchmarks. The SAT solver maple-compsps-drup is a
striking example: after 2 500 seconds it changes the heuristics to switch to VSIDS (later variants
would change on a more regular and deterministic interval). In 2002 the effect is quite strong
and it solves many instances in a very short time (while still performing worse than Lingeling
2013). This effect is less pronounced in 2011 and barely visible later.

In Figure 7, we visualize the pairwise similarity between solvers. The highest similarity is
observed between the two most recent solvers, Kissat (2021) and Kissat (2022), while the lowest
similarity is observed between these two solvers and the oldest solvers, Boehm1 (1992) and Grasp
(1997). The dendrogram above the heat-map depicts a hierarchical clustering automatically
generated based on solver similarity. Remarkably, it very closely aligns with release years.

Generally, solvers developed after the introduction of a particular technique utilize that
technique and gain an advantage on the same benchmarks. This is most evident with the three
main clusters: the first groups solvers before introduction of preprocessing, and the other two
clusters group solvers before and after 2016. In that year, a new heuristic was introduced and
specialized phases targeting SAT and UNSAT problems became popular. The split between the
early preprocessing solvers and the inprocessing solvers after 2009 is also easily discernible.

RelatedWork. In this work, we compare SAT solvers on SAT competition instances. In related
work Dutertre compared various SAT solvers from 2019 (without restricting to competition
winners) and MiniSat but on SMT bitvector benchmarks [40]. He observed improvements over
MiniSat but the ranking did not reflect the results from the SAT Competition – the second best
SAT solver finished 7th. He also tested various features in CaDiCaL and tested on problems
hard for SAT solvers not requiring extensive theory reasoning. Recent work by Fazekas [41] on
simplifying the interface between SAT and SMT solvers reaches similar conclusions.

In another related work by Kochemazov, Ignatiev, and Marques-Silva [42] the focus was on
incremental SAT solving. They compared competition winners between 2016 and 2020 and
MiniSat, but they did not observe an improvement over MiniSat on MaxSAT instances, except
for two families. However, in recent work on incremental use of SAT solvers for backbone
extraction [43] the more recent solver CaDiCaL surpasses MiniSat by a large margin.

The SAT heritage effort by Audemard, Paulevé, and Simon [44] also tries to preserve and
enable to run historic SAT solvers. Their approach is based on system-level virtualization with
docker containers and thus orthogonal to ours by compiling the original source code with historic
compilers. They do not attempt to port and patch solvers, which means a comparison such as
ours on 6 sets of competition benchmark sets will result in many discrepancies, particularly for
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Figure 1: All time winners on the SAT Competition 2002 benchmarks (100 problems)
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Figure 2: All time winners on the SAT Competition 2011 benchmarks (300 problems)
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Figure 3: All time winners on the SAT Competition 2019 benchmarks (400 problems)
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Figure 4: All time winners on the SAT Competition 2020 benchmarks (400 problems)
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Figure 5: All time winners on the SAT Competition 2021 benchmarks (400 problems)
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Figure 6: All time winners on the SAT Competition 2022 benchmarks (400 problems)
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Figure 7: Heat-map and dendrogram (top) based on runtime similarity. The similarity between two
solvers is defined by comparing the solving time they achieve on each of the 2000 benchmarks over the
years. If a solver failed to solve an instance, we assign twice the timeout value (10 000). The absolute
difference in solving time is then accumulated and normalized to the interval [0, 1], where 1 indicates
identical performance (1 − ∑︀ |𝑡𝑖 − 𝑡′𝑖| / 2000 · 10 000). Darker regions indicate higher similarity
between solvers. A more precise relation between color and similarity-value together with a histogram
of the values that appear is given at the bottom. Above the heat-map we illustrates a hierarchical
clustering, with solvers or clusters with high similarity join lower in the dendrogram, while clusters with
significantly different performance are joined higher.

141



older solvers, and thus render it meaningless from the perspective of comparing performance.
Our approach will likely need additional patches for newer compilers in the future though.
However it is unclear whether container virtualization can survive decades without maintenance.

Finally, an on-first-sight related but in our view bogus experiment was conducted in 2020
by Fichte, Hecher, and Szeider [45]. It only focused on a small rather uncommon benchmark
set [46] of 202 benchmarks as well as on a small set of solvers. The key feature of their set-up
was to run unmodified legacy solver code on old legacy hardware (from 1999) as well as modern
hardware (from 2019), with the goal to compare SAT solver progress due to algorithms / software
(team SW) versus progress due to hardware improvements (team HW).

However, we argue that this goal was not reached, as the experiment ignored apparent dis-
crepancies: If we take for example the problem AProVE07-04.cnf from the SAT Competition
2012, zChaff claims that this problem is SAT (without having made any decision) within 0.1 s,
while all other solvers report UNSAT (as expected). We further observed 7 discrepancies for team
SW, on the old Sparc architecture and 9 for team HW on the new architecture, not including
problems solved only by zChaff. This actually changes the result substantially and makes the
team SW look much better than what was reported in [45]. Amazingly, the solver Grasp also
(incorrectly) claims that AProVE07-04.cnf is satisfiable. After pointing out these issues to
the authors they promised to address these problems in an extended version of their paper.

6. Conclusion

In this work we have collected and fixed the source code of winning SAT solvers from the
SAT competitions and compared their performance on many benchmarks. Overall more recent
solvers solve more problems, rather consistently. Thus SAT solvers get faster and faster. We are
looking forward to continue this preservation effort and performance evaluation on additional
older and future solvers as well as benchmark sets.

Clearly, our presented results disprove the false view discussed in the introduction that there
was no major progress in SAT solving in the last 20 years. Still, one nagging remaining issue
with our work is that we do not provide a deeper understanding about the differences between
solvers and whether all implemented techniques are useful. Are there some old techniques not
part of modern SAT solvers which are still useful? And most important, can we produce even
better SAT solvers by understanding this remarkable progress better?
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Abstract. IsaSAT is the most advanced verified SAT solver, but it did
not yet feature inprocessing (to simplify and strengthen clauses). In order
to improve performance, we enriched the base calculus to not only do
CDCL but also inprocess clauses. We also replaced the target of our code
synthesis by Isabelle/LLVM. With these improvements, we can solve 4
times more SAT Competition 2022 problems than the original IsaSAT
version, and 4.5 times more problems than any other verified SAT solver
we are aware of. Additionally, our changes significantly reduce the trusted
code base of our verification.

1 Introduction

SAT solving is a very important tool that has been extensively used in various
applications like mathematics or cryptography. To ensure the correctness of the
answer provided by a SAT solver, there are two approaches: either producing a
certificate that can be checked independently or verifying a SAT solver. The first
approach has been extensively studied and works very well in practice [19,26,28]
– only checked proofs are counted in the SAT Competition [2].

The second approach, i.e., verifying a whole SAT solver is orders of mag-
nitudes more complex than checking a certificate. To this end, the goal of the
IsaFoL (Isabelle Formalization of Logic) [3] effort is to develop methodology and
libraries for formalizing modern research in automated reasoning. In this con-
text, we have verified a CDCL calculus (conflict-driven clause learning) and a
two-watched literals data structure (Sect. 2). To show that they are useful, we
have developed the verified SAT solver IsaSAT [8], which we later optimized [12].
To our surprise, it won the EDA Challenge 2021 defeating all the non-verified
solvers, but, as expected, it finished last at the SAT Competition 2022 [2]. How-
ever, the former used a much shorter timeout (200 s, not announced before the
competition) whereas the latter uses 5000 s.

In this paper, we present our new developments in IsaSAT, which make
our solver arguably the most advanced formally verified SAT solver to date:
inprocessing and verifying fast LLVM code [20] rather than slow functional code.

8 Verified SAT Solving

150



2

Inprocessing is a critical feature of modern SAT solvers (e.g., every winner of
the SAT Competition since 2013 includes it). In order to use it in our formally
verified solver, we had to extend our verified CDCL calculus: Our new PCDCL
calculus includes features to encompass various inprocessing techniques, even if
we have not yet implemented every possible technique (Sect. 3).

We generate IsaSAT by exporting a model in the interactive theorem prover
Isabelle [22] to executable code. Earlier we used Isabelle’s default code gen-
erator to export to Standard ML (SML). However, the performance was not
sufficient – especially memory consumption was very high. Thus, we switched to
Isabelle/LLVM [18], which generates LLVM intermediate representation (LLVM
IR). Apart from allowing faster imperative code, it also reduced the trusted
code base (Sect. 4), replacing the rather niche MLton [27] compiler by only the
backend of the widely used LLVM.

Porting our entire development to Isabelle/LLVM required some changes
and some cleanup. Moreover, when we implemented and verified inprocessing,
we realized that some design decisions need to be improved. In Sect. 5, we report
on our experiences and lessons learned while porting and extending IsaSAT.

Finally, we have benchmarked IsaSAT on the problems from the SAT Compe-
tition 2022. We show that just porting IsaSAT from SML to Isabelle/LLVM sig-
nificantly improved the performance, and the new inprocessing techniques com-
bined with heuristic improvements give us another significant increase, demon-
strating the usefulness of our PCDCL calculus (Sect. 6).

This presentation is an extended version of our (non-peer-reviewed) system
description from the EDA Challenge 2021 [13] and the SAT Competition 2022 [6].
Compared to that version, we have provided much more details on PCDCL, our
experience porting the development to LLVM, and performance tests.

2 Preliminaries

CDCL. CDCL is a procedure that builds a partial assignment called a trail
either by guessing (called deciding) or propagating information. If the partial
assignment is a model, the algorithm stops. If there is a conflict between the
partial assignment and a clause, the partial assignment is repaired and a new
clause is learned. For more details (beyond the scope of this paper), we refer the
reader to the Handbook of Satisfiability [7].

We use a transition system for our formalization of CDCL [8]. Its state con-
sists of the trail M , the (multi)sets of initial and learned clauses (N and U),
and the conflict clause to analyze (or None if there is none). We show one rule,
decide, that adds L to the current assignment M :

inductive decide :: ′st⇒ ′st⇒ bool where
undefined_lit M L =■⇒ |L| ∈ |N | =■⇒
decide (M,N,U,None) (L ·M,N,U,None)

If no conflict has been found so far (None), we add the new literal L at the
beginning of the trail M . We prove that our set of rules is terminating and
correct [8].
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Code Synthesis. To generate the IsaSAT code, we start from the abstract
rules like decide and gradually refine it to some deterministic functions using
the Refinement Framework [16]. Then, we rely on Sepref [17] to synthesize code:
It takes an (Isabelle) function and synthesizes a new version, replacing functional
data structures (like lists) by imperative data structures (like arrays). There are
two versions of the tool. The older version, which we used before [8, 12], uses
Imperative HOL [9] and Isabelle’s standard (trusted) code generator [14] to ex-
port code into various functional languages. We used Standard ML (SML) with
the compiler MLton [27], because it offers (by far) the best performance for
our use case. The new Sepref is part of the Isabelle/LLVM library (developed
by the second author) and generates LLVM IR from a model of LLVM IR in-
side the theorem prover. The code generator interprets a shallow embedding of
Isabelle/LLVM as equivalent to similar looking LLVM code. This reduces the
trusted code base in two ways: first, the trusted pretty printer is simpler, and,
second, instead of the rather niche full compiler MLton, we use only the backend
of the widely used LLVM [20].

The biggest difference is that Imperative HOL allows arbitrary large arrays
and integers, whereas Isabelle/LLVM is more realistic, requiring integers (in
particular array offsets, see Sect. 5.1) to have a fixed bit-width.

Related Work. Our goal is to produce a fully verified SAT solver, without any
runtime checks, that both terminates and returns a correct model while using
efficient data structures. No other solver achieves all three goals. The SAT solver
TrueSAT from Andrici and Ciobaca [1] relies on the original DPLL and uses
less efficient data structures (including counters instead of watch lists), but it
terminates. Historically, this would roughly correspond to SAT solver from the
early 90s. However, it only uses stateless heuristics, and it is not clear if the
approach can be extended to CDCL (where the solver learns and keeps new
clauses) or to stateful heuristics (like VSIDS [21]). The solvers versat [23] and
Creusat [25] go into a similar direction with CDCL instead of DPLL, but prove
a weaker correctness property: they only show that an UNSAT result is correct,
while a SAT result requires an additional check. Also, termination is not proved.
Only proving this partial property makes many proofs considerably easier, in
particular adding restarts. Oe et al’s solver versat [23] was the first partially
verified solver that could run benchmarks from the SAT Competition. More
recently, Skotåm [25] has verified in his Master’s thesis the SAT solver CreuSAT
using the Creusot framework (relying on Why3 internally). While CreuSAT is
much faster than versat in our tests, its correctness relies on (trusted) SMT
solvers, and the proofs are not checked by a small kernel like our Isabelle code.
However, the verification also takes much less time (a few minutes compared to
several hours).

Modern SAT solvers use inprocessing to make the subsequent CDCL run
heuristically faster [15]. In particular, clauses are strengthened and global trans-
formation (e.g., to remove variables) are applied. Two techniques (that we do not
support), variable elimination and addition, slowly change the models of the for-
mula by changing the set of variable. The SAT solver then reconstructs a model
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of the original formula at the end. Fazekas et al. [11] made it compatible with
incremental SAT solving. All others inprocessing technique fit into our extended
CDCL described in the next section.

3 Pragmatic CDCL for Inprocessing

SAT solvers nowadays apply a combination of CDCL (most of the time) and
inprocessing (sometimes). Therefore, we extended our calculus similarly. At the
core, we have our terminating CDCL. We also allow for formula transformation
and restarts. We call the combination pragmatic CDCL or PCDCL.

Splitting the Clause Set. Inprocessing makes it possible to strengthen and
simplify clauses. However, we want models from the final set of clauses to remain
models from the initial set of clauses. Deleting clauses is not possible: if we start
with the clauses A∨C and B∨¬B, removing the tautology means that the model
A of A ∨ C is not a model of the initial clause set anymore. Hence we want to
keep the literal B without considering the tautology for propagation/conflict.

To solve the issue we split our set of clauses into two parts: clauses that
are useful for propagation and clauses that can be ignored but are kept for
their literals. Thus we keep the set of all literals A constant. For our proof of
refinement to the original CDCL, we have to make sure that the new behavior is
also possible in the original calculus – in particular we do not miss propagations
or conflicts. In the case of tautologies, this is simple (they are never used). If
we consider subsumption, like A ∨ B subsumes A ∨ B ∨ C, whenever the latter
propagates, then the former is a conflict. Therefore, the behavior is compatible.

While the idea of splitting our clauses seems surprising, the additional clause
sets are only required for the connection to our CDCL transition system, and
we entirely remove them when generating the code. Moreover, the refinement
is easier as we do not have to update our heuristics to remove literals (and
potentially shorten arrays). Finally, this is similar to the behavior of SAT solvers
like Kissat [4]: while the clauses are removed, all literals of the problem are set.

In our original refinement, we have split the clauses to distinguish between
clauses of length 1 (where we cannot distinguish two distinct literals and thus
they cannot fit into our two-watched literals data structures) and longer clauses,
but the aim was only distinguishing on the length.

One important point to notice is that the role of our clause sets changes. In
our original CDCL, N was the (immutable) set of initial clauses and U contains
the redundant clauses that can be removed at any point: N ensures that we do
gain new models during our transformations. Now, the set changes: strengthening
an irredundant clause from N also shortens the clause that is in there. Therefore,
a naive version could remove literals.

Overall we have 4 sets of clauses: the irredundant clauses N and the redun-
dant U clauses, and each one is divided into the active clauses (Na and Ua) and
the inactive (discarded) clauses (Nd and Ud). For example, tautologies or sub-
sumed clauses are discarded, but remain in N , so literals are never removed. In
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our development there are actually three sets (containing a literal set at level 0
or tautologies, subsumed clauses, and false clauses) to reduce the number of case
distinction in some proofs. We never demote irredundant clauses to redundant
ones, but we can promote them.

Inprocessing Rules. Our aim when picking the rule is to be general (like we
can learn any useful clause) and then we specialize rules to specific techniques.
We will show this with the example of subsumption-resolution [7]. When do-
ing subsumption-resolution, we resolve two clauses together if the conclusion is
shorter. Then we can remove either one or both of the antecedents. For example,
resolving A∨B ∨C with A∨¬C produces the clause A∨B with subsumes the
former clause. If the latter clause was A ∨ B ∨ ¬C, the resolved clauses would
actually subsume both clauses.

One of the most important inprocessing rule learns any possible clause. To
simplify the presentation, we will only give the rules operating on the learned
clauses, but similar rules exists for the initial set of clauses.

inductive cdcl_■learn_■clause :: ′prag_st⇒ ′prag_st⇒ bool where
|C| ⊆ |N +Nd| =■⇒ count_decidedM = 0 =■⇒
N ∧Nd ⊨ C =■⇒ ¬tautologyC =■⇒ distinctC =■⇒
cdcl_■subsumed (M,N,U,None, Nd, Ud)

(M,N,U ∧ C,None, Nd, Ud)

The side conditions not only include that the clause is entailed and duplicate-
free, but also the clause is not a tautology and we do not break CDCL invariants
(count_decidedM = 0). Then we can deactivate subsumed clauses:

inductive cdcl_■subsumed :: ′prag_st⇒ ′prag_st⇒ bool where
C ⊆ D =■⇒ count_decidedM = 0 =■⇒
cdcl_■subsumed (M,N,U ∧ C ∧D,None, Nd, Ud)

(M,N,U ∧ C,None, Nd, D ∧ Ud)

We combine these rules to express subsumption-resolution: We first learn the
clause obtained by resolution. Then we can remove the antecedents. If either
antecedent is in N , we also have promoted the conclusion from N to U . The
advantage of our approach is that we can express other inprocessing techniques
without adding new rules, only by specializing them.

Overall we have 9 rules with some overlap with CDCL (propagation and
conflict), but mostly simplification of clauses (removing true clauses and false
literals from clauses) and pure literal deletion: When a literal always appears
positively (or always negatively), we can set this literal to be true unconditionally
(later removing all clauses containing it): every model after adding the clause is
also a model of the original set of clauses but not the opposite. This is the first
transformation that does not preserve models in IsaSAT or any other verified
SAT solvers.
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Refinement of Subsumption-Resolution. While the definition of subsump-
tion resolution is very simple, the refinement to code was challenging.

We verified forward subsumption [7] following CaDiCaL [5] (unbounded how-
ever, so all clauses selected heuristically are checked). We sort clauses by size
and check if the current candidate is subsumed by one of the smaller clauses.
Because we use two-watched literals, we need to distinguish between the binary
clauses (than can produce new units) and the other clauses. At the end, we im-
plemented two forward subsumption passes: one for binary clauses only and the
other for larger clauses.

To subsume the candidates, we build occurrence lists and populate them with
binary clauses, whereas Kissat [5] reuses watch lists. Moreover, for efficiency,
we need a new marking data structure for efficient detection of subsuming-
resolution.

4 Correctness of the Code and Completeness

Our specification model_if_satisfiable takes the multiset of clauses and returns a
model (if there is one) or None if the clauses are unsatisfiable. Our implementa-
tion IsaSATSML opts takes an array containing the clauses and returns an optional
array containing the assignment, assuming that the clauses do not contain dupli-
cated literals or the empty clause (precondition proper_lits_no_dups_⊥). The
additional argument opts activates and deactivates certain techniques for solving.
The following theorem states that our implementation refines the specification:

Theorem 1 (SML End-to-End Correctness) The following refinement re-
lation holds:

(IsaSATSML opts, model_if_satisfiable)
∈ [proper_lits_no_dups_⊥] clauses_assn→ option_model_assn

The LLVM version is nearly the same. It can handle duplicated literals and
the empty clause. Moreover, the new specification model_if_satisfiable_bounded
allows for an unknown result if arrays would grow larger than the size permitted
by the fixed bit-width. While this limit does not exist in Imperative_HOL,
it exists in practice as no machine supports arrays that large. Therefore, we
technically weakened our theorem, but did not change practical guarantees on
the generated code. For IsaSATSML we start [12] with 64-bit unsigned integers
and only switch to GMP integers if the arrays grow too large.

Theorem 2 (LLVM End-to-End Correctness) The following refinement re-
lation holds:

(IsaSATLLVM opts, RETURN ◦ model_if_satisfiable_bounded)
∈ [proper_lits] clauses_assn→ option_model_assn

Moreover, the change from SML to LLVM reduces the trusted code base:
The Isabelle/LLVM model is closer to the actual LLVM, such that the trusted
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pretty-printer is simpler. LLVM is also more low-level, such that fewer parts of
the compiler have to be trusted. Finally, the LLVM compiler is more widely used
and tested than the rather niche MLton compiler we used before.

5 Experience Porting the Development to LLVM

We report on the challenges we faced when updating the huge IsaSAT formaliza-
tion (Sect. 5.1). Moreover, we report on the unverified parts of IsaSAT (Sect. 5.2),
and finally compile some lessons learned (Sect. 5.3).

5.1 Required Changes

Before porting the development to LLVM, we removed our only remaining source
of unbounded integers: the clause indices during the garbage collection. As
garbage collection does not happen very often, we did not expect this to make
a difference. Surprisingly, it turns out to have a performance impact.

Isabelle/LLVM is an entire tool set, including a fork of the original Sepref
tool. While related to the original Sepref tool, there are different libraries, and
the development of the two versions has diverged.

Initially, we tried to support both versions of Sepref. We ended up with two
sets of files for code synthesis, and duplication of some libraries (to provide
constants defined in Isabelle/LLVM but not in SeprefSML). This significantly
complicated our refinement approach, although we made it conceptually cleaner
during the porting. Then, we realized that IsaSATLLVM was much faster than
IsaSATSML (we observed a factor 2 on our test files), and decided to discontinue
the SML backend.

With this, also some workarounds for SML specific performance issues (like
the tuple uint32 * bool * uint64 being much less efficient than combining
the uint32 and the Boolean into a single 64-bit number) became obsolete.

Compilation. We have experimented with compilation flags before to improve
performance. We know from the SML code that we need to increase the level of
inlining, because many small functions make the verification easier. The same
applies for LLVM and the easiest solution is to use link-time optimization that
increases the inlining level as a side effect. However, this makes profiling impos-
sible – exactly like the SML code. So there is no regression here.

Tuples. In 2021, we observed a major performance regression of the synthe-
sis, caused by a new feature in SeprefLLVM: pointer-equality tracking caused
quadratic behaviour for case-splits of tuples. As our solver state is a large tuple,
synthesis became impossible (several dozen minutes for simple functions).

To avoid the issue, we decided to work around on the abstract level, using
getter and setter functions for the state’s components, rather than case splitting.
Now, every function on the state would first get the required components, update
them, and then put them back. For example:
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definition rescore_■conflict :: clause_index⇒ isasat⇒ isasat where
rescore_■conflict C S = do{
let (M,S) = extract_■trail S;
... (*reads the trail M and can change it*) ...
let S = update_■trail M S;
RETURN S
}

This makes synthesis much faster. However, the ownership model of Sepref does
not allow aliasing, nor do our refinement relations allow leaving a ’gap’ in the
state where we moved out an element. As an easy work-around, we resorted to
placing dummy-values, like empty lists, in the state, hoping that LLVM would
optimize away the allocations and deallocations for these values. However, this
did not happen: In the hot-spot of the SAT solver, the propagation loop, the
dummy value for the trail was recreated and freed each time. Thus, we locally
resorted to unfolding our code to make sure that we need only one free in the
inner propagation loop. We leave a more principled solution of this problem
(possibly changing Sepref) to future work.

We even attempted to go one step further (as the state-of-the-art SAT solver
Kissat [4] does) and simply passing a pointer to the state structure as argument.
Once we had already changed our refinement with accessors, we simply had
to change them to work on a pointer. However, we never managed to make
the synthesized code efficient. We observed a factor of 10 slower code. Hand-
optimizing the accessors (basically making sure that LLVM understands that
we care only about one component) reduced this to factor 2 slower. Once we
realized that the LLVM optimizer was replacing the pointer by the structure
passed directly as argument, we gave up on that approach.

5.2 Unverified Parts

In the generated SAT solver, there are some parts that we cannot verify. First, the
parser is not verified, because the file system has no model in Isabelle (unlike
CakeML, where conditions apply however). To this end, we link the verified
code with an unverified C program, which provides the parser and command
line interface.

Second, Isabelle/LLVM does not support any output (like statistics, or the
DRAT proofs [28] required for the SAT Competition). For the SML version, we
could use a feature of Isabelle’s code generator to (axiomatically) implement
a function by some external function (e.g. a function that does nothing in the
model, by a printing function). As Isabelle/LLVM does not yet have such a
feature, we resorted to post-processing the generated code (i.e., a function that
does nothing in the model, is replaced by a printing function or even a function
storing some literals for DRAT proofs). Note that this post-processing is not
required for IsaSAT to work (but it won’t print DRAT proofs).
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5.3 Lessons Learned

Lesson 1: Embrace Duplication. We have already highlighted the impor-
tance of the set of all possible literals A, in particular to establish a bound on the
size of various arrays. At first, we tried to avoid duplicating this set across the
different components on the specification side. This, however, resulted in a closer
coupling of the various refinement proofs, impeding modularity: data structures
that, conceptually, are just a small part of the whole state, have to be formalized
on the whole state, just to have the set A available. We solved this problem by
duplicating the set A on the abstract level for all new data structures. Note that
this duplication is removed in a later refinement stage.

Lesson 2: The Limits are Isabelle Files. Checking our Isabelle files takes
nearly two hours. This can be explained by three factors: 1. the heuristic and code
synthesis amounts to 91 000 loc, making it a very large formalization; 2. the syn-
thesis is single-threaded (for technical reasons); 3. Sepref encourages a style that
is not very parallel: every refinement starts with a call to a tactic refine_vcg
that generates the goals (meaning that all successive tactics have to wait). To
improve performance we have attempted [12] to generate more standard proofs
in Isar (by generating the text corresponding to the theorems to prove), but it
is not clear that this style is faster as huge number of variables are generated
(this style is required for more complicated proofs, however).

In order to improve Isabelle’s performance and speed-up the testing of new
heuristics in IsaSATLLVM, we have split the files into three parts: the shared def-
initions of the functions to refine, the (single-threaded) synthesis, and the cor-
rectness proof of the refinement. Even with these optimizations, proof checking
still takes 2 hours. There is also no clear improvement path. The old SML ver-
sion has a similar problem, but it is overall faster because it has fewer features,
making it less critical.

Lesson 3: Performance Bugs exist. In order to improve performance, we
need to measure and observe performance. To solve that problem, IsaSAT prints
statistics and produces some timing information. The statistics during the run
made identifying scheduling bugs for the different techniques possible – we ac-
cidentally ran some techniques way too often or barely ever. Especially because
we increase the interval between two inprocessing rounds geometrically, a simple
statistics at the end of the run is not sufficient. One interesting performance
bug we found was that we accidentally inverted reducing clauses (marking them
as removed) and garbage collection (physically removing them). Therefore, we
would nearly always physically delete clauses. We never saw this issue, because
we also printed the statistics inverted. To help debugging performance, we pro-
duce some timing information by measuring time in the C program:

c propagate : 83.48% (581.66 s)
c reduce : 0.12% (0.82 s)
c subsumption : 0.06% (0.39 s)
c pure_lits : 0.05% (0.33 s)
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Fig. 1. CDF of the performance of SAT solvers

c binary_simp : 0.02% (0.15 s)
c GC : 0.16% (1.10 s)

This helps to identify bottlenecks but also outliers where one technique is par-
ticularly slow and requires some limits or a change in the scheduling to avoid
slowing down the solver too much. This makes it possible to identify errors like
allocations in loops. The overall timing matches what we expect from other
SAT solvers (although usually they spend more time on inprocessing and less on
propagation).

6 Performance

In order to study the performance we have run 3 different IsaSAT versions:
the original SML solver (using MLton with the LLVM backend), the first port
of the IsaSAT solver, and the current version with inprocessing and various
other improvements on heuristics that do not require any change on our PCDCL
calculus, notably rephasing and target phases [10] (but no local search) and the
alternation between aggressive restarts (heuristically seems better for UNSAT)
and few restarts (seems better for SAT) following the ideas of Chanseok Oh [24].

We run all the benchmarks from the SAT Competition 2022 on an Intel Xeon
E5-2620 v4 CPU at 2.10GHz (with turbo-mode disabled) with a memory limit
of 7GB and a timeout of 5000 s. For comparison, we have included versat [23]
and CreuSAT [25]. For completeness, we have included Kissat [6] (more precisely
the bulky version submitted for the anniversary track).

The results are given in Fig. 1 as a CDF (the higher the curve, the more solved
problems). The first surprise is that CreuSAT performs similarly to IsaSATSML
(37 vs 40 solved problems), worse than expected given the results reported in the
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Master’s thesis [25] that tested on the 2015 benchmarks. We suspect that is due
to the garbage collection and the fact that problems from the SAT Competition
have become harder.

There is a clear improvement when going from the SML version to the LLVM
version (98 solved), while the latest version solves 166. The SML version produces
335 out-of-memory errors (OOMs), the base LLVM version is more memory
efficient (23 OOMs) like the latest IsaSAT version (19 OOMs) or CaDiCaL that
has the same memory layout (17 OOMs). However, there is still a large gap to
reach the performance level of Kissat and its inprocessing techniques.

7 Conclusion

We have reported on updating our verified SAT solver IsaSAT to a more powerful
base calculus (our pragmatic CDCL) which can express inprocessing, and to the
more efficient Isabelle/LLVM backend. We have also compiled important lessons
learned from proof-engineering and maintaining large formalizations like IsaSAT
(∼200 kloc of proofs).

Our changes made IsaSAT solve 4 times more problems (166/40), making it
the most efficient verified SAT solver. At the same time, our verification is more
complete than the next fastest verified solvers.

Most techniques (including the two most important, vivification and probing)
either fit into our new PCDCL base calculus or do not require any change (like
random walk [10] that is conjectured to be the reason for the major performance
improvement in 2020). One major technique that we cannot currently express is
variable elimination, because models are changed and need to be fixed. We leave
the required extensions to our PCDCL for future work.
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Abstract

We give a first account of our new parallel SAT solver Gimsatul. Its key feature is to
share clauses physically in memory instead of copying them, which is the method of other
state-of-the-art multi-threaded SAT solvers to exchange clauses logically. Our approach
keeps information about which literals are watched in a clause local to a solving thread but
shares the actual immutable literals of a clause globally among all solving threads. This
design gives quite remarkable parallel scalability, allows aggressive clause sharing while
keeping memory usage low and produces more compact proofs.

1 Introduction

The SAT Competition is the place to show off the newest and fastest SAT solvers for many
years now. To improve reliability and increase correctness, every solver in the main track must
produce a DRAT certificate that is checked by the official checker drat-trim – and only
checked problems count as solved. Solvers implementing techniques that cannot be expressed
in DRAT can only take part in the no-limit track (even if no technique seems to bring an edge
over other main-track solvers). While sequential solvers have improved considerably recently,
making use of multiple CPU cores can improve performance even further. Therefore the SAT
Competition has a parallel and a cloud track. In those track no proofs are required.

There are several ways to parallelize SAT solvers (Section 2), but most solvers in both the
parallel and the cloud track rely on the common portfolio approach pioneered by ManySAT [7]
enhanced by exchanging clauses. The idea is to rely on existing fast single-core SAT solvers
without the need to modify them beyond possibly adding a mechanism for exchanging clauses.
The main approach to exchange clauses between solver threads is copying them.

The main argument in favor of this approach is that adding a light-weight synchronization
to existing code is simple and does not need to change the sophisticated and complex core
data-structures of the solvers. We argue that this argument leads to sub-optimal results both
with respect to scalability and memory usage. Instead we propose to physically share clause
data (through pointers) during clause exchanges instead of copying them.

More precisely, the classical portfolio approach generates two issues (Section 3). First, it
increases the amount of memory needed by each solver thread. Second, even if proof production
was implemented, it produces larger proofs than necessary by requiring duplicating shared
clauses in the proof. By actually sharing instead of copying clauses we can address both issues.

Current proof checkers do not support exchanging clauses between certificates and it is not
obvious how to do this correctly, because clause exchanges go in both directions. The other
issue is that proof checking cannot completely independently be done in parallel, again, because
the solver threads exchange clauses. One partial solution to the problem is to log all the clauses
into a single file and have a global clock to serialize all the derived clauses in order. However
this solution still requires to duplicate exchanged clauses in the proof log, leading to large traces
and long checking times, as also our experiments confirm.
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In order to reduce this work, we have started a new SAT solver called Gimsatul that
aggressively shares clauses among the solver instances. We revisit an old idea that co-existed
with the currently dominating exchange-only approach until around 2011, which on the other
hand pre-dates more sophisticated proof tracing techniques used in the SAT competition now
as well as all the improvements to sequential solving made in the last decade. We observe that
physically sharing clauses not only makes it possible to reduce the memory footprint, but also
enables sharing in the proof log, thus reducing the amount of work required for checking. While
these changes have a large impact on the core data-structures of the SAT solver they do not
require any change to existing proof checkers.

We implemented our new solver Gimsatul in 13 kloc of C. It is available online1 and uses
atomic operations to adjust reference counters and exchange pointers, as standardized with
C11 in stdatomic.h. It relies on the Pthreads programming model for threads, locking, and
condition variables. Furthermore it uses lockless fast-path code whenever reasonable.

The name Gimsatul is derived from gimbatul in the “Black Speech” language invented by
R. Tolkien and occurs in the inscription of the “One Ring” in “Lord of the Rings” and literally
translates to “find them” (all). We follow that terminology in the paper and in the source
code. Accordingly the main thread which performs preprocessing sequentially and organizes
everything is called the Ruler and an actual solver thread is called ring.

This paper is a slightly extended version of our POS’22 paper made available to attendees
of the workshop on Pragmatics of SAT (POS’22). In this paper we use additional space to
improve readability of figures by increasing their size. We further include various comments
present in the original longer submission, which had to be removed due to the page limit for
the final version at the workshop of 14 pages (plus references).

Besides briefly going over the architecture of the solver we focus in this paper on describing
differences to the core data-structures compared to other solvers. In particular watched literals
cannot be kept as the first two literals in the clauses, since different solver instances may need to
watch different literals (Section 4). The solver also performs sequential inprocessing, requiring
to give back all irredundant clauses to a single instance. This new infrastructure makes sharing
possible and space efficient. The main advantage as highlighted by our experiments is that our
solver scales linearly with the number of threads. Another major consequence is that sharing
ensures that less memory is required to run Gimsatul (Section 5).

Finally, we compare DRUP/DRAT proofs generated by Gimsatul (Section 6) with the
version of the solver where sharing is not done at the proof level and instead clauses are duplicated
in the proofs (Section 7). We show that proof size is largely independent of the number of threads.

2 Parallel SAT Solving and Related Work

This work does not attempt to define what SAT is and how SAT solvers works in details. For
those details, we refer to the Handbook of Satisfiability [4]. Detailed knowledge about the inner
working of SAT solvers is not required beyond the fact that SAT solvers resolves clauses to
derive new clauses and that those clauses can be exchanged if two solvers work on the same
problem. Non-satisfiability preserving transformation are not done in parallel.

With respect to parallelization, we classify the approaches used by SAT solvers into three
different categories, as shown in the following table:

1https://github.com/arminbiere/gimsatul
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One solver Several solvers

One CDCL + simplification (1) Portfolio (2)
Problem (e.g., Kissat [3]) (e.g., Mallob [16])
Multiple Cube-and-conquer (CnC) by hand (3) CnC + resplitting + sharing (4)
Problems (e.g., Marijn Heule [9]) (e.g., Paracooba [3])

Note that some solvers also combine techniques like Painless [6] from (2) and (4), but in
their default configuration from the SAT Competition, they use Approach (2). In this work we
reconsider Approach (2) where current solvers rely on mostly unmodified single-core SAT solver
engines. The current state-of-the-art solvers rely on (logically) exchanging clauses through
copying but not physically sharing them.

Usually this approach further takes advantage of the portfolio idea: different solver threads
use different strategies, e.g., different restart scheduling, decision heuristics, etc. The hope is
that different instances learn clauses useful in other threads, especially short clauses.

Gimsatul is far from being the first solver to use physical clause sharing. One solver,
SArTagnang [11] was discussed at the Pragmatics of SAT workshop in 2011. Unfortunately,
no performance discussion was done to see how the solvers scales per thread. However, this
solver was not faster that clause exchanges. A more interesting difference is that they use one
thread to simplify the problem. Therefore, they have adapted the messages that are exchanged:
Instead of only exchange clauses, the message can also be that the clause is subsuming another
one which can be removed. An interesting observation is that they save where the watch list
was found last in one of their configuration, which is similar to caching during search.

Other solvers like PaMiraXT [17] use a combination of cube-and-conquer and portfolio:
The search space is initially divided and each space is solved using several threads sharing
clauses. On motivation for the space splitting is that their implementation shares all clauses
(among the instance working on the same sub-problem). This is too much for the poor SAT
solver instances especially when 32 threads learn clauses at the same time.

For detailed information on the architecture or the solver that used physical sharing of clauses
before 2011 (even though none of these solvers seems to be maintained anymore) we refer to
the corresponding chapter in the Handbook of Parallel Constraint Reasoning [1]. Most current
research tries to improve the portfolio approach and investigates better selection of clauses to
exchange. Another interesting idea is to let a GPU select the clauses which are useful [14],
partially based on the idea the clauses that would have produced a conflict earlier are likely
useful in the future too. We focus on scalability and proofs and leave this aspect to future work.

3 Proof Checking

In the previous section we discussed the different approach to solve problems. Proof checking
has a different flavor:

One solver Several solvers

One one checker (1) previous work and this paper (2)
Problem (e.g., drat-trim [21]) (e.g., drat-trim [21])
Multiple parallel checker (3) none
Problems (e.g., cake lpr [19])

Checking (1) is the most standard and best understood approach, even if there is some technical
issue on the semantics of (reused) units [15]. The approach (3) is very promising to check

3
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Figure 1: Exporting and importing learned clauses, including the empty clause through the “incon-
sistency” flag, learned units, and low glue clauses. Irredundant (including original) clauses are shared
up-front while cloning the initial clause data-base (after pre- and inprocessing).

cube-and-conquer proofs. The checker checks each proof (i.e., the one with the cubes) and
checks that the cubes cover the entire search space. All those checks can be done in parallel.
There are some limitations in the verified proof checker of (3); for example, cubes generated
by March cannot be used because trivially unsatisfiable cubes are removed from the clauses,
and more critically, the “exchange” of information that the cubes are unsatisfiable is done via
(forgeable) command line arguments (while the checking itself is verified in CakeML).

In this paper we attempt to both improve the memory requirement by sharing physically
clauses and also, as a side effect, to reduce the size of the proofs.

4 Gimsatul

The key difference of our new solver Gimsatul compared to all recent portfolio solver is the
physical sharing of clauses. In order to do so, we have to revisit the implementation of watched
literals, a data structure to identify propagation and conflicts (Section 4.2). Invariants on
watched literals also limit how clauses can be imported by an instance (Section 4.3). We further
discuss how model reconstruction is used to handle units (Section 4.4) and how sequential
inprocessing can be achieved with clause sharing (Section 4.5).
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4.1 Overall Organization

The core SAT solvers in Gimsatul follow the design of our other recent solvers, particularly
they share many ideas with the “sc2022-light” version of Kissat. For instance it includes
rephasing [2] and the stable and focused mode. There are two differences worth mentioning.
First, the SAT solver does not use an arena to compactly represent the clauses in memory. One
motivation for this trick is to put clauses consecutively in memory in the order in which the
solver accesses them [18]. It further allows efficient garbage collection during clause data-base
reduction (forgetting heuristically-unimportant learned clauses). This is something that we
cannot do for Gimsatul because each ring (solver instance) completely independently allocates
and reduces clauses in memory. Hence, we allocate memory with malloc. Second, we use two
watch lists, one for irredundant binary watch lists (shared across the instances) and one for
watching clauses, unlike the single watch list used in our other solvers.

Overall the solving process looks as follows. First, the main thread called Ruler parses and
allocates all clauses. At that point, the Ruler owns all the clauses. It then enters a “cloning”
phase, which first passes all its clauses to the first ring as new owner. It also creates the shared
global watch lists for irredundant binary clauses. This first instance is then forked into as many
instances as needed, to match the number of requested solving threads given on the command
line, sharing all large clauses through new sets of watched literal lists. However, each solver
instance reuses the same watch lists (a flat literal array) for the irredundant binary clauses.

After cloning, solvers start solving the CNF individually, importing and exporting learned
clauses (Section 4.3). The first solver instance to determine the problem as solved is declared
the winner and a termination flag is raised, forcing other solver threads to exit their CDCL
loop too. If the winner deduced the empty clause the problem is unsatisfiable. Otherwise it has
found a satisfying assignment which is then extended by the main thread to a full model using
the reconstruction stack of the Ruler/Simplifier produced during pre- and inprocessing.

All solver instances logically reclaim (dereference) clauses satisfied by learned root-level units,
as part of frequent clause-database reductions, which mainly have the purpose of discarding
useless learned clauses. However, reclaiming in this context just means decreasing the reference
count of a clause. Only until the satisfying root-level unit has reached all solver instances
and is picked up during clause-database reduction, that root-level clause is finally physically
deallocated (and is also deleted in the proof trace).

Cleaning the clauses from root-level falsified literals is much more involved, as the actual
clauses can not be shrunk in parallel – the blocking and watched literals potentially have to be
changed. For that purpose the first ring is responsible for starting simplification rounds during
which all irredundant clauses are handed over back to the Ruler. Redundant watches pointing
to redundant clauses are saved locally for each ring separately. After this preparation phase
(called “uncloning” in the code), the inprocessing can start.

As clauses are shared we do not remove falsified literals during solving. Instead solvers
synchronize regularly and hand back their clauses to the initial thread which then, in the role of
the Ruler process, becomes responsible for (i) removing satisfied clauses (which is something that
can already be done by each ring by marking the clause as removed locally), (ii) removing false
literals from clauses, and (iii) renumbering literals if holes appeared to keep literals compact.
After that, the heuristics are adapted (by renaming literals in those heuristics too).

Besides sharing clauses and waiting for each other for inprocessing, all solver instances are
independent of each other and can run using a different strategy. We currently use a simple
and limited portfolio: we use a different initialization for the first random walk (limited local
search) that initializes the phases, which is one of the phases of our rephasing strategy [2]. The
result of this walk is exported and used as saved phases initially, leading the solver to different
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Ring number mod 12 0 1 2 3 4 5 6 7 8 9 10 11

Mode S+F S F S+F S F S+F S F S+F S F
Phase 0 1 0 1 0 1 0 1 0 1 0 1

Reason Bumping 0 0 1 1 0 0 1 1 0 0 1 1

Table 1: Strategy of each thread (S = stable, F = Focused)

search directions. Interestingly, we initially had no diversification at all and already observed
improvement in the performance of the solver, due the exchange of clauses (described in more
details in Section 4.3). In Table 1, we show the amount of diversification we do, but note, that
we currently only have 12 different configurations.

4.2 Revisiting Propagations

Since zChaff [12], all modern SAT solvers use watched literals to identify clauses that can
propagate or are in conflict. The idea is to distinguish two literals in a clause. Whenever
either of those literals is set to false, then the clause must be checked to see if it can propagate
information or is conflicting. Otherwise, the clauses do not need to be updated (nor visited).
This is essential to make propagations and conflict detection efficient. Originally pointers to the
two watched literals in each clause were used. Modern implementation however make sure that
the first two literals of the clause are watched, by swapping clause literals during propagation.

However, insisting on watching exactly the first two literals does not work when sharing
clauses because different solver threads (rings) have different partial assignments (and trails)
and thus usually watch different clauses and literals in those clauses. Hence when sharing clauses
we can not swap literals in the literal list of a clause anymore.

Our solution is to store the watched literal pair in a watcher data-structure separately, which
also has a pointer to the immutable actual clause. Those watchers are not shared amongst
solver instances, except for irredundant binary clauses, because they do not require any changes.
It is important to notice that, as the clauses are not changed, there is no need for locks when
accessing a clause by different threads.

The pair of literals in our thread-local watcher data-structure also serves as “blocking literals”
which are checked first to satisfy the clause. This is a common technique to reduce the number
of times the actual clause data has to be accessed. If the blocking literal check fails, however,
this scheme incurs an additional pointer access compared to the standard version of placing the
two watched literals in front of the literal list of a clause, effectively merging the clause and the
watcher data-structure. On the other hand our watcher structure is much more compact than
a full clause and thus likely has better cache locality.

4.3 Clause Sharing

An important design choice for parallel solvers is to determine which clauses to share and how
often they are imported. We use a very simple policy: (i) at most one clause is imported before
each decision and (ii) when learning a clause with a low glucose level, we immediately export it.
We do however import and export all derived root-level assignments eagerly as well as check for
termination and thus “inconsistency” (another thread proved the formula to be unsatisfiable).
Figure 1 shows how the sharing happens and is described in the text below. All rings share the
trail composed of unit literals.
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Which Clauses to Import. When importing clauses before a decision, only a single one is
imported at a time. To import and export clauses, each ring has 4 slots for each other ring
with clauses to export: one for binary clauses (64 bits representing two 31-bit literals), glue 1
(non-binary) clauses, glue-2 clauses (remaining tier1 clauses), and finally tier2 clauses (glue 3
to 6). In Figure 1, the slots are called pools and the pool from a ring for itself is crossed out
(because it is useless to have a ring share a clause with itself).

Before every decision, each ring attempts to import one clause after checking that no new
units should be imported first. Without any new unit it selects its pool among the shared
pools of another randomly chosen ring. The goal of randomly picking the exporting ring is to
implement a global (bounded) queue with relaxed semantics [8], i.e., a bounded k-queue, which
probabilistically guarantees low contention. Each queue is implicitly bounded because threads
during exporting learned clauses simply overwrite references and thus drop clauses with the
same glue class (binary, tier1, tier2, tier3) as the exported clause.

Then the importing ring checks its slots in order with lowest glue first (this is a fast-path
without locking) if there is any clause to import (the blue arrows in Figure 1). If one is found,
then the slot is emptied with an atomic exchange operation (thus requiring 64-bit word size).

Importing Clauses. As described in the previous paragraph, the solver imports one clause at
a time. The current partial assignment on the trail has to be fixed if the clauses is propagat-
ing/conflicting. Otherwise, some literals (not arbitrary ones) have to be selected as watched
literals to fulfill the watch list invariants.

Before we actually import a clause it is checked for not being already subsumed by another
existing clauses, using the watch list as an approximation for occurrence lists. This forward
subsumption check traverses the watcher list of a new watched literal which is smaller and
thus might miss some subsuming clauses, but is complete for exact matches (identical clauses
ignoring root-level falsified literals). Besides adapting the current interpretation to the single
imported clause, importing simply means watching the correct literals and adding the clauses
to the correct watch lists.

In our implementation importing a clause amounts to increasing the overall number of
occurrences of that clause. We rely on atomic operations to adjust these counters (using
atomic fetch add and atomic fetch sub from stdatomic.h in C11).

In contrast to operating in single-threaded mode and unlike all our single-threaded SAT
solvers Gimsatul using multiple threads is highly non-deterministic, because importing clauses
is done eagerly and depends on the exact thread scheduling, in which order memory accesses
occur and caches are updated etc.

Exporting Clauses. Important learned clauses with small glucose level are exported imme-
diately during the conflict analysis, with references to the exported clause added to the n− 1
pools of the exporting thread (the red arrows starting from ring 0 in Figure 1). Each pool
corresponds to exactly one thread and has four slots of clauses references sorted by glucose level
(binary, tier1, tier2, tier3 clauses). This allows to share these important learned clauses with all
other solver threads, prioritized by importing low-glue clauses first.

Life and Death of Clauses. Remark that the clauses are imported according to the score
they had previously and are handled the same way as every other learned clause. Therefore,
low LBD clauses are never removed (in particular binary clauses), but unused tier2 clauses will
eventually be deleted. Large tier1 clauses might be removed by vivification though.

During execution, the LBD score of clauses can actually change. This update is for example
in Glucose for clauses involved in the conflict analysis (and only if the score decreases),
although the actual LBD of the score is already defined when the clause is propagating. An
interesting question is whether promoted clauses, i.e., clauses whose LBD changes enough to
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become tier1 or tier2 clauses should be shared. We experimented with promotion, but did not
observe any benefit. It is also rather difficult to implement as it might either result in glue
values to diverge between clauses and their watches or otherwise requires atomic update of glue
values in clauses.

4.4 Model Reconstruction

Gimsatul relies on the model reconstruction [10] to produce a model and “undo” the inpro-
cessing. This reconstruction stack is not shared amongst the rings. Instead, a single one is used.
This is sufficient because all solvers work on the same formula.

Unlike previous solvers, we actually go one step further and completely remove fixed literals
assigned at root-level (decision-level zero). In Kissat we would also remove those literals but
not remove them from external partial assignment Therefore, we do not need to put those
literals on the reconstruction stack. Reusing the reconstruction stack is in particular used for
units derived during inprocessing techniques (see more details in the next paragraph), because
it avoids communicating such literals back to each SAT instance.

4.5 Inprocessing

We have implemented two different kinds of inprocessing in Gimsatul. Some transformations
are part of probing like vivification. They run directly in the different rings but they do not
shorten shared clauses. Instead a new shortened clause is added and the other is removed from
the clause set. Other inprocessing techniques require to change the set of original or in general
irredundant clauses such as bounded variable elimination [5]. For those transformation, each
instance first gives up all references to the clauses. At the end, only the first instance knows the
location in memory of all the clauses. It gives them back to the Ruler instance which then starts
the Simplifier. This Simplifier is then in charge of transforming all the irredundant clauses
(including shortening and strengthening them) using the standard algorithms, e.g., for variable
elimination. After that the clause are passed back to the first ring which in turn passes them
back to the other rings (with the shared watch list of binary clauses).

Getting this “uncloning ” option to work was rather challenging, because units produced
must still be shared amongst all rings. This in turn can enable more propagations at root-level
(at decision-level zero) that again needs to be shared. If this is not done properly, some units
might get lost, which is an issue as then the candidate model of the different instances might
not know about those units, leading potentially to incorrect models: If the Simplifier removes
irredundant clauses containing a given literal, because this literal is not assigned and can appear
in the redundant clauses, it can get assigned to the opposite value leading to an incorrect model.

5 Experiments on Scalability

We ran experiments2 on our cluster equipped with Intel Xeon E5-2620 v4 CPU at 2.10 GHz
(with turbo-mode disabled) with a memory limit of 128 GB for each node. Those CPUs have 16
real cores and 32 cores using hyper-threading. In order to keep the testing time reasonable (and
running solvers in parallel), we assigned 127 GB for 8 cores or more, 63 GB for 4 cores, 31 GB
for 2 cores, and 15 GB for 1 core.

Performance. We first compare the overall wall-clock-time performance of our solver Gim-
satul to the state-of-the-art solver p-mcomsps [20], which won the parallel track of the SAT

2Experimental data available at https://cca.informatik.uni-freiburg.de/pos22gimsatul.
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solved sat uns elapsed time PAR-2 space
(s) (103)

Gimsatul-32 310 151 159 3 928 732 1 031 1 578 816
P-Mcomsps-32 315 141 174 5 804 244 1 037 3 038 965
Gimsatul-16 308 149 159 2 069 523 1 055 843 444

P-Mcomsps-16 309 136 173 2 607 129 1 076 1 495 201
Gimsatul-64 304 150 154 4 768 809 1 119 2 948 359
Gimsatul-8 298 144 154 1 223 199 1 178 460 013

P-Mcomsps-8 297 131 166 1 584 009 1 229 723 740
Gimsatul-4 282 138 144 744 566 1 371 263 227

P-Mcomsps-4 260 119 141 854 403 1 614 317 691
Gimsatul-2 262 130 132 499 420 1 633 167 771
Gimsatul-1 230 117 113 263 851 1 963 80 947

P-Mcomsps-2 204 87 117 679 142 2 187 187 676

Table 2: Results on the problems from the SAT Competition 2021
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Figure 2: Cumulative distribution function (CDF) of the wall-clock solving time of both Gimsatul
and P-Mcomsps for various considered number of threads.

Competition 2021. It features an advanced SAT core solver and incorporates many ideas to
improve parallel solving including sophisticated diversification techniques. However, it fails
when run with a single thread (producing an exception). We assume that this is due to the
fact that one thread is used to strengthen clauses and the others for solving. Therefore we only
consider experiments for p-mcomsps with at least two threads. The CDF (Figure 2) and the
raw results (Table 2) give the results for this initial experiment.

At first we were surprised by the fact that P-Mcomsps needs twice as many threads to
match the performance of Gimsatul for less than 8 threads. Due to time constraints, we could
not run all the configurations on the SAT Competition 2020 too. But partial runs show that
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Figure 3: CDF with more threads than cores

the results are very similar for 2, 4, and 8 threads (i.e., the performance of P-Mcomsps with
n threads is similar to the performance of Gimsatul with n/2 threads). This shows that our
results do not seem to be biased to the 2021 benchmarks (a valid threat to validity).

The plot also shows that Gimsatul is in general faster than P-Mcomsps, particularly
with respect to the PAR-2 score, even though both solve a similar number of benchmarks.

We have also experimented with higher number of threads than our machines support
(Figure 3). The performance gap when using all 32 virtual threads on the 16 “real” cores does
not yield a performance decrease. However, when using 64 threads, performance decreases. This
indicates that Gimsatul does not spend all its time waiting for the other threads.

Scalability. While we only considered wall-clock-time performance above it is also interesting
to investigate how effectively compute resources are used. This kind of question can arise in a
cloud context where customers pay only for what is used and do not want to provision redundant
compute resources (cores) unless solving latency is reduced effectively. We try to answer this
question by plotting CDFs where (wall-clock) time is replaced by “time∗number of cores”. This
is equivalent to run our multi-threaded version on a single core.

For Gimsatul (Figure 4), we see once saturation is reached (i.e., after 32 threads on our
16 “real” core nodes), performance decreases. The 16-thread version has a disadvantage at the
beginning, but catches up. One reason might be that our portfolio has only 12 different policies,
and the 4 other rings run the same first four policies again. Even though the behavior is not
deterministic, more diversification is probably better. It is significant to see that the other
curves are basically identical. This shows that our solver scales with the number of cores. As
future work we want to repeat this experiment with disabled diversification (portfolio).

For P-Mcomsps (Figure 5), the picture is different. Remark that the 2-thread version stops
at 11 000 s, i.e., exactly the timeout of 5 500 s when you have 2 threads. First the performance loss
for 32 threads is already much more pronounced. So virtual threading seems to be very harmful.
Second, we can see that performance for 2 threads is worse than for the other configuration. We
attribute this to a lack of optimization and diversification for this case. Third, peak performance
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Figure 4: Scalability Gimsatul
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Figure 5: Scalability P-Mcomsps
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(a) Memory usage of Gimsatul
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(b) Memory usage of P-Mcomsps

Figure 6: Memory usage in MB of both solvers on problems of the SAT Competition 2021

seems to be reached already for 8 threads, but the performance decrease compared to 16 threads
is limited: it is more important to go from 4 to 8 threads, than to go from 8 to 16.

Memory Usage. In order to compare memory usage we have prepared two different plots.
The first (Figure 6) shows peak memory usage (maximum resident-set-size) during the run. We
can clearly see that Gimsatul uses much less memory than P-Mcomsps. For 32 threads
Gimsatul only needs in one case for 32 threads slightly more than 80 GB and otherwise stays
below 64 GB, which is half the memory available on our cluster nodes. On the other hand, also
for 32 threads, P-Mcomsps hits the memory limit of 128 GB once.

In order to check how sharing works, we also checked the amount of memory used after the
first preprocessing round but before cloning and any learning is done (Figure 7). This value is
interesting because it shows an (optimistic) view on the cost of duplicating the watch lists and
all other data-structures of the solver. With only binary clauses, the overhead would be very
low. Without any binary clause all watch lists are duplicated, even though the actual clause
data - the literals in clauses - are shared. Here we show how much more memory is used once
Gimsatul has initialized all the different rings. We can see that the increase is on average
much lower than the number of solver instances, i.e., the number of threads.

6 Generating DRAT Proofs

In essence, a DRAT proof certificate is a list of derived clauses ending with the empty clause
(if the problem is deemed unsatisfiable). The key idea is that adding new derived clauses is
satisfiability preserving: if the initial problem has a model, then the model with the new clauses
has a model. Such clauses are said to be redundant. In general such certificates have a multiset
semantics: the checker keeps the clause as many time as it was added (and removing one of
the copies only removes one of them, not all). In Gimsatul, we know how often a clause is
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Figure 7: Initial relative memory increase of Gimsatul in terms of resident size before cloning and
after cloning, i.e., after preprocessing but before any solving/learning takes place

present (so we can keep only one clause) but this is not possible in general for parallel SAT
solvers, requiring a copy for each shared clause.

The DRAT proof format was selected to be easy to implement for single threaded SAT
solvers: It is sufficient to dump the derived clauses in order and to stop when the empty clause
is derived. For parallel SAT solvers, it is tempting to produce one proof file per solver instance,
but this does not work when the different instances exchange clauses. Instead we focus on a
variant that produces a single proof file. This approach is not a new approach, but we did not
find a description of it in related work.

One trivial solution is that every derived clause is written to the proof file in the order it is
created and additionally added again (with multi-set semantics) when the clause is imported by
another solver thread. This makes sure that the individual solver instances can delete individual
clauses as they like and log these deletion steps independently of each other in the proof file.

With this trivial “copying” solution clauses are repeated as many times as they are copied,
increasing the size of the proof file almost linearly with respect to the number of threads
(core solver instances). We propose instead in this work to share those clauses in the proof
instead of duplicating them, which in turn requires to share them among the solver threads too.
Unfortunately, this requires some substantial changes to the data-structures for watched literals,
as described in the next section, and is one of the main reasons we started Gimsatul from
scratch instead of incorporating similar ideas into our sequential state-of-the-art solver Kissat.

Generating proofs is very easy in Gimsatul: Every large (non-binary) clause has an
atomically incremented and decremented reference counter for the number of occurrences in
different solver threads (rings), occurrences in clause pools and during simplification phases in
the simplifier. When creating (allocating) the clause, it is added to the proof. Sharing a clause
consists of passing a pointer and incrementing (atomically) the reference count. Dereferencing
a clause (for instance during clause-database reduction) decrements the reference count and
when the reference counter reaches zero the clause is deallocated and at the same time marked
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as deleted in the proof trace. In the meantime the clause is considered alive. As binary clauses
are virtual and only occur in the watch lists, they are handled as in other solvers with virtual
binary clauses as long as proof tracing is concerned.

All solver threads share the same proof trace file and writing to that file is synchronized
implicitly using the standard locking mechanism of file I/O in libc. In particular, the library
makes sure that calls to fwrite are executed atomically. To avoid additional locking, we first
asynchronously collect complete proof lines in thread local buffers before calling fwrite and
then rely on its implicit locking mechanism.

7 Experiments on Proofs

We want to evaluate the advantage of not copying the clauses in the proofs. But instead
of implementing a variant that really copies clauses, we fake copying : the clauses are only
duplicated in the proof, but not in the solver. We argue that this approach gives similar
performance as really copying clauses, as it would be necessary in other multi-threaded solvers
which copy clauses, both in terms of proof size and checking time.

However, adapting inprocessing was a challenge, as our current version of for instance
bounded variable elimination during inprocessing requires that all irredundant clauses are dedu-
plicated. Instead we deactivated any form of sequential inprocessing completely which requires
deduplication. Thus, in the following experiments we only report on a variant of Gimsatul
with initial preprocessing enabled, but only thread-local inprocessing enabled (vivification and
failed literal probing).

We consider the 96 unsatisfiable problems that are solved by Gimsatul without inprocessing
by all 1, 2, 4, 8, and 16-thread configurations (due to non-determinism, rerunning benchmarks
could lead to a different set of solved problems though). We use unsatisfiable problems in order
to be able to do backwards checking instead of forward checking as is required if the problem is
satisfiable or no contradiction is derived. Due to the time required to check proofs (≥10 h), we
were not able to run the benchmarks for 32 threads before the submission deadline either.

Does Proof Generation Cause a Slowdown? Generating proofs is much more costly in a
context of parallel SAT solving because proof logging is inherently single-threaded. However,
according to our experiments in Figure 8, the cost of proof generation is negligible.

Do Proofs become Longer or Shorter? The answer to this question amounts to answering:
is the work done by other rings useful or are the lines never used and could be removed. If the
proofs are longer, then the work was useless. If the proof have similar length, then the rings
just do work that has to be done too.

In Figure 9a we show the proof size for runs using different number of threads. The plots are
not completely conclusive. The 2-thread configuration produces larger proofs than the 1-thread
and 4-thread versions. We realized after looking at the results of the experiments that our
portfolio strategy might not be the best possible one and explain the bad behavior of 2 and 16
threads compared to 4 or 1. For 2 threads, instead of using one thread that focuses on SAT
(stable mode) and one that focuses on UNSAT (focused mode) following the idea of Chanseok
Oh [13], one thread runs in focused mode and one in alternating mode. For 16 threads, we have
8 threads that are running the same strategy. Testing both assumptions is future work.

Is Sharing Clauses Useful? In Figure 9b, we show the length of the proofs without sharing
the proofs. It is clear that the proofs are longer or even much longer. Interestingly, for most
problems, the size does not change much between the 4-thread and the 2-thread version. This
indicates that the number of exchanged clauses is either limited or that the shared clauses are
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Figure 10: Amount of time required to check the proofs produced by Gimsatul

useful to reduce the search space limiting the overhead: If every clause was shared and entirely
useless, the proofs would be n times as large for n threads.

Is Proof Checking Easier? In Figure 10, we have plotted the amount of time drat-trim
needed to check the proofs. It is important to notice that drat-trim does not seem to detect
duplicates3 and hence must reprove the lemma each time and every copy must be propagated
when either of them is propagating.

With sharing, checking scales better, but is still much slower than in the single-threaded
case. This can be explained by the fact that drat-trim does not know the context of learned
clauses, i.e., which solver thread produced which clauses. The checker has to treat them all
in the same way potentially increasing propagation across contexts, which arguably yields an
overhead during checking redundancy.

Should Proof Checking be added to the SAT Competition? This is the most controver-
sial question without clear answer: even without physical clause sharing, drat-trim is able to
check clauses. However, even though checking 32-thread certificates is less than 32-times slower,
it most likely is too slow to be run in practice. Thus we consider parallelizing DRAT checkers
as an important future work to solve this problem. Alternatively we will look into producing
proof formats with antecedent information, for which parallel checking is easier.

8 Conclusion

We presented the architecture of our newest solver Gimsatul which shares clauses physically
without copying. Even though it only features a simple form of diversification it scales linearly

3Our understanding of the source code of drat-trim is that it uses a hash table only to count the number
of clauses for deletions, but not to avoid relearning clauses.
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with the number of threads in our experiments. We also study the number of proof steps in this
setting and observed that physical sharing yields smaller proofs. Nearly all proofs generated by
runs with multiple solving threads have similar size as those produced by a single thread.

We want to further explore alternative clause exchange and search diversification strategies.
We might also look into parallelizing variable elimination, subsumption and equivalent literal
substitution, which are currently run by a single thread, even though this part does not seem
to be a bottle-neck for large time-outs as used in the SAT competition. Making the solver
deterministic like ManyGlucose would make the SAT solver easier to debug, and the biggest
requirement, the time measurement by memory accesss, is already present in the code.
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Abstract

The proof format DRAT used in the SAT competition is rather inefficient to check, often even slower to check than it takes
the SAT solver to solve the instance and generate the proof. Therefore we implemented within the SAT solver CADICAL
the possibility to generate LRAT proofs directly, where LRAT on the one hand is much easier and way more efficient
to check, but on the other hand much harder to generate. Unlike previous approaches our implementation generates
LRAT directly in the solver without intermediate translations. We further propose the tool LRAT-TRIM, which can trim
redundant proof steps from LRAT proofs, which not only reduces proof size but also leads to much faster proof checking.

1 Introduction

Proof checking is an important part of SAT solving, e.g.,
unsatisfiable problems do not count as solved in the SAT
Competition unless a proof is provided which passes a
proof checker. To increase trust even further proof check-
ers are used which are entirely verified [5, 7].
The currently only allowed proof format in the SAT Com-
petition is DRAT [8].1 The main issue with DRAT is that
checking can take several times the amount of solving time.
The reason is that the DRAT proof certificate format fa-
vors ease of generation and is not detailed enough to avoid
searching during checking. Therefore both the solver and
the checker have to propagate clauses (actually using sim-
ilar data structures). To reduce this overhead (and simplify
verification) all verified checkers follow the same princi-
ple. First the DRAT proof is converted by an (untrusted)
external program to a more detailed proof format such as
LRAT [5] or GRAT [7]. The resulting proof in an enriched
format – containing enough details to avoid search – is
checked by the verified program instead.
Note, however, that neither our SAT solver CADICAL [3]
nor the winners of the SAT Competition of the last 2 years
need the full power of RAT. They provide proofs in the
upward-compatible but less powerful DRUP proof format.
On the other hand CADICAL contains many different in-
processing techniques, which makes it a good candidate to
implement direct generation of LRAT proofs – even though
some of these techniques are not activated by default.
A similar attempt to resolve the performance issues with
DRAT [1] lead to a new proof format, FRAT, that sits
between LRAT (because it allows for justifications) and
DRAT (because it still allows steps without justification).
Their aim was to fill out most gaps and leave the “harder”
cases as black box to be filled in by the proof checker.
Therefore, they still use a tool FRAT-RS to convert the
FRAT proof to a proper LRAT proof – trimming the proof

1A change was announced in the SAT Competition 2023, as different
proof checkers (and therefore different proof format) could be allowed.

on the way, to reduce the number of proof steps to check.
In this work-in-progress, we have extended our SAT solver
CADICAL [3] to generate the richer LRAT format directly.
The focus of our work is on three different aspects:

C1. directly produce correct LRAT proofs

C2. without slowing down the solver and

C3. without changing its search space.

Our first goal C1 lead us to reimplement LRAT generation
during conflict analysis and as part of all inprocessing tech-
niques of CADICAL, some of which were not covered in
the FRAT implementation, such as equivalent literal sub-
stitution (Section 3).
As it is common, our implementation generates a vast
number of proof steps on-the-fly, from which however at
the end a significant fraction turns out to be unnecessary
to derive the empty clause ⊥. This applies to most tools
that process DRAT or FRAT which accordingly can bene-
fit from some form of trimming. Therefore, we also imple-
mented a tool called LRAT-TRIM to trim proofs down and
improve performance of checking proofs with the verified
checker CAKE_LPR (Section 4).
At this point we can not report on extensive experiments
yet, and therefore we focus in this work-in-progress report
on making our proof generation robust and will discuss
preliminary results for a problem with a very large large
proof from the SAT Competition 2022. (Section 5).
Our implementation is publicly available2 and is going to
be merged into the main CADICAL version.

2 Preliminaries

For a detailed introduction to SAT solving, we refer to the
Handbook of Satisfiability [4]. For the purpose of this pa-
per, it is sufficient to know that SAT solvers build a partial

2https://github.com/florianpollitt/radical
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p cnf 2 4
1 2 0
1 -2 0
-1 2 0
-1 -2 0
(a) DIMACS input

1 0
d 1 2 0
d 1 -2 0
2 0
d -1 2 0
0
(b) DRAT proof

o 1 1 2 0
o 2 1 -2 0
o 3 -1 2 0
o 4 -1 -2 0
a 5 1 0 l 1 2 0
d 1 1 2 0
d 2 1 -2 0
a 6 2 0
d 3 -1 2 0
a 7 0 l 5 6 4 0
f 4 -1 -2 0
f 5 1 0
f 6 2 0
f 7 0
(c) FRAT proof

5 1 0 1 2 0
5 d 1 2 0
6 2 0 5 3 0
6 d 3 0
7 0 5 6 4 0
(d) LRAT proof

Figure 1 Example DRAT, FRAT, and LRAT proofs for the same CNF on the left.

model. Along the way, they learn new clauses preserving
satisfiability until either the partial model becomes a total
model (translating the model back to a model of the orig-
inal clause set) or the empty clause ⊥ is derived, meaning
that the problem is unsatisfiable.
The DRAT proof format consists simply of all the clauses
learned by the SAT solver. This design decision helps
DRAT to easily capture all techniques currently used by
SAT solvers without the need to provide justification. The
LRAT proof format provides more detailed information:
Each clause gets an identifier and each step is the result
of resolving several clauses together. The list of clauses is
given as justification for each step. The last derived clause
is ⊥ – showing that the problem is unsatisfiable.
In related work [1] a new proof format was proposed that
sits in-between LRAT and FRAT: some justification can be
left out. This reduces the amount of implementation work
in the SAT solver, since certain types of functions can be
left unchanged, particularly if they infrequently contribute
to the proof. Confusingly, the option to activate this proof
is called --lrat. Throughout the rest of the paper, we will
call this implementation (CADICAL) FRAT, even when
we talk specifically about the generation of LRAT steps,
because we have nothing to say about the other steps that
are simply unchanged DRAT steps.
Figure 1 illustrates these proof formats for a simple exam-
ple. The shortest proof is obviously the DRAT proof 1b,
but it is missing information on how clauses were derived
(in dark blue). In FRAT we have to repeat all the input as-
sumptions, starting with o. The justification steps are also
optional (see a 6 2 0 without justification).

3 Implementation

Most of the actual computation can be done alongside the
generation of clauses, including clause learning, which by
definition consists of resolving clauses in the order given
by the partial model (Section 3.1). However, some tech-
niques require a deeper change like equivalence literal sub-
stitution (Section 3.2).

3.1 Conflict Analysis
Most clauses derived by a SAT solver originate from con-
flict analysis. When the solver finds a mismatch between
the current partial assignment and the clauses, one conflict-
ing clause is analyzed and the partial assignment adjusted.
One recent addition to the conflict analysis is based on
the concept of “shrinking” [6]. The idea in shrinking is to
derive the first unique implication point [4] on each level
without increasing the proof size. This is very useful for
problems with many binary clauses, such as the planning
instances from the SAT Competition 2020.
Unlike FRAT proof generation for minimization, our im-
plementation perfoms a post-processing step direclty on
the learned clause instead of repropagation. To this extent
we identify literals that were removed or added and add the
necessary reason clauses as needed:

C_old := Clause before shrinking
C_new := Clause after shrinking
Chain_old := LRAT chain for C_old
Chain_new := empty LRAT chain

calculate_lrat_chain (literal K)
C := reason of K in the current assignment
foreach literal L in C different from K

if not (reason of L in Chain_new and
reason of L in Chain_old) and

L not in C_new)
calculate_lrat_chain (L)

add C to Chain_new

for each literal L in C_old
if L is not in C_new

calculate_lrat_chain (L)

Chain_new := Chain_new + Chain_old

This works both for the standard minimization which is
actually used inside shrinking as well as shrinking.
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3.2 Equivalence Literal Substitution
Equivalent literal substitution is a procedure that detects
and replaces equivalent literals by a chosen representative.
For example, if the problem includes the clauses ¬A∨B
and A∨¬B, we know that A and B are equivalent and we
can replace all occurrences of either literal by the other.
We use Tarjan’s algorithm to detect cycles in the graph
spanned by the binary clauses and then fix a representa-
tive for each cycle. In the DRAT proof we simply dump all
changed clauses and delete the old ones.
For LRAT we have to produce the resolution chain. This
can only be calculated after fixing the representative and
is done for each replacement in every clause separately,
similarly to the process described in Section 3.1.
Fixing the representative is a rather arbitrary choice (small-
est absolute value). We considered changing this to first
visited by Tarjan’s algorithm. This change would allow us
to reuse some computation possibly making the generation
of LRAT more efficient. In the end we decided against it to
keep the behavior of CADICAL the same.

4 Trimming LRAT proofs

In early experiments we observed that the FRAT tool chain
produced significantly smaller proofs, allowing for much
more efficient proof checking. This is because clauses
which are not required to derive the empty clause are
trimmed from the proof and do not have to be checked nor
at the end verified. An important feature of proof checking
is the ability to trim down the proof which helps to reduce
this redundant checking.
Even though trimming is very effective it is not obvious
how to achieve this reduction in DRAT because depen-
dencies between proof steps are missing. In LRAT these
dependencies are listed explicitly and we implemented a
proof trimmer called LRAT-TRIM to make use of this fact.
It allows us to regularly achieve a reduction by a factor of
2 to 3 also again emphasizing how many useless clauses a
SAT solver actually derives during search.
In essence, trimming is about doing a backward liveness
analysis skipping clauses which are not useful. However, it
is not possible to write a file backwards, so we only iterate
over the graph starting from the ⊥ clause at the end.

mark_antecedents(clause C)
if C is marked return
if C is an original clause return
mark C as used
for each antecedent D of C

mark_antecedents (D)

Once the algorithm has identified all the useful proof steps,
we can dump the proofs back to a file. One step we have
not experimented with is the deletion of clauses: Studying
whether it is better to immediately delete clauses or wait
and delete several clauses at once is left as future work.
However, we observed that eagerly deallocating removed
clauses unfortunately does not improve performance, but it
does reduce maximum memory usage substantially.

5 Early Experiments

After implementing LRAT production in our SAT solver
CADICAL we first identified a minor necessary change
(Section 5.1) that has no major impact. Besides fuzzing we
have also tested our approach on input files containing unit
clauses, which was not supported by FRAT (Section 5.2).
Finally we report on the performance difference for a sin-
gle problem with a very large proof (Section 5.3).

5.1 No Behavior Difference
During our experiments to validate goal C3, we realized
that we had to change solver behavior in two ways. First,
scheduling of garbage collection during bounded-variable
elimination depends on the size of the clauses, which how-
ever changed with LRAT proof generation, as clauses be-
came larger due to the additional required clause identifier
id field. Our new version of CADICAL thus is always
forced to use clause identifiers which however we do not
consider to have a substantial impact on performance no
memory usage. The second change became necessary due
to the way how conflicts were derived in equivalence lit-
eral detection: instead of stopping on detection of such a
conflict, we now simply continue and later propagate the
literal in order to produce a proper LRAT proof.

5.2 Robustness by Fuzzing
Our goal C1 of always being able to generate proofs was
achieved by intensive fuzzing of our solver, proof genera-
tion and proof checking. We first attempted to do the same
with the old implementation, but immediately experienced
failing proofs, due to several reasons, including handling
of unit clauses in the input proof file.
We also observed that resolution chains often listed the
same clause several times. Reducing these occurrences can
lead to a polynomial speedup, since justifying one literal
can pull in several more clauses (e.g., if some of the liter-
als have been removed by minimization).

5.3 Performance Loss
We have not yet studied the goal C2 much. Early exper-
iments indicate that our solver is slightly slower but that
solving and proof checking is significantly faster. As ex-
ample we consider the problem sudoku-N30-10 from the
SAT Competition 2022 [2]. To make the times compara-
ble, we activated clause identifiers in the basic CADICAL
version, ported the modification from the FRAT version to
the newest CADICAL 1.5.2. The only real algorithmic dif-
ference is our shrinking of learned clauses [6], which we
deactivated for the comparison instead of fixing the FRAT
proof generation. All runs are without shrinking (as it is
not supported by the FRAT version). Under these restric-
tions the comparison is fair, as runs produce exactly the
same search behavior, including the same exact number of
conflicts. The experiments were run on a desktop computer
with an Intel i9-12900 with 128 GB RAM and hyperthread-
ing on, except for the GRAT generation which was run on
a machine with 2 TB because 128 GB were not enough.185



CADICAL Solving Proof Conversion Conversion+ Trimmed Checking Verified Total
time size tool trimming proof size tool checking

no proofs 4 770 s - - - - - - 4 770 s
DRAT 4 801 s 21 GB DRAT-TRIM 5 639 s 13 GB CAKE_LPR 812 s 11 252 s
DRAT 4 801 s 21 GB GRAT 916 s 13 GB GRATCHK 326 s 6 043 s

(64 threads)
FRAT 5 349 s 78 GB FRAT-RS 1 907 s 23 GB CAKE_LPR 900 s 8 156 s

LRAT⋆ 5 100 s 70 GB - - - CAKE_LPR 3 819 s 8 919 s
LRAT⋆ 5 100 s 70 GB LRAT-TRIM⋆ 263 s 18 GB CAKE_LPR 900 s 6 263 s

Table 1 Timing with different workflows on the sudoku-N30-10 from the SAT Competition 2022. The ⋆ symbol indi-
cates that the tool is a contribution of this work.

Table 1 provides the detailed timings. The DRAT proof
conversion needs slightly more time than the proof pro-
duction. LRAT proof generation has a cost of around 7%,
but the proof checking is heavily reduced. Trimming the
proof has a cost of 263 s, but reduces the checking time by
a factor 3 and the proof size by a factor 4.
One reason explaining that directly produced LRAT proofs
are larger than translated proofs comes from a heuristic
of the translation tools: If they have the choice between
two clauses, they will pick the clause that has already been
used, while our proof production will pick the one used
internally to derive a clause.

6 Conclusion

We have implemented LRAT proof production in our SAT
solver CADICAL. Early experiments show that perfor-
mance is slightly reduced, but the full workflow of produc-
ing and checking the proof becomes much faster thanks to
our other tool LRAT-TRIM.
Future work includes a proper evaluation of the implemen-
tation on the entire set of problems of the SAT competition.
Another interesting idea is to check the proofs online, di-
rectly while generated.
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DRAT is the standard proof format used in the SAT Competition. It is easy to generate but checking
proofs often takes even more time than solving the problem. An alternative is to use the LRAT
proof system. While LRAT is easier and way more efficient to check, it is more complex to generate
directly. Due to this complexity LRAT is not supported natively by any state-of-the-art SAT solver.
Therefore Carneiro and Heule proposed the mixed proof format FRAT which still suffers from
costly intermediate translation. We present an extension to the state-of-the-art solver CaDiCaL
which is able to generate LRAT natively for all procedures implemented in CaDiCaL. We further
present Lrat-Trim, a tool which not only trims and checks LRAT proofs in both ASCII and binary
format but also produces clausal cores and has been tested thoroughly. Our experiments on recent
competition benchmarks show that our approach reduces time of proof generation and certification
substantially compared to competing approaches using intermediate DRAT or FRAT proofs.
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1 Introduction

Proof production became an essential part in SAT solving. For instance, unsatisfiable problems
only count as solved in the SAT Competition if a certifiable proof is provided. Proofs do
increase trust in solving results by providing certificates that can be checked independently.
To increase trust even further proof checkers can also be entirely verified [6, 16].

In the past the only format allowed in the SAT Competition was DRAT [23], even though
the SAT Competition 2023 announced to allow additional formats. However, checking DRAT
proofs often takes several times the amount of solving time. The problem with DRAT is
that the format is not detailed enough to avoid search during checking. Both the solver and
the checker have to propagate clauses (actually using similar data structures). To reduce
this overhead (and simplify verification) all verified proof checkers expect an enriched format.
The DRAT proof is augmented and converted by an (untrusted) external program into such
an enriched format, e.g., LRAT [6] or GRAT [16], which contains enough information to
avoid search and can then be checked easily by the verified proof checker.

On top of the actual clause contents (its literals) the LRAT [6] format requires the
following additional information: (i) clause identifiers (ids) are used to reference clauses and
to make clause deletion steps more concise; (ii) clause antecedent ids used in the resolution
chain when deriving an added clause through reverse unit propagation (RUP) [12], i.e., as
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21:2 Faster LRAT Checking Than Solving with CaDiCaL

asymmetric tautology (AT) [14]; (iii) the ID and further resolution paths to refute the
resolvent of the added clause with all clauses containing a RAT (blocking) literal in case the
added clause relies on the stronger resolution asymmetric tautology (RAT) property [15].

These RAT literals would be needed to model more powerful reasoning (such as blocked
clause addition or symmetry breaking etc.) but neither our SAT solver CaDiCaL [4] nor
any top performing SAT solver in the SAT Competition over the last 2 years actually used
such reasoning. Therefore, our efforts to extend CaDiCaL did not need to address the full
power of RAT and we can focus on producing “LRUP” proofs, i.e., reverse-unit-propagation
(RUP) proofs, but still need to augment these proofs with ids and resolution chains.

A similar attempt [1] by Carneiro and Heule led to a new proof format, FRAT, that sits
between LRAT (because it allows for justifications) and DRAT (because it still allows steps
without justification). Their aim was to fill out most “gaps” and leave “harder” to implement
cases as black box to be filled in by an (untrusted) proof checker, i.e., by their FRAT-rs tool
used to convert an FRAT proof to a fully justified LRAT proof. In a recent paper [18] this
limitation of the FRAT producing CaDiCaL [1] forced a parallel proof-producing version of
the award winning SAT solver Mallob to deactivate all steps not covered by FRAT, i.e.,
most inprocessing, as native LRAT proof generation is needed.

In this tool paper, we present an extension of our SAT solver CaDiCaL [4] to generate
the richer LRAT format directly. Our focus is on three different aspects: (A) producing
LRAT proofs for all solver configurations on all benchmarks, (B) comparable performance
and, further, (C) making sure the solver behaves the same with/without proof generation.

Our goal (A) lead us to reimplement LRAT generation in the conflict analysis and all
inprocessing techniques of CaDiCaL, some of which were not covered in the FRAT [1]
producing implementation, such as equivalent literal subsumption (Section 3).

Like other SAT solvers, CaDiCaL generates a vast number of proof steps from which at
the end, a significant fraction turns out to be unnecessary for the derivation of the empty
clause. Thus most tools that process DRAT or FRAT will trim these unnecessary steps
from the proof. However, we are not aware of a tool that does this for LRAT. Therefore we
implemented a new tool called Lrat-Trim to trim proofs down and improve the performance
of checking the proof with the verified checker Cake_Lpr [21] (Section 4).

To validate robustness of our approach we extended CaDiCaL to internally check
LRAT proofs too and fuzzed the extended solver. This allowed us to use the model-based
tester Mobical (which comes with CaDiCaL) to find, debug, and fix bugs much more
efficiently. We further ran the extended new solver on the unsatisfiable problems from the
SAT Competition 2022. We observed (almost) no slow-down without proof production (0.3%)
and only a small slow-down for producing LRAT (5%). Proof checking performance was
improved considerably compared to the two competing approaches DRAT and FRAT (see
Section 5). Checking (and producing) our LRAT proofs has an overhead of 30% over pure
solving, compared to 125% for FRAT and 180% in the SAT Competition mode (i.e., slower
than producing them). Without negligible overhead over plain solving with CaDiCaL, we
managed to check proofs faster than they are produced for a state-of-the-art SAT solver.

Our CaDiCaL extension is available at https://github.com/florianpollitt/radical
and will shortly be merged into the main CaDiCaL repository. Note that a preliminary
version of this paper was presented at the MBMV workshop [19] as work in progress.
Compared to that shorter version, we have improved and present Lrat-Trim, give an
extensive evaluation on the entire problem set of the SAT Competition 2022 (not just a
single problem) and in general provide more details on the implementation.
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2 Preliminaries

For an introduction to SAT solving please refer to the Handbook of Satisfiability [5]. In our
context it is sufficient to recall that SAT solvers build a partial assignment and along the
way learn new clauses preserving satisfiability until either the assignment satisfies all clauses
or the empty clause is derived, meaning that the problem is unsatisfiable.

A DRAT [23] proof is the sequence of all clauses learned (or in general deduced) by the
SAT solver interleaved with clause deletion steps, which are used to help the proof checker
to focus on the same clauses the solver would see at this point of the proof. This design
principle helps DRAT [23] to easily capture all techniques currently used by SAT solvers
without the need to provide more complex justification e.g. in the form of resolution chains.

The LRAT [6] proof format has more detailed information: Each clause is associated
with a clause identifier and claimed to be the result of resolving/propagating several clauses
in the given order. The list of antecedent clause ids forms a justification and is part of such
an addition step in LRAT. In the rest of the paper we focus on finding these justification.

3 Implementation

The LRAT extension to CaDiCaL was implemented by the first author as part of his master
project and proceeded in four stages: First, the internal proof checker in CaDiCaL for
DRAT clauses was extended to produce LRAT proofs, which is quite inefficient but can
still be enabled through the --lrat-external option. Second, a separate internal LRAT
checker was added to CaDiCaL to validate proofs on-the-fly while running the solver. Third,
we implemented LRAT production for CaDiCaL without any inprocessing. Finally, all
different inprocessing techniques were instrumented to generate LRAT proof chains directly.
Thanks to the second stage, proofs could be validated on-the-fly, dramatically reducing the
implementation effort (particularly for debugging). The implementation of these four stages
took around two months in total but the last two stages only two weeks.

The resolution chain for justifying a new clause can be computed alongside normal CDCL
search with little computational overhead but clause minimization and shrinking are a bit
more involved (Section 3.1). Proof production in preprocessing and inprocessing were of
varying degree of difficulty. The most interesting inprocessing technique from this point of
view is equivalent literal substitution which we discuss in Section 3.2.

3.1 Conflict Analysis
Most clauses derived by a SAT solver originate from clauses learned during conflict analysis.
When the solver finds a mismatch between the current partial assignment and the clauses,
i.e., a conflicting clause which is falsified, then this conflict is analyzed and a clause is learned
which forces the solver to adjust the partial assignment. In the standard implementation of
conflict analysis the learned clause is derived by resolving individual reason clauses in reverse
assignment order, starting with the conflicting clause, which in turn immediately gives the
necessary justification for the (non-minimized first UIP [24]) learned clause.

We have adapted our code to generate chains for various technique relying on conflict
analysis such as hyper binary resolution [13] and vivification [17]. It is crucial to distinguish
between techniques that eliminate false literals (thus, necessitating an extension of the proof
chain) and those that do not.

One recent addition to improve conflict analysis is the concept of “shrinking” [9,10] which
can be interpreted as a more advanced version of “minimization” [8]. Minimization only
removes literals from the learned clause following resolution paths in the implication graph,
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21:4 Faster LRAT Checking Than Solving with CaDiCaL

but does not add any literals. The additional idea in shrinking is to continue trying to resolve
literals on a particular decision level until all but one (the first UIP on that level) is left,
however, without being allowed to add literals from a lower decision level.

Our approach differs from the FRAT flow [1]. Their solver performs a post-process
analysis of the final learned clause Cmini+shrink to rediscover the necessary propagation by
traversing the implication graph, which repeats conflict analysis work. In contrast, we split
the justification process into two parts. First, we derive the justification for the clause CUIP
alongside conflict analysis with little to no overhead. Then, we derive the missing resolution
steps between CUIP and the shrunken and minimized clause Cmini+shrink as a post-process
analysis. We identify literals that differ and add the required reason clauses. Although we
still traverse parts of the implication graph, we avoid repeating the conflict analysis.

Our Algorithm 1 shows the postprocessing step only. The first step has already derived
the justification ChainUIP for the first UIP clause Coriginal from conflict analysis. Our
postprocessing step calculates the justification chain in Chainmini+shrink . For each removed
literal L (in Coriginal but not in Cshrunken), we extend the chain with additional justification
steps (Line 3).

The function calculate_LRAT_Chain(L) (Line 5) extends the chains with the required
reason and preserves the resolution order. It goes recursively over all literals of the reasons
and extends the chain with the reason. If the function reaches a previously used reason
(already_added), it can stop the analysis to avoid duplicated reasons in the chain. Our
calculation stops when we reach literals that appear in Cshrunken (L ̸∈ Chainnew). After
calculating the justification chain for minimization and shrink, we merge the two chains
ChainUIP and Chainnew (Line 4). Starting with an empty chain provides a valid proof when
removing unit literals during both phases.

Algorithm 1 Recursively calculating the prefix LRAT chain for shrinking and minimizing.
Data: currently build LRAT chain ChainUIP
Data: the clause before Coriginal and after minimization and shrinking Cshrunken
Result: resulting LRAT chain Chainfull

1 foreach literal L in Coriginal do
2 if L not in Cshrunken then
3 calculate_LRAT_Chain(L)

4 Chainfull := Chainmini+shrink + ChainUIP

5 calculate_LRAT_Chain (Literal K)

6 C := reason of K in the current assignment
7 foreach Literal L in C different from K do
8 already_added := reason of L in Chainmini+shrink

9 if ¬already_added and L ̸∈ Cshrunken then
10 calculate_LRAT_Chain(L)

11 append C to Chainmini+shrink
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Our approach can potentially lead to duplicated unit clauses: We add unit clauses to the
chain during conflict analysis. We can guarantee no duplicates here, but the same unit clause
might also be added during post process analysis, which means it is actually needed earlier
in Chainmini+shrink and we could remove it from ChainUIP . Note that this cannot happen
for larger clauses since they can appear at most once as a reason for some assignment. Since
removing these unit clauses afterwards would be rather costly, we actually collect unit clauses
separately and put them at the start of the merged chain after the post process analysis for
Cshrunken is finished. Like this, we can avoid duplicates and still get a correct justification
chain for Cshrunken.

3.2 Equivalence Literal Substitution
While the justification process for clauses derived during variable elimination and other
preprocessing techniques that rely on propagation and conflict analysis is similar to normal
learning, producing LRAT proof justifications for equivalent literal substitution [5] is more
involved.

Equivalent literal substitution detects and replaces equivalent literals by a chosen repre-
sentative. For example, if the problem includes the three clauses (¬A ∨ B), (¬B ∨ C) and
(¬C ∨ A) we know that A, B and C are equivalent and we can replace all occurrences of
either literal by one of the others. As is common we use Tarjan’s algorithm [22] to detect
cycles in the graph spanned by the binary clauses (i.e., the binary implication graph) and
fix a representative for each cycle [5]. In the DRAT proof we can simply dump all changed
clauses and delete the old ones.

For LRAT we have to produce the resolution chains. After fixing representatives, proof
chains have to be produced for every changed clause separately. We derive the justification for
each changed or removed literal, similarly as for the shrunken clause in conflict analysis 3.1.

Fixing the representative is a rather arbitrary choice (the smallest absolute value in this
implementation). We considered changing this to the first visited literal during DFS in
Tarjan’s Algorithm, in order to allow reusing some computation and potentially shorten
proofs, but in the end decided against changing solver behavior.

4 Trimming LRAT proofs

In preliminary experiments we observed that the FRAT flow [1] produced significantly smaller
proofs. FRAT-rs trims the proof during translation to LRAT, i.e., it omits clauses that are
not needed to derive the empty clause, allowing for much more efficient proof checking. We
concluded that we needed a tool to do such trimming on LRAT directly in order to obtain
an efficient pure LRAT proof generation and checking flow.

Even though trimming is effective, it is not obvious how to cheaply achieve such reduction
for DRAT proofs because dependencies between proof steps are lacking. Luckily, in LRAT
these dependencies are explicit. Therefore we implemented Lrat-Trim [2], an open-source
LRAT proof trimming and checking tool. It often reduces proofs by a factor of 2 to 3, again
emphasizing how many useless clauses a SAT solver actually derives during search.

Trimming LRAT proofs consists of a backward reachability analysis starting from the
empty clause towards the clauses of the original CNF, marking reached clauses as needed.
Clauses unmarked after this traversal are redundant and can be trimmed. This algorithm is
implemented by depth first search (DFS) along antecedent clauses in justification chains.

SAT 2023

9 Beyond Verification: Certification

192



21:6 Faster LRAT Checking Than Solving with CaDiCaL

It also determines the last usage of each clause ID and remaps original clause ids to a
consecutive ID range. On completion we can dump the proofs back to a file in a forward
manner, only writing needed clauses and their antecedents and skipping redundant clauses.
While doing this we can eagerly mark clauses once they are not used anymore.

Before starting to write proof lines, we check whether there are redundant original clauses
and if so write a single deletion line with all unused original clause ids. This minimizes the
life-span of clauses in the trimmed LRAT proof, both for added and original clauses. Note
that Lrat-Trim, in contrast to DRAT-Trim, does not require access to the original CNF
nor looks at literals of clauses to trim proofs.

We also implemented a checking mode in Lrat-Trim which, given the original CNF
and an LRAT proof, checks that the resolution chains of added clauses can be resolved to
produce the claimed clauses. It also checks that clauses are not used after they are deleted
in a deletion step. This checking mode comes in two flavors. The default is to first trim
the clauses with the trimming algorithm described above and only check needed clauses.
Alternatively Lrat-Trim supports forward checking, which checks added clauses on-the-fly
during parsing and in particular allows to delete clauses in deletion steps eagerly.

On the one hand, forward checking reduces maximum memory usage to at most that of
the solving process, whereas backward checking needs to keep the whole proof in memory
which is usually much more than maximum usage during solving. On the other hand, forward
checking substantially increases checking time, as all clauses have to be checked without
trimming information, irrespective of being needed or not.

During the development of Lrat-Trim substantial effort went into making parsing as
fast and robust as possible and also provide meaningful error messages during parsing and
checking. The parsing code amounts to roughly 900 lines of C code out of 2400 lines for the
whole tool (including comments but formatted with ClangFormat).

All three proof formats (DRAT, FRAT and LRAT) have a binary version. We implemented
the binary format for LRAT (both in CaDiCaL and in Lrat-Trim) which is only supported
by CLRAT [7], a formally verified checker for LRAT using ACL2. We are grateful to Peter
Lammich who provided us a tool that converts LRAT proofs (with some extra requirements
on proofs) to GRAT [16] that his checker can check. However, GRAT is stricter as duplicate
or extraneous ids are not allowed. We leave it to future work to produce stricter proofs.

5 Experiments

While checking for our extensions not to change solver behavior with and without proof
generation, i.e., validating (C), we realized that two changes to the solver became necessary.
First, scheduling of garbage collection during bounded-variable elimination depends on the
number of bytes allocated for clauses, which changed with LRAT proof generation, as clauses
require an ID and thus became larger. Therefore, our CaDiCaL extension always uses
clause ids, which is not expected to have major impact on performance nor memory usage.
The second change is due to the way conflicts were derived in equivalent literal detection.
Originally detection was aborted on such a conflict, which we now simply delay until detection
finishes. Then the conflicting literal is propagated to yield a proper LRAT proof.

Our goal (A) of being able to always generate correct proofs was tested by intensive
fuzzing of our solver, proof generation, and proof checking. We attempted to apply the
same approach to the FRAT extension of CaDiCaL [1] but immediately experienced failing
proofs, due to several reasons, particularly with respect to handling unit clauses in the input
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Figure 1 Performance on unsatisfiable instances from the SAT Competition 2022.

CNF. We also observed that chains often listed the same clause id multiple times. Reducing
these occurrences might lead to a substantial speedup, since justifying one literal can pull in
several more clauses (e.g., if some of the literals have been removed by minimization).

After fuzzing, we ran our LRAT flow on the problems of the SAT Competition 2022 and
found three issues: (i) Cake_Lpr did not accept some input files, because they contained
trailing empty lines, which we then removed manually; (ii) Cake_Lpr requires a very large
amount of memory (around the size of the proof file); (iii) one node of the cluster showed
irregular behavior, when many proofs were written to the temporary disk at the same time,
which lead to corrupted proof files resulting in an Lrat-Trim error. Reducing the number of
jobs per node fixed this issue and we did not discover any further problem with the generated
proofs, validating (A) and showing again the effectiveness of fuzzing.

To compare performance, i.e., showing that we achieved (B), of our extended version
to the base version of CaDiCaL (added clause ids taking up space without being used),
we let both versions write generated proofs to /dev/null in order to ensure that we do
not introduce any bias due to file I/O limits as LRAT proofs exceed DRAT proofs in size
substantially. This yielded an average overhead of 5% for our new LRAT proof production
versus DRAT in base CaDiCaL.

For the remaining empirical analysis we have chosen to focus on the 127 benchmarks from
the SAT Competition 2022, which were shown to be unsatisfiable during the competition.
First, we tried to determine how much proofs can be reduced with our new tool Lrat-Trim.
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21:8 Faster LRAT Checking Than Solving with CaDiCaL

It turns out, that some proofs were reduced to one percent, i.e., 99% of the output is not
useful for deriving the contradiction. These problems stem from the sudoku-N30 family. In
other proofs 80% and more clauses are needed – most of these problems have a short runtime
(around 200 s), contain a large amount of fixed variables and accordingly many clauses are
simplified by removing these units, where each removal contributes a proof step.

In order to determine the performance of our new solving and checking flow, we compared
the following three workflows: (i) the (competition) DRAT workflow, i.e., generating the
DRAT proof, converting it to LRAT with DRAT-Trim, then checking that proof; (ii) the
FRAT workflow, i.e., generating the FRAT proof, converting it to LRAT with FRAT-rs,
then checking it; (iii) our new LRAT flow including generating, trimming, and checking the
proof. All workflows use binary proof formats, except for feeding Cake_Lpr at the end.

We also ported the FRAT extensions [1] to the newest CaDiCaL version, but did not
try to fix any issues. Nevertheless, we ran the ported version (see Figure 1a) which is now
able to use the latest heuristics used in CaDiCaL, except for shrinking which had to be
deactivated as it is not supported by the original FRAT code [1].

The first observation we can make is that the overhead of trimming and proof checking
is quite consistent among our configurations, but wildly differs for FRAT: If many clauses
without justification are used for the proof, the translation needs a lot of search – although,
as expected, less than using the conversion to DRAT

To our surprise, we observed several timeouts though. They all seem to origin from
one family submitted by AWS in 2022, where solving took less than 600 s, but elaboration
(translation) never finishes. In comparison, DRAT-Trim also needs a very long time (6 000 s),
but stays well below the time limit. It is unclear what the problem is and thus we tested one
instance aws-c-common:aws_priority_queue_s_sift_either on a (twice as fast) computer
where it took nearly 10 h to convert the 400 MB FRAT proof to a 3.8 GB LRAT proof. We
have reported the issue on GitHub,1 but have not heard back yet.

A comparison of Lrat-Trim with FRAT-rs in both normal mode and super strict mode
is shown in Figure 1c. We used the feature of our extended version of CaDiCaL to generate
proofs both in LRAT and in FRAT, where in FRAT, every step is properly justified. The
results show that Lrat-Trim scales much better than FRAT-rs, although there was a bug
which we reported that made FRAT-rs significantly slower when not using the super strict
mode. Furthermore, Lrat-Trim can also check proofs directly and it turns out that the
additional overhead of this (untrusted) checking compared to parsing and trimming is small.

Overall, our new LRAT proof flow performs best, with reasonably small overhead on
solving. To ease visual comparison, we printed all different configurations into a single graph
(Figure 1d). The fastest option is (of course) “no-checking” but our new method is not too far
behind. Figure 2 shows that the overhead (cost) of proof checking compared to not checking
any proofs. Our approach performs best taking only 30% more time than pure solving. The
existing competing approaches are much slower with DRAT incurring an overhead of 180%
and FRAT still requiring 125% more time than solving, i.e., both more than doubling overall
certification time, while our approach has faster checking than solving.

As a sanity check, we also tested our LRAT proof flow using the default shrinking (see
Fig 3). We observed that our new approach remains faster compared to the FRAT proof
flow, confirming our initial findings.

1 https://github.com/digama0/frat/issues/18
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6 Conclusion

We have implemented native LRAT proof production in our SAT solver CaDiCaL. Even
though direct production of LRAT proofs slows down the solver slightly this loss is by far
offset by the reduction in proof checking time, both compared to DRAT and FRAT proofs.
At the end our certification flow adds only 30% overhead compared to pure solving while
other approaches take more than twice the time for certification.

It might be interesting to apply this work to recent results on distributed proof generation
in the context of the cloud solver Mallob [18] as well as our multi-core solver in Gim-
satul [11]. We also see the question of how to handle clause ids for virtual binary clauses as
a technical challenge. Such clauses occur in both Gimsatul [11] and the state-of-the-art
sequential solver kissat [3].
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rules too. We demonstrate the different proof formats on the use case of arithmetic
circuit verification and discuss how these proofs can be produced as a by-product
in formal verification. We present the proof checkers Pacheck, Pastèque, and
Nuss-Checker. Pacheck checks proofs in practical algebraic calculus more effi-
ciently than Pastèque, but the latter is formally verified using the proof assistant
Isabelle/HOL. The tool Nuss-Checker is used to check proofs in the Nullstellen-
satz format.

Keywords Algebraic Proof Systems · Nullstellensatz Proofs · Polynomial
Calculus · Gröbner Basis · Arithmetic Circuit Verification · Isabelle/HOL

1 Introduction

Formal verification aims to guarantee the correctness of a given system with re-
spect to a certain specification. However, the verification process might not be
error-free and return incorrect results, even in well-known systems such as Mathe-
matica [15]. In order to guarantee the correctness of the outcome, one would have
to formally verify the verification tool, e.g., using a theorem prover, which typi-
cally is a demanding task and for complex software it is often infeasible. Thus, a
more common technique to increase the trust in verification results is to gener-
ate proof certificates, which monitor steps of the verification process and enables
reproducing the proof. These certificates can be checked by a simple stand-alone
proof checker.

For example, many applications of formal verification use satisfiability (SAT)
solving and various resolution or clausal proof formats [20], such as DRUP [57,
58], DRAT [22], and LRAT [14] are available to validate the verification results.
In the annual SAT competition it is even required to provide certificates since
2013. However, in certain applications SAT solving cannot be applied successfully.
For instance formal verification of arithmetic circuits, more precisely of multiplier
circuits, is considered to be hard for SAT solving.

Automated reasoning based on computer algebra has a long history [27–29]
with renewed recent interest. The general idea of this approach is to reformulate
a problem as a question about sets of multivariate polynomials, then do Gröbner
bases [8] computations and use properties of Gröbner bases to answer the question.

Formal verification using computer algebra provides one of the state-of-the-art
techniques in verifying gate-level multipliers [11, 34, 46, 47]. In this approach the
circuit is modeled as a set of polynomials and it is shown that the specification,
also encoded as a polynomial, is implied by the polynomials that are induced by
the circuit. More precisely, for each logical gate in the circuit a polynomial equa-
tion is defined that captures the relations of the inputs and output of the gate.
The polynomials are sorted according to a term ordering that is consistent with
the topological order of the circuit. This has the effect that these gate polyno-
mials automatically generate a Gröbner basis [8]. Preprocessing techniques based
on variable elimination are applied to simplify the representation of the Gröbner
basis [34, 46]. After preprocessing the specification polynomial is reduced by the
simplified gate polynomials using a multivariate polynomial division with remain-
der until no further reduction is possible. The given multiplier is correct if and
only if the final result is zero.
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Furthermore, algebraic reasoning in combination with SAT is successfully used
to solve complex combinatorial problems [7], e.g., finding faster ways for matrix
multiplication [23,24], computing small unit-distance graphs with chromatic num-
ber 5 [19], or solving the Williamson conjecture [6], and has possible future ap-
plications in cryptanalysis [10, 56]. All these applications raise the need to invoke
algebraic proof systems for proof validation.

Two algebraic proof systems are commonly studied in the proof complexity
community, polynomial calculus (PC) [12], and Nullstellensatz (NSS) [3]. Both
systems allow reasoning over polynomial equations where the variables represent
Boolean values. These proof systems are well-studied, with the main focus on
deriving complexity measures, such as degree and proof size, e.g., [2, 26, 49,50].

Proofs in PC allow us to dynamically capture whether a polynomial can be
derived from a given set of polynomials using algebraic ideal theory. However, PC
as originally defined [12] is not suitable for effective proof checking [31], because
information of the origin of the proof steps is missing. We introduce the practical
algebraic calculus (PAC) [54], which includes this information and therefore can
be checked efficiently. A proof in PAC is a sequence of proof steps, which model
single polynomial operations. During proof checking each proof step is checked for
correctness. Thus, whenever the proof contains an error, we are able to pinpoint
the incorrect proof step.

In the first version of PAC [54] we explicitly require to write down all poly-
nomial equations, including exponents, which leads to very large proof files. Since
in our application all variables represent elements of the Boolean domain, we can
impose for each variable x the equation x2 = x. We use this observation and
specialize PAC to treat exponents implicitly. That is, we immediately reduce all
exponents greater than one in the polynomial calculations. Furthermore, we add
an indexing scheme to PAC to address polynomial equations and add deletion
rules for efficiency. We include a formalization of extension rules that allow us to
merge and check combined proofs obtained from SAT and computer algebra [35]
in a uniform (and now precise) manner (Sect. 2).

Proofs in NSS capture whether a polynomial can be represented as a linear
combination of a given set of polynomials. These proofs are very concise as they
consist only of the input polynomials and the sequence of corresponding co-factor
polynomials. However, if the resulting polynomial is not equal to the desired tar-
get polynomial, it is unclear how to locate the error in the proof. Furthermore,
it is impossible to express intermediate optimizations and rewriting techniques on
the given set of polynomials in NSS, because we are not able to explicitly model
preprocessing steps. We conjectured for the application of multiplier circuit ver-
ification [31] that: “In a correct NSS proof we would also need to express the
rewritten polynomials as a linear combination of the given set of polynomials and
thus loose the optimized representation, which will most likely lead to an exponen-
tial blow-up of monomials in the NSS proof.” Surprisingly, we have to reject our
conjecture, at least for those multiplier architectures that are considered in our
approach and our experimental results demonstrate that we are able to generate
compact NSS proofs.

In this article we introduce LPAC, a PAC format including linear combinations
that combines PAC with the strength of NSS (Sect. 3), namely a shorter proof,
while retaining the possibility to identify errors. All proof formats can be produced
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by our verification tool AMulet 2.0 [33]. Depending on the options the proofs will
have a stronger PAC, a hybrid, or a stronger NSS flavor (Sect. 4).

We present our new proof checkers Pacheck and Pastèque. They support
PAC (Sect. 5). The proof checker Pastèque in contrast to Pacheck is verified in
Isabelle/HOL, but Pacheck is faster and more memory efficient. To (in)validate
our conjecture, we also implemented an NSS checker, Nuss-Checker. This gives
us the evidence that NSS proofs do not lead to an exponential blow-up (Sect. 6).
Therefore, we also extend Pacheck and Pastèque to check LPAC proofs (Sect. 7).

The tools are easy to use and their results can easily be interpreted. We exper-
iment with the verification of various multipliers that require our new extensions
to be checked. The new PAC format makes the proofs easier to check and less
memory hungry, but proofs in LPAC achieve even better performance for both
checkers (Sect. 8).

This article extends and revises work presented earlier [32, 39, 54]. As a nov-
elty we introduce LPAC, the modification of the PAC format [39] to additionally
support linear combinations of polynomials in the proof rules. Hence, we are able
to not only simulate NSS and PC proofs in PAC, but we are also able to derive
hybrid proofs that consist of a sequence of linear combinations. The hybrid format
allows us to generate concise proofs, which are faster to check by our new checkers
(Sect. 8), and where errors in the proof can be located. We present how LPAC
proofs on different abstraction levels, i.e., NSS, hybrid or PC, are generated in our
recent verification tool AMulet 2.0 [33]. Extending [39], we highlight necessary
modifications in our proof checkers Pacheck and Pastèque to cover LPAC.

2 Algebraic Proof Systems

In this section we introduce the proof systems polynomial calculus (PC) [12] and
its instantiation PAC (Sect. 2.1) and Nullstellensatz [3] (Sect. 2.2). Our algebraic
setting follows [13] and we assume 0 ∈ N.

– Let R be a ring and X denote the set of variables {x1, . . . , xl}. By R[X] we
denote the ring of polynomials in variables X with coefficients in R.

– A term τ = xd1
1 · · ·xdl

l is a product of powers of variables for di ∈ N. A monomial

is a multiple of a term cτ with c ∈ R \ {0} and a polynomial is a finite sum of
monomials with pairwise distinct terms.

– On the set of terms [X] an order ≤ is fixed such that for all terms τ, σ1, σ2
it holds that 1 ≤ τ and further σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2. One such order is
the so-called lexicographic term order, defined as follows. If the variables of a
polynomial are ordered x1 > x2 > · · · > xl, then for any two distinct terms
σ1 = xd1

1 · · ·xdl

l , σ2 = xe11 · · ·xell we have σ1 < σ2 iff there exists an index i with
dj = ej for all j < i, and di < ei. We have σ1 = σ2 iff dj = ej for all 1 ≤ j ≤ l.

– For a polynomial p = cτ + · · · the largest term τ (w.r.t. ≤) is called the leading

term lt(p) = τ . The leading coefficient lc(p) = c and leading monomial lm(p) = cτ

are defined accordingly. We call tail(p) = p− lm(p) the tail of p.

As we will only consider polynomial equations with right hand side zero, we
take the freedom to write f instead of f = 0. In our setting all variables represent
Boolean variables, i.e., we are only interested in solutions where every variable
x ∈ X is assigned either 0 or 1. We can therefore impose the equations x2 − x = 0
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for all variables x. The set B(X) = {x2 − x | x ∈ X} ⊂ R[X] is called the set of
Boolean value constraints. Note that R is still an arbitrary ring as we do not restrict
the coefficients of the polynomials, we only restrict the values of the variables.

Definition 1 For a set G ⊆ R[X], a model is a point u = (u1, . . . , ul) ∈ Rl such that
∀g ∈ G : g(u) = g(u1, . . . , ul) = 0. Here, by g(u1, . . . , ul) we mean the element of R
obtained by evaluating the polynomial g for x1 = u1, . . . , xl = ul. Given S ⊆ R a
set G ⊆ R[X] and a polynomial f ∈ R[X], we write G |=S f if every model for G
is also a model for {f}, i.e., G |=S f ⇐⇒ ∀u ∈ Sl : ∀g ∈ G : g(u) = 0⇒ f(u) = 0.

Algebraic proof systems typically reason about polynomial equations. Given
G ⊆ R[X] and f ∈ R[X], the aim is to show that an equation f = 0 is implied
by the constraints g = 0 for every g ∈ G ∪ B(X). This means that every common
Boolean root of the polynomials g ∈ G is also a root of f . In algebraic terms, we
want to derive whether f belongs to the ideal generated by G ∪B(X).

Definition 2 A nonempty subset I ⊆ R[X] is called an ideal if ∀u, v ∈ I : u+ v ∈ I
and ∀w ∈ R[X],∀u ∈ I : wu ∈ I. If G = {g1, . . . , gm} ⊆ R[X], then the ideal
generated by G is defined as 〈G〉 = {q1g1 + · · ·+ qmgm | q1, . . . , qm ∈ R[X]}.

Definition 3 Let G ⊆ R[X] be a finite set of polynomials. A polynomial f ∈ R[X]
can be deduced from G if f ∈ 〈G〉. In this case we write G ` f .

2.1 Polynomial Calculus and PAC

The first proof system we consider is PC [12]. We discuss the original definition [12]
over fields in Sect. 2.1.1 and generalize the soundness and completeness arguments.
In Sect. 2.1.2 we generalize the correctness arguments to commutative rings with
unity, when the constraint set G has a certain shape. For completeness the prop-
erty “commutative ring with unity” is not sufficient and we will require stronger
assumptions on the constraint set G in Sect. 2.1.2. In Sect. 2.1.3 we present our
instantiation PAC.

2.1.1 Polynomial Calculus over Fields

In the original definition of PC [12] the coefficient ring R is assumed to be a
field K. Let G ⊆ K[X] and f ∈ K[X]. A proof in PC is a sequence of polynomials
P = (p1, . . . , pm) which are deduced by repeated application of the following proof
rules:

Addition
pi pj
pi + pj

pi, pj appears earlier in the proof
or are contained in G

Multiplication
pi
qpi

pi appears earlier in the proof
or is contained in G

and q ∈ K[X] being arbitrary

We present here a variant of the PC where the addition and multiplication rules
are closely related to the definition of an ideal. In the initial definition of PC [12],
the addition rule is in fact a linear combination rule and includes multiplication by
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6 Kaufmann, Fleury, Biere, and Kauers

constants. The multiplication rule is more restrictive and only allows multiplication
by a single variable x ∈ X [12] or multiplication with any term, e.g., [9] instead of
a polynomial. It is easy to see that our definition of PC and the original definition
are equivalent and are able to simulate each other polynomially.

Note that every element pi of a PC proof P is an element of the ideal generated
by G. This means that every common root of the elements of G is also a root of
every polynomial appearing in the proof.

Thanks to the theory of Gröbner bases [4, 8, 13] the polynomial calculus is
decidable, i.e., there is an algorithm which for any finite G ⊆ K[X] and f ∈ K[X]
can decide whether G ` f or not.

A basis of an ideal I is called a Gröbner basis if it enjoys certain structural
properties whose precise definitions are not relevant for our purpose. What matters
are the following fundamental facts:

– There is an algorithm (Buchberger’s algorithm) which for any given finite set
G ⊆ K[X] computes a Gröbner basis H for the ideal 〈G〉 = 〈H〉 generated by G.

– Given a Gröbner basis H, there is a computable function redH : K[X]→ K[X]
such that ∀ p ∈ K[X] : redH(p) = 0 ⇐⇒ p ∈ 〈H〉.

– Moreover, if H = {h1, . . . , hm} is a Gröbner basis of an ideal I and p, r ∈ K[X]
are such that redH(p) = r, then there exist q1, . . . , qm ∈ K[X] such that p− r =
q1h1 + · · ·+ qmhm, and such co-factors qi can be computed.

In [12] soundness and completeness are shown for degree-bounded polynomials.
In this context soundness means that every polynomial f which can be deduced
by the rules of PC from a given set of polynomials G vanishes on every common
root of the polynomials g ∈ G, i.e., G ` f =⇒ G |=K f . Completeness means
whenever a polynomial f cannot be deduced by the rules of PC from G, then
there exists a common root of the polynomials G where f does not evaluate to
zero, i.e., G 0 f =⇒ G 6|=K f , or equivalently G |=K f =⇒ G ` f . We are able to
generalize these arguments in this article without forcing a bound on the degree
of f and the polynomials in G. At the end of this section we summarize how the
results fit together in the context of algebraic verification.

To show soundness and completeness of PC over fields K, we now introduce
the extended calculus with the additional radical rule [13, Chap. 4§2 Def 2].

Radical
pm

p

m ∈ N \ {0} and
pm appears earlier in the proof or is contained in G.

Definition 4 If the polynomial f can be deduced from the polynomials in G with
the rules of PC and this additional radical rule, we write G `+ f and call this
proof radical proof. In algebra, the set { f ∈ K[X] : G `+ f } is called the radical

ideal of G and is typically denoted by
√
〈G〉.

Theorem 1 Let K be an algebraically closed field and G ⊆ K[X], f ∈ K[X]. It holds

G `+ f ⇐⇒ G |=K f.

Proof It follows from Hilbert’s Nullstellensatz [13, Chap. 4§1 Thms. 1 and 2] that
the set of all models of G is nonempty if and only if 1 6∈ 〈G〉, and furthermore we
have G `+ f ⇐⇒ G |=K f .

9 Beyond Verification: Certification
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We are able to derive from Thm. 1 that the extended PC including the radical
rule is correct (“⇒”) and complete (“⇐”).

Also the extended calculus `+ is decidable. It can be reduced to ` using the
so-called Rabinowitsch trick [13, Chap. 4§2 Prop. 8], which says

f ∈
√
〈G〉 ⇐⇒ 1 ∈ 〈G ∪ {yf − 1}〉 or G `+ f ⇐⇒ G ∪ {yf − 1} ` 1,

depending whether you prefer algebraic or logic notation. In both cases, y is a
new variable and the ideal/theory on the right hand sides is understood as an
ideal/theory of the extended ring K[X, y].

Corollary 1 Let K be an algebraically closed field and assume G ⊆ K[X], f ∈ K[X],
and y /∈ X. We have G ∪ {yf − 1} ` 1 ⇐⇒ G |=K f .

The Rabinowitsch trick is therefore used to replace a radical proof (`+) by a
PC refutation and we can therefore decide the existence of models and furthermore
produce certificates for the non-existence of models using only the basic version of
PC. Thus, we do not have to consider the radical rule in practice.

In Thm. 1 we consider models u ∈ Kl. For our applications, only models u ∈
{0, 1}l = Bl ⊆ Kl matter. Using basic properties of ideals [13, Chap. 4§3 Thm. 4],
it is easy to show for G ⊆ K[X], f ∈ K[X] that G |=B f ⇐⇒ G ∪ B(X) |=K f .
Recall from Def. 1 that G |=B f ⇐⇒ ∀u ∈ Bl : ∀g ∈ G : g(u) = 0⇒ f(u) = 0.

Furthermore, the equivalence G ∪ B(X) `+ f ⇐⇒ G ∪ B(X) |=K f holds
even when K is not algebraically closed, because changing from K to its algebraic
closure K will not have any effect on the models in Bl. Finally, let us remark that
the finiteness of Bl also implies that G ∪ B(X) `+ f ⇐⇒ G ∪ B(X) ` f . This
follows from Seidenberg’s lemma [4, Lemma 8.13] and generalizes Thm. 1 of [12].

Corollary 2 Let G ⊆ K[X], f ∈ K[X], for any field K. Then the following holds:

G ∪B(X) ` f ⇐⇒ G |=B f .

Let us briefly put the results of this section into context on the use case of
formal verification. In algebraic verification the set G denotes the initial constraint
set, e.g., for verifying circuits G contains all polynomials induced by a given circuit.
The polynomial f encodes the specification. The goal of verification is to derive,
whether f is implied by G, meaning that all common roots of the polynomials in G
are roots of f , i.e. G |=K f . From G ` f it trivially follows that G |=K f . However,
the other direction G 0 f =⇒ G 6|=K f does not hold in general. From Hilbert’s
Nullstellensatz, cf. Thm. 1, we are only able to derive that G 0+ f =⇒ G 6|=K f .

This means that in general an ideal membership test is not sufficient for ver-
ification and we would need to involve the stronger radical membership test to
prove non-existence of models. Using the Rabinowitsch trick, cf. Cor. 1, allows us
to replace the radical proof by an ideal membership test.

If all variables are Boolean, which is often the case in algebraic verification, we
can further simplify Thm. 1, cf. Cor. 2. First, we relax on K being algebraically
closed, because we are only considering a finite number of models Bl. Second,
because of the finiteness of Bl, G ∪ B(X) is a zero-dimensional ideal, and using
Seidenbergs’s Lemma we are able to deduce 〈G ∪B(X)〉 =

√
〈G ∪B(X)〉. Thus,

we are able to replace the radical proof in Thm. 1 by an ideal membership test.
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G ∪B(X) = { − b + 1− a,

− c + a + b− 2ab,

a2 − a, b2 − b, c2 − c}

a c

b

−c + a + b− 2ab −b + 1− a

−c + 1− 2ab

−b + 1− a

2ab− 2a + 2a2

−c + 1− 2a + 2a2
a2 − a

−2a2 + 2a

−c + 1

Fig. 1: The circuit, polynomial representation of the gates and proof for Ex. 1.

Example 1 This example shows that the output c of an XOR gate over an input
a and its negation b = ¬a is always true, i.e., c = 1 or equivalently −c + 1 = 0.
We apply the polynomial calculus over the ring R[X] = K[X] = Q[c, b, a]. Over Q
a NOT gate x = ¬y is modeled by the polynomial −x + 1 − y and an XOR gate
z = x ⊕ y is modeled by the polynomial −z + x + y − 2xy. Because X = {a, b, c},
we have B(X) = {a2 − a, b2 − b, c2 − c}. The corresponding circuit representation,
the constraint set G ∪B(X), and a polynomial proof tree are shown in Fig. 1.

2.1.2 Polynomial Calculus over commutative rings with unity

For certain sets of polynomials G we are further able to generalize the soundness
and completeness arguments for rings R, which not necessarily have to be fields,
e.g., R = Z. Let now R denote a commutative ring with unity. By R× we denote the
set of multiplicatively invertible elements of R. The rules of PC remain unaffected.

Definition 5 Let G ⊆ R[X]. If for a certain term order, all leading terms of G only
consist of a single variable with exponent 1 and are unique and further lc(g) ∈ R×
for all g ∈ G, then we say G has unique monic leading terms (UMLT). Let X0(G) ⊆
X be the set of all variables that do not occur as leading terms in G.

Example 2 The set G = {−x+2y, y−z} ⊆ Z[x, y, z] has UMLT for the lexicographic
term order x > y > z. In this case X0(G) = {z}.

Definition 6 Let ϕ : X → B ⊆ R denote an assignment of all variables X. We
extend ϕ to an evaluation of polynomials in the natural way, i.e., ϕ : R[X]→ R.

Theorem 2 (Soundness) Let G ⊆ R[X] be a finite set of polynomials and f ∈ R[X],
then

G ∪B(X) ` f ⇒ G |=B f.

Proof If G ∪ B(X) ` f then f ∈ 〈G〉+ 〈B(X)〉 by definition. This means there are
u1, . . . , um ∈ R[X] and v1, . . . , vr ∈ R[X] with f = u1g1 + · · ·+ umgm + v1b1 + · · ·+
vrbr, where gi ∈ G and bi = xi(xi − 1) ∈ B(X) for i = 1 . . . r. Any assignment ϕ in
the sense of Def. 6 vanishes on B(X), i.e., ϕ(bi) = 0. If ϕ is also a model of G then
ϕ(gi) = 0 too and as a consequence ϕ(f) = 0. Therefore G |=B f , as claimed.

9 Beyond Verification: Certification
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Completeness is less obvious. Consider for instance that {2x} |=B x but x 6∈ 〈2x〉
in Z[X]. Requiring G to have UMLT turns out to be essential (which {2x} does
not have in Z[X], because 2 /∈ Z×). Additionally, we will require the considered
ring R to be an integral domain, which satisfies the property that the product of
any two nonzero elements is nonzero [13].

Lemma 1 If G |=B p and G |=B q then G |=B q ± p.

Lemma 2 Let G ⊆ R[X] be a finite set of polynomials with UMLT. Then for all

q ∈ R[X] there exist p ∈ 〈G〉 + 〈B(X)〉 and r ∈ R[X0(G)] with q = p + r, such that

the variables in the monomials in r have only exponents 1.

Proof We construct p and r by division of q by the polynomials in G∪B(X) until
no term in r is divisible by any leading term of G∪B(X). First, we reduce q by the
polynomials of G. Let g1 ∈ G. Using polynomial division we are able to calculate
f1, r1 ∈ R[X] such that q = f1g1 + r1 and no term in r1 is a multiple of the leading
term of g1. We continuously divide the remainder by polynomials of G and derive
q = f1g1 + · · ·+ fmgm + rm for gi ∈ G, fi, rm ∈ R[X].

This process has to terminate because the tail of a polynomial contains only
smaller variables and the number of variables in G is finite. Since G has UMLT,
rm contains only variables in X0(G) which do not occur as leading terms, i.e,
rm ∈ R[X0(G)]. If any of these variables occurs with exponent larger than one
we can use B(X) to reduce their exponent to 1. Hence, we are able to derive
q = f1g1 + · · · + fmgm + v1b1 + · · · + vlbl + r, where gi ∈ G, bi ∈ B(X), and
fi, vi ∈ R[X] and define p = f1g1 + · · ·+ fmgm + v1b1 + · · ·+ vlbl.

Example 3 Let G ⊆ Z[x, y, z] be as in Ex. 2 and assume q = 2x2+xy+z2 ∈ Z[x, y, z].
Consequently

p = (−2x−5y)(−x+2y) + (10y+10z)(y − z)− 11(−z2+z)

= 2x2 + xy + z2 − 11z ∈ 〈G〉+ 〈B(X)〉 and

r = 11z ∈ Z[X0(G)].

Lemma 3 Assume that R is an integral domain. Let p ∈ R[X] with p2−p ∈ 〈B(X)〉 =
〈{x2 − x | x ∈ X}〉. Further let ϕ be an assignment in the sense of Def. 6. Then ϕ(p) ∈
B = {0, 1}.

Proof Since p2 − p ∈ 〈B(X)〉 there are fi ∈ R[X] with p2 − p =
∑

i fi · (x2i − xi).
Thus, ϕ(p2 − p) = 0, as ϕ vanishes on B(X). Assume now ϕ(p) = ε with ε ∈ R.
Then ϕ(p2− p) = ϕ(p)2−ϕ(p) = ε2− ε = ε(ε−1). As R is an integral domain, only
ε ∈ B yields ϕ(p2 − p) = 0.

Theorem 3 (Completeness) Let R be an integral domain and let G ⊆ R[X] be a

finite set of polynomials with UMLT. Suppose further that

∀g ∈ G : (lc(g)−1 tail(g))2 + (lc(g)−1 tail(g)) ∈ 〈B(X)〉.

Then for every f ∈ R[X] we have

G |=B f ⇒ G ∪B(X) ` f.
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Proof Suppose we have G |=B f . Then our goal is to show f ∈ 〈G〉 + 〈B(X)〉.
First, by applying Lemma 2, we obtain p ∈ 〈G〉+ 〈B(X)〉 and r ∈ R[X0(G)] with
f = p + r. Thus G ∪ B(X) ` p by definition. Using Thm. 2 we derive G |=B p

and accordingly G |=B f − p = r by Lemma 1. Now assume r 6= 0 and let m be
a monomial of r which contains the smallest number of variables. Consider the
assignment ϕ that maps x ∈ X0(G) to 1 if it appears in m and to 0 otherwise.
Therefore ϕ(r) 6= 0 since the coefficient of m is unequal to 0. This assignment on
X0(G) admits a unique extension to X which vanishes on G. First, we consider the
polynomial αx + t ∈ G, where α ∈ R× and t = tail(g), with the smallest leading
term x. For this polynomial all variables in t are already considered in ϕ. Since
αx + t = 0 ⇔ x = −α−1t and we require (lc(g)−1 tail(g))2 + (lc(g)−1 tail(g)) =
(α−1t)2 + (α−1t) = (−α−1t)2 − (−α−1t) ∈ 〈B(X)〉, we have ϕ(−α−1t) ∈ {0, 1}
by Lemma 3. We extend the assignment ϕ to x by choosing ϕ(x) = ϕ(−α−1t).
We continue in this fashion until all leading terms of G are assigned. Since G has
UMLT we are able to derive such an assignment ϕ, which contradicts G |=B r.
Thus r = 0 and f = p+ r ∈ 〈G〉+ 〈B(X)〉.

In an earlier version of the manuscript, as well as in the conference paper [34,
Thm. 2], the assumptions “∀g ∈ G : (lc(g)−1 tail(g))2 + (lc(g)−1 tail(g)) ∈ 〈B(X)〉”
and “R is an integral domain” were missing. We thank one of the referees for
making us aware of these bugs. If any of the three assumptions of Thm. 3 is
missing, the theorem is wrong, as can be seen in the following examples.

First, let G = {xyz+ xy− x− y} ⊆ Z[x, y, z] and f = x− y ∈ Z[x, y, z]. The ring
R = Z is an integral domain and we have (xy−x−y)2+xy−x−y ∈ 〈B(X)〉. However
G does not have UMLT, because the leading term of xyz + xy − x− y consists of
more than one variable. We have G |=B f with the models (x, y, z) = (0, 0, 0),
(0, 0, 1), and (1, 1, 1), but G ∪B(X) 6` f because r = x− y.

Next, consider G = {−x+2y} ⊆ Z[x, y] and f = y ∈ Z[x, y]. The polynomials in
G have UMLT and Z is an integral domain. However, for the polynomial −x+ 2y
we have 4y2 − 2y 6∈ 〈B(X)〉. We have G |=B f with the model (x, y) = (0, 0) but
G ∪B(X) 6` f because r = y.

Finally, let G = {x + 4y} ⊆ Z10[x, y] and f = y ∈ Z10[x, y]. The polynomial
in G has UMLT, and we have (4y)2 + 4y = 6y2 − 6y ∈ 〈B(X)〉. However the ring
R = Z10 is not an integral domain as 5 · 2 = 0. We have G |=B f with the model
(x, y) = (0, 0), but G ∪B(X) 6` f because r = y.

Although the previous example shows that the assumption that R is an integral
domain cannot simply be dropped from Thm. 3, it is somewhat stronger than
necessary. What really enters through Lemma 3 into the proof of Thm. 3 is the
assumption that R is a ring in which the formula ∀ x ∈ R : x(x − 1) = 0 ⇒ x =
0 ∨ x = 1 is true. This holds in every integral domain, but also in some rings that
are not integral domains, for example in rings Z2k for k > 1. In our use case of
algebraic circuit verification, which we introduce in Sect. 4.1, we choose R = Z2k

for k ≥ 1 to admit modular reasoning [34]. In the following lemma, we use Hensel
lifting to prove that the rings Z2k have the desired property.

Lemma 4 Let k ∈ N \ {0}, let ϕ be an assignment in the sense of Def. 6, and let

p ∈ Z2k [X] be such that p2 − p ∈ 〈B(X)〉. Then ϕ(p) ∈ B = {0, 1}.

Proof Proof by induction over k. Base case k = 1: For k = 1 the ring Z2 is a field.
Since every field is an integral domain the base case follows by Lemma 3.
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Induction step k → k + 1: Assume p ∈ Z2k+1 [X] with ϕ(p2 − p) = 0 mod
2k+1. Let now ϕ(p) = ε with ε ∈ Z2k+1 . Since ε ∈ {0, . . . , 2k+1 − 1} we can write
ε = 2kε1 + ε0 for ε1 ∈ {0, 1}, ε0 ∈ {0, . . . , 2k − 1}:

ϕ(p2 − p) = ϕ(p)2 − ϕ(p) = ε(ε− 1) = 0 mod 2k+1

=⇒ (2kε1 + ε0)(2kε1 + ε0 − 1) = 0 mod 2k+1

=⇒ 22kε21 + 2kε1(ε0 − 1) + 2kε1ε0 + ε0(ε0 − 1) = 0 mod 2k+1

First, since k ≥ 1, we have 22k = 0 mod 2k+1. Second, it follows that ε0(ε0−1) = 0
mod 2k. Thus by the induction hypothesis we have ε0 ∈ {0, 1} and the equation
above simplifies to

22kε21 + 2kε1(ε0 − 1) + 2kε1ε0 + ε0(ε0 − 1) = 0 mod 2k+1

=⇒ 2kε1(ε0 − 1) + 2kε1ε0 = 0 mod 2k+1

=⇒ ε1(ε0 − 1) + ε1ε0 = 2ε1ε0 − ε1 = ε1 = 0 mod 2

=⇒ ε1 = 0

Hence ϕ(p) = ε = ε0 ∈ {0, 1}. ut

Corollary 3 (Completeness for Z2k) Let R = Z2k for k ≥ 1 and let G ⊆ R[X] be

a finite set of polynomials with UMLT. Suppose further that

∀g ∈ G : (lc(g)−1 tail(g))2 + (lc(g)−1 tail(g)) ∈ 〈B(X)〉.

Then for every f ∈ R[X] we have G |=B f ⇒ G ∪B(X) ` f.

In the use case of algebraic circuit verification, cf. Sect. 4.1, we automatically
have “∀g ∈ G : (lc(g)−1 tail(g))2 + (lc(g)−1 tail(g)) ∈ 〈B(X)〉”. All polynomials
g ∈ G have the form g := − lt(g)+tail(g), with lc(g) = −1, and encode the relation
between the output and inputs of a gate. The leading term lt(g) represents the gate
output and tail(g) computes the output signal in terms of the inputs, cf., Fig. 3.
Thus ϕ(tail(g)) ∈ {0, 1} and hence the assumption tail(g)2−tail(g) ∈ 〈B(X)〉 holds.

2.1.3 Practical Algebraic Calculus

PC proofs as defined so far cannot be checked efficiently, because they only contain
the conclusion polynomials of each proof step.

Example 4 Consider again the example of Fig. 1. The corresponding PC proof is
P = (−c+1−2ab, 2ab−2a+2a2,−c+1−2a+2a2,−2a2 +2a,−c+1). To check the
correctness of this proof we would need to verify that each polynomial is derived
using one of the PC rules, which is hard, because we do not have information on
the antecedents.

For practical proof checking we translate the abstract rules of PC into a con-
crete proof format, i.e., we define a format based on PC, which is logically equiva-
lent but more detailed. In principle a proof in PC can be seen as a finite sequence of
polynomials derived from the initial constraint set and previously inferred polyno-
mials by applying either an addition or multiplication rule. To ensure correctness
of each proof step it is of course necessary to know which rule was used, to check
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Algorithm 1: Proof-Checking(G ∪B(X), R, f)

Input : Constraint set G ∪B(X), PAC steps R = r1, . . . , rk, target polynomial f
Output: “incorrect” or “correct”

1 P0 ← G ∪B(X);
2 for i← 1 . . . k do
3 let ri = (oi, vi, wi, pi);
4 case oi = + do
5 if vi ∈ Pi−1 ∧ wi ∈ Pi−1 ∧ pi = vi + wi then Pi ← append(Pi−1, pi);
6 else return“incorrect”;

7 case oi = ∗ do
8 if vi ∈ Pi−1 ∧ pi = vi ∗ wi then Pi ← append(Pi−1, pi);
9 else return“incorrect”;

10 if ∃pi ∈ Pk ∧ pi = f then return“correct” else return“incorrect”;

that it was applied correctly, and in particular which given or previously derived
polynomials are involved. During proof generation these polynomials are usually
known and thus we require that all of this information is part of a rule in our
concrete PAC proof format to simplify proof checking. A proof rule contains four
components

o : v, w, p;

The first component o denotes the operator which is either ‘ + ’ for addition or
‘ * ’ for multiplication. The next two components v, w specify the two (antecedent)
polynomials used to derive p (conclusion). In the multiplication rule w plays the
role of the polynomial q of the multiplication rule of PC.

For proof validation we need to make sure that two properties hold. The connec-

tion property states that the components v, w are either elements of the constraint
set or conclusions of previously applied proof rules. For multiplication we only
have to check this property for v, because w is an arbitrary polynomial. By the
second property, called inference property, we verify the correctness of each proof
step, namely we simply calculate v + w resp. v ∗ w and check that the obtained
result matches p. In a correct PAC proof we further need to verify that at least one
conclusion polynomial p matches the target polynomial f . The complete checking
algorithm is shown in Alg. 1. Checking each step allows pinpointing the first er-
ror, instead of claiming that the proof is wrong somewhere in one of the (usually
millions) steps.

Example 5 Consider again the example presented in Ex. 1. One PAC proof ob-
taining −c+ 1 ∈ 〈G ∪B(X)〉 ⊆ Q[X] is:

Constraint Set Proof
-b+1-a; + : -c+a+b-2a*b, -b+1-a, -c+1-2a*b;
-c+a+b-2a*b; * : -b+1-a, -2a, 2a*b-2a+2a^2;
a^2-a; + : -c+1-2a*b, 2a*b-2a+2a^2, -c+1-2a+2a^2;
b^2-b; * : a^2-a, -2, -2a^2+2a;
c^2-c; + : -c+1-2a+2a^2, -2a^2+2a, -c+1;

Adaptions We adapt PAC to admit shorter and more concise proofs. First, we
index polynomials, i.e., each given polynomial and proof step is labeled by a unique
positive number. It can be seen in Ex. 5 that the conclusion polynomial of the first
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proof step is again explicitly given as the first antecedent in the third proof step.
Using indices, similar to LRAT [14], allows us now to label the first proof step
and use this index in the third proof step. Naming polynomials by indices reduces
the size of the proof files significantly and makes parsing more efficient, because
only the conclusion polynomials of each step and the initial polynomials of G are
stated explicitly. However, introducing indices for polynomials has the effect that
the semantics changes from sets to multisets, as in DRAT [58], and it is possible
to introduce the same polynomial under different names.

Second, we treat exponents implicitly. For bit-level verification [54] only models
of the Boolean domain {0, 1}n are of interest. Initially, we added the set of Boolean
value constraints B(X) = {x2 − x | x ∈ X} to G and have to include steps in the
proofs that operate on these Boolean value constraints. Instead, we now handle
operations on Boolean value constraints implicitly to reduce the number of proof
steps. That is, we remove the Boolean value constraints from the constraint set
and when checking the correctness, we immediately reduce exponents greater than
one in the polynomials, i.e., x2 = x.

Third, we further introduce a deletion rule to reduce the memory usage of the
proof checker. After each proof step the conclusion polynomial will be added to
the constraint set, thus the number of stored polynomial increases. If we know
that a certain polynomial is not needed anymore in the proof, we use the deletion
rule to remove polynomials.

We introduce the semantics of PAC as a transition system. Let P denote a
sequence of polynomials which can be accessed via indices. We write P (i) = ⊥
to denote that the sequence P at index i does not contain a polynomial, and
P (i 7→ p) to denote that P at index i is set to p. The immediate reduction of
exponents is denoted by “mod〈B(X)〉”. The initial state is (X = Var (G ∪ {f}), P )
where P maps indices to polynomials of G. The following two rules implement the
properties of ideals as introduced above for the original PAC.

[Add (i, j, k, p)] (X,P ) =⇒ (X,P (i 7→ p))

provided that P (j) 6= ⊥, P (k) 6= ⊥, P (i) = ⊥,
p ∈ R[X], and p = (P (j) + P (k)) mod〈B(X)〉.

[Mult (i, j, q, p)] (X,P ) =⇒ (X,P (i 7→ p))

provided P (j) 6= ⊥, P (i) = ⊥, p, q ∈ R[X], and p = (q · P (j)) mod〈B(X)〉.

In the deletion rule we remove polynomials from P which are not needed any-
more in subsequent steps to reduce the memory usage of our tools.

[Deletion (i)] (X,P ) =⇒ (X,P (i 7→ ⊥))

Example 6 The proof of Ex. 1 in the adapted PAC format. We do not include all
possible deletion steps in the proof.

Constraint Set Proof
1 -b+1-a; 3 + 2, 1, -c+1-2a*b;
2 -c+a+b-2a*b; 2 d;

4 * 1, -2a, 2a*b;
1 d;
5 + 3, 4, -c+1;
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Extension Similar to the polynomial calculus with resolution (PCR) [1], which ex-
tends PC by a negation rule, we include an extension rule which allows us to add
new polynomials to the constraint set. The negation rule of PCR introduces for
each variable x ∈ X an additional variable x that represents the negation of x. We
generalize this extension rule such that new variables can act as placeholders for
polynomials.

We use the extension rule to combine SAT solving and algebraic reasoning in
our previous work [34] for multiplier verification. Thus, two proof certificates in
different proof systems, DRUP and PAC are generated. In order to derive a single
proof certificate we converted DRUP proofs to the PAC format [35]. However, to
efficiently convert the resolution steps we encountered the need to extend the initial
set of polynomials G to reduce the size of the polynomials (number of monomials)
in the PAC proof. We included polynomials of the form −fx + 1 − x, similar to
the negation rule in PCR, which introduced the variable fx as the negation of the
Boolean variable x. An example for modelling a resolution step in PAC is given in
Ex. 7 below, where the proof step with index 3 demonstrates our new extension
rule.

However, at that point we did not apply a proper extension rule, but simply
added these extension polynomials to G. This may affect the models of the con-
straint set, because any arbitrary polynomial can be added as an initial constraint.
For example, we could simply add the constant polynomial 1 to G which makes any
PAC proof obsolete. To prevent this issue we add an extension rule to PAC, which
allows us to add further polynomials to the knowledge base with new variables
while preserving the original models on the original variable set of variables X.

[Ext (i, v, p)] (X,P ) =⇒ (X ∪ {v}, P (i 7→ −v + p))

provided that P (i) = ⊥ and v /∈ X and p ∈ R[X], and p2 − p ∈ 〈B(X)〉.

With this extension rule, variables v can act as placeholders for polynomials p, i.e.,
−v + p = 0, which enables more concise proofs. The variables v are not allowed
to occur earlier in the proof. Furthermore, to preserve Boolean models, we require
p2 − p ∈ 〈B(X)〉. This can be easily checked by calculating p2 − p and reducing all
exponents larger than one to one. The normalized result has to be zero. Without
this condition v might take non-Boolean solutions. In that case vn cannot be
simplified to v, requiring to manipulate exponents in the proof checkers, which is
currently not supported.

Consider for example P = {−y + x − 1}. The only Boolean model is (x, y) =
(1, 0). If we extend G by −v + x+ 1 we derive v = 2, because x = 1 for all models
of G. Thus v2 − v = 0 does not hold.

Proposition 1 Ext preserves the original models on X.

Proof We show that adding pv := −v+p does not affect the models of G∪B(X) ⊆
R[X]. We have 〈G∪{pv}∪B(X ∪{v})〉 = 〈G∪{pv}∪B(X)〉 because v2−v = p2−p
and p2− p ∈ 〈B(X)〉. However, every model of 〈G∪{pv}∪B(X)〉 is also a model of
〈G ∪ B(X)〉 because the variable v appears only as leading term in pv. Hence the
result. ut

The Isabelle formal proof is very similar to the idea given here, but we have
to be more explicit. In particular, we explicitly manipulate a linear combination
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of the polynomials and show that every dependence in v can be removed from the
linear combination, since the variable v appears only in pv.

Example 7 Let x̄∨ȳ and y∨z be two clauses. From these clauses we derive the clause
x̄ ∨ z using resolution. The clauses are translated into polynomial equations using
De Morgan’s laws and using the fact that a logical AND can be represented by
multiplication. For example, from x̄∨ ȳ = > ⇔ x∧ y = ⊥ we derive the polynomial
equation xy = 0.

For the PAC proof we introduce an extension variable fz, which models the
negation of z, i.e. −fz + 1− z = 0 in order to find a shorter representation of the
second constraint, cf. proof step 5.

Constraint Set Proof
1 x*y; 3 = fz, -z+1;
2 y*z-y-z+1; 4 * 3, y-1, -fz*y+fz-y*z+y+z-1;

5 + 2, 4, -fz*y+fz;
Target 6 * 1, fz, fz*x*y;
-x*z+x; 7 * 5, x, -fz*x*y+fz*x;

8 + 6, 7, fz*x;
9 * 3, x, -fz*x-x*z+x;
10 + 8, 9, -x*z+x;

2.2 Nullstellensatz

The Nullstellensatz (NSS) proof system [3] derives whether a polynomial f ∈ R[X]
can be represented as a linear combination of polynomials from a given set G =
{g1, . . . , gm} ⊆ R[X]. That is, an NSS proof for a given polynomial f and a set
G = {g1, . . . , gm} is a tuple P = (h1, . . . , hm) of polynomials such that

m∑

i=1

higi = f.

By the same arguments given for PAC, the soundness and completeness arguments
of NSS proofs can be generalized to rings R[X] when G has UMLT. In NSS the
Boolean value constraints are treated implicitly to yield shorter proofs. Thus, the
NSS proof we consider for a given polynomial f ∈ R[X] and a set of polynomials
G = {g1, . . . , gm} ⊆ R[X] is a tuple of co-factors P = (h1, . . . , hm) of polynomials
such that there exist polynomials r1, . . . , rl ∈ R[X] with

m∑

i=1

higi +
l∑

i=1

ri(x
2
i − xi) = f. (1)

Checking NSS proofs seems straightforward as we simply need to expand the
products higi, calculate the sum, and compare the derived polynomial to the given
target polynomial f . However, we discuss practical issues of proof checking in
Sect. 6, where we introduce our NSS proof checker Nuss-Checker. Unlike PAC
introduced above, NSS does not support extensions.

Example 8 A NSS proof for our running example introduced in Ex. 1 is

Constraint Set Proof
-b+1-a; 1-2a;
-c+a+b-2a*b; 1;
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letter ::= ‘a ’ | ‘b ’ | . . . | ‘z ’ | ‘ A ’ | ‘ B ’ | . . . | ‘Z ’

number ::= ‘0 ’ | ‘1 ’ | . . . | ‘ 9 ’

constant ::= (number)+

variable ::= letter (letter | number)∗

term ::= variable (‘ * ’ variable)∗

monomial ::= constant | [ constant ‘ * ’ ] term

poly ::= [ ‘- ’ ] monomial (‘ + ’ | ‘ - ’ monomial)∗

id ::= constant

input ::= (id poly ‘ ; ’)∗

lin com rule ::= id ‘% ’ id [ ‘ * ’ ‘ ( ’ poly ‘ ) ’ ] ( ‘+ ’ id [ ‘ * ’ ‘ ( ’ poly ‘ ) ’ ])∗‘, ’ poly ‘; ’

del rule ::= id ‘d ’ ‘ ; ’

ext rule ::= id ‘= ’ variable ‘ , ’ poly ‘ ; ’

proof ::= (lin com rule | del rule | ext rule)∗

target ::= poly ‘; ’

Fig. 2: Syntax of input polynomials, target, and proofs in the LPAC-format

We derive (1 − 2a)(−b + 1 − a) + (1)(−c + a + b − 2ab) = −c + 1 mod 〈B(X)〉 in
Q[X].

3 Merging NSS and PAC into the hybrid proof system LPAC

PAC proofs are very fine-grained, because for each polynomial operation on the
constraint set a single proof step is generated and checked for correctness. This
makes it on the one hand simple to locate an error in the proof and thus to trace
back the error in the automated reasoning tool. On the other hand the proof files
are very large as for each proof step we write down a single line consisting of an
index, the operation, two antecedents and the conclusion polynomial.

Nullstellensatz proofs are concise, as the core proof only consists of the ordered
sequence of the co-factors, which has equal length of the constraint set. Thus
the corresponding proof files are typically orders of magnitude smaller than PAC
proofs, e.g., compare the proofs in Exs. 6 and 8. However, because proof checking
an NSS proof consists of calculating the linear combination and comparing it to
the target polynomial, it is impossible to locate a possible error in the proof.
Furthermore, the extensions of PAC are not directly portable to core NSS proofs.

To take the best of both worlds we propose now a modified proof format, called
LPAC (practical algebraic calculus + linear combinations). It includes a rule to
merge the addition and multiplication rule to a single proof rule, which represents
linear combination of polynomials. The syntax is given in Fig. 2. Thus we gain
the following semantics. Let P denote a sequence of polynomials, which can be
accessed via indices. The initial state is (X = Var (G ∪ {f}), P ) where P maps
indices to polynomials of G.

[LinComb (i, (j1, . . . , jn), (q1, . . . , qn), p)] (X,P ) =⇒ (X,P (i 7→ p))

provided that P (j1) 6= ⊥, . . ., P (jn) 6= ⊥, P (i) = ⊥, p, q1, . . . , qn ∈ R[X], n ≥ 1,
and p = (q1 · P (j1) + . . .+ qn · P (jn)) mod 〈B(X)〉.

[Deletion (i)] (X,P ) =⇒ (X,P (i 7→ ⊥))

[Ext (i, v, p)] (X,P ) =⇒ (X ∪{v}, P (i 7→ −v+p))
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provided that P (i) = ⊥ and v /∈ X and p ∈ R[X], and p2 − p ∈ 〈B(X)〉.
Our new LPAC format allows us to simulate both the PAC format and NSS

proofs as follows. The LinComb is able to simulate both the Add and the Mult

rule of PAC. By taking n = 2, (p1, p2), and (1, 1), we obtain the normal Add rule.
By taking n = 1, (p1), and (q1), we obtain Mult. The rules Deletion and Ext

remain the same as for PAC. In the actual proof file, elements of the sequence
(q1, . . . , qn) can be skipped and are interpreted as the constant sequence 1. We
simulate NSS proofs by providing a single LinComb rule in the proof file.

Furthermore, we are able to generate hybrid proofs, which are not as concise
as a single linear combination, but also not as fine-grained as an extended PAC
proof. For example, in multiplier verification we apply polynomial reductions which
always consist of a multiplication and addition of polynomials. In the LPAC proof
format we are able to combine these two operations in a single proof step.

Example 9 A possible proof in LPAC for Ex. 1 is as follows:

Constraint Set Proof
1 -b+1-a; 3 % (1-2a)*1+2, -c+1;
2 -c+a+b-2a*b; 1 d;

4 Proof Generation

In this section we demonstrate on the real-world application of multiplier ver-
ification how PAC, LPAC, and NSS proofs can be generated. We first provide
a brief introduction to multiplier verification using our tool AMulet 2.0, before
discussing how proof certificates can be generated.

4.1 Multiplier Verification

We developed a verification tool, called AMulet 2.0 [33,34], which takes as input
signed or unsigned integer multipliers C, given as And-Inverter-Graphs (AIGs),
with 2n input bits a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1} and output bits s0, . . . , s2n−1 ∈
{0, 1}. Nodes in the AIG represent logical conjunction and markings on the edges
represent negation. We denote the internal AIG nodes by l1, . . . , lk ∈ {0, 1}. Let
Z[X] = Z[a0, . . . , an−1, b0, . . . , bn−1, l1, . . . , lk, s0, . . . , s2n−1]. In our application we
require the coefficient domain to be Z, because this allows us to apply modular
reasoning by adding a constant 2k to the set of ideal generators, which helps to
keep the size of the intermediate verification results reasonably small. More details
on modular reasoning are given in [34].

The multiplier C is correct iff for all possible inputs ai, bi ∈ {0, 1} the specifi-
cation L = 0 holds:

L = −
2n−1∑

i=0

2isi +

(n−1∑

i=0

2iai

)(n−1∑

i=0

2ibi

)
(2)

The semantics of each AIG node implies a polynomial relation, cf., Fig. 3. Let
G(C) ⊆ Z[X] be the set of polynomials that contains for each AIG node of C the
corresponding polynomial relation.
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Algorithm 2: Reduction(p, pv, v)

Input : Polynomials p, pv ∈ Z[X], lm(pv) = −v
Output: Polynomials h, r ∈ Z[X] such that p + hpv = r

1 t← p, r ← p, h← 0;
2 while t 6= 0 do
3 if v ∈ lt(t) then
4 h = h + lm(t)/v;
5 r = r + pv lm(t)/v mod 〈B(X)〉;
6 t = t− lm(t);

7 return h, r

The polynomials in G(C)∪B(X) are ordered according to a lexicographic order,
such that the output variable of a gate is always greater than the inputs of the
gate, also called reverse topological term order (RTTO) [44]. Using this variable
ordering leads to G(C) having UMLT.

Let J(C) = 〈G(C)∪B(X)〉 ⊆ Z[X] be the ideal generated by G(C)∪B(X). The
circuit fulfills its specification if and only if we can derive that L ∈ J(C), which
can be established by reducing L by the polynomials G(C) ∪ B(X) and checking
whether the result is zero [34]. The algorithm for reducing a polynomial p by a
second polynomial pv is shown in Alg. 2. We again treat B(X) implicitly, thus we
never explicitly reduce by a polynomial from B(X), but always cancel exponents
greater than one to one, which is included in line 5. As a reduction order we follow
the same order that is established for the variables.

However, simply reducing the specification by G(C) leads to large intermediate
results [45]. Hence, we eliminate variables in G(C) prior to reduction to yield a
more compact polynomial representation of the circuit [34]. In the preprocessing
step, we repeatedly eliminate selected variables v ∈ X \ X0 from G(C), cf. Sect.
4.2. in [36]. Let pv ∈ G(C) such that lt(pv) = v. Since G(C) has UMLT and v /∈ X0,
such a pv exists. All polynomials p, with v ∈ tail(p) are reduced by pv to remove
v from G using Alg. 2.

In contrast to more general polynomial division/reduction algorithms we use
the fact in Alg. 2 that lm(pv) = −v. Because of the UMLT property and the
fact that all leading coefficients of G(C) are -1, Alg. 2 essentially boils down to
substituting v = lt(pv) by tail(pv) in p in the case of circuit verification.

Algorithm 2 returns polynomials h, r ∈ Z[X] such that p+hpv = r mod 〈B(X)〉 ∈
Z[X]. We replace the polynomial p by the calculated remainder r [34]. To keep
track of the rewriting steps we want to store information on the derivation of the
rewritten polynomial r.

4.2 Generating PAC proofs

AMulet 2.0 generates PAC proofs as follows. The set of polynomials G(C) deter-
mines the initial constraint set. The specification L defines the target polynomial
of the proof. Proof steps have to be generated whenever polynomials are manipu-
lated, that is during preprocessing for variable elimination and during reduction.

For variable elimination we produce proof steps which simulate reduction of
a polynomial p by a polynomial pv, cf. Alg. 2. Note that p and pv are both con-
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s[0]

s[1]

s[2]

s[3]

AIG node Index Polynomial equation
l10 = b0 ∧ a0 1 -l10 + b0*a0;
l12 = b0 ∧ a1 2 -l12 + b0*a1;
l14 = b1 ∧ a0 3 -l14 + b1*a0;
l16 = l14 ∧ l12 4 -l16 + l14*l12;
l18 = ¬l14 ∧ ¬l12 5 -l18 + l14*l12-l14-l12+1;
l20 = ¬l18 ∧ ¬l16 6 -l20 + l18*l16-l18-l16+1;
l22 = b1 ∧ a1 7 -l22 + b1*a1;
l24 = l22 ∧ l16 8 -l24 + l22*l16;
l26 = ¬l22 ∧ ¬l16 9 -l26 + l22*l16-l22-l16+1;
l28 = ¬l26 ∧ ¬l24 10 -l28 + l26*l24-l26-l24+1;
s0 = l10 11 -s0 + l10;
s1 = l20 12 -s1 + l20;
s2 = l28 13 -s2 + l28;
s3 = l24 14 -s3 + l24;

Fig. 3: AIG of a simple 2 bit multiplier in AIGER format (left) with induced
constraint set (right).

tained in G(C) and thus appear earlier in the proof. In general two proof steps are
generated, a multiplication step and an addition step

idi * h,idpv,hpv; idi+1 + idp,idi,r;

where idi and idi+1 define unused indices, and idp and idpv represent the indices
of polynomials p resp. pv. The polynomial hpv in above proof steps defines the
expanded polynomial of multiplying h · pv in Z[X]. If lt(pv) = v does not occur in
any other polynomial g ∈ G(C) \ {pv}, we can delete pv from the constraint set,
which we indicate by generating a deleting step

idpv d;

After preprocessing is completed we gain the simplified polynomial model
G(C)′. For monitoring the reduction of L by G(C)′ we have to generate proof
steps which simulate the reduction of L by polynomials g ∈ G(C)′. We consider
the polynomials g ∈ G(C)′ in the reverse topological order, such that each poly-
nomial in G(C)′ has to be considered exactly once for reduction.

However in contrast to variable elimination, the specification L, which acts
as p in Alg. 2, is not part of the constraint set. Thus we are not able to simply
generate two proof steps as before, because checking the addition rule would raise
an error, as p = L does not occur earlier in the proof. On the other hand recall
that all elements of an ideal can be represented as a linear combination of the
generators of the ideal. To simulate the linear combination we generate a multi-
plication PAC step for each reduction step by a polynomial g ∈ G(C)′ and store
the computed factor hg (h is the returned co-factor of Alg. 2). After reducing by
several polynomials, we use a sequence of addition steps to gain a single inter-
mediate specification polynomial. The reason for the intermediate summing up of
polynomials is to keep the memory usage for proof generation small as we do not
want to store too many factors at the same time. After reduction is completed we
sum up all intermediate specifications. If the circuit is correct the final polynomial
is the specification of the circuit.
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15 * 5, l16 -1, -l18*l16+l18+l16*l14*l12 -l16*l14 -l16*l12+l16 -l14*l12+l14+l12 -1;
16 + 6, 15, -l20+l16*l14*l12 -l16*l14 -l16*l12 -l14*l12+l14+l12;
17 * 4, l14*l12 -l14 -l12 , -l16*l14*l12+l16*l14+l16*l12 -l14*l12;
18 + 16, 17, -l20 -2*l14*l12+l14+l12;
19 * 9, l24 -1, -l26*l24+l26+l24*l22*l16 -l24*l22 -l24*l16+l24 -l22*l16+l22+l16 -1;
20 + 10, 19, -l28+l24*l22*l16 -l24*l22 -l24*l16 -l22*l16+l22+l16;
21 * 8, l22*l16 -l22 -l16 , -l24*l22*l16+l24*l22+l24*l16 -l22*l16;
22 + 20, 21, -l28 -2*l22*l16+l22+l16;
23 * 14, 8, -8*s3+8*l24;
24 * 13, 4, -4*s2+4*l28;
25 * 22, 4, -4*l28 -8* l22*l16+4*l22 +4*l16;
26 + 25, 24, -4*s2 -8* l22*l16+4*l22 +4*l16;
27 * 8, 8, -8*l24 +8*l22*l16;
28 * 7, 4, -4*l22 +4*b1*a1;
29 + 28, 27, -8*l24+8*l22*l16 -4*l22 +4*b1*a1;
30 + 29, 26, -4*s2 -8* l24+4*l16 +4*b1*a1;
31 + 30, 23, -8*s3 -4*s2+4* l16+4*b1*a1;
32 * 12, 2, -2*s1+2*l20;
33 * 18, 2, -2*l20 -4* l14*l12+2*l14 +2*l12;
34 + 32, 33, -2*s1 -4* l14*l12+2*l14 +2*l12;
35 * 4, 4, -4*l16 +4*l14*l12;
36 * 3, 2, -2*l14 +2*b1*a0;
37 + 35, 36, -4*l16+4*l14*l12 -2*l14 +2*b1*a0;
38 + 37, 34, -2*s1 -4* l16+2*l12 +2*b1*a0;
39 * 2, 2, -2*l12 +2*b0*a1;
40 + 38, 39, -2*s1 -4* l16+2*b1*a0+2*b0*a1;
41 + 1, 11, -s0+b0*a0;
42 + 40, 41, -2*s1-s0 -4*l16+2*b1*a0+2*b0*a1+b0*a0;
43 + 42, 31, -8*s3 -4*s2 -2*s1 -s0+4*b1*a1+2*b1*a0+2*b0*a1+b0*a0;

Fig. 4: Generating PAC steps during multiplier verification.

Example 10 Figure 3 shows an AIG of a simple 2-bit multiplier. For each node we
introduce the corresponding polynomial equation. These polynomials are shown
on the right side of Fig. 3 and define the initial constraint set. The multiplier is
correct if we derive that the gate polynomials imply the specification −8s3−4s2−
2s1 − s0 + 4a1b1 + 2a1b0 + 2a0b1 + a0b0 = 0.

The corresponding PAC proof can be seen in Fig. 4. Steps 15–22 are generated
during preprocessing. The remaining steps are generated during reduction of the
specification by G(C)′. The result of step 43 matches the circuit specification.

4.3 Generating NSS proofs

In this section we discuss how NSS proofs are generated in our verification tool
AMulet 2.0. We introduced in the previous section that we distinguish two phases
during verification of multipliers. In the preprocessing step we eliminate variables
from G(C) to gain a simpler polynomial representation G(C)′. In the second step
the specification is reduced by G(C)′ to determine whether the given circuit is
correct. Both phases have to be included in the NSS proof to yield a representation
of the specification L as a linear combination of the original gate polynomials
G(C) ∈ Z[X].

Definition 7 For a given set of polynomials G ⊂ Z[X], let base(r) = {(pi, qi) | pi ∈
G, qi ∈ Z[X]}. We call base(r) a basis representation of r ∈ Z[X] in terms of G, if

there exist polynomials v1, . . . vl with r =
∑

(pi,qi) ∈base(r) qipi +
∑l

i=1 vi(x
2
i − xi).

9 Beyond Verification: Certification

220



PAC and NSS with Pacheck and Pastèque and Nuss-Checker 21

Algorithm 3: Add-to-basis-representation(f, h,base(r))

Input : Polynomials f , h ∈ Z[X], basis representation base(r)
Output: Updated base(r) such that (f, h) is included

1 if base(f) = {(f, 1)} then
2 if (f, hi) ∈ base(r) for any hi then
3 base(r)← (base(r) \ {(f, hi)}) ∪ {(f, hi + h)};
4 else
5 base(r)← base(r) ∪ {(f, h)};

6 else
7 foreach (f ′i , h

′
i) ∈ base(f) do

8 base(r)← Add-to-basis-representation(f ′i , hh
′
i,base(r))

9 return base(r)

To derive a NSS proof for L we aim to find a basis representation of L in terms
of G(C). For all polynomials g ∈ G(C) it holds that base(g) = {(g, 1)} is a basis
representation in terms of G(C).

As discussed in Sect. 4.1, we rewrite G(C) by replacing polynomials of G(C)
by rewritten polynomials r that are derived using Alg. 2. To keep track of the
rewriting steps we store information on the derivation of the rewritten polynomial
r, i.e., we derive a basis representation of r in terms of G(C). That is, we include
the tuples (p, 1), (pv, h) as used in Alg. 2 in base(r).

Algorithm 3 shows how we update base(r) by adding a tuple (f, h). If the input
polynomial f of Alg. 3 is an element of G(C), i.e. base(f) = {(f, 1)}, we add the
tuple (f, h) to base(r). If f does not occur in any tuple in base(r), we simply add
(f, h) to base(r). Otherwise base(r) contains a tuple (f, hi) that has to be updated
to (f, hi + h), which corresponds to merging common factors in base(r).

If the polynomial f is not an original gate polynomial, f can be written as
a linear combination f = h′1f1 + · · · + h′lfl for some original polynomials fi and
h′i ∈ Z[X]. Thus the tuple (f, h) corresponds to hf = hh′1f1 + · · · + hh′lfl. We
traverse through the tuples (fi, h

′
i) ∈ base(f), multiply each of the co-factors h′i by

h and add the corresponding tuple (fi, hh
′
i) to base(r).

Multiplying and expanding the product hhi may lead to an exponential blow-
up in the size of the NSS proof as the following example shows.

Example 11 Consider OR-gates y0 = x0 ∨ x1, y1 = y0 ∨ x2, . . ., yk = yk−1 ∨ xk+1

represented by the set of polynomials G = {−y0 + x0 + x1 − x0x1,−y1 + y0 + x2 −
y0x2, . . . ,−yk + yk−1 + xk+1 − yk−1xk+1)} ⊆ Z[y0, . . . yk, x0, . . . xk+1]. Assume we
eliminate y1, . . . , yk−1, yielding yk = x0∨x1∨ . . .∨xk+1. The expanded polynomial
representation of yk contains 2k+2 monomials.

These sequences of OR-gates are common in carry-lookahead adders, which
occur in complex multiplier architectures. This lead to the conjecture [31], which
we stated in the introduction of this article. However, our previous verification ap-
proach [34] to tackle complex multipliers also relies on SAT solving. We substitute
complex final-stage adders in multipliers by simple ripple-carry adders that do not
rely on large OR-gates. Thus this blow-up does not occur in our experiments with
our implementation (Sect. 6) for arithmetic circuit verification.
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Constraint set Co -factors
-l10 + b0*a0 1;
-l12 + b0*a1 2;
-l14 + b1*a0 2;
-l16 + l14*l12 2*l14*l12 -2*l14 -2*l12 +4;
-l18 + l14*l12 - l14 - l12 + 1 2*l16 -2;
-l20 + l18*l16 - l18 - l16 + 1 2;
-l22 + b1*a1 4;
-l24 + l22*l16 4*l22*l16 -4*l22 -4*l16 +8;
-l26 + l22*l16 - l22 - l16 + 1 4*l24 -4;
-l28 + l26*l24 - l26 - l24 + 1 4;
-s0 + l10 1;
-s1 + l20 2;
-s2 + l28 4;
-s3 + l24 8;

Fig. 5: NSS proof for verifying the 2-bit multiplier that is depicted in Fig. 3.

Example 12 We demonstrate a sample run of Alg. 3. Let G(C) = {p1, p2, p3} ⊆
Z[X] and x, y, z ∈ Z[X]. Assume q1 = p1 + xp2, q2 = p3 + yp2, and their basis
representations base(q1) = {(p1, 1), (p2, x)} and base(q2) = {(p2, y), (p3, 1)}. Let
p = q1 + zq2. We receive the basis representation of p in terms of G(C) by adding
(q1, 1) and (q2, z) to base(p).

(q1, 1): Since q1 /∈ G(C), we add each tuple of base(q1) = {(p1, 1), (p2, x)} with
co-factors multiplied by 1 to base(p).

(q2, z): We consider base(q2) = {(p2, y), (p3, 1)} and add (p2, yz) and (p3, z) to
base(p). Since p3 is not yet contained in the ancestors of p, we directly add (p3, z)
to base(p). The polynomial p2 is already contained in base(p), thus we add yz to
the co-factor x of p2 and we derive base(p) = {(p1, 1), (p2, x+ yz), (p3, z)}.

After preprocessing is completed, we repeatedly apply Alg. 2 and reduce the
specification polynomial L by G(C)′. We generate the final NSS proof by deriving
a basis representation for L. Therefore we add after each reduction step the tuple
(g, h), where h is the corresponding co-factor of polynomial g, to base(L) using
Alg. 3. After the final reduction step, base(L) represents an NSS proof and is
printed to a file.

Example 13 Figure 5 shows the corresponding NSS proof for the verification of the
2-bit multiplier that is depicted in Fig. 3. It can be seen that the proof contains
only the (ordered) co-factors and thus is smaller than the extensive PAC proof.

4.4 Generating LPAC proofs

The LPAC format allows us to deliver dense PAC proofs. Thus, the proof genera-
tion is very similar as described in Sect. 4.2, with the difference being the level of
compactness of the produced proof steps.

For each substitution step during preprocessing we generate a linear combina-
tion. That is, we merge the multiplication and addition steps, presented in Sect. 4.2
and gain for each preprocessing step a single step

idi % idpv*(h) + idp, r;
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15 % 5*(l16 -1) + 6, -l20+l16*l14*l12 -l16*l14 -l16*l12 -l14*l12+l14+l12;
16 % 4*(l14*l12 -l14 -l12) + 15, -l20 -2* l14*l12+l14+l12;
17 % 9*(l24 -1) + 10, -l28+l24*l22*l16 -l24*l22 -l24*l16 -l22*l16+l22+l16;
18 % 8*(l22*l16 -l22 -l16) + 17, -l28 -2* l22*l16+l22+l16;
19 % 14*(8) , -8*s3+8*l24;
20 % 7*(4) + 8*(8) + 18*(4) + 13*(4) , -4*s2 -8* l24+4*l16 +4*b1*a1;
21 % 2*(2) + 3*(2) + 4*(4) + 16*(2) + 12*(2) , -2*s1 -4*l16 +2*b1*a0+2*b0*a1;
22 % 1 + 11, -s0+b0*a0;
23 % 22 + 21 + 20 + 19, -8*s3 -4*s2 -2*s1 -s0+4*b1*a1+2*b1*a0+2*b0*a1+b0*a0;

Fig. 6: Generating a LPAC proof during multiplier verification.

Similar as before, we generate deletion steps whenever pv can be removed.
During the reduction phase we calculate and store the factors of each reduction

step. After reducing by several polynomials we generate a linear combination step
which sums up these factors to gain intermediate specifications. Thus, we are able
to narrow down possible errors. Finally, we sum up the intermediate specifications
in a single step and yield the specification L.

Example 14 Figure 6 shows the corresponding LPAC proof for the verification of
the 2-bit multiplier that is depicted in Fig. 3. The proof steps 15–18 are generated
during preprocessing, 19–22 are generated during reduction and step with index
23 is the final step for summing up the intermediate specifications. It can be seen
that LPAC enables merging PAC steps. For example the steps with indices 15 and
16 of Fig. 4 are now combined in the first proof step.

5 PAC Checkers

We have implemented two checkers for PAC proofs. The first, Pacheck, (Sect. 5.1)
is efficient while the second, Pastèque, is verified using Isabelle/HOL (Sect. 5.2).

5.1 Pacheck 1.0

Pacheck consists of approximately 1 800 source lines of C code and is published [38]
under MIT license. The default mode of Pacheck supports the extended version
of PAC for the new syntax using indices. Pacheck also supports reasoning with
exponents as described in the initial version of PAC. However, extension rules are
only supported for Boolean models.

Pacheck reads three input files <constraints>, <proof>, and <target> and
then verifies that the polynomial in <target> is contained in the ideal generated
by the polynomials in <constraints> using the proof steps provided in <proof>.
The polynomial arithmetic needed for checking the proof steps is implemented
from scratch, because in the default setting we always calculate modulo the ideal
〈B(X)〉. General algorithms for polynomial arithmetic need to take exponent arith-
metic over Z into account [55], which is not the case in our setting.

In the default mode of Pacheck we order variables in terms lexicographically
using strcmp. All internally allocated terms are shared using a hash table. It turns
out that the order of variables has an enormous effect on memory usage, since
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u x y

v

x u y

x y v

Fig. 7: Term representation w.r.t. v > u > x > y (left) and x > u > y > v (right).

different variable orderings induce different terms. For example, given the mono-
mials uxy and vxy. For the ordering v > u > x > y, the internal sharing is maximal
and only 4 terms are allocated. For the ordering x > u > y > v, terms cannot be
shared and thus 6 terms need to be allocated, cf. Fig. 7. For one example with
more than 7 million proof steps, using -1*strcmp as sorting function leads to an
increase of 50% in memory usage. A further option for sorting the variables is to
use the variable appearance ordering from the given proof files. That is, we assign
increasing level values to new variables during parsing of the proof file and sort
according to this value. However, the best ordering that maximizes internal shar-
ing cannot be determined in advance from the original constraint set, as it highly
depends on the applied operations in the proof steps. Pacheck supports the or-
derings strcmp, -1*strcmp, level, and -1*level. Terms in polynomials are sorted
using a lexicographic term order that is induced by the order of the variables.

Initially each polynomial from <constraints> is sorted and stored as an in-
ference. Inferences consist of a given index and a polynomial and are stored in a
hash table. Proof checking is applied on-the-fly. We parse each step of <proof>

and immediately apply the necessary checks discussed in Sect. 2.1.3. If the proof
step is either Add or Mult, we have to compute whether the conclusion polyno-
mial of the step is equal to the arithmetic operation performed on the antecedent
polynomials.

Since the monomials of the polynomials are sorted, addition of polynomials is
performed by merging their monomials in an interleaved way. Normalization of
the exponents is not necessary in the Add rule, but we still use this technique
for multiplication, where we multiply each monomial of the first polynomial with
each monomial of the second polynomial. In the Mult rule we normalize exponents
larger than one, before testing equality. Furthermore, we check whether the con-
clusion polynomial of the Add or Mult steps matches the polynomial in <target>

to identify whether the normalized target polynomial was derived.

5.2 Pastèque 1.0

To further increase trust in the verification, we implemented a verified checker
called Pastèque in the proof assistant Isabelle/HOL [52]. It follows a “refine-
ment” approach, starting with an abstract specification of ideals, which we then
refine with the Isabelle Refinement Framework [41] to the transition system from
Sect. 2, and further down to executable code using Isabelle’s code generator [18].
The Isabelle files have been made available [17]. The generated code consists of
2 800 lines Standard ML (2 400 generated by Isabelle, 400 for the parser) and is also
available [17,38] under MIT license.
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On the most abstract level, we start from Isabelle’s definition of ideals. The
specification states that if “success” is returned, the target is in the ideal. Then
we formalize PAC and prove that the generated ideal is not changed by the proof
steps. Proving that PAC respects the specification on ideals was not obvious due
to limited automation and development of the Isabelle library of polynomials (e.g.,
“Var (1) = ∅” is not present). However, Sledgehammer [5] automatically proved
many of these simple lemmas. We made a slightly different choice for definitions:
Instead of using B(X) = {x2−x | x ∈ X}, we used {x2−x | True} and proved that
we only need variables of X. This made little difference for proofs, but avoided
checking that variables are present in the problem.

While the input format identifies variables as strings, Isabelle only supports
natural numbers as variables. Therefore, we use an injective function to convert
between the abstract specification of polynomials (with natural numbers as vari-
ables) and the concrete manipulations (with strings as variables). The code does
not depend on this function, only the correctness theorem does. Injectivity is only
required to check that extension variables did not occur before.

In the third refinement stage, Sepref [40] changes data structures automati-
cally, such as replacing the set of variables X by a hash-set. Finally, we use the
code generator to produce code. This code is combined with a trusted (unproven)
parser and can be compiled using the Standard ML compiler MLton [59].

The implementation does not support the usage of exponents and is less so-
phisticated than Pacheck’s. In particular, even if terms are sorted, sharing is not
considered (neither of variables or of monomials) as it can be executed partially by
the compiler, although not guaranteed by Standard ML semantics. Some sharing
could also be performed by the garbage collector. We tried to enforce sharing by
using MLton’s shareAll function and by using a hash map during parsing, i.e.,
using a hash map that assigns a variable to “itself” (the same string, but poten-
tially at a different memory location) and normalize every occurrence. However,
performance became worse.

Pastèque is four times slower than Pacheck. First, this is due to Standard
ML being intrinsically slower than C or C++. While Isabelle’s code generator to
LLVM [43] produces much faster code, we need integers of arbitrary large size,
which is currently not supported. Also achieving sharing is entirely manual, which
is challenging due to the use of separation logic Sepref. Second, there is no axiom-
atization of file reading and hence parsing must be applied entirely before calling
the checker in order for the correctness theorem to apply. This is more memory
intensive and less efficient than interleaving parsing and checking. Pastèque can
be configured via the uloop option to either use the main loop generated by Isa-
belle (parsing before calling the generated checker) or instead use a hand-written
copy of the main loop, the unsafe loop, where parsing and checking is interleaved.
It is only unsafe because it is unchecked. However, the performance gain is large
(on sp-ar-cl-64 with 32 GB RAM, the garbage collection time went from 700 s
down to 25 s), but only the checking functions of each step are verified, not the
main loop.
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Fig. 8: Addition schemes of 6 polynomials.

6 The NSS Checker Nuss-Checker

Our NSS proof checker, Nuss-Checker is implemented in C. It consists of ∼ 1500
source lines of code and is published [30] as open source under the MIT li-
cense. Similar to Pacheck, Nuss-Checker reads three input files <constraints>,
<cofact>, and <target>. The file <constraints> contains the initial constraints
gi ∈ G, <cofact> contains the corresponding co-factors hi in the same order. Nuss-

Checker reads the files <constraints> and <cofact>, generates the products and
then verifies that the sum of the products is equal to the polynomial f given in
<target>. Nuss-Checker uses the same internal representation of polynomials as
Pacheck and furthermore supports the same variables orders as Pacheck, with
strcmp being the default ordering.

We validate the correctness of the generated NSS proofs by checking whether∑l
i=1 higi = f ∈ Z[X] for pi ∈ G ⊆ Z[X], f, hi ∈ Z[X]. This sounds rather straight-

forward as theoretically we only need to multiply the original constraints gi by the
co-factors hi and calculate the sum of the products. However, we will discuss in
this section that depending on the implementation the time and maximum amount
of memory that is allocated varies by orders of magnitude.

Nuss-Checker generates the products higi on the fly. That is, we parse both
files <constraints> and <cofact> simultaneously, read two polynomials gi and hi
from each file and calculate higi. Since addition of polynomials in Z[X] is asso-
ciative, we are able to derive different addition schemes for n-ary addition. We
experimented with five different addition/subtraction patterns. The addition pat-
terns are depicted in Fig. 8 for adding six polynomials. The subscript i in “+i”
shows the order of the addition operation.

If we sum up all polynomials at once, we do not generate the intermediate ad-
dition results. Instead we push all monomials of the l products higi onto one big
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Fig. 9: Time (left) and memory usage (right) of addition schemes for btor multi-
pliers.

stack. Afterwards, the monomials on the stack are sorted and merged, which corre-
sponds to one big addition. However, all occurring monomials of the products are
pushed on the stack and stored until the final sorting and merging, which increases
the memory usage of Nuss-Checker.

If we add up in sequence, we only store one polynomial in the memory, and
always add the latest product higi. On the one hand, this allows for monomials
to cancel, which helps to reduce the memory usage. On the other hand, in the
application of multiplier verification (cf. Sect. 4.1) the target polynomial L contains
n2 partial products aibj that lead to intermediate summands of quadratic size,
which slows down the checking time.

For adding up in sequence we also experimented with the “inverse” operation,
where we start with the target polynomial and step by step subtract the products
higi in the order originally used during the verification. We check whether the
final polynomial is equal to zero. Again we always store only one polynomial in the
memory, which admits a low memory usage. However, in our application the target
polynomial is of quadratic size, making step-wise subtractions time-consuming.

If we add up in a tree structure with breadth first, we add two consecutive prod-
ucts of the NSS proof and store the resulting sum. After parsing the proof, we
have l

2 polynomials on a stack. We repeatedly iterate over the stack and always
sum up two consecutive polynomials, until only one polynomial is left. Using a tree
addition scheme reduces the likelihood of quadratic sized intermediate summands
for multiplier verification.

In the addition scheme, where we use a tree structure and sum up depth first,
we develop the tree on-the-fly by always adding two polynomials of the same
layer as soon as possible. It may be necessary to sum up remaining intermediate
polynomials that are elements of different layers, as shown in Fig. 8. We always
store at most dlog(l)e polynomials in the memory, as a binary tree with l leafs has
height dlog(l)e and we never have more polynomials than layers in the memory.

We apply the presented addition schemes for our use case of multiplier verifica-
tion. We choose two multiplier architectures. In our first experiment we consider a
simple multiplier architecture, called btor, that is generated using Boolector [51]
for various input sizes. Second, we examine a more complex multiplier architecture,
called bp-wt-rc, that uses a Booth encoding and Wallace-tree accumulation. Fig-

227



28 Kaufmann, Fleury, Biere, and Kauers

0 5000 10000 15000 20000 25000 30000 35000 40000
AIG size

10 2

10 1

100

101

102

Ti
m

e i
n 

se
c

all at once
subtract from target
sequence
binary tree, breadth first
binary tree, depth first

0 5000 10000 15000 20000 25000 30000 35000 40000
AIG size

0

10

20

30

40

50

60

M
em

or
y 

us
ag

e i
n 

M
B

all at once
subtract from target
sequence
binary tree, breadth first
binary tree, depth first

Fig. 10: Time (left) and memory usage (right) of addition schemes for bp-wt-rc
multipliers.

ures 9 and 10 show that the results compare favorably to our conjectures of check-
ing time and memory usage for each addition scheme. However, Nuss-Checker

supports all presented options for addition, with adding up in binary tree, depth first

set as default, because for different applications, using other addition schemes may
be more beneficial. For example, we shuffled the order of the polynomials in the
NSS proof of 128-bit btor-multipliers 200 times. The addition schemes “adding up
in sequence” and “subtract” always exceeded the time limit of 300 seconds. The
fastest addition scheme is “all at once”, which is a factor of two faster than both
tree-based addition schemes.

7 LPAC Checkers

The LPAC checkers combine the strength of PAC (checking intermediate steps and
supporting extensions), while allowing doing a linear combination in a single step
like NSS proofs. We have extended Pacheck (Sect. 7.1), based on our experiments
for Nuss-Checker, and Pastèque (Sect. 7.2) to Pacheck 2.0 and Pastèque 2.0.

7.1 Pacheck 2

Pacheck 2.0 is a re-factorization and improved C++ reimplementation of our
previous proof checkers. Since we are able to simulate PAC and NSS proofs in
LPAC, Pacheck 2.0 unites and extends Pacheck 1.0 and Nuss-Checker.

The internal representation of polynomials is almost the same as for Pacheck 1.0.
However, Pacheck 2.0 does no longer support the usage of exponents and thus
only supports Boolean models. Proof checking is applied on the fly. That is, we
parse a proof step and calculate that the linear combination of known polynomials
is equal to the given conclusion polynomial of the proof step. We calculate linear
combinations similar to proof checking a NSS proof in Nuss-Checker, i.e., when-
ever we parse a product of a polynomial and an index, we directly calculate the
factor. The factors of the linear combination are processed using a tree structure

with depth first addition scheme. Figure 11 shows a demonstration of Pacheck 2.0
on the LPAC proof of Ex. 14.
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$ pacheck btor2.input btor2.proof btor2.target
[pck2] Pacheck Version 2.0
[pck2] Practical Algebraic Calculus Proof Checker
[pck2] Copyright(C) 2020, Daniela Kaufmann, Johannes Kepler University Linz
[pck2] sorting according to strcmp
[pck2] checking target enabled
[pck2] reading target polynomial from 'btor2.target'
[pck2] read 74 bytes from 'btor2.target'
[pck2]
[pck2] reading original polynomials from 'btor2.input'
[pck2] found 14 original polynomials in 'btor2.input'
[pck2] read 327 bytes from 'btor2.input'
[pck2]
[pck2] reading polynomial algebraic calculus proof from 'btor2.proof'
[pck2] found and checked 9 inferences in 'btor2.proof'
[pck2] read 680 bytes from 'btor2.proof'
[pck2]
[pck2] ----------------------------------------------------------------------
[pck2] c TARGET CHECKED
[pck2] ----------------------------------------------------------------------
[pck2]
[pck2] proof length: 23 (total number of polynomials)
[pck2] proof size: 82 (total number of monomials)
[pck2] proof degree: 3
[pck2]
[pck2] total inferences: 23
[pck2] original inferences: 14 (61% of total rules)
[pck2] proof rules: 9 (39% of total rules)
[pck2] extensions: 0 (0% of inference rules)
[pck2] linear combination: 9 (100% of inference rules
[pck2] containing 15 additions
[pck2] and 14 multiplications)
[pck2] rules deleted: 0 (0% of total rules)
[pck2]
[pck2] total allocated terms: 30
[pck2] max allocated terms: 30 (100% of total terms)
[pck2] searched terms: 170 (82% hits,
[pck2] 0.0 average collisions)
[pck2] searched inferences: 69 (3.0 average searches,
[pck2] 0.0 average collisions)
[pck2]
[pck2] maximum resident set size: 2.67 MB
[pck2] process time: 0.01 seconds

Fig. 11: Output of Pacheck 2.0 for the proof of Ex. 14.

7.2 Pastèque 2

Pastèque 2.0 [16] is developed on top of Pastèque 1.0. In order to reuse as much
as possible from Pastèque 1.0, we reuse the specification and the rules of PAC.
Instead of proving the correctness of the LPAC rules directly, we reduce them to
the PAC rules, by seeing the LinComb rule as a series of Add and Mult. This
requires the linear combination to not be empty: While 0 is always in the ideal, it
cannot be generated by the PAC rules.

Additionally, we introduced explicit sharing of variables. We map every variable
string to a unique 64-bit machine integer. In turn, this integer is the index of the
original string in an array. Sharing is introduced in a new refinement step. The
major change is that importing a new variable can now fail (if the problem contains
more than 264 different variables). This is nearly impossible in practical problems,
but we had to add several new error paths in Pastèque. We obviously set up
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the code generator to make the array access from machine words in an array
without converting it to an unbounded integer. This change give us a performance
improvement of around 10%, most likely because the memory representation is
more efficient (fewer pointer indirections), making the work of the garbage collector
easier.

On top of that, as we know that all our array accesses are valid (this is checked
by Sepref during synthesis of the code),1 we add a flag such the compiler makes
use of that. This also allowed us to use MLton’s LLVM backend that produce
faster code, according to our experiments.

We did not change the implementation of the uloop option. Like Pastèque 1.0,
a full proof step is parsed before being checking. For NSS-style LPAC proof, this
means that the full proof is still parsed before checking. In particular, for such
proofs, Pastèque 2.0 should be compared the default version of Pastèque 1.0.
The new sharing reduces memory usage, but parsing the full proof still causes
a extreme memory pressure, as demonstrated by the experiments (Sect. 8). A
solution would be to move the parsing to Isabelle (i.e., take a string as input
instead of polynomials).

8 Experiments

In our experiments we use an Intel Xeon E5-2620 v4 CPU at 2.10 GHz (with turbo-
mode disabled) with a memory limit of 128 GB. The time is listed in rounded
seconds (wall-clock time). We measure the wall-clock time from starting the tools
until they are finished. In our experiments we aim to provide a comprehensive
comparison between our tools. Source code, benchmarks and experimental data
are available [37].

8.1 PAC Proofs

For the experiments of Table 1 we generate PAC proofs as in previous work [34,35]
to validate the correctness of multipliers with input bit-width n. The circuits are
either generated with AMG [25], Boolector [51], or GenMul [48].

For the upper part of Table 1 we generate proof certificates with our tool
AMulet 2.0 [33] to validate the correctness of simple multiplier circuits. Our
previous approach [34] to tackle complex multipliers also relies on SAT solving. We
substitute complex final-stage adders in multipliers by simple ripple-carry adders.
A bit-level miter is generated, which is passed on to a SAT solver to verify the
equivalence of the adders. Computer algebra techniques are used to verify the
rewritten multiplier. Since two different solving techniques are used, two proof
certificates in distinct formats are generated. SAT solvers generate a DRUP proof
and computer algebra techniques produce a PAC proof. In order to obtain a single
proof certificate we translate DRUP proofs into PAC [35]. In the experiments of [35]
all gate polynomials of the given multiplier, the equivalent ripple-carry adder, and
the bit-level miter are assumed as initial set of constraints G. We even added
polynomials that define Boolean negation to the initial constraint set. All these

1 The hash map setup relies on exceptions, which is why we did not do that for Pastèque 1.0,
but now we changed the setup.
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polynomials are now added using extension steps. This preserves the models of the
gate polynomials of the given multiplier. Experiments for these proof certificates
are shown in the lower part of Table 1. The second column shows the input bit-
width and the third column shows the number of generated proof steps.

The memory usage for Pastèque depends on the garbage collector, which likely
explains the peak around 64 GB, that is exactly half of the available memory,
observed for the largest problems. Details on when and how the garbage collection
trigger could explain the surprising bp-wt-cl where the uloop option uses more
memory.

The effect of deletion rules and indices in Pacheck can also be seen in Table 1.
In average deletion rules reduce the memory usage by ∼60%, with minimum 40%
(for bp-ct-bk) and maximum 72% (for sp-ar-rc 512). Although the effect on runtime
is limited. Using indices reduces the runtime by 30 to 80%. Note that in our earlier
experiments [35] the proof checking time is slightly faster than in the column
“no index”, because we did not use proper extension rules, which requires the
additional checks p ∈ Z[X] and p2 − p ≡ 0 mod〈B(X)〉.

8.2 LPAC and NSS

We have changed our pipeline to generate LPAC proofs instead of PAC proofs,
using AMulet 2.0. The experiments are done on the same hardware. In the ex-
periments of this section we only consider Pastèque with the uloop option.

We can only generate NSS proofs to validate the correctness of simple multiplier
circuits that don’t require combining algebra and SAT (i.e., extensions). It can be
seen in Table 2 that NSS-style LPAC proofs are faster to check for Pacheck 2.0
than NSS proofs for Nuss-Checker. However, the memory usage of Pacheck 2.0 is
around an order of magnitude higher than for Nuss-Checker, because Pacheck 2.0
reads and stores the complete constraint set before checking the proof. In Nuss-

Checker the constraint set is parsed on the fly.

Pastèque 2.0 is very slow on NSS-style LPAC proofs because it must parse the
entire file first, before starting checking, leading to very high memory usage. For
those proofs, the uloop has no effect: A full proof step is parsed before checking,
but since the entire proof is a single step, it is the same as parsing the full proof
beforehand.

LPAC proofs (right block of Table 3) are checked as efficiently as NSS-style
LPAC proofs (right block of Table 2) by Pacheck 2.0. For Pastèque 2.0 we gain
a significant speed-up when using LPAC proofs. LPAC proofs only need between
1% − 11% of the corresponding checking time of NSS-style LPAC proofs. Addi-
tionally, checking LPAC proofs is more memory efficient.

If we compare checking LPAC proofs to checking PAC-style LPAC proofs, we
can see that both Pacheck 2.0 and Pastèque 2.0 are a factor of two faster on
checking LPAC proofs. The memory usage remains the same.

We further can see in Table 3 that both Pacheck 2.0 and Pastèque 2.0 are
faster on LPAC proofs that simulate PAC than Pacheck 1.0 and Pastèque 1.0
on PAC proofs. The explicit sharing of variables in Pastèque 2.0 also significantly
reduces the memory usage, except for sp-ar-rc 512 (the reasons for this behavior
are unclear).
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Table 1: Proof Checking (in bold the fastest version)

multiplier n steps

Pacheck 1.0 Pastèque 1.0

no delete no index default default uloop

(106) sec MB sec MB sec MB sec MB sec MB

btor 128 0.3 5 273 11 100 5 92 22 3 886 17 1 773

btor 256 1.0 25 1 144 62 435 25 364 105 21 157 79 4 364

btor 512 4.2 138 4 956 402 1 972 141 1 461 531 64 412 416 22 292

sp-ar-rc 128 0.4 6 454 16 148 6 136 31 5 002 23 1 608

sp-ar-rc 256 1.6 29 1 858 96 651 27 541 139 32 525 102 8 769

sp-ar-rc 512 6.3 146 7 683 617 2 965 134 2 171 608 64 412 471 25 632

sp-ar-cl 32 1.6 23 773 36 354 21 353 121 40 654 113 9 492

sp-dt-lf 32 0.3 2 122 3 73 2 73 11 1 679 11 886

bp-ct-bk 32 0.2 1 86 2 52 1 51 8 1 600 7 1 068

bp-wt-cl 32 5.6 193 4 324 302 1 430 181 1 428 786 58 867 774 64 404

Table 2: NSS Proof Checking, without extension (in bold the fastest version)

multiplier n

Nuss-Checker LPAC simulates NSS

steps steps Pacheck 2.0 Pastèque 2.0

sec MB sec MB sec MB

btor 128 1 2 18 1 2 98 53 2 044

btor 256 1 8 71 1 7 385 762 8 819

btor 512 1 41 295 1 35 1 555 14 347 41 712

sp-ar-rc 128 1 3 24 1 2 142 80 2 845

sp-ar-rc 256 1 13 95 1 10 561 1 181 12 275

sp-ar-rc 512 1 67 392 1 48 2 261 21 543 51 415

Table 3: LPAC Proof Checking (in bold the fastest version)

multiplier n

LPAC simulates PAC LPAC

steps Pacheck 2.0 Pastèque 2.0 steps Pacheck 2.0 Pastèque 2.0

(106) sec MB sec MB (106) sec MB sec MB

btor 128 0.3 5 94 14 1 305 0.1 2 94 7 1 305

btor 256 1.3 26 367 67 3 467 0.3 8 367 37 3 816

btor 512 5.2 149 1 468 351 14 651 1.0 37 1 496 238 16 173

sp-ar-rc 128 0.4 5 137 15 1 330 0.1 2 137 8 1 330

sp-ar-rc 256 1.6 28 543 72 5 709 0.6 11 543 34 5 709

sp-ar-rc 512 6.3 145 2 174 381 34 327 2.4 46 2 173 180 34 327

sp-ar-cl 32 1.6 17 445 88 6 911 0.7 10 198 40 2 104

sp-dt-lf 32 0.3 2 80 8 857 0.2 1 39 4 383

bp-ct-bk 32 0.2 1 54 5 662 0.1 1 27 2 268

bp-wt-cl 32 5.5 144 2 250 646 36 224 2.4 88 1 094 292 10 489
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Finally, we can compare the performance of Pacheck and Pastèque. In both
versions, Pastèque 1.0 and Pastèque 2.0 is less efficient than Pacheck 1.0 and
Pacheck 2.0. Pastèque is both much slower and more memory hungry. Verified
checkers of SAT certificates [21, 42] have the same level of efficiency as state-of-
the-art checkers [53], likely because of the imperative style (unlike our mostly
functional code) and the more efficient memory usage by managing most memory
directly (e.g., for clauses) instead of relying on the garbage collector.

9 Conclusion

In this article we presented the algebraic proof formats PAC, LPAC and NSS,
which are able to validate algebraic verification results. We presented soundness
and completeness arguments for these proof formats and showed how proof cer-
tificates can be generated as a by-product of algebraic reasoning on the use case
of arithmetic circuit verification. Proofs in NSS capture whether a polynomial can
be represented as a linear combination of a given set of polynomials by providing
the co-factors of the linear combination. PAC proofs dynamically capture whether
a polynomial can be derived providing a sequence of proof steps. We extend PAC
by including an extension rule capturing rewriting techniques. Furthermore, we
added a deletion rule and used indices for polynomials. Our novel format LPAC
extends PAC by providing the ability to combine several steps at once.

Our proof checkers Pacheck, Pastèque, and Nuss-Checker are able to check
proofs efficiently. Our experiments showed that the PAC optimizations cut the
memory usage of Pacheck in half and reduce the runtime by around 30–80%.
Our reimplementation Pacheck 2.0 and Pastèque 2.0, which use LPAC further
reduce the runtime by around 25–50%. To our surprise, the size of NSS proofs
does not explode in our experiments and is faster to check than PAC. This was
the motivation to combine the advantages of PAC and NSS into LPAC. Checking
LPAC proofs is as time efficient as checking NSS proofs, while still providing
detailed error messages. However, the memory usage of checking LPAC proofs is
an order of magnitude higher than checking pure NSS proofs. On LPAC, Pacheck

was three times faster than Pastèque and used an order of magnitude less memory,
whereas Pastèque was formally verified in Isabelle.

In the future we want to capture more general extension rules in PAC as the
calculus from Section 2 allows. We imagine that it can be extended in two ways.
First, we could relax the condition p2 = p. This condition is necessary to have
v2 = v, but could be lifted even if it means that vn cannot be simplified to v

anymore, requiring to manipulate exponents. Second, we currently restrict the
extension to the form v = p where p contains no new variables. The correctness
theorem does not rely on that and we leave it as future work to determine whether
lifting one of these restrictions can lead to shorter proofs.

In AMulet 2.0 no redundant proof steps are generated, hence no backward
proof checking is necessary unlike SAT certificates. This might still be interesting
in other applications. Another idea for future work is to bridge the gap between
C and Isabelle, either by imperative code or by verifying the C code directly.
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Abstract. We present a fast and reliable reconstruction of proofs gener-
ated by the SMT solver veriT in Isabelle. The fine-grained proof format
makes the reconstruction simple and efficient. For typical proof steps,
such as arithmetic reasoning and skolemization, our reconstruction can
avoid expensive search. By skipping proof steps that are irrelevant for
Isabelle, the performance of proof checking is improved. Our method
increases the success rate of Sledgehammer by halving the failure rate
and reduces the checking time by 13%. We provide a detailed evaluation
of the reconstruction time for each rule. The runtime is influenced by
both simple rules that appear very often and common complex rules.

Keywords: automatic theorem provers · proof assistants ·
proof verification

1 Introduction

Proof assistants are used in verification and formal mathematics to provide
trustworthy, machine-checkable formal proofs of theorems. Proof automation
reduces the burden of finding proofs and allows proof assistant users to focus on
the core of their arguments instead of technical details. A successful approach
implemented by “hammers,” like Sledgehammer for Isabelle [15], is to heuristically
selects facts from the background; use an external automatic theorem prover,
such as a satisfiability modulo theories (SMT) solver [12], to filter facts needed
to discharge the goal; and to use the filtered facts to find a trusted proof.

Isabelle does not accept proofs that do not go through the assistant’s inference
kernel. Hence, Sledgehammer attempts to find the fastest internal method that
can recreate the proof (preplay). This is often a call of the smt tactic, which runs
an SMT solver, parses the proof, and reconstructs it through the kernel. This
reconstruction allows the usage of external provers. The smt tactic was originally
developed for the SMT solver Z3 [18,34].

© The Author(s) 2021
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The SMT solver CVC4 [10] is one of the best solvers on Sledgehammer
generated problems [14], but currently does not produce proofs for problems with
quantifiers. To reconstruct its proofs, Sledgehammer mostly uses the smt tactic
based on Z3. However, since CVC4 uses more elaborate quantifier instantiation
techniques, many problems provable for CVC4 are unprovable for Z3. Therefore,
Sledgehammer regularly fails to find a trusted proof and the user has to write the
proofs manually. veriT [19] (Sect. 2) supports these techniques and we extend
the smt tactic to reconstruct its proofs. With the new reconstruction (Sect. 3),
more smt calls are successful. Hence, less manual labor is required from users.

The runtime of the smt method depends on the runtime of the reconstruction
and the solver. To simplify the reconstruction, we do not treat veriT as a black
box anymore, but extend it to produce more detailed proofs that are easier
to reconstruct. We use detailed rules for simplifications with a combination of
propositional, arithmetic, and quantifier reasoning. Similarly, we add additional
information to avoid search, e.g., for linear arithmetic and for term normalization.
Our reconstruction method uses the newly provided information, but it also has
a step skipping mode that combines some steps (Sect. 4).

A very early prototype of the extension was used to validate the fine-grained
proof format itself [7, Sect. 6.2, second paragraph]. We also published some details
of the reconstruction method and the rules [25] before adapting veriT to ease
reconstruction. Here, we focus on the new features.

We optimize the performance further by tuning the search performed by veriT.
Multiple options influence the execution time of an SMT solver. To fine-tune
veriT’s search procedure, we select four different combinations of options, or
strategies, by generating typical problems and selecting options with complemen-
tary performance on these problems. We extend Sledgehammer to compare these
four selected strategies and suggest the fastest to the user. We then evaluate the
reconstruction with Sledgehammer on a large benchmark set. Our new tactic
halves the failure rate. We also study the time required to reconstruct each rule.
Many simple rules occur often, showing the importance of step skipping (Sect. 5).

Finally, we discuss related work (Sect. 6). Compared to the prototype [25],
the smt tactic is now thoroughly tested. We fixed all issues revealed during
development and improved the performance of the reconstruction method. The
work presented here is integrated into Isabelle version 2021; i.e., since this version
Sledgehammer can also suggest veriT, without user interaction. To simplify future
reconstruction efforts, we document the proof format and all rules used by veriT.
The resulting reference manual is part of the veriT documentation [40].

2 veriT and Proofs

The SMT solver veriT is an open source solver based on the CDCL(T ) calculus.
In proof-production mode, it supports the theories of uninterpreted functions
with equality, linear real and integer arithmetic, and quantifiers. To support
quantifiers veriT uses quantifier instantiation and extensive preprocessing.
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veriT’s proof syntax is an extension of SMT-LIB [11] which uses S-expressions
and prefix notation. The proofs are refutation proofs, i.e., proofs of K. A proof
is an indexed list of steps. Each step has a conclusion clause (cl ..) and is
annotated with a rule, a list of premises, and some rule-dependent arguments.
veriT distinguishes 90 rules [40]. Subproofs are the key feature of the proof format.
They introduce an additional context. Contexts are used to reason about binders,
e.g., preprocessing steps like transformation under quantifiers.

The conclusions of rules with contexts are always equalities. The context
models a substitution into the free variables of the term on the left-hand side
of the equality. Consider the following proof fragment that renames the variable
name x to vr, as done during preprocessing:

(assume a0 (exists (x A) (f x))

(anchor :step t3 :args (:= x vr))

(step t1 (cl (= x vr)) :rule refl)

(step t2 (cl (= (f x) (f vr))) :rule cong :premises (t1))

(step t3 (cl (= (exists (x A) (f x))

(exists (vr A) (f vr))) :rule bind)

The assume command repeats input assertions or states local assumptions. In
this fragment the assumption a0 is not used. Subproofs start with the anchor

command that introduces a context. Semantically, the context is a shorthand for
a lambda abstraction of the free variable and an application of the substituted
term. Here the context is x ÞÑ vr and the step t1 means pλx. xq vr “ vr. The
step is proven by congruence (rule cong). Then congruence is applied again (step
t2) to prove that pλx. f xq vr “ f vr and step t3 concludes the renaming.

During proof search each module of veriT appends steps onto a list. Once
the proof is completed, veriT performs some cleanup before printing the proof.
First, a pruning phase removes branches of the proof not connected to the root K.
Second, a merge phase removes duplicated steps. The final pass prepares the
data structures for the optional term sharing via name annotations.

3 Overview of the veriT-Powered smt Tactic

Isabelle is a generic proof assistant based on an intuitionistic logic framework,
Pure, and is almost always only used parameterized with a logic. In this work we
use only Isabelle/HOL, the parameterization of Isabelle with higher-order logic
with rank-1 (top level) polymorphism. Isabelle adheres to the LCF [26] tradition.
Its kernel supports only a small number of inferences. Tactics are programs that
prove a goal by using only the kernel for inferences. The LCF tradition also
means that external tools, like SMT solvers, are not trusted.

Nevertheless, external tools are successfully used. They provide relevant facts
or a detailed proof. The Sledgehammer tool implements the former and passes
the filtered facts to trusted tactics during preplay. The smt tactic implements
the latter approach. The provided proof is checked by Isabelle. We focus on the
smt tactic, but we also extended Sledgehammer to also suggest our new tactic.
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The smt tactic translates the current goal to the SMT-LIB format [11], runs
an SMT solver, parses the proof, and replays it through Isabelle’s kernel. To
choose the smt tactic the user applies (smt (z3)) to use Z3 and (smt (verit))

to use veriT. We will refer to them as z-smt and v-smt. The proof formats of Z3
and veriT are so different that separate reconstruction modules are needed. The
v-smt tactic performs four steps:

1. It negates the proof goal to have a refutation proof and also encodes the goal
into first-order logic. The encoding eliminates lambda functions. To do so, it
replaces each lambda function with a new function and creates app operators
corresponding to function application. Then veriT is called to find a proof.

2. It parses the proof found by veriT (if one is found) and encodes it as a
directed acyclic graph with K as the only conclusion.

3. It converts the SMT-LIB terms to typed Isabelle terms and also reverses the
encoding used to convert higher-order into first-order terms.

4. It traverses the proof graph, checks that all input assertions match their
Isabelle counterpart and then reconstructs the proof step by step using the
kernel’s primitives.

4 Tuning the Reconstruction

To improve the speed of the reconstruction method, we create small and well-
defined rules for preprocessing simplifications (Sect. 4.1). Previously, veriT implic-
itly normalized every step; e.g., repeated literals were immediately deleted. It now
produces proofs for this transformation (Sect. 4.2). Finally, the linear-arithmetic
steps contain coefficients which allow Isabelle to reconstruct the step without
relying on its limited arithmetic automation (Sect. 4.3). On the Isabelle side, the
reconstruction module selectively decodes the first-order encoding (Sect. 4.4). To
improve the performance of the reconstruction, it skips some steps (Sect. 4.5).

4.1 Preprocessing Rules

During preprocessing SMT solvers perform simplifications on the operator level
which are often akin to simple calculations; e.g., aˆ 0ˆ fpxq is replaced by 0.

To capture such simplifications, we create a list of 17 new rules: one rule per
arithmetic operator, one to replace boolean operators such as XOR with their
definition, and one to replace n-ary operator applications with binary applica-
tions. This is a compromise: having one rule for every possible simplification
would create a longer proof. Since preprocessing uses structural recursion, the
implementation simply picks the right rule in each leaf case. The example above
now produces a prod simplify step with the conclusion aˆ 0ˆ fpxq “ 0. Previ-
ously, a single step of the connect equiv rule collected all those simplifications
and no list of simplifications performed by this rule existed. The reconstruction
relied an experimentally created list of tactics to be fast enough.

On the Isabelle side, the reconstruction is fast, because we can direct the
search instead of trying automated tactics that can also work on other parts of
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the formula. For example, the simplifier handles the numeral manipulations of
the prod simplify rule and we restrict it to only use arithmetic lemmas.

Moreover, since we know the performed transformations, we can ignore some
parts of the terms by generalizing, i.e., replacing them by constants [18]. Because
generalized terms are smaller, the search is more directed and we are less likely
to hit the search-depth limitation of Isabelle’s auto tactic as before. Overall, the
reconstruction is more robust and easier to debug.

4.2 Implicit Steps

To simplify reconstruction, we avoid any implicit normal form of conclusions. For
example, a rule concluding t_P for any formula t can be used to prove P _P . In
such cases veriT automatically normalizes the conclusion P _ P to P . Without
a proof of the normalization, the reconstruction has to handle such cases.

We add new proof rules for the normalization and extend veriT to use them.
Instead of keeping only the normalized step, both the original and the normalized
step appear in the proof. For the example above, we have the step P _ P and
the normalized P . To remove a double negation   t we introduce the tautology
   t_ t and resolve it with the original clause. Our changes do not affect any
other part of veriT. The solver now also prunes steps concluding J.

On the Isabelle side, the reconstruction becomes more regular with fewer
special cases and is more reliable. The reconstruction method can directly re-
construct rules. To deal with the normalization, the reconstruction used to first
generate the conclusion of the theorem and then ran the simplifier to match the
normalized conclusion. This could not deal with tautologies.

We also improve the proof reconstruction of quantifier instantiation steps. One
of the instantiation schemes, conflicting instances [8,36], only works on clausified
terms. We introduce an explicit quantified-clausification rule qnt cnf issued
before instantiating. While this rule is not detailed, knowing when clausification
is needed improves reconstruction, because it avoids clausifying unconditionally.
The clausification is also shared between instantiations of the same term.

4.3 Arithmetic Reasoning

We use a proof witness to handle linear arithmetic. When the propositional
model is unsatisfiable in the theory of linear real arithmetic, the solver creates
la generic steps. The conclusion is a tautological clause of linear inequalities
and equations and the justification of the step is a list of coefficients so that
the linear combination is a trivially contradictory inequality after simplification
(e.g., 0 ě 1). Farkas’ lemma guarantees the existence of such coefficients for reals.
Most SMT solvers, including veriT, use the simplex method [21] to handle linear
arithmetic. It calculates the coefficients during normal operation.

The real arithmetic solver also strengthens inequalities on integer variables
before adding them to the simplex method. For example, if x is an integer the
inequality 2x ă 3 becomes x ď 1. The corresponding justification is the rational
coefficient 1{2. The reconstruction must replay this strengthening.
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The complete linear arithmetic proof step 1 ă x_ 2x ă 3 looks like

(step t11 (cl (< 1 x) (< (* 2 x) 3))

:rule la_generic :args (1 (div 1 2)))

The reconstruction of an la generic step in Isabelle starts with the goalŽ
i ci where each ci is either an equality or an inequality. The reconstruction

method first generalizes over the non-arithmetic parts. Then it transforms the
lemma into the equivalent formulation c1 ñ ¨ ¨ ¨ ñ cn ñ K and removes all
negations (e.g., by replacing  a ď b with b ą a).

Next, the reconstruction method multiplies the equation by the corresponding
coefficient. For example, for integers, the equation A ă B, and the coefficient p{q
(with p ą 0 and q ą 0), it strengthens the equation and multiplies by p to get

pˆ pAdiv qq ` pˆ pif Bmod q “ 0 then 1 else 0q ď pˆ pB div qq.
The if-then-else term pif Bmod q “ 0 then 1 else 0q corresponds to the strength-
ening. If Bmod q “ 0, the result is an equation of the form A1 ` 1 ď B1, i.e.,
A1 ă B1. No strengthening is required for the corresponding theorem over reals.

Finally, we can combine all the equations by summing them while being
careful with the equalities that can appear. We simplify the resulting (in)equality
using Isabelle’s simplifier to derive K.

To replay linear arithmetic steps, Isabelle can also use the tactic linarith as
used for Z3 proofs. It searches the coefficients necessary to verify the lemma.
The reconstruction used it previously [25], but the tactic can only find integer
coefficients and fails if strengthening is required. Now the rule is a mechanically
checkable certificate.

4.4 Selective Decoding of the First-order Encoding

Next, we consider an example of a rule that shows the interplay of the higher-order
encoding and the reconstruction. To express function application, the encoding
introduces the first-order function app and constants for encoded functions. The
proof rule eq congruent expresses congruence on a first-order function: pt1 ‰
u1q _ . . . _ ptn ‰ unq _ fpt1, . . . , tnq “ fpu1, . . . , unq. With the encoding it can
conclude f ‰ f 1 _ x ‰ x1 _ apppf, xq “ apppf 1, x1q. If the reconstruction unfolds
the entire encoding, it builds the term f‰f 1_x‰x1_fx“f 1x1. It then identifies
the functions and the function arguments and uses rewriting to prove that if
f “ f 1 and x “ x1, then fx “ f 1x1.

However, Isabelle β-reduces all terms implicitly, changing the term structure.
Assume f :“ λx. x “ a and f 1 :“ λx. a “ x. After unfolding all constructs that
encode higher-order terms and after β-reduction, we get pλx. x “ aq ‰ pλx. a “
x1q _ px ‰ x1q _ px “ aq “ pa “ y1q. The reconstruction method cannot identify
the functions and function arguments anymore.

Instead, the reconstruction method does not unfold the encoding including
app. This eliminates the need for a special case to detect lambda functions. Such
a case was used in the previous prototype, but the code was very involved and
hard to test (such steps are rarely used).
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4.5 Skipping Steps

The increased number of steps in the fine-grained proof format slows down recon-
struction. For example, consider skolemization from Dx. P x. The proof from Z3
uses one step. veriT uses eight steps—first renaming it to pDx. P xq “ pDv. P vq
(with a subproof of at least 2 steps), then concluding the renaming to get pDv. P vq
(two steps), then pDv. P vq “ P pεv. P vq (with a subproof of at least 2 steps),
and finally P pεv. P vq (two steps).

To reduce the number of steps, our reconstruction skips two kinds of steps.
First, it replaces every usage of the or rule by its only premise. Second, it skips
the renaming of bound variables. The proof format treats @x. P x and @y. P y
as two different terms and requires a detailed proof of the conversion. Isabelle,
however, uses De Bruijn indices and variable names are irrelevant. Hence, we
replace steps of the form p@x. P xq ô p@y. P yq by a single application of
reflexivity. Since veriT canonizes all variable names, this eliminates many steps.

We can also simplify the idiom “equiv pos2; th resolution”. veriT gener-
ates it for each skolemization and variable renaming. Step skipping replaces it
by a single step which we replay using a specialized theorem.

On proof with quantifiers, step skipping can remove more than half of the
steps—only four steps remain in the skolemization example above (where two
are simply reflexivity). However, with step skipping the smt method is not an
independent checker that confirms the validity of every single step in a proof.

5 Evaluation

During development we routinely tested our proof reconstruction to find bugs. As
a side effect, we produced SMT-LIB files corresponding to the calls. We measure
the performance of veriT with various options on them and select five different
strategies (Sect. 5.1). We also evaluate the repartition of the tactics used by
Sledgehammer for preplay (Sect. 5.2), and the impact of the rules (Sect. 5.3).

We performed the strategy selection on a computer with two Intel Xeon
Gold 6130 CPUs (32 cores, 64 threads) and 192 GiB of RAM. We performed
Isabelle experiments with Isabelle version 2021 on a computer with two AMD
EPYC 7702 CPUs (128 cores, 256 threads) and 2 TiB of RAM.

5.1 Strategies

veriT exposes a wide range of options to fine-tune the proof search. In order
to find good combinations of options (strategies), we generate problems with
Sledgehammer and use them to fine-tune veriT’s search behavior. Generating
problems also makes it possible to test and debug our reconstruction.

We test the reconstruction by using Isabelle’s Mirabelle tool. It reads theories
and automatically runs Sledgehammer [14] on all proof steps. Sledgehammer
calls various automatic provers (here the SMT solvers CVC4, veriT, and Z3 and
the superposition prover E [38]) to filter facts and chooses the fastest tactic that
can prove the goal. The tactic smt is used as a last resort.
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Table 1. Options corresponding to the different veriT strategies

Name Options

default (no option)
del insts --index-sorts --index-fresh-sorts --ccfv-breadth --inst-deletion

--index-SAT-triggers --inst-deletion-loops --inst-deletion-track-var
ccfv SIG --triggers-new --index-SIG --triggers-sel-rm-specific
ccfv insts --triggers-new --index-sorts --index-fresh-sorts --triggers-sel-rm-specific

--triggers-restrict-combine --inst-deletion-loops --index-SAT-triggers
--inst-deletion-track-vars --ccfv-index=100000 --ccfv-index-full=1000
--inst-sorts-threshold=100000 --ematch-exp=10000000 --inst-deletion

best --triggers-new --index-sorts --index-fresh-sorts --triggers-sel-rm-specific

To generate problems for tuning veriT, we use the theories from HOL-Library
(an extended standard library containing various developments) and from the
formalizations of Green’s theorem [2, 3], the Prime Number Theorem [23], and
the KBO ordering [13]. We call Mirabelle with only veriT as a fact filter. This
produces SMT files for representative problems Isabelle users want to solve and
a series of calls to v-smt. For failing v-smt calls three cases are possible: veriT
does not find a proof, reconstruction times out, or reconstruction fails with an
error. We solved all reconstruction failures in the test theories.

To find good strategies, we determine which problems are solved by several
combination of options within a two second timeout. We then choose the strategy
which solves the most benchmarks and three strategies which together solve the
most benchmarks. For comparison, we also keep the default strategy.

The strategies are shown in Table 1 and mostly differ in the instantiation
schemes. The strategy del insts uses instance deletion [6] and uses a breadth-
first algorithm to find conflicting instances. All other strategies rely on extended
trigger inference [29]. The strategy ccfv SIG uses a different indexing method for
instantiation. It also restricts enumerative instantiation [35], because the options
--index-sorts and --index-fresh-sorts are not used. The strategy ccfv insts increases
some thresholds. Finally, the strategy best uses a subset of the options used by
the other strategies. Sledgehammer uses best for fact filtering.

We have also considered using a scheduler in Isabelle as used in the SMT
competition. The advantage is that we do not need to select the strategy on
the Isabelle side. However, it would make v-smt unreliable. A problem solved by
only one strategy just before the end of its time slice can become unprovable on
slower hardware. Issues with z-smt timeouts have been reported on the Isabelle
mailing list, e.g., due to an antivirus delaying the startup [27].

5.2 Improvements of Sledgehammer Results

To measure the performance of the v-smt tactic, we ran Mirabelle on the full HOL-
Library, the theory Prime Distribution Elementary (PDE) [22], an executable
resolution prover (RP) [37], and the Simplex algorithm [30]. We extended Sledge-
hammer’s proof preplay to try all veriT strategies and added instrumentation for
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Table 2. Outcome of Sledgehammer calls showing the total success rate (SR, higher is
better) of one-liner proof preplay, the number of suggested v-smt (OLv) and z-smt (OLz)
one-liners, and the number of preplay failures (PF, lower is better), in percentages of
the unique goals.

HOL-Library PNT RP Simplex
(13 562 goals) (1 715 goals) (1 658 goals) (1 982 goals)

SR OLv OLz PF SR OLv OLz PF SR OLv OLz PF SR OLv OLz PF

Fact-filter prover: CVC4

z-smt 54.5 2.7 1.5 33.1 3.7 0.8 64.8 1.3 0.8 51.6 1.6 0.9
both 55.5 2.5 1.1 0.5 33.6 3.6 0.6 0.3 65.3 1.4 0.4 0.3 52.1 1.1 1.0 0.4

Fact-filter prover: E

z-smt 55.5 1.1 1.7 36.0 0.3 1.7 61.7 0.7 1.2 49.8 1.4 0.7
both 56.0 0.8 0.7 1.3 36.4 0.6 0.1 1.3 62.1 0.9 0.2 0.8 49.9 0.3 1.3 0.5

Fact-filter prover: veriT

z-smt 48.5 1.7 1.2 26.1 1.5 0.5 58.2 0.9 0.7 46.7 0.9 1.0
both 49.4 1.6 0.9 0.4 26.5 1.4 0.4 0.2 58.6 1.1 0.3 0.2 47.4 1.0 0.6 0.3

Fact-filter prover: Z3

z-smt 50.8 2.5 0.8 27.9 2.7 0.4 60.4 0.8 0.7 48.3 0.9 0.3
both 51.3 1.9 1.1 0.3 28.2 2.5 0.5 0.1 60.9 1.1 0.1 0.2 48.4 0.4 0.6 0.2

the time of all tried tactics. Sledgehammer and automatic provers are mostly non-
deterministic programs. To reduce the variance between the different Mirabelle
runs, we use the deterministic MePo fact filter [33] instead of the better perform-
ing MaSh [28] that uses machine learning (and depends on previous runs) and
underuse the hardware to minimize contention. We use the default timeouts of
30 seconds for the fact filtering and one second for the proof preplay. This is
similar to the Judgment Day experiments [17]. The raw results are available [1].

Success Rate. Users are not interested in which tactics are used to prove a goal,
but in how often Sledgehammer succeeds. There are three possible outcomes:
(i) a successfully preplayed proof, (ii) a proof hint that failed to be preplayed
(usually because of a timeout), or (iii) no proof. We define the success rate as
the proportion of outcome (i) over the total number of Sledgehammer calls.

Table 2 gathers the results of running Sledgehammer on all unique goals and
analyzing its outcome using different preplay configurations where only z-smt
(the baseline) or both v-smt and z-smt are enabled. Any useful preplay tactic
should increase the success rate (SR) by preplaying new proof hints provided by
the fact-filter prover, reducing the preplay failure rate (PF).

Let us consider, e.g., the results when using CVC4 as fact-filter prover. The
success rate of the baseline on the HOL-Library is 54.5% and its preplay failure
rate is 1.5%. This means that CVC4 found a proof for 54.5%`1.5% “ 56% of the
goals, but that Isabelle’s proof methods failed to preplay many of them. In such
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cases, Sledgehammer gives a proof hint to the user, which has to manually find a
functioning proof. By enabling v-smt, the failure rate decreases by two thirds, from
1.5% to 0.5%, which directly increases the success rate by 1 percentage point: new
cases where the burden of the proof is moved from the user to the proof assistant.
The failure rate is reduced in similar proportions for PNT (63%), RP (63%), and
Simplex (56%). For these formalizations, this improvement translates to a smaller
increase of the success rate, because the baseline failure rate was smaller to begin
with. This confirms that the instantiation technique conflicting instances [8, 36]
is important for CVC4.

When using veriT or Z3 as fact-filter prover, a failure rate of zero could
be expected, since the same SMT solvers are used for both fact filtering and
preplaying. The observed failure rate can partly be explained by the much smaller
timeout for preplay (1 second) than for fact filtering (30 seconds).

Overall, these results show that our proof reconstruction enables Sledgeham-
mer to successfully preplay more proofs. With v-smt enabled, the weighted average
failure rate decreases as follows: for CVC4, from 1.3% to 0.4%; for E, from 1.5%
to 1.2%; for veriT, from 1.0% to 0.3%; and for Z3, from 0.7% to 0.3%. For the
user, this means that the availability of v-smt as a proof preplay tactic increases
the number of goals that can be fully automatically proved.

Saved time. Table 3 shows a different view on the same results. Instead of the
raw success rate, it shows the time that is spent reconstructing proofs. Using
the baseline configuration, preplaying all formalizations takes a total of 250.1`
33.4 ` 37.2 ` 42.8 “ 363.5 seconds. When enabling v-smt, some calls to z-smt
are replaced by faster v-smt calls and the reconstruction time decreases by 13%
to 212.6 ` 28.4 ` 34.4 ` 41.6 “ 317 seconds. Note that the per-formalization
improvement varies considerably: 15% for HOL-Library, 15% for PNT, 7.5% for
RP, and 4.0% for Simplex.

For the user, this means that enabling v-smt as a proof preplay tactic may
significantly reduce the verification time of their formalizations.

Impact of the Strategies. We have also studied what happens if we remove a
single veriT strategy from Sledgehammer (Table 4). The most important one
is best, as it solves the highest number of problems. On the contrary, default is
nearly entirely covered by the other strategies. ccfv SIG and del insts have a
similar number where they are faster than Z3, but the latter has more unique
goals and therefore, saves more time. Each strategy has some uniquely solved
problems that cannot be reconstructed using any other. The results are similar
for the other theories used in Table 3.

5.3 Speed of Reconstruction

To better understand what the key rules of our reconstruction are, we recorded the
time used to reconstruct each rule and the time required by the solver over all calls
attempted by Sledgehammer including the ones not selected. The reconstruction
ratio (reconstruction over search time) shows how much slower reconstructing
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Table 3. Preplayed proofs (Pr.) and their execution time (s) when using CVC4 as
fact-filter prover. Shared proofs are found with and without v-smt and new proofs
are found only with v-smt. The proofs and their associated timings are categorized in
one-liners using v-smt (OLv), z-smt (OLz), or any other Isabelle proof methods (OLo).

Total Shared proofs New proofs
Total = OLv + OLz + OLo OLv

Pr. Time “ Time (Pr.) ` Time (Pr.) ` Time ( Pr. ) Time ( Pr. )

HOL-
Library

z-smt 7 409 250.1 “ 85.0 (362) ` 165.1 (7 047)
both 7 545 212.6 “ 27.9 (211) ` 19.6 (152) ` 165.1 (7 047) 34.7 ( 135)

PNT
z-smt 569 33.4 “ 14.8 ( 64) ` 18.5 ( 505)
both 577 28.4 “ 7.7 ( 54) ` 2.1 ( 10) ` 18.5 ( 505) 3.4 ( 8)

RP
z-smt 1 077 37.2 “ 8.7 ( 22) ` 28.5 (1 055)
both 1 085 34.4 “ 4.5 ( 16) ` 1.4 ( 6) ` 28.5 (1 055) 2.2 ( 8)

Simplex
z-smt 1 024 42.8 “ 6.7 ( 32) ` 36.0 ( 992)
both 1 033 41.6 “ 2.4 ( 13) ` 3.2 ( 19) ` 36.0 ( 992) 3.0 ( 9)

Table 4. Reconstruction time and number of solved goals when removing a single
strategy (HOL-Library results only), using CVC4 as fact filter.

Shared proofs New proofs
OLv OLz OLv

Time Proofs Time Proofs Time Proofs

No best 16.5 119 50.6 244 25.9 94
No ccfv SIG 27.0 198 22.6 164 33.5 123
No ccfv threshold 28.3 211 19.6 152 33.9 130
No del insts 27.4 201 21.8 162 32.9 124
No default 27.9 207 20.1 156 33.8 134

Baseline 27.9 211 19.6 152 34.7 135

compared to finding a proof is. For the 25% of the proofs, Z3’s concise format
is better and the reconstruction is faster than proof finding (first quartile: 0.9
for v-smt vs. 0.1 for z-smt). The 99th percentile of the proofs (18.6 vs. 27.2)
shows that veriT’s detailed proof format reduces the number of slow proofs. The
reconstruction is slower than finding proofs on average for both solvers.

Fig. 1 shows the distribution of the time spent on some rules. We remove the
slowest and fastest 5% of the applications, because garbage collection can trigger
at any moment and even trivial rules can be slow. Fig. 2 gives the sum of all
reconstruction times over all proofs. We call parsing the time required to parse
and convert the veriT proof into Isabelle terms.

Overall, there are two kinds of rules: (1) direct application of a sequence of
theorems—e.g., equiv pos2 corresponds to the theorem  pa ô bq _  a _ b—
and (2) calls to full-blown tactics—like qnt cnf (Sect. 4.2).

First, direct application of theorems are usually fast, but they occur so often
that the cumulative time is substantial. For example, cong only needs to unfold
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assumptions and apply reflexivity and symmetry of equality. However, it appears
so often and sometimes on large terms, that it is an important rule.

Second, rules which require full-blown tactics are the slowest rules. For qnt

cnf (CNF under quantifiers, see Sect. 4.2), we have not written a specialized
tactic, but rely on Isabelle’s tableau-based blast tactic. This rule is rather slow,
but is rarely used. It is similar to the rule la generic: it is slow on average, but
searching the coefficients takes even more time.

We can also see that the time required to check the simplification steps that
were formerly combined into the connect equiv rule is not significant anymore.

We have performed the same experiments with the reconstruction of the SMT
solver Z3. In contrast to veriT, we do not have the amount of time required for
parsing. The results are shown in Figs. 3 and 4. The rule distribution is very
different. The nnf-neg and nnf-pos rules are the slowest rules and take a huge
amount of time in the worst case. However, the coarser quantifier instantiation
step is on average faster than the one produced by veriT. We suspect that
reconstruction is faster because the rule, which is only an implication without
choice terms, is easier to check (no equality reordering).

6 Related Work

The SMT solvers CVC4 [10], Z3 [34], and veriT [19] produce proofs. CVC4
does not record quantifier reasoning in the proof, and Z3 uses some macro rules.
Proofs from SMT solvers have also been used to find unsatisfiability cores [20],
and interpolants [32]. They are also useful to debug the solver itself, since unsound
steps often point to the origin of bugs. Our work also relates to systems like
Dedukti [5] that focuses on translating proof steps, not on replaying them.

Proof reconstruction has been implemented in various systems, including
CVC4 proofs in HOL Light [31], Z3 in HOL4 and Isabelle/HOL [18], and veriT [4]
and CVC4 [24] in Coq. Only veriT produces detailed proofs for preprocessing and
skolemization. SMTCoq [4,24] currently supports veriT’s version 1 of the proof
output which has different rules, does not support detailed skolemization rules,
and is implemented in the 2016 version of veriT, which has worse performance.
SMTCoq also supports bit vectors and arrays.

The reconstruction of Z3 proofs in HOL4 and Isabelle/HOL is one of the
most advanced and well tested. It is regularly used by Isabelle users. The Z3
proof reconstruction succeeds in more than 90% of Sledgehammer benchmarks [14,
Section 9] and is efficient (an older version of Z3 was used). Performance numbers
are reported [16,18] not only for problems generated by proof assistants (including
Isabelle), but also for preexisting SMT-LIB files from the SMT-LIB library.

The performance study by Böhme [16, Sect. 3.4] uses version 2.15 of Z3,
whereas we use version 4.4.0 which currently ships with Isabelle. Since version
2.15, the proof format changed slightly (e.g., th-lemma-arith was introduced),
fulfilling some of the wishes expressed by Böhme and Weber [18] to simplify
reconstruction. Surprisingly, the nnf rules do not appear among the five rules
that used the most runtime. Instead, the th-lemma and rewrite rules were the
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Fig. 1. Timing, sorted by the median, of a subset of veriT’s rules. From left to right,
the lower whisker marks the 5th percentile, the lower box line the first quartile, the
middle of the box the median, the upper box line the third quartile, and the upper
whisker the 95th percentile.
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Fig. 2. Total percentage spent on each rule for the SMT solver veriT in the same order
as Fig. 1. This graph maps the rules already shown in Fig. 1 to the total amount of
time. The slowest rules are th resolution (14.7%), parsing (10.3%), and cong (9.77%).
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percentile. nnf-neg’s 95th percentile is 87 ms, nnf-pos’s is 33 ms, and parsing’s is 25 ms.
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slowest. Similarly to veriT, the cong rule was among the most used (without
accounting for the most time), but it does not appear in our Z3 tests.

CVC4 follows a different philosophy compared to veriT and Z3: it produces
proofs in a logical framework with side conditions [39]. The output can contain
programs to check certain rules. The proof format is flexible in some aspects and
restrictive in others. Currently CVC4 does not generate proofs for quantifiers.

7 Conclusion

We presented an efficient reconstruction of proofs generated by a modern SMT
solver in an interactive theorem prover. Our improvements address reconstruction
challenges for proof steps of typical inferences performed by SMT solvers.

By studying the time required to replay each rule, we were able to compare the
reconstruction for two different proof formats with different design directions. The
very detailed proof format of veriT makes the reconstruction easier to implement
and allows for more specialization of the tactics. On slow proofs, the ratio of time
to reconstruct and time to find a proof is better for our more detailed format.
Integrating our reconstruction in Isabelle halves the number of failures from
Sledgehammer and nicely completes the existing reconstruction method with Z3.

Our work is integrated into Isabelle version 2021. Sledgehammer suggests the
veriT-based reconstruction if it is the fastest tactic that finds the proof; so users
profit without action required on their side. We plan to improve the reconstruction
of the slowest rules and remove inconsistencies in the proof format. The developers
of the SMT solver CVC4 are currently rewriting the proof generation and plan
to support a similar proof format. We hope to be able to reuse the current
reconstruction code by only adding support for CVC4-specific rules. Generating
and reconstructing proofs from the veriT version with higher-order logic [9]
could also improve the usefulness of veriT on Isabelle problems. The current
proof rules [40] should accommodate the more expressive logic.
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The first iteration of the proof format used by the SMT solver veriT was presented ten years ago at
the first PxTP workshop. Since then the format has matured. veriT proofs are used within multiple
applications, and other solvers generate proofs in the same format. We would now like to gather
feedback from the community to guide future developments. Towards this, we review the history
of the format, present our pragmatic approach to develop the format, and also discuss problems that
might arise when other solvers use the format.

Over the years the production of machine-consumable formal proofs of unsatisfiability from SMT
solvers [6] has attracted significant attention [4]. Such proofs enable users to certify unsatisfiability
results similarly to how satisfiable results may be certified via models. However, a major difficulty that
SMT proof formats must address is the complex and heterogeneous nature of SMT solvers: a SAT solver
drives multiple, often very different, theory solvers; instantiation procedures generate ground instances;
and heavily theory-dependent simplification techniques ensure that the solvers are fast in practice. More-
over, how each of these components works internally can also differ from solver to solver. As a testament
to these challenges proof formats for SMT solvers have been mostly restricted to individual solvers and no
standard has emerged. To be adopted by several solvers, an SMT proof format must be carefully designed
to accommodate needs of specific solvers. This will require repeated refinement and generalization.

The basis for our efforts in this field is the proof format implemented by the SMT solver veriT [8] that
is now mature and used by multiple systems. To further improve the format, as well as to accommodate
not only the reasoning of the SMT solver veriT but also of other solvers, we are currently extending the
format and developing better tooling, such as an independent proof checker. To facilitate this effort and
overall usage, we are also writing a full specification. To emphasize the independence of the format we
are baptizing it Alethe.1 We do not presume to propose a standard format a priori. Instead we believe that
Alethe, together with its tooling, can provide a basis for further discussions on how to achieve a format
to be used by multiple solvers.

1 The State of Alethe

Alethe combines two major ideas whose roots reach back ten years to the first PxTP workshop in 2011 [7,
9]. It was proposed as an easy-to-produce format with a term language very close to SMT-LIB [5], the
standard input language of SMT solvers, and rules with a varying level of granularity, allowing implicit

1Alethe is a genus of small birds and the name resembles aletheia, the Greek word for truth.
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proof steps in the proof and thus relying on powerful proof checkers capable of filling the gaps. Since
then the format has been refined and extended [2]. It is now mature, supports coarse- and fine-grained
proof steps capturing SMT solving for the SMT-LIB logic UFLIRA2 and can be reconstructed by the
proof assistants Coq [1, 11] and Isabelle [12, 14]. In particular, the integration with Coq was also used as
a bridge for the reconstruction of proofs from the SMT solver CVC4 [3] in Coq, where its proofs in the
LFSC format [15] were first translated into the veriT format before reconstruction. Finally, the format
will also be natively supported in the upcoming cvc5. solver3

On the one hand, Alethe uses a natural-deduction style calculus driven mostly by resolution [7]. To
handle first-order reasoning, dedicated quantifier instantiation rules are used [9]. On the other hand,
it implements novel ideas to express reasoning typically used for processing, such as Skolemization,
renaming of variables, and other manipulations of bound variables [2]. While the format was always
inspired by the SMT-LIB language, we recently [12] changed the syntax of Alethe to closely resemble the
command structure used within SMT-LIB. When possible Alethe uses existing SMT-LIB features, such
as the define-fun command to define constants and the :named annotation to implement term sharing.

The following proof fragment gives a taste of the format. The fragment first renames the bound
variable in the term ∃x. f (x) from x to vr and then skolemizes the quantifier. A proof is a list of commands.
The assume command introduces an assumption, anchor starts a subproof, and step denotes an ordinary
proof step. Steps are annotated with an identifier, a rule, and premises. The SMT-LIB command define-
fun defines a function. The rule bind used by step t1 performs the renaming of the bound variable. It uses
a subproof (Steps t1.t1 and t1.t2). The subproof uses a context to denote that x is equal to vr within
the subproof. The anchor command starts the subproof and introduces the context. The bind rule does
not only make it possible to rename bound variables, but within the subproof it is possible to simplify the
formula as done during preprocessing. The steps t2 and t3 use resolution to finish the renaming. In step
t4 the bound variable is skolemized. Skolemization uses the choice binder ε and derives f (εvr. f (vr))
from ∃vr. f (vr). To simplify the reconstruction the choice term is introduced as a defined constant (by
define-fun). Finally, resolution is used again to finish the proof.

(assume a0 (exists ((x A)) (f x)))

(anchor :step t1 :args (:= x vr))

(step t1.t1 (cl (= x vr)) :rule cong)

(step t1.t2 (cl (= (f x) (f vr))) :rule cong)

(step t1 (cl (= (exists ((x A)) (f x))

(exists ((vr A)) (f vr)))) :rule bind)

(step t2 (cl (not (= (exists ((vr A)) (f x))

(exists ((vr A)) (f vr))))

(not (exists ((vr A)) (f x)))

(exists ((vr A)) (f vr))) :rule equiv_pos1)

(step t3 (cl (exists ((vr A)) (f vr))) :premises (a0 t1 t2) :rule resolution)

(define-fun X () A (choice ((vr A)) (f vr)))

(step t4 (cl (= (exists ((vr A)) (f vr)) (f X))) :rule sko_ex)

(step t5 (cl (not (= (exists ((vr A)) (f vr)) (f X)))

(not (exists ((vr A)) (f vr)))

(f X)) :rule equiv_pos1)

(step t6 (cl (f X)) :premises (t3 t4 t5) :rule resolution)

2That is the logic for problems containing a mix of any of quantifiers, uninterpreted functions, and linear arithmetic.
3https://cvc4.github.io/2021/04/02/cvc5-announcement.html
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The output of Alethe proofs from veriT has now reached a certain level of maturity. The 2021 version
of the Isabelle theorem prover was released earlier this year and supports the reconstruction of Alethe
proofs generated by veriT. Users of Isabelle/HOL can invoke the smt tactic. This tactic encodes the
current proof goal as an SMT-LIB problem and calls an SMT solver. Previously only the SMT solver Z3
was supported. Now veriT is supported too. If the solver produces a proof, the proof is reconstructed
within the Isabelle kernel. In practice, users will seldom choose the smt tactic themselves. Instead, they
call the Sledgehammer tool that calls external tools to find relevant facts. Sometimes, the external tool
finds a proof, but the proof cannot be imported into Isabelle, requiring the user to write a proof manually.
The addition of the veriT-powered smt tactic halves [14] the rate of this kind of failures. The improvement
is especially pronounced for proofs found by CVC4. A key reason for this improvement is the support
for the conflicting-instance instantiation technique within veriT. Z3, the singular SMT solver supported
previously, does not implement this technique. Nevertheless, it is Alethe that allowed us to connect veriT
to Isabelle, and we hope that the support for Alethe in other solvers will ease this connection between
powerful SMT solvers and other tools in the future.

The process of implementing proof reconstruction in Isabelle also helped us to improve the proof
format. We found both, possible improvements in the format (like providing the Farkas’ coefficient
for lemmas of linear arithmetic) and in the implementation (by identifying concrete errors). One major
shortcoming of the proofs were rules that combined several simplification steps into one. We replaced
these steps by multiple simple and well-defined rules. In particular every simplification rule addresses a
specific theory instead of combining them. An interesting observation of the reconstruction in Isabelle
is that some steps can be skipped to improve performance. For example, the proofs for the renaming
of variables are irrelevant for Isabelle since this uses De Bruijn indices. This shows that reconstruction
specific optimizations can counterbalance the proof length which is increased by fine-grained rules. We
will take this prospect into account as we further refine the format.

2 A Glance Into the Future

The development of the Alethe proof format so far was not a monolithic process. Both practical consid-
erations and research progress — such as supporting fine-grained preprocessing rules — influenced the
development process. Due to this, the format is not fully homogeneous, but this approach allowed us to
quickly adapt the format when necessary. We will continue this pragmatic approach.

Speculative Specification. We are writing a speculative specification.4 During the development of the
Isabelle reconstruction it became necessary to document the proof rules in a coherent and complete
manner. When we started to develop the reconstruction there was only an automatically generated list
of rules with a short comment for each rule. While this is enough for simple tautological rules, it does
not provide a clear definition of the more complex rules such as the linear arithmetic rules. To rectify
this, we studied veriT’s source code and wrote an independent document with a list of all rules and a
clear mathematical definition of each rule. We chose a level of precision for these descriptions that serves
the implementer: precise enough to clarify the edge case, but without the details that would make it a
fully formal specification. We are now extending this document to a full specification of the format. This
specification is speculative in the sense that it will not be cast in stone. It will describe the format as it is
in use at any point in time and will develop in parallel with practical support for the format within SMT
solvers, proof checkers, and other tools.

4The current version is available at http://www.verit-solver.org/documentation/alethe-spec.pdf.
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Flexible Rules. The next solver that will gain support for the Alethe format is the upcoming cvc5 solver.
Implementing a proof format into another solver reveals where the proof format is too tied to the current
implementation of veriT. On the one hand, new proof rules must be added to the format — e.g., veriT
does not support the theory of bitvectors, while cvc5 does. When CVC4 was integrated into Coq via a
translation of its LFSC proofs into Alethe proofs [11], an ad-hoc extension with bitvector rules was made.
A revised version of this extension will now be incorporated into the upcoming specification of the format
so that cvc5 bitvector proofs can be represented in Alethe. Further extensions to other theories supported
by cvc5, like the theory of strings, will eventually be made as well.

Besides new theories, cvc5 can also be stricter than veriT in the usage of some rules. This strictness
can simplify the reconstruction, since less search is required. A good example of this is the trans rule
that expresses transitivity. This rule has a list of equalities as premises and the conclusion is an equality
derived by transitivity. In principle, this rule can have three levels of “strictness”:

1. The premises are ordered and the equalities are correctly oriented (like in cvc5), e.g., a = b, b = c,
and c = d implies a = d.

2. The premises are ordered but the equalities might not be correctly oriented (like in veriT), e.g.,
b = a, c = b, and d = c implies d = a.

3. Neither are the assumptions ordered, nor are the equalities oriented, e.g., c = b, b = a, and d = c
implies d = a.

The most strict variant is the easiest to reconstruct: a straightforward linear traversal of the premises
suffices for checking. From the point of view of producing it from the solver, however, this version
is the hardest to implement. This is due to implementations of the congruence closure decision pro-
cedure [13, 10] in SMT solvers being generally agnostic to the order of equalities, which can lead to
implicit reorientations that can be difficult to track. Anecdotally, for cvc5 to achieve this level of detail
several months of work were necessary, within the overall effort of redesigning from scratch CVC4’s
proof infrastructure. Since we cannot assume every solver developer will, or even should, undertake such
an effort, all the different levels of granularity must be allowed by the format, each requiring different
complexity levels of checking.

To keep the proof format flexible and proofs easy to produce, we will provide different versions of
proof rules, with varying levels of granularity as in the transitivity example case above, by annotating
them. This leverages the rule arguments, which are already used by some rules. For example, the Farkas’
coefficient of the linear arithmetic rule are provided as arguments. This puts pressure on proof checkers
and reconstruction in proof assistants to support all the variants or at least the most general one (at the
cost of efficiency). Hence, our design principle here is that the annotation is optional: the absence of an
annotation denotes the least strict version of the rule.

Powerful Tooling. We believe that powerful software tools may greatly increase the utility of a proof
format. Towards this end we have started implementing an independent proof checker for Alethe. In con-
trast to a proof-assistant-based reconstruction, this checker will not be structured around a small, trusted
kernel, and correct-by-construction extensions. Instead, the user would need to trust the implementation
does not lead to wrong checking results. Instead, its focus is on performance, support for multiple features
and greater flexibility for integrating extensions and refinements to the format. The Isabelle checker is
currently not suited to this task — one major issue is that it does not support SMT-LIB input files.5

5A version capable of doing so was developed for Z3 but it was unfortunately lost.
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This independent checker will also serve as a proof “elaborator”. Rather than checking, it will also
allow converting a coarse-grained proof, containing implicit steps, to a fine-grained one, with more
detailed steps. The resulting proof can then be more efficiently checked by the tool itself or via proof-
assistant reconstructions. An example of such elaboration is the transitivity rule. If the rule is not in its
most detailed version, with premises in the correct order and none implicitly reordered, it can be elaborated
by greedily reordering the premises and adding proof steps using the symmetry of equality. Note however
that in the limit detailing coarse-grained steps can be as hard as solving an SMT problem. Should such
cases arise, the checker will rely on internal proof-producing procedures capable of producing a detailed
proof for the given step. At first the veriT and cvc5 solvers, which can produce fine-grained proofs for
several aspects of SMT solving, could be used in such cases.

A nice side effect of the use of an external checker is that it could prune useless steps. Currently
SMT solvers keep a full proof trace in memory and print a pruned proof after solving finishes. This is in
contrast to SAT solvers that dump proofs on-the-fly. For SAT proofs, the pruned proof can be obtained
from a full trace by using a tool like DRAT-TRIM. There is some ongoing work by Nikolaj Bjørner on
Z3 to also generate proofs on-the-fly, but it is not clear how to support preprocessing and quantifiers.6

3 Conclusion

We have presented on overview of the current state of the Alethe proof format and some ideas on how we
intend to improve and extend the format, as well as supporting tools. In designing a new proof format
supported across two solvers we hope to provide a first step towards a format adopted by more solvers.
This format allows several levels of detail, and is thus flexible enough to reasonably easily produce proofs
in various contexts. We intend to define a precise semantics at each level though. This distinguishes our
format from other approaches, such as the TSTP format [16], that are probably easier to adopt but only
specify the syntax, leading to very different proofs generated by the various provers supporting it.

One limit of our approach for proofs is that we cannot express global transformations like symme-
try breaking. SAT solvers are able to add clauses (DRAT clauses) such that the overall problems is
equisatisfiable. It is unclear however how to add such clauses in the SMT context.

Overall, we hope to get feedback from users and developers to see what special needs they have and
exchange ideas on the proof format.
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Abstract. Satisfiability modulo theories (SMT) solvers are widely used
to ensure the correctness of safety- and security-critical applications.
Therefore, being able to trust a solver’s results is crucial. One way to
increase trust is to generate independently checkable proof certificates,
which record the reasoning steps done by the solver. A key challenge
with this approach is that it is difficult to efficiently and accurately pro-
duce proofs for reasoning steps involving term rewriting rules. Previous
work showed how a domain-specific language, Rare, can be used to cap-
ture rewriting rules for the purposes of proof production. However, in
that work, the Rare rules had to be trusted, as the correctness of the
rules themselves was not checked by the proof checker. In this paper,
we present IsaRare, a tool that can automatically translate Rare rules
into Isabelle/HOL lemmas. The soundness of the rules can then be veri-
fied by proving the lemmas. Because an incorrect rule can put the entire
soundness of a proof system in jeopardy, our solution closes an important
gap in the trustworthiness of SMT proof certificates. The same tool also
provides a necessary component for enabling full proof reconstruction of
SMT proof certificates in Isabelle/HOL. We evaluate our approach by
verifying an extensive set of rewrite rules used by the cvc5 SMT solver.

1 Introduction

Satisfiability modulo theories (SMT) [8] solvers provide the back-end reasoning
power for many formal methods applications. These applications are often used
to provide safety or security guarantees for critical systems [1, 15, 21, 23]. For
such applications, an incorrect result from a solver could have catastrophic con-
sequences. Thus, ensuring the correctness of a solver’s results is crucial. However,
industrial-strength SMT solvers are large and complex software systems which
are under constant active development. As with any other large software project,

⋆ This work was supported in part by the Stanford Center for Automated Reasoning
and by a gift from Amazon Web Services.
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even when employing software engineering best practices, it is unrealistic to ex-
pect that solvers do not contain implementation bugs that could, in the worst
case, compromise the correctness of their answers.

One solution is to formally verify the SMT solver itself. Unfortunately, that
would be a massive effort. It would likely require performance compromises [17]
and impose a tremendous maintenance burden, as changes to solvers are frequent,
and each change would require revisiting the verification.

Fortunately, there is a less expensive alternative: we can independently check
each result produced by a solver. This is generally easy when the result is “satis-
fiable,” at least for quantifier-free inputs. The solver can produce a model and we
can check via evaluation that the input formula indeed holds in it. To have a sim-
ilar ability to check a result of “unsatisfiable,” solvers must be instrumented to
produce proof certificates that can be independently verified by a separate proof
checker. To maximize trustworthiness, the proof checker should be small, sim-
ple, and, ideally, formally verified. Alternatively, the checker can be embedded
in a highly trusted system such as a skeptical interactive theorem prover. The
SMT community is increasingly embracing proof production, with it becoming
a major focus in recent years [3, 4, 19, 29].

One of the main challenges faced by SMT proof production efforts is the
extensive use of theory-specific term rewriting rules. There are hundreds of such
rules in modern solvers, each of which must be justifiable using some proof
rule. Nötzli et al. [28] introduced a methodology for producing proofs for term
rewriting rules by using the Rare domain-specific language. In that work, rules
are defined in Rare, imported by a solver, and then used to elaborate the solver’s
term rewriting proof steps into finer-grained proofs using the Rare rules. This
approach has proved to be viable in the cvc5 SMT solver [2]. However, previous
work did not address the correctness of the rules, i.e., it does not ensure that an
incorrect Rare rule does not compromise the correctness of proof certificates.

An incorrect rule can have severe consequences. First of all, it may affect the
ability of the solver to produce a proof certificate at all: if the incorrect rule does
not match what the solver code does, then the elaboration of the term rewriting
proof steps with Rare may fail. More concerningly, if both the code and the
proof rule are incorrect in the same way (perhaps because one was modeled
after the other), then proof elaboration may succeed, but the proof certificate
will be incorrect because it uses an invalid rule. This is especially problematic
when using proof checkers that consider proof rules as trusted—that is, they only
check whether rules are applied correctly and do not check the rules themselves.

There are two ways to fill this gap. One is to separately verify the proof rules;
another is to use a more sophisticated proof checker, for example, one embedded
in a skeptical interactive theorem prover, that will fail if an invalid rule is used.
In this paper, we introduce IsaRare, a new plugin for the Isabelle/HOL proof
assistant [27] (abbreviated to just Isabelle going forward), which can do the for-
mer and is a necessary step towards the latter. The plugin translates Rare rules
into the language of Isabelle where they can then be formally proved as lemmas.
Note that when using IsaRare simply as a rewrite rule verifier, the translation
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from Rare to Isabelle becomes another trusted component. We mitigate this by
reusing extensively-tested infrastructure in Isabelle for the translation.

To show the effectiveness of IsaRare, we implemented a large number of
new rules in Rare (beyond those in [28]) needed to elaborate term rewriting
steps in proofs generated by the cvc5 SMT solver [2]. We show that IsaRare
can translate all of these rules into corresponding lemmas in Isabelle and can
prove the majority of them automatically. In ongoing work, we are manually
providing proofs for the rest, and have already proven most of them.

Our long-term vision is to enable the full integration of cvc5 and Isabelle via
proof certificate reconstruction. Currently, Isabelle can send proof obligations to
cvc5, but it is unable to automatically reconstruct Isabelle proofs from cvc5’s
proof certificates. Our goal is to enable Isabelle to reconstruct every step in these
proof certificates. In order to reach this goal, it is essential to have rewrite lemmas
available for reconstructing rewrite steps, as they appear in almost all proofs, and
without dedicated support for discharging rewrite proof steps, reconstruction in
Isabelle can fail [11, 31].

In summary, we make the following contributions:

– we introduce IsaRare, an Isabelle plugin for generating correctness lemmas
for Rare rules;

– we add several new features to Rare itself and implement 163 new rewrite
rules in Rare, almost tripling the size of the rule database from [28];

– we evaluate IsaRare, showing that it can translate all of the Rare rules
into Isabelle lemmas and can prove the majority of them automatically.

In the rest of the paper, after surveying related work, we give an overview
of proof production and the interface to Isabelle (Section 2). Then, we present
the Rare language and our extensions (Section 3). We next introduce IsaRare
and explain the challenges in transforming a Rare rule to an Isabelle lemma
(Section 4). Finally, we present an evaluation of our approach (Section 5).

1.1 Related Work

Various attempts at proof production in SMT solvers have been implemented in
the past [7, 13, 14, 22, 25], though these implementations typically either pro-
duce proofs certificates that are too coarse-grained (that is, they do not provide
enough information for efficient proof checking) or produce them only if critical
components are disabled, making solving while producing proofs slow or incom-
plete. Producing complete, independently-checkable proofs remains challenging.

One major challenge is solved by the modular framework by Barbosa et al. [3].
It enables proof production during term rewriting and formula processing and
has been implemented in the SMT solver veriT [13] using the Alethe proof format
[32]. Hoenicke and Schindler [19] introduce an alternative approach, implemented
in the solver SMTInterpol [14], which also allows proof production for term
rewriting and formula processing. Both of these approaches assume that the
set of rewrite rules that can be used in proofs is fixed. Their sets include rules
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for rewriting over equality, rules for rewriting Boolean formulas, and rules for
reasoning about arithmetic. Notably absent, however, are rules for string and bit-
vector rewrites. In other work, Barbosa et al. [4] describe a general architecture
where the only holes in the generated proof certificates are those from rewrite
steps. One of their key ideas is to support lazy proof production via a post-
processing proof reconstruction step. This capability is leveraged in the work by
Nötzli et al. [28] to produce proofs for rewrite steps based on rules written in
Rare, which is the starting point for this work.

The interactive theorem prover Isabelle [30] includes a popular tool called
Sledgehammer [9], which encodes proof obligations as SMT problems and uses
SMT solvers to solve them. Sledgehammer currently supports proof reconstruc-
tion [12, 18] for two SMT solvers: z3 [26] and veriT [13]. However, z3 provides
only coarse-grained proofs, which can cause reconstruction to fail. This issue
was addressed for veriT by manually translating and proving correct in Isabelle
the predefined set of rewrite rules in Alethe [18, 31]. Our work improves on this
effort by providing an automatic mechanism for translating an extendable set of
rewrite rules into Isabelle and includes support for bit-vector and string rewrites
unsupported by veriT.

2 Preliminaries

2.1 Satisfiability Modulo Theories (SMT)

The underlying logic of SMT is many-sorted first-order logic with equality (see
e.g., [16]). A signature Σ consists of a set Σs⊆ S of sort symbols and a set Σf

of sorted function symbols with sorts from Σs. We assume the usual definitions
of well-sorted terms, literals, and formulas. We also use the usual definition of
interpretations and of a satisfiability relation |= between Σ-interpretations and
Σ-formulas. A Σ-theory T is a non-empty class of Σ-interpretations closed under
variable reassignment. A Σ-formula φ is T -satisfiable (resp., T -unsatisfiable, T -
valid) if it is satisfied by some (resp., no, all) interpretation(s) in T . For the rest
of the paper, we assume (un)satisfiability is always with respect to some given
background theory T .

2.2 SMT Proofs and Rewriting

A proof (of unsatisfiability) is a series of inference steps starting from an input
formula and terminating with ⊥, showing that the input formula is unsatisfiable.
The granularity of a proof step refers to how much reasoning it requires and
roughly corresponds to the complexity of checking that the step is correct. In
particular, steps (and thus the proofs containing them) are fine-grained if they
can be efficiently checked, and coarse-grained otherwise. We will often refer to
coarse-grained steps as holes.

One approach for the efficient production of proofs is to introduce coarse-
grained proof steps for certain performance-critical deductions made while solv-
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ing and then go back and fill in these holes with fine-grained steps as a post-
processing step. We refer to this as proof elaboration, and it is particularly appeal-
ing for rewriting steps, since SMT solvers have hundreds of different rewrites to
simplify and normalize terms, and instrumenting the rewriting code to produce
fine-grained proofs is difficult and may introduce an unacceptable degradation
in performance.

The approach taken by Nötzli et al. [28], and the one we also follow in this
paper, is to assume that the SMT solver uses generic proof steps for all rewrites
during solving and then elaborates these steps during post-processing by consult-
ing a database of specific rewrite rules. The database is constructed by defining
a set of rewrite rules in the domain-specific language Rare, which we discuss in
Section 3. The elaboration tries to find one or more rules from the database to
justify each generic, coarse-grained rewrite step. Additionally, it uses a built-in
evaluate rule to justify steps that hold purely via constant folding. If elabora-
tion is successful, the generic step is replaced by the fine-grained steps from the
database.

2.3 SMT in Isabelle

As mentioned above, Sledgehammer [9] is an Isabelle tactic that applies auto-
mated reasoning tools, including SMT solvers, to prove goals in Isabelle. When
targeting an SMT solver, the goal is encoded as an SMT-LIB [5] problem which
is unsatisfiable iff the goal is valid. Sledgehammer also selects facts that it thinks
will be relevant for solving the goal and includes encodings of them as well. The
problem is given to the solver which reports back to Sledgehammer whether it
was able to prove the goal [9]. Proving the goal externally, however, is not enough
since Isabelle is a skeptical proof assistant, in the sense that it does not trust
external solvers. Thus, a proof of the goal must somehow be constructed and
checked inside Isabelle.

Finding such a proof internally can be challenging. One useful technique is to
query the external solver for an unsat core, i.e., a subset of the facts it was given
that are sufficient to prove the goal valid. Sometimes, this information is enough
for Isabelle to search for an internal proof on its own. However, this process can
be greatly improved, if, instead of just communicating the result and the core
back to Sledgehammer, the solver also communicates a fine-grained proof. Then,
with the appropriate proof reconstruction machinery, each step in the proof can
be reconstructed as one or more steps using Isabelle’s internal inference engine.
As mentioned in Section 1.1, Sledgehammer can do this for proofs from the veriT
and z3 solvers, though the former supports only a limited set of theories, and
the latter produces only coarse-grained proofs.

Still, this means that Isabelle already has an integration with solvers sup-
porting the SMT-LIB standard and is able to translate to and from SMT-LIB
and internal terms. We build on this integration and extend it. Notice that such
an integration requires each SMT-LIB operator to be matched with a term in
Isabelle with the same semantics. Isabelle has built-in operators that match well
with those in the uninterpreted function and arithmetic SMT theories, and both
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formalisms support quantifiers [18]. However, Isabelle only has partial support
for bit-vector operators. A more complete development of bit-vectors in Isabelle
is described by Böhme et al. [11], but unfortunately, parts of their work (in-
cluding parsing bit-vector proofs) never made it into Isabelle and now appear to
be lost. As we describe below, part of our effort includes improving support for
SMT theories in Isabelle, including bit-vectors and strings.

2.4 Approximate Sorts

Rare rules are meant to be easy and effortless to write. This is not the case when
users have to specify sort information that is either inferable from the context or
too restrictive. As an example of the latter, consider any rewrite rules involving
bit-vector sorts. The SMT-LIB standard provides bit-vectors sorts that are pa-
rameterized by their size, or bit-width. However, to keep sort checking simple, it
requires all bit-widths in SMT-LIB scripts to be concrete as, for instance, in (_
BitVec 8). A similar argument applies to polymorphic sorts because, although
SMT-LIB allows the definition of theories with such sorts (such as, for instance,
array, set, and sequence sorts), it restricts scripts to monomorphic instantiations
of polymorphic sorts — e.g., (Set Int).

Unfortunately, these restrictions are too strong for Rare. They make it im-
possible, for example, to write any rewrite rule involving bit-vector terms that
is naturally parametric in the bit-width of those terms, or any rule involving
terms with a polymorphic sort. The ideal solution would then be to introduce
dependent types (or sorts, to maintain the SMT-LIB terminology) in Rare,
allowing both value and type parameters in sorts — e.g., (_ BitVec n) with n
an integer variable, and (Array A B) with A and B type variables. However, this
would make it difficult for SMT solvers, cvc5 included, to process Rare rules
since, effectively, they only support non-dependent, monomorphic sorts.

Rare’s compromise solution is to add instead approximate sorts to the sort
system, following an approach analogous to gradual typing in programming lan-
guages [33], a hybrid type-checking discipline where some program types are
checked statically and others are checked dynamically. In our case, where there
is no notion of dynamic checking, we have instead two sort-checking phases in
the SMT solver for Rare rules: (i) as the rules are read by the solver, when sort
checking is done with respect to the declared approximate sorts, and (ii) during
proof elaboration, when the approximate sorts in the Rare rules are matched
against the exact sorts in the proof steps that correspond to those rules.

Approximate sorts are obtained by extending the sort system of SMT-LIB
with a distinguished unknown value and a distinguished unknown sort, both
denoted by ?, that can be used in place of a value or parameter in a sort. This
allows the construction of approximate sorts such as (_ BitVec ?), (Set ?), and
(Array ? ?) (abbreviated as ?BitVec, ?Set, and ?Array), while still allowing pre-
cise sorts such as (_ BitVec 1), (Set Real), and (Array Int Real). Approximate
sorts can be used to approximate dependently-sorted/polymorphic rewrite rules,
as we see in the next section.
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⟨rule⟩ ::= ( define-rule ⟨symbol⟩ ( ⟨par⟩∗ ) [⟨defs⟩] ⟨expr⟩ ⟨expr⟩ )
| ( define-rule* ⟨symbol⟩ ( ⟨par⟩∗ ) [⟨defs⟩] ⟨expr⟩ ⟨expr⟩ [⟨expr⟩] )
| ( define-cond-rule ⟨symbol⟩ ( ⟨par⟩∗ ) [⟨defs⟩] ⟨expr⟩ ⟨expr⟩ ⟨expr⟩ )

⟨par⟩ ::= ⟨symbol⟩ ⟨sort⟩ [:list]

⟨sort⟩ ::= ⟨symbol⟩ | ? | ?⟨symbol⟩ | ( ⟨symbol⟩ ⟨numeral⟩+ )

⟨expr⟩ ::= ⟨const⟩ | ⟨id⟩ | ( ⟨id⟩ ⟨expr⟩+)

⟨id⟩ ::= ⟨symbol⟩ | ( ⟨symbol⟩ ⟨numeral⟩+ )

⟨binding⟩ ::= ( ⟨symbol⟩ ⟨expr⟩ )

⟨defs⟩ ::= ( def ⟨binding⟩+ )

Fig. 1: Overview of the grammar of Rare.

An additional advantage of this approach is that, by relieving the Rare user
from the burden of specifying the precise sort of variables in rewrite rules, it
makes them both easier to write and less error-prone. At the same time, the
loss of precision introduced by approximate sorts is not a serious hindrance in
practice: both the SMT solver, which relies on Rare rules for proof elaboration,
and IsaRare, which uses them during proof reconstruction, are able to infer the
exact sort represented by an approximate one thanks to their knowledge of the
(exact) sort of the constant and function symbols in the supported SMT theories.
Subsection 4.3 explains how IsaRare recovers exact sorts by type inference fully
automatically during the translation to Isabelle.

3 The RARE Language

The Rare language6 was introduced by Nötzli et al. [28]. As part of this work,
we have extended the language to be able to represent more rewrite rules. We
present the full updated language here and summarize the differences with [28]
at the end of the section.

A Rare file contains a list of rules whose syntax is defined by the grammar in
Figure 1. Expressions use SMT-LIB syntax with a few exceptions. These include
the use of approximate sorts for parameterized sorts (e.g., arrays and bit-vectors)
and the addition of a few extra operators (e.g., bvsize, described below). Rare
uses SMT-LIB 3 syntax [6], which is very close to SMT-LIB 2 and mostly differs
from its predecessor in that it uses higher-order functions for indexed operators.

We say that an expression e matches a match expression m if there is some
matching substitution σ that replaces each variable in m by a term of the same
sort to obtain e (i.e., mσ is syntactically identical to e). For example, the expres-
sion (or (bvugt x1 x2) (= x2 x3)), with variables x1, x2, x3, all of sort ?BitVec,
6 Rare comes from Rewrites, automatically reconstructed.
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matches (or (bvugt a b) (= b a)) but not (or (bvugt a b) (= c a)), with a,
b, and c bit-vector constant symbols of the same bit-width.

Rare Rules A Rare rewrite rule is defined with the define-rule command
which starts with a parameter list containing variables with their sorts. These
variables are used for matching as explained below. After an optional definition
list (see below), there follow two expressions that form the main body of the rule:
the match expression and the target expression. The semantics of a rule with
match expression m and target expression t is that any expression e matching
m under some sort-preserving matching substitution σ can be replaced by tσ.
With approximate sorts, the sort preservation requirement is relaxed as follows.
In Rare, for any sort constructor S of arity n > 0, there is a corresponding
approximate sort (S ? · · · ?) with n occurrences of ? which is always abbreviated
as ?S. A variable x with sort ?S (e.g., ?BitVec) in a match expression matches
all expressions whose sort is constructed with S (e.g., (BitVec 1), (BitVec 2),
and so on). Variables with sort ? match expressions of any sort.

An optional definition list may appear in a Rare rule immediately after
the parameter list. It starts with the keyword def and provides a list of local
variables and their definitions, allowing the rewrite rule to be expressed more
succinctly. A rule with a definition list is equivalent to the same rule without it,
where each variable in the definition list has been replaced by its corresponding
expression in the body of the rule. For a rule to be well-formed, all variables in
the match and target expressions must appear either in the parameter list or the
definition list. Similarly, each variable in the parameter list must appear in the
match expression (while this second requirement could be relaxed, it is useful
for catching mistakes). Consider the following example.

(define-rule bv-sign-extend-eliminate ((x ?BitVec) (n Int))
(def (s (bvsize x)))
(sign_extend n x) (concat (repeat n (extract (- s 1) (- s 1) x)) x))

In this rule, there are two parameters, x and n. The sort annotation ?BitVec
indicates that x is a bit-vector without specifying its bit-width. The latter is
stored in the local variable s using the bvsize operator. The rule says that a
(sign_extend n x) expression can be replaced by repeating n times the most
significant bit of x and then prepending this to x.

The define-cond-rule command is similar to define-rule except that it has
an additional expression, the condition, immediately after the parameter and
definition lists. This restricts the rule’s applicability to cases where the condition
can be proven equivalent to true under the matching substitution. In the example
below, the condition (> n 1) can be verified by evaluation since in SMT-LIB,
the first argument of repeat must be a numeral.

(define-cond-rule bv-repeat-eliminate-1 ((x ?BitVec) (n Int))
(> n 1) (repeat n x) (concat x (repeat (- n 1) x)))

Note that the rule does not apply to terms like (repeat 1 t) or (repeat 0 t).
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Fixed-point Rules The define-rule* command defines rules that should be
applied repeatedly, to completion. This is useful, for instance, in writing rules
that iterate over the arguments of n-ary operators. Its basic form, with a body
containing just a match and target expression, defines a rule that, whenever is
applied, must be applied again on the resulting term until it no longer applies.

The user can optionally supply a context to control the iteration. This is
a third expression that must contain an underscore. The semantics is that the
match expression rewrites to the context expression, with the underscore re-
placed by the target expression. Then the rule is applied again to the target
expression only. In the example below, the :list modifier is used to represent
an arbitrary number of arguments, including zero, of the same type.

(define-rule* bv-neg-add ((x ?BitVec) (y ?BitVec) (zs ?BitVec :list))
(bvneg (bvadd x y zs)) (bvneg (bvadd y zs)) (bvadd (bvneg x) _))

This rule rewrites a term (bvneg (bvadd s t · · ·)) to the term (bvadd (bvneg s)
r) where r is the result of recursively applying the rule to (bvneg (bvadd t · · ·)).

Changes to Rare Here, we briefly mention the changes to Rare with respect
to [28]. First, we have support for a richer class of approximate sorts, including
approximate bit-vector and array sorts. Also, we replaced the let construct by
the new def construct. The definition list is more powerful as it applies to the
entire rest of the body (whereas let was local to a single expression).

Additionally, to aid with bit-vector rewrite rules, we added several operators:
bvsize, which returns the width of an expression of sort ?BitVec; bv, which
takes a integer n and natural w, and returns a bit-vector of width w and value
n mod 2w; int.log2 which returns the integer (base 2) logarithm of an integer,
and int.islog2, which returns true iff its integer argument is a power of 2.

We also removed the :const modifier, which was used previously to indicate
that a particular expression had to be a constant value. We found that this
adds complexity and is usually unnecessary. For rules that actually manipulate
specific constant values, we can specify those values explicitly, e.g., by using the
bv operator above.

4 IsaRare: from Rare Rewrites to Isabelle Lemmas

In this section, we introduce IsaRare, a plugin for Isabelle that automatically
translates a Rare rule into an Isabelle lemma stating the correctness of the
rule. Being able to generate such lemmas automatically is highly desirable, as
Rare rules may be added and/or changed frequently for a given solver, or differ
significantly between solvers, and manually translating Rare rules into lemmas
is time-consuming and error-prone. IsaRare can also suggest a proof sketch
which is sometimes sufficient to prove the lemma. If this automatic proof fails,
the user must provide the proof or determine that the lemma does not hold. In
the latter case, Isabelle’s counterexample-finder Nitpick [10] can be helpful.

10 Using SMT Proofs in Isabelle
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(define-cond-rule str-len-replace-inv ((t String) (s String) (r String))
(= (str.len s) (str.len r))
(str.len (str.replace t s r)) (str.len t))

lemma s t r _ len _ replace _ inv :
f i x e s t : : s t r i n g and s : : s t r i n g and r : : s t r i n g
shows " smtlib _ s t r _ len s = smtlib _ s t r _ len r −→

smtlib _ s t r _ len ( smtlib _ s t r _ replace t s r ) = smtlib _ s t r _ len t "

Fig. 2: Rare rule and corresponding lemma.

Figure 2 shows an example of a Rare rule (which simplifies the length of
the result of a string replacement) and the Isabelle lemma generated from it by
IsaRare. Roughly speaking, a rule with parameters x1, . . . , xm, definition list
((y1 d1) · · · (yn dn)), condition c, match expression s, and target expression t
is converted by IsaRare into a lemma of the form ∀x1, . . . , xm. (c ⇒ s = t)σ
where σ is the substitution {y1 7→ d1, . . . , yn 7→ dn}. Type inference in Isabelle
is used to suitably instantiate the ? wildcards in any approximate sorts in the
rules.

Next we discuss the main challenges we encountered while implementing the
translation from Rare to Isabelle.

4.1 Adding New Theories

Since IsaRare uses Isabelle’s SMT-LIB parser, it was necessary to extend it
to handle SMT theories not previously supported and, in case there was no
corresponding Isabelle theory, to define new types, definitions and theorems cor-
responding to the SMT-LIB theory. For sets and arrays, Isabelle already provides
the required data structures (Set . s e t and Map.map respectively) and definitions
(e.g., union, and s t o r e). Translation from the SMT operators and types is thus
straightforward, requiring only simple extensions to the parser.

The SMT-LIB parser also had to be extended for the operators and sorts
of the SMT-LIB theory of strings. String terms are represented with Isabelle’s
HOL. s t r i n g , and regular expressions are represented as sets of strings. We de-
veloped a new theory with auxiliary definitions and theorems meant to facilitate
the proving of lemmas generated by IsaRare. Since strings are defined as lists
of characters, we were able to reuse many list operators for our definitions. For
example, string concatenation is defined as concatenation of lists.

As mentioned, bit-vectors are encoded in Isabelle using the word type, which
represents integers modulo 2n, where n is a type parameter (see Subsection 4.3).
Isabelle has support for reasoning about this type, but we still had to provide a
number of extensions. For example, to translate bit-vector rewrite rules, we had
to extend Isabelle’s SMT-LIB parser significantly. We added support for all of
the standard SMT-LIB operators, as well as some additional operators that cvc5
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(define-rule bv-extract-extract
((x ?BitVec) (i Int) (j Int) (k Int) (l Int)))
(extract l k (extract j i x)))
(extract (+ i l) (+ i k) x))

(a) A Rare rule

t0 = (extract j i x) ∧
size t0 = j + 1 - i ∧
t1 = (extract l k t0) ∧
size t1 = l + 1 - k ∧
t2 = (extract ( i+l ) ( i+k) x) ∧
size t2 = ( i+l ) + 1 - ( i+k) ∧
j < size x ∧ 0 ≤ i ∧ i ≤ j ∧
l < size t0 ∧ 0 ≤ k ∧ k ≤ l ∧
( i+l ) < size x ∧ 0 ≤ ( i+k) ∧
( i+k) ≤ ( i+l )

(b) Additional Assumptions

Fig. 3: Implicit Assumption Generation

supports, such as bvuaddo (which checks for overflow from unsigned addition). It
was also necessary to add several new definitions and basic theorems to Isabelle,
for example for reasoning about the e x t r a c t operator.

4.2 Mismatch between Isabelle and SMT-LIB operators

An important challenge for the translation concerns the mismatch between
SMT-LIB operators and Isabelle functions. One of the main difficulties concerns
implicit assumptions. As an example, consider the bit-vector extract operator.
The term (extract i j t) denotes the sub-vector of bit-vector t from index i
through index j, where i is the more significant index. SMT-LIB specifies that
the second index j must be at most i, and both indices must be in the range
[0, n), where n is the bit-width of t — making the result a bit-vector of width
i+1− j. These assumptions are necessary to correctly capture the semantics of
SMT-LIB’s extract since the extract operator in Isabelle is more permissive.

There are several ways to address this issue. First, we could make the implicit
assumptions explicit in the Rare rules. However, this would be tedious and
error-prone and would greatly clutter the Rare rules. It is also superfluous to
always manually add them since the constraints are inherent in the SMT-LIB
semantics. A second option is to write custom definitions for SMT-LIB operators
in Isabelle that exactly match the SMT-LIB semantics (i.e., are undefined if the
implicit assumptions do not hold). The main disadvantage of this approach is
that it complicates proving the translated Rare rules, as those proofs cannot
directly use any existing Isabelle lemmas that use the standard definitions. It
also works against one of our long-term goals, which is to be able to use proof
reconstruction to provide proofs for Isabelle conjectures, conjectures which will
naturally use the existing Isabelle operators.

The last option, which we adopted, is to automatically add the implicit as-
sumptions during the translation of Rare rules to Isabelle lemmas. This does
make the lemmas a bit more complicated, but it is the minimal complexity
needed to bridge the semantic gap between the two extract operators. And, we
can be confident that these implicit assumptions will easily be discharged when
using the lemmas for proof reconstruction, since SMT proofs only use operators

10 Using SMT Proofs in Isabelle
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in ways that are consistent with SMT-LIB semantics (unless there is a bug, in
which case proof reconstruction should fail). Figure 3 shows an example of a
Rare rule with three applications of the extract operator, together with the
assumptions added by IsaRare.

In a few cases, we had to fall back on the custom definition approach. For
example, we had to do this for the bit-vector concat operator for bit-vector
concatenation. To see why, note that the SMT-LIB operator can take two or
more arguments (abbreviating nested binary applications), each with arbitrary
bit-width. Recall that the :list annotation in Rare can be used to specify
a variable number of arguments. There is no way to even state lemmas cor-
responding to rewrite rules involving concatenations of a variable number of
arguments in Isabelle using its built-in binary concatenation operator. For this
case, we thus define a custom concatenation operator that matches the SMT-
LIB semantics. The implicit assumption that the bit-width of the result is the
sum of the bit-widths of the arguments is embedded in the custom definition.
Using the new definition, we can translate the problematic rules into Isabelle
lemmas. As expected, proving these lemmas requires extra work. Specifically, it
requires formulating and proving bridging theorems between Isabelle’s built-in
concatenation operator and the new one we defined.

4.3 Supporting Approximate Sorts

With the addition of approximate sorts to Rare, we had to extend Isabelle’s
SMT-LIB translator to support them. We observe that Isabelle/HOL is not
based on a dependently-typed logic. However, it supports an encoding of sorts
depending on integer values into polymorphic types with parameters that range
over types expressing ordinals. In particular, bit-vectors of width w are repre-
sented by the type ( n word ) of integers modulo 2w; for instance, 3 : : ( 8 word )
represents an integer with value 3 modulo 28. In fact, thanks to polymorphism,
it is possible for the bit-width to be a type variable (e.g., 3 : : ( ' a : : len word )).
Note that this is more precise than allowing the bit-width in the type to be com-
pletely unknown, as in approximate sorts: with type parameters one can state,
for instance, that two terms of unknown bit-width have the same width, whereas
two terms both of sort ?BitVec may have different bit-widths.

Conveniently then, all the approximate sorts in Rare correspond to poly-
morphic types in Isabelle. For instance, ?BitVec corresponds to ' a word and
?Array corresponds to ( ' a , ' b ) map where ' a and ' b are type variables. During
parsing, each occurrence of a approximate sort is converted into an instance of
the corresponding polymorphic type obtained by instantiating each sort vari-
able with a fresh dummy type. For some bit-vector operators, the output sort
is dependent on the input sorts (e.g., extract and concat as mentioned above).
For applications of such operators, we also use a dummy type for the bit-width
of each argument for which the width is not known. Once translation is done,
we use Isabelle’s type inference algorithm to concretize each dummy type to a
monomorphic one. For example, during translation of the rule bv-ugt-eliminate
below, the variables x and y would both be assigned dummy types.
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(define-rule bv-ugt-eliminate ((x ?BitVec) (y ?BitVec))
(bvugt x y) (bvult y x)

)

However, bvugt requires that both of its arguments be bit-vectors of the same
width in SMT-LIB. This restriction is either already present in the definition
in Isabelle that we map an operator to, or added during parsing as an implicit
assumption, as we describe in Section 4.2. The type inference algorithm then
computes the most general type for x and y that satisfies all assumptions. In this
case, it correctly infers that they are bit-vectors of arbitrary but equal bit-width.

4.4 List Parameters

As mentioned earlier, SMT-LIB supports multi-arity syntax for certain binary
operators, and Rare supports a variable number of arguments via the :list
annotation. In contrast, in Isabelle all operators are fixed-arity. To facilitate the
translation in these cases we added a new datasort, ' a r a r e _ L i s t V a r , with a
single constructor L i s t V a r : : ' a l i s t → ' a r a r e _ L i s t V a r to encapsulate multi-
ple arguments in a list. We also introduced two second-order operators, called
r a r e _ l i s t _ l e f t and r a r e _ l i s t _ r i g h t , to encode Rare left-associative and right-
associative operators, respectively. As an example, a Boolean term of the form
(and x1 · · · xn y z) is translated to the Isabelle term ( r a r e _ l i s t _ r i g h t (∧ )
( L i s t V a r [x1, . . . , xn ] ) (y ∧ z ) ) . The r a r e _ l i s t _ l e f t and r a r e _ l i s t _ r i g h t
functionals fold the operator passed as first argument over the list stored in their
second argument to obtain properly nested binary applications. For example, if
n = 2, the Isabelle term above is translated to (x1 ∧ (x2 ∧ (y ∧ z ) ) ) .

For every multi-arity SMT-LIB operator, we prove that it can be built up
from Isabelle’s built-in binary version using f o l d ( r ) functions. For Rare rules
with list parameters, these transfer lemmas become part of the correctness proof
automatically generated by IsaRare. When proving the corresponding lemma,
we can take advantage of the many lemmas in Isabelle’s libraries about fold
functions without having to know the internals of the translation process.

If we have a Rare rule in which all arguments to an operator are lists, we
must handle the special case when the lists are all empty. When the operator
has an identity element, we return that. For example, applications of and to just
empty lists are translated as standing for true. So far, we have only encoun-
tered one operator without an identity: bit-vector concatenation. Since neither
SMT-LIB nor Isabelle support bit-vectors of bit-width 0, for that operator, we
explicitly add an assumption ruling out the case where all lists are empty.

4.5 Writing Lemmas and their Proofs

To generate a lemma from a Rare rewrite rule, IsaRare first introduces the pa-
rameters with their types using Isabelle’s f i x e s construct. Next, it generates the
statement of the lemma, the goal, which states that the implicit assumptions and
conditions imply the equality of the match and target terms. The types of any
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bit-vector constants are fully specified (via type ascription), because otherwise
the lemma may be too general and not hold.

Lastly, IsaRare adds an Isabelle proof of the lemma. For lemmas that do not
contain lists, this is simply a call to the main automatic tactic auto. Otherwise,
the list constructs are eliminated as explained above, and any transfer lemmas
are applied to the resulting terms. This ensures that goals will not contain any
IsaRare list definitions. We then invoke induction for every list and use the
simp_ a l l tactic to attempt to solve and simplify the goals.

The proof is printed in apply style so that it can be easily modified and com-
pleted manually if Isabelle is unable to discharge all its sub-goals automatically.

4.6 Availability

IsaRare currently supports the theories of uninterpreted functions, linear arith-
metic, bit-vectors, arrays, strings, and sets. It is publicly available7 under the
BSD 3-Clause license. We plan to submit IsaRare to the Archive of Formal
Proofs [20]. We have also been working with the Isabelle maintainers to have
our extensions to Isabelle itself (e.g., to the SMT-LIB parser) included in the
official Isabelle distribution. Many features were already included in the lat-
est release. IsaRare requires the Word_Lib library (which is also included in
the Archive of Formal Proofs) if it is used on Rare rules containing bit-vector
operators not present in Isabelle itself.

5 Evaluation and Experience

We used IsaRare to help develop, translate, and verify new Rare rewrite rules.
These rules were designed to address coarse-grained rewrite steps appearing
in cvc5 proofs, i.e., steps that could not be elaborated into fine-grained steps
using the existing Rare rules and the approach mentioned in Section 2.2. In
this section, we report on this experience and also discuss challenges arising
from particular rewrites and theories.

5.1 Impact of New Rewrites on cvc5 Proof Holes

Previous work developed 85 Rare rules for cvc5 [28]. For our evaluation, we
ran cvc5 with these plus our 163 new rules, bringing the total number of Rare
rules in the cvc5 database to 248. We evaluated the impact of the new rules on
cvc5’s ability to produce fine-grained proof steps by comparing the success rate
of the elaboration (i.e., percentage of rewriting proof steps that are successfully
elaborated into fine-grained steps) before and after the addition of the new rules.
We ran cvc5 on 70,709 unsatisfiable benchmarks, as determined by cvc5 [2,
Sec. 4], in the SMT-LIB logics containing quantifier-free problems with equality
and uninterpreted functions, arrays, linear arithmetic, strings, and bit-vectors.
7 https://github.com/cvc5/IsaRARE
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rewrites

theory old new proven autoproven

EUF 22 43 43 37
Arithmetic 23 22 22 14
Sets 0 7 7 7
Arrays 0 4 4 4
Strings 40 57 57 37
Bit-vectors 0 115 84 62

Table 1: Rule and rule verification counts per theory

The results were generated with a cluster equipped with 16 x Intel(R) Xeon(R)
CPU E5-2637 v4 @ 3.50GHz, 62.79 GiB RAM machines, with one core per
solver/benchmark pair, 1200s time limit, and 8gb memory limit.

For string benchmarks (the only set evaluated in [28]), the success rate went
from 92% to 98%. Results on the logics with equality and uninterpreted func-
tions, arrays, and linear arithmetic were similar. By far the most challenging
theory, in terms of rewrite rules, is the bit-vector theory. Prior to our work,
there were no Rare rules for this theory, so no bit-vector rewrite steps could
be turned into fine-grained steps. With our 115 new Rare rules for bit-vectors,
92% of coarse-grained bit-vector rewrite steps are successfully elaborated into
fine-grained steps. We see this as tremendous progress towards full fine-grained
proofs for bit-vector problems.

5.2 Translating and Verifying Rewrites

In Table 1, we list the number of new rules in each theory, distinguishing between
how many were there before (old) and the total including both the old rules and
our new rules (new).8 We also show how many of the lemmas we have successfully
proven and how many of these were done automatically, i.e., either by the proof
suggested by IsaRare or by a single call to Sledgehammer. The proven column
shows that all non-bit-vector rules as well as most of the bit-vector rules have
now been proven. The numbers in the last column show that most of the proofs
were provided automatically by IsaRare.

For the theory of strings, the number of lemmas automatically proven is not
clear-cut. For other theories, libraries with useful background lemmas already
existed, but for strings we had to add many new general-purpose lemmas our-
selves and then decide whether these should count as background lemmas or as
part of the proof effort for a rewrite rule. We were rather conservative in that
decision, i.e., we did not count a lemma as automatically proved if it used a
lemma whose classification as a background lemma was in doubt. Many of the
8 Consolidation in the set of arithmetic rules actually resulted in one fewer rule than

existed previously.
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translated string rewrites had to be proved manually because they required in-
duction on string length, especially since many operators are defined inductively.
However, we found that most of these manual proofs were fairly easy once an
appropriate induction variable was selected.

There are no performance issues—IsaRARE translates most files in millisec-
onds. Even for our biggest RARE database, the one containing bit-vector rules,
IsaRARE took only around 1-2 seconds on our machine.

5.3 Bugs Found in String Rules

We found several bugs in the existing Rare rules for strings by using Isabelle’s
counterexample finder Nitpick [10] on the translated Isabelle lemmas. We diag-
nosed and fixed each of them, so that now they can all be verified.9 The bugs
fall into three main categories.
Misinterpreted Semantics: The str.substr operator takes three arguments and
returns the substring of the first argument, starting at the position given by the
second argument, and continuing for the number of characters specified by the
third argument. The following (corrected) rule simplifies a substring expression
to the empty string whenever the third argument is 0 or negative.

(define-cond-rule str-substr-empty-range ((x String) (n Int) (m Int))
(>= 0 m) (str.substr x n m) "")

However, the first version of the rule had the wrong condition: (>= n m) rather
than (>= 0 m). This is likely due to the rule’s author mistaking the third argu-
ment of str.substr for an absolute index instead of a relative offset.
Forgotten Condition: The corrected rule below says that, under some assump-
tions, the length of a substring term is equal to the offset (third) argument.

(define-cond-rule str-len-substr-in-range ((s String) (n Int) (m Int))
(and (>= n 0) (>= m 0) (>= (str.len s) (+ n m)))
(str.len (str.substr s n m)) m)

The earlier version of the rule did not include the condition (>= m 0). This how-
ever, makes it unsound, because according to the semantics of str.substr, if the
offset is negative, the result is just the empty string. This led to a counterex-
ample with a negative value for m. Note that this condition is not automatically
added by IsaRare since str.substr is defined for negative offsets.

Misunderstanding the Rewrite: One rule was designed to closely mirror a
piece of cvc5 code implementing a rewrite, but it failed to properly capture all
cases. The code involved included several conditionals resulting in two different
ways a term could be rewritten. The original rule only captured one of the two
cases and even missed one of the conditions for the case it included. Since this
rule was quite complex and was only incorrect for some corner cases, it would
have been challenging to find this bug without our verification effort.
9 Fortunately, none of the bugs in rules corresponded to buggy code in cvc5 itself.

However, cvc5 could have used those rules to construct incorrect proofs.

279



IsaRare: Automatic Verification of SMT Rewrites in Isabelle/HOL 17

5.4 Bit-vector Rewrite Rules

Bit-vector theory solvers make extensive use of rewriting, employing large num-
bers of rewrite rules. In order to define Rare rules for cvc5’s bit-vector theory,
we began by analyzing the cvc5 rewriting code, which implements a total of
99 rewrite methods. We then wrote Rare rules to try to capture the behavior
of these methods. There are 5 methods that are too complex to be captured by
Rare (or by any straightforward extension of it). For each of these, we instead
added new hard-coded proof rules to the cvc5 proof rule database.10 These
hard-coded proof rules are not included in Table 1, but they are used to help
demonstrate the overall progress on SMT-LIB proofs (Section 5.1). The long-
term plan for reconstruction of proofs using these rules is to write custom Isabelle
tactics for reconstructing those proof steps.

Unlike with the string rules, where we applied IsaRare to already-written
rules, we used IsaRare extensively to help debug the bit-vector rules as they
were being written. We were able to quickly and easily find many kinds of mis-
takes this way. For example, rule authors mixed up bvneg (unary 2’s complement
negation) and bvnot (bit-wise Boolean negation). In other cases, rules used in-
consistent bit-widths. The type inference that IsaRare performs is particularly
helpful in such cases, as it is stricter than the cvc5 Rare parser.

Many of the bit-vector rules can be proved automatically, but others must
be proved manually and are quite challenging, especially those involving signed
arithmetic or division. Despite this, as shown in Table 1, the process of manually
proving the full set of bit-vector lemmas is largely complete. This is important
for our long-term goal of reconstructing SMT proofs in Isabelle.

6 Conclusion

We presented IsaRare, a tool providing an automatic pipeline for verifying
rewrite rules. We showed the effectiveness of our approach by proving the cor-
rectness of a large number of rewrite rules used in cvc5 proofs. Our experiments
show that many lemmas can be proved with minimal user interaction.

This work is also part of a long-term project that aims to further automate
proof search in Isabelle. The goal is to be able to reconstruct any cvc5 proof in
Isabelle’s internal inference engine. This, of course, also includes reconstructing
rewrite steps. The lemmas IsaRare generates are directly applicable to this
effort. We plan to provide a detailed description and evaluation of this larger
effort in future work.

Data Availability Statement The datasets generated and analyzed during the
current study are available in the Zenodo repository: https://zenodo.org/
records/10048664 [24].

10 This is analogous to the handling of polynomial normalization in [28].
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