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theory DPLL-W

imports
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begin

0.1 Weidenbach’s DPLL
0.1.1 Rules

type-synonym ‘a dplly -ann-lit = (‘a, unit) ann-lit
type-synonym ‘a dplly -ann-lits = ('a, unit) ann-lits
type-synonym v dplly -state = "v dplly -ann-lits X v clauses

abbreviation trail :: "v dplly -state = "v dplly -ann-lits where
trail = fst

abbreviation clauses :: 'v dpllyy -state = 'v clauses where
clauses = snd

inductive dplly :: v dplly -state = v dplly -state = bool where

propagate: add-mset L C' €# clauses S = trail S |=as CNot C = undefined-lit (trail S) L

= dpllw S (Propagated L () # trail S, clauses S) |
decided: undefined-lit (trail S) L = atm-of L € atms-of-mm (clauses S)
= dpllw S (Decided L # trail S, clauses S) |

backtrack: backtrack-split (trail S) = (M', L # M) = is-decided L = D €# clauses S

= trail S [=as CNot D = dplly S (Propagated (— (lit-of L)) () # M, clauses S)

0.1.2 Invariants

lemma dpllyy -distinct-inv:

assumes dpllyy S S’

and no-dup (trail S)

shows no-dup (trail S')

using assms
proof (induct rule: dplly .induct)

case (decided L S)

then show ?case using defined-lit-map by force
next

case (propagate C' L S)



then show ?Zcase using defined-lit-map by force
next
case (backtrack S M' L M D) note extracted = this(1) and no-dup = this(5)
show ?Zcase
using no-dup backtrack-split-list-eq[of trail S, symmetric] unfolding extracted
by (auto dest: no-dup-appendD)
qed

lemma dpllyy -consistent-interp-inv:
assumes dplly S S’
and consistent-interp (lits-of-l (trail S))
and no-dup (trail S)
shows consistent-interp (lits-of-1 (trail S’))
using assms
proof (induct rule: dplly .induct)
case (backtrack S M’ L M D) note extracted = this(1) and decided = this(2) and D = this(4) and
cons = this(5) and no-dup = this(6)
have no-dup’: no-dup M
by (metis (no-types) backtrack-split-list-eq distinct.simps(2) distinct-append extracted
list.simps(9) map-append no-dup snd-conv no-dup-def)
then have insert (lit-of L) (lits-of-1 M) C lits-of-1 (trail S)
using backtrack-split-list-eq|of trail S, symmetric] unfolding extracted by auto
then have cons: consistent-interp (insert (lit-of L) (lits-of-l M))
using consistent-interp-subset cons by blast
moreover have undef: undefined-lit M (lit-of L)
using no-dup backtrack-split-list-eq[of trail S, symmetric] unfolding extracted by force
moreover have lit-of L ¢ lits-of-l M
using undef by (auto simp: Decided- Propagated-in-iff-in-lits-of-I)
ultimately show ?case by simp
qed (auto intro: consistent-add-undefined-lit-consistent)

lemma dpllyy -vars-in-snd-inv:
assumes dplly S S’
and atm-of ¢ (lits-of-l (trail S)) C atms-of-mm (clauses S)
shows atm-of ¢ (lits-of-1 (trail S7)) C atms-of-mm (clauses S’)
using assms
proof (induct rule: dplly .induct)
case (backtrack S M' L M D)
then have atm-of (lit-of L) € atms-of-mm (clauses S)
using backtrack-split-list-eq|of trail S, symmetric] by auto
moreover
have atm-of  lits-of-1 (trail S) C atms-of-mm (clauses S)
using backtrack(5) by simp
then have Azb. zb € set M = atm-of (lit-of xb) € atms-of-mm (clauses S)
using backtrack-split-list-eq[symmetric, of trail S] backtrack.hyps(1)
unfolding lits-of-def by auto
ultimately show ?case by (auto simp : lits-of-def)
qed (auto simp: in-plus-implies-atm-of-on-atms-of-ms)

lemma atms-of-ms-lit-of-atms-of: atms-of-ms (unmark ‘ ¢) = atm-of ‘ lit-of “ ¢
unfolding atms-of-ms-def using image-iff by force

theorem 2.8.3 page 86 of Weidenbach’s book

lemma dplly -propagate-is-conclusion:
assumes dpllyy S S’
and all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))



and atm-of ‘ lits-of-1 (trail S) C atms-of-mm (clauses S)
shows all-decomposition-implies-m (clauses S”) (get-all-ann-decomposition (trail S’))
using assms
proof (induct rule: dplly .induct)
case (decided L S)
then show ?case unfolding all-decomposition-implies-def by simp
next
case (propagate L C S) note inS = this(1) and cnot = this(2) and TH = this(4) and undef =
this(3) and atms-incl = this(5)
let ?I = set (map unmark (trail S)) U set-mset (clauses S)
have ?I |=p add-mset L C by (auto simp add: inS)
moreover have ?I =ps CNot C using true-annots-true-clss-cls cnot by fastforce
ultimately have 71 |=p {#L#} using true-clss-cls-plus-CNot[of ?I L C|] inS by blast
{
assume get-all-ann-decomposition (trail S) = []
then have ?case by blast
}
moreover {
assume n: get-all-ann-decomposition (trail S) # ||
have 1: Aa b. (a, b) € set (¢l (get-all-ann-decomposition (trail S)))
= (unmark-l a U set-mset (clauses S)) [=ps unmark-1 b
using IH unfolding all-decomposition-implies-def by (fastforce simp add: list.set-sel(2) n)
moreover have 2: Aa c. hd (get-all-ann-decomposition (trail S)) = (a, ¢)
= (unmark-l a U set-mset (clauses S)) Eps (unmark-l c)
by (metis IH all-decomposition-implies-cons-pair all-decomposition-implies-single
list.collapse n)
moreover have 3: Aa c. hd (get-all-ann-decomposition (trail S)) = (a, )
= (unmark-l a U set-mset (clauses S)) Ep {#L#}
proof —
fix a c
assume h: hd (get-all-ann-decomposition (trail S)) = (a, ¢)
have h': trail S = ¢ @ a using get-all-ann-decomposition-decomp h by blast
have I: set (map unmark a) U set-mset (clauses S)
U unmark-l ¢ =ps CNot C
using «?I =ps CNot C) unfolding h’ by (simp add: Un-commute Un-left-commute)
have
atms-of-ms (CNot C) C atms-of-ms (set (map unmark a) U set-mset (clauses S))
and
atms-of-ms (unmark-l ¢) C atms-of-ms (set (map unmark a)
U set-mset (clauses S))
using atms-incl cnot
apply (auto simp: atms-of-def dest!: true-annots-CNot-all-atms-defined; fail)]]
using inS atms-of-atms-of-ms-mono atms-incl by (fastforce simp: h’)

then have unmark-l a U set-mset (clauses S) [Eps CNot C
using true-clss-clss-left-right|OF - I] h 2 by auto
then show unmark-l a U set-mset (clauses S) |Ep {#L#}
using inS true-clss-cls-plus-CNot true-clss-clss-in-imp-true-clss-cls union-trus-clss-clss
by blast
qed
ultimately have ?case
by (cases hd (get-all-ann-decomposition (trail S)))
(auto simp: all-decomposition-implies-def)
}

ultimately show ?case by auto
next



case (backtrack S M’ L M D) note eztracted = this(1) and decided = this(2) and D = this(3) and
cnot = this(4) and cons = this(4) and IH = this(5) and atms-incl = this(6)
have S: trail S = M'Q L # M
using backtrack-split-list-eq|of trail S] unfolding extracted by auto
have M": V1 € set M'. —is-decided |
using extracted backtrack-split-fst-not-decided[of - trail S] by simp
have n: get-all-ann-decomposition (trail S) # [| by auto
then have all-decomposition-implies-m (clauses S) (L # M, M)
# tl (get-all-ann-decomposition (trail S)))
by (metis (no-types) IH extracted get-all-ann-decomposition-backtrack-split list.exhaust-sel)
then have I: unmark-1 (L # M) U set-mset (clauses S) Eps(Aa.{F#lit-of a#}) ¢ set M’
by simp
moreover
have unmark-l (L # M) U unmark-l M' =ps CNot D
by (metis (mono-tags, lifting) S Un-commute cons image-Un set-append
true-annots-true-clss-clss)
then have 2: unmark-l (L # M) U set-mset (clauses S) U unmark-l M’
Eps CNot D
by (metis (no-types, lifting) Un-assoc Un-left-commute true-clss-clss-union-l-r)
ultimately
have set (map unmark (L # M)) U set-mset (clauses S) =ps CNot D
using true-clss-clss-left-right by fastforce
then have set (map unmark (L # M)) U set-mset (clauses S) =p {#}
by (metis (mono-tags, lifting) D Un-def mem-Collect-eq
true-clss-clss-contradiction-true-clss-cls-false)
then have IL: unmark-l M U set-mset (clauses S) =p {#—lit-of L#}
using true-clss-clss-false-left-right by auto
show ?case unfolding S all-decomposition-implies-def
proof
fix x P level
assume z: z € set (get-all-ann-decomposition
(fst (Propagated (— lit-of L) P # M, clauses S)))
let ?M’ = Propagated (— lit-of L) P # M
let ?hd = hd (get-all-ann-decomposition ?M’)
let ?tl = tl (get-all-ann-decomposition M)
have z = ?hd V z € set 2l
using z
by (cases get-all-ann-decomposition ?M’)
auto
moreover {
assume z”: x € set %t
have L" Decided (lit-of L) = L using decided by (cases L, auto)
have z € set (get-all-ann-decomposition (M' Q L # M))
using z’ get-all-ann-decomposition-except-last-choice-equal[of M’ lit-of L P M|
L’ by (metis (no-types) M’ list.set-sel(2) tl-Nil)
then have case = of (Ls, seen) = unmark-l Ls U set-mset (clauses S)
Eps unmark-l seen
using decided IH by (cases L) (auto simp add: S all-decomposition-implies-def)
}
moreover {
assume z": x = ?hd
have tl: tl (get-all-ann-decomposition (M’ Q L # M)) # ||
proof —
have f1: A\ms. length (get-all-ann-decomposition (M’ @ ms))
= length (get-all-ann-decomposition ms)
by (simp add: M’ get-all-ann-decomposition-remove-undecided-length)



have Suc (length (get-all-ann-decomposition M)) # Suc 0
by blast
then show ?thesis
using f1[of (L # M) decided by (cases (get-all-ann-decomposition
(M'@ L # M)); cases L) auto
qed
obtain M0’ M0 where
LO: hd (tl (get-all-ann-decomposition (M' Q L # M))) = (M0, M0’)
by (cases hd (tl (get-all-ann-decomposition (M’ Q L # M))))
have z"": © = (M0, Propagated (—lit-of L) P # MO0')
unfolding z’ using get-all-ann-decomposition-last-choice t{ M’ L0
by (smt is-decided-ex-Decided lit-of .simps(1) local.decided old.unit.exhaust)
obtain [-get-all-ann-decomposition where
get-all-ann-decomposition (trail S) = (L # M, M') # (M0, M0') #
l-get-all-ann-decomposition
using get-all-ann-decomposition-backtrack-split extracted by (metis (no-types) L0 S
hd-Cons-tl n tl)
then have M = M0’ @ M0 using get-all-ann-decomposition-hd-hd by fastforce
then have IL: unmark-l MO U set-mset (clauses S)
U unmark-l M0' |=ps {{#— lit-of L#}}
using IL by (simp add: Un-commute Un-left-commute image-Un)
moreover have H: unmark-l M0 U set-mset (clauses S)
Eps unmark-1 M0’
using [H z'" unfolding all-decomposition-implies-def by (metis (no-types, lifting) L0 S
list.set-sel(1) list.set-sel(2) old.prod.case tl tl-Nil)
ultimately have case = of (Ls, seen) = unmark-l Ls U set-mset (clauses S)
Eps unmark-l seen
using true-clss-clss-left-right unfolding z'’ by auto
}
ultimately show case = of (Ls, seen) =
unmark-l Ls U set-mset (snd (M’ clauses S))
Eps unmark-l seen
unfolding snd-conv by blast
qed
qed

theorem 2.8.4 page 86 of Weidenbach’s book

theorem dpllyy -propagate-is-conclusion-of-decided:
assumes dplly S S’
and all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
and atm-of ‘ lits-of-1 (trail S) C atms-of-mm (clauses S)
shows set-mset (clauses S’) U {{#lit-of L#} |L. is-decided L N L € set (trail S')}
Eps unmark ¢ | (set < snd ‘ set (get-all-ann-decomposition (trail S')))
using all-decomposition-implies-trail-is-implied[ OF dplly -propagate-is-conclusion| OF assms]| .

theorem 2.8.5 page 86 of Weidenbach’s book

lemma only-propagated-vars-unsat:
assumes decided: VY € set M. — is-decided z
and DN: D € N and D: M =as CNot D
and inv: all-decomposition-implies N (get-all-ann-decomposition M)
and atm-incl: atm-of ¢ lits-of-l M C atms-of-ms N
shows unsatisfiable N
proof (rule ccontr)
assume — unsatisfiable N
then obtain I where
I: ] Es N and



cons: consistent-interp I and
tot: total-over-m I N
unfolding satisfiable-def by auto
then have I-D: [ = D
using DN unfolding true-clss-def by auto

have [0: {{#lit-of L#} |L. is-decided L N L € set M} = {} using decided by auto
have atms-of-ms (N U unmark-l M) = atms-of-ms N
using atm-incl unfolding atms-of-ms-def lits-of-def by auto

then have total-over-m I (N U unmark ¢ (set M))
using tot unfolding total-over-m-def by auto
then have I s unmark * (set M)
using all-decomposition-implies-propagated-lits-are-implied[ OF inv] cons I
unfolding true-clss-clss-def 10 by auto
then have IM: I s unmark-l M by auto
{
fix K
assume K €# D
then have — K € lits-of-l M
by (auto split: if-split-asm
intro: allE]OF Dlunfolded true-annots-def Ball-def], of {#—K#}])
then have — K € [ using IM true-clss-singleton-lit-of-implies-incl by fastforce
}
then have — I |= D using cons unfolding true-cls-def consistent-interp-def by auto
then show Fualse using I-D by blast
qed

lemma dpllyy -same-clauses:
assumes dpllyy S S’
shows clauses S = clauses S’
using assms by (induct rule: dplly .induct, auto)

lemma rtranclp-dplly -inv:
assumes rtranclp dplly S S’
and inv: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
and atm-incl: atm-of ¢ lits-of-1 (trail S) C atms-of-mm (clauses S)
and consistent-interp (lits-of-1 (trail S))
and no-dup (trail S)
shows all-decomposition-implies-m (clauses S”’) (get-all-ann-decomposition (trail S’))
and atm-of ‘ lits-of-l (trail S') C atms-of-mm (clauses S”)
and clauses S = clauses S’
and consistent-interp (lits-of-1 (trail S’))
and no-dup (trail S')
using assms
proof (induct rule: rtranclp-induct)
case base
show
all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
atm-of ¢ lits-of-l (trail S) C atms-of-mm (clauses S) and
clauses S = clauses S and
consistent-interp (lits-of-1 (trail S)) and
no-dup (trail S) using assms by auto
next
case (step S’ S") note dplly Star = this(1) and IH = this(8,4,5,6,7) and
dplly = this(2)



moreover
assume
inv: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
atm-incl: atm-of ¢ lits-of-l (trail S) C atms-of-mm (clauses S) and
cons: consistent-interp (lits-of-1 (trail S)) and
no-dup (trail S)
ultimately have decomp: all-decomposition-implies-m (clauses S”)
(get-all-ann-decomposition (trail S')) and
atm-incl”: atm-of ¢ lits-of-l (trail S') C atms-of-mm (clauses S’) and
snd: clauses S = clauses S’ and
cons': consistent-interp (lits-of-1 (trail S’)) and
no-dup’: no-dup (trail S") by blast+
show clauses S = clauses S using dplly -same-clauses|OF dplly] snd by metis

show all-decomposition-implies-m (clauses S"') (get-all-ann-decomposition (trail S''))
using dplly -propagate-is-conclusion| OF dplly/| decomp atm-incl’ by auto

show atm-of * lits-of-1 (trail S') C atms-of-mm (clauses S'")
using dplly -vars-in-snd-inv[OF dplly] atm-incl atm-incl’ by auto

show no-dup (trail S"') using dplly -distinct-inv[ OF dplly] no-dup’ dplly by auto

show consistent-interp (lits-of-1 (trail S))
using cons’ no-dup’ dpllyy -consistent-interp-inv[ OF dplly] by auto

qed

definition dplly -all-inv S =
(all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
A atm-of ¢ lits-of-1 (trail S) C atms-of-mm (clauses S)
A consistent-interp (lits-of-1 (trail S))
A no-dup (trail S))

lemma dplly -all-inv-dest[dest]:
assumes dplly -all-inv S
shows all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
and atm-of * lits-of-1 (trail S) C atms-of-mm (clauses S)
and consistent-interp (lits-of-l (trail S)) A no-dup (trail S)
using assms unfolding dplly -all-inv-def lits-of-def by auto

lemma rtranclp-dplly -all-inv:
assumes rtranclp dplly S S’
and dplly -all-inv S
shows dplly -all-inv S’
using assms rtranclp-dplly -inv][OF assms(1)] unfolding dplly -all-inv-def lits-of-def by blast

lemma dpllyy -all-inv:
assumes dplly S S’
and dplly -all-inv S
shows dplly -all-inv S’
using assms rtranclp-dplly -all-inv by blast

lemma rtranclp-dplly -inv-starting-from-0:
assumes rtranclp dplly, S S’
and inv: trail S = ||
shows dplly -all-inv S’
proof —
have dplly -all-inv S
using assms unfolding all-decomposition-implies-def dplly -all-inv-def by auto
then show ?thesis using rtranclp-dplly -all-inv[OF assms(1)] by blast
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qed

lemma dpllyy -can-do-step:
assumes consistent-interp (set M)
and distinct M
and atm-of ¢ (set M) C atms-of-mm N
shows rtranclp dplly ([], N) (map Decided M, N)
using assms
proof (induct M)
case Nil
then show ?Zcase by auto
next
case (Cons L M)
then have undefined-lit (map Decided M) L
unfolding defined-lit-def consistent-interp-def by auto
moreover have atm-of L € atms-of-mm N using Cons.prems(3) by auto
ultimately have dplly (map Decided M, N) (map Decided (L # M), N)
using dplly .decided by auto
moreover have consistent-interp (set M) and distinct M and atm-of ‘ set M C atms-of-mm N
using Cons.prems unfolding consistent-interp-def by auto
ultimately show ?Zcase using Cons.hyps by auto
qed

definition conclusive-dplly -state (S:: "v dplly -state) +—
(trail S =asm clauses S V ((V L € set (trail S). —is-decided L)
A (3 C €# clauses S. trail S |=as CNot C)))

theorem 2.8.7 page 87 of Weidenbach’s book

lemma dpllyy -strong-completeness:
assumes set M Esm N
and consistent-interp (set M)
and distinct M
and atm-of ¢ (set M) C atms-of-mm N
shows dpllyw** ([], N) (map Decided M, N)
and conclusive-dpllyy -state (map Decided M, N)
proof —
show rtranclp dpllw ([, N) (map Decided M, N) using dplly -can-do-step assms by auto
have map Decided M =asm N using assms(1) true-annots-decided-true-cls by auto
then show conclusive-dpllyy -state (map Decided M, N)
unfolding conclusive-dplly, -state-def by auto
qed

theorem 2.8.6 page 86 of Weidenbach’s book

lemma dplly -sound:
assumes
rtranclp dplly ([, N) (M, N) and
vV S. ~dplly (M, N) S
shows M Easm N +— satisfiable (set-mset N) (is ?A «— ?B)
proof
let ?M'= lits-of-1 M
assume ?4
then have ?M’ |=sm N by (simp add: true-annots-true-cls)
moreover have consistent-interp 2M’
using rtranclp-dplly -inv-starting-from-0[OF assms(1)] by auto
ultimately show ?B by auto
next
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assume ?B
show 74
proof (rule ccontr)
assume n: - ?A
have (3 L. undefined-lit M L N atm-of L € atms-of-mm N) V (3De#N. M [=as CNot D)
proof —
obtain D :: ‘a clause where D: D €# N and = M |=a D
using n unfolding true-annots-def Ball-def by auto
then have (3 L. undefined-lit M L A atm-of L € atms-of D) V M {=as CNot D
unfolding true-annots-def Ball-def CNot-def true-annot-def
using atm-of-lit-in-atms-of true-annot-iff-decided-or-true-lit true-cls-def
by (smt mem-Collect-eq union-single-eq-member)
then show ?thesis
by (metis Bex-def D atms-of-atms-of-ms-mono rev-subsetD)
qged
moreover {
assume 3 L. undefined-lit M L N atm-of L € atms-of-mm N
then have Fulse using assms(2) decided by fastforce
}
moreover {
assume 3 De#N. M =as CNot D
then obtain D where DN: D €# N and MD: M [as CNot D by auto
{
assume V! € set M. — is-decided |
moreover have dplly -all-inv ([], N)
using assms unfolding all-decomposition-implies-def dplly -all-inv-def by auto
ultimately have unsatisfiable (set-mset N)
using only-propagated-vars-unsat[of M D set-mset N| DN MD
rtranclp-dplly -all-inv| OF assms(1)] by force
then have Fulse using (?B) by blast
}
moreover {
assume [: 3] € set M. is-decided 1
then have Fulse
using backtrack[of (M, N) - - - D] DN MD assms(2)
backtrack-split-some-is-decided-then-snd-has-hd[ OF ]
by (metis backtrack-split-snd-hd-decided fst-conv list.distinct(1) list.sel(1) snd-conv)

ultimately have Fualse by blast
}
ultimately show Fulse by blast
qed
qed

0.1.3 Termination

definition dplly -mes M n =
map (Al if is-decided | then 2 else (1::nat)) (rev M) Q replicate (n — length M) 3

lemma length-dplly -mes:

assumes length M < n

shows length (dplly -mes M n) = n

using assms unfolding dplly -mes-def by auto

lemma distinctcard-atm-of-lit-of-eq-length:
assumes no-dup S
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shows card (atm-of * lits-of-l S) = length S
using assms by (induct S) (auto simp add: image-image lits-of-def no-dup-def)

lemma Cons-lexn-iff:
shows «(z # s, y # ys) € lezn R n +— (length (x # zs) = n A length (y # ys) = n A
((z,y) € RV (z =y A (s, ys) € lexn R (n — 1))))
unfolding lezn-conv apply (rule iffI; clarify)
subgoal for zys za ya xs’ ys’
by (cases xys) (auto simp: lexn-conv)
subgoal by (auto 5 5 simp: lexn-conv simp del: append-Cons simp: append-Cons[symmetric])
done
declare append-same-lexn[simp| prepend-same-lexn[simp] Cons-lexn-iff[simp)
declare lexn.simps(2)[simp del]

lemma dplly -card-decrease:
assumes
dpll: dplly S S’ and
[simp]: length (trail S') < card vars and
length (trail S) < card vars
shows
(dplly -mes (trail S') (card vars), dplly -mes (trail S) (card vars)) € lexn less-than (card vars)
using assms
proof (induct rule: dplly .induct)
case (propagate C' L S)
then have m: card vars — length (trail S) = Suc (card vars — Suc (length (trail S)))
by fastforce
then show («(dplly -mes (trail (Propagated C () # trail S, clauses S)) (card vars),
dplly -mes (trail S) (card vars)) € lexn less-than (card vars))
unfolding dplly -mes-def by auto
next
case (decided S L)
have m: card vars — length (trail S) = Suc (card vars — Suc (length (trail S)))
using decided.prems|simplified] using Suc-diff-le by fastforce
then show (dplly -mes (trail (Decided L # trail S, clauses S)) (card vars),
dplly -mes (trail S) (card vars)) € lexn less-than (card vars))
unfolding dplly -mes-def by auto
next
case (backtrack S M' L M D)
moreover have S: trail S = M’ Q L # M
using backtrack.hyps(1) backtrack-split-list-eq|of trail S| by auto
ultimately show «(dplly -mes (trail (Propagated (— lit-of L) () # M, clauses S)) (card vars),
dplly -mes (trail S) (card vars)) € lexn less-than (card vars))
using backtrack-split-list-eq|of trail S| unfolding dplly -mes-def by fastforce
qed

theorem 2.8.8 page 87 of Weidenbach’s book

lemma dpllyy -card-decrease’:

assumes dpll: dpllyy S S’

and atm-incl: atm-of ¢ lits-of-l (trail S) C atms-of-mm (clauses S)

and no-dup: no-dup (trail S)

shows (dplly -mes (trail S") (card (atms-of-mm (clauses S"))),

dplly -mes (trail S) (card (atms-of-mm (clauses S)))) € lex less-than

proof —

have finite (atms-of-mm (clauses S)) unfolding atms-of-ms-def by auto

then have 1: length (trail S) < card (atms-of-mm (clauses S))

using distinctcard-atm-of-lit-of-eq-length| OF no-dup| atm-incl card-mono by metis
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moreover {
have no-dup’: no-dup (trail S’) using dpll dplly -distinct-inv no-dup by blast
have SS": clauses S’ = clauses S using dpll by (auto dest!: dplly -same-clauses)
have atm-incl” atm-of * lits-of-1 (trail S') C atms-of-mm (clauses S’)
using atm-incl dpll dplly -vars-in-snd-inv[OF dpll] by force
have finite (atms-of-mm (clauses S’))
unfolding atms-of-ms-def by auto
then have 2: length (trail S') < card (atms-of-mm (clauses S))
using distinctcard-atm-of-lit-of-eq-length| OF no-dup’] atm-incl’ card-mono SS’ by metis }

ultimately have (dplly -mes (trail S’) (card (atms-of-mm (clauses S))),
dplly -mes (trail S) (card (atms-of-mm (clauses S))))
€ lexn less-than (card (atms-of-mm (clauses S)))
using dplly -card-decrease[OF assms(1), of atms-of-mm (clauses S)] by blast
then have (dplly -mes (trail S’) (card (atms-of-mm (clauses S))),
dplly -mes (trail S) (card (atms-of-mm (clauses S)))) € lex less-than
unfolding lez-def by auto
then show (dplly -mes (trail S') (card (atms-of-mm (clauses S7))),
dplly -mes (trail S) (card (atms-of-mm (clauses S)))) € lex less-than
using dplly -same-clauses|OF assms(1)] by auto
qed

lemma wf-lexn: wf (lexn {(a, b). (a:nat) < b} (card (atms-of-mm (clauses S))))
proof —

have m: {(a, b). a < b} = measure id by auto

show ?thesis apply (rule wf-lexn) unfolding m by auto
qed

lemma wf-dpllyy:
wf {(S7, 9). dpllw-all-inv S A dplly S S'}
apply (rule wf-wf-if-measure’|OF wf-lex-less, of - -
AS. dpllw -mes (trail S) (card (atms-of-mm (clauses S)))])
using dplly -card-decrease’ by fast

lemma dpllyy -tranclp-star-commute:
{(S", S). dplly-all-inv S A dplly, S S}t = {(S’, S). dpllw-all-inv S A tranclp dplly S S'}
(is ?2A = ?B)
proof
{fix S5’
assume (5, S’) € 74
then have (S5, S') € ?B
by (induct rule: trancl.induct, auto)
}
then show 74 C ?B by blast
{fix S5’
assume (S, S') € ?B
then have dplly* S’ S and dplly -all-inv S’ by auto
then have (S5, §') € 74
proof (induct rule: tranclp.induct)
case r-into-trancl
then show ?case by (simp-all add: r-into-trancl’)
next
case (trancl-into-trancl § 8’ S"")
then have (S', S) € {a. case a of (S', S) = dpllw-all-inv S N\ dplly S S’} by blast
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moreover have dplly -all-inv S’
using rtranclp-dplly -all-inv[ OF tranclp-into-rtranclp| OF trancl-into-trancl.hyps(1)]]
trancl-into-trancl.prems by auto
ultimately have (S”, S’) € {(pa, p). dpllw-all-inv p A dplly p pa}™
using (dplly -all-inv S trancl-into-trancl.hyps(3) by blast
then show ?case
using «(S’, S) € {a. case a of (S’, S) = dpllw-all-inv S A dpllyw S S'} by auto
qed
}
then show ?B C ?A by blast
qed

lemma wf-dplly -tranclp: wf {(S’, S). dpllw-all-inv S A dplly*+ S S’}
unfolding dpllyy -tranclp-star-commute[symmetric] by (simp add: wf-dplly wf-trancl)

lemma wf-dplly -plus:
wf {07 ([, N))| 8" dpliw ™ ([], N) S’} (is wf #P)
apply (rule wf-subset| OF wf-dplly -tranclp, of 7P])
unfolding dplly -all-inv-def by auto

0.1.4 Final States

Proposition 2.8.1: final states are the normal forms of dplly

lemma dpllyy -no-more-step-is-a-conclusive-state:
assumes V S'. —dplly S S’
shows conclusive-dpllyy -state S
proof —
have vars: Vs € atms-of-mm (clauses S). s € atm-of * lits-of-1 (trail S)
proof (rule ccontr)
assume — (V s€atms-of-mm (clauses S). s € atm-of ‘ lits-of-l (trail S))
then obtain L where
L-in-atms: L € atms-of-mm (clauses S) and
L-notin-trail: L ¢ atm-of * lits-of-1 (trail S) by metis
obtain L’ where L’ atm-of L' = L by (meson literal.sel(2))
then have undefined-lit (trail S) L’
unfolding Decided- Propagated-in-iff-in-lits-of-l by (metis L-notin-trail atm-of-uminus imagel)
then show False using dplly .decided assms(1) L-in-atms L’ by blast
qed
show ?thesis
proof (rule ccontr)
assume not-final: — ?thesis
then have
= trail S Easm clauses S and
(3 Leset (trail S). is-decided L) vV (V Ce#clauses S. —trail S =as CNot C)
unfolding conclusive-dplly, -state-def by auto
moreover {
assume 3 Leset (trail S). is-decided L
then obtain L M’ M where L: backtrack-split (trail S) = (M', L # M)
using backtrack-split-some-is-decided-then-snd-has-hd by blast
obtain D where D €# clauses S and — trail S |=a D
using (- trail S Easm clauses S) unfolding true-annots-def by auto
then have V s€atms-of-ms {D}. s € atm-of * lits-of-l (trail S)
using vars unfolding atms-of-ms-def by auto
then have trail S =as CNot D
using all-variables-defined-not-imply-cnot[of D] = trail S |Ea D) by auto
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moreover have is-decided L
using L by (metis backtrack-split-snd-hd-decided list.distinct(1) list.sel(1) snd-conv)
ultimately have False
using assms(1) dplly .backtrack L (D €4 clauses S) <trail S =as CNot D) by blast
}

moreover {
assume tr: V Ce#clauses S. ~trail S =as CNot C
obtain C' where C-in-cls: C €# clauses S and trC: = trail S |=a C
using - trail S =asm clauses S) unfolding true-annots-def by auto
have V scatms-of-ms {C}. s € atm-of ‘ lits-of-l (trail S)
using vars «C €# clauses S) unfolding atms-of-ms-def by auto
then have trail S |=as CNot C
by (meson C-in-cls tr trC all-variables-defined-not-imply-cnot)
then have Fulse using tr C-in-cls by auto
}
ultimately show Fulse by blast
qed
qed

lemma dpllyy -conclusive-state-correct:
assumes dplly** ([, N) (M, N) and conclusive-dpllyy -state (M, N)
shows M Fasm N <— satisfiable (set-mset N) (is ?A «— ?B)
proof
let ?M'= lits-of-1 M
assume 74
then have M’ E=sm N by (simp add: true-annots-true-cls)
moreover have consistent-interp M’
using rtranclp-dplly -inv-starting-from-0[OF assms(1)] by auto
ultimately show ?B by auto
next
assume ?B
show ?4
proof (rule ccontr)
assume n: - 74
have no-mark: ¥ L€set M. — is-decided L 3C €# N. M [=as CNot C
using n assms(2) unfolding conclusive-dplly -state-def by auto
moreover obtain D where DN: D €# N and MD: M |=as CNot D using no-mark by auto
ultimately have unsatisfiable (set-mset N)
using only-propagated-vars-unsat rtranclp-dplly -all-inv] OF assms(1)]
unfolding dplly -all-inv-def by force
then show Fulse using «?B) by blast
qed
qed

lemma dplly -trail-after-step1:
assumes dpllyy S T
shows
AK' M1 M2’ M2".
(rev (trail T) = rev (trail S) @ M2’ N M2’ #[]) V
(rev (trail S) = M1 Q Decided (—K') # M2’ A
rev (trail T) = M1 Q Propagated K' () # M2" A
Suc (length M1) < length (trail S))
using assms
apply (induction S T rule: dplly .induct)
subgoal for L C' T
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by auto
subgoal
by auto
subgoal for S M’ L M D
using backtrack-split-snd-hd-decided|of (trail S)]
backtrack-split-list-eq[of (trail S), symmetric]
apply — apply (rule exI[of - «—lit-of L], rule exI[of - <rev M)], rule exI[of - (rev M "], rule exI|of -
a)
by (cases L)
auto
done

lemma tranclp-dpllyy -trail-after-step:
assumes (dpllyt+ S T)
shows
AK' M1 M2 M2".
(rev (trail T) = rev (trail S) @ M2’ N M2' #[]) V
(rev (trail S) = M1 Q Decided (—K') # M2’ A
rev (trail T) = M1 Q Propagated K' () # M2 A Suc (length M1) < length (trail S))
using assms(1)
proof (induction rule: tranclp-induct)
case (base y)
then show Zcase by (auto dest!: dplly -trail-after-step1)
next
case (step y 2)
then consider
(1) M2’ where
trev (DPLL-W .trail y) = rev (DPLL-W .trail S) @ M2 (M2' # [ |
(2) K' M1 M2’ M2" where rev (DPLL-W .trail S) = M1 @ Decided (— K') # M2"
trev (DPLL-W .trail y) = M1 Q Propagated K' () # M2') and (Suc (length M1) < length (trail
S)
by blast
then show “case
proof cases
case (1 M2')
consider
(a) M2’ where
trev (DPLL-W .trail z) = rev (DPLL-W .trail y) @ M2 (M2’ # [ |
(b) K" M1’ M2'" M2'" where «rev (DPLL-W .trail y) = M1’ @ Decided (— K'") # M2")
trev (DPLL-W .trail z) = M1’ @Q Propagated K" () # M2'"y and
Suc (length M1') < length (trail y)
using dplly -trail-after-step1[OF step(2)]
by blast
then show ?thesis
proof cases
case a
then show ?thesis using 1 by auto
next
case b
have H: <rev (DPLL-W .trail S) @ M2’ = M1’ @ Decided (— K'") # M2" —
length M1' # length (DPLL-W .trail S) =
length M1' < Suc (length (DPLL-W .trail S)) = rev (DPLL-W .trail S) =
M1'" @ Decided (— K'') # drop (Suc (length M1")) (rev (DPLL-W .trail S))
apply (drule arg-cong|of - - (take (length (trail S))])
by (auto simp: take-Cons’)
show ?thesis using b 1 apply —
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apply (rule exI[of - (K'"])
apply (rule exI[of - (M1"])
apply (rule exI[of - «f length (trail S) < length M1’ then drop (length (DPLL-W .trail S)) (rev
(DPLL-W .trail z)) else
drop (Suc (length M1")) (rev (DPLL-W .trail S)))])
apply (cases <ength (trail S) < length M1")
subgoal
apply auto
by (simp add: append-eq-append-conv-if )
apply (cases ength M1’ = length (trail S))
subgoal by auto
subgoal
using H
apply (clarsimp simp: )
done
done
qed
next
case (2 K" M1’ M2" M2'")
consider
(a) M2’ where
trev (DPLL-W .trail z) = rev (DPLL-W .trail y) @ M2 (M2’ # [ |
(b) K" M1’ M2" M2'" where (rev (DPLL-W .trail y) = M1’ @ Decided (— K'') # M2")
trev (DPLL-W .trail z) = M1’ @ Propagated K" () # M2'") and
(Suc (length M1") < length (trail y)
using dplly -trail-after-step1 [OF step(2)]
by blast
then show ?thesis
proof cases
case a
then show ?thesis using 2 by auto
next
case (b K/// M1 12 M 11 M /////)
have [iff]: <M1’ @ Propagated K" () # M2""' = M1" @ Decided (— K'"') # M2"" +—
(IN1". M1" = M1’ Q Propagated K" () # N1 N M2 = N1'" Q Decided (— K'") # M2"""),
if ength M1’ < length M1")
using that apply (auto simp: append-eq-append-conv-if )
by (metis (no-types, lifting) Cons-eg-append-conv append-take-drop-id drop-eq-Nil leD)
have [iff]: <M1’ @ Propagated K" () # M2"' = M1" @ Decided (— K'") # M2"" +—
(IN1". M1'= M1" Q Decided (— K"") # N1"" AN M2'"" = N1" @ Propagated K'' () # M2'"),
if «—length M1’ < length M1
using that apply (auto simp: append-eq-append-conv-if )
by (metis (no-types, lifting) Cons-eg-append-conv append-take-drop-id drop-eq-Nil le-eg-less-or-eq)

show ?thesis using b 2 apply —
apply (rule exI[of - ¢f length M1’ < length M1" then K'' else K''h])
apply (rule exI[of - ¢f length M1’ < length M1" then M1’ else M1'])
apply (cases dength (trail S) < min (length M1') (length M1'")))
subgoal
by auto
apply (cases «min (length M1’) (length M1'") = length (trail S))
subgoal by auto
subgoal
by (auto simp: )
done
qed

18



qed
qed

This theorem is an important (although rather obvious) property: the model induced by trails
are not repeated.
lemma tranclp-dplly -no-dup-trail:

assumes (dplly ™+ S T) and «dplly -all-inv S
shows «set (trail S) # set (trail T)

proof —
have [simp]: (A =B U A +— BC A for A B
by auto
have [simp]: (rev (trail U) = xs «—trail U = rev zs) for s U
by auto

have «dplly -all-inv T
by (metis assms(1) assms(2) reflclp-tranclp rtranclp-dplly -all-inv sup2CT)
then have n-d: (no-dup (trail S)) (mo-dup (trail T)
using assms unfolding dplly -all-inv-def by (auto dest: no-dup-imp-distinct)
have [simp]: (no-dup (rev M2' @ DPLL-W .trail S) =
dplly -all-inv § =
set M2' C set (DPLL-W .trail S) +— M2’ =[] for M2’
by (cases M2’ rule: rev-cases)
(auto simp: undefined-notin)
show ?thesis
using n-d tranclp-dplly -trail-after-step] OF assms(1)] assms(2) apply auto
by (metis (no-types, lifting) Un-insert-right insertll list.simps(15) lit-of .simps(1,2)
n-d(1) no-dup-cannot-not-lit-and-uminus set-append set-rev)
qed

end

theory CDCL-W-Level

imports
Entailment-Definition. Partial- Annotated- Herbrand-Interpretation

begin

Level of literals and clauses

Getting the level of a variable, implies that the list has to be reversed. Here is the function
after reversing.

definition count-decided :: ('v, 'b, 'm) annotated-lit list = nat where

count-decided | = length (filter is-decided )

definition get-level :: (v, 'm) ann-lits = 'v literal = nat where
get-level S L = length (filter is-decided (drop While (AS. atm-of (lit-of S) # atm-of L) S))

lemma get-level-uminus[simp): (get-level M (—L) = get-level M L
by (auto simp: get-level-def)

lemma get-level-Neg-Pos: (get-level M (Neg L) = get-level M (Pos L))
unfolding get-level-def by auto

lemma count-decided-0-iff:

(count-decided M = 0 «— (VL € set M. —is-decided L)
by (auto simp: count-decided-def filter-empty-conv)
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lemma
shows
count-decided-nil[simp]: (count-decided [] = 0) and
count-decided-cons[simpl:
(count-decided (a # M) = (if is-decided a then Suc (count-decided M) else count-decided M)> and
count-decided-append[simpl:
(count-decided (M @ M") = count-decided M + count-decided M"
by (auto simp: count-decided-def)

lemma atm-of-notin-get-level-eq-0[simpl:
assumes undefined-lit M L
shows get-level M L = 0
using assms by (induct M rule: ann-lit-list-induct) (auto simp: get-level-def defined-lit-map)

lemma get-level-ge-0-atm-of-in:
assumes get-level M L > n
shows atm-of L € atm-of ‘ lits-of-1 M
using atm-of-notin-get-level-eq-0[of M L] assms unfolding defined-lit-map
by (auto simp: lits-of-def simp del: atm-of-notin-get-level-eq-0)

In get-level (resp. get-level), the beginning (resp. the end) can be skipped if the literal is not
in the beginning (resp. the end).

lemma get-level-skip[simp]:
assumes undefined-lit M L
shows get-level (M @ M') L = get-level M’ L
using assms by (induct M rule: ann-lit-list-induct) (auto simp: get-level-def defined-lit-map)

If the literal is at the beginning, then the end can be skipped

lemma get-level-skip-end[simp]:
assumes defined-lit M L
shows get-level (M @ M') L = get-level M L + count-decided M’
using assms by (induct M’ rule: ann-lit-list-induct)
(auto simp: lits-of-def get-level-def count-decided-def defined-lit-map)

lemma get-level-skip-beginning|simpl:
assumes atm-of L' # atm-of (lit-of K)
shows get-level (K # M) L' = get-level M L’
using assms by (auto simp: get-level-def)

lemma get-level-take-beginning|simp]:
assumes atm-of L' = atm-of (lit-of K)
shows get-level (K # M) L' = count-decided (K # M)
using assms by (auto simp: get-level-def count-decided-def)

lemma get-level-cons-if :
(get-level (K # M) L' =
(if atm-of L' = atm-of (lit-of K) then count-decided (K # M) else get-level M L")
by auto

lemma get-level-skip-beginning-not-decided|simp):
assumes undefined-lit S L
and V s€set S. —is-decided s
shows get-level (M @Q S) L = get-level M L
using assms apply (induction S rule: ann-lit-list-induct)
apply auto[2]
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apply (case-tac atm-of L € atm-of ‘ lits-of-1 M)

apply (auto simp: image-iff lits-of-def filter-empty-conv count-decided-def defined-lit-mayp
dest: set-drop WhileD)

done

lemma get-level-skip-all-not-decided|simp]:
fixes M
assumes Vmeset M. — is-decided m
shows get-level M L = 0
using assms by (auto simp: filter-empty-conv get-level-def dest: set-drop WhileD)

the {#0::'a#t} is there to ensures that the set is not empty.

definition get-mazimum-level :: ('a, 'b) ann-lits = 'a clause = nat
where
get-mazimum-level M D = Maz-mset ({#04#} + image-mset (get-level M) D)

lemma get-mazimum-level-ge-get-level:
L €# D = get-maximum-level M D > get-level M L
unfolding get-mazximum-level-def by auto

lemma get-mazimum-level-empty[simp):
get-maximum-level M {#} = 0
unfolding get-maximum-level-def by auto

lemma get-mazimum-level-exists-lit-of-maz-level:
D # {#} = JLe# D. get-level M L = get-mazimum-level M D
unfolding get-mazimum-level-def
apply (induct D)
apply simp
by (rename-tac z D, case-tac D = {#}) (auto simp add: maz-def)

lemma get-mazimum-level-empty-list[simp):
get-maximum-level [| D = 0
unfolding get-mazimum-level-def by (simp add: image-constant-conv)

lemma get-mazimum-level-add-mset:
get-mazimum-level M (add-mset L D) = maz (get-level M L) (get-mazimum-level M D)
unfolding get-mazimum-level-def by simp

lemma get-level-append-if:
get-level (M @Q M') L = (if defined-lit M L then get-level M L + count-decided M’
else get-level M’ L))
by (auto)

Do mot activate as [simp] rules. It breaks everything.

lemma get-mazimum-level-single:
(get-mazimum-level M {#ax#} = get-level M
by (auto simp: get-mazimum-level-add-mset)

lemma get-mazimum-level-plus:
get-mazimum-level M (D + D') = maz (get-maximum-level M D) (get-mazimum-level M D’)
by (induction D) (simp-all add: get-maximum-level-add-mset)

lemma get-mazimum-level-cong:

assumes VL €# D. get-level M L = get-level M’ L
shows (get-mazimum-level M D = get-maximum-level M’ D)
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using assms by (induction D) (auto simp: get-mazimum-level-add-mset)

lemma get-maximum-level-exists-lit:
assumes n: n > 0
and maz: get-maximum-level M D = n
shows 3L €#D. get-level M L = n
proof —
have f: finite (insert 0 ((AL. get-level M L) * set-mset D)) by auto
then have n € ((AL. get-level M L) * set-mset D)
using n maz Maz-in[OF f] unfolding get-mazimum-level-def by simp
then show 3L €# D. get-level M L = n by auto
qed

lemma get-mazimum-level-skip-first[simp]:
assumes atm-of (lit-of K) ¢ atms-of D
shows get-mazimum-level (K # M) D = get-mazimum-level M D
using assms unfolding get-maximum-level-def atms-of-def
atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
by (smt atm-of-in-atm-of-set-in-uminus get-level-skip-beginning image-iff lit-of .simps(2)
multiset.map-cong0)

lemma get-mazimum-level-skip-beginning:
assumes DH: Vz €4 D. undefined-lit ¢
shows get-maximum-level (¢ @ H) D = get-mazimum-level H D
proof —
have (get-level (¢ @ H)) ¢ set-mset D = (get-level H) ‘ set-mset D
apply (rule image-cong)
apply (simp; fail)
using DH unfolding atms-of-def by auto
then show ?thesis using DH unfolding get-mazximum-level-def by auto
qed

lemma get-mazimum-level-D-single-propagated:
get-maximum-level [Propagated x21 x22] D = 0
unfolding get-mazimum-level-def by (simp add: image-constant-conv)

lemma get-mazimum-level-union-mset:
get-maximum-level M (A U# B) = get-maximum-level M (A + B)
unfolding get-mazimum-level-def by (auto simp: image-Un)

lemma count-decided-rev][simp):
count-decided (rev M) = count-decided M
by (auto simp: count-decided-def rev-filter|symmetric))

lemma count-decided-ge-get-level:
count-decided M > get-level M L
by (induct M rule: ann-lit-list-induct)
(auto simp add: count-decided-def le-maz-iff-disj get-level-def)

lemma count-decided-ge-get-maximum-level:
count-decided M > get-maximum-level M D
using get-mazimum-level-ezists-lit-of-mazx-level unfolding Bex-def
by (metis get-mazimum-level-empty count-decided-ge-get-level leQ)

lemma get-level-last-decided-ge:
(defined-lit (¢ @ [Decided K|) L' = 0 < get-level (¢ Q [Decided K]) L’
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by (induction c) (auto simp: defined-lit-cons get-level-cons-if)

lemma get-mazimum-level-mono:
(D C# D' = get-maximum-level M D < get-maximum-level M D"
unfolding get-mazimum-level-def by auto

fun get-all-mark-of-propagated where

get-all-mark-of-propagated [| =[] |

get-all-mark-of-propagated (Decided - # L) = get-all-mark-of-propagated L |
get-all-mark-of-propagated (Propagated - mark # L) = mark # get-all-mark-of-propagated L

lemma get-all-mark-of-propagated-append|simp):
get-all-mark-of-propagated (A @ B) = get-all-mark-of-propagated A Q get-all-mark-of-propagated B
by (induct A rule: ann-lit-list-induct) auto

lemma get-all-mark-of-propagated-tl-proped:

(M # [| = is-proped (hd M) = get-all-mark-of-propagated (tl M) = tl (get-all-mark-of-propagated
M)

by (induction M rule: ann-lit-list-induct) auto

Properties about the levels

lemma atm-lit-of-set-lits-of-I:
(AL atm-of (lit-of 1)) * set zs = atm-of * lits-of-1 xs
unfolding lits-of-def by auto

Before I try yet another time to prove that I can remove the assumption no-dup M: It does not
work. The problem is that get-level M K = Suc i peaks the first occurrence of the literal K.
This is for example an issue for the trail replicate n (Decided K). An explicit counter-example
is below.

lemma le-count-decided-decomp:
assumes (no-dup M)
shows « < count-decided M «— (3¢ K ¢’. M = ¢ Q Decided K # ¢’ A get-level M K = Suc i)
(is ?A «+— ?B)
proof
assume ?B
then obtain ¢ K ¢’ where
M = ¢ @Q Decided K # ¢’ and get-level M K = Suc i
by blast
then show ?4 using count-decided-ge-get-level[of M K| by auto
next
assume 74
then show ?B
using (no-dup M>
proof (induction M rule: ann-lit-list-induct)
case Nil
then show ?case by simp
next
case (Decided L M) note IH = this(1) and i = this(2) and n-d = this(3)
then have n-d-M: no-dup M by simp
show ?Zcase
proof (cases i < count-decided M)
case True
then obtain ¢ K ¢’ where
M: M = ¢ @Q Decided K # ¢’ and lev-K: get-level M K = Suc i
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using [H n-d-M by blast
show ?thesis
apply (rule exI[of - Decided L # c])
apply (rule exI[of - KJ)
apply (rule exI[of - ¢'])
using lev-K n-d unfolding M by (auto simp: get-level-def defined-lit-map)
next
case Fulse
show ?thesis
apply (rule exl[of - []])
apply (rule exI[of - L])
apply (rule exI[of - M])
using Fulse i by (auto simp: get-level-def count-decided-def)
qed
next
case (Propagated L mark’ M) note ¢ = this(2) and IH = this(1) and n-d = this(3)
then obtain ¢ K ¢’ where
M: M = ¢ @Q Decided K # ¢’ and lev-K: get-level M K = Suc i
by (auto simp: count-decided-def)
show ?case
apply (rule exI[of - Propagated L mark’ # c])
apply (rule exI[of - K])
apply (rule exI[of - ¢])
using lev-K n-d unfolding M by (auto simp: atm-lit-of-set-lits-of-1 get-level-def
defined-lit-map)
qed
qed

The counter-example if the assumption no-dup M.

lemma
fixes K
defines (M = replicate 3 (Decided K))
defines ¢ = I»
assumes ¢ < count-decided M <— (¢ K ¢/. M = ¢ @ Decided K # ¢’ A get-level M K = Suc i)
shows Fulse
using assms(3—) unfolding M-def i-def numeral-3-eq-3
by (auto simp: Cons-eq-append-conv)

lemma Suc-count-decided-gt-get-level:
get-level M L < Suc (count-decided M)
by (induction M rule: ann-lit-list-induct) (auto simp: get-level-cons-if)

lemma get-level-neg-Suc-count-decided[simp):
(get-level M L # Suc (count-decided M))
using Suc-count-decided-gt-get-level[of M L] by auto

lemma length-get-all-ann-decomposition: ength (get-all-ann-decomposition M) = 1+ count-decided M)
by (induction M rule: ann-lit-list-induct) auto

lemma get-mazimum-level-remove-non-max-lvl:
(get-level M a < get-mazximum-level M D —>
get-mazimum-level M (removel-mset a D) = get-mazimum-level M D)
by (cases (a €# D)
(auto dest!: multi-member-split simp: get-mazimum-level-add-mset)

lemma exists-lit-max-level-in-negate-ann-lits:
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(negate-ann-lits M # {#} = 3 Le#negate-ann-lits M. get-level M L = count-decided M>
by (cases (M>) (auto simp: negate-ann-lits-def)

end
theory CDCL-W

imports CDCL-W-Level Weidenbach-Book-Base. Wellfounded-More
begin
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Chapter 1

Weidenbach’s CDCL

The organisation of the development is the following:

e CDCL_W.thy contains the specification of the rules: the rules and the strategy are defined,
and we proof the correctness of CDCL.

e CDCL_W_Termination.thy contains the proof of termination, based on the book.

e CDCL_W_Merge.thy contains a variant of the calculus: some rules of the raw calculus are
always applied together (like the rules analysing the conflict and then backtracking). This
is useful for the refinement from NOT.

e CDCL_WNOT.thy proves the inclusion of Weidenbach’s version of CDCL in NOT’s version.
We use here the version defined in CDCL_W_Merge.thy. We need this, because NOT’s
backjump corresponds to multiple applications of three rules in Weidenbach’s calculus.
We show also the termination of the calculus without strategy. There are two differ-
ent refinement: on from NOT’s to Weidenbach’s CDCL and another to W’s CDCL with
strategy.

We have some variants build on the top of Weidenbach’s CDCL calculus:

e CDCL_W_Incremental.thy adds incrementality on the top of CDCL_W.thy. The way we
are doing it is not compatible with CDCL_W_Merge.thy, because we add conflicts and
the CDCL_W_Merge.thy cannot analyse conflicts added externally, since the conflict and
analyse are merged.

e CDCL_W_Restart.thy adds restart and forget while restarting. It is built on the top of
CDCL_W_Merge. thy.

1.1 Weidenbach’s CDCL with Multisets

declare upt.simps(2)[simp del]

1.1.1 The State

We will abstract the representation of clause and clauses via two locales. We here use multisets,
contrary to CDCL_W_Abstract_State.thy where we assume only the existence of a conversion
to the state.
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locale statey -ops =

fixes
state :: 'st = ('v, 'v clause) ann-lits x v clauses X 'v clauses X v clause option X
b and

trail :: 'st = (v, 'v clause) ann-lits and
init-clss :: 'st = v clauses and
learned-clss :: 'st = v clauses and
conflicting :: 'st = v clause option and

cons-trail :: ("v, 'v clause) ann-lit = ‘st = ‘st and
tl-trail :: 'st = ‘st and

add-learned-cls 1 'v clause = 'st = 'st and
remove-cls :: 'v clause = ’st = st and
update-conflicting :: 'v clause option = 'st = ‘st and

init-state :: 'v clauses = 'st
begin

abbreviation hd-trail :: ‘st = ('v, "v clause) ann-lit where
hd-trail S = hd (trail S)

definition clauses :: 'st = v clauses where
clauses S = init-clss S + learned-clss S

abbreviation resolve-cls :: (‘a literal = 'a clause = 'a clause = 'a clause> where
resolve-cls L D' E = removel-mset (—L) D' U# removel-mset L E

abbreviation state-butlast :: ‘st = ('v, 'v clause) ann-lits x 'v clauses X "v clauses
x v clause option where
state-butlast S = (trail S, init-clss S, learned-clss S, conflicting S)

definition additional-info :: 'st = 'b where
additional-info S = (A(-, -, -, -, D). D) (state S)

end

We are using an abstract state to abstract away the detail of the implementation: we do not
need to know how the clauses are represented internally, we just need to know that they can be
converted to multisets.

Weidenbach state is a five-tuple composed of:

1. the trail is a list of decided literals;
2. the initial set of clauses (that is not changed during the whole calculus);
3. the learned clauses (clauses can be added or remove);

4. the conflicting clause (if any has been found so far).

Contrary to the original version, we have removed the maximum level of the trail, since the
information is redundant and required an additional invariant.

There are two different clause representation: one for the conflicting clause ('v clause, standing
for conflicting clause) and one for the initial and learned clauses (‘v clause, standing for clause).
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The representation of the clauses annotating literals in the trail is slightly different: being able
to convert it to 'v clause is enough (needed for function hd-trail below).

There are several axioms to state the independance of the different fields of the state: for
example, adding a clause to the learned clauses does not change the trail.

locale statey -no-state =
statey -ops
state
— functions about the state:
— getter:
trail init-clss learned-clss conflicting
— setter:
cons-trail tl-trail add-learned-cls remove-cls
update-conflicting

— Some specific states:

1nit-state

for

state-eq :: 'st = st = bool (infix ~ 50) and

state :: ‘st = (v, 'v clause) ann-lits x 'v clauses x v clauses x 'v clause option x
‘b and

trail :: 'st = ("v, 'v clause) ann-lits and

init-clss :: 'st = v clauses and

learned-clss :: 'st = v clauses and

conflicting :: 'st = v clause option and

cons-trail :: ("v, 'v clause) ann-lit = ‘st = ‘st and
tl-trail :: 'st = ‘st and

add-learned-cls :: 'v clause = st = 'st and
remove-cls :: 'v clause = 'st = st and
update-conflicting :: 'v clause option = 'st = ’st and

init-state :: "v clauses = 'st +

assumes
state-eq-ref[simp, introl: «S ~ S) and
state-eqg-sym: S ~ T <— T ~ 5 and
state-eq-trans: <S ~ T = T ~ U' = S ~ U and
state-eq-state: «S ~ T — state S = state T) and

cons-trail:
NS’ state st = (M, S') =
state (cons-trail L st) = (L # M, S’) and

tl-trail:
NS’ state st = (M, S') = state (tl-trail st) = (¢ M, S’) and

remove-cls:
NS’ state st = (M, N, U, S") =
state (remove-cls C st) =
(M, removeAll-mset C N, removeAll-mset C U, S') and

add-learned-cls:
NS’ state st = (M, N, U, S") =
state (add-learned-cls C st) = (M, N, {#C+#} + U, S’) and

update-conflicting:
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NS’ state st = (M, N, U, D, §') =
state (update-conflicting E st) = (M, N, U, E, S’) and

mnit-state:
state-butlast (init-state N) = ([], N, {#}, None) and

cons-trail-state-eq:
(S ~ 8" = cons-trail L S ~ cons-trail L S’ and

tl-trail-state-eq:
(8 ~ 8" = tl-trail S ~ tl-trail S" and

add-learned-cls-state-eq:
(S ~ 8" = add-learned-cls C S ~ add-learned-cls C S and

remove-cls-state-eq:
S ~ 8" = remove-cls C S ~ remove-cls C S and

update-conflicting-state-eq:
(S ~ S" = update-conflicting D S ~ update-conflicting D S and

tl-trail-add-learned-cls-commute:

(tl-trail (add-learned-cls C' T) ~ add-learned-cls C (tl-trail T)) and
tl-trail-update-conflicting:

(tl-trail (update-conflicting D T) ~ update-conflicting D (tl-trail T)) and

update-conflicting-update-conflicting:
(NDD'S§ 58" 5§~ 8 =
update-conflicting D (update-conflicting D' S) ~ update-conflicting D S" and
update-conflicting-itself:
(A\D S'. conflicting S" = D = update-conflicting D §' ~ S’

locale statey,y =
stateyy -no-state
state-eq state
— functions about the state:
— getter:
trail init-clss learned-clss conflicting
— setter:
cons-trail tl-trail add-learned-cls remove-cls
update-conflicting

— Some specific states:

init-state

for

state-eq :: ‘st = 'st = bool (infix ~ 50) and

state :: 'st = ('v, 'v clause) ann-lits X v clauses X 'v clauses X v clause option X
‘b and

trail ‘st = ('v, v clause) ann-lits and

init-clss :: 'st = v clauses and

learned-clss :: 'st = v clauses and

conflicting :: 'st = v clause option and

cons-trail = ("v, 'v clause) ann-lit = 'st = 'st and

tl-trail :: 'st = 'st and
add-learned-cls 1 'v clause = 'st = 'st and
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remove-cls :: 'v clause = 'st = ’'st and
update-conflicting :: 'v clause option = 'st = 'st and

init-state :: "v clauses = 'st +
assumes
state-prop[simp:
(state S = (trail S, init-clss S, learned-clss S, conflicting S, additional-info S)
begin

lemma
trail-cons-trail[simp]:
trail (cons-trail L st) = L # trail st and
trail-tl-trail[simp): tradl (tl-trail st) = ¢l (trail st) and
trail-add-learned-cls[simp]:
trail (add-learned-cls C st) = trail st and
trail-remove-cls[simp):
trail (remove-cls C st) = trail st and
trail-update-conflicting|simp): trail (update-conflicting E st) = trail st and

init-clss-cons-trail[simp):

init-clss (cons-trail M st) = init-clss st

and
indt-clss-tl-trail[ simp]:

ingt-clss (tl-trail st) = init-clss st and
init-clss-add-learned-cls[simp):

init-clss (add-learned-cls C st) = init-clss st and
init-clss-remove-cls[simpl:

init-clss (remove-cls C st) = removeAll-mset C (init-clss st) and
init-clss-update-conflicting| simpl:

indt-clss (update-conflicting E st) = init-clss st and

learned-clss-cons-trail[simp):

learned-clss (cons-trail M st) = learned-clss st and
learned-clss-tl-trail[ simp):

learned-clss (tl-trail st) = learned-clss st and
learned-clss-add-learned-cls[simp]:

learned-clss (add-learned-cls C st) = {#C#} + learned-clss st and
learned-clss-remove-cls|simp]:

learned-clss (remove-cls C st) = removeAll-mset C (learned-clss st) and
learned-clss-update-conflicting[ simp]:

learned-clss (update-conflicting E st) = learned-clss st and

conflicting-cons-trail|simp):

conflicting (cons-trail M st) = conflicting st and
conflicting-tl-trail[simp):

conflicting (tl-trail st) = conflicting st and
conflicting-add-learned-clssimp]:

conflicting (add-learned-cls C st) = conflicting st

and
conflicting-remove-cls|simp):

conflicting (remove-cls C st) = conflicting st and
conflicting-update-conflicting[simp):

conflicting (update-conflicting E st) = E and

init-state-trail[simp|: trail (init-state N) = [] and
init-state-clss[simp): init-clss (init-state N) = N and
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init-state-learned-clss[simp]: learned-clss (init-state N) = {#} and
init-state-conflicting[simp): conflicting (init-state N) = None

using cons-trail]of st| tl-trail|of st] add-learned-cls[of st - - - - C]
update-conflictinglof st - - - - - - ]
remove-clsof st - - - - (]
init-state[of N|
by auto
lemma
shows

clauses-cons-trail[simp):
clauses (cons-trail M S) = clauses S and

clss-tl-trail[simp): clauses (tl-trail S) = clauses S and
clauses-add-learned-cls-unfolded:

clauses (add-learned-cls U S) = {#U#} + learned-clss S + init-clss S

and
clauses-update-conflicting[simp): clauses (update-conflicting D S) = clauses S and
clauses-remove-cls[simp):

clauses (remove-cls C'S) = removeAll-mset C (clauses S) and
clauses-add-learned-cls[simp]:

clauses (add-learned-cls C S) = {#C#} + clauses S and
clauses-init-state[simp|: clauses (init-state N) = N
by (auto simp: ac-simps replicate-mset-plus clauses-def intro: multiset-eql)

lemma state-eq-trans”. (S ~ S'=—= T ~ S'—= T ~ S
by (meson state-eq-trans state-eq-sym)

abbreviation backtrack-lvl :: 'st = nat where
backtrack-lvl S = count-decided (trail S)

named-theorems state-simp (contains all theorems of the form @Q{term «S ~ T = P S = P T}.
These theorems can cause a signefecant blow—up of the simp—space)

lemma

shows
state-eq-trail[state-simpl: S ~ T = trail S = trail T and
state-eq-init-clss[state-simp|: S ~ T = init-clss S = init-clss T and
state-eg-learned-clss[state-simp|: S ~ T = learned-clss S = learned-clss T and
state-eq-conflicting[state-simp|: S ~ T = conflicting S = conflicting T and
state-eq-clauses|state-simpl: S ~ T = clauses S = clauses T and
state-eg-undefined-lit[state-simp]: S ~ T = undefined-lit (trail S) L = undefined-lit (trail T) L and
state-eq-backtrack-lvl[state-simp|: S ~ T = backtrack-lvl S = backtrack-lvl T

using state-eq-state unfolding clauses-def by auto

lemma state-eq-conflicting-None:

S ~ T = conflicting T = None = conflicting S = None
using state-eq-state unfolding clauses-def by auto

We combine all simplification rules about (~) in a single list of theorems. While they are handy
as simplification rule as long as we are working on the state, they also cause a huge slow-down
in all other cases.

declare state-simp|simp]

function reduce-trail-to :: 'a list = 'st = ’st where
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reduce-trail-to F' S =

(if length (trail S) = length F V trail S =[] then S else reduce-trail-to F (tl-trail S))
by fast+
termination

by (relation measure (A(-, S). length (trail S))) simp-all

declare reduce-trail-to.simps[simp del]

lemma reduce-trail-to-induct:
assumes
(A\F S. length (trail S) = length F = P F 5> and
N\F S. trail S =[] = P F S and
NF S. length (trail S) # length F = trail S # [| = P F (tl-trail S) = P F S
shows
(P F S
apply (induction rule: reduce-trail-to.induct)
subgoal for F S using assms
by (cases (length (trail S) = length F); cases (trail S = []) auto
done

lemma
shows
reduce-trail-to-Nil[simp]: trail S = [| = reduce-trail-to F S = S and
reduce-trail-to-eq-length[simp)]: length (trail S) = length F = reduce-trail-to F S = S
by (auto simp: reduce-trail-to.simps)

lemma reduce-trail-to-length-ne:
length (trail S) # length F = trail S # [| =
reduce-trail-to F' S = reduce-trail-to F (tl-trail S)
by (auto simp: reduce-trail-to.simps)

lemma trail-reduce-trail-to-length-le:
assumes length F' > length (trail S)
shows trail (reduce-trail-to F S) = ||
using assms apply (induction F S rule: reduce-trail-to.induct)
by (metis (no-types, hide-lams) length-tl less-imp-diff-less less-irrefl trail-tl-trail
reduce-trail-to.simps)

lemma trail-reduce-trail-to- Nil[simp]:
trail (reduce-trail-to [| S) = |]
apply (induction []::("v, v clause) ann-lits S rule: reduce-trail-to.induct)
by (metis length-0-conv reduce-trail-to-length-ne reduce-trail-to-Nil)

lemma clauses-reduce-trail-to-Nil:
clauses (reduce-trail-to [| S) = clauses S
proof (induction [| S rule: reduce-trail-to.induct)
case (1 Sa)
then have clauses (reduce-trail-to ([)::'a list) (ti-trail Sa)) = clauses (tl-trail Sa)
V trail Sa = []
by fastforce
then show clauses (reduce-trail-to ([]::'a list) Sa) = clauses Sa
by (metis (no-types) length-0-conv reduce-trail-to-eq-length clss-ti-trail
reduce-trail-to-length-ne)
qed

lemma reduce-trail-to-skip-beginning:
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assumes trail S = F'Q F
shows trail (reduce-trail-to F' S) = F
using assms by (induction F' arbitrary: S) (auto simp: reduce-trail-to-length-ne)

lemma clauses-reduce-trail-to[simp:
clauses (reduce-trail-to F' S) = clauses S
apply (induction F S rule: reduce-trail-to.induct)
by (metis clss-tl-trail reduce-trail-to.simps)

lemma conflicting-update-trail[simp]:
conflicting (reduce-trail-to F' S) = conflicting S
apply (induction F' S rule: reduce-trail-to.induct)
by (metis conflicting-ti-trail reduce-trail-to.simps)

lemma init-clss-update-trail|simp:
init-clss (reduce-trail-to F' S) = init-clss S
apply (induction F' S rule: reduce-trail-to.induct)
by (metis init-clss-tl-trail reduce-trail-to.simps)

lemma learned-clss-update-trail[simp):
learned-clss (reduce-trail-to F' S) = learned-clss S
apply (induction F' S rule: reduce-trail-to.induct)
by (metis learned-clss-ti-trail reduce-trail-to.simps)

lemma conflicting-reduce-trail-to[simp]:
conflicting (reduce-trail-to F'S) = None <— conflicting S = None
apply (induction F' S rule: reduce-trail-to.induct)
by (metis conflicting-update-trail)

lemma trail-eq-reduce-trail-to-eq:
trail S = trail T = trail (reduce-trail-to F' S) = trail (reduce-trail-to F T')
apply (induction F' S arbitrary: T rule: reduce-trail-to.induct)
by (metis trail-tl-trail reduce-trail-to.simps)

lemma reduce-trail-to-trail-ti-trail-decomp| simp:
trail S = F' @ Decided K # F = trail (reduce-trail-to F S) = F
apply (rule reduce-trail-to-skip-beginning[of - F' @Q Decided K # [|])
by (cases F) (auto simp add: tl-append reduce-trail-to-skip-beginning)

lemma reduce-trail-to-add-learned-cls[simp):
trail (reduce-trail-to F (add-learned-cls C S)) = trail (reduce-trail-to F S)
by (rule trail-eg-reduce-trail-to-eq) auto

lemma reduce-trail-to-remove-learned-cls|simpl:
trail (reduce-trail-to F (remove-cls C S)) = trail (reduce-trail-to F S)
by (rule trail-eg-reduce-trail-to-eq) auto

lemma reduce-trail-to-update-conflicting[simpl:
trail (reduce-trail-to F' (update-conflicting C' S)) = trail (reduce-trail-to F' S)
by (rule trail-eg-reduce-trail-to-eq) auto

lemma reduce-trail-to-length:
length M = length M' = reduce-trail-to M S = reduce-trail-to M’ S
apply (induction M S rule: reduce-trail-to.induct)
by (simp add: reduce-trail-to.simps)
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lemma trail-reduce-trail-to-drop:
trail (reduce-trail-to F S) =
(if length (trail S) > length F
then drop (length (trail S) — length F) (trail S)
else [])
apply (induction F' S rule: reduce-trail-to.induct)
apply (rename-tac F S, case-tac trail S)
apply (auto; fail)
apply (rename-tac list, case-tac Suc (length list) > length F')
prefer 2 apply (metis diff-is-0-eq drop-Cons’ length-Cons nat-le-linear nat-less-le
reduce-trail-to-eg-length trail-reduce-trail-to-length-le)
apply (subgoal-tac Suc (length list) — length F' = Suc (length list — length F))
by (auto simp add: reduce-trail-to-length-ne)

lemma in-get-all-ann-decomposition-trail-update-trail[simp):
assumes H: (L # M1, M2) € set (get-all-ann-decomposition (trail S))
shows trail (reduce-trail-to M1 S) = M1
proof —
obtain K where
L: L = Decided K
using H by (cases L) (auto dest!: in-get-all-ann-decomposition-decided-or-empty)
obtain ¢ where
tr-S: trail S = ¢ Q@ M2 Q L # M1
using H by auto
show ?thesis
by (rule reduce-trail-to-trail-ti-trail-decomplof - ¢ @ M2 K])
(auto simp: tr-S L)
qed

lemma reduce-trail-to-state-eq:
(S ~ S" = length M = length M’ — reduce-trail-to M S ~ reduce-trail-to M’ S’
apply (induction M S arbitrary: M’ S’ rule: reduce-trail-to-induct)
apply ((auto;fail)+)[2]
by (simp add: reduce-trail-to-length-ne tl-trail-state-eq)

lemma conflicting-cons-trail-conflicting[iff):
conflicting (cons-trail L S) = None <— conflicting S = None
using conflicting-cons-trail[of L S] map-option-is-None by fastforce+

lemma conflicting-add-learned-cls-conflicting[iff]:
conflicting (add-learned-cls C' S) = None <— conflicting S = None
by fastforce+

lemma reduce-trail-to-compow-ti-trail-le:
assumes ength M < length (trail M)
shows (reduce-trail-to M M' = (tl-trail™" (length (trail M') — length M)) M"
proof —
have [simp]: (Y ka. k # Suc ka) +— k = 0) for k
by (cases k) auto
show ?thesis
using assms
apply (induction M=M S=M' arbitrary: M M' rule: reduce-trail-to.induct)
subgoal for F' §
by (subst reduce-trail-to.simps; cases ength F < length (trail S) — Suc 0»)
(auto simp: less-iff-Suc-add funpow-swapl)
done
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qed

lemma reduce-trail-to-compow-tl-trail-eq:

dength M = length (trail M') = reduce-trail-to M M’ = (tl-trail™" (length (trail M') — length M))
M

by auto

lemma reduce-trail-to-compow-ti-trail:
dength M < length (trail M') = reduce-trail-to M M’ = (tl-trail™" (length (trail M') — length M))
M
using reduce-trail-to-compow-ti-trail-eq(of M M|
reduce-trail-to-compow-tl-trail-le[of M M|
by (cases (dength M < length (trail M'))) auto

lemma tl-trail-reduce-trail-to-cons:
dength (L # M) < length (trail M) = tl-trail (reduce-trail-to (L # M) M') = reduce-trail-to M M"
by (auto simp: reduce-trail-to-compow-tl-trail-le funpow-swap1!
reduce-trail-to-compow-ti-trail-eq less-iff-Suc-add)

lemma compow-tl-trail-add-learned-cls-swap:
(tl-trail =" n) (add-learned-cls D S) ~ add-learned-cls D ((tl-trail =" n) S)
by (induction n)
(auto intro: tl-trail-add-learned-cls-commute state-eg-trans
tl-trail-state-eq)

lemma reduce-trail-to-add-learned-cls-state-eq:
dength M < length (trail S) =
reduce-trail-to M (add-learned-cls D S) ~ add-learned-cls D (reduce-trail-to M S)
by (cases dength M < length (trail S)))
(auto simp: compow-tl-trail-add-learned-cls-swap reduce-trail-to-compow-ti-trail-le
reduce-trail-to-compow-tl-trail-eq)

lemma compow-ti-trail-update-conflicting-swap:
(tl-trail =" n) (update-conflicting D S) ~ update-conflicting D ((t-trail =" n) S)
by (induction n)
(auto intro: tl-trail-add-learned-cls-commute state-eq-trans
tl-trail-state-eq tl-trail-update-conflicting)

lemma reduce-trail-to-update-conflicting-state-eq:
dength M < length (trail S) =
reduce-trail-to M (update-conflicting D S) ~ update-conflicting D (reduce-trail-to M S)
by (cases dength M < length (trail S))
(auto simp: compow-tl-trail-add-learned-cls-swap reduce-trail-to-compow-tl-trail-le
reduce-trail-to-compow-ti-trail-eq compow-tl-trail-update-conflicting-swap)

lemma

additional-info-cons-trail[simp:

additional-info (cons-trail L S) = additional-info S> and
additional-info-tl-trail[ simp]:

additional-info (tl-trail S) = additional-info S and
additional-info-add-learned-cls-unfolded:

additional-info (add-learned-cls U S) = additional-info S and
additional-info-update-conflicting[simp):

additional-info (update-conflicting D S) = additional-info S and
additional-info-remove-cls|simp]:

additional-info (remove-cls C' S) = additional-info S and
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additional-info-add-learned-cls[simp]:
additional-info (add-learned-cls C' S) = additional-info S
unfolding additional-info-def
using ti-trail[of S] cons-trail[of S| add-learned-cls[of S|
update-conflicting[of S] remove-cls[of S]
by (cases (state S; auto; fail)+

lemma additional-info-reduce-trail-to[simp]:
(additional-info (reduce-trail-to F S) = additional-info S
by (induction F S rule: reduce-trail-to.induct)
(metis additional-info-tl-trail reduce-trail-to.simps)

lemma reduce-trail-to:
state (reduce-trail-to F S) =
((if length (trail S) > length F
then drop (length (trail S) — length F) (trail S)
else []), init-clss S, learned-clss S, conflicting S, additional-info S)
proof (induction F S rule: reduce-trail-to.induct)
case (1 F S) note IH = this
show ?Zcase
proof (cases trail S)
case Nil
then show %thesis using IH by (subst state-prop) auto
next
case (Cons L M)
show ?thesis
proof (cases Suc (length M) > length F')
case True
then have Suc (length M) — length F = Suc (length M — length F)
by auto
then show ?thesis
using Cons True reduce-trail-to-length-ne[of S F| IH by (auto simp del: state-prop)
next
case Fulse
then show ?thesis
using IH reduce-trail-to-length-ne[of S F| apply (subst state-prop)
by (simp add: trail-reduce-trail-to-drop)
qed
qed
qed

end — end of statey locale

1.1.2 CDCL Rules

Because of the strategy we will later use, we distinguish propagate, conflict from the other rules

locale conflict-driven-clause-learningy =
stateyy
state-eq
state
— functions for the state:
— access functions:
trail init-clss learned-clss conflicting
— changing state:
cons-trail tl-trail add-learned-cls remove-cls
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update-conflicting

— get state:

1nit-state

for

state-eq :: 'st = st = bool (infix ~ 50) and

state :: ‘st = (v, 'v clause) ann-lits x 'v clauses x v clauses x 'v clause option x
‘b and

trail :: 'st = ("v, 'v clause) ann-lits and

init-clss :: 'st = 'v clauses and

learned-clss :: 'st = v clauses and

conflicting :: 'st = v clause option and

cons-trail :: ("v, 'v clause) ann-lit = ‘st = ‘st and
tl-trail :: 'st = ‘st and

add-learned-cls :: 'v clause = st = 'st and
remove-cls :: 'v clause = 'st = ’'st and
update-conflicting :: 'v clause option = 'st = st and

init-state :: v clauses = 'st
begin

inductive propagate :: ‘st = ‘st = bool for S :: 'st where
propagate-rule: conflicting S = None =

E €# clauses S =

Le# F =

trail S |=as CNot (E — {#L#}) =

undefined-lit (trail ) L =

T ~ cons-trail (Propagated L E) S =

propagate S T

inductive-cases propagateE: propagate S T

inductive conflict :: 'st = st = bool for S :: ‘st where
conflict-rule:

conflicting S = None =

D €# clauses S —

trail S =as CNot D =

T ~ update-conflicting (Some D) S =

conflict S T

inductive-cases conflictE: conflict S T

inductive backtrack :: 'st = 'st = bool for S :: ‘st where
backtrack-rule:

conflicting S = Some (add-mset L D) =

(Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) =

get-level (trail S) L = backtrack-lvl S =

get-level (trail S) L = get-mazimum-level (trail S) (add-mset L D') =

get-mazimum-level (trail S) D' = i =

get-level (trail S) K =i + 1 =

D' C# D —

clauses S |=pm add-mset L D' —>

T ~ cons-trail (Propagated L (add-mset L D’))

(reduce-trail-to M1
(add-learned-cls (add-mset L D)
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(update-conflicting None S))) =
backtrack S T

inductive-cases backtrackE: backtrack S T

Here is the normal backtrack rule from Weidenbach’s book:

inductive simple-backtrack :: 'st = st = bool for S :: 'st where
simple-backtrack-rule:
conflicting S = Some (add-mset L D) =
(Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) =
get-level (trail S) L = backtrack-lvl S =
get-level (trail S) L = get-mazimum-level (trail S) (add-mset L D) =
get-maximum-level (trail S) D = i =
get-level (trail S) K =i + 1 =
T ~ cons-trail (Propagated L (add-mset L D))
(reduce-trail-to M1
(add-learned-cls (add-mset L D)
(update-conflicting None S))) =
simple-backtrack S T

inductive-cases simple-backtrackE: simple-backtrack S T

This is a generalised version of backtrack: It is general enough te also include OCDCL’s version.

inductive backtrackg :: 'st = ‘st = bool for S :: 'st where
backtrackg-rule:
conflicting S = Some (add-mset L D) =
(Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) =
get-level (trail S) L = backtrack-lvl S =
get-level (trail S) L = get-mazimum-level (trail S) (add-mset L D') =
get-mazimum-level (trail S) D' = i =
get-level (trail ) K =i+ 1 =
D' C# D —
T ~ cons-trail (Propagated L (add-mset L D))
(reduce-trail-to M1
(add-learned-cls (add-mset L D’)
(update-conflicting None S))) =
backtrackg S T

inductive-cases backtrackgE: backtrackg S T

inductive decide :: ‘st = ‘st = bool for S :: 'st where
decide-rule:

conflicting S = None =

undefined-lit (trail §) L =

atm-of L € atms-of-mm (init-clss §) =

T ~ cons-trail (Decided L) S =

decide S T

inductive-cases decideE: decide S T

inductive skip :: ‘st = ‘st = bool for S :: ‘st where
skip-rule:

trail S = Propagated L C' # M —

conflicting S = Some E —

—L¢# E =

B4 {# —
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T ~ tl-trail S =
skip S T

inductive-cases skipE: skip S T

get-mazimum-level (Propagated L (C + {#L#}) # M) D = k V k = 0 (that was in a previous
version of the book) is equivalent to get-mazimum-level (Propagated L (C + {#L#}) # M) D
= k, when the structural invariants holds.

inductive resolve :: ‘st = st = bool for S :: ‘st where
resolve-rule: trail S # [| =
hd-trail S = Propagated L E —>
Le# FE =
conflicting S = Some D' =
—Le# D =
get-mazimum-level (trail S) ((removel-mset (—L) D')) = backtrack-lvl S =
T ~ update-conflicting (Some (resolve-cls L D' E))
(tl-trail §) =
resolve S T

inductive-cases resolveE: resolve S T

Christoph’s version restricts restarts to the the case where M= N+ U. While it is possible to
implement this (by watching a clause), This is an unnecessary restriction.

inductive restart :: 'st = 'st = bool for S :: st where
restart: state S = (M, N, U, None, §') =

U'C# U =

state T = ([], N, U’, None, ') =

restart S T

inductive-cases restartE: restart S T

We add the condition C ¢# init-clss S, to maintain consistency even without the strategy.

inductive forget :: ‘st = ‘st = bool where
forget-rule:

conflicting S = None =

C €4 learned-clss S =

—(trail S) Easm clauses S =

C ¢ set (get-all-mark-of-propagated (trail S)) =

C ¢4 init-clss S =

removeAll-mset C' (clauses S) Epm C =

T ~ remove-cls C'S =

forget S T

inductive-cases forgetE: forget S T

inductive cdcly -rf :: ‘st = ‘st = bool for S :: 'st where
restart: restart S T = edclw-rf S T |

forget: forget S T = cdcly -rf ST

inductive cdcly -bj :: 'st = st = bool where

skip: skip S S' = cdelw-bj S S’ |

resolve: resolve S S' = cdcly-bj S S’ |

backtrack: backtrack S S' = cdcly -bj S S’

inductive-cases cdcly -bjE: cdcly -bj S T
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inductive cdcly -0 :: ‘st = 'st = bool for S :: ‘st where
decide: decide S S" = cdcly-0 S S’ |
bj: cdely -bj S S' = cdely-0 S S’

inductive cdclyy -restart :: 'st = ‘st = bool for S :: 'st where
propagate: propagate S S’ = cdcly -restart S S’ |

conflict: conflict S S" = cdcly -restart S S’ |

other: cdcly-0 S S’ = cdcly -restart S S|

rf: cdelw-rf S 8" = cdely -restart S S’

lemma rtranclp-propagate-is-rtranclp-cdclyy -restart:
propagate*™* S S’ = cdclyy -restart*™* S S’
apply (induction rule: rtranclp-induct)
apply (simp; fail)
apply (frule propagate)
using rtranclp-trans|of cdcly -restart] by blast

inductive cdcly :: 'st = ‘st = bool for S :: 'st where
W-propagate: propagate S S' = cdely S S’ |
W-conflict: conflict S 8" = cdelw S S’ |

W-other: cdcly -0 S 8" = cdclyy S S’

lemma cdclyy-cdcelyy -restart:
cdelyy S T = cdcelyy -restart S T
by (induction rule: cdclyy .induct) (auto intro: cdclyy -restart.intros simp del: state-prop)

lemma rtranclp-cdclyy -cdclyy -restart:
edelw** S T = cdclyy -restart™™ S T)
apply (induction rule: rtranclp-induct)
apply (auto; fail)]]
by (meson cdcly -cdclyy -restart rtranclp.rtrancl-into-rtrancl)

lemma cdclyy -restart-all-rules-induct[consumes 1, case-names propagate conflict forget restart decide
skip resolve backtrack]:
fixes S :: 'st
assumes
cdclyy -restart: cdcly -restart S S’ and
propagate: \T. propagate S T — P S T and
conflict: NT. conflict ST — P S T and
forget: NT. forget ST — P S T and
restart: NT. restart S T = P S T and
decide: NT. decide ST = P S T and
skip: NT. skip ST = P S T and
resolve: NT. resolve S T = P S T and
backtrack: NT. backtrack ST — P S T
shows P § S’
using assms(1)
proof (induct S’ rule: cdcly -restart.induct)
case (propagate S’) note propagate = this(1)
then show ?Zcase using assms(2) by auto
next
case (conflict S')
then show ?Zcase using assms(3) by auto
next
case (other S’)
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then show “case
proof (induct rule: cdely -o.induct)
case (decide U)
then show ?case using assms(6) by auto
next
case (bj S)
then show ?case using assms(7—9) by (induction rule: cdcly -bj.induct) auto
qed
next
case (rf S’)
then show “case
by (induct rule: cdcly -rf.induct) (fast dest: forget restart)+
qed

lemma cdclyy -restart-all-induct[consumes 1, case-names propagate conflict forget restart decide skip
resolve backtrack):
fixes S :: 'st
assumes

cdelyy -restart: cdelyy -restart S S’ and

propagateH: NC L T. conflicting S = None =
C €4 clauses S —
Le# C =
trail S =as CNot (removel-mset L C) =
undefined-lit (trail S) L =
T ~ cons-trail (Propagated L C) S =
P S T and

conflictH: AD T. conflicting S = None =
D €4 clauses S =
trail S =as CNot D =
T ~ update-conflicting (Some D) S =
P S T and

forgetH: \NC T. conflicting S = None =
C €# learned-clss S =
—(trail S) FEasm clauses § =
C ¢ set (get-all-mark-of-propagated (trail S)) =
C ¢4 init-clss § =
removeAll-mset C (clauses S) E=pm C =
T ~ remove-cls C S =
P ST and

restartH: AT U. conflicting S = None =
state T = ([], init-clss S, U, None, additional-info S) —
U C# learned-clss S =
P ST and

decideH: \L T. conflicting S = None —>
undefined-lit (trail S) L =
atm-of L € atms-of-mm (init-clss S) =
T ~ cons-trail (Decided L) S =
P ST and

skipH: AL C' M E T.
trail S = Propagated L C' # M —
conflicting S = Some E =
—L¢# E = E#{#} =
T ~ tl-trail S =
P ST and

resolveH: AL EM D T.
trail S = Propagated L E # M —
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Le# E =
hd-trail S = Propagated L E —>
conflicting S = Some D —>
—Le# D=
get-mazimum-level (trail S) ((removel-mset (—L) D)) = backtrack-lvl S =
T ~ update-conflicting
(Some (resolve-cls L D E)) (t-trail ) =
P ST and
backtrackH: NL D K i M1 M2 T D'.
conflicting S = Some (add-mset L D) =
(Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) =
get-level (trail S) L = backtrack-lvl S =
get-level (trail S) L = get-maximum-level (trail S) (add-mset L D) =
get-mazximume-level (trail S) D' = i =
get-level (trail $) K = i+1 =
D/ C# D —
clauses S |=pm add-mset L D' —>
T ~ cons-trail (Propagated L (add-mset L D"))
(reduce-trail-to M1
(add-learned-cls (add-mset L D')
(update-conflicting None S))) =
PST
shows P § S’
using cdclyy -restart
proof (induct S S’ rule: cdclyy -restart-all-rules-induct)
case (propagate S’
then show Zcase
by (auto elim!: propagateE introl: propagateH )
next
case (conflict S
then show Zcase
by (auto elim!: conflictE intro!: conflictH)
next
case (restart S’)
then show “case
by (auto elim!: restartE intro\: restartH)
next
case (decide T)
then show “case
by (auto elim!: decideE intro!: decideH)
next
case (backtrack S’)
then show Zcase by (auto elim!: backtrackE introl: backtrackH simp del: state-simp)
next
case (forget S”)
then show ?Zcase by (auto elim!: forgetE introl: forgetH)
next
case (skip S’)
then show Zcase by (auto elim!: skipE introl: skipH)
next
case (resolve S”)
then show ?case
by (cases trail S) (auto elim!: resolveE intro!: resolveH)
qed

lemma cdclyy -o-induct[consumes 1, case-names decide skip resolve backtrack]:
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fixes S :: ‘st
assumes cdclyy -restart: cdely -0 S T and
decideH: AL T. conflicting S = None —> undefined-lit (trail S) L
= atm-of L € atms-of-mm (init-clss S)
= T ~ cons-trail (Decided L) S
= P ST and
skipH: NL C' M E T.
trail S = Propagated L C' # M —
conflicting S = Some F —>
—L¢# E— E#{#} —
T ~ tl-trail S =
P ST and
resolveH: AL EM D T.
trail S = Propagated L E # M —
Le# F =
hd-trail S = Propagated L E —>
conflicting S = Some D =
—Le# D=
get-mazimum-level (trail S) ((removel-mset (—L) D)) = backtrack-lvl S =
T ~ update-conflicting
(Some (resolve-cls L D E)) (t-trail S) =
P ST and
backtrackH: NL D K i M1 M2 T D'.
conflicting S = Some (add-mset L D) =
(Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) =
get-level (trail S) L = backtrack-lvl S =
get-level (trail S) L = get-mazimum-level (trail S) (add-mset L D) =
get-mazimum-level (trail S) D' = i =
get-level (trail S) K = i+1 =
D' C# D —
clauses S |Epm add-mset L D' =
T ~ cons-trail (Propagated L (add-mset L D’))
(reduce-trail-to M1
(add-learned-cls (add-mset L D’)
(update-conflicting None S))) =
PsST
shows PS T
using cdclyy -restart apply (induct T rule: cdcly -o.induct)
subgoal using assms(2) by (auto elim: decideE; fail)
subgoal apply (elim cdcly -bjE skipE resolveE backtrackE)
apply (frule skipH; simp; fail)
apply (cases trail S; auto elim!: resolveE intro!: resolveH; fail)
apply (frule backtrackH; simp; fail)
done
done

lemma cdclyy -o-all-rules-induct[consumes 1, case-names decide backtrack skip resolve]:
fixes S T :: 'st
assumes
cdely -0 S T and
AT. decide ST = P S T and
NAT. backtrack S T — P S T and
NT. skip ST = P S T and
NT. resolve ST = P ST
shows P S T
using assms by (induct T rule: cdcly -o.induct) (auto simp: cdclyy-bj.simps)
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lemma cdclyy -o-rule-cases[consumes 1, case-names decide backtrack skip resolve]:
fixes S T :: st
assumes
cdelw -0 S T and
decide S T — P and
backtrack S T —> P and
skip S T — P and
resolve S T =—> P
shows P
using assms by (auto simp: cdcly -o.simps cdcly -bj.simps)

lemma backtrack-backtrackg:
(backtrack S T = backtrackg S T
unfolding backtrack.simps backtrackg.simps
by blast

lemma simple-backtrack-backtrackg:
(simple-backtrack S T = backtrackg S T
unfolding simple-backtrack.simps backtrackg.simps
by blast

1.1.3 Structural Invariants

Properties of the trail
We here establish that:

e the consistency of the trail;

e the fact that there is no duplicate in the trail.

Nitpicking 0.1. As one can see in the following proof, the properties of the levels are re-
quired to prove Item 1 page 94 of Weidenbach’s book. However, this point is only mentioned
later, and only in the proof of Item 7 page 95 of Weidenbach’s book.

lemma backtrack-lit-skiped:
assumes
L: get-level (trail S) L = backtrack-lvl S and
M1: (Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) and
no-dup: no-dup (trail S) and
lev-K: get-level (trail S) K =i + 1
shows undefined-lit M1 L
proof (rule ccontr)
let M = trail S
assume L-in-M1: = %thesis
obtain M2’ where
Me: trail S = M2’ Q@ M2 Q Decided K # M1
using M1 by blast
have Kc: (undefined-lit M2' Ky and KM2: <undefined-lit M2 K> (atm-of L # atm-of K) and
(undefined-lit M2' L) (undefined-lit M2 L
using L-in-M1 no-dup unfolding Mc by (auto simp: atm-of-eq-atm-of dest: defined-lit-no-dupD)
then have g-M-eq-g-M1: get-level 2M L = get-level M1 L
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using L-in-M1 unfolding Mc by auto
then have get-level M1 L < Suc i
using count-decided-ge-get-level[of M1 L] KM2 lev-K Kc unfolding Mc by auto
moreover have Suc i < backtrack-lvl S using KM?2 lev-K Kc unfolding Mc by (simp add: Mc)
ultimately show Fulse using L g-M-eq-g-M1 by auto
qed

lemma cdclyy -restart-distinctinv-1:
assumes
cdclyy -restart S S’ and
n-d: no-dup (trail S)
shows no-dup (trail S')
using assms(1)
proof (induct rule: cdcly -restart-all-induct)
case (backtrack L D K i M1 M2 T D’) note decomp = this(2) and L = this(3) and lev-K = this(6)
and
T = this(9)
obtain ¢ where Mec: trail S = ¢ @ M2 @ Decided K # M1
using decomp by auto
have no-dup (M2 @ Decided K # M1)
using Mc n-d by (auto dest: no-dup-appendD simp: defined-lit-map image-Un)
moreover have L-M1: undefined-lit M1 L
using backtrack-lit-skiped[of S L K M1 M2 i] L decomp lev-K n-d
unfolding defined-lit-map lits-of-def by fast
ultimately show ?case using decomp T n-d by (auto dest: no-dup-appendD)
qged (use n-d in auto)

Item 1 page 94 of Weidenbach’s book

lemma cdclyy -restart-consistent-inv-2:
assumes
cdelyy -restart S S’ and
no-dup (trail S)
shows consistent-interp (lits-of-1 (trail S"))
using cdclyy -restart-distinctinv-1[OF assms| distinct-consistent-interp by fast

definition cdcly -M-level-inv :: 'st = bool where
cdelyy -M-level-inv S <——

consistent-interp (lits-of-1 (trail S))

A no-dup (trail S)

lemma cdclyy - M-level-inv-decomp:
assumes cdclyy -M-level-inv S
shows
consistent-interp (lits-of-1 (trail S)) and
no-dup (trail S)
using assms unfolding cdclyy -M-level-inv-def by fastforce+

lemma cdclyy -restart-consistent-inv:
fixes S S’ :: st
assumes
cdclyy -restart S S’ and
cdely -M-level-inv S
shows cdclyy -M-level-inv S’
using assms cdclyy -restart-consistent-inv-2 cdclyy -restart-distinctinv-1
unfolding cdcly -M-level-inv-def by meson+
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lemma rtranclp-cdclyy -restart-consistent-inv:
assumes
cdelyy -restart** S S’ and
cdelyy -M-level-inv S
shows cdclyy -M-level-inv S’
using assms by (induct rule: rtranclp-induct) (auto intro: cdclyy -restart-consistent-inv)

lemma tranclp-cdclyy -restart-consistent-inv:
assumes
cdclyy -restart™ S S’ and
cdelyy -M-level-inv S
shows cdclyy -M-level-inv S’
using assms by (induct rule: tranclp-induct) (auto intro: cdclyy -restart-consistent-inv)

lemma cdclyy -M-level-inv-S0-cdely -restart[simp]:
cdclyy -M-level-inv (init-state N)
unfolding cdcly -M-level-inv-def by auto

lemma backtrack-ex-decomp:
assumes
M-1: no-dup (trail S) and
1-S: 1 < backtrack-lvl S
shows 3K M1 M2. (Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) A
get-level (trail S) K = Suc i
proof —
let M = trail S
have i < count-decided (trail S)
using -5 by auto
then obtain ¢ K ¢’ where tr-S: trail S = ¢ @Q Decided K # ¢’ and
lev-K: get-level (trail S) K = Suc i
using le-count-decided-decomp|of trail S i] M-l by auto
obtain M1 M2 where (Decided K # M1, M2) € set (get-all-ann-decomposition (trail S))
using Decided-cons-in-get-all-ann-decomposition-append-Decided-cons unfolding tr-S by fast
then show ?thesis using lev-K by blast
qed

lemma backtrack-lvl-backtrack-decrease:
assumes inv: cdcly -M-level-inv S and bt: backtrack S T
shows backtrack-lvl T < backtrack-lvl S
using inv bt le-count-decided-decomp|of trail S backtrack-lvl T)
unfolding cdclyy -M-level-inv-def
by (fastforce elim!: backtrackE simp: append-assoc[of - - -# -, symmetric]
simp del: append-assoc)

Compatibility with (~)

declare state-eg-trans|trans

lemma propagate-state-eq-compatible:
assumes
propa: propagate S T and
88" § ~ S"and
TT T ~ T'
shows propagate S’ T"'
proof —
obtain C' L where
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conf: conflicting S = None and
C: C €4 clauses S and
L: L €# C and
tr: trail S F=as CNot (removel-mset L C) and
undef: undefined-lit (trail S) L and
T: T ~ cons-trail (Propagated L C) S
using propa by (elim propagateE) auto

have C": C €# clauses S’
using 5SS’ C
by (auto simp: clauses-def)
have T': (T’ ~ cons-trail (Propagated L C') S%
using state-eg-trans[of T' T] SS' TT'
by (meson T cons-trail-state-eq state-eq-sym state-eg-trans)
show ?thesis
apply (rule propagate-rulelof - C])
using SS’ conf C' L tr undef TT' T T' by auto
qed

lemma conflict-state-eq-compatible:
assumes
confl: conflict S T and
TT" T ~ T' and

S5 8 ~ 8§’
shows conflict S’ T'
proof —

obtain D where

conf: conflicting S = None and

D: D €4# clauses S and

tr: trail S Eas CNot D and

T: T ~ update-conflicting (Some D) S
using confl by (elim conflictE) auto

have D’ D €# clauses S’
using D SS’ by fastforce

have T (T’ ~ update-conflicting (Some D) S"
using state-eg-trans[of T' T] SS' TT'
by (meson T update-conflicting-state-eq state-eq-sym state-eq-trans)
show ?thesis
apply (rule conflict-rule[of - D))
using SS’ conf D' tr TT' T T' by auto
qed

lemma backtrack-state-eq-compatible:
assumes
bt: backtrack S T and
S5 S ~ §"and
T T ~ T’
shows backtrack S’ T’
proof —
obtain D L K i M1 M2 D’ where
conf: conflicting S = Some (add-mset L D) and
decomp: (Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) and
lev: get-level (trail S) L = backtrack-lvl S and
maz: get-level (trail S) L = get-mazimum-level (trail S) (add-mset L D’) and
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maz-D: get-mazimum-level (trail S) D’ = i and
lev-K: get-level (trail S) K = Suc i and
D'-D: (D' C# D) and
NU-DL: clauses S E=pm add-mset L D" and
T: T ~ cons-trail (Propagated L (add-mset L D))
(reduce-trail-to M1
(add-learned-cls (add-mset L D’)
(update-conflicting None S)))
using bt by (elim backtrackE) metis
let ?D = <add-mset L D
let D’ = <add-mset L D"
have D’ conflicting S’ = Some ?D
using SS’ conf by (cases conflicting S’) auto

have T'-S: T' ~ cons-trail (Propagated L ?D’)
(reduce-trail-to M1 (add-learned-cls 2D’
(update-conflicting None S)))

using T TT' state-eq-sym state-eq-trans by blast

have T'": T' ~ cons-trail (Propagated L ?D’)
(reduce-trail-to M1 (add-learned-cls 2D’
(update-conflicting None S")))

apply (rule state-eqg-trans|OF T'-S))
by (auto simp: cons-trail-state-eq reduce-trail-to-state-eq add-learned-cls-state-eq
update-conflicting-state-eq SS”)

show ?thesis

apply (rule backtrack-rule[of - L D K M1 M2 D’ 1])
subgoal by (rule D’)
subgoal using TT' decomp SS’ by auto
subgoal using lev TT' SS’ by auto
subgoal using maz TT' SS’ by auto
subgoal using maz-D TT' SS’ by auto
subgoal using lev-K TT' SS’ by auto
subgoal by (rule D’-D)
subgoal using NU-DL TT' SS’ by auto
subgoal by (rule T)
done

qed

lemma decide-state-eq-compatible:
assumes
dec: decide S T and
S8 S ~ §"and
TT" T ~ T'
shows decide S’ T’
using assms
proof —
obtain L :: 'v literal where
f4: undefined-lit (trail S) L
atm-of L € atms-of-mm (init-clss S)
T ~ cons-trail (Decided L) S
using dec decide.simps by blast
have cons-trail (Decided L) S' ~ T’
using f4 SS’ TT' by (metis (no-types) cons-trail-state-eq state-eq-sym
state-eg-trans)
then show ?thesis
using f4 SS’' TT' dec by (auto simp: decide.simps state-eq-sym,)
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qed

lemma skip-state-eq-compatible:
assumes
skip: skip S T and
85" 8§ ~ §"and
TT" T ~ T'
shows skip S’ T'
proof —
obtain L C' M E where
tr: trail S = Propagated L C' # M and
raw: conflicting S = Some E and
L: —L ¢4 E and
E: E # {#) and
T: T ~ tl-trail S
using skip by (elim skipE) simp
obtain E’ where E’: conflicting S’ = Some E’'
using SS’ raw by (cases conflicting S’) auto
have T (T’ ~ tl-trail S"
by (meson SS’ T TT' state-eq-sym state-eq-trans tl-trail-state-eq)
show ?thesis
apply (rule skip-rule)
using tr raw L E T SS’ apply (auto; fail)]]
using E’ apply (simp; fail)
using E’ SS’ L raw E apply ((auto; fail)+)[2]
using T’ by auto
qed

lemma resolve-state-eq-compatible:
assumes
res: resolve S T and
TT" T ~ T’ and

S8 8 ~ 8!
shows resolve S’ T’
proof —

obtain £ D L where
tr: trail S # [] and
hd: hd-trail S = Propagated L E and
L: L €# E and
raw: conflicting S = Some D and
LD: —L €# D and
i get-mazimum-level (trail S) ((removel-mset (—L) D)) = backtrack-lvl S and
T: T ~ update-conflicting (Some (resolve-cls L D E)) (tl-trail S)
using assms by (elim resolveE) simp

obtain D’ where
D'": conflicting S’ = Some D'
using 5SS’ raw by fastforce
have [simp]: D = D’
using D’ 5SS’ raw state-simp(5) by fastforce
have T'T: T' ~ T
using TT' state-eq-sym by auto
have T (T’ ~ update-conflicting (Some (removel-mset (— L) D’ U# removel-mset L E))
(tl-trail S')
proof —
have tl-trail S ~ tl-trail S’
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using SS’ by (auto simp: tl-trail-state-eq)
then show ?thesis
using T T'T <D = D"y state-eq-trans update-conflicting-state-eq by blast
qged
show ?thesis
apply (rule resolve-rule)
using tr SS’ apply (simp; fail)
using hd SS’ apply (simp; fail)
using L apply (simp; fail)
using D’ apply (simp; fail)
using D’ S5’ raw LD apply (auto; fail)[]
using D’ SS’ raw LD i apply (auto; fail)[]
using T’ by auto
qed

lemma forget-state-eq-compatible:
assumes
forget: forget S T and
5SS ~ S and
TT T ~ T’
shows forget S’ T’
proof —
obtain C where
conf: conflicting S = None and
C: C €+ learned-clss S and
tr: =(trail S) Easm clauses S and
C1: C ¢ set (get-all-mark-of-propagated (trail S)) and
C2: C ¢+# init-clss S and
ent: <removeAll-mset C (clauses S) Epm C) and
T: T ~ remove-cls C'S
using forget by (elim forgetE) simp
have T (T' ~ remove-cls C S
by (meson SS' T TT' remove-cls-state-eq state-eq-sym state-eq-trans)
show ?thesis
apply (rule forget-rule)
using SS’ conf apply (simp; fail)
using C SS’ apply (simp; fail)
using SS’ tr apply (simp; fail)
using SS’ C1 apply (simp; fail)
using SS’ C2 apply (simp; fail)
using ent SS’ apply (simp; fail)
using T’ by auto
qed

lemma cdclyy -restart-state-eq-compatible:

assumes
cdelyy -restart S T and —restart S T and
S~ S8
T~ T'

shows cdclyy-restart S' T

using assms by (meson backtrack backtrack-state-eq-compatible bj cdclyy -restart.simps
cdclyy -o-rule-cases cdclyy -rf.cases conflict-state-eq-compatible decide decide-state-eq-compatible
forget forget-state-eq-compatible propagate-state-eq-compatible
resolve resolve-state-eq-compatible skip skip-state-eq-compatible state-eg-ref)

lemma cdclyy -bj-state-eq-compatible:
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assumes
cdely-bj S T
T~ T'

shows cdcly-bj S T’

using assms by (meson backtrack backtrack-state-eq-compatible cdcly -bjE resolve
resolve-state-eq-compatible skip skip-state-eq-compatible state-eq-ref)

lemma tranclp-cdclyy -bj-state-eq-compatible:
assumes
cdelw-bjt+ ST
S ~ 8" and
T~ T'
shows cdclyy -bjT+ S’ T’
using assms
proof (induction arbitrary: S’ T')
case base
then show ?case
unfolding tranclp-unfold-end by (meson backtrack-state-eq-compatible cdclyy -bj.simps
resolve-state-eq-compatible rtranclp-unfold skip-state-eq-compatible)
next
case (step T U) note IH = this(3)[OF this(4)]
have cdcly -restarttt S T
using tranclp-mono|of cdcly -bj cdcly -restart] step.hyps(1) cdely -restart.other cdely -0.bj by blast
then have cdcly -bjt+ T T’
using U ~ T cdely -bj-state-eq-compatiblelof T U] <cdclw-bj T U» by auto
then show ?case
using [H[of T] by auto
qed

lemma skip-unique:
skip ST = skip ST'— T ~ T'
by (auto elim!: skipE intro: state-eq-trans’)

lemma resolve-unique:
resolve S T = resolve S T' = T ~ T’
by (fastforce intro: state-eq-trans’ elim: resolveE)

The same holds for backtrack, but more invariants are needed.

Conservation of some Properties

lemma cdclyy-o0-no-more-init-clss:
assumes
cdelyy -0 S S" and
inv: cdely -M-level-inv S
shows init-clss S = init-clss S’
using assms by (induct rule: cdcly -o-induct) (auto simp: inv cdely -M-level-inv-decomp)

lemma tranclp-cdclyy -o-no-more-init-clss:
assumes
cdely -0t S S’ and
inwv: cdely -M-level-inv S
shows init-clss S = init-clss S’
using assms apply (induct rule: tranclp.induct)
by (auto
dest!: tranclp-cdclyy -restart-consistent-inv
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dest: tranclp-mono-explicit|of cdcly -0 - - cdely -restart] cdely -o-no-more-init-clss
simp: other)

lemma rtranclp-cdclyy -o-no-more-init-clss:
assumes
cdelyy-0** S S" and
inv: cdelyy -M-level-inv S
shows init-clss S = init-clss S’
using assms unfolding rtranclp-unfold by (auto intro: tranclp-cdcly -o-no-more-init-clss)

lemma cdclyy -restart-init-clss:
assumes
cdelyy -restart S T
shows init-clss S = init-clss T
using assms by (induction rule: cdclyy -restart-all-induct)
(auto simp: not-in-iff)

lemma rtranclp-cdclyy -restart-init-clss:
cdelyy -restart™™ S T = init-clss S = init-clss T
by (induct rule: rtranclp-induct) (auto dest: cdclyy -restart-init-clss rtranclp-cdcly -restart-consistent-inv)

lemma tranclp-cdclyy -restart-init-clss:
cdelyy-restartt™ § T = init-clss S = init-clss T
using rtranclp-cdcly -restart-init-clss[of S T] unfolding rtranclp-unfold by auto

Learned Clause

This invariant shows that:

e the learned clauses are entailed by the initial set of clauses.
e the conflicting clause is entailed by the initial set of clauses.

e the marks belong to the clauses. We could also restrict it to entailment by the clauses, to
allow forgetting this clauses.

definition (in statey -ops) reasons-in-clauses :: ‘st = bool) where
(reasons-in-clauses (S :: 'st) +—
(set (get-all-mark-of-propagated (trail S)) C set-mset (clauses S)))

definition (in statew -ops) cdcly -learned-clause :: (st = bool) where
cdely -learned-clause (S :: 'st) «—

((VT. conflicting S = Some T — clauses S E=pm T)

A reasons-in-clauses S)

lemma cdclyy -learned-clause-alt-def:
edelyy -learned-clause (S :: 'st) «—
((VT. conflicting S = Some T — clauses S Epm T)
A set (get-all-mark-of-propagated (trail S)) C set-mset (clauses S))
by (auto simp: cdclyy -learned-clause-def reasons-in-clauses-def)

lemma reasons-in-clauses-init-state[simpl: (reasons-in-clauses (init-state N))
by (auto simp: reasons-in-clauses-def)

Item 3 page 95 of Weidenbach’s book for the inital state and some additional structural prop-
erties about the trail.
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lemma cdcly -learned-clause-S0-cdcly -restart[simp]:
cdelyy -learned-clause (init-state N)
unfolding cdcly -learned-clause-alt-def by auto

Item 4 page 95 of Weidenbach’s book

lemma cdclyy -restart-learned-clss:
assumes
cdclyy -restart S S’ and
learned: cdclyy -learned-clause S and
lev-inv: cdclyy -M-level-inv S
shows cdclyy -learned-clause S’
using assms(1)
proof (induct rule: cdcly -restart-all-induct)
case (backtrack L D K ¢ M1 M2 T D’) note decomp = this(2) and confl = this(1) and lev-K = this
(6)
and T = this(9)
show ?Zcase
using decomp learned confl T unfolding cdclyy -learned-clause-alt-def reasons-in-clauses-def
by (auto dest!: get-all-ann-decomposition-ezists-prepend)
next
case (resolve L C' M D) note trail = this(1) and CL = this(2) and confl = this(4) and DL = this(5)
and lwl = this(6) and T = this(7)
moreover
have clauses S E=pm add-mset L C
using trail learned unfolding cdclyy -learned-clause-alt-def clauses-def reasons-in-clauses-def
by (auto dest: true-clss-clss-in-imp-true-clss-cls)
moreover have removel-mset (— L) D + {#— L#} = D
using DL by (auto simp: multiset-eq-iff)
moreover have removel-mset L C + {#L#} = C
using CL by (auto simp: multiset-eq-iff)
ultimately show ?Zcase
using learned T
by (auto dest: mk-disjoint-insert
simp add: cdcly -learned-clause-alt-def clauses-def reasons-in-clauses-def
intro!: true-clss-cls-union-mset-true-clss-cls-or-not-true-clss-cls-or|of - L])
next
case (restart T')
then show ?case
using learned
by (auto
simp: clauses-def cdclyy -learned-clause-alt-def reasons-in-clauses-def
dest: true-clss-clssm-subsetFE)
next
case propagate
then show Zcase using learned by (auto simp: cdcly -learned-clause-alt-def reasons-in-clauses-def)
next
case conflict
then show ?Zcase using learned
by (fastforce simp: cdclw -learned-clause-alt-def clauses-def
true-clss-clss-in-imp-true-clss-cls reasons-in-clauses-def)
next
case (forget U)
then show ?case using learned
by (auto simp: cdcly -learned-clause-alt-def clauses-def reasons-in-clauses-def
split: if-split-asm,)
qged (use learned in (auto simp: cdcly -learned-clause-alt-def clauses-def reasons-in-clauses-def>)
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lemma rtranclp-cdclyy -restart-learned-clss:
assumes
cdelyy -restart** S S’ and
cdcly -M-level-inv S
cdcly -learned-clause S
shows cdclyy -learned-clause S’
using assms
by induction (auto dest: cdclyy -restart-learned-clss intro: rtranclp-cdclyy -restart-consistent-inv)

lemma cdclyy -restart-reasons-in-clauses:
assumes
cdelyy -restart S S’ and
learned: reasons-in-clauses S
shows reasons-in-clauses S’
using assms(1) learned
by (induct rule: cdcly -restart-all-induct)
(auto simp: reasons-in-clauses-def dest!: get-all-ann-decomposition-exists-prepend)

lemma rtranclp-cdclyy -restart-reasons-in-clauses:
assumes
cdelyy -restart™ S S’ and
learned: reasons-in-clauses S
shows reasons-in-clauses S’
using assms(1) learned
by (induct rule: rtranclp-induct)
(auto simp: cdcly -restart-reasons-in-clauses)

No alien atom in the state

This invariant means that all the literals are in the set of clauses. These properties are implicit
in Weidenbach’s book.

definition no-strange-atm S’ <—
(VT. conflicting S' = Some T — atms-of T C atms-of-mm (init-clss S’))
A (Y L mark. Propagated L mark € set (trail S") — atms-of mark C atms-of-mm (init-clss S’))
A atms-of-mm (learned-clss S') C atms-of-mm (init-clss S”)
A atm-of ¢ (lits-of-l (trail S’)) C atms-of-mm (init-clss S”)

lemma no-strange-atm-decomp:
assumes no-strange-atm S
shows conflicting S = Some T => atms-of T C atms-of-mm (init-clss S)
and (V L mark. Propagated L mark € set (trail S) — atms-of mark C atms-of-mm (init-clss S))
and atms-of-mm (learned-clss S) C atms-of-mm (init-clss S)
and atm-of ¢ (lits-of-l (trail S)) C atms-of-mm (init-clss S)
using assms unfolding no-strange-atm-def by blast+

lemma no-strange-atm-S0 [simp]: no-strange-atm (init-state N)
unfolding no-strange-atm-def by auto

lemma propagate-no-strange-atm-inv:
assumes
propagate S T and
alien: no-strange-atm S
shows no-strange-atm T
using assms(1)
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proof (induction rule: propagate.induct)
case (propagate-rule C L T) note confl = this(1) and C = this(2) and C-L = this(3) and
tr = this(4) and undef = this(5) and T = this(6)
have atm-CL: atms-of C' C atms-of-mm (init-clss S)
using C alien unfolding no-strange-atm-def
by (auto simp: clauses-def dest!: multi-member-split)
show ?Zcase
unfolding no-strange-atm-def
proof (intro conjl alll impl, goal-cases)
case (1 C)
then show ?case
using confl T undef by auto
next
case (2 L' mark’)
then show ?case
using C-L T alien undef atm-CL unfolding no-strange-atm-def clauses-def by (auto 5 5)
next
case 3
show ?case using T alien undef unfolding no-strange-atm-def by auto
next
case 4
show ?Zcase
using T alien undef C-L atm-CL unfolding no-strange-atm-def by (auto simp: atms-of-def)
qed
qed

lemma atms-of-ms-learned-clss-restart-state-in-atms-of-ms-learned-clssl:
atms-of-mm (learned-clss S) C atms-of-mm (init-clss S) =
z € atms-of-mm (learned-clss T) =
learned-clss T C# learned-clss S —
z € atms-of-mm (init-clss S)
by (meson atms-of-ms-mono contra-subsetD set-mset-mono)

lemma (in —) atms-of-subset-mset-mono: (D' C# D = atms-of D' C atms-of D)
by (auto simp: atms-of-def)

lemma cdclyy -restart-no-strange-atm-explicit:
assumes
cdelyy -restart S S’ and
lev: cdclyy -M-level-inv S and
conf: ¥ T. conflicting S = Some T — atms-of T C atms-of-mm (init-clss S) and
decided: ¥ L mark. Propagated L mark € set (trail S)
— atms-of mark C atms-of-mm (init-clss S) and
learned: atms-of-mm (learned-clss S) C atms-of-mm (init-clss S) and
trail: atm-of ¢ (lits-of-1 (trail S)) C atms-of-mm (init-clss S)
shows
(V T. conflicting S’ = Some T — atms-of T C atms-of-mm (init-clss S')) A
(Y L mark. Propagated L mark € set (trail S') — atms-of mark C atms-of-mm (init-clss S’)) A
atms-of-mm (learned-clss S’) C atms-of-mm (init-clss S') A
atm-of © (lits-of-1 (trail S')) C atms-of-mm (init-clss S”)
(is 2CS" AN M S' AN 2US' A 2V S
using assms(1)
proof (induct rule: cdcly -restart-all-induct)
case (propagate C' L T) note confl = this(1) and C-L = this(2) and tr = this(3) and undef =
this(4)
and T = this(5)
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show ?Zcase
using propagate-rule] OF propagate.hyps(1—3) - propagate.hyps(5,6), simplified)]
propagate.hyps(4) propagate-no-strange-atm-inv[of S T
conf decided learned trail unfolding no-strange-atm-def by presburger
next
case (decide L)
then show ?Zcase using learned decided conf trail unfolding clauses-def by auto
next
case (skip L C M D)
then show ?case using learned decided conf trail by auto
next
case (conflict D T') note D-S = this(2) and T = this(4)
have D: atm-of ‘ set-mset D C |J (atms-of ¢ (set-mset (clauses S)))
using D-S by (auto simp add: atms-of-def atms-of-ms-def)
moreover {
fix za :: v literal
assume al: atm-of ‘ set-mset D C (|J z€set-mset (init-clss S). atms-of x)
U (IJ zeset-mset (learned-clss S). atms-of x)
assume a2:
(U zeset-mset (learned-clss S). atms-of x) C (|J x€set-mset (init-clss S). atms-of x)
assume za €# D
then have atm-of za € UNION (set-mset (init-clss S)) atms-of
using a2 al by (metis (no-types) Un-iff atm-of-lit-in-atms-of atms-of-def subset-Un-eq)
then have 3 meset-mset (init-clss S). atm-of za € atms-of m
by blast
} note H = this
ultimately show ?Zcase using conflict.prems T learned decided conf trail
unfolding atms-of-def atms-of-ms-def clauses-def
by (auto simp add: H)
next
case (restart T')
then show ?Zcase using learned decided conf trail
by (auto intro: atms-of-ms-learned-clss-restart-state-in-atms-of-ms-learned-clssl)
next
case (forget C T) note confl = this(1) and C = this(4) and C-le = this(5) and
T = this(7)
have H: AL mark. Propagated L mark € set (trail S) = atms-of mark C atms-of-mm (init-clss S)
using decided by simp
show ?case unfolding clauses-def apply (intro conjl)
using conf confl T trail C' unfolding clauses-def apply (auto dest!: H)||
using T trail C C-le apply (auto dest!: H)|]
using T learned C-le atms-of-ms-remove-subset|[of set-mset (learned-clss S)] apply auto[]
using T trail C-le apply (auto simp: clauses-def lits-of-def)|]
done
next
case (backtrack L D K ¢ M1 M2 T D’) note confl = this(1) and decomp = this(2) and
lev-K = this(6) and D-D' = this(7) and M1-D' = this(8) and T = this(9)
have ?C T
using conf T decomp lev lev-K by (auto simp: cdcly -M-level-inv-decomyp)
moreover have set M1 C set (trail S)
using decomp by auto
then have M: ?M T
using decided conf confl T decomp lev lev-K D-D’
by (auto simp: image-subset-iff clauses-def cdclyy -M-level-inv-decomp
dest!: atms-of-subset-mset-mono)
moreover have U T
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using learned decomp conf confl T lev lev-K D-D’ unfolding clauses-def
by (auto simp: cdcly -M-level-inv-decomp dest: atms-of-subset-mset-mono)
moreover have ?V T
using M conf confl trail T decomp lev lev-K
by (auto simp: cdcly -M-level-inv-decomp atms-of-def
dest!: get-all-ann-decomposition-exists-prepend)
ultimately show ?case by blast
next
case (resolve L C M D T) note trail-S = this(1) and confl = this(4) and T = this(7)
let ?T = update-conflicting (Some (resolve-cls L D C)) (tl-trail S)
have ?C ?T
using confl trail-S conf decided by (auto dest!: in-atms-of-minusD)
moreover have ?M ?T
using confl trail-S conf decided by auto
moreover have ?U ?T
using trail learned by auto
moreover have ?V ?T
using confl trail-S trail by auto
ultimately show ?case using T by simp
qed

lemma cdclyy -restart-no-strange-atm-inv:
assumes cdclyy -restart S S’ and no-strange-atm S and cdclyy -M-level-inv S
shows no-strange-atm S’
using cdclyy -restart-no-strange-atm-explicit| OF assms(1)] assms(2,3) unfolding no-strange-atm-def
by fast

lemma rtranclp-cdclyy -restart-no-strange-atm-inv:
assumes cdclyy -restart** S S’ and no-strange-atm S and cdcly -M-level-inv S
shows no-strange-atm S’
using assms by (induction rule: rtranclp-induct)
(auto intro: cdclyy -restart-no-strange-atm-inv rtranclp-cdely -restart-consistent-inv)

No Duplicates all Around

This invariant shows that there is no duplicate (no literal appearing twice in the formula). The
last part could be proven using the previous invariant also. Remark that we will show later
that there cannot be duplicate clause.

definition distinct-cdcly -state (S ::'st)
+— ((VT. conflicting S = Some T — distinct-mset T)
A distinct-mset-mset (learned-clss S)
A distinct-mset-mset (init-clss S)
A (V L mark. (Propagated L mark € set (trail S) — distinct-mset mark)))

lemma distinct-cdclyy -state-decomp:
assumes distinct-cdclyy -state S
shows
V T. conflicting S = Some T — distinct-mset T and
distinct-mset-mset (learned-clss S) and
distinct-mset-mset (init-clss S) and
Y L mark. (Propagated L mark € set (trail S) — distinct-mset mark)
using assms unfolding distinct-cdclyy -state-def by blast+

lemma distinct-cdclyy -state-decomp-2:
assumes distinct-cdcly -state S and conflicting S = Some T
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shows distinct-mset T
using assms unfolding distinct-cdcly -state-def by auto

lemma distinct-cdely -state-S0-cdclyy -restart[simp):
distinct-mset-mset N = distinct-cdcly -state (init-state N)
unfolding distinct-cdclyy -state-def by auto

lemma distinct-cdclyy -state-inv:
assumes
cdclyy -restart S S’ and
lev-inv: cdcly -M-level-inv S and
distinct-cdclyy -state S
shows distinct-cdelyy -state S’
using assms(1,2,2,3)
proof (induct rule: cdcly -restart-all-induct)
case (backtrack L D K ¢ M1 M2 D)
then show ?Zcase
using lev-inv unfolding distinct-cdclyy -state-def
by (auto dest: get-all-ann-decomposition-incl distinct-mset-mono simp: cdcly -M-level-inv-decomp)
next
case restart
then show ?Zcase
unfolding distinct-cdcly -state-def distinct-mset-set-def clauses-def by auto
next
case resolve
then show ?Zcase
by (auto simp add: distinct-cdclyy -state-def distinct-mset-set-def clauses-def)
qged (auto simp: distinct-cdclyy -state-def distinct-mset-set-def clauses-def
dest!: in-diffD)

lemma rtanclp-distinct-cdclyy -state-inv:
assumes
cdelyy -restart™ S S’ and
cdelyy -M-level-inv S and
distinct-cdclyy -state S
shows distinct-cdclyy -state S’
using assms apply (induct rule: rtranclp-induct)
using distinct-cdclyy -state-inv rtranclp-cdclyy -restart-consistent-inv by blast+

Conflicts and Annotations

This invariant shows that each mark contains a contradiction only related to the previously
defined variable.

abbreviation every-mark-is-a-conflict :: 'st = bool where
every-mark-is-a-conflict S =
Y L mark a b. a @ Propagated L mark # b = (trail S)

— (b l=as CNot (mark — {#L#}) N L €# mark)

definition cdcly -conflicting :: 'st = bool where
cdcelyy -conflicting S <—
(VY T. conflicting S = Some T — trail S =as CNot T) A every-mark-is-a-conflict S

lemma backtrack-atms-of-D-in-M1:
fixes S T :: 'stand D D’ :: ('v clauses and K L :: (/v literal> and i :: nat and

M1 M2:: (v, v clause) ann-lits
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assumes
inv: no-dup (trail S) and
i get-mazimum-level (trail S) D' = i and
decomp: (Decided K # M1, M2)
€ set (get-all-ann-decomposition (trail S)) and
S-Wl: backtrack-ll S = get-maximum-level (trail S) (add-mset L D') and
S-confl: conflicting S = Some D and
lev-K: get-level (trail S) K = Suc i and
T: T ~ cons-trail K"
(reduce-trail-to M1
(add-learned-cls (add-mset L D')
(update-conflicting None S))) and
confl: ¥V T. conflicting S = Some T — trail S =as CNot T and
D-D"- (D' C# D)
shows atms-of D' C atm-of * lits-of-l (¢l (trail T))
proof (rule ccontr)
let 2k = get-mazimum-level (trail S) (add-mset L D)

have trail S |=as CNot D using confl S-confl by auto

then have trail S =as CNot D’
using D-D’ by (auto simp: true-annots-true-cls-def-iff-negation-in-model)

then have vars-of-D: atms-of D' C atm-of * lits-of-1 (trail S) unfolding atms-of-def
by (meson image-subsetl true-annots-CNot-all-atms-defined)

obtain M0 where M: trail S = M0 Q M2 @Q Decided K # M1
using decomp by auto

have maz: ?k = count-decided (M0 @ M2 Q Decided K # M1)
using S-lvl unfolding M by simp
assume a: — ?thesis
then obtain L’ where
L’ L' € atms-of D' and
L'-notin-M1: L' ¢ atm-of * lits-of-1 M1
using T decomp inv by (auto simp: cdecly -M-level-inv-decomp)

obtain L’ where

L' e# D’ and

L": L' = atm-of L"

using L’ L'-notin-M1 unfolding atms-of-def by auto
then have L’-in: defined-lit (M0 @ M2 @ Decided K # []) L"

using vars-of-D L'-notin-M1 L' unfolding M

by (auto dest: in-atms-of-minusD

simp: defined-lit-append defined-lit-map lits-of-def image-Un)

have L''-M1: «undefined-lit M1 L’

using L’-notin-M1 L" by (auto simp: defined-lit-map lits-of-def)
have wndefined-lit (M0 @ M2) K

using inv by (auto simp: cdcly -M-level-inv-def M)
then have count-decided M1 = i

using lev-K unfolding M by (auto simp: image-Un)
then have lev-L"

get-level (trail S) L' = get-level (MO @ M2 @ Decided K # []) L" + i

using L'-notin-M1 L"-M1 L" get-level-skip-end[OF L'-in[unfolded L"), of M1] M by auto
moreover {

consider

(MO) defined-lit MO L"" |
(M2) defined-lit M2 L' |
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(K) L' = atm-of K
using inv L’-in unfolding L’
by (auto simp: cdcly -M-level-inv-def defined-lit-append)
then have get-level (M0 @ M2 Q Decided K # []) L' > Suc 0
proof cases
case M0
then have L’ # atm-of K
using wundefined-lit (M0 @ M2) K> unfolding L” by (auto simp: atm-of-eq-atm-of)
then show ?thesis using M0 unfolding L'’ by auto
next
case M2
then have undefined-lit (M0 @ Decided K # []) L”
by (rule defined-lit-no-dupD(1))
(use inv in (auto simp: M L" cdcly -M-level-inv-def no-dup-def»)
then show ?thesis using M2 unfolding L'’ by (auto simp: image-Un)
next
case K
have undefined-lit (M0 @ M2) L"
by (rule defined-lit-no-dupD(3)[of ¢[Decided K]» - M1])
(use inv K in (auto simp: M L' cdcly -M-level-inv-def no-dup-def»)
then show %thesis using K unfolding L" by (auto simp: image-Un)
qed }
ultimately have get-level (trail S) L' > i + 1
using lev-L'' unfolding M by simp
then have get-mazimum-level (trail §) D' > i + 1
using get-mazimum-level-ge-get-level[OF (L' €4 D", of trail S] by auto
then show Fulse using i by auto
qed

lemma distinct-atms-of-incl-not-in-other:
assumes
al: no-dup (M @ M') and
a2: atms-of D C atm-of ‘ lits-of-l M’ and
a8: x € atms-of D
shows z ¢ atm-of * lits-of-l M
using assms by (auto simp: atms-of-def no-dup-def atm-of-eq-atm-of lits-of-def)

lemma backtrack-M1-CNot-D":
fixes S T :: ‘st and D D’ :: (v clause) and K L :: 'v literaly and 7 :: nat and
M1 M2:: (v, 'v clause) ann-lits)
assumes
inv: no-dup (trail S) and
i: get-mazimum-level (trail S) D' = i and
decomp: (Decided K # M1, M2)
€ set (get-all-ann-decomposition (trail S)) and
S-lvl: backtrack-lvl S = get-mazimum-level (trail S) (add-mset L D) and
S-confl: conflicting S = Some D and
lev-K: get-level (trail S) K = Suc i and
T: T ~ cons-trail K"
(reduce-trail-to M1
(add-learned-cls (add-mset L D’)
(update-conflicting None S))) and
confl: ¥ T. conflicting S = Some T — trail S |=as CNot T and
D-D’: «D' C# D
shows M1 =as CNot D’ and
(atm-of (lit-of K'') = atm-of L = no-dup (trail T)
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proof —
obtain M0 where M: trail S = M0 Q M2 @ Decided K # M1
using decomp by auto
have vars-of-D: atms-of D' C atm-of  lits-of-1 M1
using backtrack-atms-of-D-in-M1[OF assms] decomp T by auto
have no-dup (trail S) using inv by (auto simp: cdcly -M-level-inv-decomp)
then have vars-in-M1: ¥z € atms-of D'. x ¢ atm-of * lits-of-l (M0 @ M2 @ Decided K # [])
using vars-of-D distinct-atms-of-incl-not-in-other[of M0 QM2 @ Decided K # [] M1]
unfolding M by auto
have trail S |=as CNot D
using S-confl confl unfolding M true-annots-true-cls-def-iff-negation-in-model
by (auto dest!: in-diffD)
then have trail S =as CNot D’
using D-D’ unfolding true-annots-true-cls-def-iff-negation-in-model by auto
then show M1-D”" M1 =as CNot D’
using true-annots-remove-if-notin-varsjof MO0 @ M2 @ Decided K # [] M1 CNot D]
vars-in-M1 S-confl confl unfolding M lits-of-def by simp
have M1: <count-decided M1 =
using lev-K inv i vars-in-M1 unfolding M
by simp
have lev-L: (get-level (trail S) L = backtrack-lvl Sy and i < backtrack-lvl S
using S-lvl i lev-K
by (auto simp: maz-def get-mazimum-level-add-mset)
have (no-dup M1)
using T decomp inv by (auto simp: M dest: no-dup-appendD)
moreover have (undefined-lit M1 L
using backtrack-lit-skiped[of S L, OF - decomp]
using lev-L inv i M1 ¢ < backtrack-lvl S) unfolding M
by (auto simp: split: if-splits)
moreover have (atm-of (lit-of K'') = atm-of L =
undefined-lit M1 L «— undefined-lit M1 (lit-of K''))
by (simp add: defined-lit-map)
ultimately show <atm-of (lit-of K'") = atm-of L = no-dup (trail T)
using T decomp inv by auto
qed

Item 5 page 95 of Weidenbach’s book

lemma cdclyy -restart-propagate-is-conclusion:
assumes
cdclyy -restart S S’ and
inv: cdely -M-level-inv S and
decomp: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
learned: cdclyy -learned-clause S and
confl: ¥ T. conflicting S = Some T — trail S [=as CNot T and
alien: no-strange-atm S
shows all-decomposition-implies-m (clauses S”) (get-all-ann-decomposition (trail S"))
using assms(1)
proof (induct rule: cdcly -restart-all-induct)
case restart
then show ?Zcase by auto
next
case (forget C T) note C = this(2) and cls-C = this(6) and T = this(7)
show ?Zcase
unfolding all-decomposition-implies-def Ball-def
proof (intro alll, clarify)
fix abd
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assume (a, b) € set (get-all-ann-decomposition (trail T'))
then have unmark-l a U set-mset (clauses S) [E=ps unmark-1 b
using decomp T by (auto simp add: all-decomposition-implies-def)
moreover {
have a1:C €# clauses S
using C by (auto simp: clauses-def)
have clauses T = clauses (remove-cls C' S)
using T by auto
then have clauses T Epsm clauses S
using al by (metis (no-types) clauses-remove-cls cls-C insert-Diff order-refl
set-mset-minus-replicate-mset(1) true-clss-clss-def true-clss-clss-insert) }
ultimately show unmark-l a U set-mset (clauses T) [=ps unmark-1 b
using true-clss-clss-generalise-true-clss-clss by blast
qged
next
case conflict
then show ?Zcase using decomp by auto
next
case (resolve L C' M D) note tr = this(1) and T = this(7)
let ?decomp = get-all-ann-decomposition M
have M: set ?decomp = insert (hd ?decomp) (set (tl ?decomp))
by (cases ?decomp) auto
show Zcase
using decomp tr T unfolding all-decomposition-implies-def
by (cases hd (get-all-ann-decomposition M))
(auto simp: M)
next
case (skip L C' M D) note tr = this(1) and T = this(5)
have M: set (get-all-ann-decomposition M)
= insert (hd (get-all-ann-decomposition M)) (set (¢l (get-all-ann-decomposition M)))
by (cases get-all-ann-decomposition M) auto
show ?Zcase
using decomp tr T unfolding all-decomposition-implies-def
by (cases hd (get-all-ann-decomposition M))
(auto simp add: M)
next
case decide note S = this(1) and undef = this(2) and T = this(4)
show ?case using decomp T undef unfolding S all-decomposition-implies-def by auto
next
case (propagate C L T) note propa = this(2) and L = this(3) and S-CNot-C' = this(4) and
undef = this(5) and T = this(6)
obtain a y where ay: hd (get-all-ann-decomposition (trail S)) = (a, y)
by (cases hd (get-all-ann-decomposition (trail S)))
then have M: trail S = y Q a using get-all-ann-decomposition-decomp by blast
have M’ set (get-all-ann-decomposition (trail S))
= insert (a, y) (set (¢l (get-all-ann-decomposition (trail S))))
using ay by (cases get-all-ann-decomposition (trail S)) auto
have unm-ay: unmark-l a U set-mset (clauses S) Eps unmark-1y
using decomp ay unfolding all-decomposition-implies-def
by (cases get-all-ann-decomposition (trail S)) fastforce+
then have a-Un-N-M: unmark-l a U set-mset (clauses S) E=ps unmark-1 (trail S)
unfolding M by (auto simp add: all-in-true-clss-clss image-Un)

have unmark-l a U set-mset (clauses S) =p {#L#} (is ?I =p -)
proof (rule true-clss-cls-plus-CNot)
show ?I Ep add-mset L (removel-mset L C)

63



apply (rule true-clss-clss-in-imp-true-clss-cls[of - set-mset (clauses S)])
using learned propa L by (auto simp: cdclyy -learned-clause-alt-def true-annot-CNot-diff)
next
have unmark-l (trail S) Eps CNot (removel-mset L C)
using S-CNot-C by (blast dest: true-annots-true-clss-clss)
then show ?I |=ps CNot (removel-mset L C)
using a-Un-N-M true-clss-clss-left-right true-clss-clss-union-l-r by blast
qed
moreover have Aaa b.
Y (Ls, seen)€set (get-all-ann-decomposition (y @ a)).
unmark-l Ls U set-mset (clauses S) |=ps unmark-l seen =
(aa, b) € set (tl (get-all-ann-decomposition (y Q a))) =
unmark-l aa U set-mset (clauses S) Eps unmark-1 b
by (metis (no-types, lifting) case-prod-conv get-all-ann-decomposition-never-empty-sym
list.collapse list.set-intros(2))

ultimately show ?Zcase
using decomp T undef unfolding ay all-decomposition-implies-def
using M unm-ay ay by auto
next
case (backtrack L D K ¢ M1 M2 T D’) note conf = this(1) and decomp’ = this(2) and
lev-L = this(3) and lev-K = this(6) and D-D' = this(7) and NU-LD' = this(8)
and T = this(9)
let 2D’ = removel-mset L D
have V[ € set M2. —is-decided [
using get-all-ann-decomposition-snd-not-decided decomp’ by blast
obtain M0 where M: trail S = M0 Q M2 Q Decided K # M1
using decomp’ by auto
let YD = (add-mset L D)
let 2D’ = <add-mset L D%
show ?case unfolding all-decomposition-implies-def
proof
fix z
assume z € set (get-all-ann-decomposition (trail T))
then have z: z € set (get-all-ann-decomposition (Propagated L D’ # M1))
using T decomp’ inv by (simp add: cdcly -M-level-inv-decomyp)
let ?m = get-all-ann-decomposition (Propagated L 2D’ # M1)
let ?hd = hd ?m
let ?tl = tl ?m
consider
(hd) z = ?hd |
(tl) = € set %t
using z by (cases ¢m) auto
then show case z of (Ls, seen) = unmark-l Ls U set-mset (clauses T) =ps unmark-l seen
proof cases
case tl
then have z € set (get-all-ann-decomposition (trail S))
using tl-get-all-ann-decomposition-skip-some[of x| by (simp add: list.set-sel(2) M)
then show ?thesis
using decomp learned decomp confl alien inv T M
unfolding all-decomposition-implies-def cdcly, -M-level-inv-def
by auto
next
case hd
obtain M1’ M1" where M1: hd (get-all-ann-decomposition M1) = (M1', M1")
by (cases hd (get-all-ann-decomposition M1))
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then have z”: x = (M1’, Propagated L ?D’ # M1"")
using @ = ?hd> by auto
have (M1', M1") € set (get-all-ann-decomposition (trail S))
using M1 [symmetric] hd-get-all-ann-decomposition-skip-some[OF M1 [symmetric],
of M0 @ M2] unfolding M by fastforce
then have I1: unmark-l M1’ U set-mset (clauses S) =ps unmark-l M1"
using decomp unfolding all-decomposition-implies-def by auto

have (no-dup (trail S)
using inv unfolding cdclyy -M-level-inv-def
by blast
then have MI1-D": M1 [=as CNot D' and no-dup (trail T)
using backtrack-M1-CNot-D'[of S D' «iy K M1 M2 L <add-mset L D) T (Propagated L (add-mset
L D))
confl inv backtrack by (auto simp: subset-mset-trans-add-mset)
have M1 = M1" @ M1’ by (simp add: M1 get-all-ann-decomposition-decomp)
have TT: unmark-l M1’ U set-mset (clauses S) [=ps CNot D’
using true-annots-true-clss-cls|OF (M1 |=as CNot D"] true-clss-clss-left-right[OF 1]
unfolding (M1 = M1"” @ M1" by (auto simp add: inf-sup-aci(5,7))
have T unmark-l M1’ U set-mset (clauses S) Ep 2D’ using NU-LD’ by auto
moreover have unmark-l M1’ U set-mset (clauses S) Ep {#L#}
using true-clss-cls-plus-CNot|OF T’ TT] by auto
ultimately show ?Zthesis
using T’ T decomp’ inv 1 unfolding z’ by (simp add: cdely -M-level-inv-decomp)
qed
qed
qed

lemma cdclyy -restart-propagate-is-false:
assumes
cdelyy -restart S S’ and
lev: cdcly -M-level-inv S and
learned: cdclyy -learned-clause S and
decomp: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
confl: ¥V T. conflicting S = Some T — trail S =as CNot T and
alien: no-strange-atm S and
mark-confl: every-mark-is-a-conflict S
shows every-mark-is-a-conflict S’
using assms(1)
proof (induct rule: cdcly -restart-all-induct)
case (propagate C L T) note LC = this(3) and confl = this(4) and undef = this(5) and T =
this(6)
show ?Zcase
proof (intro alll impl)
fix L' mark a b
assume a Q Propagated L' mark # b = trail T
then consider
(hd) a =[] and L = L' and mark = C and b = trail S |
(tl) tl @ @ Propagated L' mark # b = trail S
using T undef by (cases a) fastforce+
then show b =as CNot (mark — {#L'#}) N L' €# mark
using mark-confl confl LC by cases auto
qed
next
case (decide L) note undef[simp] = this(2) and T = this(4)
have (]l a @ Propagated La mark # b = trail S
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if (a @ Propagated La mark # b = Decided L # trail S) for a La mark b
using that by (cases a) auto
then show ?Zcase using mark-confl T unfolding decide.hyps(1) by fastforce
next
case (skip L C' M D T) note tr = this(1) and T = this(5)
show ?Zcase
proof (intro alll impl)
fix L' mark a b
assume a @ Propagated L' mark # b = trail T
then have a @ Propagated L' mark # b = M using tr T by simp
then have (Propagated L C' # a) Q Propagated L' mark # b = Propagated L C' # M by auto
moreover have b =as CNot (mark — {#La#}) A La €# mark
if @ @ Propagated La mark # b = Propagated L C' # M for La mark a b
using mark-confl that unfolding skip.hyps(1) by simp
ultimately show b |=as CNot (mark — {#L'#}) A L' €# mark by blast
qed
next
case (conflict D)
then show ?case using mark-confl by simp
next
case (resolve L C M D T) note tr-S = this(1) and T = this(7)
show ?case unfolding resolve.hyps(1)
proof (intro alll impl)
fix L' mark a b
assume a @ Propagated L' mark # b = trail T
then have (Propagated L (C + {#L#}) # a) Q Propagated L' mark # b
= Propagated L (C + {#L#}) # M
using T tr-S by auto
then show b |=as CNot (mark — {#L'#}) N L' €# mark
using mark-confl unfolding ¢r-S by (metis Cons-eq-appendl list.sel(3))
qged
next
case restart
then show ?case by auto
next
case forget
then show ?Zcase using mark-confl by auto
next
case (backtrack L D K ¢ M1 M2 T D’) note conf = this(1) and decomp = this(2) and
lev-K = this(6) and D-D' = this(7) and M1-D' = this(8) and T = this(9)
have VI € set M2. —is-decided [
using get-all-ann-decomposition-snd-not-decided decomp by blast
obtain M0 where M: trail S = M0 @ M2 @Q Decided K # M1
using decomp by auto
have [simp]: trail (reduce-trail-to M1 (add-learned-cls D (update-conflicting None S))) = M1
using decomp lev by (auto simp: cdcly -M-level-inv-decomp)
let ?D = add-mset L D
let ?D’ = add-mset L D'
have MI1-D": M1 [as CNot D’
using backtrack-M1-CNot-D'[of S D' ) K M1 M2 L <add-mset L D) T (Propagated L (add-mset L
D))

confl lev backtrack by (auto simp: subset-mset-trans-add-mset cdclyy -M-level-inv-def)
show ?Zcase

proof (intro alll impl)
fix La :: 'v literal and mark :: v clause and a b :: (v, 'v clause) ann-lits
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assume a @Q Propagated La mark # b = trail T
then consider
(hd-tr) a = || and
(Propagated La mark :: (v, "v clause) ann-lit) = Propagated L ?D’ and
b= Ml |
(ti-tr) tl @ @ Propagated La mark # b = M1
using M T decomp lev by (cases a) (auto simp: cdely -M-level-inv-def)
then show b |=as CNot (mark — {#La#}) A La €# mark
proof cases
case hd-tr note A = this(1) and P = this(2) and b = this(3)
show b |=as CNot (mark — {#La#}) N La €# mark
using P M1-D’ b by auto
next
case tl-tr
then obtain ¢’ where ¢’ Q@ Propagated La mark # b = trail S
unfolding M by auto
then show b =as CNot (mark — {#La#}) N La €# mark
using mark-confl by auto
qed
qged
qed

lemma cdclyy -conflicting-is-false:
assumes
cdelyy -restart S S’ and
M-lev: cdcly -M-level-inv S and
confl-inv: ¥ T. conflicting S = Some T — trail S |=as CNot T and
decided-confl: ¥V L mark a b. a @ Propagated L mark # b = (trail S)
— (b =as CNot (mark — {#L#}) A L €# mark) and
dist: distinct-cdclyy -state S
shows V T. conflicting S’ = Some T — trail S’ =as CNot T
using assms(1,2)
proof (induct rule: cdcly -restart-all-induct)
case (skip L C' M D T) note tr-S = this(1) and confl = this(2) and L-D = this(3) and T =
this(5)
have D: Propagated L C' # M Eas CNot D using assms skip by auto
moreover have L ¢# D
proof (rule ccontr)
assume — ?thesis
then have — L € lits-of-l M
using in-CNot-implies-uminus(2)[of L D Propagated L C' # M]
(Propagated L C' # M l=as CNot D) by simp
then show Fulse
using M-lev tr-S by (fastforce dest: cdcly -M-level-inv-decomp(2)
stmp: Decided-Propagated-in-iff-in-lits-of-I)
qged
ultimately show ?case
using tr-S confl L-D T unfolding cdclyy -M-level-inv-def
by (auto intro: true-annots-CNot-lit-of-notin-skip)
next
case (resolve L C M D T) note tr = this(1) and LC = this(2) and confl = this(4) and LD =
this(5)
and T = this(7)
let ?C = removel-mset L C
let YD = removel-mset (—L) D
show ?Zcase
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proof (intro alll impl)
fix T'
have tl (trail S) Fas CNot ?C using tr decided-confl by fastforce
moreover
have distinct-mset (?D + {#— L#}) using confl dist LD
unfolding distinct-cdclyy -state-def by auto
then have —L ¢# ?D using (distinct-mset (?D + {#— L#})) by auto
have Propagated L (?C + {#L#}) # M =as CNot ?D U CNot {#— L#}
using confl tr confl-inv LC by (metis CNot-plus LD insert-DiffM2)
then have M |=as CNot ?D
using M-lev (— L ¢# ?D) tr
unfolding cdcly -M-level-inv-def by (force intro: true-annots-lit-of-notin-skip)
moreover assume conflicting T = Some T’
ultimately show trail T |=as CNot T’
using tr T by auto
qed
qged (auto simp: M-lev cdclyy -M-level-inv-decomp)

lemma cdclyy -conflicting-decomp:
assumes cdclyy -conflicting S
shows
V' T. conflicting S = Some T — trail S =as CNot T and
¥ L mark a b. a Q@ Propagated L mark # b = (trail S) —
(b l=as CNot (mark — {#L#}) N L €# mark)
using assms unfolding cdclyy -conflicting-def by blast+

lemma cdclyy -conflicting-decomp2:
assumes cdcly -conflicting S and conflicting S = Some T
shows trail S Eas CNot T
using assms unfolding cdclyy -conflicting-def by blast+

lemma cdclyy -conflicting-S0-cdclyy -restart]simp):
cdclyy -conflicting (init-state N)
unfolding cdcly -conflicting-def by auto

definition cdclyy -learned-clauses-entailed-by-init where
(cdclyy -learned-clauses-entailed-by-init S <— init-clss S |Epsm learned-clss S)

lemma cdclyy -learned-clauses-entailed-init| simp):
(edelyy -learned-clauses-entailed-by-init (init-state N))
by (auto simp: cdclyy -learned-clauses-entailed-by-init-def)

lemma cdclyy -learned-clauses-entailed:
assumes
cdelyy -restart: cdelyy -restart S S’ and
2: cdclyy -learned-clause S and
9: (cdclyy -learned-clauses-entailed-by-init S)
shows <cdcly -learned-clauses-entailed-by-init S
using cdclyy -restart 9
proof (induction rule: cdclyy -restart-all-induct)
case backtrack
then show ?case
using assms unfolding cdclyy -learned-clause-alt-def cdclyy -learned-clauses-entailed-by-init-def
by (auto dest!: get-all-ann-decomposition-exists-prepend
stmp: clauses-def cdcly -M-level-inv-decomp dest: true-clss-clss-left-right)
qged (auto simp: cdcly -learned-clauses-entailed-by-init-def elim: true-clss-clssm-subsetE)
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lemma rtranclp-cdclyy -learned-clauses-entailed:
assumes
cdelyy -restart: cdelyy -restart** S S’ and
2: cdcly -learned-clause S and
4 cdely -M-level-inv S and
9: (cdclyy -learned-clauses-entailed-by-init S)
shows <(cdclyy -learned-clauses-entailed-by-init S”
using assms apply (induction rule: rtranclp-induct)
apply (simp; fail)
using cdcly -learned-clauses-entailed rtranclp-cdclyy -restart-learned-clss by blast

Putting all the Invariants Together

lemma cdclyy -restart-all-inv:
assumes
cdelyy -restart: cdelyy -restart S S’ and
. all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
: cdelyy -learned-clause S and
: cdelyy -M-level-inv S and
: no-strange-atm S and
: distinct-cdclyy -state S and
. cdclyy -conflicting S
shows
all-decomposition-implies-m (clauses S') (get-all-ann-decomposition (trail S’)) and
cdelyy -learned-clause S’ and
cdelyy -M-level-inv S’ and
no-strange-atm S’ and
distinct-cdclyy -state S’ and
cdclyy -conflicting S’
proof —
show S1: all-decomposition-implies-m (clauses S’) (get-all-ann-decomposition (trail S’))
using cdclyy -restart-propagate-is-conclusion| OF cdcly -restart 4 1 2 - 5] 8
unfolding cdclyy -conflicting-def by blast
show S2: cdcly -learned-clause S’ using cdclyy -restart-learned-clss|OF cdclyy -restart 2 4] .
show S4: cdcly -M-level-inv S’ using cdclyy -restart-consistent-inv| OF cdclyy -restart 4] .
show S5: no-strange-atm S’ using cdclyy -restart-no-strange-atm-inv[ OF cdclyy -restart 5 4] .
show S7: distinct-cdcly -state S’ using distinct-cdelyy -state-inv[OF cdelyy -restart 4 7] .
show S8: cdcly -conflicting S’
using cdclyy -conflicting-is-false[ OF cdelw -restart 4 - - 7] 8
cdclyy -restart-propagate-is-false| OF cdclyy -restart 4 2 1 - 5] unfolding cdclyy -conflicting-def
by fast
qed

%QU[*R(QN

lemma rtranclp-cdclyy -restart-all-inv:
assumes
cdclyy -restart: rtranclp cdcly -restart S S’ and
. all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
: cdelyy -learned-clause S and
: cdclyy -M-level-inv S and
: no-strange-atm S and
. distinct-cdelyy -state S and
. cdclyy -conflicting S
shows
all-decomposition-implies-m (clauses S') (get-all-ann-decomposition (trail S')) and
cdclyy -learned-clause S’ and

o 3 CuA RS
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cdelyy -M-level-inv S” and
no-strange-atm S’ and
distinct-cdelyy -state S’ and
cdclyy -conflicting S’
using assms
proof (induct rule: rtranclp-induct)
case base
case 1 then show ?case by blast
case 2 then show ?case by blast
case 3 then show ?case by blast
case / then show ?case by blast
case 5 then show ?case by blast
case 6 then show ?case by blast
next
case (step S’ S'') note H = this
case 1 with H(3—7)[OF this(1—6)] show ?Zcase using cdclyy -restart-all-inv[OF H(2)]
H by presburger
case 2 with H(3—7)[OF this(1—6)] show ?Zcase using cdclyy -restart-all-inv[OF H(2)]
H by presburger
case 8 with H(3—7)[OF this(1—6)] show ?Zcase using cdclyy -restart-all-inv[OF H(2)]
H by presburger
case 4 with H(3—7)[OF this(1—6)] show ?Zcase using cdclyy -restart-all-inv[OF H(2)]
H by presburger
case 5 with H(3—7)[OF this(1—6)] show ?Zcase using cdclyy -restart-all-inv[OF H(2)]
H by presburger
case 6 with H(3—7)[OF this(1—6)] show ?Zcase using cdclyy -restart-all-inv[OF H(2)]
H by presburger
qed

lemma all-invariant-S0-cdclyy, -restart:

assumes distinct-mset-mset N

shows
all-decomposition-implies-m (init-clss (init-state N))

(get-all-ann-decomposition (trail (init-state N))) and

edelyy -learned-clause (init-state N) and
YV T. conflicting (init-state N) = Some T — (trail (init-state N))E=as CNot T and
no-strange-atm (init-state N) and
consistent-interp (lits-of-1 (trail (init-state N))) and
YV L mark a b. a @ Propagated L mark # b = trail (init-state N) —
(b =as CNot (mark — {#L#}) N L €# mark) and
distinct-cdcly -state (init-state N)

using assms by auto

Item 6 page 95 of Weidenbach’s book

lemma cdclyy -only-propagated-vars-unsat:
assumes
decided: ¥z € set M. — is-decided x and
DN: D €# clauses S and
D: M k=as CNot D and
inv: all-decomposition-implies-m (N + U) (get-all-ann-decomposition M) and
state: state S = (M, N, U, k, C) and
learned-cl: cdclyy -learned-clause S and
atm-incl: no-strange-atm S
shows unsatisfiable (set-mset (N + U))
proof (rule ccontr)
assume — unsatisfiable (set-mset (N + U))
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then obtain I where
I: I s set-mset N I =5 set-mset U and
cons: consistent-interp I and
tot: total-over-m I (set-mset N)
unfolding satisfiable-def by auto
have atms-of-mm N U atms-of-mm U = atms-of-mm N
using atm-incl state unfolding total-over-m-def no-strange-atm-def
by (auto simp add: clauses-def)
then have tot-N: total-over-m I (set-mset N) using tot unfolding total-over-m-def by auto
moreover have total-over-m I (set-mset (learned-clss S))
using atm-incl state tot-N unfolding no-strange-atm-def total-over-m-def total-over-set-def
by auto
ultimately have I-D: I = D
using I DN cons state unfolding true-clss-clss-def true-clss-def Ball-def
by (auto simp add: clauses-def)

have [0: {unmark L |L. is-decided L N L € set M} = {} using decided by auto
have atms-of-ms (set-mset (N+U) U unmark-l M) = atms-of-mm N
using atm-incl state unfolding no-strange-atm-def by auto
then have total-over-m I (set-mset (N+U) U unmark-l M)
using tot unfolding total-over-m-def by auto
then have IM: I |=s unmark-l M
using all-decomposition-implies-propagated-lits-are-implied[ OF inv] cons I
unfolding true-clss-clss-def 10 by auto
have —K € [ if K €¢# D for K
proof —
have — K € lits-of-l M
using D that unfolding true-annots-def by force
then show —K € [ using IM true-clss-singleton-lit-of-implies-incl by fastforce
qed
then have — I = D using cons unfolding true-cls-def true-lit-def consistent-interp-def by auto
then show Fulse using I-D by blast
qed

Item 5 page 95 of Weidenbach’s book

We have actually a much stronger theorem, namely all-decomposition-implies-propagated-lits-are-implied,
that show that the only choices we made are decided in the formula

lemma

assumes all-decomposition-implies-m N (get-all-ann-decomposition M)

and Vm € set M. —is-decided m

shows set-mset N |Eps unmark-1 M
proof —

have T: {unmark L |L. is-decided L N\ L € set M} = {} using assms(2) by auto

then show ?thesis

using all-decomposition-implies-propagated-lits-are-implied|OF assms(1)] unfolding T by simp

qed

Item 7 page 95 of Weidenbach’s book (part 1)

lemma conflict-with-false-implies-unsat:
assumes
cdelyy -restart: cdelyy -restart S S’ and
lev: cdclyy -M-level-inv S and
[simp]: conflicting S" = Some {#} and
learned: cdclyy -learned-clause S and
learned-entailed: <cdclyy -learned-clauses-entailed-by-init S
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shows unsatisfiable (set-mset (clauses S))
using assms
proof —
have cdclyy -learned-clause S’ using cdclyy -restart-learned-clss cdclyy -restart learned lev by auto
then have entail-false: clauses S’ =pm {#} using assms(3) unfolding cdcly -learned-clause-alt-def
by auto
moreover have entailed: (cdclyy -learned-clauses-entailed-by-init S
using cdcly -learned-clauses-entailed|OF cdcly -restart learned learned-entailed) .
ultimately have set-mset (init-clss S') Eps {{#}}
unfolding cdclyy -learned-clauses-entailed-by-init-def
by (auto simp: clauses-def dest: true-clss-clss-left-right)
then have clauses S |=pm {#}
by (simp add: cdeclyy -restart-init-clss|OF assms(1)] clauses-def)
then show ?thesis unfolding satisfiable-def true-clss-cls-def by auto
qed

Item 7 page 95 of Weidenbach’s book (part 2)

lemma conflict-with-false-implies-terminated:
assumes cdcly -restart S S’ and conflicting S = Some {#}
shows Fulse
using assms by (induct rule: cdclyy -restart-all-induct) auto

No tautology is learned

This is a simple consequence of all we have shown previously. It is not strictly necessary, but
helps finding a better bound on the number of learned clauses.

lemma learned-clss-are-not-tautologies:
assumes
cdelyy -restart S S’ and
lev: cdclyy -M-level-inv S and
conflicting: cdclyy -conflicting S and
no-tauto: V' s €# learned-clss S. —tautology s
shows Vs €# learned-clss S’. —tautology s
using assms
proof (induct rule: cdcly -restart-all-induct)
case (backtrack L D K i M1 M2 T D’) note confl = this(1) and D-D’ = this(7) and M1-D’ = this(8)
and
NU-LD' = this(9)
let ?D = (add-mset L D)
let ?D’ = <add-mset L D%
have consistent-interp (lits-of-1 (trail S)) using lev by (auto simp: cdcly -M-level-inv-decomp)
moreover {
have trail S |=as CNot D
using conflicting confl unfolding cdclyy -conflicting-def by auto
then have lits-of-l (trail S) =s CNot ¢D
using true-annots-true-cls by blast }
ultimately have —tautology ?D using consistent-CNot-not-tautology by blast
then have —tautology ?D’
using D-D' not-tautology-mono[of ?D’ ¢D] by auto
then show ?Zcase using backtrack no-tauto lev
by (auto simp: cdcly -M-level-inv-decomp split: if-split-asm)
next
case restart
then show ?Zcase using state-eq-learned-clss no-tauto
by (auto intro: atms-of-ms-learned-clss-restart-state-in-atms-of-ms-learned-clssI)
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qged (auto dest!: in-diffD)

definition final-cdcly -restart-state (S :: 'st)
+— (trail S Easm init-clss S
V (YL € set (trail S). —is-decided L) A
(3 C €# init-clss S. trail S F=as CNot C)))

definition termination-cdcly -restart-state (S :: 'st)
+— (trail S Easm init-clss S
V (YL € atms-of-mm (init-clss S). L € atm-of * lits-of-1 (trail S))
A (3 C €# init-clss S. trail S =as CNot C)))

1.1.4 CDCL Strong Completeness

lemma cdclyy -restart-can-do-step:
assumes
consistent-interp (set M) and
distinct M and
atm-of ¢ (set M) C atms-of-mm N
shows 3 5. rtranclp cdcly -restart (init-state N) S
A state-butlast S = (map (AL. Decided L) M, N, {#}, None)
using assms
proof (induct M)
case Nil
then show ?Zcase apply — by (auto introl: exI[of - init-state N])
next
case (Cons L M) note IH = this(1) and dist = this(2)
have consistent-interp (set M) and distinct M and atm-of ‘ set M C atms-of-mm N
using Cons.prems(1—38) unfolding consistent-interp-def by auto
then obtain S where
st: cdely -restart™ (init-state N) S and
S: state-butlast S = (map (AL. Decided L) M, N, {#}, None)
using [H by blast
let 2Sg = cons-trail (Decided L) S
have undef: undefined-lit (map (AL. Decided L) M) L
using Cons.prems(1,2) unfolding defined-lit-def consistent-interp-def by fastforce
moreover have init-clss S = N
using S by blast
moreover have atm-of L € atms-of-mm N using Cons.prems(3) by auto
moreover have undef: undefined-lit (trail S) L
using S dist undef by (auto simp: defined-lit-map)
ultimately have cdclyy -restart S 25
using cdclyy -restart.other|OF cdcly -o.decide] OF decide-rule[of S L 2S]]] S
by auto
then have cdclyy -restart™ (init-state N) 2S¢
using st by auto
then show ?case
using S undef by (auto introl: exI[of - S| simp del: state-prop)
qed

theorem 2.9.11 page 98 of Weidenbach’s book

lemma cdclyy -restart-strong-completeness:
assumes
MN: set M Esm N and
cons: consistent-interp (set M) and
dist: distinct M and
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atm: atm-of ¢ (set M) C atms-of-mm N
obtains S where
state-butlast S = (map (AL. Decided L) M, N, {#}, None) and
rtranclp cdely -restart (init-state N) S and
final-cdclyy -restart-state S
proof —
obtain S where
st: rtranclp cdclyy -restart (init-state N) S and
S: state-butlast S = (map (AL. Decided L) M, N, {#}, None)
using cdclyy -restart-can-do-step| OF cons dist atm] by auto
have lits-of-l (map (AL. Decided L) M) = set M
by (induct M, auto)
then have map (\L. Decided L) M |=asm N using MN true-annots-true-cls by metis
then have final-cdclyy -restart-state S
using S unfolding final-cdcly -restart-state-def by auto
then show ?thesis using that st S by blast
qed

1.1.5 Higher level strategy

The rules described previously do not necessary lead to a conclusive state. We have to add a
strategy:

e do propagate and conflict when possible;

e otherwise, do another rule (except forget and restart).

Definition

lemma tranclp-conflict:
tranclp conflict S 8" = conflict S S’
by (induct rule: tranclp.induct) (auto elim!: conflictE)

lemma no-chained-conflict:
assumes conflict S S’ and conflict S’ S"'
shows Fulse
using assms unfolding conflict.simps
by (metis conflicting-update-conflicting option.distinct(1) state-eq-conflicting)

lemma tranclp-conflict-iff:
fulll conflict S S’ <— conflict S S’
by (auto simp: fulll-def dest: tranclp-conflict no-chained-conflict)

lemma no-conflict-after-conflict:
conflict S T = —conflict T U
by (auto elim!: conflictE simp: conflict.simps)

lemma no-propagate-after-conflict:
conflict S T = —propagate T U
by (metis conflictE conflicting-update-conflicting option.distinct(1) propagate.cases
state-eq-conflicting)

inductive cdcly -stgy :: ‘st = ‘st = bool for S :: 'st where
conflict”: conflict S S" = cdelw -stgy S S|
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propagate’: propagate S S' = cdely -stgy S S’ |
other’: mno-step conflict S = no-step propagate S = cdcly -0 S §' = cdcly-stgy S S’

lemma cdclyy -stgy-cdely: cdcly -stgy S T = cdely S T
by (induction rule: cdclyy -stgy.induct) (auto intro: cdcly .intros)

lemma cdclyy -stgy-induct[consumes 1, case-names conflict propagate decide skip resolve backtrack):
assumes
(cdely -stgy S T and
(AT. conflict ST = P T)» and
(A\T. propagate S T —> P T) and
(AT. no-step conflict S = no-step propagate S = decide S T = P T) and
(A\T. no-step conflict S = no-step propagate S = skip S T — P T> and
(AT. no-step conflict S = no-step propagate S = resolve S T — P T and
(A\T. no-step conflict S = no-step propagate S = backtrack S T = P T
shows
P
using assms(1) by (induction rule: cdcly -stgy.induct)
(auto simp: assms(2—) cdcly -o.simps cdcly -bj.simps)

lemma cdclyy -stgy-cases[consumes 1, case-names conflict propagate decide skip resolve backtrack]:
assumes
(cdcly -stgy S T) and
(conflict S T = P) and
(propagate S T — P)> and
(no-step conflict S = no-step propagate S = decide S T — P> and
(no-step conflict S = no-step propagate S —> skip S T =— P> and
(no-step conflict S = no-step propagate S = resolve S T — P) and
(no-step conflict S = no-step propagate S = backtrack S T — P
shows
P
using assms(1) by (cases rule: cdclyy -stgy.cases)
(auto simp: assms(2—) cdcly -o.simps cdclyy -bj.simps)

Invariants

lemma cdclyy -stgy-consistent-inv:
assumes cdcly -stgy S S’ and cdclyy -M-level-inv S
shows cdclyy -M-level-inv S’
using assms by (induct rule: cdclyy -stgy.induct) (blast intro: cdclyy -restart-consistent-inv
cdclyy -restart.intros)+

lemma rtranclp-cdclyy -stgy-consistent-inv:
assumes cdcly -stgy™™ S S’ and cdcly -M-level-inv S
shows cdclyy -M-level-inv S’
using assms by induction (auto dest!: cdcly -stgy-consistent-inv)

lemma cdclyy -stgy-no-more-init-clss:
assumes cdclyy-stgy S S’
shows init-clss S = init-clss S’
using assms cdcly -cdcly -restart cdclyy -restart-init-clss cdclyy -stgy-cdcelyy by blast

lemma rtranclp-cdclyy -stgy-no-more-init-clss:
assumes cdclyy -stgy** S S’
shows init-clss S = init-clss S’
using assms
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apply (induct rule: rtranclp-induct, simp)
using cdclyy -stgy-no-more-init-clss by (simp add: rtranclp-cdcly -stgy-consistent-inv)

Literal of highest level in conflicting clauses

One important property of the cdclyy -restart with strategy is that, whenever a conflict takes
place, there is at least a literal of level k involved (except if we have derived the false clause).
The reason is that we apply conflicts before a decision is taken.

definition conflict-is-false-with-level :: 'st = bool where
conflict-is-false-with-level S = ¥V D. conflicting S = Some D — D # {#}
— (3L €# D. get-level (trail S) L = backtrack-lvl S)

declare conflict-is-false-with-level-def[simp]

Literal of highest level in decided literals

definition mark-is-false-with-level :: 'st = bool where
mark-is-false-with-level S’ =
VD M1 M2 L. M1 @ Propagated L D # M2 = trail S' — D — {#L#} # {#}
— (3 L. L €# D A get-level (trail S') L = count-decided M1)

lemma backtrackyy -rule:
assumes
confl: «conflicting S = Some (add-mset L D)) and
decomp: (Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) and
lev-L: (get-level (trail S) L = backtrack-lvl S) and
mazx-lev: (get-level (trail S) L = get-mazimum-level (trail S) (add-mset L D)) and
maz-D: (get-mazimum-level (trail S) D = i) and
lev-K: «get-level (trail S) K = i + 1) and
T: (T ~ cons-trail (Propagated L (add-mset L D))
(reduce-trail-to M1
(add-learned-cls (add-mset L D)
(update-conflicting None S)))> and
lev-inv: cdcly -M-level-inv S and
conf: (cdcly -conflicting S» and
learned: <cdclyy -learned-clause S
shows (backtrack S T)
using confl decomp lev-L maz-lev maz-D lev-K
proof (rule backtrack-rule)
let ?i = get-mazimum-level (trail S) D
let ?D = (add-mset L D
show <D C# Dy
by simp
obtain M3 where
M3: <trail S = M3 @Q M2 @ Decided K # M1)
using decomp by auto
have trail-S-D: trail S =as CNot ?D)
using conf confl unfolding cdcly -conflicting-def by auto
then have atms-E-M1: <atms-of D C atm-of ¢ lits-of-l M1)
using backtrack-atms-of-D-in-M1[OF - - decomp, of D %i L 2D
(cons-trail (Propagated L ?D) (reduce-trail-to M1 (add-learned-cls ?D (update-conflicting None S)))
(Propagated L (add-mset L D))]
conf lev-K decomp mazx-lev lev-L confl T maz-D lev-inv unfolding cdcly, - M-level-inv-def
by auto
have n-d: (mo-dup (M3 Q M2 Q Decided K # M1)
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using lev-inv no-dup-rev|of <rev M1 @ rev M2 Q rev M3, unfolded rev-append)
by (auto simp: cdecly -M-level-inv-def M3)
then have n-d” no-dup (M3 @ M2 @ M1)
by auto
have atm-L-M1: (atm-of L ¢ atm-of  lits-of-1 M1)
using lev-L n-d defined-lit-no-dupD(2—3)[of M1 L M3 M2| count-decided-ge-get-level[of <Decided K
# MD I
unfolding M3
by (auto simp: atm-of-eq-atm-of Decided-Propagated-in-iff-in-lits-of-1 get-level-cons-if split: if-splits)

have (La # Ly«— La ¢ lits-of-l M3) «(— La ¢ lits-of-l M2) <—La #K) if (Lac#D for La
proof —
have «—La € lits-of-1 (trail S)
using trail-S-D that by (auto simp: true-annots-true-cls-def-iff-negation-in-model
dest!: get-all-ann-decomposition-exists-prepend)
moreover have (defined-lit M1 La)
using atms-E-M1 that by (auto simp: Decided-Propagated-in-iff-in-lits-of-l atms-of-def
dest!: atm-of-in-atm-of-set-in-uminus)
moreover have n-d": (no-dup (rev M1 @ rev M2 Q rev M3)»
by (rule same-mset-no-dup-iff THEN iffD1, OF - n-d']) auto
moreover have no-dup (rev M3 @Q rev M2 Q rev M1))
by (rule same-mset-no-dup-iff THEN iffD1, OF - n-d']) auto
ultimately show <La # Ly(— La ¢ lits-of-l M3) <— La ¢ lits-of-l M2) (—La # K>
using defined-lit-no-dupD(2—3)[of <rev M1)> La (rev M3 (rev M2)]
defined-lit-no-dupD(1)[of rev M1) La <rev M3 @ rev M2)] atm-L-M1 n-d
by (auto simp: M3 Decided- Propagated-in-iff-in-lits-of-l atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)
qed

show (clauses S Epm add-mset L D
using cdclyy -learned-clause-alt-def confl learned by blast

show (T ~ cons-trail (Propagated L (add-mset L D)) (reduce-trail-to M1 (add-learned-cls (add-mset
L D) (update-conflicting None S)))
using T by blast
qed

lemma backtrack-no-decomp:

assumes
S: conflicting S = Some (add-mset L E) and
L: get-level (trail S) L = backtrack-lvl S and
D: get-mazimum-level (trail S) E < backtrack-lvl S and
bt: backtrack-lwl S = get-mazimum-level (trail S) (add-mset L F) and
lev-inv: cdcly -M-level-inv S and
conf: (cdcly -conflicting S» and
learned: (cdclyy -learned-clause S

shows 35", cdclyy-0 S S’ 38’ backtrack S S’

proof —

have L-D: get-level (trail S) L = get-maximum-level (trail S) (add-mset L E)
using L D bt by (simp add: get-mazimum-level-plus)

let %i = get-mazimum-level (trail S) F

let YD = (add-mset L E)

obtain K M1 M2 where
K: (Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) and
lev-K: get-level (trail S) K = 2 + 1
using backtrack-ex-decomplof S %i| D S lev-inv
unfolding cdclyy -M-level-inv-def by auto
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show (Ex (backtrack S)
using backtrackyy -rule[OF S K L L-D - lev-K] lev-inv conf learned by auto
then show (Ex (cdcly-o0 S)
using bj by (auto simp: cdelw -bj.simps)
qed

lemma no-analyse-backtrack-Ez-simple-backtrack:
assumes
bt: <backtrack S T) and
lev-inv: cdclyy -M-level-inv S and
conf: <cdcly -conflicting S) and
learned: <cdclyy -learned-clause S) and
no-dup: (distinct-cdclyy -state S) and
ns-s: (no-step skip S) and
ns-r: (no-step resolve S
shows (Fz(simple-backtrack S)
proof —
obtain D L K i M1 M2 D' where
confl: conflicting S = Some (add-mset L D) and
decomp: (Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) and
lev: get-level (trail S) L = backtrack-lvl S and
maz: get-level (trail S) L = get-mazimum-level (trail S) (add-mset L D') and
maz-D: get-mazimum-level (trail S) D’ = { and
lev-K: get-level (trail S) K = Suc i and
D’-D: (D' C# D) and
NU-DL: «clauses S |=pm add-mset L D" and
T: T ~ cons-trail (Propagated L (add-mset L D'))
(reduce-trail-to M1
(add-learned-cls (add-mset L D’)
(update-conflicting None S)))
using bt by (elim backtrackE) metis
have n-d: (no-dup (trail S)
using lev-inv unfolding cdcly -M-level-inv-def by auto
have trail-S-Nil: «trail S # )
using decomp by auto
then have hd-in-annot: dit-of (hd-trail S) €# mark-of (hd-trail S)) if <is-proped (hd-trail S)
using conf that unfolding cdcly -conflicting-def
by (cases (trail S); cases hd (trail S))) fastforce+
have max-D-L-hd: (get-mazimum-level (trail S) D < get-level (trail S) L N L = —lit-of (hd-trail S)
proof cases
assume is-p: (is-proped (hd (trail S))
then have —lit-of (hd (trail S)) €# add-mset L D
using ns-s trail-S-Nil confl skip-rule[of S it-of (hd (trail S))) - - (add-mset L D)]
by (cases (trail Sy; cases <hd (trail S))) auto
then have (get-mazimum-level (trail S) (removel-mset (— lit-of (hd-trail S)) (add-mset L D)) #
backtrack-lvl S
using ns-r trail-S-Nil confl resolve-rule[of S (lit-of (hd (trail S))) «mark-of (hd-trail S)) <add-mset
L D] is-p
hd-in-annot
by (cases (trail S); cases <hd (trail S))) auto
then have lev-L-D: (get-maximum-level (trail S) (removel-mset (— lit-of (hd-trail S)) (add-mset L
D)) <
backtrack-lvl S)
using count-decided-ge-get-mazimume-level[of trail S) (removel-mset (— lit-of (hd-trail S)) (add-mset
L D))]
by auto
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then have (L = —lit-of (hd-trail S)
using get-maximum-level-ge-get-level[of L (removel-mset (— lit-of (hd-trail S)) (add-mset L D)
(trail S] lev apply —
by (rule ccontr) auto
then show ?thesis
using lev-L-D lev by auto
next
assume is-p: (— is-proped (hd (trail S))
obtain L’ where
L'’ <L' €# add-mset L D) and
lev-L" «get-level (trail S) L' = backtrack-lvl S
using lev by auto
moreover have ul’-trail: (—L' € lits-of-1 (trail S)
using conf confl L' unfolding cdclyy -conflicting-def true-annots-true-cls-def-iff-negation-in-model
by auto
moreover have (L’ ¢ lits-of-l (trail S)
using n-d uL’-trail by (blast dest: no-dup-consistentD)
ultimately have L’-hd: <L’ = —lit-of (hd-trail S)
using is-p trail-S-Nil by (cases (trail S»; cases (hd (trail S)))
(auto simp: get-level-cons-if atm-of-eq-atm-of
split: if-splits)
have distinct-mset (add-mset L D))
using no-dup confl unfolding distinct-cdclyy -state-def by auto
then have (L' ¢# removel-mset L' (add-mset L D)
using L' by (meson distinct-mem-diff-mset multi-member-last)
moreover have (—L' ¢# add-mset L D
proof (rule ccontr)
assume (— ?thesis
then have (L' € lits-of-1 (trail S)
using conf confl trail-S-Nil unfolding cdclyy -conflicting-def true-annots-true-cls-def-iff-negation-in-model
by auto
then show Fulse
using n-d L'-hd by (cases (trail Sy; cases <hd (trail S)))
(auto simp: Decided-Propagated-in-iff-in-lits-of-l)
qged
ultimately have (atm-of (lit-of (Decided (— L"))) ¢ atms-of (removel-mset L' (add-mset L D))
using (— L’ ¢# add-mset L D) by (auto simp: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
atms-of-def dest: in-diffD)
then have (get-mazimum-level (Decided (—L") # tl (trail S)) (removel-mset L’ (add-mset L D)) =
get-maximum-level (tl (trail S)) (removel-mset L' (add-mset L D))
by (rule get-mazimum-level-skip-first)
also have (get-mazimum-level (tl (trail S)) (removel-mset L’ (add-mset L D)) < backtrack-lvl S
using count-decided-ge-get-mazimum-level[of <tl (trail S)y (removel-mset L' (add-mset L D))
trail-S-Nil is-p by (cases (trail S»; cases (hd (trail S))) auto
finally have lev-L'-L: (get-mazimum-level (trail S) (removel-mset L’ (add-mset L D)) < backtrack-lvl
S)
using trail-S-Nil is-p L’-hd by (cases (trail Sy; cases hd (trail S)) auto
then have (L = L/
using get-maximum-level-ge-get-level[of L <removel-mset L’ (add-mset L D)
(trail $) L' lev-L' lev by auto
then show ?thesis
using lev-L’-L lev L'-hd by auto
qed
let % = (get-mazimum-level (trail S) D
obtain K’ M1’ M2’ where
decomp”: ((Decided K' # M1', M2") € set (get-all-ann-decomposition (trail S))» and
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lev-K': «get-level (trail S) K' = Suc 7
using backtrack-ex-decomplof S %4 lev-inv maz-D-L-hd
unfolding lev cdclyy -M-level-inv-def by blast

show ?thesis
apply standard
apply (rule simple-backtrack-rulelof S L D K' M1’ M2’ (get-mazimum-level (trail S) D
(cons-trail (Propagated L (add-mset L D)) (reduce-trail-to M1’ (add-learned-cls (add-mset L D)
(update-conflicting None S)))])
subgoal using confl by auto
subgoal using decomp’ by auto
subgoal using lev .
subgoal using count-decided-ge-get-mazimum-level[of <trail S> D] lev
by (auto simp: get-mazimum-level-add-mset)
subgoal .
subgoal using lev-K' by simp
subgoal by simp
done
qed

lemma trail-begins-with-decided-conflicting-exists-backtrack:
assumes
confl-k: (conflict-is-false-with-level S) and
conf: (cdcly -conflicting S» and
level-inv: <cdelyy -M-level-inv S) and
no-dup: (distinct-cdclyy -state S) and
learned: <cdclyy -learned-clause S) and
alien: (no-strange-atm S> and
tr-ne: (trail S # [» and
L' hd-trail S = Decided L and
nempty: «C # {#} and
confl: <conflicting S = Some C)
shows (Ez (backtrack S)) and (no-step skip S and (no-step resolve S
proof —
let M = trail S
let YN = init-clss S
let 2k = backtrack-lvl S
let ?U = learned-clss S
obtain L D where
E’[simp]: C = D + {#L#} and
lev-L: get-level M L = 2k
using nempty confl by (metis (mono-tags) confl-k insert-Diff M2 conflict-is-false-with-level-def)

let ?D = D + {#L#}

have ?D # {#} by auto

have ?M [=as CNot ?D using confl conf unfolding cdclyy -conflicting-def by auto

then have ?M # [| unfolding true-annots-def Ball-def true-annot-def true-cls-def by force
define M’ where M «M' = &l ?M)

have M: ?M = hd ?M # M’ using <?M # [ list.collapse M’ by fastforce

obtain k£’ where k" k' + 1 = %
using level-inv tr-ne L' unfolding cdclyy -M-level-inv-def by (cases trail S) auto

have n-s: no-step conflict S no-step propagate S
using confl by (auto elim!: conflictE propagateE)
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have g-k: get-mazimum-level (trail S) D < 2k
using count-decided-ge-get-mazimum-level[of ?M] level-inv unfolding cdcly, -M-level-inv-def
by auto
have L'-L: L' = —L
proof (rule ccontr)
assume — ?thesis
moreover {
have —L € lits-of-1 M
using confl conf unfolding cdclyy -conflicting-def by auto
then have <atm-of L # atm-of L
using cdcly -M-level-inv-decomp(2)[OF level-inv] M calculation L'
by (auto simp: atm-of-eq-atm-of all-conj-distrib uminus-lit-swap lits-of-def no-dup-def) }
ultimately have get-level (hd (trail S) # M') L = get-level (¢t ?M) L
using cdcly -M-level-inv-decomp(1)[OF level-inv] M unfolding consistent-interp-def
by (simp add: atm-of-eq-atm-of L' M'[symmetric])
moreover {
have count-decided (trail S) = %k
using level-inv unfolding cdclyy -M-level-inv-def by auto
then have count: count-decided M' = 2k — 1
using level-inv M by (auto simp add: L' M'[symmetric])
then have get-level (t ?M) L < 2k
using count-decided-ge-get-level[of M’ L] unfolding k'[symmetric] M’ by auto }
finally show Fulse using lev-L M unfolding M’ by auto
qed
then have L: hd ?M = Decided (—L) using L' by auto
have H: get-maximum-level (trail S) D < %k
proof (rule ccontr)
assume — ?thesis
then have get-mazimum-level (trail S) D = ?k using M g¢-k unfolding L by auto
then obtain L' where L' €# D and L-k: get-level ?M L' = %k
using get-mazimum-level-exists-lit[of 2k ?M D] unfolding k'[symmetric] by auto
have L # L' using no-dup (L' €# D
unfolding distinct-cdclyy -state-def confl
by (metis E’ add-diff-cancel-right’ distinct-mem-diff-mset union-commute union-single-eq-member)
have L' = —L
proof (rule ccontr)
assume — ?thesis
then have get-level ?M L' = get-level (¢ M) L"
using M (L # L") get-level-skip-beginning|of L' hd ?M tl ?M] unfolding L
by (auto simp: atm-of-eq-atm-of)
moreover have get-level (¢l (trail S)) L = 0
using level-inv L’ M unfolding cdcly, -M-level-inv-def
by (auto simp: image-iff L' L'-L)
moreover {
have (backtrack-lvl S = count-decided (hd ?M # tl ?M))
unfolding M[symmetric] M'[symmetric] ..
then have get-level (¢l (trail S)) L"" < backtrack-lvl S
using count-decided-ge-get-level[of <tl (trail S)y L'
by (auto simp: image-iff L' L'-L) }
ultimately show Fulse
using M[unfolded L' M'[symmetric]] L-k by (auto simp: L' L'-L)
qed
then have taut: tautology (D + {#L#})
using (L' €# D) by (metis add.commute mset-subset-eqD mset-subset-eq-add-left
multi-member-this tautology-minus)
moreover have consistent-interp (lits-of-l 2M)
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using level-inv unfolding cdclyy -M-level-inv-def by auto
ultimately have —?M |=as CNot D
by (metis (L' = — L) <L"" €# D) add.commute consistent-interp-def
diff-union-cancelR in-CNot-implies-uminus(2) in-diffD multi-member-this)
moreover have ?M |=as CNot ?D
using confl no-dup conf unfolding cdcly -conflicting-def by auto
ultimately show Fulse by blast
qed
have confl-D: <conflicting S = Some (add-mset L D))
using confl[unfolded E’] by simp
have get-mazimum-level (trail S) D < get-mazimum-level (trail S) (add-mset L D)
using H by (auto simp: get-mazimum-level-plus lev-L maz-def get-mazimum-level-add-mset)
moreover have backtrack-lvl S = get-maximum-level (trail S) (add-mset L D)
using H by (auto simp: get-mazimum-level-plus lev-L mazx-def get-mazimum-level-add-mset)
ultimately show (Fz (backtrack S)
using backtrack-no-decomp|OF confl-D - | level-inv alien conf learned
by (auto simp add: lev-L maz-def n-s)

show (no-step resolve S)
using L by (auto elim!: resolveE)
show <no-step skip S)
using L by (auto elim!: skipE)
qed

lemma conflicting-no-false-can-do-step:
assumes
confl: <conflicting S = Some C) and
nempty: «C # {#} and
confl-k: (conflict-is-false-with-level S) and
conf: (cdcly -conflicting S» and
level-inv: <cdelyy -M-level-inv S) and
no-dup: (distinct-cdclyy -state S) and
learned: (cdclyy -learned-clause S) and
alien: (no-strange-atm S> and
termi: (no-step cdcly -stgy S)
shows Fulse
proof —
let M = trail S
let YN = init-clss S
let %k = backtrack-lvl S
let ?U = learned-clss S
define M’ where (M’ = ¢l ?M>
obtain L D where
E'[simp]: C = D + {#L+#} and
lev-L: get-level ?M L = %k
using nempty confl by (metis (mono-tags) confl-k insert-Diff M2 conflict-is-false-with-level-def)
let ?D = D + {#L+#}
have ?D # {#} by auto
have ?M [=as CNot ?D using confl conf unfolding cdcly -conflicting-def by auto
then have ?M # [| unfolding true-annots-def Ball-def true-annot-def true-cls-def by force
have M. ?M = hd ?M # tl ?M using (?M # [) by fastforce
then have M: ?M = hd ?M # M’ unfolding M’-def .

have n-s: no-step conflict S no-step propagate S

using termi by (blast intro: cdcly -stgy.intros)+
have (no-step backtrack S)
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using termi by (blast intro: cdcly -stgy.intros cdcly -o.intros cdclyy -bj.intros)
then have not-is-decided: — is-decided (hd ?M)
using trail-begins-with-decided-conflicting-exists-backtrack(1)[OF confl-k conf level-inv no-dup
learned alien <?M # []» - nempty confl] by (cases (hd-trail S)) (auto)
have g-k: get-mazimum-level (trail S) D < 2k
using count-decided-ge-get-mazimum-level[of ?M| level-inv unfolding cdclyy -M-level-inv-def
by auto

let ?D = add-mset L D
have ¢D # {#} by auto
have ?M [=as CNot ?D using confl conf unfolding cdcly -conflicting-def by auto
then have ?M # [| unfolding true-annots-def Ball-def true-annot-def true-cls-def by force
then obtain L’ C' where L'C: hd-trail S = Propagated L' C
using not-is-decided by (cases hd-trail S) auto
then have hd ?M = Propagated L' C
using (?M # [ by fastforce
then have M: ?M = Propagated L' C # M’ using M by simp
then have M": ?M = Propagated L' C # tl ?M using M by simp
then obtain C’ where C": C = add-mset L' C'
using conf M unfolding cdclyy -conflicting-def by (metis append-Nil diff-single-eq-union)
have L'D: —L' €# 7D
using n-s alien level-inv termi skip-rule[OF M’ confl]
by (auto dest: other’ cdcly -o.intros cdelyy-bj.intros)

obtain D’ where D" D = add-mset (—L’') D' using L’'D by (metis insert-DiffM)
then have get-mazimum-level (trail S) D' < %k
using count-decided-ge-get-mazimum-level|of Propagated L' C # tl ?M] M
level-inv unfolding cdcly -M-level-inv-def by auto
then consider
(D’-max-ll) get-mazimum-level (trail S) D' = 2k |
(D’-le-maz-lvl) get-maximum-level (trail S) D' < 2k
using le-neq-implies-less by blast
then show False
proof cases
case ¢g-D'-k: D'-maz-lvl
then have f1: get-mazimum-level (trail S) D' = backtrack-lvl S
using M by auto
then have Ex (cdcly-o0 S)
using resolve-rule[of S L' C', OF «trail S # [ - - confl] conf
L'C L'D D' C' by (auto dest: cdcly -o.intros cdclyy -bj.intros)
then show Fulse
using n-s termi by (auto dest: other’ cdcly -o.intros cdcly -bj.intros)
next
case al: D’-le-maz-lvl
then have f3: get-mazimum-level (trail S) D’ < get-level (trail S) (—L')
using al lev-L D' by (metis D' get-mazimum-level-ge-get-level insert-noteq-member
not-less)
moreover have get-level (trail S) L' = get-mazimum-level (trail S) (D' + {#— L'#})
using al by (auto simp add: get-mazimum-level-add-mset maz-def M)
ultimately show Fulse
using M backtrack-no-decomplof S —L' D’] confl level-inv n-s termi E’ learned conf
by (auto simp: D’ dest: other’' cdcly -o.intros cdclyy -bj.intros)
qed
qed

lemma cdclyy -stgy-final-state-conclusive2:
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assumes
termi: no-step cdcly -stgy S and
decomp: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
learned: cdclyy -learned-clause S and
level-inv: cdclyy -M-level-inv S and
alien: no-strange-atm S and
no-dup: distinct-cdclyy -state S and
confl: cdclyy -conflicting S and
confl-k: conflict-is-false-with-level S
shows (conflicting S = Some {#} N unsatisfiable (set-mset (clauses S)))
V (conflicting S = None A trail S [=as set-mset (clauses S))
proof —
let M = trail S
let ?N = clauses S
let ?k = backtrack-lvl S
let ?U = learned-clss S
consider
(None) conflicting S = None
| (Some-Empty) E where conflicting S = Some E and E = {#}
using conflicting-no-false-can-do-steplof S, OF - - confl-k confl level-inv no-dup learned alien] termi
by (cases conflicting S, simp) auto
then show ?thesis
proof cases
case (Some-Empty E)
then have conflicting S = Some {#} by auto
then have unsat-clss-S: unsatisfiable (set-mset (clauses S))
using learned unfolding cdclyy -learned-clause-alt-def true-clss-cls-def
conflict-is-false-with-level-def
by (metis (no-types, lifting) Un-insert-right atms-of-empty satisfiable-def
sup-bot.right-neutral total-over-m-insert total-over-set-empty true-cls-empty)
then show %thesis using Some-Empty by (auto simp: clauses-def)
next
case None
have ?M asm ¢N
proof (rule ccontr)
assume MN: — %thesis
have all-defined: atm-of ¢ (lits-of-l M) = atms-of-mm ¢N (is ?A = ¢B)
proof
show ?A C ?B using alien unfolding no-strange-atm-def clauses-def by auto
show ¢B C 24
proof (rule ccontr)
assume —?B C 24
then obtain [ where [ € ?B and | ¢ YA by auto
then have undefined-lit M (Pos 1)
using «( ¢ ?A) unfolding lits-of-def by (auto simp add: defined-lit-map)
then have 35'. cdelyy-0 S S’
using cdcly -o.decide[of S] decide-rule[of S (Pos ) <cons-trail (Decided (Pos 1)) S)]
( € ?B) None alien unfolding clauses-def no-strange-atm-def by fastforce
then show Fulse
using termi by (blast intro: cdely -stgy.intros)
qged
qed
obtain D where = ?M |=a D and D €# YN
using MN unfolding lits-of-def true-annots-def Ball-def by auto
have atms-of D C atm-of ‘ (lits-of-1 ?M)
using (D €# ¢N) unfolding all-defined atms-of-ms-def by auto
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then have total-over-m (lits-of-1 M) {D}
using atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
by (fastforce simp: total-over-set-def)
then have ?M [=as CNot D
using (- trail S =a D) unfolding true-annot-def true-annots-true-cls
by (fastforce simp: total-not-true-cls-true-clss-CNot)
then have 35’. conflict S S’
using «trail S |Eas CNot D) (D €# clauses S
None unfolding clauses-def by (auto simp: conflict.simps clauses-def)
then show Fulse
using termi by (blast intro: cdcly -stgy.intros)
qed
then show ?thesis
using None by auto
qed
qed

lemma cdclyy -stgy-final-state-conclusive:
assumes
termi: no-step cdcly -stgy S and
decomp: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
learned: cdclyy -learned-clause S and
level-inv: cdclyy -M-level-inv S and
alien: no-strange-atm S and
no-dup: distinct-cdclyy -state S and
confl: cdcly -conflicting S and
confl-k: conflict-is-false-with-level S and
learned-entailed: <cdclyy -learned-clauses-entailed-by-init S
shows (conflicting S = Some {#} A unsatisfiable (set-mset (init-clss S)))
V (conflicting S = None A trail S |Eas set-mset (init-clss S))
proof —
let M = trail S
let YN = init-clss S
let %k = backtrack-lvl S
let ?U = learned-clss S
consider
(None) conflicting S = None |
(Some-Empty) E where conflicting S = Some E and E = {#}
using conflicting-no-false-can-do-steplof S, OF - - confl-k confl level-inv no-dup learned alien] termi
by (cases conflicting S, simp) auto
then show ?thesis
proof cases
case (Some-Empty E)
then have conflicting S = Some {#} by auto
then have unsat-clss-S: unsatisfiable (set-mset (clauses S))
using learned learned-entailed unfolding cdclyy -learned-clause-alt-def true-clss-cls-def
conflict-is-false-with-level-def
by (metis (no-types, lifting) Un-insert-right atms-of-empty satisfiable-def
sup-bot.right-neutral total-over-m-insert total-over-set-empty true-cls-empty)
then have unsatisfiable (set-mset (init-clss S))
proof —
have atms-of-mm (learned-clss S) C atms-of-mm (init-clss S)
using alien no-strange-atm-decomp(8) by blast
then have f3: atms-of-ms (set-mset (init-clss S) U set-mset (learned-clss S)) =
atms-of-mm (init-clss S)
by auto
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have init-clss S =psm learned-clss S
using learned-entailed
unfolding cdcly -learned-clause-alt-def cdclyy -learned-clauses-entailed-by-init-def by blast
then show ?thesis
using f3 unsat-clss-S
unfolding true-clss-clss-def total-over-m-def clauses-def satisfiable-def
by (metis (no-types) set-mset-union true-clss-union)
qed
then show ?thesis using Some-Empty by auto
next
case None
have ?M Easm ¢N
proof (rule ccontr)
assume MN: - ?thesis
have all-defined: atm-of ¢ (lits-of-l M) = atms-of-mm ¢N (is ?A = ¢B)
proof
show ?A C ?B using alien unfolding no-strange-atm-def by auto
show ¢B C ¢4
proof (rule ccontr)
assume —?B C 24
then obtain [ where [ € ?B and | ¢ A by auto
then have undefined-lit ?M (Pos 1)
using «( ¢ ?A) unfolding lits-of-def by (auto simp add: defined-lit-map)
then have 35'. cdelyy-0 S S’
using cdcly -o.decide decide-rule ( € ?B) no-strange-atm-def None
by (metis literal.sel(1) state-eq-ref)
then show Fulse
using termi by (blast intro: cdely -stgy.intros)
qed
qed
obtain D where = M =a D and D €# ?N
using MN unfolding lits-of-def true-annots-def Ball-def by auto
have atms-of D C atm-of ‘ (lits-of-1 ?M)
using (D €# ?N) unfolding all-defined atms-of-ms-def by auto
then have total-over-m (lits-of-1 M) {D}
using atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
by (fastforce simp: total-over-set-def)
then have M-CNot-D: ?M t=as CNot D
using (- trail S Ea D) unfolding true-annot-def true-annots-true-cls
by (fastforce simp: total-not-true-cls-true-clss-CNot)
then have 35’. conflict S S’
using M-CNot-D (D €4 init-clss S
None unfolding clauses-def by (auto simp: conflict.simps clauses-def)
then show Fulse
using termi by (blast intro: cdcly -stgy.intros)
qged
then show ?thesis
using None by auto
qed
qed

lemma cdclyy -stgy-tranclp-cdclyy -restart:
cdely -stgy S S’ = cdcly -restart™ S S’
by (simp add: cdcly -cdcly -restart cdcly -stgy-cdcly tranclp.r-into-trancl)
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lemma tranclp-cdclyy -stgy-tranclp-cdclyy -restart:
cdely-stgyt™ S ' = cdclyy-restartt ™ S S’
apply (induct rule: tranclp.induct)
using cdclyy -stgy-tranclp-cdcly -restart apply blast
by (meson cdcly -stgy-tranclp-cdely -restart tranclp-trans)

lemma rtranclp-cdclyy -stgy-rtranclp-cdclyy -restart:
cdclyy -stgy** S S’ = cdclyy -restart** S S’
using rtranclp-unfold[of cdcly -stgy S S’ tranclp-cdclyy -stgy-tranclp-cdcly -restart[of S S'] by auto

lemma cdclyy -o-conflict-is-false-with-level-inv:
assumes
cdely -0 S S' and
lev: cdclyy -M-level-inv S and
confl-inv: conflict-is-false-with-level S and
n-d: distinct-cdcly -state S and
conflicting: cdclyy -conflicting S
shows conflict-is-false-with-level S’
using assms(1,2)
proof (induct rule: cdely -o-induct)
case (resolve L C M D T) note tr-S = this(1) and confl = this(4) and LD = this(5) and T =
this(7)
have uL-not-D: —L ¢# removel-mset (—L) D
using n-d confl unfolding distinct-cdclyy -state-def distinct-mset-def
by (metis distinct-cdcly -state-def distinct-mem-diff-mset multi-member-last n-d)
moreover {
have L-not-D: L ¢# removel-mset (—L) D
proof (rule ccontr)
assume - ?thesis
then have L €# D
by (auto simp: in-removel-mset-neq)
moreover have Propagated L C # M [Eas CNot D
using conflicting confl tr-S unfolding cdclyy -conflicting-def by auto
ultimately have —L € lits-of-l (Propagated L C # M)
using in-CNot-implies-uminus(2) by blast
moreover have no-dup (Propagated L C # M)
using lev tr-S unfolding cdclyy -M-level-inv-def by auto
ultimately show Fulse unfolding lits-of-def
by (metis imagel insertCI list.simps(15) lit-of .simps(2) lits-of-def no-dup-consistentD)
qed

ultimately have g¢-D: get-mazimum-level (Propagated L C # M) (removel-mset (—L) D)
= get-mazimum-level M (removel-mset (—L) D)
by (simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set atms-of-def)
have lev-L[simp]: get-level M L = 0
using lev unfolding cdclyy -M-level-inv-def tr-S by (auto simp: lits-of-def)

have D: get-mazimum-level M (removel-mset (—L) D) = backtrack-lvl S

using resolve.hyps(6) LD unfolding tr-S by (auto simp: get-mazimum-level-plus maz-def g-D)
have get-mazimum-level M (removel-mset L C) < backtrack-lvl S

using count-decided-ge-get-mazimum-level[of M| lev unfolding tr-S cdely -M-level-inv-def by auto
then have

get-maximum-level M (removel-mset (— L) D U# removel-mset L C) = backtrack-lvl S

by (auto simp: get-mazimum-level-union-mset get-mazimum-level-plus maz-def D)
then show ?case

using tr-S get-mazimum-level-exists-lit-of-maz-level[of
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removel-mset (— L) D U# removel-mset L C M| T
by auto
next
case (skip L C' M D T) note tr-S = this(1) and D = this(2) and T = this(5)
then obtain La where
La €# D and
get-level (Propagated L C' # M) La = backtrack-lvl S
using skip confil-inv by auto
moreover {
have atm-of La # atm-of L
proof (rule ccontr)
assume — ?thesis
then have La: La = L using (La €# D) «<— L ¢# D)
by (auto simp add: atm-of-eq-atm-of)
have Propagated L C' # M [=as CNot D
using conflicting tr-S D unfolding cdclyy -conflicting-def by auto
then have —L € lits-of-l M
using (La €# D) in-CNot-implies-uminus(2)[of L D Propagated L C' # M| unfolding La
by auto
then show Fulse using lev tr-S unfolding cdclyy -M-level-inv-def consistent-interp-def by auto
qed
then have get-level (Propagated L C' # M) La = get-level M La by auto
}
ultimately show ?case using D tr-S T by auto
next
case backtrack
then show ?case
by (auto split: if-split-asm simp: cdcly -M-level-inv-decomp lev)
qed auto

Strong completeness

lemma propagate-high-levelE:
assumes propagate S T
obtains M’ N’ U L C where
state-butlast S = (M', N, U, None) and
state-butlast T = (Propagated L (C + {#L#}) # M', N', U, None) and
C + {#L#} €# local.clauses S and
M’ =as CNot C and
undefined-lit (trail S) L
proof —
obtain £ L where
conf: conflicting S = None and
E: E €# clauses S and
LE: L €# E and
tr: trail S F=as CNot (E — {#L#}) and
undef: undefined-lit (trail S) L and
T: T ~ cons-trail (Propagated L E) S
using assms by (elim propagateFE) simp
obtain M N U where
S: state-butlast S = (M, N, U, None)
using conf by auto
show thesis
using that[of M N U L removel-mset L E] S T LE E tr undef
by auto
qed
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lemma cdclyy -propagate-conflict-completeness:
assumes
MN: set M =s set-mset N and
cons: consistent-interp (set M) and
tot: total-over-m (set M) (set-mset N) and
lits-of-l (trail S) C set M and
init-clss S = N and
propagate*™* S S’ and
learned-clss S = {#}
shows length (trail S) < length (trail S") A lits-of-l (trail S') C set M
using assms(6,4,5,7)
proof (induction rule: rtranclp-induct)
case base
then show ?Zcase by auto
next
case (step Y 7)
note st = this(1) and propa = this(2) and IH = this(3) and lits’ = this(4) and NS = this(5) and
learned = this(6)
then have len: length (trail S) < length (trail Y) and LM: lits-of-l (trail V) C set M
by blast+

obtain M’ N’ U C L where
Y: state-butlast Y = (M’, N', U, None) and
Z: state-butlast Z = (Propagated L (C + {#L#}) # M', N, U, None) and
C: C + {#L#} €# clauses Y and
M'-C: M’ }=as CNot C and
undefined-lit (trail V) L
using propa by (auto elim: propagate-high-levelE)
have init-clss S = init-clss Y
using st by induction (auto elim: propagateF)
then have [simp]: N’ = N using NS Y Z by simp
have learned-clss Y = {#}
using st learned by induction (auto elim: propagateF)
then have [simp]: U = {#} using Y by auto
have set M s CNot C
using M’-C LM Y unfolding true-annots-def Ball-def true-annot-def true-clss-def true-cls-def
by force
moreover
have set M = C + {#L#}
using MN C learned Y NS cinit-clss S = init-clss V> dearned-clss Y = {#}
unfolding true-clss-def clauses-def by fastforce
ultimately have L € set M by (simp add: cons consistent-CNot-not)
then show ?Zcase using LM len Y Z by auto
qed

lemma
assumes propagate™™ S X
shows
rtranclp-propagate-init-clss: init-clss X = init-clss S and
rtranclp-propagate-learned-clss: learned-clss X = learned-clss S
using assms by (induction rule: rtranclp-induct) (auto elim: propagateE)

lemma cdclyy -stgy-strong-completeness-n:

assumes
MN: set M =s set-mset N and
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cons: consistent-interp (set M) and
tot: total-over-m (set M) (set-mset N) and
atm-incl: atm-of < (set M) C atms-of-mm N and
distM: distinct M and
length: n < length M
shows
IM'S. length M’ > n A
lits-of-l M' C set M A
no-dup M' A
state-butlast S = (M', N, {#}, None) A
cdely -stgy™™* (init-state N) S
using length
proof (induction n)
case (
have state-butlast (init-state N) = ([], N, {#}, None)
by auto
moreover have
0 < length || and
lits-of-1 [] C set M and
cdclyy -stgy** (init-state N) (init-state N)
and no-dup ]
by auto
ultimately show ?case by blast
next
case (Suc n) note IH = this(1) and n = this(2)
then obtain M’ S where
I-M": length M’ > n and
M’ lits-of-1 M’ C set M and
n-d[simp]: no-dup M’ and
S: state-butlast S = (M', N, {#}, None) and
st: edclyy -stgy** (init-state N) S
by auto
have
M: cdelyy -M-level-inv S and
alien: no-strange-atm S
using cdclyy -M-level-inv-S0-cdclyy -restart rtranclp-cdclyy -stgy-consistent-inv st apply blast
using cdclyy -M-level-inv-S0-cdclyy -restart no-strange-atm-S0 rtranclp-cdcly -restart-no-strange-atm-inv
rtranclp-cdclyy -stgy-rtranclp-cdcly -restart st by blast

{ assume no-step: —no-step propagate S
then obtain S’ where S’: propagate S S’
by auto
have lev: cdclyy -M-level-inv S’
using M S’ rtranclp-cdcly -restart-consistent-inv rtranclp-propagate-is-rtranclp-cdely -restart by
blast
then have n-d’[simp]: no-dup (trail S’)
unfolding cdclyy -M-level-inv-def by auto
have length (trail S) < length (trail S') A lits-of-1 (trail S') C set M
using S’ cdcly -propagate-conflict-completeness| OF assms(1—3), of S] M' S
by (auto simp: comp-def)
moreover have cdely -stgy S S’ using S’ by (simp add: cdcly -stgy.propagate’)
moreover {
have trail S = M’
using S by (auto simp: comp-def rev-map)
then have length (trail S') > n
using S’ I-M' by (auto elim: propagateE) }
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moreover {
have stS": cdely -stgy** (init-state N) S’
using st cdcly -stgy.propagate'|OF S| by (auto simp: r-into-rtranclp)
then have init-clss S’ = N
using rtranclp-cdcly -stgy-no-more-init-clss by fastforce}
moreover {
have
[simp]:learned-clss S' = {#} and
[simp]: init-clss S’ = init-clss S and
[simp]: conflicting S’ = None
using S S’ by (auto elim: propagateFE)
have state-butlast S' = (trail S, N, {#}, None)
using S by auto }
moreover
have cdcly -stgy™ (init-state N) S’
apply (rule rtranclp.rtrancl-into-rtrancl)
using st apply simp
using <cdcly -stgy S S by simp
ultimately have ?case
apply —
apply (rule exI[of - trail S'], rule exI[of - S'])
by auto
}
moreover {
assume no-step: no-step propagate S
have ?case
proof (cases length M' > Suc n)
case True
then show ?thesis using I-M' M’ st M alien S n-d by blast
next
case Fulse
then have n’: length M' = n using [-M’ by auto
have no-confi: no-step conflict S
proof —
{ fix D
assume D €# N and M’ =as CNot D
then have set M = D using MN unfolding true-clss-def by auto
moreover have set M |=s CNot D
using (M’ =as CNot Dy M’
by (metis le-iff-sup true-annots-true-cls true-clss-union-increase)
ultimately have False using cons consistent-CNot-not by blast
}
then show ?thesis
using S by (auto simp: true-clss-def comp-def rev-map
clauses-def elim!: conflictE)
qged
have lenM: length M = card (set M) using distM by (induction M) auto
have no-dup M’ using S M unfolding cdcly -M-level-inv-def by auto
then have card (lits-of-l M) = length M’
by (induction M") (auto simp add: lits-of-def card-insert-if defined-lit-map)
then have lits-of-l M’ C set M
using n M’ n' lenM by auto
then obtain L where L: L € set M and undef-m: L ¢ lits-of-l M’ by auto
moreover have undef: undefined-lit M’ L
using M’ Decided-Propagated-in-iff-in-lits-of-l calculation(1,2) cons
consistent-interp-def by (metis (no-types, lifting) subset-eq)
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moreover have atm-of L € atms-of-mm (init-clss S)
using atm-incl calculation S by auto
ultimately have dec: decide S (cons-trail (Decided L) S)
using decide-rule[of S - cons-trail (Decided L) S] S by auto
let 25’ = cons-trail (Decided L) S
have lits-of-l (trail 2S’) C set M using L M’ S undef by auto
moreover have no-strange-atm 2S5’
using alien dec M by (meson cdclyy -restart-no-strange-atm-inv decide other)
have cdclyy -M-level-inv 25’
using M dec rtranclp-mono|of decide cdclyy -restart] by (meson cdclyy -restart-consistent-inv
decide other)
then have lev'": cdclyy -M-level-inv 25’
using S rtranclp-cdclyy -restart-consistent-inv rtranclp-propagate-is-rtranclp-cdclyy -restart
by blast
then have n-d’: no-dup (trail 25’)
unfolding cdcly -M-level-inv-def by auto
have length (trail S) < length (trail 2S’) A lits-of-l (trail 2S') C set M
using S L M’ S undef by simp
then have Suc n < length (trail 2S') A lits-of-1 (trail 2S’) C set M
using [-M' S undef by auto
moreover have S state-butlast 2S5’ = (trail S’, N, {#}, None)
using S undef n-d’’ lev’ by auto
moreover have cdcly -stgy** (init-state N) 25’
using S’ no-step no-confl st dec by (auto dest: decide cdcly -stgy.intros)
ultimately show ?thesis using n-d'’ by blast
qed

ultimately show ?case by blast

lemma cdclyy -stgy-strong-completeness':
assumes

MN: set M |=s set-mset N and

cons: consistent-interp (set M) and

tot: total-over-m (set M) (set-mset N) and
atm-incl: atm-of ¢ (set M) C atms-of-mm N and
distM: distinct M

shows

IM'S. lits-of-1 M’ = set M A
state-butlast S = (M', N, {#}, None) A
cdely -stgy** (init-state N) S

proof —
have @M’ S. lits-of-l M’ C set M A

no-dup M’ N\ length M = n A
state-butlast S = (M', N, {#}, None) A
cdely -stgy** (init-state N) S

if (n < length M) for n :: nat

using that

proof (induction n)
case (

then show ?Zcase by (auto introl: exI[of - cinit-state N»])

next

case (Suc n) note IH = this(1) and n-le-M = this(2)
then obtain M’ S where

M’ lits-of-l M' C set M and

n-d[simp): no-dup M’ and
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S: state-butlast S = (M', N, {#}, None) and
st: edely -stgy™™* (init-state N) S and
I-M’: length M’ = n
by auto
have
M: cdcly -M-level-inv S and
alien: no-strange-atm S
using cdclyy -M-level-inv-S0-cdclyy -restart rtranclp-cdclyy -stgy-consistent-inv st apply blast
using cdclyy - M-level-inv-S0-cdclyy -restart no-strange-atm-S0 rtranclp-cdclyy -restart-no-strange-atm-inv
rtranclp-cdclyy -stgy-rtranclp-cdclyy -restart st by blast

{ assume no-step: —no-step propagate S
then obtain S’ where S’: propagate S S’
by auto
have lev: cdclyy -M-level-inv S’
using M S’ rtranclp-cdclyy -restart-consistent-inv rtranclp-propagate-is-riranclp-cdclyy -restart by
blast
then have n-d’[simp]: no-dup (trail S’)
unfolding cdcly -M-level-inv-def by auto
have length (trail S) < length (trail S') A lits-of-1 (trail S') C set M
using S’ cdclyy -propagate-conflict-completeness| OF assms(1—38), of S] M’ S
by (auto simp: comp-def)
moreover have cdcly -stgy S S’ using S’ by (simp add: cdcly -stgy.propagate’)
moreover {
have trail S = M’
using S by (auto simp: comp-def rev-map)
then have length (trail S') = Suc n
using S’ I-M’ by (auto elim: propagateE) }
moreover {
have stS’: cdely -stgy** (init-state N) S’
using st cdcly -stgy.propagate’|OF S'| by (auto simp: r-into-rtranclp)
then have init-clss S’ = N
using rtranclp-cdclyy -stgy-no-more-init-clss by fastforce}
moreover {
have
[simp]:learned-clss S’ = {#} and
[simp]: init-clss S’ = init-clss S and
[simp]: conflicting S’ = None
using S S’ by (auto elim: propagateE)
have state-butlast S’ = (trail S’, N, {#}, None)
using S by auto }
moreover
have cdcly -stgy** (init-state N) S’
apply (rule rtranclp.rtrancl-into-rtrancl)
using st apply simp
using <cdcly -stgy S S by simp
ultimately have ?case
apply —
apply (rule exl[of - trail S|, rule exI[of - S'])
by auto
}
moreover { assume no-step: no-step propagate S
have no-confl: no-step conflict S
proof —
{ fix D
assume D €# N and M’ }=as CNot D
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then have set M = D using MN unfolding true-clss-def by auto
moreover have set M =s CNot D
using (M’ =as CNot Dy M’
by (metis le-iff-sup true-annots-true-cls true-clss-union-increase)
ultimately have Fualse using cons consistent-CNot-not by blast
}
then show ?thesis
using S by (auto simp: true-clss-def comp-def rev-map
clauses-def elim!: conflictE)
qed
have lenM: length M = card (set M) using distM by (induction M) auto
have no-dup M’ using S M unfolding cdcly, -M-level-inv-def by auto
then have card (lits-of-l M') = length M’
by (induction M') (auto simp add: lits-of-def card-insert-if defined-lit-map)
then have lits-of-l M’ C set M
using M’ I-M’ lenM n-le-M by auto
then obtain L where L: L € set M and undef-m: L ¢ lits-of-l M’ by auto
moreover have undef: undefined-lit M' L
using M’ Decided-Propagated-in-iff-in-lits-of-l calculation(1,2) cons
consistent-interp-def by (metis (no-types, lifting) subset-eq)
moreover have atm-of L € atms-of-mm (init-clss S)
using atm-incl calculation S by auto
ultimately have dec: decide S (cons-trail (Decided L) S)
using decide-rule[of S - cons-trail (Decided L) S] S by auto
let 25’ = cons-trail (Decided L) S
have lits-of-l (trail 2S") C set M using L M’ S undef by auto
moreover have no-strange-atm 25’
using alien dec M by (meson cdcly -restart-no-strange-atm-inv decide other)
have cdclyy -M-level-inv 25’
using M dec rtranclp-mono|of decide cdcly -restart] by (meson cdcly -restart-consistent-inv
decide other)
then have lev’”: cdclyy -M-level-inv 25’
using S rtranclp-cdclyy -restart-consistent-inv rtranclp-propagate-is-rtranclp-cdcly -restart
by blast
then have n-d’: no-dup (trail ?S”)
unfolding cdclyy -M-level-inv-def by auto
have Suc (length (trail S)) = length (trail 2S") A lits-of-1 (trail 2S7) C set M
using S L M’ S undef by simp
then have Suc n = length (trail 25') A lits-of-1 (trail 2S') C set M
using [-M' S undef by auto
moreover have S state-butlast 2S5’ = (trail ?S’, N, {#}, None)
using S undef n-d”’ lev'’ by auto
moreover have cdcly -stgy** (init-state N) 25’
using S’ no-step no-confl st dec by (auto dest: decide cdcly -stgy.intros)
ultimately have ?case using n-d"’ L M’ by (auto intro!: exl[of - (Decided L # trail $)] exI|of -
(258h])
}
ultimately show ?case by blast
qed
from this[of (length M)] obtain M’ S where
M'-M: dits-of-l M' C set M) and
n-d: <no-dup M" and
dength M' = length M) and
(state-butlast S = (M', N, {#}, None) A cdcly -stgy** (init-state N) S)
by auto
moreover have (lits-of-l M' = set M)
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apply (rule card-subset-eq)
subgoal by auto
subgoal using M’-M .
subgoal using M’-M n-d no-dup-length-eq-card-atm-of-lits-of-[OF n-d] M'-M «(finite (set M)
distinct-card|OF distM| calculation(3)
card-image-lelof ¢ lits-of-1 M atm-of] card-seteq| OF <finite (set M)y, of (lits-of-1 M "]
by auto
done
ultimately show ?thesis
by (auto intro!: exI[of - S])
qed

theorem 2.9.11 page 98 of Weidenbach’s book (with strategy)

lemma cdclyy -stgy-strong-completeness:
assumes
MN: set M |=s set-mset N and
cons: consistent-interp (set M) and
tot: total-over-m (set M) (set-mset N) and
atm-incl: atm-of < (set M) C atms-of-mm N and
distM: distinct M
shows
IM'kS.
lits-of-l M' = set M A
state-butlast S = (M', N, {#}, None) A
cdclyy -stgy™* (init-state N) S A
final-cdclyy -restart-state S
proof —
from cdclyy -stgy-strong-completeness-n|OF assms, of length M]
obtain M’ T where
l: length M < length M’ and
M'-M: lits-of-1 M’ C set M and
no-dup: no-dup M' and
T: state-butlast T = (M’, N, {#}, None) and
st: cdely -stgy** (init-state N) T
by auto
have card (set M) = length M using distM by (simp add: distinct-card)
moreover {
have cdclyy-M-level-inv T
using rtranclp-cdcly -stgy-consistent-inv| OF st| T by auto
then have card (set ((map (Al. atm-of (lit-of 1)) M’))) = length M’
using distinct-card no-dup by (fastforce simp: lits-of-def image-image no-dup-def) }
moreover have card (lits-of-l M') = card (set ((map (Al atm-of (lit-of 1)) M")))
using no-dup by (induction M') (auto simp add: defined-lit-map card-insert-if lits-of-def)
ultimately have card (set M) < card (lits-of-l M') using | unfolding lits-of-def by auto
then have s: set M = lits-of-1 M’
using M'-M card-seteq by blast
moreover {
have M’ =asm N
using MN s unfolding true-annots-def Ball-def true-annot-def true-clss-def by auto
then have final-cdcly -restart-state T
using T no-dup unfolding final-cdclyy -restart-state-def by auto }
ultimately show ?thesis using st T by blast
qed
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No conflict with only variables of level less than backtrack level

This invariant is stronger than the previous argument in the sense that it is a property about
all possible conflicts.

definition no-smaller-confl (S ::'st) =
(VMK M'D. trail S = M' Q Decided K # M — D €# clauses S — - M =as CNot D)

lemma no-smaller-confl-init-sate|simp]:
no-smaller-confl (init-state N) unfolding no-smaller-confl-def by auto

lemma cdclyy -0-no-smaller-confil-inv:
fixes S S’ :: ‘st
assumes
cdely -0 S S' and
n-s: no-step conflict S and
lev: cdclyy -M-level-inv S and
mazx-lev: conflict-is-false-with-level S and
smaller: no-smaller-confl S
shows no-smaller-confl S’
using assms(1,2) unfolding no-smaller-confi-def
proof (induct rule: cdely -o-induct)
case (decide L T) note confl = this(1) and undef = this(2) and T = this(4)
have [simp]: clauses T = clauses S
using T undef by auto
show ?Zcase
proof (intro alll impI)
fix M" K M’ Da
assume trail T = M'"' Q Decided K # M’ and D: Da €4 local.clauses T
then have trail S = tl M"' Q Decided K # M’
V (M" =[] A Decided K # M’ = Decided L # trail S)
using T undef by (cases M) auto
moreover {
assume trail S = tl M"' Q Decided K # M’
then have =M’ =as CNot Da
using D T undef confl smaller unfolding no-smaller-confl-def smaller by fastforce
}
moreover {
assume Decided K # M’ = Decided L # trail S
then have - M’ |=as CNot Da using smaller D confl T n-s by (auto simp: conflict.simps)
}
ultimately show —M' =as CNot Da by fast
qed
next
case resolve
then show ?Zcase using smaller maz-lev unfolding no-smaller-confl-def by auto
next
case skip
then show ?case using smaller max-lev unfolding no-smaller-confl-def by auto
next
case (backtrack L D K ¢ M1 M2 T D’) note confl = this(1) and decomp = this(2) and
T = this(9)
obtain ¢ where M: trail S = ¢ @ M2 @ Decided K # M1
using decomp by auto

show “case
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proof (intro alll impl)
fix M ia K' M' Da
assume trail T = M' Q Decided K' # M
then have M1 = ¢l M’ Q Decided K' # M
using T decomp lev by (cases M) (auto simp: cdcly -M-level-inv-decomp)
let ?D’ = (add-mset L D"
let 25’ = (cons-trail (Propagated L ¢D’)
(reduce-trail-to M1 (add-learned-cls ?D’ (update-conflicting None S))))
assume D: Da €4 clauses T
moreover{
assume Da €# clauses S
then have =M [=as CNot Da using (M1 = tl M’ @ Decided K’ # M) M confl smaller
unfolding no-smaller-confi-def by auto
}
moreover {
assume Da: Da = add-mset L D’
have =M =as CNot Da
proof (rule ccontr)
assume — ?Zthesis
then have —L € lits-of-l M
unfolding Da by (simp add: in-CNot-implies-uminus(2))
then have —L € lits-of-l (Propagated L D # M1)
using UnlI2 <M1 = tl M' @ Decided K' # M)
by auto
moreover
have backtrack S 25’
using backtrack-rule[OF backtrack.hyps(1—8) T| backtrack-state-eq-compatible[of S T S| T
by force
then have cdclyy -M-level-inv 2S5’
using cdclyy -restart-consistent-inv[ OF - lev] other[OF bj]
by (auto intro: cdcly -bj.intros)
then have no-dup (Propagated L D # M1)
using decomp lev unfolding cdcly -M-level-inv-def by auto
ultimately show Fulse
using Decided- Propagated-in-iff-in-lits-of-1 defined-lit-map
by (auto simp: no-dup-def)
qed
}
ultimately show - M =as CNot Da
using T decomp lev unfolding cdclyy -M-level-inv-def by fastforce
ged
qed

lemma conflict-no-smaller-confl-inv:
assumes conflict S S’
and no-smaller-confl S
shows no-smaller-confl S’
using assms unfolding no-smaller-confl-def by (fastforce elim: conflictE)

lemma propagate-no-smaller-confi-inv:
assumes propagate: propagate S S’
and n-l: no-smaller-confl S
shows no-smaller-confl S’
unfolding no-smaller-confi-def
proof (intro alll impl)
fix M K M" D
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assume M" trail S' = M' @ Decided K # M’
and D €# clauses S’
obtain M N U C L where
S: state-butlast S = (M, N, U, None) and
S': state-butlast S" = (Propagated L (C' + {#L#}) # M, N, U, None) and
C + {#L#} €# clauses S and
M kEas CNot C and
undefined-lit M L
using propagate by (auto elim: propagate-high-levelF)
have ¢l M’ Q Decided K # M’ = trail S using M’ S S’
by (metis Pair-inject list.inject list.sel(3) annotated-lit.distinct(1) self-append-conv2
tl-append?)
then have - M’ |=as CNot D
using <D €# clauses S» n-1 S S’ clauses-def unfolding no-smaller-confl-def by auto
then show =M’ =as CNot D by auto
qed

lemma cdclyy -stgy-no-smaller-confi:

assumes cdclyy-stgy S S’

and n-l: no-smaller-confl S

and conflict-is-false-with-level S

and cdclyy -M-level-inv S

shows no-smaller-confl S’

using assms
proof (induct rule: cdely -stgy.induct)

case (conflict’ S’

then show Zcase using conflict-no-smaller-confl-invjof S S’] by blast
next

case (propagate’ S’)

then show ?Zcase using propagate-no-smaller-confi-inv[of S S| by blast
next

case (other’ S

then show ?case

using cdcly -0-no-smaller-confl-inv[of S| by auto

qed

lemma conflict-conflict-is-false-with-level:
assumes
conflict: conflict S T and
smaller: no-smaller-confl S and
M-lev: cdelyy -M-level-inv S
shows conflict-is-false-with-level T
using conflict
proof (cases rule: conflict.cases)
case (conflict-rule D) note confl = this(1) and D = this(2) and not-D = this(3) and T = this(4)
then have [simp]: conflicting T = Some D
by auto
have M-lev-T: cdcly -M-level-inv T
using conflict M-lev by (auto simp: cdclyy -restart-consistent-inv
dest: cdcly -restart.intros)
then have bt: backtrack-lvl T = count-decided (trail T')
unfolding cdclyy -M-level-inv-def by auto
have n-d: no-dup (trail T)
using M-lev-T unfolding cdcly -M-level-inv-def by auto
show ?thesis
proof (rule ccontr, clarsimp)
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assume
empty: D # {#} and
lev: V Le#D. get-level (trail T) L # backtrack-lvl T
moreover {
have get-level (trail T) L < backtrack-lvl T if Le#D for L
using that count-decided-ge-get-level[of trail T L] M-lev-T
unfolding cdcly -M-level-inv-def by auto
then have get-level (trail T) L < backtrack-ll T if Le#D for L
using lev that by fastforce } note lev’ = this
ultimately have count-decided (trail T) > 0
using M-lev-T unfolding cdcly -M-level-inv-def by (cases D) fastforce+
then have ex: Jueset (trail T). is-decided
unfolding no-dup-def count-decided-def by cases auto
have AM2 L M1. trail T = M2 @ Decided L # M1 A (VY méeset M2. = is-decided m)»
by (rule split-list-first-propE[of trail T is-decided, OF ex])
(force elim!: is-decided-ex-Decided)
then obtain M2 L M1 where
tr-T: traill T = M2 Q Decided L # M1 and nm: V'm € set M2. — is-decided m
by blast
moreover {
have get-level (trail T) La = backtrack-ll T if — La € lits-of-l M2 for La
unfolding tr-T bt
apply (subst get-level-skip-end)
using that apply (simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
Decided- Propagated-in-iff-in-lits-of-1; fail)
using nm bt tr-T by (simp add: count-decided-0-iff) }
moreover {
have tr: M2 @ Decided L # M1 = (M2 Q [Decided L)) @ M1
by auto
have get-level (trail T) L = backtrack-lvl T
using n-d nm unfolding tr-T tr bt
by (auto simp: image-image atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
atm-lit-of-set-lits-of-1 count-decided-0-iff [symmetric]) }
moreover have trail S = trail T
using T by auto
ultimately have M! [=as CNot D
using lev’ not-D unfolding true-annots-true-cls-def-iff-negation-in-model
by (force simp: count-decided-0-iff [symmetric] get-level-def)
then show Fulse
using smaller T tr-T D by (auto simp: no-smaller-confl-def)
ged

qed

lemma cdclyy -stgy-ez-lit-of-max-level:
assumes

cdclyy -stgy S S’ and

n-l: no-smaller-confl S and
conflict-is-false-with-level S and
cdely -M-level-inv S and
distinct-cdclyy -state S and

cdcelyy -conflicting S

shows conflict-is-false-with-level S’
using assms

proof (induct rule: cdely -stgy.induct)

case (conflict’ S)
then have no-smaller-confl S’
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using conflict’.hyps conflict-no-smaller-confl-inv n-l by blast
moreover have conflict-is-false-with-level S’
using conflict-conflict-is-false-with-level assms(4) conflict’.hyps n-l by blast
then show ?Zcase by blast
next
case (propagate’ S)
then show Zcase by (auto elim: propagateE)
next
case (other’ S’) note n-s = this(1,2) and o = this(3) and lev = this(6)
show ?Zcase
using cdclyy -o-conflict-is-false-with-level-inv[ OF o] other'.prems by blast
qed

lemma rtranclp-cdclyy -stgy-no-smaller-confi-inv:
assumes
cdely -stgy** S S’ and
n-l: no-smaller-confl S and
cls-false: conflict-is-false-with-level S and
lev: cdclyy -M-level-inv S and
dist: distinct-cdclyy -state S and
conflicting: cdclyy -conflicting S and
decomp: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
learned: cdclyy -learned-clause S and
alien: no-strange-atm S
shows no-smaller-confl S’ A conflict-is-false-with-level S’
using assms(1)
proof (induct rule: rtranclp-induct)
case base
then show ?Zcase using n-l cls-false by auto
next
case (step S’ S") note st = this(1) and cdcl = this(2) and IH = this(3)
have no-smaller-confl S’ and conflict-is-false-with-level S’
using /H by blast+
moreover have cdclyy-M-level-inv S’
using st lev rtranclp-cdclyy -stgy-rtranclp-cdcly -restart
by (blast intro: rtranclp-cdcly -restart-consistent-inv)+
moreover have distinct-cdclyy -state S’
using rtanclp-distinct-cdcly -state-inv[of S S'] lev rtranclp-cdcly -stgy-rtranclp-cdely -restart| OF st
dist by auto
moreover have cdclyy -conflicting S’
using rtranclp-cdcly -restart-all-inv(6)[of S S| st alien conflicting decomp dist learned lev
rtranclp-cdclyy -stgy-rtranclp-cdclyy -restart by blast
ultimately show ?Zcase
using cdclyy -stgy-no-smaller-confl|OF cdcl] cdelyy -stgy-ex-lit-of-maz-level[OF cdcl] edel
by (auto simp del: simp add: cdcly -stgy.simps elim!: propagateF)
qed

Final States are Conclusive

theorem 2.9.9 page 97 of Weidenbach’s book

lemma full-cdclyy -stgy-final-state-conclusive:
fixes S’ :: ‘st
assumes full: full cdely -stgy (init-state N) S’
and no-d: distinct-mset-mset N
shows (conflicting S' = Some {#} A unsatisfiable (set-mset (init-clss S’)))
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V (conflicting S’ = None A trail S" =asm init-clss S)
proof —
let ¢S = init-state N
have
termi: ¥V .S'. =edcly -stgy S’ S and
step: cdely -stgy™ 25 S’ using full unfolding full-def by auto
have
learned: cdclyy-learned-clause S’ and
level-inv: cdelyy -M-level-inv S’ and
alien: no-strange-atm S’ and
no-dup: distinct-cdelyy -state S’ and
confl: cdcly -conflicting S’ and
decomp: all-decomposition-implies-m (clauses S') (get-all-ann-decomposition (trail S'))
using no-d tranclp-cdelyy -stgy-tranclp-cdclyy -restart[of 25 S7] step
rtranclp-cdely -restart-all-inv(1—6)[of 25 S’
unfolding rtranclp-unfold by auto
have confl-k: conflict-is-false-with-level S’
using rtranclp-cdcly -stgy-no-smaller-confl-inv| OF step] no-d by auto
have learned-entailed: <cdclyy -learned-clauses-entailed-by-init S
using rtranclp-cdcly -learned-clauses-entailed[of (2S) «Sh] step
by (simp add: rtranclp-cdcly -stgy-rtranclp-cdclyy -restart)

show ?thesis
using cdclyy -stgy-final-state-conclusive| OF termi decomp learned level-inv alien no-dup confl
confl-k learned-entailed] .
qed

lemma cdclyy -o-fst-empty-conflicting-false:
assumes
cdely -0 S S" and
trail S = [] and
conflicting S # None
shows Fulse
using assms by (induct rule: cdcly -o-induct) auto

lemma cdclyy -stgy-fst-empty-conflicting-false:
assumes
cdclyy -stgy S S’ and
trail S = [| and
conflicting S # None
shows Fulse
using assms apply (induct rule: cdely -stgy.induct)
apply (auto elim: conflictE; fail)|]
apply (auto elim: propagateE; fail)[]
using cdclyy -o-fst-empty-conflicting-false by blast

lemma cdclyy -o-conflicting-is-false:
cdclw-0 S S' = conflicting S = Some {#} = Fulse
by (induction rule: cdcly -o-induct) auto

lemma cdclyy -stgy-conflicting-is-false:
cdely -stgy S S" = conflicting S = Some {#} = False
apply (induction rule: cdelw -stgy.induct)
apply (auto elim: conflictE; fail)|]
apply (auto elim: propagateE; fail)[]
by (metis conflict-with-false-implies-terminated other)
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lemma rtranclp-cdclyy -stgy-conflicting-is-false:
cdely -stgy** S 8" = conflicting S = Some {#} —= S' =S
apply (induction rule: rtranclp-induct)
apply simp
using cdclyy -stgy-conflicting-is-false by blast

definition conflict-or-propagate :: 'st = 'st = bool where
conflict-or-propagate S T <— conflict S T V propagate S T

declare conflict-or-propagate-def|simp]

lemma conflict-or-propagate-intros:
conflict S T = conflict-or-propagate S T
propagate S T = conflict-or-propagate S T
by auto

theorem 2.9.9 page 97 of Weidenbach’s book

lemma full-cdclyy -stgy-final-state-conclusive-from-init-state:
fixes S’ :: ‘st
assumes full: full cdely -stgy (init-state N) S’
and no-d: distinct-mset-mset N
shows (conflicting S’ = Some {#} A unsatisfiable (set-mset N))
V (conflicting S’ = None A trail S’ =asm N A satisfiable (set-mset N))
proof —
have N: init-clss S’ = N
using full unfolding full-def by (auto dest: rtranclp-cdclyy -stgy-no-more-init-clss)
consider
(confl) conflicting S’ = Some {#} and unsatisfiable (set-mset (init-clss S’))
| (sat) conflicting S’ = None and trail S’ =asm init-clss S’
using full-cdcly -stgy-final-state-conclusive| OF assms| by auto
then show ?thesis
proof cases
case confl
then show ?thesis by (auto simp: N)
next
case sat
have cdcly -M-level-inv (init-state N) by auto
then have cdclyy -M-level-inv S’
using full rtranclp-cdcly -stgy-consistent-inv unfolding full-def by blast
then have consistent-interp (lits-of-l (trail S’))
unfolding cdclyy -M-level-inv-def by blast
moreover have lits-of-l (trail S') |=s set-mset (init-clss S”)
using sat(2) by (auto simp add: true-annots-def true-annot-def true-clss-def)
ultimately have satisfiable (set-mset (init-clss S')) by simp
then show “thesis using sat unfolding N by blast
qged
qed

1.1.6 Structural Invariant

The condition that no learned clause is a tautology is overkill for the termination (in the sense
that the no-duplicate condition is enough), but it allows to reuse simple-clss.

The invariant contains all the structural invariants that holds,

definition cdclyy -all-struct-inv where
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cdelyy -all-struct-inv S <—
no-strange-atm S N
cdelyy -M-level-inv S A
(Vs €# learned-clss S. —tautology s) N
distinct-cdclyy -state S N\
cdelyy -conflicting S N
all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) A
cdelyy -learned-clause S

lemma cdclyy -all-struct-inv-inv:
assumes cdclyy-restart S S’ and cdclyy -all-struct-inv S
shows cdclyy -all-struct-inv S’
unfolding cdcly -all-struct-inv-def
proof (intro HOL.conjI)
show no-strange-atm S’
using cdclyy -restart-all-inv[OF assms(1)] assms(2) unfolding cdcly -all-struct-inv-def by auto
show cdcly -M-level-inv S’
using cdcly -restart-all-inv[OF assms(1)] assms(2) unfolding cdcly -all-struct-inv-def by fast
show distinct-cdclyy -state S’
using cdclyy -restart-all-inv]| OF assms(1)] assms(2) unfolding cdcly -all-struct-inv-def by fast
show cdclw -conflicting S’
using cdcly -restart-all-inv] OF assms(1)] assms(2) unfolding cdcly -all-struct-inv-def by fast
show all-decomposition-implies-m (clauses S’) (get-all-ann-decomposition (trail S’))
using cdcly -restart-all-inv[OF assms(1)] assms(2) unfolding cdcly -all-struct-inv-def by fast
show cdclyy -learned-clause S’
using cdcly -restart-all-inv] OF assms(1)] assms(2) unfolding cdcly -all-struct-inv-def by fast

show V s€#learned-clss S'. = tautology s
using assms(1)[THEN learned-clss-are-not-tautologies| assms(2)
unfolding cdclyy -all-struct-inv-def by fast
qed

lemma rtranclp-cdclyy -all-struct-inv-inv:
assumes cdclyy -restart*™ S S’ and cdelyy -all-struct-inv S
shows cdclyy-all-struct-inv S’
using assms by induction (auto intro: cdcly -all-struct-inv-inv)

lemma cdclyy -stgy-cdclyy -all-struct-inv:
cdely -stgy S T = cdclyy -all-struct-inv S = cdcly -all-struct-inv T
by (meson cdclyy -stgy-tranclp-cdcly -restart rtranclp-cdclyy -all-struct-inv-inv rtranclp-unfold)

lemma rtranclp-cdcly -stgy-cdclyy -all-struct-inv:
cdely -stgy*™ S T = cdclw -all-struct-inv S = cdcly -all-struct-inv T
by (induction rule: rtranclp-induct) (auto intro: cdcly -stgy-cdclyy -all-struct-inv)

lemma beginning-not-decided-invert:
assumes A: M @ A = M’ @Q Decided K # H and
nm: ¥V meset M. —is-decided m
shows 3M. A = M @ Decided K # H
proof —
have A = drop (length M) (M' @ Decided K # H)
using arg-cong|OF A, of drop (length M)] by auto
moreover have drop (length M) (M’ @ Decided K # H) = drop (length M) M’ @ Decided K # H
using nm by (metis (no-types, lifting) A drop-Cons’ drop-append annotated-lit.disc(1) not-gr0
nth-append nth-append-length nth-mem zero-less-diff)
finally show ?thesis by fast
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qed

1.1.7 Strategy-Specific Invariant

definition cdclyy -stgy-invariant where
cdclyy -stgy-invariant S <—
conflict-is-false-with-level S
A no-smaller-confl S

lemma cdclyy -stgy-cdclyy -stgy-invariant:

assumes

cdclyy -restart: cdely -stgy S T and

inv-s: cdclyy -stgy-invariant S and

inv: cdelyy -all-struct-inv S

shows
cdclyy -stgy-invariant T

unfolding cdclyy -stgy-invariant-def cdclyy -all-struct-inv-def apply (intro conjl)
apply (rule cdcly -stgy-ex-lit-of-maz-level[of S])

using assms unfolding cdclyy -stgy-invariant-def cdclyy -all-struct-inv-def apply auto|7]

using cdclyy -stgy-invariant-def cdclyy -stgy-no-smaller-confl inv-s by blast

lemma rtranclp-cdclyy -stgy-cdclyy -stgy-invariant:
assumes
cdelyy -restart: cdelyy -stgy** S T and
inv-s: cdcly -stgy-invariant S and
inv: cdelyy -all-struct-inv S
shows
cdclyy -stgy-invariant T
using assms apply induction
apply (simp; fail)
using cdclyy -stgy-cdclyy -stgy-invariant rtranclp-cdclyy -all-struct-inv-inv
rtranclp-cdclyy -stgy-rtranclp-cdcly -restart by blast

lemma full-cdclyy -stgy-inv-normal-form:
assumes
Sfull: full cdely-stgy S T and
nw-s: cdcly -stgy-invariant S and
inv: cdelyy -all-struct-inv S and
learned-entailed: <cdclyy -learned-clauses-entailed-by-init S
shows conflicting T = Some {#} A unsatisfiable (set-mset (init-clss S))
V conflicting T = None A trail T =asm init-clss S N satisfiable (set-mset (init-clss S))
proof —
have no-step cdcly -stgy T and st: cdcly -stgy*™ S T
using full unfolding full-def by blast+
moreover have cdclyy -all-struct-inv T and inv-s: cdclyy -stgy-invariant T
apply (metis rtranclp-cdclyy -stgy-rtranclp-cdely -restart full full-def inv
rtranclp-cdely -all-struct-inv-inv)
by (metis full full-def inv inv-s rtranclp-cdelyy -stgy-cdely -stgy-invariant)
moreover have (cdclyy -learned-clauses-entailed-by-init T)
using inv learned-entailed unfolding cdcly -all-struct-inv-def
using rtranclp-cdely -learned-clauses-entailed rtranclp-cdclyy -stgy-rtranclp-cdclyy -restart| OF st
by blast
ultimately have conflicting T = Some {#} A unsatisfiable (set-mset (init-clss T))
V conflicting T = None A trail T =asm init-clss T
using cdclyy -stgy-final-state-conclusive[of T| full
unfolding cdclyy -all-struct-inv-def cdclyy -stgy-invariant-def full-def by fast
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moreover have consistent-interp (lits-of-1 (trail T))
using (cdclyy -all-struct-inv T) unfolding cdclyy -all-struct-inv-def cdcly -M-level-inv-def
by auto

moreover have init-clss S = init-clss T
using inv unfolding cdclyy -all-struct-inv-def
by (metis rtranclp-cdcly -stgy-no-more-init-clss full full-def)

ultimately show ?thesis
by (metis satisfiable-carac’ true-annot-def true-annots-def true-clss-def)

qed

lemma full-cdclyy -stgy-inv-normal-form?2:
assumes
Sfull: full cdcly -stgy S T and
inv-s: cdcly -stgy-invariant S and
inv: cdely -all-struct-inv S
shows conflicting T = Some {#} A unsatisfiable (set-mset (clauses T))
V conflicting T = None A satisfiable (set-mset (clauses T))
proof —
have no-step cdcly -stgy T and st: cdcly -stgy*™™ S T
using full unfolding full-def by blast+
moreover have cdclyy -all-struct-inv T and inv-s: cdcly -stgy-invariant T
apply (metis rtranclp-cdclyy -stgy-rtranclp-cdely -restart full full-def inv
rtranclp-cdely -all-struct-inv-inv)
by (metis full full-def inv inv-s rtranclp-cdely -stgy-cdely -stgy-invariant)
ultimately have conflicting T = Some {#} N unsatisfiable (set-mset (clauses T))
V conflicting T = None A trail T F=asm clauses T
using cdclyy -stgy-final-state-conclusive2|of T full
unfolding cdclyy -all-struct-inv-def cdclyy -stgy-invariant-def full-def by fast
moreover have consistent-interp (lits-of-1 (trail T))
using (cdclyy -all-struct-inv T) unfolding cdclyy -all-struct-inv-def cdcly, -M-level-inv-def
by auto
ultimately show ?thesis
by (metis satisfiable-carac’ true-annot-def true-annots-def true-clss-def)
qed

1.1.8 Additional Invariant: No Smaller Propagation

definition no-smaller-propa :: st = bool> where
no-smaller-propa (S ::'st) =
(VMKM'D L. trail S = M’ Q Decided K # M — D + {#L#} €# clauses S — undefined-lit M
L
— =M Eas CNot D)

lemma propagated-cons-eq-append-decide-cons:
Propagated L E # Ms = M’ @ Decided K # M <—
M'"#£[] AN Ms=tl M'Q Decided K # M A hd M’ = Propagated L E
by (metis (no-types, lifting) annotated-lit.disc(1) annotated-lit.disc(2) append-is-Nil-conv hd-append
list.exhaust-sel list.sel(1) list.sel(3) tl-append2)

lemma in-get-all-mark-of-propagated-in-trail:
(C' € set (get-all-mark-of-propagated M) <— (3 L. Propagated L C € set M)

by (induction M rule: ann-lit-list-induct) auto

lemma no-smaller-propa-tl:
assumes
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(no-smaller-propa S) and
(trail S # []» and
(—is-decided(hd-trail S)) and
(trail U = tl (trail S)) and
(clauses U = clauses S)
shows
(no-smaller-propa U)
using assms by (cases (trail ) (auto simp: no-smaller-propa-def)

lemmas rulesk =
skipE resolveE backtrackE propagateE conflictE decideE restartE forgetE backtrackgF

lemma decide-no-smaller-step:
assumes dec: (decide S T) and smaller-propa: (no-smaller-propa S)» and
n-s: (no-step propagate S
shows (no-smaller-propa T)
unfolding no-smaller-propa-def
proof clarify
fix MKM' DL
assume
tr: «trail T = M’ Q Decided K # M) and
D: (D+{#L#} €# clauses T) and
undef: undefined-lit M L) and
M: (M E=as CNot D)
then have Fz (propagate S)
apply (cases M')
using propagate-rule[of S D+{#L#} L cons-trail (Propagated L (D + {#L+#})) S] dec
smaller-propa
by (auto simp: no-smaller-propa-def elim!: rulesE)
then show Fulse
using n-s by blast
qed

lemma no-smaller-propa-reduce-trail-to:
(no-smaller-propa S = no-smaller-propa (reduce-trail-to M1 S))
unfolding no-smaller-propa-def
by (subst (asm) append-take-drop-id[symmetric, of - dength (trail S) — length M1)])
(auto simp: trail-reduce-trail-to-drop
simp del: append-take-drop-id)

lemma backtrackg-no-smaller-propa:
assumes o: (backtrackg S T) and smaller-propa: (no-smaller-propa S) and
n-d: no-dup (trail S)> and
n-s: (no-step propagate S) and
tr-CNot: «trail S [Eas CNot (the (conflicting S))
shows (no-smaller-propa T)
proof —
obtain D D’ :: v clause and K L :: 'v literal and
M1 M2 :: ('v, v clause) ann-lit list and i :: nat where
confl: conflicting S = Some (add-mset L D) and
decomp: (Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) and
bt: get-level (trail S) L = backtrack-lvl S and
lev-L: get-level (trail S) L = get-mazimum-level (trail S) (add-mset L D) and
iz get-mazimum-level (trail S) D' = i and
lev-K: get-level (trail S) K = i + 1 and
D-D’ <D’ C# D) and
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T: T ~ cons-trail (Propagated L (add-mset L D'))
(reduce-trail-to M1
(add-learned-cls (add-mset L D’)
(update-conflicting None S)))
using o by (auto elim!: rulesE)
let D’ = <add-mset L D"
have [simp]: trail (reduce-trail-to M1 S) = M1
using decomp by auto
obtain M" ¢ where M': trail S = M" Q ¢l (trail T) and c¢: <M" = ¢ @ M2 Q [Decided K|
using decomp T by auto
have M1: M1 = tl (trail T) and tr-T: trail T = Propagated L ?D’ # M1
using decomp T by auto

have i-lvl: i = backtrack-lvl T)
using no-dup-append-in-atm-notin[of ¢ @ M2y (Decided K # tl (trail T)) K]
n-d lev-K unfolding ¢ M by (auto simp: image-Un tr-T)

from o show ?%thesis
unfolding no-smaller-propa-def
proof clarify
fix MK'"M'E'L'
assume
tr: <trail T = M’ @ Decided K' # M) and
E: (B'+{#L'#} €# clauses T> and
undef: (undefined-lit M L and
M: (M [=as CNot E'
have n-d-T: (mo-dup (trail T)) and M1-D’: M1 =as CNot D’
using backtrack-M1-CNot-D'|OF n-d i decomp - confl - T] lev-K bt lev-L tr-CNot
confl D-D’
by (auto dest: subset-mset-trans-add-mset)
have Fulse if D: cadd-mset L D' = add-mset L' E and M-D: <M [=as CNot E"
proof —
have i # O
using ¢-lvl tr T by auto
moreover
have get-mazimum-level M1 D' = ¢
using T i n-d D-D’ M1-D’ unfolding M tr-T
by (subst (asm) get-mazimum-level-skip-beginning)
(auto dest: defined-lit-no-dupD dest!: true-annots-CNot-definedD)
ultimately obtain L-max where
L-maz-in: L-max €# D' and
lev-L-mazx: get-level M1 L-max = i
using i get-mazimum-level-ezists-lit-of-maz-level[of D' M1]
by (cases D') auto
have count-dec-M: count-decided M < i
using T i-lvl unfolding ¢r by auto
have — L-mazx ¢ lits-of-l M
proof (rule ccontr)
assume (- ?thesis)
then have (undefined-lit (M' @ [Decided K') L-maxn
using n-d-T unfolding tr
by (auto dest: in-lits-of-I-defined-litD dest: defined-lit-no-dupD simp: atm-of-eq-atm-of)
then have get-level (tl M’ Q Decided K' # M) L-maz < i
apply (subst get-level-skip)
apply (cases M'; auto simp add: atm-of-eg-atm-of lits-of-def; fail)
using count-dec-M count-decided-ge-get-levellof M L-maz] by auto
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then show Fulse
using lev-L-maz tr unfolding tr-T by (auto simp: propagated-cons-eq-append-decide-cons)
qed
moreover have — L ¢ lits-of-1 M
proof (rule ccontr)
define MM where (MM = ¢l M"
assume (- ?thesis)
then have (— L ¢ lits-of-l (M’ @ [Decided K')
using n-d-T unfolding ¢r by (auto simp: lits-of-def no-dup-def)
have (undefined-lit (M’ @Q [Decided K']) L
apply (rule no-dup-uminus-append-in-atm-notin)
using n-d-T - — L ¢ lits-of-l M> unfolding tr by auto
moreover have M’ = Propagated L ?D’ # MM
using tr-T MM-def by (metis hd-Cons-tl propagated-cons-eq-append-decide-cons tr)
ultimately show False
by simp
qed
moreover have L-max €# D'V L €# D’
using D L-maz-in by (auto split: if-splits)
ultimately show Fulse
using M-D D by (auto simp: true-annots-true-cls true-clss-def add-mset-eq-add-mset)
qed
then show False
using M smaller-propa tr undef M T E
by (cases M') (auto simp: no-smaller-propa-def trivial-add-mset-remove-iff elim!: rulesE)
qed
qed

lemmas backtrack-no-smaller-propa = backtrackg-no-smaller-propa] OF backtrack-backtrackg]

lemma cdclyy -stgy-no-smaller-propa:
assumes
cdel: «cdelyy-stgy S T) and
smaller-propa: (no-smaller-propa ) and
inv: cdelyy -all-struct-inv S
shows (no-smaller-propa T)
using cdcl
proof (cases rule: cdcly -stgy-cases)
case conflict
then show ?thesis
using smaller-propa by (auto simp: no-smaller-propa-def elim!: rulesE)
next
case propagate
then show ?thesis
using smaller-propa by (auto simp: no-smaller-propa-def propagated-cons-eg-append-decide-cons
elim!: rulesE)
next
case skip
then show ?thesis
using smaller-propa by (auto intro: no-smaller-propa-tl elim!: rulesE)
next
case resolve
then show ?thesis
using smaller-propa by (auto intro: no-smaller-propa-tl elim!: rulesE)
next
case decide note n-s = this(1,2) and dec = this(3)
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show ?thesis
using n-s dec decide-no-smaller-step[of S T| smaller-propa
by auto
next
case backtrack note n-s = this(1,2) and o = this(3)
have inv-T: cdcly -all-struct-inv T
using cdcl cdclyy -stgy-cdclyy -all-struct-inv inv by blast
have «trail S |=as CNot (the (conflicting S))) and <no-dup (trail S)
using inv o unfolding cdclyy -all-struct-inv-def
by (auto simp: cdcly -M-level-inv-def cdclyy -conflicting-def
elim: ruleskE)
then show ?thesis
using backtrack-no-smaller-propalof S T] n-s o smaller-propa
by auto
qed

lemma rtranclp-cdclyy -stgy-no-smaller-propa:
assumes
cdcel: <cdelyy -stgy™™ S T) and
smaller-propa: <no-smaller-propa S> and
inv: <cdclyy -all-struct-inv S
shows (no-smaller-propa T)
using cdcl apply (induction rule: rtranclp-induct)
subgoal using smaller-propa by simp
subgoal using inv by (auto intro: rtranclp-cdclyy -stgy-cdclyy -all-struct-inv
cdclyy -stgy-no-smaller-propa)
done

lemma hd-trail-level-ge-1-length-gt-1:
fixes S :: 'st
defines M[symmetric, simpl: (M = trail S
defines L[symmetric, simp|: <L = hd M)
assumes
smaller: (no-smaller-propa S) and
struct: <cdclyy -all-struct-inv S) and
dec: (count-decided M > 1) and
proped: <is-proped L
shows (size (mark-of L) > I
proof (rule ccontr)
assume size-C: (— ?thesis)
have nd: (no-dup M)
using struct unfolding cdclyy -all-struct-inv-def cdcly -M-level-inv-def M|[symmetric]
by blast

obtain M’ where M <M = L # M
using dec L by (cases M) (auto simp del: L)
obtain K C' where K: (L = Propagated K C)
using proped by (cases L) auto

obtain K’ M1 M2 where decomp: (M = M2 Q Decided K' # M1>
using dec le-count-decided-decomplof M 0] nd by auto

then have decomp” <M’ = tl M2 Q Decided K' # M1
unfolding M’ K by (cases M2) auto

have (K €# O
using struct unfolding cdcly -all-struct-inv-def cdclyy -conflicting-def
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M M’ K by blast

then have C: «C = {#} + {#K#}
using size-C' K by (cases C) auto

have (undefined-lit M1 K)
using nd unfolding M’ K decomp’ by simp

moreover have ({#} + {#K#} €# clauses S
using struct unfolding cdclyy -all-struct-inv-def cdclyy -learned-clause-alt-def M M’ K C

reasons-in-clauses-def

by auto

moreover have (M1 |=as CNot {#}
by auto

ultimately show Fulse
using smaller unfolding no-smaller-propa-def M decomp
by blast

qed

1.1.9 More Invariants: Conflict is False if no decision

If the level is higher than 0, then the conflict is not empty.

definition conflict-non-zero-unless-level-0 :: (/st = bool) where
(conflict-non-zero-unless-level-0 S +—
(conflicting S = Some {#} — count-decided (trail S) = 0)

definition no-false-clause:: (st = bool) where

(no-false-clause S «— (V C €# clauses S. C # {#})

lemma cdclyy -restart-no-false-clause:
assumes
(edelyy -restart S T)
(no-false-clause S)
shows (no-false-clause T)
using assms unfolding no-false-clause-def
by (induction rule: cdclyy -restart-all-induct) (auto simp add: clauses-def)

The proofs work smoothly thanks to the side-conditions about levels of the rule resolve.

lemma cdclyy -restart-conflict-non-zero-unless-level-0:

assumes
ccdelyy -restart S T
(no-false-clause S)» and
(conflict-non-zero-unless-level-0 S)

shows (conflict-non-zero-unless-level-0 T)

using assms by (induction rule: cdclyy -restart-all-induct)
(auto simp add: conflict-non-zero-unless-level-0-def no-false-clause-def)

lemma rtranclp-cdclyy -restart-no-false-clause:
assumes
cedelyy -restart™ S T
(no-false-clause S
shows (no-false-clause T
using assms by (induction rule: rtranclp-induct) (auto intro: cdcly -restart-no-false-clause)

lemma rtranclp-cdclyy -restart-conflict-non-zero-unless-level-0:

assumes
cedelyy -restart™™ S T
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(no-false-clause S)» and
cconflict-non-zero-unless-level-0 S)
shows (conflict-non-zero-unless-level-0 T)
using assms by (induction rule: rtranclp-induct)
(auto intro: rtranclp-cdcly -restart-no-false-clause cdely -restart-conflict-non-zero-unless-level-0)

definition propagated-clauses-clauses :: 'st = bool where
(propagated-clauses-clauses S =V L K. Propagated L K € set (trail ) — K €# clauses S»

lemma propagate-single-literal-clause-get-level-is-0:
assumes
smaller: (no-smaller-propa ) and
propa-tr: (Propagated L {#L#} € set (trail S)) and
n-d: (no-dup (trail S)> and
propa: (propagated-clauses-clauses S
shows (get-level (trail S) L = O»
proof (rule ccontr)
assume H: (— ?thesis)
then obtain M M’ K where
tr: <trail S = M' @Q Decided K # M) and
nm: ¥Ym € set M. —is-decided m)
using split-list-last-prop|of trail S is-decided)
by (auto simp: filter-empty-conv is-decided-def get-level-def dest!: List.set-drop WhileD)
have uL: (—L ¢ lits-of-l (trail S)
using n-d propa-tr unfolding lits-of-def by (fastforce simp: no-dup-cannot-not-lit-and-uminus)
then have [iff]: «defined-lit M' L +— L € lits-of-1 M"
by (auto simp add: tr Decided-Propagated-in-iff-in-lits-of-)
have «(get-level M L = 0> for L
using nm by auto
have [simp]: (L # —K)
using tr propa-tr n-d unfolding lits-of-def by (fastforce simp: no-dup-cannot-not-lit-and-uminus
in-set-conv-decomp)
have (L € lits-of-l (M’ @ [Decided K]))
apply (rule ccontr)
using H unfolding tr
apply (subst (asm) get-level-skip)
using ulL tr apply (auto simp: atm-of-eq-atm-of Decided-Propagated-in-iff-in-lits-of-l; fail)[]
apply (subst (asm) get-level-skip-beginning)
using (get-level M L = 0> by (auto simp: atm-of-eg-atm-of uminus-lit-swap lits-of-def)
then have <undefined-lit M L»
using n-d unfolding tr by (auto simp: defined-lit-map lits-of-def image-Un no-dup-def)
moreover have {#} + {#L#} €# clauses S
using propa propa-tr unfolding propagated-clauses-clauses-def by auto
moreover have M [=as CNot {#}
by auto
ultimately show Fulse
using smaller tr unfolding no-smaller-propa-def by blast
qed

Conflict Minimisation

Remove Literals of Level 0 lemma conflict-minimisation-level-0:
fixes S :: ‘st
defines D[simp|: <D = the (conflicting S)
defines [simp]: (M = trail S
defines (D' = filter-mset (AL. get-level M L > 0) D
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assumes
ns-s: (no-step skip S and
ns-r: (no-step resolve S> and
inv-s: cdclyy -stgy-invariant S and
inv: cdelyy -all-struct-inv S and
conf: «conflicting S # None) <conflicting S # Some {#}> and
M-nempty: <M ~= [
shows
clauses S Epm D’ and
(— lit-of (hd M) €4 D"
proof —
define D0 where D0: (D0 = filter-mset (AL. get-level M L = 0) D
have D-D0-D". <D = D0 + D%
using multiset-partition[of D (AL. get-level M L = 0))]
unfolding D0 D’-def by auto
have
confl: cdcly -conflicting S> and
decomp: (all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
learned: <cdclyy -learned-clause S) and
M-lev: (cdelyy -M-level-inv Sy and
alien: (no-strange-atm S
using inv unfolding cdclyy -all-struct-inv-def by fast+
have clss-D: (clauses S Epm D
using learned conf unfolding cdclyy -learned-clause-alt-def by auto
have M-CNot-D: <trail S |Eas CNot Dy and m-confl: (every-mark-is-a-conflict S
using conf confl unfolding cdcly -conflicting-def by auto
have n-d: <no-dup M)
using M-lev unfolding cdclyy -M-level-inv-def by auto
have uhd-D: «— lit-of (hd M) €# D
using ns-s ns-r conf M-nempty inv-s M-CNot-D n-d
unfolding cdclyy -stgy-invariant-def conflict-is-false-with-level-def
by (cases (trail S»; cases (hd (trail S))) (auto simp: skip.simps resolve.simps
get-level-cons-if atm-of-eq-atm-of true-annots-true-cls-def-iff-negation-in-model
uminus-lit-swap Decided-Propagated-in-iff-in-lits-of-l split: if-splits)

have count-dec-ge-0: (count-decided M > 0)
proof (rule ccontr)
assume H: ™ Zthesis)
then have (get-mazimum-level M D = 0) for D
by (metis (full-types) count-decided-ge-get-maximum-level grol le-0-eq)
then show Fulse
using ns-s ns-r conf M-nempty m-confl uhd-D H
by (cases (trail S); cases (hd (trail S))
(auto 5 5 simp: skip.simps resolve.simps introl: state-eq-ref)
qed
then obtain M0 K M1 where
M: M = M1 @ Decided K # M0) and
lev-K: «get-level (trail ) K = Suc O»
using backtrack-ex-decomplof S 0, OF | M-lev
by (auto dest!: get-all-ann-decomposition-exists-prepend
simp: cdclyy -M-level-inv-def simp flip: append.assoc
simp del: append-assoc)

have count-M0: <count-decided MO = 0>

using n-d lev-K unfolding M-def[symmetric] M by auto
have [simp]: (get-all-ann-decomposition M0 = [([], M0))
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using count-M0 by (induction MO rule: ann-lit-list-induct) auto
have [simp]: (get-all-ann-decomposition (M1 @ Decided K # MO0) # [([], M0)]) for M1 K M0
using length-get-all-ann-decomposition|of (M1 Q Decided K # MO
unfolding M by auto
have dast (get-all-ann-decomposition (M1 Q Decided K # M0)) = ([], MO)
apply (induction M1 rule: ann-lit-list-induct)
subgoal by auto
subgoal by auto
subgoal for L m M1
by (cases (get-all-ann-decomposition (M1 @Q Decided K # MO0))) auto
done
then have clss-S-M0: <set-mset (clauses S) =ps unmark-l M0»
using decomp unfolding M-def[symmetric] M
by (cases (get-all-ann-decomposition (M1 @ Decided K # MO0) rule: rev-cases)
(auto simp: all-decomposition-implies-def)
have H: (total-over-m I (set-mset (clauses S) U unmark-l M0) = total-over-m I (set-mset (clauses
S))
for I
using alien unfolding no-strange-atm-def total-over-m-def total-over-set-def
M-def[symmetric] M
by (auto simp: clauses-def)
have uL-M0-D0: <—L € lits-of-l M0 if <L €# D0, for L
proof (rule ccontr)
assume L-M0O: <~ %thesis)
have (I €# D) and lev-L: (get-level M L = O»
using that unfolding D-D0-D' unfolding D0 by auto
then have (—L € lits-of-1 M)
using M-CNot-D that by (auto simp: true-annots-true-cls-def-iff-negation-in-model)
then have (—L € lits-of-1 (M1 Q [Decided K])
using L-M0 unfolding M by auto
then have (0 < get-level (M1 @Q [Decided K]) Ly and <defined-lit (M1 @ [Decided K]) L
using get-level-last-decided-ge[of M1 K L] unfolding Decided- Propagated-in-iff-in-lits-of-l
by fast+
then show Fulse
using n-d lev-L get-level-skip-end[of (M1 Q [Decided K]» L M0)]
unfolding M by auto
qed
have clss-D0: (clauses S =pm {#— L#} if (L €# D0 for L
using that clss-S-M0O uL-M0-D0|of L] unfolding true-clss-clss-def H true-clss-cls-def
true-clss-def lits-of-def
by auto
have [DOD": ( € atms-of DO = | € atms-of D) (I € atms-of D' = | € atms-of D) for |
unfolding D-D0-D’ by auto
have
H1: total-over-m I (set-mset (clauses S) U {{#—L#}}) = total-over-m I (set-mset (clauses S))
if (L €4 DO) for L
using alien conf atm-of-lit-in-atms-of [OF that)
unfolding no-strange-atm-def total-over-m-def total-over-set-def
M-def[symmetric] M that by (auto 5 5 simp: clauses-def dest!: IDOD")
then have I-D0: total-over-m I (set-mset (clauses S)) —
consistent-interp I —
Multiset. Ball (clauses S) () I) — ~1 | DO» for I
using clss-D0 unfolding true-clss-cls-def true-cls-def consistent-interp-def
true-cls-def true-cls-mset-def — TODO tune proof
apply auto
by (metis atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set literal.sel(1)
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true-cls-def true-cls-mset-def true-lit-def uminus-Pos)

have
H1: total-over-m I (set-mset (clauses S) U {D0 + D'}) = total-over-m I (set-mset (clauses S))
and
H2: otal-over-m I (set-mset (clauses S) U {D'}) = total-over-m I (set-mset (clauses S))) for I
using alien conf unfolding no-strange-atm-def total-over-m-def total-over-set-def
M-def[symmetric] M by (auto 5 5 simp: clauses-def dest!: IDOD’)
show (clauses S |=pm D’
using clss-D clss-D0 I-D0 unfolding D-D0-D’ true-clss-cls-def true-clss-def H1 H2
by auto
have 0 < get-level (trail S) (lit-of (hd-trail S))
apply (cases <trail S))
using M-nempty count-dec-ge-0 by auto
then show (— lit-of (hd M) €# D"
using uhd-D unfolding D’-def by auto
qed

lemma literals-of-level0-entailed:
assumes
struct-invs: (cdclyy -all-struct-inv S» and
in-trail: (L € lits-of-1 (trail S)) and
lev: «get-level (trail S) L = O»
shows
(clauses S =pm {#L#}
proof —
have decomp: (all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
using struct-invs unfolding cdclyy -all-struct-inv-def
by fast
have L-trail: {#L#} € unmark-l (trail S)
using in-trail by (auto simp: in-unmark-l-in-lits-of-1-iff)
have n-d: (mo-dup (trail S)
using struct-invs unfolding cdclyy -all-struct-inv-def cdclyy -M-level-inv-def
by fast

show ?thesis
proof (cases (count-decided (trail S) = 0»)
case True
have (get-all-ann-decomposition (trail S) = [([], trail S)]
apply (rule no-decision-get-all-ann-decomposition)
using True by (auto simp: count-decided-0-iff)
then show ?thesis
using decomp L-trail
unfolding all-decomposition-implies-def
by (auto intro: true-clss-clss-in-imp-true-clss-cls)
next
case Fulse
then obtain K M1 M2 M3 where
decomp’: (Decided K # M1, M2) € set (get-all-ann-decomposition (trail S))» and
lev-K: (get-level (trail S) K = Suc 0> and
MS8: trail S = M3 @Q M2 @Q Decided K # M1
using struct-invs backtrack-ez-decomplof S 0] n-d unfolding cdcly -all-struct-inv-def by blast
then have dec-M1: (count-decided M1 = O
using n-d by auto
define M2’ where (M2' = M3 @ M2)
then have M3: (trail S = M2’ @Q Decided K # M1) using M3 by auto
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have (get-all-ann-decomposition M1 = [([], M1)]
apply (rule no-decision-get-all-ann-decomposition)
using dec-M1 by (auto simp: count-decided-0-iff)
then have («([|, M1) € set (get-all-ann-decomposition (trail S))
using hd-get-all-ann-decomposition-skip-some|of Nil M1 M1 - @ -] decomp’
by auto
then have (set-mset (clauses S) Eps unmark-1 M1)
using decomp
unfolding all-decomposition-implies-def by auto
moreover {
have (L € lits-of-l M1)
using n-d lev M3 in-trail
by (cases (undefined-lit (M2' Q Decided K # []) I») (auto dest: in-lits-of-1-defined-litD)
then have {#L#} € unmark-l M1
using in-trail by (auto simp: in-unmark-l-in-lits-of-I-iff)
}
ultimately show %thesis
unfolding all-decomposition-implies-def
by (auto intro: true-clss-clss-in-imp-true-clss-cls)
qed
qed

1.1.10 Some higher level use on the invariants

In later refinement we mostly us the group invariants and don’t try to be as specific as above.
The corresponding theorems are collected here.

lemma conflict-conflict-is-false-with-level-all-inv:
(conflict S T —
no-smaller-confl S —
cdelyy -all-struct-inv S —
conflict-is-false-with-level T)
by (rule conflict-conflict-is-false-with-level) (auto simp: cdely -all-struct-inv-def)

lemma cdclyy -stgy-ez-lit-of-mazx-level-all-inv:

assumes
cdclyy -stgy S S’ and
n-l: no-smaller-confl S and
conflict-is-false-with-level S and
cdelyy -all-struct-inv S

shows conflict-is-false-with-level S’

by (rule cdclyy -stgy-ex-lit-of-max-level) (use assms in (auto simp: cdcly -all-struct-inv-def?)

lemma cdclyy -o-conflict-is-false-with-level-inv-all-inv:
assumes
tedely -0 S T)
cedelyy -all-struct-inv S)
(conflict-is-false-with-level S)
shows (conflict-is-false-with-level T)
by (rule cdcly -o-conflict-is-false-with-level-inv)
(use assms in (auto simp: cdcly -all-struct-inv-def))

lemma no-step-cdclyy -total:
assumes
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(no-step cdcly S
cconflicting S = None)
(no-strange-atm S»
shows (total-over-m (lits-of-1 (trail S)) (set-mset (clauses S)))
proof (rule ccontr)
assume (— ?thesis)
then obtain L where (L € atms-of-mm (clauses S)) and <undefined-lit (trail S) (Pos L))
by (auto simp: total-over-m-def total-over-set-def
Decided- Propagated-in-iff-in-lits-of-1)
then have (Ex (decide S))
using decide-rule[of S (Pos L) <cons-trail (Decided (Pos L)) S)] assms
unfolding no-strange-atm-def clauses-def
by force
then show Fulse
using assms by (auto simp: cdcly .simps cdcly -o.simps)
qed

lemma cdclyy -Ez-cdclyy -stgy:
assumes
cedelyy S T
shows (Fz(cdely -stgy S)
using assms by (meson assms cdclyy .simps cdclyy -stgy.simps)

lemma no-step-skip-hd-in-conflicting:
assumes
inv-s: <cdcly -stgy-invariant S) and
inv: (cdelyy -all-struct-inv S) and
ns: (no-step skip S» and
confl: «conflicting S # None» (conflicting S # Some {#}
shows «—lit-of (hd (trail S)) €# the (conflicting S)
proof —
let
M = trail S) and
N = dunit-clss S> and
72U = earned-clss S» and
2k = <backtrack-lvl S» and
?D = «<conflicting S
obtain D where D: <?D = Some D
using confl by (cases ?D) auto
have M-D: «?M [=as CNot D
using inv D unfolding cdclyy -all-struct-inv-def cdclyy -conflicting-def by auto
then have tr: (rail S # [
using confl D by auto
obtain L M where M: (?M = L # M)
using tr by (cases (?M)>) auto
have conlf-k: (conflict-is-false-with-level S
using inv-s unfolding cdclyy -stgy-invariant-def by simp
then obtain L-k where
L-k: <L-k €# D) and lev-L-k: (get-level ?M L-k = %k
using confl D by auto
have dec: «(?k = count-decided ?M)>
using inv unfolding cdclyy -all-struct-inv-def cdcly -M-level-inv-def by auto
moreover {
have (mo-dup ?M)
using inv unfolding cdclyy -all-struct-inv-def cdcly -M-level-inv-def by auto
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then have (—lit-of L ¢ lits-of-1 M)
unfolding M by (auto simp: defined-lit-map lits-of-def uminus-lit-swap)
}
ultimately have L-D: (it-of L ¢# D)
using M-D unfolding M by (auto simp add: true-annots-true-cls-def-iff-negation-in-model
uminus-lit-swap)
show ?thesis
proof (cases L)
case (Decided L) note L’ = this(1)
moreover have (atm-of L' = atm-of L-k
using lev-L-k count-decided-ge-get-level|of M L-k] unfolding M dec L’
by (auto simp: get-level-cons-if split: if-splits)
then have (L' = —L-k
using L-k L-D L' by (auto simp: atm-of-eq-atm-of)
then show ?thesis using L-k unfolding D M L’ by simp
next
case (Propagated L' C)
then show ?thesis
using ns confl by (auto simp: skip.simps M D)
qged
qed

lemma
fixes S
assumes
nss: (no-step skip S) and
nsr: (no-step resolve S) and
invs: (cdclyy -all-struct-inv S) and
stgy: <cdclyy -stgy-invariant S) and
confl: (conflicting S # None» and
confl: «conflicting S # Some {#}
shows no-skip-no-resolve-single-highest-level:
(the (conflicting S) =
add-mset (—(lit-of (hd (trail S)))) {#L €# the (conflicting S).
get-level (trail S) L < local.backtrack-lvl S#} (is ?A) and
no-skip-no-resolve-level-lvl-nonzero:
(0 < backtrack-lvl S) (is ?B) and
no-skip-no-resolve-level-get-maximum-lvl-le:
(get-mazimum-level (trail S) (removel-mset (—(lit-of (hd (trail S)))) (the (conflicting S)))
< backtrack-lwl S (is 7C)
proof —
define K where (K = lit-of (hd (trail S))
have K: (— K €# the (conflicting S)
using no-step-skip-hd-in-conflicting| OF stgy invs nss confl confl’]
unfolding K-def .
have
(no-strange-atm S> and
lev: (cdclyy -M-level-inv S) and
V s€ftlearned-clss S. — tautology ) and
dist: «distinct-cdclyy -state S) and
conf: (cdcly -conflicting S» and
(all-decomposition-implies-m (local.clauses S)
(get-all-ann-decomposition (trail S))) and
learned: (cdclyy -learned-clause S)
using invs unfolding cdclyy -all-struct-inv-def
by auto
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obtain D where
Dl[simp)]: (conflicting S = Some (add-mset (—K) D))
using confl K by (auto dest: multi-member-split)

have dist: (distinct-mset (the (conflicting S))
using dist confl unfolding distinct-cdclyy -state-def by auto
then have [iff]: <L ¢# removel-mset L (the (conflicting S))» for L
by (meson distinct-mem-diff-mset union-single-eq-member)
from this[of K] have [simp]: «(—K ¢# D) using dist by auto

have nd: (no-dup (trail S)
using lev unfolding cdcly, -M-level-inv-def by auto
have CNot: «trail S =as CNot (add-mset (—K) D)
using conf unfolding cdclyy -conflicting-def
by fastforce
then have tr: «trail S # [
by auto
have [simp]: (K ¢# D)
using nd K-def tr CNot unfolding true-annots-true-cls-def-iff-negation-in-model
by (cases (trail S»)
(auto simp: uminus-lit-swap Decided-Propagated-in-iff-in-lits-of-1 dest!: multi-member-split)
have H1:
(0 < backtrack-lvl S)
proof (cases tis-proped (hd (trail S)))
case proped: True
obtain C' M where
[simp]: «trail S = Propagated K C # M)
using tr proped K-def
by (cases (trail S); cases (hd (trail S))
(auto simp: K-def)
have (¢ @ Propagated L mark # b = Propagated K C # M —
b =as CNot (removel-mset L mark) A L €# mark) for L mark a b
using conf unfolding cdclyy -conflicting-def
by fastforce
from this[of ([]] have [simp]: (K €# C) (M [=as CNot (removel-mset K C))
by auto
have [simp]: <get-mazimum-level (Propagated K C # M) D = get-mazimum-level M D)
by (rule get-maximum-level-skip-first)
(auto simp: atms-of-def atm-of-eq-atm-of uminus-lit-swap|symmetric))

have (get-mazimum-level M D < count-decided M>
using nsr tr confl K proped count-decided-ge-get-maximum-level[of M D]
by (auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
then show “thesis by simp
next
case proped: Fualse
have (get-mazimum-level (tl (trail S)) D < count-decided (trail S)
using tr confl K proped count-decided-ge-get-mazimum-level[of tl (trail S)) D]
by (cases (trail S); cases (hd (trail S))
(auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
then show ?thesis
by simp
qed
show H2: 7C
proof (cases <is-proped (hd (trail S)))
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case proped: True
obtain C' M where
[simp]: «trail S = Propagated K C # M)
using tr proped K-def
by (cases (trail S»; cases hd (trail S))
(auto simp: K-def)
have (a @ Propagated L mark # b = Propagated K C # M —
b =as CNot (removel-mset L mark) A L €# mark) for L mark a b
using conf unfolding cdclyy -conflicting-def
by fastforce
from this[of «[])] have [simp]: <K €# C) (M |=as CNot (removel-mset K C)
by auto
have [simp]: (get-maximum-level (Propagated K C # M) D = get-mazimum-level M D)
by (rule get-maximum-level-skip-first)
(auto simp: atms-of-def atm-of-eq-atm-of uminus-lit-swap|symmetric])

have (get-mazimum-level M D < count-decided M)
using nsr tr confl K proped count-decided-ge-get-mazimum-level[of M D]
by (auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
then show ?thesis by simp
next
case proped: Fulse
have (get-mazimum-level (tl (trail S)) D = get-mazimum-level (trail S) D)
apply (rule get-mazimum-level-cong)
using K-def «— K ¢# D) (K ¢# D)
apply (cases <trail S»)
by (auto simp: get-level-cons-if atm-of-eq-atm-of)
moreover have (get-mazimum-level (tl (trail S)) D < count-decided (trail S))
using tr confl K proped count-decided-ge-get-mazimum-level[of «tl (trail S)) D]
by (cases (trail S); cases (hd (trail S))
(auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
ultimately show #thesis
by (simp add: K-def)
qed

have H:
(get-level (trail S) L < local.backtrack-lvl S
if (L €# removel-mset (—K) (the (conflicting S))
for L
proof (cases <is-proped (hd (trail S)))
case proped: True
obtain C' M where
[simp)]: «trail S = Propagated K C # M)
using tr proped K-def
by (cases (trail S); cases (hd (trail S))
(auto simp: K-def)
have (a @ Propagated L mark # b = Propagated K C # M —
b =as CNot (removel-mset L mark) A L €# mark) for L mark a b
using conf unfolding cdclyy -conflicting-def
by fastforce
from this[of ([]] have [simp]: (K €# C) (M [=as CNot (removel-mset K C))
by auto
have [simp]: (get-mazimum-level (Propagated K C # M) D = get-mazimum-level M D)
by (rule get-mazimum-level-skip-first)
(auto simp: atms-of-def atm-of-eq-atm-of uminus-lit-swap|symmetric))
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have (get-mazimum-level M D < count-decided M)
using nsr tr confl K that proped count-decided-ge-get-mazimum-level[of M D]
by (auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
then show ?thesis
using get-mazimum-level-ge-get-level[of L D M] that
by (auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
next
case proped: False
have L-K: (L # — Ky (—L # K) <L # —lit-of (hd (trail S))
using that by (auto simp: uminus-lit-swap K-def[symmetric])
have (L # lit-of (hd (trail S))
using tr that K-def (K ¢# D
by (cases (trail S); cases (hd (trail S))
(auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)

have (get-mazimum-level (tl (trail S)) D < count-decided (trail S)
using tr confl K that proped count-decided-ge-get-mazimum-level[of «tl (trail S)) D]
by (cases (trail S); cases (hd (trail S))

(auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
then show ?thesis
using get-mazimum-level-ge-get-level[of L D «(trail S))] that tr L-K <L # lit-of (hd (trail S))
count-decided-ge-get-level[of «tl (trail S)> L] proped
by (cases (trail S); cases (hd (trail S))
(auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
qged
have [simp]: (get-level (trail S) K = local.backtrack-lvl S

using tr K-def

by (cases (trail S); cases hd (trail S))

(auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
show 74

apply (rule distinct-set-mset-eq)

subgoal using dist by auto

subgoal using dist by (auto simp: distinct-mset-filter K-def[symmetric])

subgoal using H by (auto simp: K-def[symmetric])

done

show ?B

using HI .

qed

end

end

theory CDCL-W-Termination
imports CDCL-W

begin

context conflict-driven-clause-learningyy
begin

1.1.11 Termination

No Relearning of a clause

Because of the conflict minimisation, this version is less clear than the version without: instead
of extracting the clause from the conflicting clause, we must take it from the clause used to
backjump; i.e., the annotation of the first literal of the trail.
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We also prove below that no learned clause is subsumed by a (smaller) clause in the clause set.

lemma cdclyy -stgy-no-relearned-clause:

assumes
cdel: backtrack S T) and
inv: cdclyy -all-struct-inv S) and
smaller: (no-smaller-propa S

shows
(mark-of (hd-trail T)) ¢# clauses S

proof (rule ccontr)

assume n-dist: (- ?thesis

obtain K L :: 'v literal and
M1 M2 :: (v, 'v clause) ann-lit list and ¢ :: nat and D D’ where
confl-S: conflicting S = Some (add-mset L D) and
decomp: (Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) and
lev-L: get-level (trail S) L = backtrack-lvl S and
max-D-L: get-level (trail S) L = get-mazimum-level (trail S) (add-mset L D') and
i get-mazimum-level (trail S) D' = { and
lev-K: get-level (trail S) K = i + 1 and
T: T ~ cons-trail (Propagated L (add-mset L D'))

(reduce-trail-to M1
(add-learned-cls (add-mset L D’)
(update-conflicting None S))) and

D-D" «D' C# D> and
(clauses S |=pm add-mset L D"
using cdcl by (auto elim!: rulesE)

obtain M2’ where M2" «trail S = (M2' Q@ M2) Q Decided K # M1
using decomp by auto
have inv-T: (cdclyy -all-struct-inv T)
using cdcl cdclyy -stgy-cdclyy -all-struct-inv inv W-other backtrack bj
cdclyy -all-struct-inv-inv cdclyy -cdclyy -restart by blast

have M1-D" (M1 l=as CNot D%

using backtrack-M1-CNot-D'[of S D' «iy K M1 M2 L <add-mset L D) T
(Propagated L (add-mset L D)) inv confl-S decomp i T D-D’ lev-K lev-L maz-D-L

unfolding cdclyy -all-struct-inv-def cdcly -conflicting-def cdcly -M-level-inv-def
by (auto simp: subset-mset-trans-add-mset)

have (undefined-lit M1 L)
using inv-T T decomp unfolding cdclyy -all-struct-inv-def cdcly -M-level-inv-def
by (auto simp: defined-lit-map)

moreover have (D’ + {#L#} €# clauses S
using n-dist T by (auto simp: clauses-def)

ultimately show Fualse
using smaller M1-D’ unfolding no-smaller-propa-def M2’ by blast

qed

lemma cdclyy -stgy-no-relearned-larger-clause:
assumes
cdcl: backtrack S T) and
inv: (cdely -all-struct-inv S) and
smaller: (no-smaller-propa S) and
smaller-conf: (mo-smaller-confl S and
E-subset: «E C# mark-of (hd-trail T)
shows (E ¢# clauses S
proof (rule ccontr)
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assume n-dist: (— ?thesis
obtain K L :: 'v literal and
M1 M2 :: (v, 'v clause) ann-lit list and i :: nat and D D’ where
confl-S: conflicting S = Some (add-mset L D) and
decomp: (Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) and
lev-L: get-level (trail S) L = backtrack-lvl S and
maz-D-L: get-level (trail S) L = get-mazimum-level (trail S) (add-mset L D) and
i get-mazimum-level (trail S) D' = i and
lev-K: get-level (trail S) K = i + 1 and
T: T ~ cons-trail (Propagated L (add-mset L D))
(reduce-trail-to M1
(add-learned-cls (add-mset L D’)
(update-conflicting None S))) and
D-D’ <D’ C# D) and
(clauses S =pm add-mset L D"
using cdcl by (auto elim!: rulesE)

obtain M2’ where M2" <trail S = (M2' Q@ M2) Q Decided K # M1
using decomp by auto
have inv-T: (cdclyy -all-struct-inv T)
using cdcl cdclyy -stgy-cdclyy -all-struct-inv inv W-other backtrack bj
cdclyy -all-struct-inv-inv cdcly -cdclyy -restart by blast
have (distinct-mset (add-mset L D"))
using inv-T T unfolding cdclyy -all-struct-inv-def distinct-cdcly -state-def
by auto
then have dist-E: (distinct-mset E)
using distinct-mset-mono-strict| OF E-subset] T by auto

have M1-D’. <M1 =as CNot D%
using backtrack-M1-CNot-D'[of S D’ «iy K M1 M2 L <add-mset L D) T
(Propagated L (add-mset L D')] inv confl-S decomp ¢ T D-D’ lev-K lev-L maz-D-L
unfolding cdclyy -all-struct-inv-def cdclyy -conflicting-def cdclyy -M-level-inv-def
by (auto simp: subset-mset-trans-add-mset)
have undef-L: (undefined-lit M1 L)
using inv-T T decomp unfolding cdclyy -all-struct-inv-def cdclyy -M-level-inv-def
by (auto simp: defined-lit-map)

show Fulse
proof (cases (L €# E))
case True
then obtain E’ where
E: (E = add-mset L E)
by (auto dest: multi-member-split)
then have (distinct-mset E) and (L ¢# E and E’-E’. (E' C# D"
using dist-F T E-subset by auto
then have MI-E" (M1 {=as CNot E"
using M1-D’ T unfolding true-annots-true-cls-def-iff-negation-in-model
by (auto dest: multi-member-split[of - E] mset-subset-eg-insertD)
have propa: <(AM’' K M L D. trail S = M' @ Decided K # M —
D + {#L#} €# clauses S = undefined-lit M L = — M =as CNot D»
using smaller unfolding no-smaller-propa-def by blast
show Fulse
using M1-E' propa[of (M2’ @ M2) K M1 E’, OF M2’ - undef-L] n-dist unfolding F
by auto
next
case Fualse
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then have (E C# D/
using E-subset T by (auto simp: subset-add-mset-notin-subset)
then have MI-E: (M1 }=as CNot E)
using M1-D’ T dist-E E-subset unfolding true-annots-true-cls-def-iff-negation-in-model
by (auto dest: multi-member-split[of - E] mset-subset-eg-insertD)
have confl: (AM' K M L D. trail S = M’ @Q Decided K # M —>
D e€# clauses S = - M [=as CNot D
using smaller-conf unfolding no-smaller-confi-def by blast
show Fulse
using confllof (M2' @ M2y K M1 E, OF M2'] n-dist M1-E
by auto
qed
qed

lemma cdclyy -stgy-no-relearned-highest-subres-clause:
assumes
cdcl: <backtrack S T) and
inv: (cdelyy -all-struct-inv S) and
smaller: (no-smaller-propa S) and
smaller-conf: (mo-smaller-confl S) and
E-subset: <mark-of (hd-trail T) = add-mset (lit-of (hd-trail T)) E
shows (add-mset (— lit-of (hd-trail T)) E ¢# clauses S)
proof (rule ccontr)
assume n-dist: (- ?thesis
obtain K L :: 'v literal and
M1 M2 :: (v, 'v clause) ann-lit list and i :: nat and D D’ where
confl-S: conflicting S = Some (add-mset L D) and
decomp: (Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) and
lev-L: get-level (trail S) L = backtrack-lvl S and
maz-D-L: get-level (trail S) L = get-mazimum-level (trail S) (add-mset L D) and
i get-mazimum-level (trail S) D' = { and
lev-K: get-level (trail S) K = i + 1 and
T: T ~ cons-trail (Propagated L (add-mset L D'))
(reduce-trail-to M1
(add-learned-cls (add-mset L D)
(update-conflicting None S))) and
D-D'": <D’ C# D) and
(clauses S E=pm add-mset L D"
using cdcl by (auto elim!: rulesE)

obtain M2’ where M2" <trail S = (M2' Q@ M2) Q Decided K # M1
using decomp by auto
have inv-T: (cdcly -all-struct-inv T)
using cdcl cdclyy -stgy-cdclyy -all-struct-inv inv W-other backtrack bj
cdclyy -all-struct-inv-inv cdcly -cdclyy -restart by blast
have (distinct-mset (add-mset L D"))
using inv-T T unfolding cdclyy -all-struct-inv-def distinct-cdcly -state-def
by auto

have M1-D’. <M1 =as CNot D%
using backtrack-M1-CNot-D'[of S D’ «iy K M1 M2 L <add-mset L D) T
(Propagated L (add-mset L D'))] inv confi-S decomp i T D-D' lev-K lev-L maz-D-L
unfolding cdclyy -all-struct-inv-def cdcly -conflicting-def cdclyy -M-level-inv-def
by (auto simp: subset-mset-trans-add-mset)
have undef-L: (undefined-lit M1 L)
using inv-T T decomp unfolding cdclyy -all-struct-inv-def cdclyy -M-level-inv-def
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by (auto simp: defined-lit-map)

then have undef-uL: (undefined-lit M1 (—L)
by auto

have propa: <\AM' K M L D. trail S = M’ @ Decided K # M —
D + {#L#} €# clauses S = undefined-lit M L — —~ M [as CNot D)
using smaller unfolding no-smaller-propa-def by blast

have E[simp|: <E = D)
using E-subset T by (auto dest: multi-member-split)

have propa: <\AM' K M L D. trail S = M’ @ Decided K # M —
D + {#L#} €# clauses S = undefined-lit M L = — M }=as CNot D»
using smaller unfolding no-smaller-propa-def by blast

show Fulse
using T M1-D’ propalof (M2' @ M2» K M1 D', OF M2’ - undef-uL] n-dist unfolding F
by auto

qed

lemma cdclyy -stgy-distinct-mset:
assumes
cdcl: «cdelyy-stgy S T and
inv: cdely -all-struct-inv S and
smaller: (no-smaller-propa S) and
dist: (distinct-mset (clauses S)
shows
(distinct-mset (clauses T)
proof (rule ccontr)
assume n-dist: (— distinct-mset (clauses T)
then have (backtrack S T)
using cdcl dist by (auto simp: cdcly -stgy.simps cdcly -o.simps cdclyy -bj.simps
elim: propagateE conflictE decideE skipE resolvel)
then show Fulse
using n-dist cdclyy -stgy-no-relearned-clauselof S T| dist
by (auto simp: inv smaller elim!: rulesE)
qed

This is a more restrictive version of the previous theorem, but is a better bound for an imple-
mentation that does not do duplication removal (esp. as part of preprocessing).

lemma cdclyy -stgy-learned-distinct-mset:
assumes
cdcel: <cdely -stgy S T and
inwv: cdelyy -all-struct-inv S and
smaller: (no-smaller-propa S) and
dist: «distinct-mset (learned-clss S + remdups-mset (init-clss S))
shows
(distinct-mset (learned-clss T + remdups-mset (init-clss T')))
proof (rule ccontr)
assume n-dist: (- ?thesis)
then have (backtrack S T
using cdcl dist by (auto simp: cdcly -stgy.simps cdcly -o.simps cdcly -bj.simps
elim: propagateE conflictE decideE skipE resolveE)
then show False
using n-dist cdely -stgy-no-relearned-clauselof S T) dist
by (auto simp: inv smaller clauses-def elim!: rulesE)
qed

lemma rtranclp-cdclyy -stgy-distinct-mset-clauses:
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assumes
st cdely -stgy™ R S and
invR: cdelyy -all-struct-inv R and
dist: distinct-mset (clauses R) and
no-smaller: (no-smaller-propa R)
shows distinct-mset (clauses S)
using assms by (induction rule: rtranclp-induct)
(auto simp: cdclyy -stgy-distinct-mset rtranclp-cdclyy -stgy-no-smaller-propa
rtranclp-cdely -stgy-cdelyy -all-struct-inw)

lemma rtranclp-cdclyy -stgy-distinct-mset-learned-clauses:

assumes
st: cdely -stgy™ R S and
invR: cdelyy -all-struct-inv R and
dist: distinct-mset (learned-clss R + remdups-mset (init-clss R)) and
no-smaller: (no-smaller-propa R)

shows distinct-mset (learned-clss S + remdups-mset (init-clss S))

using assms by (induction rule: rtranclp-induct)
(auto simp: cdelw -stgy-learned-distinct-mset rtranclp-cdely -stgy-no-smaller-propa

rtranclp-cdely -stgy-cdely -all-struct-inw)

lemma cdclyy -stgy-distinct-mset-clauses:
assumes
st: edclyy -stgy** (init-state N) S and
no-duplicate-clause: distinct-mset N and
no-duplicate-in-clause: distinct-mset-mset N
shows distinct-mset (clauses S)
using rtranclp-cdcly -stgy-distinct-mset-clauses| OF st] assms
by (auto simp: cdcly -all-struct-inv-def distinct-cdclyy -state-def no-smaller-propa-def)

lemma cdclyy -stgy-learned-distinct-mset-new:
assumes
cdcl: <cdely -stgy S T) and
inv: cdelyy -all-struct-inv S and
smaller: (no-smaller-propa S) and
dist: «distinct-mset (learned-clss S — A))
shows (distinct-mset (learned-clss T — A)
proof (rule ccontr)
have [iff]: «distinct-mset (add-mset C (learned-clss S) — A) +—
C ¢# (learned-clss S) — A for C
using dist distinct-mset-add-mset[of C' (learned-clss S — A)]
proof —
have f1: learned-clss S — A = removel-mset C (add-mset C (learned-clss S) — A)
by (metis Multiset.diff-right-commute add-mset-remove-trivial)
have removel-mset C' (add-mset C (learned-clss S) — A) = add-mset C (learned-clss S) — A —
distinct-mset (add-mset C (learned-clss S) — A)
by (metis (no-types) Multiset.diff-right-commute add-mset-remove-trivial dist)
then have — distinct-mset (add-mset C (learned-clss S — A)) V
distinct-mset (add-mset C' (learned-clss §) — A) # (C' €# learned-clss S — A)
by (metis (full-types) Multiset.diff-right-commute
distinct-mset-add-mset[of C dearned-clss S — A)] add-mset-remove-trivial
diff-single-trivial insert-DiffM)
then show ?thesis
using f1 by (metis (full-types) distinct-mset-add-mset[of C dearned-clss S — A)]
diff-single-trivial dist insert-Diff M)
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qed

assume n-dist: (— ?thesis)
then have <backtrack S T)
using cdcl dist by (auto simp: cdclyy -stgy.simps cdcly -o.simps cdclyy -bj.simps
elim: propagateE conflictE decideE skipE resolveE)
then show False
using n-dist cdcly -stgy-no-relearned-clauselof S T
by (auto simp: inv smaller clauses-def elim!: rulesE
dest!: in-diffD)
qed

lemma rtranclp-cdclyy -stgy-distinct-mset-clauses-new-abs:
assumes
st: cdely -stgy™ R S and
mvR: cdcly -all-struct-inv R and
no-smaller: (no-smaller-propa R)> and
(distinct-mset (learned-clss R — A)
shows distinct-mset (learned-clss S — A)
using assms by (induction rule: rtranclp-induct)
(auto simp: cdely -stgy-distinct-mset rtranclp-cdely -stgy-no-smaller-propa
rtranclp-cdclyy -stgy-cdclyy -all-struct-inv
cdclyy -stgy-learned-distinct-mset-new)

lemma rtranclp-cdclyy -stgy-distinct-mset-clauses-new:
assumes
st: cdcly -stgy*™* R S and
imvR: cdclyy -all-struct-inv R and
no-smaller: (no-smaller-propa R)
shows distinct-mset (learned-clss S — learned-clss R)
using assms by (rule rtranclp-cdclyy -stgy-distinct-mset-clauses-new-abs) auto

Decrease of a Measure

fun cdclyy -restart-measure where
cdclyy -restart-measure S =
[(8::nat) ~ (card (atms-of-mm (init-clss S))) — card (set-mset (learned-clss S)),
if conflicting S = None then 1 else 0,
if conflicting S = None then card (atms-of-mm (init-clss S)) — length (trail S)
else length (trail S)

]

lemma length-model-le-vars:
assumes
no-strange-atm S and
no-d: no-dup (trail S) and
finite (atms-of-mm (init-clss S))
shows length (trail S) < card (atms-of-mm (init-clss S))
proof —
obtain M N U k D where S: state S = (M, N, U, k, D) by (cases state S, auto)
have finite (atm-of * lits-of-1 (trail S))
using assms(1,3) unfolding S by (auto simp add: finite-subset)
have length (trail S) = card (atm-of ¢ lits-of-1 (trail S))
using no-dup-length-eq-card-atm-of-lits-of-l no-d by blast
then show %thesis using assms(1) unfolding no-strange-atm-def
by (auto simp add: assms(8) card-mono)
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qed

lemma length-model-le-vars-all-inv:
assumes cdclyy -all-struct-inv S
shows length (trail S) < card (atms-of-mm (init-clss S))
using assms length-model-le-vars|of S] unfolding cdclyy -all-struct-inv-def
by (auto simp: cdcly -M-level-inv-decomp)

lemma learned-clss-less-upper-bound:
fixes S :: 'st
assumes
distinct-cdclyy -state S and
Vs €# learned-clss S. —tautology s
shows card(set-mset (learned-clss S)) < 8 ~ card (atms-of-mm (learned-clss S))
proof —
have set-mset (learned-clss S) C simple-clss (atms-of-mm (learned-clss S))
apply (rule simplified-in-simple-clss)
using assms unfolding distinct-cdclyy -state-def by auto
then have card(set-mset (learned-clss S))
< card (simple-clss (atms-of-mm (learned-clss S)))
by (simp add: simple-clss-finite card-mono)
then show ?thesis
by (meson atms-of-ms-finite simple-clss-card finite-set-mset order-trans)
qed

lemma cdclyy -restart-measure-decreasing:
fixes S :: 'st
assumes
cdelyy -restart S S’ and
no-restart:
—(learned-clss S C# learned-clss S' A [| = trail S A conflicting S’ = None)
and
no-forget: learned-clss S C# learned-clss S’ and
no-relearn: \S’. backtrack S S' = mark-of (hd-trail S’) ¢# learned-clss S
and
alien: no-strange-atm S and
M-level: cdclyy -M-level-inv S and
no-taut: Vs €# learned-clss S. —tautology s and
no-dup: distinct-cdcly, -state S and
confl: cdcly -conflicting S
shows (cdcly -restart-measure S’, cdcly -restart-measure S) € lexn less-than 3
using assms(1) assms(2,3)
proof (induct rule: cdcly -restart-all-induct)
case (propagate C' L) note conf = this(1) and undef = this(5) and T = this(6)
have propa: propagate S (cons-trail (Propagated L C) S)
using propagate-rule] OF propagate.hyps(1,2)] propagate.hyps by auto
then have no-dup”. no-dup (Propagated L C # trail S)
using M-level cdely -M-level-inv-decomp(2) undef defined-lit-map by auto

let YN = init-clss S
have no-strange-atm (cons-trail (Propagated L C) S)

using alien cdclyy -restart.propagate cdclyy -restart-no-strange-atm-inv propa M-level by blast
then have atm-of  lits-of-1 (Propagated L C # trail S)

C atms-of-mm (init-clss S)

using undef unfolding no-strange-atm-def by auto
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then have card (atm-of ‘ lits-of-l (Propagated L C # trail S))
< card (atms-of-mm (init-clss S))
by (meson atms-of-ms-finite card-mono finite-set-mset)
then have length (Propagated L C # trail S) < card (atms-of-mm ?N)
using no-dup-length-eq-card-atm-of-lits-of-l no-dup’ by fastforce
then have H: card (atms-of-mm (init-clss S)) — length (trail S)
= Suc (card (atms-of-mm (init-clss S)) — Suc (length (trail S)))
by simp
show ?case using conf T undef by (auto simp: H lexn3-conv)
next
case (decide L) note conf = this(1) and undef = this(2) and T = this(4)
moreover {
have dec: decide S (cons-trail (Decided L) S)
using decide-rule decide.hyps by force
then have cdcly -restart S (cons-trail (Decided L) S)
using cdclyy -restart.simps cdcly -o.intros by blast } note cdclyy -restart = this
moreover {
have lev: cdcly -M-level-inv (cons-trail (Decided L) S)
using cdcly -restart M-level cdelyy -restart-consistent-inv[OF cdcly -restart] by auto
then have no-dup: no-dup (Decided L # trail S)
using undef unfolding cdcly -M-level-inv-def by auto
have no-strange-atm (cons-trail (Decided L) S)
using M-level alien calculation(4) cdclw -restart-no-strange-atm-inv by blast
then have length (Decided L # (trail S))
< card (atms-of-mm (init-clss S))
using no-dup undef
length-model-le-vars|of cons-trail (Decided L) S]
by fastforce }
ultimately show ?case using conf by (simp add: lexn3-conv)
next
case (skip L C' M D) note tr = this(1) and conf = this(2) and T = this(5)
show ?case using conf T by (simp add: tr lexn3-conv)
next
case conflict
then show ?Zcase by (simp add: lexn3-conv)
next
case resolve
then show Zcase using finite by (simp add: lexn3-conv)
next
case (backtrack L D K ¢ M1 M2 T D’) note conf = this(1) and decomp = this(3) and D-D’ =
this(7)
and T = this(9)
let ?D’ = <add-mset L D%
have bt: backtrack S T
using backtrack-rule]OF backtrack.hyps] by auto
have ?D’ ¢+# learned-clss S
using no-relearn|OF bt] conf T by auto
then have card-T:
card (set-mset ({#?D'#} + learned-clss S)) = Suc (card (set-mset (learned-clss S)))
by simp
have distinct-cdclyy -state T
using bt M-level distinct-cdclyy -state-inv no-dup other cdcly -o.intros cdcly -bj.intros by blast
moreover have V se#learned-clss T. — tautology s
using learned-clss-are-not-tautologies| OF cdclyy -restart.other| OF cdcly -0.bj[OF
cdelyy -bj.backtrack[ OF bt]]]] M-level no-taut confl by auto
ultimately have card (set-mset (learned-clss T)) < 8 ~ card (atms-of-mm (learned-clss T))
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by (auto simp: learned-clss-less-upper-bound)
then have H: card (set-mset ({# ?D'#} + learned-clss S))
< 8 7 card (atms-of-mm ({#?D'#} + learned-clss S))
using T decomp M-level by (simp add: cdcly -M-level-inv-decomp)
moreover
have atms-of-mm ({#¢?D'#} + learned-clss S) C atms-of-mm (init-clss S)
using alien conf atms-of-subset-mset-mono[OF D-D’] unfolding no-strange-atm-def
by auto
then have card-f: card (atms-of-mm ({#¢D'#} + learned-clss S))
< card (atms-of-mm (init-clss S))
by (meson atms-of-ms-finite card-mono finite-set-mset)
then have (3::nat) ~ card (atms-of-mm ({#?D'#} + learned-clss S))
< 8 7 card (atms-of-mm (init-clss S)) by simp
ultimately have (3::nat) ~ card (atms-of-mm (init-clss S))
> card (set-mset ({#2D'#} + learned-clss S))
using le-trans by blast
then show ?case using decomp diff-less-mono2 card-T T M-level
by (auto simp: cdcly -M-level-inv-decomp lexn3-conv)
next
case restart
then show ?case using alien by auto
next
case (forget C' T) note no-forget = this(9)
then have C' €# learned-clss S and C ¢# learned-clss T
using forget.hyps by auto
then have - learned-clss S C# learned-clss T
by (auto simp add: mset-subset-eqD)
then show ?Zcase using no-forget by blast

qed

lemma cdclyy -stgy-step-decreasing:
fixes S T :: ‘st
assumes

cdcl: <cdely -stgy S T) and
struct-inv: <cdclyy -all-struct-inv S) and
smaller: (no-smaller-propa S)
shows (cdclyy -restart-measure T, cdclyy -restart-measure S) € lexn less-than 8
proof (rule cdclyy -restart-measure-decreasing)
show (cdclyy -restart S T)
using cdcl cdclyy -cdclyy -restart cdclyy -stgy-cdclyy by blast
show (= (learned-clss S C# learned-clss T A [| = trail T A conflicting T = None))
using cdcl by (cases rule: cdcly -stgy-cases) (auto elim!: rulesE)
show <learned-clss S C# learned-clss T)
using cdcl by (cases rule: cdclyy -stgy-cases) (auto elim!: rulesE)
show (mark-of (hd-trail S’) ¢# learned-clss S if <backtrack S S* for S’
using cdclyy -stgy-no-relearned-clause[of S S'] cdcly -stgy-no-smaller-propalof S S
cdcl struct-inv smaller that unfolding clauses-def
by (auto elim!: rulesE)
show (no-strange-atm S> and <cdcly -M-level-inv S> and <(distinct-cdcly -state S) and
(cdcly -conflicting S and vV s€#learned-clss S. — tautology
using struct-inv unfolding cdclyy -all-struct-inv-def by blast+
qed

lemma empty-trail-no-smaller-propa: <trail R = [| = no-smaller-propa R
by (simp add: no-smaller-propa-def)
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Roughly corresponds to theorem 2.9.15 page 100 of Weidenbach’s book but using a different
bound (the bound is below)

lemma tranclp-cdclyy -stgy-decreasing:

fixes RS T :: st

assumes cdcly -stgyT™t R S and

tr: trail R = [] and

cdelyy -all-struct-inv R

shows (cdcly -restart-measure S, cdcly -restart-measure R) € lexn less-than 3

using assms

apply induction

using empty-trail-no-smaller-propa cdclyy -stgy-no-relearned-clause cdclyy -stgy-step-decreasing
apply blast

using tranclp-into-rtranclp[of cdclw -stgy R] lexn-transI[OF trans-less-than, of 3]
rtranclp-cdclyy -stgy-no-smaller-propa unfolding trans-def

by (meson cdcly -stgy-step-decreasing empty-trail-no-smaller-propa

rtranclp-cdely -stgy-cdely -all-struct-inv)

lemma tranclp-cdcly -stgy-S0-decreasing:
fixes RS T :: 'st
assumes
pl: cdcly -stgy™ ™ (init-state N) S and
no-dup: distinct-mset-mset N
shows (cdcly -restart-measure S, cdcly -restart-measure (init-state N)) € lexn less-than 3
proof —
have cdcly -all-struct-inv (init-state N)
using no-dup unfolding cdcly -all-struct-inv-def by auto
then show ?thesis using pl tranclp-cdclyy -stgy-decreasing init-state-trail by blast
qed

lemma wf-tranclp-cdclyy -stgy:
wf {(S::'st, init-state N)| S N. distinct-mset-mset N N\ cdely -stgy™ ™ (init-state N) S}
apply (rule wf-wf-if-measure’-notation2[of lexn less-than 3 - - cdcly -restart-measure))
apply (simp add: wf wf-lexn)
using tranclp-cdcly -stgy-S0-decreasing by blast

The following theorems is deeply linked with the strategy: It shows that a decision alone cannot
lead to a conflict. This is obvious but I expect this to be a major part of the proof that the
number of learnt clause cannot be larger that (2::'a)"™.

lemma no-conflict-after-decide:
assumes
dec: <decide S T) and
inv: cdclyy -all-struct-inv T) and
smaller: (no-smaller-propa T) and
smaller-confi: <no-smaller-confl T)
shows —conflict T U
proof (rule ccontr)
assume (- ?thesis)
then obtain D where
D: (D €# clauses T) and
confl: trail T |=as CNot D)
by (auto simp: conflict.simps)
obtain L where
(conflicting S = None> and
undef: «undefined-lit (trail S) L) and
(atm-of L € atms-of-mm (init-clss S)» and
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T: (T ~ cons-trail (Decided L) S
using dec by (auto simp: decide.simps)
have dist: <distinct-mset D)
using inv D unfolding cdclyy -all-struct-inv-def distinct-cdclyy -state-def
by (auto dest!: multi-member-split simp: clauses-def)
have L-D: (L ¢# D)
using confl undef T
by (auto dest!: multi-member-split simp: Decided-Propagated-in-iff-in-lits-of-)

show Fulse
proof (cases (—L €# D)
case True
have H: <trail T = M' @ Decided K # M —
D + {#L#} €# clauses T = undefined-lit M L — = M |=as CNot D)
for M K M' D L
using smaller unfolding no-smaller-propa-def
by auto
have (trail S =as CNot (removel-mset (—L) D))
using true-annots-CNot-lit-of-notin-skip[of (Decided L) (trail S) (removel-mset (—L) D] T True
dist confl L-D
by (auto dest: multi-member-split)
then show Fulse
using True Hlof (Nil) L <trail S> (removel-mset (—L) Dy «—L)] T D confl undef
by auto
next
case Fulse
have H: «trail T = M’ Q Decided K # M —>
D e€# clauses T = = M [=as CNot D»
for M K M' D
using smaller-confl unfolding no-smaller-confi-def
by auto
have (trail S =as CNot D»
using true-annots-CNot-lit-of-notin-skip|of (Decided Ly (trail S) D] T False
dist confl L-D
by (auto dest: multi-member-split)
then show Fulse
using False H[of «Nib L <trail $) D] T D confl undef
by auto
qed
qed

abbreviation list-weight-propa-trail :: < ("v literal, 'v literal, v literal multiset) annotated-lit list = bool
list) where

ist-weight-propa-trail M = map is-proped M)

definition comp-list-weight-propa-trail :: nat = ('v literal, v literal, 'v literal multiset) annotated-lit
list = bool list) where

(comp-list-weight-propa-trail b M = replicate (b — length M) False Q list-weight-propa-trail M)

lemma comp-list-weight-propa-trail-append|simp:
(comp-list-weight-propa-trail b (M Q@ M') =
comp-list-weight-propa-trail (b — length M') M Q@ list-weight-propa-trail M"
by (auto simp: comp-list-weight-propa-trail-def)

lemma comp-list-weight-propa-trail-append-single[simp):
(comp-list-weight-propa-trail b (M Q [K]) =

131



comp-list-weight-propa-trail (b — 1) M Q [is-proped K]
by (auto simp: comp-list-weight-propa-trail-def)

lemma comp-list-weight-propa-trail-cons|simp]:
(comp-list-weight-propa-trail b (K # M') =
comp-list-weight-propa-trail (b — Suc (length M")) [| @Q is-proped K # list-weight-propa-trail M"
by (auto simp: comp-list-weight-propa-trail-def)

fun of-list-weight :: (bool list = nat) where
(of-list-weight [| = O
| cof-list-weight (b # xzs) = (if b then 1 else 0) + 2 x of-list-weight xs

lemma of-list-weight-append|simp):
(of-list-weight (a @ b) = of-list-weight a + 2~ (length a) x of-list-weight b
by (induction a) auto

lemma of-list-weight-append-single[simpl:
(of-list-weight (a @ [b]) = of-list-weight a + 27 (length a) * (if b then 1 else 0))
using of-list-weight-append|of (@ «(b)]
by (auto simp del: of-list-weight-append)

lemma of-list-weight-replicate- False[simp]: <of-list-weight (replicate n False) = 0)
by (induction n) auto

lemma of-list-weight-replicate- True[simp]: (of-list-weight (replicate n True) = 2°n — 1)
apply (induction n)
subgoal by auto
subgoal for m
using power-gtl-lemmalof <2 :: nat)]
by (auto simp add: algebra-simps Suc-diff-Suc)
done

lemma of-list-weight-le: <of-list-weight xs < 2" (length xs) — 1>
proof —
have (of-list-weight xs < of-list-weight (replicate (length xs) True)
by (induction xs) auto
then show «?thesis)
by auto
qed

lemma of-list-weight-lt: (of-list-weight xs < 27 (length xs)
using of-list-weight-le[of xs] by (metis One-nat-def Suc-le-lessD
Suc-le-mono Suc-pred of-list-weight-le zero-less-numeral zero-less-power)

lemma [simp]: (of-list-weight (comp-list-weight-propa-trail n []) = O
by (auto simp: comp-list-weight-propa-trail-def)

abbreviation propa-weight

nat = (v literal, 'v literal, 'v literal multiset) annotated-lit list = nat)
where

(propa-weight n M = of-list-weight (comp-list-weight-propa-trail n M)

lemma length-comp-list-weight-propa-trail[simp): dength (comp-list-weight-propa-trail a M) = max (length

M) @
by (auto simp: comp-list-weight-propa-trail-def)
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lemma (in —)pow2-times-n:

Suca<n= 2% 27 (n— Suca)=(2:nat)” (n — a)

Suca < n= 27(n — Suca) * 2 =(2:nat)” (n — a)
Suca<n= 27(n— Suca)*bx*x 2= (2:nat)” (n — a) * b
Suca<n= 27(n— Suca)x*(bx2)=(2:nat)” (n— a)xb
Suca < n= 27(n — Suca)x* (2 xb)=(2:nat)” (n—a)=*b
Suca<n= 2xbx 2 (n— Suca)=(2:nat)” (n — a) * b

a <

(Suc n= 2% (bx 2 (n— Suca)) = (2:nat)” (n — a) *x b
apply (simp-all add: Suc-diff-Suc semiring-normalization-rules(27))
using Suc-diff-le by fastforce+

lemma decide-propa-weight:
(decide S T => n > length (trail T) = propa-weight n (trail S) < propa-weight n (trail T)
by (auto elim!: decideE simp: comp-list-weight-propa-trail-def
algebra-simps pow2-times-n)

lemma propagate-propa-weight:
(propagate S T => n > length (trail T) = propa-weight n (trail S) < propa-weight n (trail T)
by (auto elim!: propagateE simp: comp-list-weight-propa-trail-def
algebra-simps pow2-times-n)

The theorem below corresponds the bound of theorem 2.9.15 page 100 of Weidenbach’s book.
In the current version there is no proof of the bound.

The following proof contains an immense amount of stupid bookkeeping. The proof itself is
rather easy and Isabelle makes it extra-complicated.

Let’s consider the sequence S — ... — T. The bookkeping part:

1. We decompose it into its components f 0 — f1 — ... = fn.
2. Then we extract the backjumps out of it, which are at position nth-nj 0, nth-nj 1, ...

3. Then we extract the conflicts out of it, which are at position nth-confl 0, nth-confl 1, ...
Then the simple part:

1. each backtrack increases propa-weight

card (atms-of-mm (init-clss S))

2. but propa-weight is bounded by (2::'a)
bound.

Therefore, we get the

Comments on the proof:

e The main problem of the proof is the number of inductions in the bookkeeping part.

e The proof is actually by contradiction to make sure that enough backtrack step exists.
This could probably be avoided, but without change in the proof.
Comments on the bound:

e The proof is very very crude: Any propagation also decreases the bound. The lemma

[decide 2S ?T; cdely -all-struct-inv ?T; no-smaller-propa ¢T; no-smaller-confl ?T] —
= conflict ?T ?U above shows that a decision cannot lead immediately to a conflict.

e TODO: can a backtrack could be immediately followed by another conflict (if there are
several conflicts for the initial backtrack)? If not the bound can be divided by two.
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lemma cdcl-pow2-n-learned-clauses:
assumes
cdel: <edely** S T) and
confl: (conflicting S = None» and
inv: <cdclyy -all-struct-inv S
shows (size (learned-clss T') < size (learned-clss S) + 2 ~ (card (atms-of-mm (init-clss S)))
(is - < -+ )
proof (rule ccontr)
assume ge: (— 7thesis)
let ?m = <card (atms-of-mm (init-clss S))
obtain n :: nat where
n: (cdelw ~n) ST
using cdcl unfolding rtranclp-power by fast
then obtain f :: (nat = sty where
fi Ao i < n = edelw (f i) (f (Suci)) and
[simp]: «f 0 = S) and
[simp]: fn =T
using power-ex-decomp| OF n]
by auto

have cdcl-st-k: cdclw™** S (f k) if <& < n for k
using that
apply (induction k)
subgoal by auto
subgoal for k using f[of k] by (auto)
done
let %9 = (\i. size (learned-clss (f 7))
have (?g 0 = size (learned-clss S))
by auto
have g-n: (?gn > %9 0 + 2 ~ (card (atms-of-mm (init-clss S)))
using ge by auto
have g: (%g (Suc ©) = 297 V (%9 (Suc i) = Suc (?g i) A backtrack (f i) (f (Suc ©))) if @ < w
for i
using f[OF that]
by (cases rule: cdcly .cases)
(auto elim: propagateE conflictE decideE backtrackE skipE resolveE
sitmp: cdclyy -o0.stmps cdclyy -bj.simps)
have g-le: (%9 ¢ < i+ %9 0» if & < n for ¢
using that
apply (induction 7)
subgoal by auto
subgoal for i
using g[of ]
by auto
done
from this[of n] have n-ge-m: (n > ?b
using g-n ge by auto
then have n0: nn > O
using not-add-lessl by fastforce
define nth-bj where
(nth-bj = rec-nat 0 (M- j. (LEAST i. i > j N i < n A backtrack (f i) (f (Suc 7))))
have [simp]: (nth-bj 0 = O
by (auto simp: nth-bj-def)
have nth-bj-Suc: nth-bj (Suc i) = (LEAST x. nth-bj i < x A x < n A backtrack (f ) (f (Suc z)))
for ¢
by (auto simp: nth-bj-def)
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have between-nth-bj-not-bt:
(mbacktrack (f k) (f (Suc k))
if & < mn & > nth-bj © &k < nth-bj (Suc i) for ki
using not-less-Least[of k \z. nth-bj i < z Az < n A backtrack (f z) (f (Suc z))] that
unfolding nth-bj-Suc[symmetric]
by auto

have g-nth-bj-eq:
(%9 (Suc k) = 29 k
if &k < m & > nth-bj © k < nth-bj (Suc i) for k i
using between-nth-bj-not-bt|OF that(1—3)] flof k, OF that(1)]
by (auto elim: propagateE conflictE decideE backtrackE skipE resolveE
simp: cdcly-o.simps cdely -bj.simps cdely .simps)
have g-nth-bj-eq2:
(?g (Suc k) = 29 (Suc (nth-bj 7))
if & < n &k > nth-bj o <k < nth-bj (Suc i) for k ¢
using that
apply (induction k)
subgoal by blast
subgoal for &
using g-nth-bj-eq less-antisym by fastforce
done
have [simp]: (?g (Suc 0) = %9 O
using confl flof 0] n0
by (auto elim: propagateE conflictE decideE backtrackE skipE resolveE
stmp: cdclyy -o.stmps cdclyy -bj.simps cdcly .simps)
have «(?g (nth-bj i) = size (learned-clss S) + (i — 1)) A
nth-bj i < n A
nth-bj i > i A
(i > 0 — backtrack (f (nth-bj i) (f (Suc (nth-bji)))) A
(i > 0 — ?g (Suc (nth-bj i)) = size (learned-clss S) + i) A
(i > 0 —> nth-bj i > nth-bj (i—1))
if @ < 2b+1>»
for ¢
using that
proof (induction 1)
case (
then show ?case using n0 by auto
next
case (Suc 1)
then have IH: (?g (nth-bj i) = size (learned-clss S) + (i — 1)
(0 < i = backtrack (f (nth-bj 7)) (f (Suc (nth-bj i)))
0 < i = %9 (Suc (nth-bj i)) = size (learned-clss S) + » and
i-le-m: (Suc i < 2b+1) and
le-n: <nth-bj i < n) and
gei: (nth-bj i > o
by auto
have ez-larger: (Jax>nth-bj i. © < n A backtrack (f ) (f (Suc z))
proof (rule ccontr)
assume (- ?thesis)
then have [simp]: (n>z = z>nth-bj i = %9 (Suc z) = %9 » for z
using g[of z] n-ge-m
by auto
have eq!: (nth-bj i < Suc * = — nth-bj i < = x = nth-bj ©» and
eq2: (nth-bj i < x = — nth-bj i < x — Suc 0 = nth-bj i = x — Suc O
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for z
by simp-all
have ez-larger: <(n>r = z>nth-bj i = %9 (Suc x) = ?g (Suc (nth-bj 7)) for
apply (induction x)
subgoal by auto
subgoal for z
by (cases (nth-bj i < @) (auto dest: eql)
done
from this[of «n—1)] have g-n-nth-bj: (?g n = ?g (Suc (nth-bj i))
using n-ge-m i-le-m le-n
by (cases (nth-bj i < n — Suc 0»)
(auto dest: eq2)
then have (size (learned-clss (f (Suc (nth-bj ©)))) < size (learned-clss T')
using g-n i-le-m n-ge-m g-le[of (Suc (nth-bj i))] le-n ge
(?g (nth-bj i) = size (learned-clss S) + (i — 1)
using Suc.IH by auto
then show Fulse
using g-n i-le-m n-ge-m g-le[of (Suc (nth-bj i))] g-n-nth-bj by auto
qed

from Leastl-ex[OF ex-larger]
have bt: <backtrack (f (nth-bj (Suc ©))) (f (Suc (nth-bj (Suc ¢))))> and
le: (nth-bj (Suc i) < m» and
nth-mono: (nth-bj i < nth-bj (Suc i)
unfolding nth-bj-Suc[symmetric]
by auto

have g-nth-Suc-g-Suc-nth: (?g (nth-bj (Suc 7)) = %9 (Suc (nth-bj 7))
using g-nth-bj-eq2[of nth-bj (Suc i) — 1> 7] le nth-mono
apply auto
by (metis Suc-pred grol less-Suc0 less-Suc-eq less-imp-diff-less)
have H1: (size (learned-clss (f (Suc (nth-bj (Suc 7))))) =
1 + size (learned-clss (f (nth-bj (Suc 7)))) if & = O
using bt unfolding that
by (auto simp: that elim: backtrackE)
have Zcase if i > )
using IH that nth-mono le bt gei
by (auto elim: backtrackE simp: g-nth-Suc-g-Suc-nth)
moreover have Zcase if i = O)
using le bt gei nth-mono IH g-nth-bj-eq2[of nth-bj (Suc i) — 1) i]
g-nth-Suc-g-Suc-nth
apply (intro conjI)
subgoal by (simp add: that)
subgoal by (auto simp: that elim: backtrackE)
subgoal by (auto simp: that elim: backtrackE)
subgoal Hk by (auto simp: that elim: backtrackE)
subgoal using HI by (auto simp: that elim: backtrackE)
subgoal using nth-mono by auto
done
ultimately show ?case by blast
qed
then have
(29 (nth-bj i) = size (learned-clss S) + (i — 1)) and
nth-bj-le: (nth-bj i < m» and
nth-bj-ge: (nth-bj ¢ > 4 and
bt-nth-bj: i > 0 = backtrack (f (nth-bj i)) (f (Suc (nth-bj7))) and
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@ > 0 = ?g (Suc (nth-bj i)) = size (learned-clss S) + i) and
nth-bj-mono: i > 0 = nth-bj (i — 1) < nth-bj ©
if « < 2b+1»
for i
using that by blast+
have
confl-None: «conflicting (f (Suc (nth-bj i))) = None> and
confl-nth-bj: <conflicting (f (nth-bj i)) # None
if < 20+1) <> 0
for i
using bt-nth-bj[OF that] by (auto simp: backtrack.simps)

have conflicting-still-conflicting:
conflicting (f k) # None — conflicting (f (Suc k)) # None
if & < mn & > nth-bj © &k < nth-bj (Suc i) for k i
using between-nth-bj-not-bt[OF that] f[OF that(1)]
by (auto elim: propagateE conflictE decideE backtrackE skipE resolveE
simp: cdcly-0.simps cdelyy -bj.simps cdelyy .simps)

define nth-confl where
(nth-confl n = LEAST i. i > nth-bj n A i < nth-bj (Suc n) A conflict (f i) (f (Suc 7)) for n
have Ji>nth-bj a. i < nth-bj (Suc a) A conflict (f ©) (f (Suc ©))
if a-n: <a < 2b) <a > O
for a
proof (rule ccontr)
assume H: (— 2thesis)
have (conflicting (f (nth-bj a + Suc i)) = None
if (nth-bj a + Suc ¢ < nth-bj (Suc a)) for i :: nat
using that
apply (induction i)
subgoal
using confl-None|of a] a-n n-ge-m by auto
subgoal for i
apply (cases Suc (nth-bj a + i) < m)
using flof nth-bj a + Suc ©] H
apply (auto elim: propagateE conflictE decideE backtrackE skipE resolveE
simp: cdclyy -o0.stmps cdclyy -bj.simps cdclyy . simps)|]
using nth-bj-le[of Suc ] a-n(1) by auto
done
from this[of (nth-bj (Suc a) — 1 — nth-bj @] a-n
show Fulse
using nth-bj-monolof Suc @] a-n nth-bj-le[of (Suc @] confl-nth-bj[of «Suc w]
by auto
qed
from Leastl-ex|OF this| have nth-bj-le-nth-confl: (nth-bj a < nth-confl > and
nth-confl: <conflict (f (nth-confl a)) (f (Suc (nth-confl a)))) and
nth-confl-le-nth-bj-Suc: nth-confl a < nth-bj (Suc a)
if a-n: <a < 20 <a > O
for a
using that unfolding nth-confl-def[symmetric]
by blast+
have nth-confl-conflicting: <conflicting (f (Suc (nth-confl a))) # None)
if a-n: <a < 20 <a > O
for a
using nth-confl|OF a-n]
by (auto simp: conflict.simps)
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have no-conflict-before-nth-confl: «—conflict (f k) (f (Suc k))»
if <k > nth-bj @ and
(k < nth-confl > and
a-n: a < b «a > 0
for k a
using not-less-Least[of k (\i. i > nth-bj a A i < nth-bj (Suc a) A conflict (f i) (f (Suc 7)) that
nth-confl-le-nth-bj-Suclof a
unfolding nth-confl-def[symmetric]
by auto
have conflicting-after-nth-confl: conflicting (f (Suc (nth-confl a) + k)) # None)
if a-n: <a < ?b <@ > 0> and
k: (Suc (nth-confl a) + k < nth-bj (Suc a)
for a k
using k
apply (induction k)
subgoal using nth-confl-conflicting|OF a-n| by simp
subgoal for &
using conflicting-still-conflicting|of «(Suc (nth-confl a + k)) a] a-n
nth-bj-le[of a] nth-bj-le-nth-confi[of a]
apply (cases (Suc (nth-confl a + k) < m)
apply auto
by (metis (no-types, lifting) Suc-le-lessD add.commute le-less less-trans-Suc nth-bj-le
plus-1-eq-Suc)
done
have conflicting-before-nth-confl: (conflicting (f (Suc (nth-bj a) + k)) = None
if a-n: <a < ?b <@ > 0> and
k: (Suc (nth-bj a) + k < nth-confl @
for a k
using k
apply (induction k)
subgoal using confl-Nonelof a] a-n by simp
subgoal for &
using flof «Suc (nth-bj a) + k)| no-conflict-before-nth-confljof a <Suc (nth-bj a) + k] a-n
nth-confl-le-nth-bj-Suc|of a] nth-bj-le[of (Suc a))
apply (cases (Suc (nth-bj a + k) < m)
apply (auto elim!: propagateE conflictE decideE backtrackE skipE resolveE
simp: cdclyy -o0.stmps cdclyy -bj.simps cdclyy . simps)|]
by linarith
done
have
ex-trail-decomp: <3 M. trail (f (Suc (nth-confl a))) = M Q trail (f (Suc (nth-confl a + k)))
if a-n: <a < ?b <@ > 0> and
k: (Suc (nth-confl a) + k < nth-bj (Suc a)
for a k
using k
proof (induction k)
case (
then show (?case) by auto
next
case (Suc k)
moreover have nth-confl a + k < n)
proof —
have nth-bj (Suc a) < n
by (rule nth-bj-le) (use a-n(1) in simp)
then show ?thesis
using Suc.prems by linarith
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qed
moreover have (3 Ma. M Q@ trail (f (Suc (nth-confl a + k))) =
Ma Q@ tl (trail (f (Suc (nth-confl a + k))))» for M
by (cases trail (f (Suc (nth-confl a + k)))») auto
ultimately show ?case
using f[of «Suc (nth-confl a + k)] conflicting-after-nth-confllof a k», OF a-n] Suc
between-nth-bj-not-btlof Suc (nth-confl a + k)) (@]
nth-bj-le-nth-confl[of a, OF a-n]
apply (cases «Suc (nth-confl a + k) < m)
subgoal
by (auto elim!: propagateE conflictE decideE skipE resolveE
simp: cdcly -o.simps cdclyy -bj.simps edelyy .simps)|]
subgoal
by (metis (no-types, lifting) Suc-leD Suc-lessI a-n(1) add.commute add-Suc
add-mono-thms-linordered-semiring(1) le-numeral-extra(4) not-le nth-bj-le plus-1-eg-Suc)
done
qed
have propa-weight-decreasing-confl:
(propa-weight n (trail (f (Suc (nth-bj (Suc a))))) > propa-weight n (trail (f (nth-confl a)))
if a-n: <a < 20 <a > 0) and
n: «n > length (trail (f (nth-confl a)))
for a n
proof —
have pw0: (propa-weight n (trail (f (Suc (nth-confl a)))) =
propa-weight n (trail (f (nth-confl a)))) and
[simp]: <trail (f (Suc (nth-confl a))) = trail (f (nth-confl a))
using nth-confl|OF a-n] by (auto elim!: conflictE)
have H: (nth-bj (Suc a) = Suc (nth-confl a) V nth-bj (Suc a) > Suc (Suc (nth-confl a))
using nth-bj-le-nth-confi[of a, OF a-n]
using a-n(1) nth-confl-le-nth-bj-Suc that(2) by force

from ez-trail-decomp|of a (nth-bj (Suc a) — (1+nth-confl a)), OF a-n]
obtain M where
M: rail (f (Suc (nth-confl a))) = M Q trail (f (nth-bj (Suc a)))
apply —
apply (rule disjE[OF H])
subgoal
by auto
subgoal
using nth-bj-le-nth-confl[of a, OF a-n] nth-bj-gelof Suc @] a-n
by (auto simp add: numeral-2-eq-2)
done
obtain K M1 M2 D D’ L where
decomp: ((Decided K # M1, M2)
€ set (get-all-ann-decomposition (trail (f (nth-bj (Suc a))))) and
(get-mazimum-level (trail (f (nth-bj (Suc a)))) (add-mset L D) =
backtrack-lWwl (f (nth-bj (Suc a))) and
get-level (trail (f (nth-bj (Suc a)))) L = backtrack-ll (f (nth-bj (Suc a))) and
get-level (trail (f (nth-bj (Suc a)))) K =
Suc (get-mazimum-level (trail (f (nth-bj (Suc a)))) D’)) and
(D' C# D) and
clauses (f (nth-bj (Suc a))) Epm add-mset L D'y and
st-Suc: «f (Suc (nth-bj (Suc a))) ~
cons-trail (Propagated L (add-mset L D'))
(reduce-trail-to M1
(add-learned-cls (add-mset L D’)
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(update-conflicting None (f (nth-bj (Suc a))))))
using bt-nth-bjlof Suc @] a-n
by (auto elim!: backtrackE)
obtain M3 where
tr: rail (f (nth-bj (Suc a))) = M3 @ M2 @ Decided K # M1
using decomp by auto
define M2’ where
(M2’ = M3 @ M2
then have
tr: rail (f (nth-bj (Suc a))) = M2' Q Decided K # M1)
using tr by auto
define M’ where
M'= M @ M2
then have tr2: <trail (f (nth-confl a)) = M’ Q Decided K # M1
using tr M n
by auto
have [simp]: (maz (length M) (n — Suc (length M1 + (length M2')))
= (n — Suc (length M1 + (length M2")))
using tr M st-Suc n by auto
have [simp]: (2 *
(of-list-weight (list-weight-propa-trail M1) x*
(2 ~length M2’ *
(2 7 (n — Suc (length M1 + length M2'))))) =
of-list-weight (list-weight-propa-trail M1) x 2 = (n — length M1))
using tr M n by (auto simp: algebra-simps field-simps pow2-times-n
comme-semiring-1-class.semiring-normalization-rules(26))
have n-ge: (Suc (length M + (length M2’ + length M1)) < n
using n st-Suc tr M by auto
have WTF: (a < b—= b < c¢=— a < o and
WITF: «a<b=—=b<c= a< o forabc: nat
by auto

have 3: <propa-weight (n — Suc (length M1 + (length M2'))) M
< 27(n — Suc (length M1 + length M2')) — 1>
using of-list-weight-le
apply auto
by (metis <max (length M) (n — Suc (length M1 + (length M2'))) = n — Suc (length M1 + (length
M2y
length-comp-list-weight-propa-trail)
have 1: <of-list-weight (list-weight-propa-trail M2') *
2 7 (n — Suc (length M1 + length M2')) < Suc (if M2' =[] then 0
else 2 = (n — Suc (length M1)) — 2 = (n — Suc (length M1 + length M2")))
apply (cases (M2’ = [])
subgoal by auto
subgoal
apply (rule WTF')
apply (rule Nat.mult-le-monol|of <of-list-weight (list-weight-propa-trail M2')),
OF of-list-weight-le[of ((list-weight-propa-trail M2')]])
using of-list-weight-le[of ((list-weight-propa-trail M2')] n M tr
by (auto simp add: comm-semiring-1-class.semiring-normalization-rules(26)
algebra-simps)
done
have WTF2:
w<a =b<b=a+b<a +bforabca b c
by auto

" nat
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have (propa-weight (n — Suc (length M1 + length M2")) M +
of-list-weight (list-weight-propa-trail M2')
2 7 (n — Suc (length M1 + length M2'))
< 27 (n — Suc (length M1))
apply (rule WTF)
apply (rule WTF2[OF 3 1))
using n-ge[unfolded nat-le-iff-add] by (auto simp: ac-simps algebra-simps)
then have (propa-weight n (trail (f (nth-confl a))) < propa-weight n (trail (f (Suc (nth-bj (Suc
)
using tr2 M st-Suc n tr
by (auto simp: pow2-times-n algebra-simps
comm-semiring-1-class.semiring-normalization-rules(26))
then show (?thesis)
using pw0 by auto
qed
have length-trail-le-m: (ength (trail (f k)) < ¢m + D
if k<n
for k
proof —
have (cdcly -all-struct-inv (f k)
using rtranclp-cdcly -cdely -restart|OF cdcl-st-k[ OF that]] inv
rtranclp-cdclyy -all-struct-inv-inv by blast
then have (cdcly -M-level-inv (f k) and (no-strange-atm (f k)
unfolding cdclyy -all-struct-inv-def by blast+
then have mo-dup (trail (f k))> and
incl: catm-of * lits-of-1 (trail (f k)) C atms-of-mm (init-clss (f k))
unfolding cdcly -M-level-inv-def no-strange-atm-def
by auto
have eq: (atms-of-mm (init-clss (f k))) = (atms-of-mm (init-clss S))
using rtranclp-cdcly -restart-init-clss| OF rtranclp-cdcly -cdcly -restart| OF cdcl-st-k[OF that]]]
by auto
have dength (trail (f k)) = card (atm-of * lits-of-1 (trail (f k)))
using (no-dup (trail (f k))) no-dup-length-eq-card-atm-of-lits-of-1 by blast
also have card (atm-of * lits-of-1 (trail (f k))) < ?m)
using card-mono[OF - incl] eq by auto
finally show ?thesis
by linarith
qed
have propa-weight-decreasing-propa:
(propa-weight ?m (trail (f (nth-confl a))) > propa-weight ?m (trail (f (Suc (nth-bj a))))
if a-n: «a < 20 <a > O)
for a
proof —
have ppa: (propa-weight ?m (trail (f (Suc (nth-bj a) + Suc k)))
> propa-weight ?m (trail (f (Suc (nth-bj a) + k)))
if &k < nth-confl a — Suc (nth-bj a)
for k
proof —
have (Suc (nth-bj a + k) < n) and (Suc (nth-bj a + k) < nth-confl @
using that nth-bj-le-nth-confl|OF a-n] nth-confl-le-nth-bj-Suc| OF a-n]
nth-bj-le[of Suc ] a-n
by auto
then show ?thesis
using flof (Suc (nth-bj a) + k)] conflicting-before-nth-confl|OF a-n, of k)]
no-conflict-before-nth-confl|OF - - a-n, of «Suc (nth-bj a) + k] that
length-trail-le-m[of «(Suc (Suc (nth-bj a) + k)]
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by (auto elim!: skipE resolveE backtrackE
stmp: cdcly -o.simps cdclyy -bj.simps cdclyy .simps
dest!: propagate-propa-weight[of - - ¢m]
decide-propa-weight|of - - ?m])
qed
have WTF3: «(Suc (nth-bj a + (nth-confl a — Suc (nth-bj a)))) = nth-confl @
using a-n(1) nth-bj-le-nth-confl that(2) by fastforce
have (propa-weight ?m (trail (f (Suc (nth-bj a) + k)))
> propa-weight ?m (trail (f (Suc (nth-bj a))))
if & < nth-confl a — Suc (nth-bj a)
for k£
using that
apply (induction k)
subgoal by auto
subgoal for k using ppa[of k]
apply (cases (k < nth-confl a — Suc (nth-bj a))
subgoal by auto
subgoal by linarith
done
done
from this[of (nth-confl a — (Suc (nth-bj a)))]
show ?thesis
by (auto simp: WTF3)
qed
have propa-weight-decreasing-confi:
(propa-weight ?m (trail (f (Suc (nth-bj a))))
< propa-weight ?m (trail (f (Suc (nth-bj (Suc a)))))»
if a-n: «a < 2b) «a > O»
for a
proof —
have WTF: (b < ¢c = a < b= a < o for a b ¢ :: nat by linarith
have (nth-confl a < n)
by (metis Suc-le-mono a-n(1) add.commute add-lessD1 less-imp-le nat-le-iff-add
nth-bj-le nth-confl-le-nth-bj-Suc plus-1-eq-Suc that(2))

show ?thesis
apply (rule WTF)
apply (rule propa-weight-decreasing-confl|OF a-n, of ¢m)])
subgoal using length-trail-le-m[of nth-confl @] (nth-confl a < n» by auto
apply (rule propa-weight-decreasing-propa[ OF a-n)])
done
qed
have weight1: (propa-weight ?m (trail (f (Suc (nth-bj 1)))) > D
using bt-nth-bj|of 1]
by (auto simp: elim!: backtrackE introl: trans-le-addl)
have (propa-weight ?m (trail (f (Suc (nth-bj (Suc a))))) >
propa-weight ?m (trail (f (Suc (nth-bj 1)))) + @
if a-n: <@ < ?b
for a :: nat
using that
apply (induction a)
subgoal by auto
subgoal for a
using propa-weight-decreasing-confl[of (Suc @]
by auto
done
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from this[of <?b)] have (propa-weight ?m (trail (f (Suc (nth-bj (Suc (?b)))))) > 1 + ?b
using weightl by auto

moreover have
(maz (length (trail (f (Suc (nth-bj (Suc 2b)))))) ¢m = ?m»
using length-trail-le-m[of «(Suc (nth-bj (Suc ?b)))] Suc-lel nth-bj-le
nth-bj-lelof «(Suc (2b))] by (auto simp: maz-def)

ultimately show (Fulse
using of-list-weight-le[of (comp-list-weight-propa-trail ?m (trail (f (Suc (nth-bj (Suc 2b))))))]
by (simp del: state-eg-init-clss state-eq-trail)

qed

Application of the previous theorem to an initial state:

corollary cdcl-pow2-n-learned-clauses2:
assumes
edel: cedelw ™™ (indt-state N) T) and
inv: (cdcly -all-struct-inv (init-state N)
shows (size (learned-clss T) < 2 = (card (atms-of-mm N))
using assms cdcl-pow2-n-learned-clauses|of <init-state N> T)
by auto

end

end

1.2 Merging backjump rules

theory CDCL-W-Merge
imports CDCL-W
begin

Before showing that Weidenbach’s CDCL is included in NOT’s CDCL, we need to work on a

variant of Weidenbach’s calculus: NOT’s backjump assumes the existence of a clause that is

suitable to backjump. This clause is obtained in W’s CDCL by applying:

1. conflict-driven-clause-learningy .conflict to find the conflict

2. the conflict is analysed by repetitive application of conflict-driven-clause-learningy .resolve

and conflict-driven-clause-learningyy . skip,

3. finally conflict-driven-clause-learningyy .backtrack is used to backtrack.

We show that this new calculus has the same final states than Weidenbach’s CDCL if the
calculus starts in a state such that the invariant holds and no conflict has been found yet. The

latter condition holds for initial states.

1.2.1 Inclusion of the States

context conflict-driven-clause-learningyy
begin

declare cdclyy -restart.intros|intro| cdcly -bj.intros[intro] cdely -o.intros|intro]
state-prop [simp del]

lemma backtrack-no-cdclyy -bj:
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assumes cdcl: cdely-bj T U
shows —backtrack V' T
using cdcl
apply (induction rule: cdely -bj.induct)
apply (elim skipE, force elim!: backtrackE simp: cdcly -M-level-inv-def)
apply (elim resolveE, force elim!: backtrackE simp: cdcly -M-level-inv-def)
apply standard
apply (elim backtrackFE)
apply (force simp add: cdcly -M-level-inv-decomp)
done

skip-or-resolve corresponds to the analyze function in the code of MiniSAT.

inductive skip-or-resolve :: 'st = 'st = bool where
s-or-r-skip[intro]: skip S T = skip-or-resolve S T |
s-or-r-resolve[intro]: resolve S T = skip-or-resolve S T

lemma rtranclp-cdclyy -bj-skip-or-resolve-backtrack:
assumes cdcly -bj** S U
shows skip-or-resolve** S U Vv (3 T. skip-or-resolve*™* S T A backtrack T U)
using assms
proof induction
case base
then show Zcase by simp
next
case (step U V) note st = this(1) and bj = this(2) and IH = this(3)
consider
(SU)S=U
| (SUp) cdely-bjT+ S U
using st unfolding rtranclp-unfold by blast
then show ?case
proof cases
case SUp
have AT. skip-or-resolve** S T = cdcly -restart** S T
using mono-rtranclplof skip-or-resolve cdclyy -restart]
by (blast intro: skip-or-resolve.cases)
then have skip-or-resolve™ S U
using bj IH backtrack-no-cdcly -bj by meson
then show ?thesis
using bj by (auto simp: cdely -bj.simps dest!: skip-or-resolve.intros)
next
case SU
then show ?thesis
using bj by (auto simp: cdcly -bj.simps dest!: skip-or-resolve.intros)
qged
qed

lemma rtranclp-skip-or-resolve-rtranclp-cdclyy -restart:
skip-or-resolve** S T — cdcly -restart*™ S T
by (induction rule: rtranclp-induct)
(auto dest!: cdcly -bj.intros cdcly -restart.intros cdclyy -o.intros simp: skip-or-resolve.simps)

definition backjump-l-cond :: v clause = "v clause = 'v literal = 'st = 'st = bool where
backjump-l-cond = N\C C' L S T. True

lemma wf-skip-or-resolve:
wf {(T, S). skip-or-resolve S T}
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proof —
have skip-or-resolve x y = length (trail y) < length (trail z) for z y
by (auto simp: skip-or-resolve.simps elim!: skipE resolveE)
then show ?thesis
using wfP-if-measure[of \-. True skip-or-resolve \S. length (trail )]
by meson
qed

definition invyor :: ‘st = bool where
invyor = AS. no-dup (trail S)

declare invyor-def[simp]
end

context conflict-driven-clause-learningyy
begin

1.2.2 More lemmas about Conflict, Propagate and Backjumping
Termination

lemma cdclyy -bj-measure:
assumes cdcly -bj S T
shows length (trail S) + (if conflicting S = None then 0 else 1)
> length (trail T) + (if conflicting T = None then 0 else 1)
using assms by (induction rule: cdely -bj.induct) (force elim!: backtrackE skipE resolveE)+

lemma wf-cdclyy -bj:
wf {(b,a). cdely-bj a b}
apply (rule wfP-if-measure[of A-. True
- AT. length (trail T) + (if conflicting T = None then 0 else 1), simplified])
using cdcly -bj-measure by simp

lemma cdclyy -bj-exists-normal-form:
shows 3 T. full cdelw-bj S T
using wf-ezists-normal-form-full]OF wf-cdcly -bj] .

lemma rtranclp-skip-state-decomp:

assumes skip** S T

shows
M. trail S = M Q trail T N (Vmeset M. —is-decided m)
init-clss S = init-clss T
learned-clss S = learned-clss T
backtrack-lvl S = backtrack-lvl T
conflicting S = conflicting T

using assms by (induction rule: rtranclp-induct) (auto elim!: skipE)

Analysing is confluent

lemma backtrack-reduce-trail-to-state-eq:
assumes
V-T: <V ~ tl-trail T) and
decomp: ((Decided K # M1, M2) € set (get-all-ann-decomposition (trail V))
shows (reduce-trail-to M1 (add-learned-cls E (update-conflicting None V))
~ reduce-trail-to M1 (add-learned-cls E (update-conflicting None T))
proof —
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let f = (\T. add-learned-cls E (update-conflicting None T)
have [simp]: dength (trail T) # length M1) trail T # [
using decomp V-T by (cases <trail T»; auto)+
have (reduce-trail-to M1 (2f V) ~ reduce-trail-to M1 (¢f (tl-trail T))
apply (rule reduce-trail-to-state-eq)
using V-T by (simp-all add: add-learned-cls-state-eq update-conflicting-state-eq)
moreover {
have (add-learned-cls E (update-conflicting None (tl-trail T)) ~
tl-trail (add-learned-cls E (update-conflicting None T))
apply (rule state-eq-trans|OF state-eq-sym|THEN iffD1], of
(add-learned-cls E (tl-trail (update-conflicting None T))])
apply (auto simp: tl-trail-update-conflicting tl-trail-add-learned-cls-commute
update-conflicting-state-eq add-learned-cls-state-eq tl-trail-state-eq; fail)[]
apply (rule state-eq-trans|OF state-eq-sym|THEN iffD1], of
(add-learned-cls E (tl-trail (update-conflicting None T))])
apply (auto simp: tl-trail-update-conflicting tl-trail-add-learned-cls-commute
update-conflicting-state-eq add-learned-cls-state-eq tl-trail-state-eq; fail)[]
apply (rule state-eq-trans|OF state-eq-sym|THEN iffD1], of
(tl-trail (add-learned-cls E (update-conflicting None T)))])
apply (auto simp: tl-trail-update-conflicting tl-trail-add-learned-cls-commute
update-conflicting-state-eq add-learned-cls-state-eq tl-trail-state-eq)
done
note - = reduce-trail-to-state-eq(OF this, of M1 M1]}
ultimately show <reduce-trail-to M1 (?f V) ~ reduce-trail-to M1 (2f T)
by (subst (2) reduce-trail-to.simps)
(auto simp: tl-trail-update-conflicting ti-trail-add-learned-cls-commute intro: state-eg-trans)
qed

lemma rtranclp-skip-backtrack-reduce-trail-to-state-eq:
assumes
V-T: skip*™ T V) and
decomp: (Decided K # M1, M2) € set (get-all-ann-decomposition (trail V))
shows (reduce-trail-to M1 (add-learned-cls E (update-conflicting None T))
~ reduce-trail-to M1 (add-learned-cls E (update-conflicting None V'))
using V-T decomp
proof (induction arbitrary: M2 rule: rtranclp-induct)
case base
then show ?Zcase by auto
next
case (step U V) note st = this(1) and skip = this(2) and IH = this(3) and decomp = this(4)
obtain M2’ where
decomp”: ((Decided K # M1, M2') € set (get-all-ann-decomposition (trail U))
using get-all-ann-decomposition-exists-prepend| OF decomp)| skip
by atomize (auto elim!: rulesE simp del: get-all-ann-decomposition.simps
simp: Decided-cons-in-get-all-ann-decomposition-append-Decided-cons
append-Cons[symmetric] append-assoc[symmetric)
simp del: append-Cons append-assoc)
show ?Zcase
using backtrack-reduce-trail-to-state-eq|OF - decomp, of U E| skip IH[OF decomp’]
by (auto elim!: skipE simp del: get-all-ann-decomposition.simps intro: state-eq-trans’)
qed

Backjumping after skipping or jump directly lemma rtranclp-skip-backtrack-backtrack:
assumes
skip*™ S T and
backtrack T W and
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cdclyy -all-struct-inv S
shows backtrack S W
using assms
proof induction
case base
then show Zcase by simp
next
case (step T V) note st = this(1) and skip = this(2) and IH = this(8) and bt = this(4) and
inv = this(5)
have skip*™ SV
using st skip by auto
then have cdclyy -all-struct-inv 'V
using rtranclp-mono|of skip cdcly -restart] assms(8) rtranclp-cdely -all-struct-inv-inv mono-rtranclp
by (auto dest!: bj other cdclyy -bj.skip)
then have cdclyy -M-level-inv 'V
unfolding cdclyy -all-struct-inv-def by auto
then obtain K i M1 M2 L D D’ where
conf: conflicting V = Some (add-mset L D) and
decomp: (Decided K # M1, M2) € set (get-all-ann-decomposition (trail V)) and
lev-L: get-level (trail V) L = backtrack-lvl V and
maz: get-level (trail V) L = get-mazimum-level (trail V') (add-mset L D’) and
maz-D: get-mazimum-level (trail V) D' = i and
lev-k: get-level (trail V) K = Suc i and
W: W ~ cons-trail (Propagated L (add-mset L D’))
(reduce-trail-to M1
(add-learned-cls (add-mset L D')
(update-conflicting None V))) and
D-D': «D' C# D) and
NU-D'": (clauses V =pm add-mset L D%
using bt inv by (elim backtrackE) metis
obtain L' C' M E where
tr: trail T = Propagated L' C' # M and
raw: conflicting T = Some E and
LE: —L' ¢# E and
E: E # {#} and
VeV~ tl-trail T
using skip by (elim skipE) metis
let ?M = Propagated L' C' # M
have tr-M: trail T = M
using tr V by auto
have MT: M = tl (trail T) and MV: M = trail V
using tr V by auto
have DE[simp]: E = add-mset L D
using V conf raw by auto
have cdclyy -restart*™* S T
using bj cdelyy -bj.skip mono-rtranclp|of skip cdcly -restart S T) other st by meson
then have inv’: cdclyy -all-struct-inv T
using rtranclp-cdclyy -all-struct-inv-inv inv by blast
have M-lev: cdclyy -M-level-inv T using inv’ unfolding cdclyy -all-struct-inv-def by auto
then have n-d’: no-dup ?M
using tr-M unfolding cdclyy -M-level-inv-def by auto
let ?k = backtrack-lvl T
have [simp]:
backtrack-lvl V = 2k
using V tr-M by simp
have %k > 0
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using decomp M-lev V tr unfolding cdclyy -M-level-inv-def by auto
then have atm-of L € atm-of  lits-of-1 (trail V)
using lev-L get-level-ge-0-atm-of-in[of 0 trail V L] by auto
then have L-L": atm-of L # atm-of L’
using n-d’ unfolding lits-of-def MV by (auto simp: defined-lit-map)
have L’-M: undefined-lit M L’
using n-d’ unfolding lits-of-def by auto
have ?M [=as CNot D
using inv’ raw unfolding cdclyy -conflicting-def cdclyy -all-struct-inv-def tr-M by auto
then have L' ¢# D
using L-L’' L’-M unfolding true-annots-true-cls true-clss-def
by (auto simp: uminus-lit-swap atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set defined-lit-map
lits-of-def dest!: in-diffD)
have [simp]: trail (reduce-trail-to M1 T) = M1
using decomp tr W V by auto
have skip*™ SV
using st skip by auto
have no-dup (trail S)
using inv unfolding cdclyy -all-struct-inv-def cdclyy -M-level-inv-def by auto
then have [simp]: init-clss S = init-clss V and [simp]: learned-clss S = learned-clss V
using rtranclp-skip-state-decomp|OF (skip*™ S V)] V by auto
have V-T: (V ~ tl-trail T)
using skip by (auto elim: rulesE)
have
W-S: W ~ cons-trail (Propagated L (add-mset L D')) (reduce-trail-to M1
(add-learned-cls (add-mset L D’) (update-conflicting None T)))
apply (rule state-eq-trans|OF W1)
unfolding DF
apply (rule cons-trail-state-eq)
apply (rule backtrack-reduce-trail-to-state-eq)
using V decomp by auto
have atm-of-L’-D": atm-of L' ¢ atms-of D’
by (metis DE LE (D' C# D) <L’ ¢# D) atm-of-in-atm-of-set-in-uminus atms-of-def insert-iff
mset-subset-eqD set-mset-add-mset-insert)

obtain M2’ where
decomp”: (Decided K # M1, M2') € set (get-all-ann-decomposition (trail T))
using decomp V unfolding tr-M MV by (cases hd (get-all-ann-decomposition (trail V),
cases get-all-ann-decomposition (trail V)) auto
moreover from L-L’ have get-level ?M L = 2k
using lev-L V tr-M by (auto split: if-split-asm)
moreover have get-level ?M L = get-mazimum-level M (add-mset L D)
using count-decided-ge-get-mazimum-level[of <trail V) D] calculation(2) lev-L maz MV atm-of-L’-D’
unfolding get-maximum-level-add-mset
by auto
moreover have i = get-mazimum-level ?M D’
using maz-D MV atm-of-L’-D’ by auto
moreover have atm-of L' # atm-of K
using inv’ get-all-ann-decomposition-exists-prepend| OF decomp]
unfolding cdcly -all-struct-inv-def cdely -M-level-inv-def tr MV by (auto simp: defined-lit-map)
ultimately have backtrack T W
apply —
apply (rule backtrack-rulefof T L D K M1 M2' D' i])
unfolding tr-M [symmetric]
subgoal using raw by (simp; fail)
subgoal by (simp; fail)

148



subgoal by (simp; fail)
subgoal by (simp; fail)
subgoal by (simp; fail)
subgoal using lev-k ¢r unfolding MV [symmetric] by (auto; fail)|]
subgoal using D-D’ by (simp; fail)
subgoal using NU-D' V-T by (simp; fail)
subgoal using W-S lev-k by (auto; fail)[]
done
then show ?thesis using IH inv by blast
qed

See also theorem rtranclp-skip-backtrack-backtrack

lemma rtranclp-skip-backtrack-backtrack-end:
assumes
skip: skip™ S T and
bt: backtrack S W and
inv: cdelyy -all-struct-inv S
shows backtrack T W
using assms
proof —
have M-lev: cdclyy -M-level-inv S
using bt inv unfolding cdclyy -all-struct-inv-def by (auto elim!: backtrackE)
then obtain K ¢ M1 M2 L D D' where
S: conflicting S = Some (add-mset L D) and
decomp: (Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) and
lev-1: get-level (trail S) L = backtrack-lvl S and
lev-I-D: get-level (trail S) L = get-mazimum-level (trail S) (add-mset L D’) and
i get-mazimum-level (trail S) D' = { and
lev-K: get-level (trail S) K = Suc i and
W: W ~ cons-trail (Propagated L (add-mset L D'))
(reduce-trail-to M1
(add-learned-cls (add-mset L D’)
(update-conflicting None S))) and
D-D'": <D’ C# Dy and
NU-D": (clauses S |=pm add-mset L D"
using bt by (elim backtrackE) metis
let D = add-mset L D
let D’ = add-mset L D’

have [simp]: no-dup (trail S)
using M-lev by (auto simp: cdcly -M-level-inv-decomp)
have cdclyy -all-struct-inv T

using mono-rtranclp|of skip cdcly -restart] by (smt bj cdcly -bj.skip inv local.skip other

rtranclp-cdely -all-struct-inv-inw)
then have [simp|: no-dup (trail T)
unfolding cdcly -all-struct-inv-def cdcly -M-level-inv-def by auto

obtain MS Mt where M: trail S = MS Q My and My: My = trail T and nm: V meset MS.

—is-decided m
using rtranclp-skip-state-decomp(1)[OF skip] S by auto

have T: state-butlast T = (M, init-clss S, learned-clss S, Some (add-mset L D)) and

bt-S-T: backtrack-lvl S = backtrack-lvl T and
clss-S-T: <clauses S = clauses T)
using Mt rtranclp-skip-state-decomplof S T skip S by (auto simp: clauses-def)

have cdclyy -all-struct-inv T
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apply (rule rtranclp-cdely -all-struct-inv-inv[ OF - inv])
using bj cdely -bj.skip local.skip other rtranclp-mono|of skip cdcly -restart] by blast
then have My [=as CNot 2D
unfolding cdclyy -all-struct-inv-def cdcly -conflicting-def using T by auto
then have V L'e#?D. defined-lit My L'
using Decided- Propagated-in-iff-in-lits-of-1
by (auto dest: true-annots-CNot-definedD)
moreover have no-dup (trail S)
using inv unfolding cdclyy -all-struct-inv-def cdclyy -M-level-inv-def by auto
ultimately have undef-D: V L'e# ?D. undefined-lit MS L'
unfolding M by (auto dest: defined-lit-no-dupD)
then have H: AL’ L'e# D = get-level (trail S) L' = get-level My L’
get-level (trail S) L = get-level M L
unfolding M by (auto simp: lits-of-def)
have [simp]: get-mazimum-level (trail S) D = get-maximum-level M D
using (Mt [Eas CNot (add-mset L D)) M nm undef-D by (auto simp: get-mazimum-level-skip-beginning)

have lev-l": get-level My L = backtrack-lvl S
using lev-l nm by (auto simp: H)
have [simp]: trail (reduce-trail-to M1 T) = M1
by (metis (no-types) M My append-assoc get-all-ann-decomposition-ezists-prepend[OF decomp] nm
reduce-trail-to-trail-tl-trail-decomp beginning-not-decided-invert)
obtain ¢ where ¢: (M1 = ¢ @ Decided K # M1I)
using nm decomp by (auto dest!: get-all-ann-decomposition-exists-prepend
simp: Mr[symmetric] M append-assoc|symmetric]
simp del: append-assoc
dest!: beginning-not-decided-invert)
obtain ¢’ where
¢": «((Decided K # M1, ¢'") € set (get-all-ann-decomposition (¢ Q@ Decided K # M1))
using Decided-cons-in-get-all-ann-decomposition-append-Decided-cons[of K M1] by blast
have W: W ~ cons-trail (Propagated L (add-mset L D)) (reduce-trail-to M1
(add-learned-cls (add-mset L D') (update-conflicting None T)))
apply (rule state-eqg-trans|OF W)
apply (rule cons-trail-state-eq)
apply (rule rtranclp-skip-backtrack-reduce-trail-to-state-eqlof - - K M1])
using skip apply (simp; fail)
using ¢’ by (auto simp: My [symmetric] M c)
have maz-trail-S-MT-L-D": «get-mazimum-level (trail S) ?D’ = get-mazimum-level My ?D"
by (rule get-mazimum-level-cong) (use H D-D' in auto)
then have lev-I-D": get-level My L = get-mazimum-level My 2D’
using lev-I-D H by auto
have i": | = get-mazimum-level Mt D’
unfolding ¢[symmetric]
by (rule get-mazimum-level-cong) (use H D-D’ in auto)
have Decided K # M1 € set (map fst (get-all-ann-decomposition (trail S)))
using Set.imagel|[OF decomp, of fst] by auto
then have Decided K # M1 € set (map fst (get-all-ann-decomposition Mr))
using fst-get-all-ann-decomposition-prepend-not-decided| OF nm] unfolding M by auto
then obtain M2’ where decomp’: (Decided K # M1, M2') € set (get-all-ann-decomposition M)
by auto
moreover {
have undefined-lit MS K
using (no-dup (trail S)> decomp’ unfolding M M
by (auto simp: lits-of-def defined-lit-map no-dup-def)
then have get-level (trail T) K = get-level (trail S) K
unfolding M Mt by auto }
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ultimately show backtrack T W

apply —
apply (rule backtrack.introslof T L D K M1 M2' D' 1))
subgoal using T by auto
subgoal using T by auto
subgoal using T lev-l" lev-I-D’ bt-S-T by auto
subgoal using T lev-I-D’ bt-S-T by auto
subgoal using i’ W lev-K unfolding Mr[symmetric] clss-S-T by auto
subgoal using lev-K unfolding Mr[symmetric] clss-S-T by auto
subgoal using D-D’ .
subgoal using NU-D’ unfolding clss-S-T .
subgoal using W unfolding i[symmetric] by auto
done

qed

lemma cdclyy -bj-decomp-resolve-skip-and-bj:
assumes cdcly -bj** S T
shows (skip-or-resolve** S T
V (3 U. skip-or-resolve™ S U A backtrack U T))
using assms
proof induction
case base
then show ?Zcase by simp
next
case (step T U) note st = this(1) and bj = this(2) and IH = this(3)
have IH: skip-or-resolve** S T
proof —
{ assume 3 U. skip-or-resolve** S U A backtrack U T
then obtain V where
bt: backtrack V T and
skip-or-resolve** S V
by blast
then have cdclyy -restart™ SV
using rtranclp-skip-or-resolve-rtranclp-cdclyy -restart by blast
with bj bt have Fualse using backtrack-no-cdclyy -bj by simp
}
then show ?thesis using IH by blast
qed
show ?Zcase
using bj
proof (cases rule: cdcly -bj.cases)
case backtrack
then show ?thesis using IH by blast
qed (metis (no-types, lifting) IH rtranclp.simps skip-or-resolve.simps)—+
qed

1.2.3 CDCL with Merging

inductive cdcly -merge-restart :: 'st = 'st = bool where

fw-r-propagate: propagate S S’ => cdclyy -merge-restart S S’ |

fw-r-conflict: conflict S T = full cdely-bj T U = cdcly -merge-restart S U |
fw-r-decide: decide S S’ = cdcly -merge-restart S S|

fw-r-rf: cdely -rf S 8" = cdcly -merge-restart S S’

lemma rtranclp-cdclyy -bj-rtranclp-cdclyy -restart:
cdelyw -bj** S T = cdcly -restart™ S T
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using mono-rtranclp|of cdely -bj cdelyy -restart] by blast

lemma cdclyy -merge-restart-cdclyy -restart:
assumes cdclyy -merge-restart S T
shows cdclyy -restart*™ S T
using assms
proof induction
case (fw-r-conflict S T U) note confl = this(1) and bj = this(2)
have cdcly -restart S T using confl by (simp add: cdcly -restart.intros r-into-rtranclp)
moreover
have cdcly-bj** T U using bj unfolding full-def by auto
then have cdclyy -restart™™ T U using rtranclp-cdclyy -bj-rtranclp-cdclyy -restart by blast
ultimately show ?case by auto
qed (simp-all add: cdcly -o.intros cdcly -restart.intros r-into-rtranclp)

lemma cdcly -merge-restart-conflicting-true-or-no-step:
assumes cdcly -merge-restart S T
shows conflicting T = None V no-step cdcly -restart T
using assms
proof induction
case (fw-r-conflict S T U) note confl = this(1) and n-s = this(2)
{fixDV
assume cdcly -restart U V and conflicting U = Some D
then have Fulse
using n-s unfolding full-def
by (induction rule: cdely -restart-all-rules-induct)
(auto dest!: cdcly -bj.intros elim: decideE propagateE conflictE forgetE restartE)
}
then show ?Zcase by (cases conflicting U) fastforce+
qed (auto simp add: cdcly -rf.simps elim: propagateE decideE restartE forgetE)

inductive cdcly -merge :: ‘st = st = bool where

fw-propagate: propagate S S’ => cdely -merge S S’ |

fw-conflict: conflict S T = full cdely-bj T U = cdcly-merge S U |
fw-decide: decide S S" = cdcly -merge S S|

fw-forget: forget S S’ = cdcly -merge S S’

lemma cdcly -merge-cdcly -merge-restart:
cdely -merge S T = cdcly -merge-restart S T
by (meson cdcly -merge.cases cdcly, -merge-restart.simps forget)

lemma rtranclp-cdcly -merge-tranclp-cdclyy -merge-restart:
cdcly -merge*™™ S T = cdclyy -merge-restart*™ S T
using rtranclp-monolof cdely -merge cdcly -merge-restart] cdcly -merge-cdclyy -merge-restart by blast

lemma cdclyy -merge-rtranclp-cdclyy -restart:
cdcly -merge S T = cdcly -restart*™ S T
using cdcly -merge-cdcly -merge-restart cdcly -merge-restart-cdclyy -restart by blast

lemma rtranclp-cdclyy -merge-rtranclp-cdclyy -restart:
cdcly -merge™ S T = cdclyy -restart™ S T
using rtranclp-mono|of cdcly -merge cdcly -restart™*] cdcly -merge-rtranclp-cdclyy -restart by auto

lemma cdclyy -all-struct-inv-tranclp-cdcly -merge-tranclp-cdcly -merge-cdclyy -all-struct-inv:

assumes
nv: cdely -all-struct-inv b
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cdclyy-merge™ b a
shows (AS T. cdely -all-struct-inv S A cdcly -merge S T)T+ b a
using assms(2)
proof induction
case base
then show ?Zcase using inv by auto
next
case (step ¢ d) note st = this(1) and fw = this(2) and IH = this(3)
have cdclyy -all-struct-inv ¢
using tranclp-into-rtranclp| OF st] cdcly -merge-rtranclp-cdclyy -restart assms(1)
rtranclp-cdcly -all-struct-inv-inv rtranclp-monolof cdcly -merge cdclyy -restart™*] by fastforce
then have (\S T. cdelw -all-struct-inv S A cdcly -merge S T)T+ ¢ d
using fw by auto
then show ?case using IH by auto
qed

lemma backtrack-is-fulll-cdclyy -bj:
assumes bt: backtrack S T
shows fulll cdcly-bj S T
using bt backtrack-no-cdcly -bj unfolding fulll-def by blast

lemma rtrancl-cdclyy -conflicting-true-cdclyy -merge-restart:
assumes cdcly -restart™™ S V and inv: cdely -M-level-inv S and conflicting S = None
shows (cdcly -merge-restart** S V- A conflicting V = None)
V (3T U. cdelw-merge-restart™ S T A conflicting V # None A conflict T U A cdcly -bj** U V)
using assms
proof induction
case base
then show ?case by simp
next
case (step U V) note st = this(1) and cdcly -restart = this(2) and IH = this(3)[OF this(4—)] and
confi[simp] = this(5) and inv = this(4)
from cdclyy-restart
show ?Zcase
proof cases
case propagate
moreover have conflicting U = None and conflicting V = None
using propagate propagate by (auto elim: propagateFE)
ultimately show ?thesis using IH cdcly -merge-restart. fw-r-propagate[of U V| by auto
next
case conflict
moreover have conflicting U = None and conflicting V # None
using conflict by (auto elim!: conflictE)
ultimately show ?thesis using IH by auto
next
case other
then show ?thesis
proof cases
case decide
then show ?thesis using IH cdcly -merge-restart.fw-r-decide[of U V] by (auto elim: decideE)
next
case bj
then consider
(s-or-r) skip-or-resolve U V|
(bt) backtrack U V
by (auto simp: cdely -bj.simps)
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then show ?thesis
proof cases
case s-or-r
have f1: cdcly-bjtT UV
by (simp add: local.bj tranclp.r-into-trancl)
obtain T T’ :: 'st where
f2: cdcly -merge-restart™ S U
V cdely -merge-restart** S T A conflicting U # None
A conflict T T' N cdcly -bj** T' U
using IH confl by blast
have conflicting V # None A conflicting U # None
using (skip-or-resolve U V)
by (auto simp: skip-or-resolve.simps elim!: skipE resolveE)
then show ?thesis
by (metis (full-types) IH f1 rtranclp-trans tranclp-into-rtranclp)
next
case bt
then have conflicting U # None by (auto elim: backtrackFE)
then obtain T T’ where
cdclyy -merge-restart™ S T and
conflicting U # None and
conflict T T' and
cdely -bj** T U
using IH confl by meson
have invU: cdcly -M-level-inv U
using inv rtranclp-cdcly -restart-consistent-inv step.hyps(1) by blast
then have conflicting V = None
using (backtrack U V> inv by (auto elim: backtrackE simp: cdcly -M-level-inv-decomp)
have full cdcly-bj T' V
apply (rule rtranclp-fulll [of cdclw-bj T' U V)
using <cdcly -bj** T' U) apply fast
using (backtrack U V) backtrack-is-fulll-cdcly -bj invU unfolding fulll-def full-def
by blast
then show ?thesis
using cdcly -merge-restart. fw-r-conflictlof T T' V] «conflict T T"
(cdcly -merge-restart™ S T «conflicting V = None» by auto
qed
qed
next
case 71f
moreover have conflicting U = None and conflicting V = None
using 1f by (auto simp: cdcly -rf.simps elim: restartE forgetE)
ultimately show ?thesis using IH cdcly -merge-restart. fw-r-rf[of U V] by auto
qed
qed

lemma no-step-cdclyy -restart-no-step-cdcly -merge-restart:
no-step cdclyy -restart S = no-step cdclyy -merge-restart S
by (auto simp: cdcly -restart.simps cdcly -merge-restart.simps cdcly -o.simps cdclyy -bj.simps)

lemma no-step-cdcly -merge-restart-no-step-cdclyy -restart:
assumes
conflicting S = None and
cdely -M-level-inv S and
no-step cdcly -merge-restart S
shows no-step cdcly -restart S
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proof —
{ fix 5’
assume conflict S S’
then have cdcly -restart S S’ using cdclyy -restart.conflict by auto
then have cdcly -M-level-inv S’
using assms(2) cdclyy -restart-consistent-inv by blast
then obtain S’ where full cdcly -bj S’ S"
using cdcly -bj-exists-normal-form[of S'] by auto
then have Fulse
using (conflict S S" assms(3) fw-r-conflict by blast
}

then show ?thesis
using assms unfolding cdclyy -restart.simps cdclyy -merge-restart.simps cdcly -o.simps cdcly -bj.simps
by (auto elim: skipE resolveE backtrackE conflictE decideE restartE)
qed

lemma cdcly -merge-restart-no-step-cdclyy -bj:

assumes
cdcly -merge-restart S T

shows no-step cdcly -bj T

using assms

by (induction rule: cdcly -merge-restart.induct)

(force simp: cdcly -bj.simps cdcly -rf.simps cdcly -merge-restart.simps full-def
elim!: rulesE)+

lemma rtranclp-cdcly -merge-restart-no-step-cdelyy -bj:
assumes
cdclyy -merge-restart™ S T and
conflicting S = None
shows no-step cdcly -bj T
using assms unfolding rtranclp-unfold
apply (elim disjE)
apply (force simp: cdcly -bj.simps cdcly -rf.simps elim!: rulesE)
by (auto simp: tranclp-unfold-end simp: cdcly -merge-restart-no-step-cdely -bj)

If conflicting S # None, we cannot say anything.

Remark that this theorem does not say anything about well-foundedness: even if you know that
one relation is well-founded, it only states that the normal forms are shared.

lemma conflicting-true-full-cdclyy -restart-iff-full-cdcly -merge:
assumes confl: conflicting S = None and lev: cdcly -M-level-inv S
shows full cdclyy -restart S 'V +— full cdcly -merge-restart S 'V
proof
assume full: full cdcly -merge-restart S 'V
then have st: cdcly -restart™ SV
using rtranclp-monolof cdcly -merge-restart cdely -restart™| cdcly -merge-restart-cdely -restart
unfolding full-def by auto

have n-s: no-step cdclyy -merge-restart V
using full unfolding full-def by auto
have n-s-bj: no-step cdcly-bj V
using rtranclp-cdcly -merge-restart-no-step-cdclyy -bj confl full unfolding full-def by auto
have A\S’. conflict V S’ = cdcly -M-level-inv S’
using cdcly -restart.conflict cdcly -restart-consistent-inv lev rtranclp-cdclyy -restart-consistent-inv st
by blast
then have A\S’. conflict VS’ = Fulse
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using n-s n-s-bj cdcly -bj-exists-normal-form cdcly -merge-restart.simps by meson
then have n-s-cdcly -restart: no-step cdclyy -restart V
using n-s n-s-bj by (auto simp: cdcly -restart.simps cdcly -o0.simps cdclyy -merge-restart.simps)
then show full cdclyy -restart S 'V using st unfolding full-def by auto
next
assume full: full cdcly -restart S 'V
have no-step cdclyy -merge-restart V
using full no-step-cdcly -restart-no-step-cdcly, -merge-restart unfolding full-def by blast
moreover {
consider
(fw) cdcly -merge-restart*™ S V and conflicting V = None |
(bj) T U where
cdclyy -merge-restart™ S T and
conflicting V # None and
conflict T U and
cdelyw-bj** UV
using full rtrancl-cdclyy -conflicting-true-cdcly, -merge-restart confl lev unfolding full-def
by meson
then have cdcly -merge-restart™ S V
proof cases
case fw
then show ?thesis by fast
next
case (bj T U)
have no-step cdcly -bj V
using full unfolding full-def by (meson cdcly -0.bj other)
then have full cdcly-bj UV
using ¢ cdcly -bj** U V) unfolding full-def by auto
then have cdcly -merge-restart T 'V
using (conflict T U> cdcly -merge-restart.fw-r-conflict by blast
then show ?thesis using <cdcly -merge-restart** S T) by auto
qed }
ultimately show full cdcly -merge-restart S 'V unfolding full-def by fast
qed

lemma init-state-true-full-cdclyy -restart-iff-full-cdcly -merge:
shows full cdcly -restart (init-state N) V «— full cdcly -merge-restart (init-state N) V
by (rule conflicting-true-full-cdcly -restart-iff-full-cdcly -merge) auto

1.2.4 CDCL with Merge and Strategy

The intermediate step

inductive cdcly -s’ :: 'st = 'st = bool for S :: ‘st where

conflict”: conflict S 8" = cdely-s’ S S|

propagate’: propagate S S’ = cdely-s" S S’ |

decide’: no-step conflict S = no-step propagate S = decide S S’ = cdelw-s’ S S’ |
bj’": fulll cdcly -bj S 8" = cdcly-s" S S’

inductive-cases cdcly -s’E: cdclyy-s' S T

lemma rtranclp-cdclyy -bj-fulll-cdclp-cdclyy -stgy:
cdcly -bj** S S' = cdclyy -stgy** S S’

proof (induction rule: converse-rtranclp-induct)
case base
then show Zcase by simp

156



next
case (step T U) note st = this(2) and bj = this(1) and IH = this(3)
have n-s: no-step conflict T no-step propagate T
using bj by (auto simp add: cdcly -bj.simps elim!: rulesE)
consider
() U =5’
| (U") U’ where cdely-bj U U’ and cdely -bj** U’ S’
using st by (metis converse-rtranclpE)
then show ?case
proof cases
case U
then show ?thesis
using n-s cdcly -0.bjf local.bj other’ by (meson r-into-rtranclp)
next
case U’ note U’ = this(1)
have no-step conflict U no-step propagate U
using U’ by (fastforce simp: cdclyy -bj.simps elim!: rulesE)+
then have cdcly-stgy T U
using n-s cdcly -stgy.simps local.bj cdclyy-0.bj by meson
then show ?thesis using IH by auto
qed
qed

lemma cdclyy -s'-is-rtranclp-cdclyy -stgy:
cdcly-s' S T = cdcly -stgy*™ S T
by (induction rule: cdcly -s'.induct)
(auto simp: fulll-def
dest: tranclp-into-rtranclp rtranclp-cdely -bj-fulll-cdclp-cdcly -stgy cdclyy -stgy.intros)

lemma cdclyy -stgy-cdclyy -s’-no-step:
assumes cdcly -stgy S U and cdclyy -all-struct-inv S and no-step cdelyy -bj U
shows cdclyy-s' S U
using assms apply (cases rule: cdcly -stgy.cases)
using bj'[of S U] by (auto intro: cdely -s'.intros simp: cdely -o.simps fulll-def)

lemma rtranclp-cdcly -stgy-connected-to-rtranclp-cdcly, -s”:
assumes cdcly -stgy*™™ S U and inv: cdclyy -M-level-inv S
shows cdcly-s"* S UV (3T. cdcly-8** S T A cdelw-bjt+ T U A conflicting U # None)
using assms(1)

proof induction
case base
then show ?case by simp

next
case (step T V) note st = this(1) and o = this(2) and IH = this(3)
from o show ?case
proof cases

case conflict’
then have cdclyy-s™** S T
using IH by (auto elim: conflictE)
moreover have f2: cdcly-s™** T V
using cdclyy-s’.conflict’ conflict’ by blast
ultimately show #thesis by auto
next
case propagate’
then have cdclyy-s™** S T
using IH by (auto elim: propagateE)
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moreover have f2: cdcly -s™** T V
using cdclyy-s’.propagate’ propagate’ by blast
ultimately show ?thesis by auto
next
case other’ note o = this(3) and n-s = this(1,2) and full = this(3)
then show ?thesis
using o
proof (cases rule: cdcly -o-rule-cases)
case decide
then have cdcly-s™* S T
using IH by (auto elim: rulesE)
then show ?thesis
by (meson decide decide’ full n-s rtranclp.rtrancl-into-rtrancl)
next
case backtrack
consider
(s") cdely-s"* S T |
(bj) S’ where cdcly -s™* S S" and cdcly -bjt ™ S’ T and conflicting T # None
using IH by blast
then show ?thesis
proof cases
case s’
moreover {
have cdclyy-M-level-inv T
using inv local.step(1) rtranclp-cdcly -stgy-consistent-inv by auto
then have fulll cdcly-bj T V
using backtrack-is-fulll-cdcly -bj backtrack by blast
then have cdclyy-s’ T 'V
using full bj’ n-s by blast }
ultimately show ?thesis by auto
next
case (bj S’) note S-S’ = this(1) and bj-T = this(2)
moreover {
have cdclyy-M-level-inv T
using inv local.step(1) rtranclp-cdclyy -stgy-consistent-inv by auto
then have fulll cdclyw-bj T V
using backtrack-is-fulll-cdcly -bj backtrack by blast
then have fulll cdely-bj S" V
using bj-T unfolding fulll-def by fastforce }
ultimately have cdcly-s’ S’ V by (simp add: cdcly-s’.bj”)
then show ?thesis using S-S’ by auto
qed
next
case skip
then have confi-V: conflicting V # None
using skip by (auto elim: rulesE)
have cdcly-bj T V
using local.skip by blast
then show ?thesis
using confl-V step.IH by auto
next
case resolve
have confi-V: conflicting V # None
using resolve by (auto elim!: rulesE)
have cdcly-bj T V
using local.resolve by blast
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then show ?thesis
using confl-V step.IH by auto
qged
qed
qed

lemma n-step-cdclyy -stgy-iff-no-step-cdclyy -restart-cl-cdclyy -o:
assumes inv: cdclyy -all-struct-inv S
shows no-step cdely -s’ S <+— no-step cdcly -stgy S (is 25’ S «— 2C 9)
proof
assume ?C S
then show 25’ S
by (auto simp: cdcly-s'.simps fulll-def tranclp-unfold-begin cdclyy -stgy.simps)
next
assume n-s: 25’ S
then show ?C S
by (metis bj’ cdcly -bj-exists-normal-form cdclyy -o.cases cdelyy-s'.intros
cdelyy -stgy. cases decide’ full-unfold)
qed

lemma cdclyy -s’-tranclp-cdclyy -restart:
assumes cdclyy-s’ S S’ shows cdelyy-restart™ S S/
using assms
proof (cases rule: cdely -s'.cases)
case conflict’
then show ?thesis by blast
next
case propagate’
then show ?thesis by blast
next
case decide’
then show ?thesis
using cdclyy -stgy.simps cdcly -stgy-tranclp-cdclyy -restart by (meson cdclyy -o.simps)
next
case bj’
then show ?thesis
by (metis cdcly-s".bj’ cdelw -s'-is-rtranclp-cdcly -stgy fulll-def
rtranclp-cdely -stgy-rtranclp-cdclyy -restart rtranclp-unfold tranclp-unfold-begin)
qed

lemma tranclp-cdclyy -s’-tranclp-cdclyy -restart:
cdelyy-s'TT S 8" = cdelyy -restartt+ S S’
apply (induct rule: tranclp.induct)
using cdclyy -s’-tranclp-cdclyy -restart apply blast
by (meson cdcly -s'-tranclp-cdcly -restart tranclp-trans)

lemma rtranclp-cdcly, -s’-rtranclp-cdclyy -restart:
cdely-s™* 8 S’ = cdcly -restart** S S’
using rtranclp-unfold|of cdcly -s’ S S’] tranclp-cdely -s'-tranclp-cdcly -restart[of S S’] by auto

lemma full-cdclyy -stgy-iff-full-cdelyy -s":

assumes inv: cdclyy -all-struct-inv S

shows full cdely -stgy S T «— full cdely-s' S T (is 25 +— 257)
proof

assume 25’

then have cdclyy -restart*™* S T
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using rtranclp-cdclyy -s’-rtranclp-cdclyy -restart[of S T| unfolding full-def by blast
then have inv’: cdelyy -all-struct-inv T
using rtranclp-cdclyy -all-struct-inv-inv inv by blast
have cdcly -stgy*™ S T
using (25" unfolding full-def
using cdclyy -s'-is-rtranclp-cdclyy -stgy rtranclp-monolof cdely -s' cdclyy -stgy**] by auto
then show 25
using (S inv’ n-step-cdclyy -stgy-iff-no-step-cdclyy -restart-cl-cdcly, -o unfolding full-def
by blast
next
assume 25
then have inv-T: cdcly -all-struct-inv T
by (metis assms full-def rtranclp-cdcly -all-struct-inv-inv
rtranclp-cdely -stgy-rtranclp-cdclyy -restart)
consider
(") cdely-s"* S T |
(st) S’ where cdcly-s™* S S" and cdcly-bj*™+ S’ T and conflicting T # None
using rtranclp-cdcly -stgy-connected-to-rtranclp-cdely -s'[of S T| inv <2S)
unfolding full-def cdclyy -all-struct-inv-def
by blast
then show 25’
proof cases
case s’
then show ?thesis
using <full cdcly -stgy S T) unfolding full-def
by (metis inv-T n-step-cdcly -stgy-iff-no-step-cdclyy -restart-cl-cdelyy -0)
next
case (st S') note st = this(1) and bj = this(2) and confl = this(3)
have no-step cdcly-bj T
using (29 cdclyy -stgy.conflict’ cdclyy -stgy.intros(2) other’ unfolding full-def by blast
then have fulll cdely-bj S’ T
using bj unfolding fulll-def by blast
then have cdclyy-s’ S’ T
using cdcly-s".bj'lof S’ T)] by blast
then have cdelyy-s™** S T
using st(1) by auto
moreover have no-step cdely-s' T
using nv-T <full cdely -stgy S T) n-step-cdclyy -stgy-iff-no-step-cdclyy -restart-cl-cdelyy -o
unfolding full-def by blast
ultimately show #thesis
unfolding full-def by blast
qed
qed

end

end
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Chapter 2

NOT’s CDCL and DPLL

theory CDCL-WNOT-Measure
imports Weidenbach-Book-Base. WB-List-More
begin

The organisation of the development is the following:

e CDCL_WNOT_Measure.thy contains the measure used to show the termination the core of
CDCL.

e CDCL_NOT.thy contains the specification of the rules: the rules are defined, and we proof
the correctness and termination for some strategies CDCL.

e DPLL_NOT.thy contains the DPLL calculus based on the CDCL version.

e DPLL_W.thy contains Weidenbach’s version of DPLL and the proof of equivalence between
the two DPLL versions.

2.1 Measure

This measure show the termination of the core of CDCL: each step improves the number of
literals we know for sure.

This measure can also be seen as the increasing lexicographic order: it is an order on bounded
sequences, when each element is bounded. The proof involves a measure like the one defined
here (the same?).

definition e :: nat = nat = nat list = nat where
pe sb M= (> i=0..<length M. M'i x b~ (s +i — length M))

lemma pc-Nil[simp):
pe sbll =10
unfolding uc-def by auto

lemma pc-single]simp):
pe sb[Ll=Lx*xb " (s — Suc0)
unfolding pc-def by auto

lemma set-sum-atLeastLess Than-add:

> i=k..<k+(b:nat). fi) = O i=0..<b. f (k+ 1))
by (induction b) auto
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lemma set-sum-atLeastLess Than-Suc:

>i=1..<Sucj. fi) = (> i=0..<j. f (Suc 7))
using set-sum-atLeastLessThan-add[of - 1 j] by force

lemma pc-cons:
pe sO(L#EM)=L*xb " (s—1 —length M) + pc sb M
proof —
have pc s b (L # M) = (3 i=0..<length (L#M). (L#M)'i x b~ (s +i — length (L#M)))
unfolding pc-def by blast
also have ... = (> i=0..<1. (L#M)i « b~ (s +i — length (L#M)))
(Y i=1..<length (L#M). (L#M)Vi * b~ (5 +i — length (L#M)))
by (rule sum.atLeastLessThan-concat[symmetric]) simp-all
finally have puc s b (L# M)=L b~ (s — 1 — length M)
+ O i=1..<length (L#M). (L#M)'i x b~ (s +i — length (L#M)))
by auto
moreover {
have (> i=1..<length (L#M). (L#M)Vi = b~ (s +i — length (L#M))) =
(> i=0..<length M. (L#M)!(Suc ©) * b~ (s + (Suc i) — length (L#M)))
unfolding length-Cons set-sum-atLeastLessThan-Suc by blast
also have ... = (D i=0..<length M. M!i x b~ (s + i — length M))
by auto
finally have (3 i=1..<length (L#M). (L#M)li x b~ (s +i — length (L#M))) = pc s b M
unfolding pc-def .
}
ultimately show ?thesis by presburger
qed

lemma pc-append:
assumes s > length (MQM')
shows pc s b (MQM') = pc (s — length M) b M + puc s b M’
proof —
have pc s b (MQM') = (3" i=0..<length (MQM'). (MQM"Ni x b~ (s +i — length (MQM")))
unfolding uc-def by blast
moreover then have ... = (3 i=0..< length M. (MQM")!i * b~ (s +i — length (MQM")))
+ (3 i=length M..<length (MQM'). (MQM")li x b~ (s +i — length (MQM")))
by (auto intro!: sum.atLeastLessThan-concat[symmetric])
moreover
have Vie{0..< length M}. (MQM")i % b~ (s +i — length (MQM")) = M ! ix b~ (s — length M’
+ i — length M)
using (s > length (MQM')) by (auto simp add: nth-append ac-simps)
then have pc (s — length M) b M = (3> i=0..< length M. (MQM")i « b~ (s +i — length
(M@M)
unfolding pc-def by auto
ultimately have puc s b (MQM")= uc (s — length M") b M
+ (3 i=length M..<length (MQM'). (MQM")\i x b~ (s +i — length (M@QM")))
by auto
moreover {
have (3 i=length M..<length (MQM"). (MQM")li « b~ (s +i — length (MQM'))) =
(> i=0..<length M'. M"i % b~ (s + i — length M"))
unfolding length-append set-sum-atLeastLess Than-add by auto
then have (> i=length M..<length (MQM'). (MQM")\i * b~ (s +i — length (MQM")) = pc s b
M/
unfolding pc-def .

}

ultimately show ¢thesis by presburger
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qed

lemma pc-cons-non-empty-inf:
assumes M-ge-1: Vicset M. i > 1 and M: M # ||
shows puc s b M > b~ (s — length M)
using assms by (cases M) (auto simp: mult-eq-if pc-cons)

Copy of ~~/src/HOL/ex/NatSum.thy (but generalized to 0 < k)

lemma sum-of-powers: 0 < k = (k — 1) x (>_i=0..<n. k™) = k™n — (1::nat)
apply (cases k = 0)
apply (cases n; simp)
by (induct n) (auto simp: Nat.nat-distrib)

In the degenerated cases, we only have the large inequality holds. In the other cases, the
following strict inequality holds:

lemma pc-bounded-non-degenerated:
fixes b ::nat
assumes
b > 0 and
M # [ and
M-le: Vi < length M. M'i < b and
s > length M
shows pc s b M < b7s
proof —
consider (b1) b= 1 | (b) b>1 using b>0) by (cases b) auto
then show ?thesis
proof cases
case b1
then have Vi < length M. M'i = 0 using M-le by auto
then have p¢ s b M = 0 unfolding uc-def by auto
then show ?thesis using <b > 0) by auto
next
case b
have V i € {0..<length M}. Mli « b™ (s +i — length M) < (b—1) * b~ (s +i — length M)
using M-le <b > 1) by auto
then have uc s b M < (3 i=0..<length M. (b—1) = b~ (s +i — length M))
using (M#[]) «b>0> unfolding uc-def by (auto intro: sum-mono)
also
have V i € {0..<length M}. (b—1) *x b~ (s +i — length M) = (b—1) x b i % b~ (s — length M)
by (metis Nat.add-diff-assoc2 add.commute assms(4) mult.assoc power-add)
then have (> i=0..<length M. (b—1) x b~ (s +i — length M))
= (3" i=0..<length M. (b—1)* b™ i x b (s — length M))
by (auto simp add: ac-simps)
also have ... = (> i=0..<length M. b~ %) * b" (s — length M) x (b—1)
by (simp add: sum-distrib-right sum-distrib-left ac-simps)
finally have pc s b M < (3 i=0..<length M. b %) = (b—1) = b (s — length M)
by (simp add: ac-simps)

also
have (> i=0..<length M. b {)x (b—1) = b ~ (length M) — 1
using sum-of-powers|of b length M| b>1)
by (auto simp add: ac-simps)
finally have puc s b M < (b = (length M) — 1) x b ~ (s — length M)
by auto
also have ... < b ™ (length M) « b ~ (s — length M)
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using (b>1) by auto
also have ... = b " s
by (metis assms(4) le-add-diff-inverse power-add)
finally show ?thesis unfolding pc-def by (auto simp add: ac-simps)
qed
qed

In the degenerate case b = (0::'a), the list M is empty (since the list cannot contain any
element).

lemma pc-bounded:
fixes b :: nat
assumes
M-le: Vi < length M. M'i < b and
s > length M
b>0
shows uc sb M < b " s
proof —
consider (M0) M =[] | (M) b > 0 and M # ||
using M-le by (cases b, cases M) auto
then show ?thesis
proof cases
case M0
then show ?thesis using M-le <b > () by auto
next
case M
show ?thesis using uc-bounded-non-degenerated|OF M assms(1,2)] by arith
qed
qed

When b = 0, we cannot show that the measure is empty, since 07 = 1.

lemma pc-base-0:
assumes length M < s
shows puc s 0 M < M0
proof —
{
assume s = length M
moreover {
fix n
have (> i=0..<n. M ! i x (0:nat) ") < M1 0
apply (induction n rule: nat-induct)
by simp (rename-tac n, case-tac n, auto)

ultimately have ?thesis unfolding uc-def by auto

}

moreover
{
assume length M < s
then have pc s 0 M = 0 unfolding pc-def by auto}
ultimately show ?thesis using assms unfolding uc-def by linarith
qed

lemma finite-bounded-pair-list:
fixes b :: nat
shows finite {(ys, zs). length zs < s A length ys < s A
(Vi< length xs. s 1 i < b) A (Vi< length ys. ys ! i < b)}
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proof —
have H: {(ys, zs). length xs < s A length ys < s A
(Vi< length xs. xs 1 i < b) A (Vi< length ys. ys ! i < b)}
-
{zs. length xs < s N\ (Vi< length xs. xzs | i < b)} x
{zs. length xs < s N (Vi< length xs. zs ! i < b)}
by auto
moreover have finite {zs. length zs < s N (Vi< length zs. s ! i < b)}
by (rule finite-bounded-list)
ultimately show ¢thesis by (auto simp: finite-subset)
qed

definition vNOT :: nat = nat = (nat list X nat list) set where
vNOT s base = {(ys, zs). length xs < s A length ys < s A
(Vi< length xs. zs | i < base) A (Vi< length ys. ys ! i < base) A
(ys, xs) € lenlex less-than}

lemma finite-v NOT [simp]:
finite (WNOT s base)
proof —
have vNOT s base C {(ys, xs). length zs < s A length ys < s A
(Vi< length xs. zs ! i < base) A (Vi< length ys. ys | i < base)}
by (auto simp: vNOT-def)
moreover have finite {(ys, zs). length xs < s A length ys < s A
(Vi< length xs. xs ! i < base) A (Vi< length ys. ys ! i < base)}
by (rule finite-bounded-pair-list)
ultimately show ?thesis by (auto simp: finite-subset)
qed

lemma acyclic-vNOT: acyclic (WNOT s base)
apply (rule acyclic-subset[of lenlex less-than vNOT s base])
apply (rule wf-acyclic)
by (auto simp: vNOT-def)

lemma wf-vNOT: wf (vNOT s base)
by (rule finite-acyclic-wf) (auto simp: acyclic-vNOT)

end

theory CDCL-NOT

imports
Weidenbach-Book-Base. WB-List-More
Weidenbach-Book-Base. Wellfounded-More
Entailment-Definition. Partial- Annotated- Herbrand-Interpretation
CDCL-WNOT-Measure

begin

2.2 NOT’s CDCL

2.2.1 Auxiliary Lemmas and Measure
We define here some more simplification rules, or rules that have been useful as help for some
tactic

lemma atms-of-uminus-lit-atm-of-lit-of :
atms-of {# —lit-of z. © €# A#} = atm-of © (lit-of * (set-mset A)))
unfolding atms-of-def by (auto simp add: Fun.image-comp)
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lemma atms-of-ms-single-image-atm-of-lit-of :
(atms-of-ms (unmark-s A) = atm-of ¢ (lit-of < A))
unfolding atms-of-ms-def by auto

2.2.2 Initial Definitions
The State

We define here an abstraction over operation on the state we are manipulating.

locale dpll-state-ops =
fixes

trail :: (st = ('v, unit) ann-lits) and
clausesyor :: /st = "v clauses) and
prepend-trail :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail :: st ='st) and
add-clsyor : (v clause = 'st = st and
remove-clsyor 2 ('v clause = 'st = st

begin

abbreviation stateyor :: ‘st = ('v, unit) ann-lit list X "v clauses) where

(stateyor S = (trail S, clausesyor S)

end

NOT’s state is basically a pair composed of the trail (i.e. the candidate model) and the set of
clauses. We abstract this state to convert this state to other states. like Weidenbach’s five-tuple.

locale dpll-state =
dpll-state-ops
trail clausesyoT prepend-trail tl-trail add-clsyoT remove-clsy o — related to the state
for
trail 2 st = ('v, unit) ann-litsy and
clausesyor :: (st = "v clauses) and
prepend-trail :: ('v, unit) ann-lit = ‘st = 'st) and
tl-trail :: st ='st) and
add-clsyor 2 (v clause = 'st = ‘st and
remove-clsyor : (v clause = st = st +
assumes
prepend-trail y o r:
(stateyor (prepend-trail L st) = (L # trail st, clausesyor st)) and
tl—tT’ailNOTS
(statey o1 (tl-trail st) = (tl (trail st), clausesyor st)) and
add-clsyor:
statexyor (add-clsyor C st) = (trail st, add-mset C (clausesyor st)) and
remove-clsyor:
statenyor (remove-clsyor C st) = (trail st, removeAll-mset C (clausesyor st))
begin
lemma
trail-prepend-trail[ simp):
(trail (prepend-trail L st) = L # trail st
and
trail-tl-trail y o[ simp]: <trail (H-trail st) = ¢l (trail st)) and
trail-add-clsy or[simp]: (trail (add-clsyor C st) = trail sty and
trail-remove-clsy o [simp]: trail (remove-clsyor C st) = trail st) and

clauses-prepend-trail[simp):
(clausesyor (prepend-trail L st) = clausesyor st
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and
clauses-tl-trail[simp]: (clausesyor (tl-trail st) = clausesyor st» and
clauses-add-clsy or|[simp]:

clausesyor (add-clsyor C st) = add-mset C (clausesyor st)) and
clauses-remove-cls y o r[simpl:

(clausesyor (remove-clsyor C st) = removeAll-mset C (clausesyor st)
using prepend-trailyor|of L st| ti-trailyor|of st] add-clsyor[of C st] remove-clsyor|of C st
by (cases (stateyor sb; auto)+

We define the following function doing the backtrack in the trail:

function reduce-trail-toxor :: (a list = 'st = 'sty where

(reduce-trail-toyor F S =
(if length (trail S) = length F V trail S = [] then S else reduce-trail-toyor F (tl-trail S))
by fast+

termination by (relation (measure (A(-, S). length (trail S)))) auto

declare reduce-trail-toyor.simps[simp del)

Then we need several lemmas about the reduce-trail-toyor.

lemma
shows
reduce-trail-ton o-Nil[simp]: trail S = [| = reduce-trail-toxyor F S = S and
reduce-trail-ton or-eq-length[simp|: dength (trail S) = length F = reduce-trail-toxyor F S = S
by (auto simp: reduce-trail-ton o1 .simps)

lemma reduce-trail-ton o-length-ne[simp):
dength (trail S) # length F = trail S # [| =
reduce-trail-toyor F S = reduce-trail-toyor F (tl-trail S)
by (auto simp: reduce-trail-ton o1 .simps)

lemma trail-reduce-trail-toy or-length-le:
assumes (ength F > length (trail S)
shows «trail (reduce-trail-tonor F S) = [
using assms by (induction F S rule: reduce-trail-ton or.induct)
(simp add: less-imp-diff-less reduce-trail-ton o1 .simps)

lemma trail-reduce-trail-ton o-Nil[simp:
(trail (reduce-trail-toyor [] S) = [
by (induction (]» S rule: reduce-trail-ton or.induct)
(simp add: less-imp-diff-less reduce-trail-ton o1 .simps)

lemma clauses-reduce-trail-toy or-Nil:
clausesyor (reduce-trail-toyor [| S) = clausesyor S
by (induction ([ S rule: reduce-trail-toy or.induct)
(simp add: less-imp-diff-less reduce-trail-ton o1 .simps)

lemma trail-reduce-trail-tony o-drop:
(trail (reduce-trail-toyor F S) =
(if length (trail S) > length F
then drop (length (trail S) — length F) (trail S)
else [])
apply (induction F' S rule: reduce-trail-ton or.induct)
apply (rename-tac F S, case-tac <trail S)
apply auto[]
apply (rename-tac list, case-tac Suc (length list) > length F))
prefer 2 apply simp
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apply (subgoal-tac «Suc (length list) — length F = Suc (length list — length F')))
apply simp

apply simp

done

lemma reduce-trail-toyn o -skip-beginning:
assumes (trail S = F' Q F)
shows «trail (reduce-trail-tonor F S) = F
using assms by (auto simp: trail-reduce-trail-ton or-drop)

lemma reduce-trail-ton o -clauses[simpl:
(clausesy ot (reduce-trail-tonor F S) = clausesnor S
by (induction F S rule: reduce-trail-tonor.induct)
(simp add: less-imp-diff-less reduce-trail-ton oT.simps)

lemma trail-eq-reduce-trail-toy or-€q:
(trail S = trail T = trail (reduce-trail-tonor F' S) = trail (reduce-trail-tonor F T)
apply (induction F S arbitrary: T rule: reduce-trail-ton or.induct)
by (metis trail-tl-traily o reduce-trail-ton o -eg-length reduce-trail-toy or-length-ne
reduce-trail-ton o -Nil)

lemma trail-reduce-trail-ton or-add-clsy or[simp:
mo-dup (trail S) =
trail (reduce-trail-tonor F (add-clsyor C S)) = trail (reduce-trail-toyor F S)
by (rule trail-eq-reduce-trail-toy or-eq) simp

lemma reduce-trail-ton o-trail-tl-trail-decomp|[simp):
(trail S = F' @ Decided K # F —>
trail (reduce-trail-toyor F (tl-trail S)) = F»
apply (rule reduce-trail-ton or-skip-beginning[of - tl (F' Q Decided K # []))])
by (cases F') (auto simp add:tl-append reduce-trail-ton o-skip-beginning)

lemma reduce-trail-toyx or-length:
dength M = length M' = reduce-trail-toxyor M S = reduce-trail-toxor M’ S
apply (induction M S rule: reduce-trail-ton or.induct)
by (simp add: reduce-trail-ton o .simps)

abbreviation trail-weight where
(trail-weight S = map (M. 1 + length l) o snd) (get-all-ann-decomposition (trail S))

As we are defining abstract states, the Isabelle equality about them is too strong: we want the
weaker equivalence stating that two states are equal if they cannot be distinguished, i.e. given
the getter trail and clausesyor do not distinguish them.

definition state-eqnor :: (st = ‘st = bool (infix ~ 50) where
(S ~ T <— trail S = trail T A clausesyor S = clausesyor T)

lemma state-eqn or-ref[intro, simp):
S~ 9
unfolding state-eqnor-def by auto
lemma state-eqyor-sym:
S~T+—T~9
unfolding state-eqnor-def by auto

lemma state-eqyor-trans:
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S~ T =T~U= S5~
unfolding state-eqnor-def by auto

lemma
shows
state-eqnor-trail: <S ~ T = trail S = trail T) and
state-eqnoT-clauses: (S ~ T = clausesyor S = clausesyor T)
unfolding state-eqnor-def by auto

lemmas state-simpyor[simp] = state-eqnor-trail state-eqn or-clauses

lemma reduce-trail-tonor-state-eqnor-compatible:
assumes ST: (S ~ T
shows (reduce-trail-toyor F S ~ reduce-trail-toxyor F T)
proof —
have (clausesyor (reduce-trail-toxor F S) = clausesyor (reduce-trail-toyor F T)
using ST by auto
moreover have <trail (reduce-trail-toyor F S) = trail (reduce-trail-tonor F T)
using trail-eq-reduce-trail-toy or-eqlof S T F] ST by auto
ultimately show ?thesis by (auto simp del: state-simpyor simp: state-eqnor-def)
qed

end — End on locale dpli-state.

Definition of the Transitions

Each possible is in its own locale.

locale propagate-ops =
dpll-state trail clausesyor prepend-trail tl-trail add-clsyor remove-clsyor
for
trail :: (st = ('v, unit) ann-lits) and
clausesyor :: (st = "v clauses) and
prepend-trail :: ('v, unit) ann-lit = st = 'st) and
tl-trail :: st ='st) and
add-clsyor : (v clause = 'st = ‘st and
remove-clsyor : (v clause = 'st = 'str +
fixes
propagate-conds :: ('v, unit) ann-lit = st = 'st = bool
begin
inductive propagatenor :: (st = ’st = bool) where
propagatey or|[intro]: add-mset L C' €# clausesyor S = trail S |=as CNot C
= undefined-lit (trail S) L
= propagate-conds (Propagated L ()) S T
= T ~ prepend-trail (Propagated L ()) S
= propagatenor S T
inductive-cases propagatey ot E[elim]: (propagatenor S T)

end

locale decide-ops =
dpll-state trail clausesyor prepend-trail tl-trail add-clsyor remove-clsyor
for
trail :: ‘st = ('v, unit) ann-lits) and
clausesyor 1 (st = "v clauses) and
prepend-trail :: ('v, unit) ann-lit = st = 'st) and
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tl-trail :: st ='st) and
add-clsyor (v clause = 'st = ‘st and
remove-clsyor 1 (v clause = 'st = 'st) +
fixes
decide-conds :: (st = st = bool)
begin
inductive decidenor :: (st = ‘st = bool) where
deciden or[introl:
(undefined-lit (trail S) L =
atm-of L € atms-of-mm (clausesyor S) =
T ~ prepend-trail (Decided L) S =
decide-conds S T —
decideyoT S T)

inductive-cases decidenor E[elim]: (decidenor S S)
end

locale backjumping-ops =
dpll-state trail clausesyoT prepend-trail tl-trail add-clsyoT remove-clsyor
for
trail :: (st = ('v, unit) ann-lits) and
clausesnyor : (st = 'v clauses) and
prepend-trail :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail = st ='st) and
add-clsyor 2 (v clause = 'st = st and
remove-clsyor 1 (v clause = 'st = 'st) +
fixes
backjump-conds :: (v clause = 'v clause = v literal = 'st = 'st = bool
begin

inductive backjump where
(trail S = F' Q Decided K # F
T ~ prepend-trail (Propagated L ()) (reduce-trail-tonor F S)
C €# clausesyor S
trail S |=as CNot C
undefined-lit F' L
atm-of L € atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-l (trail S))
clausesyor S Epm add-mset L C’
F =as CNot C’
= backjump-conds C C' L S T
= backjump S T)
inductive-cases backjumpE: (backjump S T)

LRy

The condition atm-of L € atms-of-mm (clausesyor S) U atm-of ‘ lits-of-1 (trail S) is not
implied by the the condition clausesyor S FEpm add-mset L C’ (no negation).

end

2.2.3 DPLL with Backjumping

locale dpll-with-backjumping-ops =

propagate-ops trail clausesyor prepend-trail ti-trail add-clsyor remove-clsyor propagate-conds +
decide-ops trail clausesyor prepend-trail tl-trail add-clsyor remove-clsyor decide-conds +
backjumping-ops trail clausesyor prepend-trail tl-trail add-clsyor remove-clsyor backjump-conds

for
trail :: (st = ('v, unit) ann-lits) and
clausesyor :: /st = "v clauses) and
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prepend-trail :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail :: st ='st) and
add-clsyor : (v clause = 'st = st and
remove-clsyor 1 (v clause = 'st = 'st) and
inv :: (st = bool and
decide-conds :: ('st = 'st = bool) and
backjump-conds :: (v clause = 'v clause = v literal = ’st = ‘st = bool) and
propagate-conds :: «('v, unit) ann-lit = ‘st = ‘st = boo +
assumes
bj-can-jump:
NS CF'K F L.
nv S =
trail S = F' Q Decided K # F —
C €# clausesyor S =
trail S Eas CNot C =
undefined-lit F L —>
atm-of L € atms-of-mm (clausesyor S) U atm-of * (lits-of-l (F' @ Decided K # F)) =
clausesyor S Epm add-mset L C' =
F Eas CNot C' =
—no-step backjump S) and
can-propagate-or-decide-or-backjump:
atm-of L € atms-of-mm (clausesyor S) =
undefined-lit (trail S) L =
satisfiable (set-mset (clausesyor S)) =
inv S =
no-dup (trail S) =
IT. decideyor S T V propagateyor S T V backjump S T)
begin

We cannot add a like condition atms-of C’ C atms-of-ms N to ensure that we can backjump
even if the last decision variable has disappeared from the set of clauses.

The part of the condition atm-of L € atm-of ¢ lits-of-l (F' @ Decided K # F') is important,
otherwise you are not sure that you can backtrack.

Definition

We define dpll with backjumping;:

inductive dpli-bj :: (st = 'st = bool) for S :: 'st where
bj-decidenor: (decidenor S S’ = dpll-bj S S |
bj-propagatenor: (propagatenor S S’ => dpll-bj S S |
bj-backjump: (backjump S S’ = dpll-bj S S’

lemmas dpll-bj-induct = dpll-bj.induct|split-format(complete)]
thm dpll-bj-induct|OF dpll-with-backjumping-ops-azioms]
lemma dpli-bj-all-induct[consumes 2, case-names decidenoT propagatenor backjump):
fixes S T :: st
assumes
«pll-bj S T> and
(inv S
(AL T. undefined-lit (trail S) L = atm-of L € atms-of-mm (clausesyor S)
= T ~ prepend-trail (Decided L) S
= P ST and
(NC L T. add-mset L C €# clausesyor S = trail S |=as CNot C = undefined-lit (trail S) L
= T ~ prepend-trail (Propagated L ()) S
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= P ST and
(NCF'KFLC'T. Ce# clausesyor S = F' Q Decided K # F |=as CNot C
= trail S = F’' Q Decided K # F
= undefined-lit F' L
= atm-of L € atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-1 (F' @ Decided K # F))
= clausesyor S Epm add-mset L C’
= F [=as CNot C’
= T ~ prepend-trail (Propagated L ()) (reduce-trail-tonor F 5)
= PSD
shows «(P S T)
apply (induct T rule: dpll-bj-induct] OF local.dpll-with-backjumping-ops-azioms))
apply (rule assms(1))
using assms(3) apply blast
apply (elim propagatenyorE) using assms(4) apply blast
apply (elim backjumpE) using assms(5) <inv S) by simp

Basic properties

First, some better suited induction principle lemma dpli-bj-clauses:
assumes «dpll-bj S T» and «nv S
shows (clausesyor S = clausesyor T)
using assms by (induction rule: dpll-bj-all-induct) auto

No duplicates in the trail lemma dpli-bj-no-dup:
assumes (dpll-bj S T and nv S
and (no-dup (trail S)
shows (no-dup (trail T)
using assms by (induction rule: dpll-bj-all-induct)
(auto simp add: defined-lit-map reduce-trail-ton o-skip-beginning dest: no-dup-appendD)

Valuations lemma dpll-bj-sat-iff:
assumes (dpll-bj S T and «nv S
shows (I Esm clausesyor S +— I Esm clausesyor T)
using assms by (induction rule: dpll-bj-all-induct) auto

Clauses lemma dpll-bj-atms-of-ms-clauses-inv:
assumes
(dpll-bj S T> and
(inv S
shows (atms-of-mm (clausesyor S) = atms-of-mm (clausesyor T)
using assms by (induction rule: dpll-bj-all-induct) auto

lemma dpll-bj-atms-in-trail:
assumes
pll-bj S T» and
(nv S) and
(atm-of < (lits-of-1 (trail S)) C atms-of-mm (clausesyor S)
shows (atm-of ¢ (lits-of-1 (trail T)) C atms-of-mm (clausesyor S))
using assms by (induction rule: dpll-bj-all-induct)
(auto simp: in-plus-implies-atm-of-on-atms-of-ms reduce-trail-toy or-skip-beginning)

lemma dpll-bj-atms-in-trail-in-set:
assumes (dpll-bj S Thand
¢nv S) and
atms-of-mm (clausesyor S) € A and
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(atm-of ¢ (lits-of-l (trail S)) C A

shows <atm-of ¢ (lits-of-l (trail T)) C A

using assms by (induction rule: dpll-bj-all-induct)
(auto simp: in-plus-implies-atm-of-on-atms-of-ms)

lemma dpli-bj-all-decomposition-implies-inv:
assumes
(dpli-bj S T) and
inv: <inv S) and
decomp: (all-decomposition-implies-m (clausesyor S) (get-all-ann-decomposition (trail S))
shows (all-decomposition-implies-m (clausesnyor T) (get-all-ann-decomposition (trail T))
using assms(1,2)
proof (induction rule:dpll-bj-all-induct)
case decidenyoT
then show ?Zcase using decomp by auto
next
case (propagatexor C L T) note propa = this(1) and undef = this(3) and T = this(4)
let ?M’' = (trail (prepend-trail (Propagated L ()) S)
let 2N = (clausesyor S)
obtain a y | where ay: (get-all-ann-decomposition ¢M’' = (a, y) # b
by (cases (get-all-ann-decomposition ?M") fastforce+
then have M (M’ = y Q o using get-all-ann-decomposition-decomp|of ?M’] by auto
have M: (get-all-ann-decomposition (trail S) = (a, tly) # b
using ay undef by (cases « get-all-ann-decomposition (trail S))) auto
have yo: <y = (Propagated L ()) # (¢ y)
using ay undef by (auto simp add: M)
from arg-cong[OF this, of set] have y[simp]: (set y = insert (Propagated L ()) (set (tl y))
by simp
have tr-S: (rail S = tly @ a
using arg-cong[OF M’, of tl] yo M get-all-ann-decomposition-decomp by force
have a-Un-N-M: «unmark-l a U set-mset N E=ps unmark-1 (tl y)
using decomp ay unfolding all-decomposition-implies-def by (simp add: M)+

moreover have (unmark-l a U set-mset ?N =p {#L#} (is <71 Ep »)
proof (rule true-clss-cls-plus-CNot)
show «?I |=p add-mset L C)
using propa propagatenor.prems by (auto dest!: true-clss-clss-in-imp-true-clss-cls)
next
have (unmark-l M’ =ps CNot C
using <trail S Eas CNot C) undef by (auto simp add: true-annots-true-clss-clss)
have al: cunmark-l a U unmark-1 (tl y) Eps CNot C»
using propagaten or.-hyps(2) tr-S true-annots-true-clss-clss
by (force simp add: image-Un sup-commute)
then have wnmark-l a U set-mset (clausesyor S) [Eps unmark-l a U unmark-1 (1 y)
using a-Un-N-M true-clss-clss-def by blast
then show (unmark-l a U set-mset (clausesyor S) Eps CNot C)
using al by (meson true-clss-clss-left-right true-clss-clss-union-and
true-clss-clss-union-l-r)
qed
ultimately have (unmark-l a U set-mset ?N =ps unmark-1 ?M"
unfolding M’ by (auto simp add: all-in-true-clss-clss image-Un)
then show ?case
using decomp T M undef unfolding ay all-decomposition-implies-def by (auto simp add: ay)
next
case (backjump C F' K F L D T) note confl = this(2) and tr = this(8) and undef = this(4) and
L = this(5) and N-C = this(6) and vars-D = this(5) and T = this(8)
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have decomp: (all-decomposition-implies-m (clausesnyor S) (get-all-ann-decomposition F))
using decomp unfolding tr all-decomposition-implies-def
by (metis (no-types, lifting) get-all-ann-decomposition.simps(1)
get-all-ann-decomposition-never-empty hd-Cons-tl insert-iff list.sel(3) list.set(2)
tl-get-all-ann-decomposition-skip-some)

obtain a b li where F: (get-all-ann-decomposition F = (a, b) # b
by (cases (get-all-ann-decomposition F)) auto
have (F = b Q@ o
using get-all-ann-decomposition-decomplof F a b] F by auto
have a-N-b:(unmark-l a U set-mset (clausesyor S) F=ps unmark-l b
using decomp unfolding all-decomposition-implies-def by (auto simp add: F')

have F-D: wunmark-l F =ps CNot D
using (F |=as CNot D) by (simp add: true-annots-true-clss-clss)
then have wnmark-l a U unmark-1 b =ps CNot D
unfolding (F = b @Q @) by (simp add: image-Un sup.commute)
have a-N-CNot-D: (unmark-l a U set-mset (clausesyor S) Eps CNot D U unmark-1 b
apply (rule true-clss-clss-left-right)
using a-N-b F-D unfolding (F = b @ &) by (auto simp add: image-Un ac-simps)

have a-N-D-L: «unmark-l a U set-mset (clausesyor S) FEp add-mset L D
by (simp add: N-C)
have wnmark-l a U set-mset (clausesyor S) =p {#L#}D
using a-N-D-L a-N-CNot-D by (blast intro: true-clss-cls-plus-CNot)
then show Zcase
using decomp T tr undef unfolding all-decomposition-implies-def by (auto simp add: F)
qed

Termination

Using a proper measure lemma length-get-all-ann-decomposition-append-Decided:
dength (get-all-ann-decomposition (F' @ Decided K # F)) =
length (get-all-ann-decomposition F)
+ length (get-all-ann-decomposition (Decided K # F))
- D
by (induction F' rule: ann-lit-list-induct) auto

lemma take-length-get-all-ann-decomposition-decided-sandwich:
(take (length (get-all-ann-decomposition F'))
(map (f o snd) (rev (get-all-ann-decomposition (F’' @ Decided K # F))))

map (f o snd) (rev (get-all-ann-decomposition F))
)
proof (induction F' rule: ann-lit-list-induct)
case Nil
then show ?Zcase by auto
next
case (Decided K)
then show Zcase by (simp add: length-get-all-ann-decomposition-append-Decided)
next
case (Propagated L m F') note IH = this(1)
obtain a b | where F': (get-all-ann-decomposition (F' @Q Decided K # F) = (a, b) # I
by (cases (get-all-ann-decomposition (F' Q Decided K # F))) auto
have dength (get-all-ann-decomposition F) — length | = O)
using length-get-all-ann-decomposition-append-Decided[of F' K F)
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unfolding F' by (cases (get-all-ann-decomposition F") auto
then show ?case
using IH by (simp add: F)
qed

lemma length-get-all-ann-decomposition-length:
dength (get-all-ann-decomposition M) < 1 + length M)
by (induction M rule: ann-lit-list-induct) auto

lemma length-in-get-all-ann-decomposition-bounded:
assumes i:(i € set (trail-weight S)
shows « < Suc (length (trail S))
proof —
obtain a b where
((a, b) € set (get-all-ann-decomposition (trail S))) and
ib: «i = Suc (length b))
using ¢ by auto
then obtain ¢ where trail S = ¢ Q b Q o
using get-all-ann-decomposition-exists-prepend’ by metis
from arg-cong|OF this, of length] show ?thesis using i ib by auto
qed

Well-foundedness The bounds are the following:

e 1 + card (atms-of-ms A): card (atms-of-ms A) is an upper bound on the length of the
list. As get-all-ann-decomposition appends an possibly empty couple at the end, adding
one is needed.

e 2 + card (atms-of-ms A): card (atms-of-ms A) is an upper bound on the number of
elements, where adding one is necessary for the same reason as for the bound on the list,

and one is needed to have a strict bound.

abbreviation unassigned-lit :: b clause set = 'a list = nat) where
(unassigned-lit N M = card (atms-of-ms N) — length M)

lemma dpll-bj-trail-mes-increasing-prop:
fixes M :: (v, unit) ann-lits» and N :: (v clauses)
assumes
(dpll-bj S T) and
(nv S) and
NA: <atms-of-mm (clausesyor S) C atms-of-ms A and
MA: <atm-of * lits-of-1 (trail S) C atms-of-ms A> and
n-d: no-dup (trail S) and
finite: (finite A)
shows (uc (1+4-card (atms-of-ms A)) (2+-card (atms-of-ms A)) (trail-weight T')
> pe (14card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight S))
using assms(1,2)
proof (induction rule: dpll-bj-all-induct)
case (propagateyor C L T) note CLN = this(1) and MC = this(2) and undef-L = this(3) and T
= this(4)
have incl: <atm-of * lits-of-1 (Propagated L () # trail S) C atms-of-ms A
using propagaten o dpll-bj-atms-in-trail-in-set bj-propagateyor NA MA CLN
by (auto simp: in-plus-implies-atm-of-on-atms-of-ms)
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have no-dup: (no-dup (Propagated L () # trail S)
using defined-lit-map n-d undef-L by auto
obtain a b | where M: (get-all-ann-decomposition (trail S) = (a, b) # b
by (cases (get-all-ann-decomposition (trail S)) auto
have b-le-M: ength b < length (trail S)
using get-all-ann-decomposition-decomplof <trail $)] by (simp add: M)
have (finite (atms-of-ms A)) using finite by simp

then have (ength (Propagated L () # trail S) < card (atms-of-ms A))
using incl finite unfolding no-dup-length-eq-card-atm-of-lits-of-1[OF no-dup]
by (simp add: card-mono)
then have latm: wnassigned-lit A b = Suc (unassigned-lit A (Propagated L () # b))
using b-le-M by auto
then show ?Zcase using T undef-L by (auto simp: latm M uc-cons)
next
case (decideyor L) note undef-L = this(1) and MC = this(2) and T = this(3)
have incl: <atm-of * lits-of-l (Decided L # (trail S)) C atms-of-ms A
using dpll-bj-atms-in-trail-in-set bj-decidenor decidenor.decidenyor|OF decidenor.hyps] NA MA
McC
by auto

have no-dup: (no-dup (Decided L # (trail S))
using defined-lit-map n-d undef-L by auto

obtain a b | where M: (get-all-ann-decomposition (trail S) = (a, b) # b
by (cases (get-all-ann-decomposition (trail S)) auto

then have (ength (Decided L # (trail S)) < card (atms-of-ms A))
using incl finite unfolding no-dup-length-eq-card-atm-of-lits-of-l[ OF no-dup]
by (simp add: card-mono)
show ?Zcase using T undef-L by (simp add: pc-cons)
next
case (backjump C F' K F L C' T) note undef-L = this(4) and MC = this(1) and tr-S = this(3)
and
L = this(5) and T = this(8)
have incl: <atm-of * lits-of-1 (Propagated L () # F) C atms-of-ms A
using dpll-bj-atms-in-trail-in-set NA MA L by (auto simp: tr-S)

have no-dup: (no-dup (Propagated L () # F)
using defined-lit-map n-d undef-L tr-S by (auto dest: no-dup-appendD)
obtain a b | where M: (get-all-ann-decomposition (trail S) = (a, b) # b
by (cases (get-all-ann-decomposition (trail S))) auto
have b-le-M: ength b < length (trail S)
using get-all-ann-decomposition-decomp|of <trail $)] by (simp add: M)
have fin-atms-A: (finite (atms-of-ms A)) using finite by simp

then have F-le-A: dength (Propagated L () # F) < card (atms-of-ms A)

using incl finite unfolding no-dup-length-eq-card-atm-of-lits-of-l[ OF no-dup]

by (simp add: card-mono)
have tr-S-le-A: dength (trail S) < card (atms-of-ms A)

using n-d MA by (metis fin-atms-A card-mono no-dup-length-eq-card-atm-of-lits-of-I)
obtain a b | where F: (get-all-ann-decomposition F = (a, b) # D

by (cases (get-all-ann-decomposition F) auto
then have (F = b Q@ o

using get-all-ann-decomposition-decomp|of «Propagated L () # F) a

(Propagated L () # ] by simp

then have latm: (unassigned-lit A b = Suc (unassigned-lit A (Propagated L () # b))
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using F-le-A by simp
obtain rem where
rem:(map (Aa. Suc (length (snd a))) (rev (get-all-ann-decomposition (F' Q Decided K # F)))
= map (Aa. Suc (length (snd a))) (rev (get-all-ann-decomposition F)) @ rem)
using take-length-get-all-ann-decomposition-decided-sandwich[of F (Aa. Suc (length a)) F' K]
unfolding o-def by (metis append-take-drop-id)
then have rem: (map (Aa. Suc (length (snd a)))
(get-all-ann-decomposition (F’' @Q Decided K # F))
= rev rem @ map (Aa. Suc (length (snd a))) ((get-all-ann-decomposition F)))
by (simp add: rev-map[symmetric| rev-swap)
have dength (rev rem @ map (Aa. Suc (length (snd a))) (get-all-ann-decomposition F))
< Suc (card (atms-of-ms A))
using arg-cong[OF rem, of length] tr-S-le-A
length-get-all-ann-decomposition-lengthlof (F' @Q Decided K # F»] tr-S by auto
moreover {
{ fix 7 :: nat and zs :: (a list
have i < length xs = length xs — Suc i < length s
by auto
then have H: <<length s = rev zs | ¢ € set xs)
using rev-nth|of 7 zs] unfolding in-set-conv-nth by (force simp add: in-set-conv-nth)
} note H = this
have 7 i<length rem. rev rem | i < card (atms-of-ms A) + 2
using tr-S-le-A length-in-get-all-ann-decomposition-bounded|of - S] unfolding tr-S
by (force simp add: o-def rem dest!: H intro: length-get-all-ann-decomposition-length) }
ultimately show ?Zcase
using pc-bounded[of (rev rem) (card (atms-of-ms A)+2) unassigned-lit A ] T undef-L
by (simp add: rem pc-append pc-cons F tr-S)
qed

lemma dpll-bj-trail-mes-decreasing-prop:
assumes dpll: «dpll-bj S T) and inv: nv S> and
N-A: <atms-of-mm (clausesyor S) C atms-of-ms A> and
M-A: atm-of * lits-of-l (trail S) C atms-of-ms A> and
nd: (mo-dup (trail S)) and
fin-A: finite A
shows «(2+card (atms-of-ms A)) = (1+card (atms-of-ms A))
— pe (14card (atms-of-ms A)) (2+4card (atms-of-ms A)) (trail-weight T)
< (2+-card (atms-of-ms A)) ~ (1+-card (atms-of-ms A))
— pe (I+card (atms-of-ms A)) (2+-card (atms-of-ms A)) (trail-weight S)
proof —

let ?b = <2+4card (atms-of-ms A)
let ?s = «I+card (atms-of-ms A)
let ?u = quc s ?b
have M'-A: (atm-of * lits-of-1 (trail T) C atms-of-ms A

by (meson M-A N-A dpll dpll-bj-atms-in-trail-in-set inv)
have nd’: <no-dup (trail T))

using «dpll-bj S T) dpll-bj-no-dup nd inv by blast
{ fix i :: nat and zs :: (a list)

have i < length vs = length xs — Suc i < length xs

by auto
then have H: (<length s = zs ! i € set xs)
using rev-nth[of ¢ zs] unfolding in-set-conv-nth by (force simp add: in-set-conv-nth)

} note H = this

have I-M-A: dength (trail S) < card (atms-of-ms A)
by (simp add: fin-A M-A card-mono no-dup-length-eq-card-atm-of-lits-of-I nd)
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have I-M'-A: dength (trail T) < card (atms-of-ms A))
by (simp add: fin-A M'-A card-mono no-dup-length-eq-card-atm-of-lits-of-1 nd")
have I-trail-weight-M: dength (trail-weight T) < 1+card (atms-of-ms A)
using [-M'-A length-get-all-ann-decomposition-length[of <trail T)] by auto
have bounded-M: / i<length (trail-weight T). (trail-weight T)! i < card (atms-of-ms A) + 2
using length-in-get-all-ann-decomposition-bounded|of - T] I-M'-A
by (metis (no-types, lifting) H Nat.le-trans add-2-eq-Suc’ not-le not-less-eq-eq)

from dpll-bj-trail-mes-increasing-prop[OF dpll inv N-A M-A nd fin-A]
have (uc ?s ?b (trail-weight S) < pc s 2b (trail-weight T)) by simp
moreover from pc-bounded|OF bounded-M I-trail-weight-M]
have (uc %s 2b (trail-weight T) < ?b ~ ?s) by auto
ultimately show ?thesis by linarith
qed

lemma wf-dpll-bj:
assumes fin: (finite A)
shows «wf {(T, S). dpll-bj S T
A atms-of-mm (clausesyor S) C atms-of-ms A A atm-of  lits-of-1 (trail S) C atms-of-ms A
A no-dup (trail S) A inv Sh
(is «wf 24))
proof (rule wf-bounded-measure[of -
A-. (2 + card (atms-of-ms A)) " (1 + card (atms-of-ms A))
AS. pe (1+card (atms-of-ms A)) (24card (atms-of-ms A)) (trail-weight S)))
fix a b :: st
let ?b = (2+4card (atms-of-ms A))
let %s = (1+4card (atms-of-ms A)
let 2u = quc s 7b
assume ab: (b, a) € 74

have fin-A: (finite (atms-of-ms A))
using fin by auto
have
dpll-bj: «dpll-bj a b) and
N-A: (atms-of-mm (clausesyor a) C atms-of-ms A and
M-A: atm-of * lits-of-1 (trail a) C atms-of-ms A> and
nd: (no-dup (trail a)) and
nu: (Inv a)
using ab by auto

have M'-A: atm-of * lits-of-1 (trail b) C atms-of-ms A
by (meson M-A N-A «dpll-bj a by dpll-bj-atms-in-trail-in-set inv)
have nd": (no-dup (trail b))
using «dpll-bj a b dpll-bj-no-dup nd inv by blast
{ fix i :: nat and zs :: (a lish
have i < length vs = length xs — Suc i < length xs)
by auto
then have H: «<length xs = xs ! i € set z9
using rev-nth[of i zs] unfolding in-set-conv-nth by (force simp add: in-set-conv-nth)
} note H = this

have [-M-A: dength (trail a) < card (atms-of-ms A))

by (simp add: fin-A M-A card-mono no-dup-length-eq-card-atm-of-lits-of-l nd)
have I-M'-A: (dength (trail b) < card (atms-of-ms A)

by (simp add: fin-A M'-A card-mono no-dup-length-eq-card-atm-of-lits-of-1 nd")
have I-trail-weight-M: ength (trail-weight b) < 1+4-card (atms-of-ms A)
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using I-M'-A length-get-all-ann-decomposition-length[of (trail b] by auto
have bounded-M: ¥ i<length (trail-weight b). (trail-weight b)! i < card (atms-of-ms A) + 2
using length-in-get-all-ann-decomposition-bounded|of - b] I-M'-A
by (metis (no-types, lifting) Nat.le-trans One-nat-def Suc-1 add.right-neutral add-Suc-right
le-imp-less-Suc less-eg-Suc-le nth-mem)

from dpll-bj-trail-mes-increasing-prop[OF dpll-bj inv N-A M-A nd fin)
have uc ?s ?b (trail-weight a) < pc ?s 2b (trail-weight b)> by simp
moreover from pc-bounded|OF bounded-M I-trail-weight-M]
have (uc %s b (trail-weight b) < 2b ~ 29 by auto
ultimately show (b ~ 25 < 2b ~ %s A
e ?s 2b (trail-weight b) < 2b ~ 25 A
pe ?s b (trail-weight a) < uc ?s 2b (trail-weight b))
by blast
qed

Alternative termination proof abbreviation DPLL-mesy, where
(DPLL-mesyy A M =
map (AL. if is-decided L then 2::nat else 1) (rev M) Q replicate (card A — length M) 3

lemma distinctcard-atm-of-lit-of-eq-length:
assumes no-dup S
shows card (atm-of * lits-of-l S) = length S
using assms by (induct S) (auto simp add: image-image lits-of-def no-dup-def)

lemma dpll-bj-trail-mes-decreasing-less-than:
assumes dpll: «dpll-bj S T) and inv: «nv S> and
N-A: <atms-of-mm (clausesyor S) C atms-of-ms A> and
M-A: atm-of * lits-of-1 (trail S) C atms-of-ms A> and
nd: (no-dup (trail S)) and
fin-A: (finite A
shows (DPLL-mesy (atms-of-ms A) (trail T), DPLL-mesw (atms-of-ms A) (trail S)) €
lexn less-than (card ((atms-of-ms A)))
using assms(1,2)
proof (induction rule: dpll-bj-all-induct)
case (decidenor L T)
define n where
(n = card (atms-of-ms A) — card (atm-of * lits-of-l (trail S))

have [simp]: dength (trail S) = card (atm-of * lits-of-1 (trail S))

using nd by (auto simp: no-dup-def lits-of-def image-image dest: distinct-card)
have (atm-of L ¢ atm-of * lits-of-1 (trail S)

by (metis decidenor.hyps(1) defined-lit-map imageE in-lits-of-I-defined-litD)

have (card (atms-of-ms A) > card (atm-of ¢ lits-of-1 (trail S))
by (metis N-A <atm-of L ¢ atm-of * lits-of-l (trail S)> atms-of-ms-finite card-seteq deciden o .hyps(2)
M-A fin-A not-le subsetCFE)
then have
n-0: (n > (» and
n-Suc: <card (atms-of-ms A) — Suc (card (atm-of ‘ lits-of-l (trail S))) =n — D
unfolding n-def by auto

show ?case
using fin-A decidenor n-0 unfolding state-eqnor-trail|OF decidenor(3))
by (cases n) (auto simp: prepend-same-lexn n-def[symmetric] n-Suc lexn-Suc
simp del: state-simpyor lexn.simps)

179



next
case (propagateyor C L T) note C = this(1) and undef = this(3) and T = this(3)
then have (card (atms-of-ms A) > length (trail S)
proof —
have f7: atm-of L € atms-of-ms A
using N-A C in-m-in-literals by blast
have undefined-lit (trail S) (— L)
using undef by auto
then show ?thesis
using [7 nd fin-A M-A undef by (metis atm-of-in-atm-of-set-in-uminus atms-of-ms-finite
card-seteq in-lits-of-l-defined-litD lel no-dup-length-eq-card-atm-of-lits-of-1)
qed
then show ?case
using fin-A unfolding state-eqnor-trail|OF propagatenor(4)]
by (cases (card (atms-of-ms A) — length (trail S)))
(auto simp: prepend-same-lexn lexn-Suc
sitmp del: state-simpyor lexn.simps)
next
case (backjump C F' K F L C' T) note tr-S = this(3)
have (trail (reduce-trail-toyor F S) = F
by (simp add: tr-S)
have (no-dup F»
using nd tr-S by (auto dest: no-dup-appendD)
then have card-A-F: (card (atms-of-ms A) > length F»
using distinctcard-atm-of-lit-of-eq-length[of <trail S)] card-mono[OF - M-A] fin-A nd tr-S
by auto
have (mo-dup (F' Q F))
using nd tr-S by (auto dest: no-dup-appendD)
then have (no-dup F"
apply (subst (asm) no-dup-rev[symmetric])
using nd tr-S by (auto dest: no-dup-appendD)
then have card-A-F': (card (atms-of-ms A) > length F' + length F>
using distinctcard-atm-of-lit-of-eq-length[of <trail S)] card-mono[OF - M-A] fin-A nd tr-S
by auto
show ?Zcase
using card-A-F card-A-F’
unfolding state-eqn or-trail|OF backjump(8)]
by (cases (card (atms-of-ms A) — length F»)
(auto simp: tr-S prepend-same-lexn lexn-Suc simp del: state-simpyor lexn.simps)
qed

lemma
assumes fin[simp]: (finite A>
shows «wf {(T, S). dpll-bj S T
A atms-of-mm (clausesyor S) C atms-of-ms A A atm-of  lits-of-1 (trail S) C atms-of-ms A
A no-dup (trail S) A inv Sh

(is wf 24))
unfolding conj-commute[of «dpll-bj - -]
apply (rule wf-wf-if-measure’[of - - - «AS. DPLL-mesw ((atms-of-ms A)) (trail S)])

apply (rule wf-lexn)
apply (rule wf-less-than)
by (rule dpll-bj-trail-mes-decreasing-less-than; use fin in simp)
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Normal Forms

We prove that given a normal form of DPLL, with some structural invariants, then either N is
satisfiable and the built valuation M is a model; or N is unsatisfiable.

Idea of the proof: We have to prove tat satisfiable N, = M =as N and there is no remaining
step is incompatible.

1. The decide rule tells us that every variable in N has a value.
2. The assumption = M [=as N implies that there is conflict.

3. There is at least one decision in the trail (otherwise, M would be a model of the set of
clauses N).

4. Now if we build the clause with all the decision literals of the trail, we can apply the
backjump rule.

The assumption are saying that we have a finite upper bound A for the literals, that we
cannot do any step V.S’. = dpll-bj S S’

theorem dpli-backjump-final-state:
fixes A :: (v clause sety and S T :: (st
assumes
(atms-of-mm (clausesnyor S) C atms-of-ms A> and
(atm-of ¢ lits-of-1 (trail S) C atms-of-ms A and
(no-dup (trail S)) and
(finite A and
inv: (nv S) and
n-d: (no-dup (trail S)> and
n-s: (no-step dpll-bj S> and
decomp: (all-decomposition-implies-m (clausesyor S) (get-all-ann-decomposition (trail S))
shows (unsatisfiable (set-mset (clausesyor S))
V (trail S =asm clausesyor S A satisfiable (set-mset (clausesyor S)))
proof —
let N = (set-mset (clausesyor S)
let M = trail S)
consider
(sat) (satisfiable ?N) and (?M E=as ?N»
| (sat’) «satisfiable ?N) and — ?M |=as 2N
| (unsat) (unsatisfiable 7N»
by auto
then show ?thesis
proof cases
case sat’ note sat = this(1) and M = this(2)
obtain C where (C € ?N) and (= ?M |=a C) using M unfolding true-annots-def by auto
obtain [ :: (v literal sety where
( [=s 2Ny and
cons: (consistent-interp I) and
tot: (total-over-m I ?N) and
atm-I-N: <atm-of ‘I C atms-of-ms ?N)
using sat unfolding satisfiable-def-min by auto
let I = (I U {P| P. P € lits-of-l ?M A atm-of P ¢ atm-of ‘ I}
let 20 = {unmark L |L. is-decided L N L € set ?M A atm-of (lit-of L) ¢ atms-of-ms ?N}
have cons-1": (consistent-interp ?I)
using cons using (no-dup ?M) unfolding consistent-interp-def
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by (auto simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set lits-of-def
dest!: no-dup-cannot-not-lit-and-uminus)
have tot-I": <total-over-m I (?N U unmark-l ?M))
using tot atm-I-N unfolding total-over-m-def total-over-set-def
by (fastforce simp: image-iff lits-of-def)
have (P |P. P € lits-of-l ?M A atm-of P ¢ atm-of ‘ I} |=s ?O»
using (I=s 2Ny atm-I-N by (auto simp add: atm-of-eq-atm-of true-clss-def lits-of-def)
then have I'-N: ¢ s ?N U ?20)
using (I}=s ?N) true-clss-union-increase by force
have tot": (total-over-m I (?NU?0))
using atm-I-N tot unfolding total-over-m-def total-over-set-def
by (force simp: lits-of-def elim!: is-decided-ex-Decided)

have atms-N-M: <atms-of-ms ?N C atm-of * lits-of-1 M)
proof (rule ccontr)
assume (- ?thesis)
then obtain [ :: ‘v where
[-N: < € atms-of-ms ?N) and
I-M: d ¢ atm-of * lits-of-1 ?M)
by auto
have (undefined-lit M (Pos 1))
using [-M by (metis Decided-Propagated-in-iff-in-lits-of-l
atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set literal.sel(1))
then show Fulse
using [-N n-s can-propagate-or-decide-or-backjumplof <Pos Iy S] inv n-d sat
by (auto dest: dpll-bj.intros)
qed
have (?M |=as CNot C)
apply (rule all-variables-defined-not-imply-cnot)
using (C € set-mset (clausesyor S) = trail S Ea O
atms-N-M by (auto dest: atms-of-atms-of-ms-mono)
have (31 € set ?M. is-decided D)
proof (rule ccontr)
let 20 = {unmark L |L. is-decided L N L € set ?M A atm-of (lit-of L) ¢ atms-of-ms ZN}
have 9[iff]: <A\I. total-over-m I (?N U 20 U unmark-l ?M)
+— total-over-m I (YN Uunmark-l1 ?M))
unfolding total-over-set-def total-over-m-def atms-of-ms-def by blast
assume (— ?thesis)
then have [simp|:{unmark L |L. is-decided L N L € set ?M}
= {unmark L |L. is-decided L N L € set ?M A atm-of (lit-of L) ¢ atms-of-ms ?N}
by auto
then have (?N U ?0 [=ps unmark-l 2M)
using all-decomposition-implies-propagated-lits-are-implied| OF decomp| by auto

then have (?I |=s unmark-1 ?M>
using cons-1’ I'-N tot-I' (?I |=s ?N U ?0) unfolding ¢ true-clss-clss-def by blast
then have its-of-l ?M C ?D
unfolding true-clss-def lits-of-def by auto
then have (?M [=as ?N)
using I'-N «C € ?N) <= M [a C) cons-1’ atms-N-M
by (meson <trail S =as CNot C) consistent-CNot-not rev-subsetD sup-gel true-annot-def
true-annots-def true-cls-mono-set-mset-l true-clss-def)
then show Fulse using M by fast
qed
from List.split-list-first-propE[OF this| obtain K :: (v literal) and
F F':: ('v, unit) ann-lits) where
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M-K: (?M = F' @ Decided K # F) and
nm:  f€set F'. —is-decided >
by (metis (full-types) is-decided-ex-Decided old.unit.exhaust)
let K = (Decided K :: ('v, unit) ann-lit)
have (K € set 7M)
unfolding M-K by auto
let ?C' = <mage-mset lit-of {#Le#mset ?M. is-decided L N L#£2K#} :: 'v clause)
let ?2C' = (set-mset (image-mset (A\L::'v literal. {#L#}) (7C + unmark ?K))
have (?N U {unmark L |L. is-decided L N L € set ?M} |=ps unmark-l 2M)
using all-decomposition-implies-propagated-lits-are-implied| OF decomp) .
moreover have C”: «(?C’" = {unmark L |L. is-decided L N L € set ?M}
unfolding M-K by standard force+
ultimately have N-C-M: (?N U ?C’' [=ps unmark-l ?M>
by auto
have N-M-Fualse: (?N U (AL. unmark L) ¢ (set ?M) =ps {{#}}
unfolding true-clss-clss-def true-annots-def Ball-def true-annot-def
proof (intro alll impl)
fix LL :: 'v literal set
assume
tot: (total-over-m LL (set-mset (clausesyor S) U unmark-1 (trail S) U {{#}})» and
cons: (consistent-interp LL) and
LL: <LL [=s set-mset (clausesyor S) U unmark-1 (trail S)
have ctotal-over-m LL (CNot C))
by (metis (C €4 clausesyor S insert-absorb tot total-over-m-CNot-toal-over-m
total-over-m-insert total-over-m-union)
then have total-over-m LL (unmark-l (trail S) U CNot C)
using tot by force
then show LL [=s {{#}}
using tot cons LL
by (metis (no-types) «C €# clausesnyor S) (trail S F=as CNot C) consistent-CNot-not
true-annots-true-clss-clss true-clss-clss-def true-clss-def true-clss-union)
qed
have undefined-lit F K) using (no-dup ¢M> unfolding M-K by (auto simp: defined-lit-map)
moreover {
have (N U ?C" |=ps {{#}}
proof —
have A: (?N U ?C’ U unmark-l M = ?N U unmark-l ?M>
unfolding M-K by auto
show ?thesis
using true-clss-clss-left-right| OF N-C-M, of ({{#}}] N-M-False unfolding A by auto
qed
have (?N =p image-mset uminus ¢C + {#—K#}
unfolding true-clss-cls-def true-clss-clss-def total-over-m-def
proof (intro alll impl)
fix I
assume
tot: (total-over-set I (atms-of-ms (¢N U {image-mset uminus ¢C+ {#— K#}})) and
cons: (consistent-interp I) and
d E=s 2N
have (K e IN-K¢I)V(-KelIANK¢I)
using cons tot unfolding consistent-interp-def by (cases K) auto
have ¢ {a € set (trail S). is-decided a N\ a # Decided K} =
set (trail S) N {L. is-decided L N L # Decided K}
by auto
then have tot”: (total-over-set I
(atm-of  lit-of ¢ (set ?M N {L. is-decided L N L # Decided K}))
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using tot by (auto simp add: atms-of-uminus-lit-atm-of-lit-of)
{ fix z :: (v, unit) ann-lit
assume
a3: dit-of x ¢ I» and
al: @ € set ?M) and
a4: (is-decided x> and
ad: & # Decided K)
then have (Pos (atm-of (lit-of z)) € I V Neg (atm-of (lit-of x)) € D
using ad a4 tot’ al unfolding total-over-set-def atms-of-s-def by blast
moreover have f6: «(Neg (atm-of (lit-of )) = — Pos (atm-of (lit-of z))
by simp
ultimately have «(— [lit-of x € D
using f6 a3 by (metis (no-types) atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
literal.sel(1))
} note H = this

have I s 2C)
using (YN U ?2C' Eps {{#}} tot cons I [=s ?N)
unfolding true-clss-clss-def total-over-m-def
by (simp add: atms-of-uminus-lit-atm-of-lit-of atms-of-ms-single-image-atm-of-lit-of)
then show (I = image-mset uminus ?C + {#— K#}
unfolding true-clss-def true-cls-def using (K €e IN-K ¢ )V (-K € INK ¢ I)
by (auto dest!: H)
qed }
moreover have (F' |=as CNot (image-mset uminus ¢C)
using nm unfolding true-annots-def CNot-def M-K by (auto simp add: lits-of-def)
ultimately have Fulse
using bj-can-jumplof S F' K F C «(—K)
(image-mset uminus (image-mset lit-of {# L :# mset ?M. is-decided L N L # Decided K#}))]
(Ce?N) n-s <?M [=as CNot C) bj-backjump inv (no-dup (trail S)» sat
unfolding M-K by auto
then show ?thesis by fast
qed auto
qed

end — End of the locale dpll-with-backjumping-ops.

locale dpll-with-backjumping =
dpll-with-backjumping-ops trail clausesyor prepend-trail tl-trail add-clsyor remove-clsyor inv
decide-conds backjump-conds propagate-conds
for
trail :: (st = ("v, unit) ann-lits) and
clausesnyor :: (st = 'v clauses) and
prepend-trail :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail :: st ='sty and
add-clsyor : (v clause = 'st = st and
remove-clsyor 1 (v clause = 'st = 'st) and
inv :: (st = bool and
decide-conds :: ('st = ’st = bool) and
backjump-conds :: (v clause = 'v clause = v literal = 'st = 'st = bool) and
propagate-conds :: «('v, unit) ann-lit = 'st = ‘st = bool
_|_
assumes dpll-bj-inv: <\AS T. dpll-bj S T = inv S = inv T»
begin

lemma rtranclp-dpli-bj-inv:
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assumes (dpll-bj** S T) and ¢nv S)

shows «nv T)

using assms by (induction rule: rtranclp-induct)
(auto simp add: dpll-bj-no-dup intro: dpli-bj-inv)

lemma rtranclp-dpll-bj-no-dup:
assumes (dpll-bj** S T) and «nv S
and «no-dup (trail S)
shows (no-dup (trail T)
using assms by (induction rule: rtranclp-induct)
(auto simp add: dpll-bj-no-dup dest: rtranclp-dpll-bj-inv dpll-bj-inv)

lemma rtranclp-dpll-bj-atms-of-ms-clauses-inv:
assumes
dpll-bj** § Ty and <inv S
shows (atms-of-mm (clausesyor S) = atms-of-mm (clausesyor T)
using assms by (induction rule: rtranclp-induct)
(auto dest: rtranclp-dpll-bj-inv dpll-bj-atms-of-ms-clauses-inv)

lemma rtranclp-dpll-bj-atms-in-trail:
assumes
pll-bj** S T) and
(nv S) and
(atm-of < (lits-of-1 (trail S)) C atms-of-mm (clausesyor S)
shows (atm-of ¢ (lits-of-l (trail T)) C atms-of-mm (clausesyor T)
using assms apply (induction rule: rtranclp-induct)
using dpll-bj-atms-in-trail dpll-bj-atms-of-ms-clauses-inv rtranclp-dpll-bj-inv by auto

lemma rtranclp-dpll-bj-sat-iff:
assumes dpll-bj** S T) and «nv S
shows (I Esm clausesyor S +— I Esm clausesyor T)
using assms by (induction rule: rtranclp-induct)
(auto dest!: dpll-bj-sat-iff simp: rtranclp-dpll-bj-inv)

lemma rtranclp-dpll-bj-atms-in-trail-in-set:
assumes
«dpll-b5** S T)» and
nv SH
(atms-of-mm (clausesyor S) C A and
(atm-of ¢ (lits-of-1 (trail S)) C A
shows <atm-of ¢ (lits-of-l (trail T)) C A»
using assms by (induction rule: rtranclp-induct)
(auto dest: rtranclp-dpll-bj-inv
simp: dpll-bj-atms-in-trail-in-set rtranclp-dpll-bj-atms-of-ms-clauses-inv rtranclp-dpll-bj-inv)

lemma rtranclp-dpll-bj-all-decomposition-implies-inv:
assumes

(dpll-bj** S T) and

(nv S)

(all-decomposition-implies-m (clausesyor S) (get-all-ann-decomposition (trail S))
shows (all-decomposition-implies-m (clausesyor T) (get-all-ann-decomposition (trail T))
using assms by (induction rule: rtranclp-induct)

(auto intro: dpll-bj-all-decomposition-implies-inv simp: rtranclp-dpll-bj-inv)

lemma rtranclp-dpll-bj-inv-incl-dpll-bj-inv-trancl:
(T, S). dpll-bj*+ ST
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A atms-of-mm (clausesyor S) C atms-of-ms A A atm-of ¢ lits-of-l1 (trail S) C atms-of-ms A
A no-dup (trail S) A inv S}
C{(T, S). dpll-bj S T A atms-of-mm (clausesyor S) C atms-of-ms A
A atm-of ‘ lits-of-1 (trail S) C atms-of-ms A A no-dup (trail S) A inv S}
(is (?A C 2B™)
proof standard
fix z
assume z-A: @ € ?A)
obtain S T::(st) where
z[simp]: «@ = (T, S) by (cases z) auto
have
(dpll-bj**+ S T) and
(atms-of-mm (clausesyor S) C atms-of-ms A> and
(atm-of ‘lits-of-l (trail S) C atms-of-ms A and
(no-dup (trail S)) and
(inv S
using z-A by auto
then show (z € ?B") unfolding =
proof (induction rule: tranclp-induct)
case base
then show ?case by auto
next
case (step T U) note step = this(1) and ST = this(2) and IH = this(3)[OF this(4—17)]
and N-A = this(4) and M-A = this(5) and nd = this(6) and inv = this(7)

have [simp]: atms-of-mm (clausesyor S) = atms-of-mm (clausesyor T)
using step rtranclp-dpll-bj-atms-of-ms-clauses-inv tranclp-into-rtranclp inv by fastforce
have no-dup (trail T)
using local.step nd rtranclp-dpll-bj-no-dup tranclp-into-rtranclp inv by fastforce
moreover have (atm-of ‘ (lits-of-l (trail T)) C atms-of-ms A
by (metis inv M-A N-A local.step rtranclp-dpll-bj-atms-in-trail-in-set
tranclp-into-rtranclp)
moreover have <nv T)
using inwv local.step riranclp-dpll-bj-inv tranclp-into-rtranclp by fastforce
ultimately have (U, T) € ¢B) using ST N-A M-A inv by auto
then show ?case using IH by (rule trancl-into-trancl2)
qed
qed

lemma wf-tranclp-dpll-bj:
assumes fin: (finite A
shows «wf {(T, S). dpll-bj*+ § T
A atms-of-mm (clausesyor S) C atms-of-ms A A atm-of ¢ lits-of-1 (trail S) C atms-of-ms A
A no-dup (trail S) A inv S}h
using wf-trancl| OF wf-dpll-bj[OF fin]] rtranclp-dpll-bj-inv-incl-dpll-bj-inv-trancl
by (rule wf-subset)

lemma dpll-bj-sat-ext-iff:
(dpll-bj S T = inv S = If=sextm clausesyor S <— IEsextm clausesyor T
by (simp add: dpll-bj-clauses)
lemma rtranclp-dpll-bj-sat-ext-iff:
(dpll-bj** S T = inv S = I=sextm clausesyor S +— IEsextm clausesyor T)
by (induction rule: rtranclp-induct) (simp-all add: rtranclp-dpll-bj-inv dpll-bj-sat-ext-iff)

theorem full-dpll-backjump-final-state:
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fixes A :: (v clause sety and S T :: /st
assumes
Sfull: full dpll-bj S T) and
atms-S: (atms-of-mm (clausesyor S) C atms-of-ms A and
atms-trail: atm-of © lits-of-1 (trail S) C atms-of-ms A> and
n-d: (no-dup (trail S)> and
(finite A> and
inv: <inv S) and
decomp: (all-decomposition-implies-m (clausesyor S) (get-all-ann-decomposition (trail S))
shows (unsatisfiable (set-mset (clausesyor S))
V (trail T [=asm clausesyor S A satisfiable (set-mset (clausesyor S)))
proof —
have st: «dpll-bj** S T» and no-step dpll-bj T)
using full unfolding full-def by fast+
moreover have (atms-of-mm (clausesyor T) C atms-of-ms A
using atms-S inv rtranclp-dpll-bj-atms-of-ms-clauses-inv st by blast
moreover have (atm-of  lits-of-l (trail T') C atms-of-ms A
using atms-S atms-trail inv rtranclp-dpll-bj-atms-in-trail-in-set st by auto
moreover have (no-dup (trail T)
using n-d inv rtranclp-dpll-bj-no-dup st by blast
moreover have inv: «nv 1)
using inv rtranclp-dpll-bj-inv st by blast
moreover
have decomp: (all-decomposition-implies-m (clausesyor T) (get-all-ann-decomposition (trail T)))
using «nv S) decomp rtranclp-dpll-bj-all-decomposition-implies-inv st by blast
ultimately have (unsatisfiable (set-mset (clausesyor T))
V (trail T [=asm clausesyor T A satisfiable (set-mset (clausesyor T)))
using (finite A> dpll-backjump-final-state by force
then show ?thesis

by (meson ¢nv S rtranclp-dpll-bj-sat-iff satisfiable-carac st true-annots-true-cls)
qed

corollary full-dpli-backjump-final-state-from-init-state:
fixes A :: (v clause sety and S T :: /st
assumes
Sfull: full dpll-bj S T> and
(trail S = []» and
(clausesyor S = N) and
(nv S
shows (unsatisfiable (set-mset N) V (trail T |Easm N A satisfiable (set-mset N))»
using assms full-dpll-backjump-final-state[of S T (set-mset N)] by auto

lemma tranclp-dpll-bj-trail-mes-decreasing-prop:
assumes dpll: «dpll-bjTT S T) and inv: ¢inv ) and
N-A: «atms-of-mm (clausesyor S) C atms-of-ms A> and
M-A: <atm-of * lits-of-1 (trail S) C atms-of-ms A and
n-d: <no-dup (trail S)) and
fin-A: (finite A
shows «(2+card (atms-of-ms A)) = (1+card (atms-of-ms A))
— pe (1+card (atms-of-ms A)) (2+4card (atms-of-ms A)) (trail-weight T)
< (2+-card (atms-of-ms A)) ~ (1+card (atms-of-ms A))
— pe (14card (atms-of-ms A)) (24card (atms-of-ms A)) (trail-weight S))
using dpll
proof induction
case base
then show ?case
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using N-A M-A n-d dpll-bj-trail-mes-decreasing-prop fin-A inv by blast
next
case (step T U) note st = this(1) and dpll = this(2) and IH = this(3)
have (atms-of-mm (clausesyor S) = atms-of-mm (clausesyor T))
using rtranclp-dpll-bj-atms-of-ms-clauses-inv by (metis dpll-bj-clauses dpll-bj-inv inv st
tranclpD)
then have N-A’: atms-of-mm (clausesyor T) C atms-of-ms A
using N-A by auto
moreover have M-A" <atm-of * lits-of-l (trail T) C atms-of-ms A
by (meson M-A N-A inv rtranclp-dpll-bj-atms-in-trail-in-set st dpll
tranclp.r-into-trancl tranclp-into-rtranclp tranclp-trans)
moreover have nd: (mo-dup (trail T)
by (metis inv n-d rtranclp-dpll-bj-no-dup st tranclp-into-rtrancip)
moreover have <inv T)
by (meson dpll dpll-bj-inv inv rtranclp-dpll-bj-inv st tranclp-into-rtranclp)
ultimately show ?Zcase
using IH dpll-bj-trail-mes-decreasing-prop[of T U A] dpll fin-A by linarith
qed

end — End of the locale dpll-with-backjumping.

2.2.4 CDCL

In this section we will now define the conflict driven clause learning above DPLL: we first
introduce the rules learn and forget, and the add these rules to the DPLL calculus.

Learn and Forget

Learning adds a new clause where all the literals are already included in the clauses.

locale learn-ops =
dpll-state trail clausesyor prepend-trail tl-trail add-clsyoT remove-clsyor
for
trail : st = ('v, unit) ann-litsy and
clausesyor : (st = 'v clauses) and
prepend-trail :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail :: st ='st) and
add-clsyor 2 (v clause = 'st = st and
remove-clsyor : (v clause = st = 'st) +
fixes
learn-conds :: ('v clause = 'st = bool)
begin

inductive learn :: (st = 'st = bool) where
learny or-rule: «clausesyor S FEpm C =
atms-of C' C atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-1 (trail §)) =
learn-conds C S —
T ~ add-clsyor C S =
learn S T
inductive-cases learnyoTE: (learn S T)

lemma learn-uc-stable:
assumes (earn S T) and (no-dup (trail S)
shows (uc A B (trail-weight S) = pc A B (trail-weight T))
using assms by (auto elim: learnyorE)
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end

Forget removes an information that can be deduced from the context (e.g. redundant clauses,
tautologies)

locale forget-ops =
dpll-state trail clausesyor prepend-trail tl-trail add-clsyor remove-clsyor
for
trail :: st = ('v, unit) ann-lits) and
clausesyor :: (st = "v clauses) and
prepend-trail :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail :: st ='st) and
add-clsyor : (v clause = 'st = ‘st and
remove-clsyor 1 (v clause = 'st = sty +
fixes
forget-conds :: ('v clause = 'st = bool)
begin

inductive forgetyor :: (st = 'st = bool) where
forgetnor:
(removeAll-mset C(clausesyor S) Epm C =
forget-conds C S =
C €4# clausesyor S =
T ~ remove-clsyor C S —

forgetnor S
inductive-cases forgetyorE: (forgetyor S T)

lemma forget-pc-stable:
assumes (forgetyor S T
shows (uc A B (trail-weight S) = pc A B (trail-weight T))
using assms by (auto elim!: forgetnyorE)

end

locale learn-and-forgetyor =
learn-ops trail clausesyor prepend-trail tl-trail add-clsyor remove-clsyor learn-conds +
forget-ops trail clausesyor prepend-trail tl-trail add-clsyoT remove-clsyor forget-conds
for
trail 2 st = ('v, unit) ann-litsy and
clausesyor :: (st = "v clauses) and
prepend-trail :: ('v, unit) ann-lit = 'st = 'st) and
tl-trail :: st ='st) and
add-clsyor (v clause = 'st = ‘st and
remove-clsyor 1 (v clause = 'st = 'st) and
learn-conds forget-conds :: ('v clause = st = bool
begin
inductive learn-and-forgetyor :: (st = ‘st = bool)
where
If-learn: earn S T = learn-and-forgetnor S T |
lf-forget: forgetyor S T = learn-and-forgetyor S 1)
end

Definition of CDCL

locale conflict-driven-clause-learning-ops =
dpll-with-backjumping-ops trail clausesyor prepend-trail ti-trail add-clsyor remove-clsyor
inv decide-conds backjump-conds propagate-conds +
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learn-and-forget yor trail clausesyor prepend-trail tl-trail add-clsyor remove-clsyor learn-conds
forget-conds

for
trail :: ‘st = ('v, unit) ann-lits) and
clausesyor :: (st = "v clauses) and
prepend-trail :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail :: st ='sty and
add-clsyor : (v clause = 'st = st and
remove-clsyor 1 (v clause = 'st = 'st) and
inv :: (st = bool) and
decide-conds :: ('st = ’st = bool) and
backjump-conds :: (v clause = 'v clause = v literal = ’st = 'st = bool) and
propagate-conds :: (v, unit) ann-lit = ‘st = st = bool> and
learn-conds forget-conds :: ('v clause = st = bool

begin

inductive cdclyor :: (st = ‘st = bool) for S :: 'st where
c-dpll-bj: «dpll-bj S 8" = cdelyor S S |

c-learn: dearn § 8" = cdclyor S S |

c-forgetyoT: forgetnor S S’ = cdelyor S S

lemma cdclyor-all-induct|consumes 1, case-names dpll-bj learn forgetnor]:
fixes S T :: (st
assumes <cdclyor S T) and
dpll: <\\T. dpll-bj ST = P S T) and
learning:
(NC T. clausesyor S Epm C =
atms-of C C atms-of-mm (clausesyor S) U atm-of * (lits-of-1 (trail S)) =
T ~ add-clsyor C S =
P ST and
forgetting: (\C T. removeAll-mset C (clausesyor S) Epm C =
C e# clausesyor S =
T ~ remove-clsyor C S —
PSS
shows (P 5§ T
using assms(1) by (induction rule: cdelyor-induct)
(auto intro: assms(2, 3, 4) elim!: learnyorE forgetyorE)+

lemma cdclyor-no-dup:
assumes
cedelyor S Ty and
tnv S) and
(no-dup (trail S)
shows (no-dup (trail T'))
using assms by (induction rule: cdclyor-all-induct) (auto intro: dpll-bj-no-dup)

Consistency of the trail lemma cdclyor-consistent:
assumes
cedelyor S Ty and
tnv S) and
(no-dup (trail S)
shows (consistent-interp (lits-of-1 (trail T))
using cdelyor-no-dup|OF assms] distinct-consistent-interp by fast

The subtle problem here is that tautologies can be removed, meaning that some variable can
disappear of the problem. It is also means that some variable of the trail might not be present
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in the clauses anymore.

lemma cdcly or-atms-of-ms-clauses-decreasing:
assumes (cdclyor S Thand ¢inv S)
shows (atms-of-mm (clausesyor T) C atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-l (trail S))
using assms by (induction rule: cdelyor-all-induct)
(auto dest!: dpll-bj-atms-of-ms-clauses-inv set-mp simp add: atms-of-ms-def Union-eq)

lemma cdclyoT-atms-in-trail:
assumes (cdclyor S Thand <dnv S)
and <atm-of ¢ (lits-of-l (trail S)) C atms-of-mm (clausesyor S)
shows (atm-of ¢ (lits-of-1 (trail T)) C atms-of-mm (clausesyor S))
using assms by (induction rule: cdclyor-all-induct) (auto simp add: dpll-bj-atms-in-trail)

lemma cdcly oT-atms-in-trail-in-set:
assumes
<edelyor S Ty and ¢inv S) and
(atms-of-mm (clausesyor S) C A and
atm-of ¢ (lits-of-1 (trail S)) C A»
shows (atm-of ¢ (lits-of-l (trail T)) C A
using assms
by (induction rule: cdclyor-all-induct)
(simp-all add: dpll-bj-atms-in-trail-in-set dpll-bj-atms-of-ms-clauses-inv)

lemma cdcly or-all-decomposition-implies:
assumes cdclyor S T) and ¢dnv S) and
(all-decomposition-implies-m (clausesyor S) (get-all-ann-decomposition (trail S))
shows
(all-decomposition-implies-m (clausesyor T) (get-all-ann-decomposition (trail T))
using assms(1,2,3)
proof (induction rule: cdelyor-all-induct)
case dpll-bj
then show ?case
using dpll-bj-all-decomposition-implies-inv by blast
next
case learn
then show ?Zcase by (auto simp add: all-decomposition-implies-def)
next
case (forgetyor C T) note cls-C = this(1) and C = this(2) and T = this(3) and inv = this(4)
and
decomp = this(5)
show ?Zcase
unfolding all-decomposition-implies-def Ball-def
proof (intro alll, clarify)
fix a b
assume ((a, b) € set (get-all-ann-decomposition (trail T))
then have wnmark-l a U set-mset (clausesyor S) Eps unmark-1 b
using decomp T by (auto simp add: all-decomposition-implies-def)
moreover
have al:(C € set-mset (clausesyor S)
using C by blast
have (clausesyor T = clausesyor (remove-clsyor C S)
using T state-eqnor-clauses by blast
then have (set-mset (clausesyor T) [=ps set-mset (clausesyor S))
using al by (metis (no-types) clauses-remove-clsyor cls-C insert-Diff order-refl
set-mset-minus-replicate-mset(1) true-clss-clss-def true-clss-clss-insert)
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ultimately show «unmark-l a U set-mset (clausesyor T)
Eps unmark-1 b
using true-clss-clss-generalise-true-clss-clss by blast
qed
qed

Extension of models lemma cdclyor-bj-sat-ext-iff:
assumes (cdclyor S Thand dnv S)
shows (I|=sextm clausesyor S «— IE=sextm clausesyor T
using assms

proof (induction rule:cdely or-all-induct)
case dpll-bj
then show Zcase by (simp add: dpll-bj-clauses)

next
case (learn C T) note T = this(3)
{ fix J
assume
d Esextm clausesyor S and
d C J)and

tot: (total-over-m J (set-mset (add-mset C (clausesyor S)))» and
cons: (consistent-interp J)
then have «J Esm clausesyor S unfolding true-clss-ext-def by auto

moreover
with (clausesyor SEpm C) have J = O
using tot cons unfolding true-clss-cls-def by auto
ultimately have «J Esm {#C#} + clausesyor S by auto

then have H: (I [=sextm (clausesyor S) = I |=sext insert C (set-mset (clausesyor S))
unfolding true-clss-ext-def by auto
show ?Zcase
apply standard
using T apply (auto simp add: H)|]
using T apply simp
by (metis Diff-insert-absorb insert-subset subsetl subset-antisym
true-clss-ext-decrease-right-remove-r)

next
case (forgetyor C T) note cls-C = this(1) and T = this(3)
{ fix J
assume
 [=sext set-mset (clausesyor S) — {C}h and
d C J)and

tot: (total-over-m J (set-mset (clausesyor S))» and
cons: (consistent-interp J»
then have (J =s set-mset (clausesyor S) — {Ch
unfolding true-clss-ext-def by (meson Diff-subset total-over-m-subset)

moreover
with cls-C have «J E O
using tot cons unfolding true-clss-cls-def
by (metis Un-commute forgetnor.hyps(2) insert-Diff insert-is-Un order-refl
set-mset-minus-replicate-mset(1))
ultimately have «J |Esm (clausesyor S)) by (metis insert-Diff-single true-clss-insert)
}
then have H: I [=sext set-mset (clausesyor S) — {C} = I [Esextm (clausesyor S))
unfolding true-clss-ext-def by blast
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show ?case using T by (auto simp: true-clss-ect-decrease-right-remove-r H)
qed

end — End of the locale conflict-driven-clause-learning-ops.

CDCL with invariant

locale conflict-driven-clause-learning =
conflict-driven-clause-learning-ops +
assumes cdclyor-inv: (AS T. cdelyor S T = inv § = inv T
begin
sublocale dpli-with-backjumping
apply unfold-locales
using cdclyor.simps cdclyor-inv by auto

lemma rtranclp-cdclyor-inv:
edelyor™ ST = inv S = inv T
by (induction rule: rtranclp-induct) (auto simp add: cdclyor-inv)

lemma rtranclp-cdcly or-no-dup:
assumes (cdclyor** S T) and <inv S
and «no-dup (trail S)
shows (no-dup (trail T))
using assms by (induction rule: rtranclp-induct) (auto intro: cdcly or-no-dup rtranclp-cdely or-inv)

lemma rtranclp-cdcly or-trail-clauses-bound:
assumes
cdel: «cdelyor™ S T) and
inv: (inv S) and
atms-clauses-S: <atms-of-mm (clausesyor S) C A and
atms-trail-S: <atm-of ‘(lits-of-1 (trail S)) C A»
shows (atm-of ¢ (lits-of-1 (trail T)) C A A atms-of-mm (clausesyor T) C A
using cdcl
proof (induction rule: rtranclp-induct)
case base
then show ?case using atms-clauses-S atms-trail-S by simp
next
case (step T U) note st = this(1) and cdclyor = this(2) and IH = this(3)
have <inv T) using inv st rtranclp-cdcly or-inv by blast
have <atms-of-mm (clausesyor U) C A
using cdcly or-atms-of-ms-clauses-decreasing| OF cdclyor| IH ¢inv Ty by fast
moreover
have (atm-of ‘(lits-of-l1 (trail U)) C A
using cdcly or-atms-in-trail-in-set| OF cdclyor, of A
by (meson atms-trail-S atms-clauses-S IH ¢nv T) cdelyor )
ultimately show ?case by fast
qed

lemma rtranclp-cdcly o -all-decomposition-implies:
assumes (cdclyor** S T) and «nv S) and (no-dup (trail S)> and
(all-decomposition-implies-m (clausesyor S) (get-all-ann-decomposition (trail S))
shows
(all-decomposition-implies-m (clausesyor T) (get-all-ann-decomposition (trail T'))
using assms by (induction)
(auto intro: rtranclp-cdclyor-inv cdely or-all-decomposition-implies rtranclp-cdcly or-no-dup)
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lemma rtranclp-cdcly or-bj-sat-ext-iff:
assumes (cdclyor** S Thand <inv S
shows J|=sextm clausesyor S «— IEsextm clausesyor T)
using assms apply (induction rule: rtranclp-induct)
using cdcly or-bj-sat-ext-iff by (auto intro: rtranclp-cdcly or-inv rtranclp-cdcely or-no-dup)

definition cdclyor-NOT-all-inv where
edelyor-NOT-all-inv A S +— (finite A A inv S A atms-of-mm (clausesyor S) C atms-of-ms A
A atm-of ¢ lits-of-1 (trail S) C atms-of-ms A A no-dup (trail S))

lemma cdclyor-NOT-all-inv:
assumes (cdclyor** S T) and <cdclyor-NOT-all-inv A S
shows (cdelyor-NOT-all-inv A T)
using assms unfolding cdcly or-NOT-all-inv-def
by (simp add: rtranclp-cdelyor-inv rtranclp-cdcly o -no-dup rtranclp-cdel y or-trail-clauses-bound)

abbreviation learn-or-forget where
earn-or-forget S T = learn S T V forgetyor S T

lemma rtranclp-learn-or-forget-cdclyor:
dearn-or-forget** S T = cdelyor™** S T)
using rtranclp-monolof learn-or-forget cdelyor] by (blast intro: cdelyor.c-learn cdelyor.c-forgetnorT)

lemma learn-or-forget-dpll-uc:
assumes
I-f: earn-or-forget** S T) and
dpll: «dpll-bj T U)> and
inv: edelyor-NOT-all-inv A S)
shows «(2+card (atms-of-ms A)) ~ (1+-card (atms-of-ms A))
— pe (14card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight U)
< (2+-card (atms-of-ms A)) ~ (1+card (atms-of-ms A))
— pe (14card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight S))
(is 2u U < 2u )
proof —
have <7y S = %u D
using I-f
proof (induction)
case base
then show ?case by simp
next
case (step T U)
moreover then have (no-dup (trail T)
using rtranclp-cdcly or-no-duplof S T) cdelyor-NOT-all-inv-def inv
rtranclp-learn-or-forget-cdcly o by auto
ultimately show ?case
using forget-uc-stable learn-pc-stable inv unfolding cdcly or-NOT-all-inv-def by presburger
qed
moreover have (cdclyor-NOT-all-inv A T)
using rtranclp-learn-or-forget-cdcly or cdely or-NOT-all-inv [-f inv by blast
ultimately show ?thesis
using dpll-bj-trail-mes-decreasing-prop[of T U A, OF dpll] finite
unfolding cdclyor-NOT-all-inv-def by presburger
qed

lemma infinite-cdcly o -exists-learn-and-forget-infinite-chain:
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assumes
(Ni. cdelyor (fi) (f(Suc i) and
inv: (cdclyor-NOT-all-inv A (f 0)
shows dj. Vi>j. learn-or-forget (f i) (f (Suc i))
using assms
proof (induction «(2+card (atms-of-ms A)) ~ (1+card (atms-of-ms A))
— po (I+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight (f 0))
arbitrary: f
rule: nat-less-induct-case)
case (Suc n) note IH = this(1) and p = this(2) and cdclyor = this(3) and inv = this(4)
consider
(dpll-end) 3j. Vi>j. learn-or-forget (f i) (f (Suc 7))
| (dpll-more) (—(34. Vi>j. learn-or-forget (f ©) (f (Suc i)))
by blast
then show Zcase
proof cases
case dpll-end
then show %thesis by auto
next
case dpll-more
then have j: 3. = learn (f7) (f (Suc i)) A —forgetyor (f4) (f (Suci))
by blast
obtain ¢ where
i-learn-forget: —learn (f ©) (f (Suc i)) A —forgetyor (f ) (f (Suc i)) and
~ k<i. learn-or-forget (f k) (f (Suc k))
proof —
obtain iy where = learn (f o) (f (Suc io)) A —forgetyor (f %) (f (Suc d0))
using j by auto
then have ({i. i<ig A = learn (f i) (f (Suc 7)) A =forgetnor (fi) (f (Suc @)} #{h
by auto
let 21 = {i. i<ig A = learn (f i) (f (Suc 7)) A —forgetnor (f i) (f (Suc )P
let 20 = (Min ?D
have (finite 2
by auto
have - learn (f %) (f (Suc 29)) A —forgetyor (f %) (f (Suc 20))
using Min-in[OF (finite 2D <21 # {})] by auto
moreover have k< ?i. learn-or-forget (f k) (f (Suc k))
using Min.coboundedlI[of {i. i < ig A = learn (f i) (f (Suc 7)) A = forgetyor (f7)
(f (Suc i)}, simplified]
by (meson = learn (f io) (f (Suc ip)) A = forgetyor (f i0) (f (Suc ig)) less-imp-le
dual-order.trans not-le)
ultimately show ?thesis using that by blast
qed
define g where (¢ = (An. f (n + Suc 7))
have «dpll-bj (f7) (g 0)
using i-learn-forget cdclyor cdclyor.cases unfolding g-def by auto
{
fix j
assume § < 9
then have (earn-or-forget** (f 0) (f j)
apply (induction j)
apply simp
by (metis (no-types, lifting) Suc-leD Suc-le-lessD rtranclp.simps
N k<i. learn (f k) (f (Suc k)) V forgetyor (fk) (f (Suc k)))
}

then have (earn-or-forget** (f 0) (f i) by blast
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then have (2 + card (atms-of-ms A)) = (1 + card (atms-of-ms A))
— pe (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight (g 0))
< (2 + card (atms-of-ms A)) ~ (1 + card (atms-of-ms A))
— pe (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight (f 0))
using learn-or-forget-dpll-pclof «f Oy <f i g O) A] inv «dpll-bj (f i) (g 0)
unfolding cdcly or-NOT-all-inv-def by linarith

moreover have cdclyor-i: «cdelyor™ (f0) (g 0)
using rtranclp-learn-or-forget-cdelyor[of «f O «f ©] dearn-or-forget** (f 0) (f i)
cdelyor|of 7] unfolding g-def by auto
moreover have (\i. cdclyor (g ¢) (g (Suc i)
using cdclyor g-def by auto
moreover have <cdclyor-NOT-all-inv A (g 0)
using inv cdclyor-i rtranclp-cdcel y or-trail-clauses-bound g-def cdclyor-NOT-all-inv by auto
ultimately obtain j where j: (\i. i>j = learn-or-forget (g 7) (g (Suc 7))
using IH unfolding u[symmetric] by presburger
show ?thesis
proof
{
fix k
assume &k > j + Suc
then have (earn-or-forget (f k) (f (Suc k))
using jlof <k—Suc #] unfolding g-def by auto

then show «V k>j+Suc i. learn-or-forget (f k) (f (Suc k))»
by auto
qed
qed
next
case 0 note H = this(1) and cdclyor = this(2) and inv = this(3)
show ?case
proof (rule ccontr)
assume (- Zcase
then have j: Ji. = learn (f7) (f (Suc i)) A —forgetyor (fi) (f (Suci))
by blast
obtain ¢ where
=learn (f©) (f (Suc i)) A —forgetyor (f ) (f (Suc i) and
~ k<i. learn-or-forget (f k) (f (Suc k))
proof —
obtain iy where — learn (f i) (f (Suc ig)) A —forgetyor (fi0) (f (Suc ip))
using j by auto
then have ({i. i<ig A = learn (f i) (f (Suc 7)) A =forgetnor (f i) (f (Suc )} # {h
by auto
let 21 = {i. i<ig A = learn (f i) (f (Suc i)) A =forgetyor (f i) (f (Suci))p
let 20 = (Min 2D
have (finite ?D
by auto
have = learn (f %) (f (Suc %)) A —=forgetnor (f %) (f (Suc 20))
using Min-in[OF «finite ¢> «?I # {}] by auto
moreover have V k< ?. learn-or-forget (f k) (f (Suc k))
using Min.coboundedI[of ({i. i < ig A = learn (f i) (f (Suc 7)) A = forgetyor (f %)
(f (Suc i)}, simplified]
by (meson = learn (f io) (f (Suc ip)) A = forgetyor (f 7o) (f (Suc io)) less-imp-le
dual-order.trans not-le)
ultimately show ?thesis using that by blast
qed
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have «dpll-bj (f7) (f (Suc 7))
using — learn (f ) (f (Suc i)) A = forgetnyor (f i) (f (Suc ) edelyor cdelyor.cases
by blast
{
fix j
assume § <
then have (earn-or-forget** (f 0) (f j)
apply (induction j)
apply simp
by (metis (no-types, lifting) Suc-leD Suc-le-lessD rtranclp.simps
N k<i. learn (f k) (f (Suc k)) V forgetyor (fk) (f (Suc k)))
}

then have (earn-or-forget** (f 0) (f i) by blast

then show Fulse
using learn-or-forget-dpll-uclof <f 0) <f  «f (Suc i) A] inv 0
(dpll-bj (f i) (f (Suc 7)) unfolding cdclyor-NOT-all-inv-def by linarith
qed
qed

lemma wf-cdcly or-no-learn-and-forget-infinite-chain:
assumes
no-infinite-lf: <\f j. = (Vi>j. learn-or-forget (f i) (f (Suc i)))
shows «wf {(T, S). cdelyor S T A cdelyor-NOT-all-inv A S}
(is «wf {(T, S). cdelyor S T A %inv Sh)
unfolding wf-iff-no-infinite-down-chain
proof (rule ccontr)
assume (- - (3f. Vi. (f (Suc i), fi) € {(T, S). cdelyor S T N %inv S})
then obtain f where
~i. cdelyor (fi) (f (Suc i) A Zinv (f i)
by fast
then have Jj. Vi>j. learn-or-forget (f i) (f (Suc ©))
using infinite-cdely o -exists-learn-and-forget-infinite-chain|of f] by meson
then show Fulse using no-infinite-lf by blast
qed

lemma inv-and-tranclp-cdcl-y or-tranclp-cdcly or-and-inv:
tedelyor™ S T A cdelyor-NOT-all-inv A S <+ (AS T. cdclyor S T A cdclyor-NOT-all-inv A
Syttt S
(is <PA N 971 +— 7B))
proof
assume (?A A 2D
then have ?4 and ?I by blast+
then show ?B
apply induction
apply (simp add: tranclp.r-into-trancl)
by (subst tranclp.simps) (auto intro: cdelyor-NOT-all-inv tranclp-into-rtranclp)
next
assume ?B
then have ?A by induction auto
moreover have ?[ using (?B) tranclpD by fastforce
ultimately show (YA A ?I) by blast
qed

lemma wf-tranclp-cdcly or-no-learn-and-forget-infinite-chain:
assumes
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no-infinite-lf: <\fj. = (Vi>j. learn-or-forget (f i) (f (Suc ©)))
shows «wf {(T, S). cdelyor™™ S T A cdelyor-NOT-all-inv A S}
using wf-trancl| OF wf-cdcly or-no-learn-and-forget-infinite-chain| OF no-infinite-If]]
apply (rule wf-subset)
by (auto simp: trancl-set-tranclp inv-and-tranclp-cdcl-y o r-tranclp-cdcl y o7 -and-inv)

lemma cdclyor-final-state:
assumes
n-s: (no-step cdelyor S and
inv: <cdelyor-NOT-all-inv A S) and
decomp: (all-decomposition-implies-m (clausesyor S) (get-all-ann-decomposition (trail S))
shows (unsatisfiable (set-mset (clausesyor S))
V (trail S EEasm clausesyor S A satisfiable (set-mset (clausesyor S)))
proof —
have n-s’: <no-step dpll-bj S
using n-s by (auto simp: cdcly or.simps)
show ?thesis
apply (rule dpll-backjump-final-state[of S A])
using inv decomp n-s’ unfolding cdclyor-NOT-all-inv-def by auto
qed

lemma full-cdclyor-final-state:
assumes
Sfull: <full cdelyor S T) and
inv: <cdelyor-NOT-all-inv A S) and
n-d: no-dup (trail S)> and
decomp: (all-decomposition-implies-m (clausesyor S) (get-all-ann-decomposition (trail S))
shows (unsatisfiable (set-mset (clausesyor T))
V (trail T |Easm clausesyor T A satisfiable (set-mset (clausesyor T)))
proof —
have st: «cdclyor™* S T) and n-s: (no-step cdclyor T)
using full unfolding full-def by blast+
have n-s”: <cdciyor-NOT-all-inv A T)
using cdclyor-NOT-all-inv inv st by blast
moreover have <all-decomposition-implies-m (clausesyor T) (get-all-ann-decomposition (trail T))
using cdclyor-NOT-all-inv-def decomp inv rtranclp-cdcl y o -all-decomposition-implies st by auto
ultimately show ?thesis
using cdclyor-final-state n-s by blast
qed

end — End of the locale conflict-driven-clause-learning.

Termination

To prove termination we need to restrict learn and forget. Otherwise we could forget and relearn
the exact same clause over and over. A first idea is to forbid removing clauses that can be used
to backjump. This does not change the rules of the calculus. A second idea is to “merge”
backjump and learn: that way, though closer to implementation, needs a change of the rules,
since the backjump-rule learns the clause used to backjump.

Restricting learn and forget

locale conflict-driven-clause-learning-learning-before-backjump-only-distinct-learnt =
dpll-state trail clausesyoT prepend-trail tl-trail add-clsyor remove-clsyor +
conflict-driven-clause-learning trail clausesyor prepend-trail tl-trail add-clsy o remove-clsyor
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inv decide-conds backjump-conds propagate-conds
AC' S. distinct-mset C A —tautology C A learn-restrictions C' S A
(3FKAdF' C'L. trail S = F' Q Decided K # F N C = add-mset L C' N F =as CNot C’
A add-mset L C' ¢4 clausesyor S)
ANCS. ~(3F'"FKdL. trail S = F’' Q Decided K # F N\ F [=as CNot (removel-mset L C))
A forget-restrictions C'S)
for
trail :: (st = (v, unit) ann-lits) and
clausesyor : (st = "v clauses) and
prepend-trail :: ('v, unit) ann-lit = st = 'st) and
tl-trail :: st ='st) and
add-clsyor : (v clause = 'st = ‘st and
remove-clsyor : (v clause = 'st = 'st) and
inv :: (st = bool) and
decide-conds :: ('st = 'st = bool) and
backjump-conds :: ('v clause = 'v clause = v literal = st = 'st = bool> and
propagate-conds :: (v, unit) ann-lit = ‘st = st = bool> and
learn-restrictions forget-restrictions :: ('v clause = 'st = bool)
begin

lemma cdclyor-learn-all-induct[consumes 1, case-names dpll-bj learn forgetyor]:
fixes S T :: (st
assumes <cdclyor S T) and
dpll: <\\T. dpll-bj ST = P S T) and
learning:
(NCFKF' C'LT. clausesyor S FEpm C =
atms-of C' C atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-l (trail §)) =
distinct-mset C —>
= tautology C =
learn-restrictions C S =
trail S = F' Q Decided K # F —
C = add-mset L C' =
F =as CNot ' =
add-mset L C' ¢4 clausesyor S =
T ~ add-clsyor C S =
P ST and
forgetting: (\NC T. removeAll-mset C (clausesyor S) Epm C =
C €# clausesyor S =
~(3F'FKL. trail S = F' Q Decided K # F N F [=as CNot (C — {#L#})) =
T ~ remove-clsyor C S —
forget-restrictions C' S =
PS
shows (P § T
using assms(1)
apply (induction rule: cdelyor.induct)
apply (auto dest: assms(2) simp add: learn-ops-axioms)]]
apply (auto elim!: learn-ops.learn.cases| OF learn-ops-azioms] dest: assms(3))[]
apply (auto elim!: forget-ops.forget nor.cases|OF forget-ops-axioms| dest!: assms(4))
done

lemma rtranclp-cdclyor-inv:
edelyor™ ST = inv S = inv T
apply (induction rule: rtranclp-induct)
apply simp
using cdclyor-inv unfolding conflict-driven-clause-learning-def
conflict-driven-clause-learning-axioms-def by blast
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lemma learn-always-simple-clauses:
assumes
learn: dearn S T) and
n-d: <no-dup (trail S)
shows (set-mset (clausesyor T — clausesyor S)
C simple-clss (atms-of-mm (clausesyor S) U atm-of * lits-of-1 (trail S)))
proof
fix C assume C: (C € set-mset (clausesyor T — clausesyor S))
have (distinct-mset C) (—tautology C) using learn C n-d by (elim learnyoTE; auto)+
then have (C' € simple-clss (atms-of C)
using distinct-mset-not-tautology-implies-in-simple-clss by blast
moreover have <atms-of C C atms-of-mm (clausesyor S) U atm-of ¢ lits-of-1 (trail S)
using learn C n-d by (elim learnyorFE) (auto simp: atms-of-ms-def atms-of-def image-Un
true-annots-CNot-all-atms-defined)
moreover have (finite (atms-of-mm (clausesyor S) U atm-of * lits-of-l (trail S))
by auto
ultimately show (C € simple-clss (atms-of-mm (clausesyor S) U atm-of * lits-of-1 (trail S))
using simple-clss-mono by (metis (no-types) insert-subset mk-disjoint-insert)
qed

definition (conflicting-bj-clss S =
{CH{#L#} |C L. C+{#L#} €# clausesnor S N distinct-mset (CH+{#L#})
A —tautology (C+{#L#})
AN3F'KF. trail S = F' Q Decided K # F N F [=as CNot C)}

lemma conflicting-bj-clss-remove-clsy o [simp):
conflicting-bj-clss (remove-clsyor C S) = conflicting-bj-clss S — {C}h
unfolding conflicting-bj-clss-def by fastforce

lemma conflicting-bj-clss-remove-clsy o '[simp):
(T ~ remove-clsyor C S = conflicting-bj-clss T = conflicting-bj-clss S — {C}h
unfolding conflicting-bj-clss-def by fastforce

lemma conflicting-bj-clss-add-clsy or-state-eq:
assumes
T: (T ~ add-clsyor C'S) and
n-d: <no-dup (trail S)
shows (conflicting-bj-clss T
= conflicting-bj-clss S
U (if 3C L. C' = add-mset L C A distinct-mset (add-mset L C) A —tautology (add-mset L C)
AN(FF' KdF. trail S = F’' Q Decided K # F N F [E=as CNot C)
then {C'} else {})
proof —
define P where (P = (AC L T. distinct-mset (add-mset L C') A = tautology (add-mset L C) A
(3F"K F. trail T = F' Q Decided K # F N F [=as CNot C))
have conf: (\T. conflicting-bj-clss T = {add-mset L C |C L. add-mset L C €# clausesyor T A P
CLThH
unfolding conflicting-bj-clss-def P-def by auto
have P-S-T:<\AN\CL.PCLT=PCLS
using T n-d unfolding P-def by auto
have P: (conflicting-bj-clss T = {add-mset L C |C L. add-mset L C' €# clausesyor S AP CL T} U
{add-mset L C' |C L. add-mset L C €# {#C'#} NP CL T}h
using T n-d unfolding conf by auto
moreover have ({add-mset L C' |C L. add-mset L C €# clausesyor S AN P C L T} = conflicting-bj-clss
S
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using T n-d unfolding P-def conflicting-bj-clss-def by auto
moreover have ({add-mset L C |C L. add-mset L C €# {#C'#} NP CL T} =
(if 3C L. C' = add-mset L C N P C' L S then {C'} else {})
using n-d T by (force simp: P-S-T)
ultimately show ?thesis unfolding P-def by presburger
qed

lemma conflicting-bj-clss-add-clsy or:

(no-dup (trail ) =

conflicting-bj-clss (add-clsyor C'S)
= conflicting-bj-clss S

U (if 3C L. C' = C +{#L#}IN distinct-mset (C+{#L#}) N —tautology (CH+{#L#})

AN@BF' KdF. trail S = F' Q Decided K # F N F |=as CNot C)
then {C'} else {})

using conflicting-bj-clss-add-clsy or-state-eq by auto

lemma conflicting-bj-clss-incl-clauses:
conflicting-bj-clss S C set-mset (clausesyor S)
unfolding conflicting-bj-clss-def by auto

lemma finite-conflicting-bj-clss[simp]:
(finite (conflicting-bj-clss S))
using conflicting-bj-clss-incl-clauses[of S| rev-finite-subset by blast

lemma learn-conflicting-increasing:
(mo-dup (trail S) = learn S T = conflicting-bj-clss S C conflicting-bj-clss T
apply (elim learnyorTE)
by (subst conflicting-bj-clss-add-clsy or-state-eqlof T]) auto

abbreviation <conflicting-bj-clss-yet b S =
3 7 b — card (conflicting-bj-clss S)

abbreviation py, :: (nat = ‘st = nat x nat) where
(g b S = (conflicting-bj-clss-yet b S, card (set-mset (clausesyor S)))

lemma do-not-forget-before-backtrack-rule-clause-learned-clause-untouched:
assumes (forgetyor S T)
shows <conflicting-bj-clss S = conflicting-bj-clss T)
using assms apply (elim forgetyorT E)
apply rule
apply (subst conflicting-bj-clss-remove-clsyor'[of T, simp)
apply (fastforce simp: conflicting-bj-clss-def removel-mset-add-mset-If split: if-splits)
apply fastforce
done

lemma forget-uy -decrease:
assumes forgetyor: (forgetyor S T
shows «(ur, b T, pr, b S) € less-than <xlexx> less-than
proof —
have (card (set-mset (clausesyor S)) > O
using forgetyor by (elim forgetnyorE) (auto simp: size-mset-removeAll-mset-le-iff card-gt-0-iff)
then have (card (set-mset (clausesyor T)) < card (set-mset (clausesyor S))
using forgetyor by (elim forgetnyorE) (auto simp: size-mset-removeAll-mset-le-iff)
then show ?thesis
unfolding do-not-forget-before-backtrack-rule-clause-learned-clause-untouched|OF forgetnoT)
by auto
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qed

lemma set-condition-or-split:
da. (a=bdV Qa) ANSa} = (if Sbthen {b} else {}) U {a. Qa A Sa}p
by auto

lemma set-insert-neq:
(A # inserta A +— a ¢ A
by auto

lemma learn-py -decrease:
assumes learnST: (dearn S T) and n-d: (no-dup (trail S)) and
A: «atms-of-mm (clausesyor S) U atm-of * lits-of-1 (trail S) C A and

fin-A: (finite A
shows «(ur (card A) T, pr (card A) S) € less-than <xlexx> less-than)
proof —

have [simp]: ((atms-of-mm (clausesyor T) U atm-of ¢ lits-of-1 (trail T))
= (atms-of-mm (clausesyor S) U atm-of * lits-of-l1 (trail S))
using learnST n-d by (elim learnyorE) auto

then have (card (atms-of-mm (clausesyor T) U atm-of ‘ lits-of-1 (trail T))
= card (atms-of-mm (clausesyor S) U atm-of ‘ lits-of-1 (trail S))
by (auto introl: card-mono)
then have 3: «(8::nat) ~ card (atms-of-mm (clausesyor T) U atm-of * lits-of-1 (trail T))
= 8 " card (atms-of-mm (clausesyor S) U atm-of * lits-of-l (trail S))
by (auto intro: power-mono)
moreover have (conflicting-bj-clss S C conflicting-bj-clss T»
using learnST n-d by (simp add: learn-conflicting-increasing)
moreover have (conflicting-bj-clss S # conflicting-bj-clss T»
using learnST
proof (elim learnyorE, goal-cases)
case (1 C) note clss-S = this(1) and atms-C = this(2) and inv = this(3) and T = this(4)
then obtain F K F’ C' L where
tr-S: (trail S = F' @Q Decided K # F) and
C: «C = add-mset L C'y and
F: (F [=as CNot C" and
C-S:tadd-mset L C' ¢# clausesyor S
by blast
moreover have (distinct-mset C) (- tautology C) using inv by blast+
ultimately have (add-mset L C’ € conflicting-bj-clss T)
using T n-d unfolding conflicting-bj-clss-def by fastforce
moreover have (add-mset L C’ & conflicting-bj-clss S
using C-S unfolding conflicting-bj-clss-def by auto
ultimately show ?case by blast
qed
moreover have fin-T: (finite (conflicting-bj-clss T)
using learnST by induction (auto simp add: conflicting-bj-clss-add-clsyoT )
ultimately have (card (conflicting-bj-clss T) > card (conflicting-bj-clss S))
using card-mono by blast

moreover
have fin": <finite (atms-of-mm (clausesyor T) U atm-of  lits-of-l (trail T))
by auto
have 1:<atms-of-ms (conflicting-bj-clss T) C atms-of-mm (clausesyor T)
unfolding conflicting-bj-clss-def atms-of-ms-def by auto
have 2: (\z. z€ conflicting-bj-clss T = — tautology x N distinct-mset
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unfolding conflicting-bj-clss-def by auto
have T: (conflicting-bj-clss T
C simple-clss (atms-of-mm (clausesyor T) U atm-of  lits-of-1 (trail T))
by standard (meson 1 2 fin’ <finite (conflicting-bj-clss T)» simple-clss-mono
distinct-mset-set-def simplified-in-simple-clss subsetCE sup.coboundedI1)
moreover
then have #: (3 ~ card (atms-of-mm (clausesyor T) U atm-of * lits-of-1 (trail T))
> card (conflicting-bj-clss T)»
by (meson Nat.le-trans simple-clss-card simple-clss-finite card-mono fin')
have (atms-of-mm (clausesyor T) U atm-of ¢ lits-of-1 (trail T) C A
using learny o7 E[OF learnST] A by simp
then have (3 = (card A) > card (conflicting-bj-clss T)
using # fin-A by (meson simple-clss-card simple-clss-finite
simple-clss-mono calculation(2) card-mono dual-order.trans)
ultimately show ?thesis
using psubset-card-mono|OF fin-T |
unfolding less-than-iff lex-prod-def by clarify
(meson <conflicting-bj-clss S # conflicting-bj-clss T»
(conflicting-bj-clss S C conflicting-bj-clss T»
diff-less-mono2 le-less-trans not-le psubsetl)
qed

We have to assume the following:

e inv S: the invariant holds in the inital state.

e A is a (finite finite A) superset of the literals in the trail atm-of ¢ lits-of-l (trail S) C
atms-of-ms A and in the clauses atms-of-mm (clausesyor S) C atms-of-ms A. This can
the the set of all the literals in the starting set of clauses.

e no-dup (trail S): no duplicate in the trail. This is invariant along the path.

definition pcpcor where
weper A T = ((2+card (atms-of-ms A)) ~ (1+card (atms-of-ms A))
— pc (14card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T'),
conflicting-bj-clss-yet (card (atms-of-ms A)) T, card (set-mset (clausesyor T)))
lemma cdcly or-decreasing-measure:
assumes
<CdClNOT S T) and
inv: <inv S) and
atm-clss: «atms-of-mm (clausesyor S) C atms-of-ms A and
atm-lits: atm-of ‘ lits-of-1 (trail S) C atms-of-ms A> and
n-d: (no-dup (trail S)» and
fin-A: (finite A)
shows (pucper A T, peper A S)
€ less-than <xlexx> (less-than <xlexx> less-than)
using assms(1)
proof induction
case (c-dpll-bj T)
from dpll-bj-trail-mes-decreasing-prop[ OF this(1) inv atm-clss atm-lits n-d fin-A|
show ?case unfolding pcpop-def
by (meson in-lez-prod less-than-iff)
next
case (c-learn T) note learn = this(1)
then have §: (trail S = trail T)
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using inv atm-clss atm-lits n-d fin-A
by (elim learnyorE) auto
show ?case
using learn-py -decrease| OF learn n-d, of (atms-of-ms A)] atm-clss atm-lits fin-A n-d
unfolding S ucpcr-def by auto
next
case (c-forgetnyor T) note forgetyor = this(1)
have (trail S = trail T) using forget yor by induction auto
then show ?case
using forget-uy -decrease[OF forgetyor] unfolding pcpcor-def by auto
qed

lemma wf-cdcly or-restricted-learning:

assumes (finite A

shows wf {(T, S).
(atms-of-mm (clausesyor S) C atms-of-ms A A atm-of * lits-of-l (trail S) C atms-of-ms A
A no-dup (trail S)
A inv S)
A cdelyor ST })

by (rule wf-wf-if-measure’[of (less-than <xlexx> (less-than <xlexx> less-than))])
(auto intro: cdely or-decreasing-measure[OF - - - - - assms))

definition uc’:: (v clause set = 'st = nat) where
we' A T = pe (14card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T)

definition ucpcyr’ :: (v clause set = 'st = nat> where
(weper' AT =

((24card (atms-of-ms A)) = (1+card (atms-of-ms A)) — uc’' A T) = (1+ 3 card (atms-of-ms A)) *
2

+ conflicting-bj-clss-yet (card (atms-of-ms A)) T * 2

+ card (set-mset (clausesyor T))

lemma cdcly or-decreasing-measure’:

assumes
cedelyor S Ty and
inv: ¢nv ) and
atms-clss: (atms-of-mm (clausesyor S) C atms-of-ms A and
atms-trail: atm-of ‘ lits-of-1 (trail S) C atms-of-ms A> and
n-d: (no-dup (trail S)> and
fin-A: (finite A

shows <MCDCLI AT< MC’DCL/ AS

using assms(1)

proof (induction rule: cdclyor-learn-all-induct)

case (dpll-bj T)

then have (2+card (atms-of-ms A)) ~ (1+card (atms-of-ms A)) — uc’' A T
< (2+-card (atms-of-ms A)) ~ (1+card (atms-of-ms A)) — uc’ A S
using dpll-bj-trail-mes-decreasing-prop fin-A inv n-d atms-clss atms-trail
unfolding pc’-def by blast

then have XX: «(((2+card (atms-of-ms A)) = (1+card (atms-of-ms A)) — uc’ A T) + 1
< (2+-card (atms-of-ms A)) ~ (1+card (atms-of-ms A)) — uc’ A S
by auto

from mult-le-monol [OF this, of (I + 3 ~ card (atms-of-ms A))]

have «(((2 + card (atms-of-ms A)) ~ (1 + card (atms-of-ms A)) — pc' A T) *

(I + 3 ~ card (atms-of-ms A)) + (1 + 3 ~ card (atms-of-ms A))
< ((2 + card (atms-of-ms A)) = (1 + card (atms-of-ms A)) — puc' A S)
x (1 + 3 7 card (atms-of-ms A))
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unfolding Nat.add-mult-distrib
by presburger
moreover
have cl-T-S: «clausesyor T = clausesyor S
using dpll-bj.hyps inv dpll-bj-clauses by auto
have (conflicting-bj-clss-yet (card (atms-of-ms A)) S < 1+ 3 ~ card (atms-of-ms A)
by simp
ultimately have «((2 + card (atms-of-ms A)) = (1 + card (atms-of-ms A)) — pc’ A T)
* (1 + 3 7 card (atms-of-ms A)) + conflicting-bj-clss-yet (card (atms-of-ms A)) T
< ((2 + card (atms-of-ms A)) ~ (1 + card (atms-of-ms A)) — uc' A S) *(1 + 3 ~ card (atms-of-ms
A
by linarith
then have «((2 + card (atms-of-ms A)) = (1 + card (atms-of-ms A)) — uc’ A T)
* (1 + 8~ card (atms-of-ms A))
+ conflicting-bj-clss-yet (card (atms-of-ms A)) T
< ((2 + card (atms-of-ms A)) ~ (1 + card (atms-of-ms A)) — pc' A S)
* (1 + 3~ card (atms-of-ms A))
+ conflicting-bj-clss-yet (card (atms-of-ms A)) S
by linarith
then have «((2 + card (atms-of-ms A)) ~ (1 + card (atms-of-ms A)) — puc’ A T)
* (1 + 3 " card (atms-of-ms A)) = 2
+ conflicting-bj-clss-yet (card (atms-of-ms A)) T * 2
< ((2 + card (atms-of-ms A)) ~ (1 + card (atms-of-ms A)) — puc' A S)
* (1 + 3~ card (atms-of-ms A)) = 2
+ conflicting-bj-clss-yet (card (atms-of-ms A)) S = 2
by linarith
then show ?case unfolding pcpcyr’-def cl-T-S by presburger
next
case (learn C F' K F C' L T) note clss-S-C = this(1) and atms-C = this(2) and dist = this(3)
and tauto = this(4) and learn-restr = this(5) and tr-S = this(6) and C’ = this(7) and
F-C = this(8) and C-new = this(9) and T = this(10)
have «nsert C (conflicting-bj-clss S) C simple-clss (atms-of-ms A)
proof —
have (C' € simple-clss (atms-of-ms A)»
using C'
by (metis (no-types, hide-lams) Un-subset-iff simple-clss-mono
contra-subsetD dist distinct-mset-not-tautology-implies-in-simple-clss
dual-order.trans atms-C atms-clss atms-trail tauto)
moreover have (conflicting-bj-clss S C simple-clss (atms-of-ms A)
proof
fix z :: (v clause)
assume (x € conflicting-bj-clss S)
then have ¢ €# clausesyor S A distinct-mset x A — tautology o
unfolding conflicting-bj-clss-def by blast
then show ( € simple-clss (atms-of-ms A)
by (meson atms-clss atms-of-atms-of-ms-mono atms-of-ms-finite simple-clss-mono
distinct-mset-not-tautology-implies-in-simple-clss fin-A finite-subset
set-rev-mp)
qged
ultimately show ?thesis
by auto
qed
then have (card (insert C (conflicting-bj-clss S)) < 8 = (card (atms-of-ms A))
by (meson Nat.le-trans atms-of-ms-finite simple-clss-card simple-clss-finite
card-mono fin-A)
moreover have [simp]: (card (insert C (conflicting-bj-clss S))
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= Suc (card ((conflicting-bj-clss S)))
by (metis (no-types) C’ C-new card-insert-if conflicting-bj-clss-incl-clauses contra-subsetD
finite-conflicting-bj-clss)
moreover have [simp]: (conflicting-bj-clss (add-clsyor C S) = conflicting-bj-clss S U {C}h
using dist tauto F-C by (subst conflicting-bj-clss-add-clsy or[OF n-d)) (force simp: C' tr-S n-d)
ultimately have [simp]: (conflicting-bj-clss-yet (card (atms-of-ms A)) S
= Suc (conflicting-bj-clss-yet (card (atms-of-ms A)) (add-clsyor C S))
by simp
have 1: «clausesyor T = clausesyor (add-clsyor C S)) using T by auto
have 2: <conflicting-bj-clss-yet (card (atms-of-ms A)) T
= conflicting-bj-clss-yet (card (atms-of-ms A)) (add-clsnor C S)
using T unfolding conflicting-bj-clss-def by auto
have 3: quc’' A T = pe’ A (add-clsyor C S)
using 7T unfolding uc’-def by auto
have «(((2 + card (atms-of-ms A)) ~ (1 + card (atms-of-ms A)) — pc’ A (add-clsyor C'S))
* (1 + 3 " card (atms-of-ms A)) * 2
= ((2 + card (atms-of-ms A)) ~ (1 + card (atms-of-ms A)) — uc’ A S)
* (1 + 8 " card (atms-of-ms A)) x 2)
using n-d unfolding uc’-def by auto
moreover
have (conflicting-bj-clss-yet (card (atms-of-ms A)) (add-clsyor C S)
* 2
+ card (set-mset (clausesyor (add-clsyor CS)))
< conflicting-bj-clss-yet (card (atms-of-ms A)) S * 2
+ card (set-mset (clausesyor S))
by (simp add: C' C-new n-d)
ultimately show ?case unfolding ucpcr’-def 1 2 3 by presburger
next
case (forgetyor C T) note T = this(4)
have [simp]: (uc' A (remove-clsyor C S) = pe’ A S
unfolding pc'-def by auto
have (forgetyor S T)
apply (rule forgetyor.intros) using forgetyor by auto
then have <conflicting-bj-clss T = conflicting-bj-clss S
using do-not-forget-before-backtrack-rule-clause-learned-clause-untouched by blast
moreover have (card (set-mset (clausesyor T)) < card (set-mset (clausesyor S)))
by (metis T card-Diff1-less clauses-remove-clsyor finite-set-mset forgetnor.hyps(2)
order-refl set-mset-minus-replicate-mset(1) state-eqnor-clauses)
ultimately show ?case unfolding pcpcr’-def
using T (uc’ A (remove-clsyor C S) = pe’ A S by (metis (no-types) add-le-cancel-left
e -def not-le state-eqn o-trail)
qed

lemma cdclyor-clauses-bound:
assumes
cedelyor S Ty and
tnv S) and
(atms-of-mm (clausesyor S) C A and
(atm-of “(lits-of-l (trail S)) C A> and
n-d: (no-dup (trail S)> and
fin-A[simp]: (finite A
shows (set-mset (clausesyor T) C set-mset (clausesyor S) U simple-clss A)
using assms
proof (induction rule: cdclyor-learn-all-induct)
case dpll-bj
then show ?case using dpll-bj-clauses by simp
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next
case forgetyor
then show ?case using clauses-remove-clsy or unfolding state-eqnor-def by auto
next
case (learn C F K d F' C' L) note atms-C = this(2) and dist = this(3) and tauto = this(4) and
T = this(10) and atms-clss-S = this(12) and atms-trail-S = this(13)
have (atms-of C C A
using atms-C atms-clss-S atms-trail-S by fast
then have (simple-clss (atms-of C) C simple-clss A)
by (simp add: simple-clss-mono)
then have (C € simple-clss A
using finite dist tauto by (auto dest: distinct-mset-not-tautology-implies-in-simple-clss)
then show ?Zcase using T n-d by auto
qed

lemma rtranclp-cdcly or-clauses-bound:
assumes
tedelyor™ S T) and
anv S) and
(atms-of-mm (clausesyor S) Q
(atm-of ‘(lits-of-l (trail S)) C A
n-d: no-dup (trail S)> and
finite: (finite A)
shows «set-mset (clausesyor T) C set-mset (clausesyor S) U simple-clss A
using assms(1—35)
proof induction
case base
then show ?case by simp
next
case (step T U) note st = this(1) and cdclyor = this(2) and IH = this(3)[OF this(4—7)] and
inv = this(4) and atms-clss-S = this(5) and atms-trail-S = this(6) and finite-cls-S = this(7)
have ¢inv T)
using rtranclp-cdclyor-inv st inv by blast
moreover have <atms-of-mm (clausesyor T) C A and (atm-of * lits-of-l (trail T) C A
using rtranclp-cdcly or-trail-clauses-bound[OF st] inv atms-clss-S atms-trail-S n-d by auto
moreover have no-dup (trail T)
using rtranclp-cdely or-no-dup|OF st ¢inv S) n-d] by simp
ultimately have (set-mset (clausesyor U) C set-mset (clausesyor T) U simple-clss A
using cdclyor finite n-d by (auto simp: cdclyor-clauses-bound)
then show ?Zcase using IH by auto
qed

lemma rtranclp-cdcly or-card-clauses-bound:
assumes
tedelyor™ S T) and
tnv S) and
(atms-of-mm (clausesyor S) Q
atm-of ‘(lits-of-l (trail S)) C A
n-d: (no-dup (trail S)> and
finite: (finite A)
shows (card (set-mset (clausesyor T)) < card (set-mset (clausesyor S)) + 3 = (card A)
using rtranclp-cdely or-clauses-bound|[OF assms] finite by (meson Nat.le-trans
simple-clss-card simple-clss-finite card-Un-le card-mono finite-Unl
finite-set-mset nat-add-left-cancel-le)

lemma rtranclp-cdclyoT-card-clauses-bound’:
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assumes
tedelyor™ S T) and
(nv S and
(atms-of-mm (clausesyor S) C A and
(atm-of ‘(lits-of-l (trail S)) C A and
n-d: (no-dup (trail S)> and
finite: (finite A)
shows (card {C|C. C €# clausesyor T A (tautology C' V —distinct-mset C)}
< card {C|C. Ce# clausesyor S A (tautology C vV —distinct-mset C)} + 3 = (card A)
(is <card ?T < card 25 + =)
using rtranclp-cdely or-clauses-bound[OF assms] finite
proof —
have (?T C %5 U simple-clss A
using rtranclp-cdcly or-clauses-bound[ OF assms] by force
then have (card ?T < card (25 U simple-clss A)
using finite by (simp add: assms(5) simple-clss-finite card-mono)
then show ?thesis
by (meson le-trans simple-clss-card card-Un-le local.finite nat-add-left-cancel-le)
qed

lemma rtranclp-cdcly or-card-simple-clauses-bound:
assumes
edelyor™ S T) and
(nv S and
NA: (atms-of-mm (clausesyor S) € A and
MA: «atm-of  (lits-of-1 (trail S)) C A and
n-d: <no-dup (trail S)> and
finite: (finite A)
shows (card (set-mset (clausesyor T))
< card {C. C €# clausesyor S A (tautology C' V —distinct-mset C)} + 3 ~ (card A)
(is ccard ?T < card 25 + )
using rtranclp-cdely or-clauses-bound[OF assms] finite
proof —
have (\z. x €# clausesyor T = - tautology © = distinct-mset © = x € simple-clss A
using rtranclp-cdcly or-clauses-bound[OF assms] by (metis (no-types, hide-lams) Un-iff NA
atms-of-atms-of-ms-mono simple-clss-mono contra-subsetD subset-trans
distinct-mset-not-tautology-implies-in-simple-clss)
then have (set-mset (clausesyor T) C 25 U simple-clss A
using rtranclp-cdely or-clauses-bound[OF assms] by auto
then have (card(set-mset (clausesyor T)) < card (95 U simple-clss A)
using finite by (simp add: assms(5) simple-clss-finite card-mono)
then show ?thesis
by (meson le-trans simple-clss-card card-Un-le local.finite nat-add-left-cancel-le)
qed

definition ucpcyp’-bound :: (v clause set = ‘st = nat) where
(wepor’-bound A S =
((2 + card (atms-of-ms A)) = (1 + card (atms-of-ms A))) = (1 + 8 ~ card (atms-of-ms A)) x 2
+ 2x8 = (card (atms-of-ms A))
+ card {C. C €# clausesnor S A (tautology C V —distinct-mset C)} + 8 ~ (card (atms-of-ms
A))

lemma pcper’-bound-reduce-trail-ton o [simp):

(wopor-bound A (reduce-trail-toyor M S) = pcpcr’-bound A S
unfolding pcpcr’-bound-def by auto
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lemma rtranclp-cdclyor-pe por'-bound-reduce-trail-toy o r:
assumes
cedelyor™ S T) and
¢nv S» and
(atms-of-mm (clausesyor S) C atms-of-ms A and
atm-of ‘(lits-of-l (trail S)) C atms-of-ms A> and
n-d: (no-dup (trail S)> and
finite: (finite (atms-of-ms A)) and
U: U ~ reduce-trail-toyor M T)
shows <NCDCL/ AU < uCDCL’—bound A S
proof —
have ¢ ((2 + card (atms-of-ms A)) = (1 + card (atms-of-ms A)) — uc’ A U)
< (2 + card (atms-of-ms A)) ~ (1 + card (atms-of-ms A))
by auto
then have «((2 + card (atms-of-ms A)) = (1 + card (atms-of-ms A)) — pc’ A U)
* (1 + 3 " card (atms-of-ms A)) = 2
< (2 + card (atms-of-ms A)) ~ (1 + card (atms-of-ms A)) x (1 + 8 ~ card (atms-of-ms A)) x 2)
using mult-le-monol by blast
moreover
have <(conflicting-bj-clss-yet (card (atms-of-ms A)) T x 2 < 2 x 8 ~ card (atms-of-ms A))
by linarith
moreover have <card (set-mset (clausesyor U))
< card {C. C €# clausesyor S A (tautology C' V —distinct-mset C)} + 3 ~ card (atms-of-ms A))
using rtranclp-cdely o-card-simple-clauses-bound[OF assms(1—6)] U by auto
ultimately show ?thesis
unfolding pcpcor’-def pucpcr’-bound-def by linarith
qed

lemma rtranclp-cdclyor-pcpcr’-bound:
assumes
cedelyor™™ S T) and
tnv ) and
(atms-of-mm (clausesyor S) C atms-of-ms A and
(atm-of ‘(lits-of-1 (trail S)) C atms-of-ms A and
n-d: (no-dup (trail S)> and
finite: (finite (atms-of-ms A))
shows <NCDCL/ AT < ,[LCDCL/—I)OUTLd A S
proof —
have weper’ A (reduce-trail-toyor (trail T) T) = poper’ A Th
unfolding pcpcor’-def pc'-def conflicting-bj-clss-def by auto
then show %thesis using rtranclp-cdcly or-popcor’-bound-reduce-trail-ton o[OF assms, of - <trail
)
state-eqnoT-ref by fastforce
qed

lemma rtranclp-pcpcr'-bound-decreasing:
assumes
<CdClNOT** S T) and
anv S) and
(atms-of-mm. (clausesyor S) C atms-of-ms A> and
(atm-of ‘(lits-of-l (trail S)) C atms-of-ms A> and
n-d: no-dup (trail S)> and
finite[simp]: <finite (atms-of-ms A)»
shows (ucpcr’-bound A T < pcpcr’-bound A S
proof —
have ({C. C €# clausesyor T A (tautology C V — distinct-mset C)}
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C {C. C €# clausesyor S A (tautology C V — distinct-mset C)}b (is (?T C 25))
proof (rule Set.subsetl)
fix ¢ assume C € ?1)
then have C-T: (C €# clausesyor T and t-d: (tautology C V — distinct-mset C)
by auto
then have (C' ¢ simple-clss (atms-of-ms A)
by (auto dest: simple-clssE)
then show (C € 25
using C-T rtranclp-cdcly or-clauses-bound[OF assms] t-d by force
qed
then have (card {C. C €# clausesyor T A (tautology C vV — distinct-mset C)} <
card {C. C €# clausesyor S N (tautology C' vV — distinct-mset C)}
by (simp add: card-mono)
then show ?thesis
unfolding pcpcr’-bound-def by auto
qed

end — End of the locale conflict-driven-clause-learning-learning-before-backjump-only-distinct-learnt.

2.2.5 CDCL with Restarts

Definition

locale restart-ops =
fixes
cdelyor = (st = st = bool) and
restart :: ‘st = 'st = bool)
begin
inductive cdclyor-raw-restart :: st = 'st = bool) where
edelyor S T = cdclyor-raw-restart S T) |
(restart S T — cdclyor-raw-restart S T)

end

locale conflict-driven-clause-learning-with-restarts =
conflict-driven-clause-learning trail clausesyor prepend-trail tl-trail add-clsy o remove-clsyor
inv decide-conds backjump-conds propagate-conds learn-conds forget-conds
for
trail :: (st = ('v, unit) ann-lits) and
clausesyor :: (st = "v clauses) and
prepend-trail :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail :: st ='st) and
add-clsyor : (v clause = 'st = ‘st and
remove-clsyor 1 (v clause = 'st = 'st) and
inv :: (st = bool) and
decide-conds :: ('st = 'st = bool) and
backjump-conds :: (v clause = 'v clause = v literal = ’st = 'st = bool) and
propagate-conds :: (v, unit) ann-lit = ‘st = st = bool> and
learn-conds forget-conds :: (v clause = st = bool>
begin

lemma cdcly or-iff-cdcl y o -raw-restart-no-restarts:
edelyor S T +— restart-ops.cdcly or-raw-restart cdclyor (M- -. False) S T
(is«?CST+— ?RST)

proof
fix ST
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assume (?C' S T
then show (?R S T by (simp add: restart-ops.cdcly or-raw-restart.intros(1))

next

fix ST

assume (R S T)

then show (?C' S T)
apply (cases rule: restart-ops.cdelyor-raw-restart. cases)
using (?R S T) by fast+

qed

lemma cdclyor-cdely or-raw-restart:
(edelyor S T = restart-ops.cdclyor-raw-restart cdclyor restart S T)
by (simp add: restart-ops.cdel o -raw-restart.intros(1))

end

Increasing restarts

Definition We define our increasing restart very abstractly: the predicate (called cdclyor)
does not have to be a CDCL calculus. We just need some assuptions to prove termination:

a function f that is strictly monotonic. The first step is actually only used as a restart to
clean the state (e.g. to ensure that the trail is empty). Then we assume that (1::'a) < f
n for (1::a) < n: it means that between two consecutive restarts, at least one step will
be done. This is necessary to avoid sequence. like: full — restart — full — ...

a measure p: it should decrease under the assumptions bound-inv, whenever a cdclyor
or a restart is done. A parameter is given to u: for conflict- driven clause learning, it is
an upper-bound of the clauses. We are assuming that such a bound can be found after a
restart whenever the invariant holds.

we also assume that the measure decrease after any cdclyor step.
an invariant on the states cdclyor-inv that also holds after restarts.

it is mot required that the measure decrease with respect to restarts, but the measure has
to be bound by some function p-bound taking the same parameter as p and the initial
state of the considered cdclyoT chain.

locale cdclyor-increasing-restarts-ops =
restart-ops cdclyor restart for
restart :: /st = st = bool) and
cdelyor = st = st = bool) +
fixes

I

(nat = nat) and

bound-inv :: ('bound = 'st = bool) and

W

: ('bound = 'st = nat> and

cdelyor-inv : /st = bool) and
pu-bound :: ‘bound = 'st = nat)
assumes
f: «unbounded f» and
frge-1: <An. n>1 = fn # 0> and
bound-inv: (\NA S T. cdclyor-inv S = bound-inv A S = cdclyor S T = bound-inv A T) and
cdely or-measure: <(NA S T. cdclyor-inv S => bound-inv A S = cdelyor ST = p AT < p
A S and
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measure-bound2: (NA T U. cdclyor-inv T = bound-inv A T = cdelyor™ T U
= p A U < p-bound A T) and
measure-bound: \NA T U. cdelyor-inv T = bound-inv A T = cdclyor™* T U
= p-bound A U < p-bound A T) and
cdely or-restart-inv: (NA U V. cdelyor-inv U = restart U V. = bound-inv A U = bound-inv
AV
and
exists-bound: (AR S. cdelyor-inv R = restart R S = 3 A. bound-inv A S) and
cdelyor-inv: (\S T. cdelyor-inv S = cdclyor S T = cdclyor-inv T> and
cdely or-inv-restart: (NS T. cdclyor-inv S = restart S T = cdelyor-inv T)
begin

lemma cdclyoT-cdelyoT-inv:
assumes
(cdelyor™n) S T) and
<cdclNOT—z'm) S
shows (cdclyor-inv T)
using assms by (induction n arbitrary: T) (auto intro:bound-inv edely o-inv)

lemma cdcly o -bound-inv:
assumes
(edelyor ~n) S T and
tedelyor-inv S)
(bound-inv A S
shows (bound-inv A 1)
using assms by (induction n arbitrary: T) (auto intro:bound-inv cdclyor-cdclyo-inv)

lemma rtranclp-cdclyor-cdclyor-inv:
assumes
cedelyor™™ S T) and
cedelyor-inv S»
shows (cdclyor-inv T)
using assms by induction (auto intro: cdclyor-inv)

lemma rtranclp-cdcly or-bound-inv:
assumes
<CdClNOT** S T) and
(bound-inv A S) and
edelyor-inv S)
shows (bound-inv A T)
using assms by induction (auto intro:bound-inv rtranclp-cdely or-cdely or-inv)

lemma cdclyor-comp-n-le:
assumes
(edelyor ™" (Suc n)) S Tr and
(bound-inv A S)
cedelyor-inv S»
shows (w AT <puAS—mn
using assms
proof (induction n arbitrary: T)
case (
then show ?case using cdclyor-measure by auto
next
case (Suc n) note IH = this(1)[OF - this(3) this(4)] and S-T = this(2) and b-inv = this(3) and
c-inv = this(4)
obtain U :: 'st where S-U: (cdciyor ™ (Suc n)) S U) and U-T: (cdclyor U T) using S-T by
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auto
then have (w A U < p A S — n» using IH[of U] by simp
moreover
have <bound-inv A U)
using S-U b-inv cdclyor-bound-inv c-inv by blast
then have (u A T < p A U) using cdclyor-measure]OF - - U-T] S-U c-inv cdclyor-cdel yor-inv
by auto
ultimately show ?Zcase by linarith
qed

lemma wf-cdciyor:
wf {(T, S). edelnor S T A cdelyor-inv S A bound-inv A S} (is «wf 24))
apply (rule wfP-if-measure2]of - - (u A))
using cdclyor-comp-n-le[of 0 - - A] by auto

lemma rtranclp-cdcly or-measure:
assumes
tedelyor™ S T) and
(bound-inv A S) and
cedelyor-inv S»
shows (w AT <puAS
using assms
proof (induction rule: rtranclp-induct)
case base
then show ?case by auto
next
case (step T U) note IH = this(3)[OF this(4) this(5)] and st = this(1) and cdclyor = this(2)
and
b-inv = this(4) and c-inv = this(5)
have <bound-inv A T)
by (meson cdclyor-bound-inv rtranclp-imp-relpowp st step.prems)
moreover have (cdclyor-inv T)
using c-inv rtranclp-cdcly or-cdclyor-inv st by blast
ultimately have (u A U < p A T) using cdclyor-measure[OF - - cdelyor] by auto
then show ?case using IH by linarith
qed

lemma cdcly or-comp-bounded:
assumes
(tbound-inv A S) and (cdclyor-inv S) and (m > 1+u A S
shows (—(cdclyor ~ m) S T
using assms cdelyor-comp-n-lelof «<m—1) S T A] by fastforce

e fn < m ensures that at least one step has been done.

inductive cdclyor-restart where
restart-step: (cdclyor™ m) ST = m > fn = restart T U
= cdclyor-restart (S, n) (U, Suc n) |
restart-full: (fulll cdclyor S T = cdclyor-restart (S, n) (T, Suc n)

lemmas cdelyor-with-restart-induct = cdcly or-restart.induct|split-format(complete),
OF cdcly or-increasing-restarts-ops-azioms]

lemma cdcly or-restart-cdel y o -raw-restart:
edelyor-restart S T = cdclyor-raw-restart™™ (fst S) (fst T)
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proof (induction rule: cdclyor-restart.induct)
case (restart-step m S T n U)
then have (cdclyor™ S T) by (meson relpowp-imp-rtranclp)
then have (cdclyor-raw-restart™* S T) using cdcly or-raw-restart.intros(1)
rtranclp-monolof cdclyor cdelyor-raw-restart] by blast
moreover have (cdclyor-raw-restart T U
using «restart T Uy cdclyor-raw-restart.intros(2) by blast
ultimately show ?case by auto
next
case (restart-full S T)
then have (cdclyor*™* S T) unfolding fulll-def by auto
then show Zcase using cdcly or-raw-restart.intros(1)
rtranclp-monolof cdelyor cdelyor-raw-restart] by auto
qed

lemma cdcly o -with-restart-bound-inv:
assumes
(edelyor-restart S Ty and
thound-inv A (fst S)) and
cdelyor-inv (fst S)
shows (bound-inv A (fst T)
using assms apply (induction rule: cdelyor-restart.induct)
prefer 2 apply (metis rtranclp-unfold fstI fulll-def rtranclp-cdcly or-bound-inv)
by (metis cdclyor-bound-inv cdelyor-cdelyor-inv cdely or-restart-inv fst-conw)

lemma cdcly o -with-restart-cdel y o -inv:
assumes
(cdelyor-restart S T) and
edelyor-inv (fst S)
shows <cdclyor-inv (fst T)
using assms apply induction
apply (metis cdclyor-cdclyor-inv cdel y or-inv-restart fst-conv)
apply (metis fstl full-def full-unfold rtranclp-cdcly or-cdelyor-inv)
done

lemma rtranclp-cdcly o -with-restart-cdel y o -inv:
assumes
cedelyor-restart*™ S Ty and
(edelyor-inv (fst S)
shows (cdclyor-inv (fst T)
using assms by induction (auto intro: cdclyo-with-restart-cdcly o-inv)

lemma rtranclp-cdcly or-with-restart-bound-inv:
assumes
(edelyor-restart™ S T and
tedelyor-inv (fst S)) and
(hound-inv A (fst S)
shows (bound-inv A (fst T)
using assms apply induction
apply (simp add: cdelyor-cdelyor-inv cdely or-with-restart-bound-inv)
using cdcly o-with-restart-bound-inv rtranclp-cdcly o -with-restart-cdcly or-inv by blast

lemma cdcly o-with-restart-increasing-number:
tedelyor-restart ST —> snd T = 1 + snd S)
by (induction rule: cdclyor-restart.induct) auto
end
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locale cdclyor-increasing-restarts =
cdcl y or-increasing-restarts-ops restart cdclyor f bound-inv p cdely or-inv p-bound +
dpll-state trail clausesyoT prepend-trail tl-trail add-clsyoT remove-clsyor
for
trail : st = ('v, unit) ann-litsy and
clausesnyor : (st = 'v clauses) and
prepend-trail :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail :: st ='st) and
add-clsyor 2 (v clause = 'st = 'st) and
remove-clsyor :: ('v clause = st = 'st) and
f = (mat = nat) and
restart :: /st = st = bool) and
bound-inv :: ('bound = 'st = bool) and
w:: Cbound = ‘st = naty and
cdelyor 2 (st = st = bool> and
cdelyor-inv = (st = bool) and
wu-bound :: ‘bound = 'st = nat) +
assumes
measure-bound: (NA T V n. cdclyor-inv T = bound-inv A T
= cdclyor-restart (T, n) (V, Sucn) = u AV < p-bound A T) and
cdely o -raw-restart-p-bound:
edelyor-restart (T, a) (V, b) = cdelyor-inv T = bound-inv A T
= p-bound A V < u-bound A T
begin

lemma rtranclp-cdcly or-raw-restart-p-bound:
edelyor-restart*™ (T, a) (V, b) = cdclyor-inv T = bound-inv A T
= p-bound A V < p-bound A T)
apply (induction rule: rtranclp-induct2)
apply simp
by (metis cdcly or-raw-restart-p-bound dual-order.trans fst-conv
rtranclp-cdcly op-with-restart-bound-inv rtranclp-cdel y o p-with-restart-cdcly o -inv)

lemma cdcly o -raw-restart-measure-bound:
edelyor-restart (T, a) (V, b) = cdelyor-inv T = bound-inv A T
= u AV < p-bound A T
apply (cases rule: cdelyor-restart.cases)
apply simp
using measure-bound relpowp-imp-rtranclp apply fastforce
by (metis full-def full-unfold measure-bound2 prod.inject)

lemma rtranclp-cdcly o -raw-restart-measure-bound:

edelyor-restart™ (T, a) (V, b) = cdclyor-inv T = bound-inv A T
= u AV < p-bound A T)

apply (induction rule: rtranclp-induct2)
apply (simp add: measure-bound2)

by (metis dual-order.trans fst-conv measure-bound2 r-into-rtranclp rtranclp.rtrancl-refl
rtranclp-cdcly o r-with-restart-bound-inv rtranclp-cdcly o -with-restart-cdcly o r-inv
rtranclp-cdcly op-raw-restart-p-bound)

lemma wf-cdclyor-restart:

wwf {(T, S). cdclyor-restart S T A cdclyor-inv (fst S)} (is «wf ?4)
proof (rule ccontr)

assume (— ?thesis)

then obtain g where

215



g: (Ni. cdclyor-restart (g i) (g (Suc 7)) and
edelyor-inv-g: <\i. edelyor-inv (fst (g @)
unfolding wf-iff-no-infinite-down-chain by fast

have snd-g: (\i. snd (g i) =i+ snd (g 0)
apply (induct-tac )
apply simp
by (metis Suc-eq-plusi-left add.commute add.left-commute
cdcl y o -with-restart-increasing-number g)
then have snd-g-0: (\i. ¢ > 0 = snd (g ¢) =i + snd (g 0)
by blast
have unbounded-f-g: <unbounded (\i. f (snd (g 7))
using f unfolding bounded-def by (metis add.commute f less-or-eq-imp-le snd-g
not-bounded-nat-exists-larger not-le le-iff-add)

{ fix ¢
have H: (AT Ta m. (cdciyor ~ m) T Ta = no-step cdelyor T = m = O
apply (case-tac m) by simp (meson relpowp-E2)
have (3 T m. (cdclyor ~~m) (fst (g4)) T A m > f (snd (g 7))
using g[of i] apply (cases rule: cdclyor-restart.cases)
apply auto]
using glof (Suc 0] f-ge-1 apply (cases rule: cdclyor-restart.cases)
apply (auto simp add: fulll-def full-def dest: H dest: tranclpD)
using H Suc-lel leD by blast
} note H = this
obtain A where (bound-inv A (fst (g 1))
using glof 0] cdclyor-inv-g[of 0] apply (cases rule: cdclyor-restart.cases)
apply (metis One-nat-def cdclyor-inv exists-bound fst-conv relpowp-imp-rtranclp
rtranclp-induct)
using H|of 1] unfolding fulll-def by (metis One-nat-def Suc-eq-plus1 diff-is-0-eq’ diff-zero
f-ge-1 fst-conv le-add2 relpowp-E2 snd-conv)
let 2j = (u-bound A (fst (g 1)) + D
obtain j where
Ji«f (snd (g 7)) > %p and G > D
using unbounded-f-g not-bounded-nat-exists-larger by blast
{
fix ij
have cdclyor-with-restart: j > i = cdclyor-restart™ (g ©) (g j)
apply (induction j)
apply simp
by (metis g le-Suc-eq rtranclp.rtrancl-into-rtrancl rtranclp.rtrancl-refl)
} note cdelyor-restart = this
have (cdclyor-inv (fst (g (Suc 0)))
by (simp add: cdclyor-inv-g)
have (cdclyor-restart*™ (fst (g 1), snd (g 1)) (fst (g 4), snd (g j))
using (> 1) by (simp add: cdclyor-restart)
have u A (fst (g 7)) < p-bound A (fst (g 1))
apply (rule rtranclp-cdcly or-raw-restart-measure-bound)
using (cdclyor-restart™ (fst (g 1), snd (g 1)) (fst (g j), snd (g j))> apply blast
apply (simp add: cdclyor-inv-g)
using bound-inv A (fst (g 1)) apply simp
done
then have A (fst (g j)) < %
by auto
have inv: (bound-inv A (fst (g 7))
using <bound-inv A (fst (g 1)) <cdclyor-inv (fst (g (Suc 0)))
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(edely or-restart™ (fst (g 1), snd (g 1)) (fst (g 7), snd (g 7))
rtranclp-cdcly op-with-restart-bound-inv by auto
obtain 7'm where
cdelyor-m: (cdelyor —m) (fst (¢4)) T» and
fms of (snd (g)) < my
using H|of j| by blast
have (%j < m»
using f-m j Nat.le-trans by linarith

then show Fulse
using u A (fst (g j)) < p-bound A (fst (g 1))
edely or-comp-bounded| OF inv cdelyor-inv-g, of | edelyor-inv-g cdelyor-m
(%j < m) by auto
qed

lemma cdcly or-restart-steps-bigger-than-bound:
assumes
(edelyor-restart S Ty and
thound-inv A (fst S)) and
(cdelyor-inv (fst S)) and
«f (snd S) > p-bound A (fst S)
shows (fulll cdelyor (fst S) (fst T)
using assms
proof (induction rule: cdelyor-restart.induct)
case restart-full
then show ?Zcase by auto
next
case (restart-step m S T n U) note st = this(1) and f = this(2) and bound-inv = this(4) and
cdelyor-inv = this(5) and p = this(6)
then obtain m’ where m: (m = Suc m" by (cases m) auto
have (u A S —m'= 0
using f bound-inv cdclyor-inv p m rtranclp-cdcly o -raw-restart-measure-bound by fastforce
then have Fulse using cdclyor-comp-n-le[of m’ S T A] restart-step unfolding m by simp
then show ?case by fast
qed

lemma rtranclp-cdcly o -with-inv-inv-rtranclp-cdcly or:

assumes
inv: cdelyor-inv S) and
binv: (bound-inv A S

shows (AS T. cdclyor S T A cdelyor-inv S A bound-inv A §)** S T <— cdelyor™ S T
(is (PA** ST +— ¢B** S T)

apply (rule iff)
using rtranclp-monolof ?A ?B] apply blast

apply (induction rule: rtranclp-induct)
using inv binv apply simp

by (metis (mono-tags, lifting) binv inv rtranclp.simps rtranclp-cdel y or-bound-inv
rtranclp-cdely or-cdely or-inv)

lemma no-step-cdcly or-restart-no-step-cdclyor:
assumes
n-s: (no-step cdclyor-restart S) and
inv: (cdclyor-inv (fst S) and
binv: (hound-inv A (fst S)
shows (no-step cdclyor (fst S)
proof (rule ccontr)
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assume (— ?thesis

then obtain T where T: <cdclyor (fst S) T
by blast

then obtain U where U: (full (AS T. cdelyor S T N cdelyor-inv S A bound-inv A S) T U)
using wf-ezists-normal-form-full]OF wf-cdelyor, of A T] by auto

moreover have inv-T: <cdclyor-inv T)
using «cdclyor (fst S) T cdclyor-inv inv by blast

moreover have b-inv-T: (bound-inv A T)
using (cdclyor (fst S) T binv bound-inv inv by blast

ultimately have (full cdclyor T U
using rtranclp-cdcl y or-with-inv-inv-rtranclp-cdcly o rtranclp-cdcly or-bound-inv
rtranclp-cdcly or-cdel y o -inv unfolding full-def by blast

then have (fulll cdelyor (fst S) U
using T full-fulll by metis

then show Fulse by (metis n-s prod.collapse restart-full)

qed

end

2.2.6 Merging backjump and learning

locale cdcly or-merge-bj-learn-ops =
decide-ops trail clausesyoT prepend-trail tl-trail add-clsyor remove-clsyor decide-conds +
forget-ops trail clausesyor prepend-trail tl-trail add-clsyor remove-clsyor forget-conds +
propagate-ops trail clausesyor prepend-trail ti-trail add-clsyor remove-clsyor propagate-conds
for
trail :: (st = ('v, unit) ann-lits) and
clausesyor 1 (st = "v clauses) and
prepend-trail :: ('v, unit) ann-lit = st = 'st) and
tl-trail :: st ='st) and
add-clsyor : (v clause = 'st = ‘st and
remove-clsyor 1 (v clause = 'st = 'st) and
decide-conds :: ('st = 'st = bool) and
propagate-conds :: ("v, unit) ann-lit = 'st = ‘st = bool) and
forget-conds :: ('v clause = 'st = bool) +
fixes backjump-I-cond :: v clause = v clause = v literal = 'st = 'st = bool)
begin

We have a new backjump that combines the backjumping on the trail and the learning of the

used clause (called C'"” below)

inductive backjump-l where

backjump-l: (trail S = F' @ Decided K # F

T ~ prepend-trail (Propagated L ()) (reduce-trail-toyor F (add-clsyor C'S))
C e# clausesyor S

trail S [=as CNot C

undefined-lit F' L

atm-of L € atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-1 (trail S))
clausesyor S Epm add-mset L C’

C'"" = add-mset L C’

F =as CNot C’

backjump-l-cond C C' L S T

backjump-1 S T)

FUERLELELy

Avoid (meaningless) simplification in the theorem generated by inductive-cases:

declare reduce-trail-ton or-length-ne[simp del] Set. Un-iff[simp del] Set.insert-iff [simp del]
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inductive-cases backjump-IE: (backjump-l S T)
thm backjump-lE
declare reduce-trail-ton or-length-ne[simp] Set. Un-iff [simp] Set.insert-iff [simp]

inductive cdclyor-merged-bj-learn :: st = ’st = bool) for S :: ‘st where

cdely or-merged-bj-learn-deciden or: (decidenor S S’ = cdelyor-merged-bj-learn S S* |

cdely or-merged-bj-learn-propagatey or: <propagateyor S S’ = cdelyor-merged-bj-learn S S" |
cdel y o -merged-bj-learn-backjump-l: backjump-1 S S’ = cdcly or-merged-bj-learn S S* |

cdcl y or-merged-bj-learn-forget y or: (forgetyor S S' = cdclyor-merged-bj-learn S S

lemma cdcly or-merged-bj-learn-no-dup-inv:
edely or-merged-bj-learn S T = no-dup (trail S) = no-dup (trail T)
apply (induction rule: cdclyor-merged-bj-learn.induct)
using defined-lit-map apply fastforce
using defined-lit-map apply fastforce
apply (force simp: defined-lit-map elim!: backjump-lE dest: no-dup-appendD)]]
using forgetyor.simps apply (auto; fail)
done
end

locale cdcly oT-merge-bj-learn-prory =
cdely or-merge-bj-learn-ops trail clausesyor prepend-trail tl-trail add-clsyor remove-clsyor
decide-conds propagate-conds forget-conds
AC C'L'S T. backjump-l-cond C C' L' S T
A distinct-mset C' N L' ¢4# C' A —tautology (add-mset L' C')
for
trail 2 st = ('v, unit) ann-litsy and
clausesnyor :: (st = 'v clauses) and
prepend-trail :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail :: st ='sty and
add-clsyor 2 (v clause = 'st = st and
remove-clsyor :: (v clause = st = 'st) and
decide-conds :: ('st = 'st = bool) and
propagate-conds :: (v, unit) ann-lit = ‘st = st = bool> and
forget-conds :: ('v clause = 'st = bool) and
backjump-I-cond :: (v clause = v clause = 'v literal = 'st = 'st = bool) +
fixes
inv :: (st = bool
begin

abbreviation backjump-conds :: (v clause = v clause = v literal = 'st = 'st = bool

where
tbackjump-conds = NC C' L' S T. distinct-mset C' N L' ¢# C' N —tautology (add-mset L' C”)

sublocale backjumping-ops trail clausesyor prepend-trail tl-trail add-clsyor remove-clsyor
backjump-conds
by standard

end

locale cdcly or-merge-bj-learn =
cdel y or-merge-bj-learn-prozy trail clausesyor prepend-trail tl-trail add-clsyor remove-clsyor
decide-conds propagate-conds forget-conds backjump-l-cond inv
for
trail 2 st = ('v, unit) ann-litsy and
clausesyor : (st = "v clauses) and
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prepend-trail :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail :: st ='st) and
add-clsyor : (v clause = 'st = st and
remove-clsyor 1 (v clause = 'st = 'st) and
decide-conds :: (st = 'st = bool) and
propagate-conds :: (v, unit) ann-lit = st = st = bool> and
forget-conds :: ('v clause = 'st = bool) and
backjump-I-cond :: (v clause = v clause = 'v literal = 'st = 'st = bool) and
inv :: (st = bool) +
assumes
bj-merge-can-jump:
AS CF'KFL.
inv S
trail S = F' Q Decided K # F
C €# clausesyor S
trail S [=as CNot C
undefined-lit F' L
atm-of L € atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-1 (F' Q Decided K # F))
clausesyor S Epm add-mset L C’
F [=as CNot C’
—no-step backjump-l S> and
cdcl-merged-inv: «(\S T. cdclyor-merged-bj-learn S T —> inv S = inv T» and
can-propagate-or-decide-or-backjump-I:
atm-of L € atms-of-mm (clausesyor S) =
undefined-lit (trail S) L =
nv § =
satisfiable (set-mset (clausesyor S)) =
AT. decideyor S T V propagatenor S T V backjump-1 S T)
begin

FREBLELy

lemma backjump-no-step-backjump-I:
backjump S T — inv S = —no-step backjump-1 S
apply (elim backjumpE)
apply (rule bj-merge-can-jump)
apply auto[7]
by blast

lemma tautology-single-add:
(tautology (L + {#a#}) +— tautology L V —a €# L
unfolding tautology-decomp by (cases a) auto

lemma backjump-l-implies-exists-backjump:
assumes bj: <backjump-1 S T) and ¢nv $) and n-d: (no-dup (trail S)
shows (3 U. backjump S U)
proof —
obtain C F/ K F L C’ where
tr: <trail S = F' Q Decided K # F) and
C: «C €4 clausesyor S and
T: (T ~ prepend-trail (Propagated L ()) (reduce-trail-toyor F (add-clsyor (add-mset L C') S))
and
tr-C: (trail S |=as CNot C) and
undef: (undefined-lit F L) and
L: «atm-of L € atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-l (trail S))) and
S-C-L: <clausesyor S Epm add-mset L Cy and
F-C' «F =as CNot C" and
cond: (backjump-l-cond C C' L S T) and
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dist: (distinct-mset (add-mset L C')) and
taut: (— tautology (add-mset L C')
using bj by (elim backjump-lE) force

have (L ¢# C"
using dist by auto

show ?thesis
using backjump.intros|OF tr - C tr-C undef L S-C-L F-C'] cond dist taut
by auto

qed

Without additional knowledge on backjump-I-cond, it is impossible to have the same invariant.

sublocale dpll-with-backjumping-ops trail clausesyor prepend-trail ti-trail add-clsyor remove-clsyor
inv decide-conds backjump-conds propagate-conds
proof (unfold-locales, goal-cases)
case 1
{fix 55’
assume bj: backjump-1 S S
then obtain '/ K F L C' C D where
S’ S’ ~ prepend-trail (Propagated L ()) (reduce-trail-tonor F (add-clsyor D S))
and
tr-S: (trail S = F' @Q Decided K # F) and
C: «(C €# clausesyor S» and
tr-S-C: <trail S FEas CNot C) and
undef-L: (undefined-lit F' L, and
atm-L:
(atm-of L € insert (atm-of K) (atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-1 F'' U lits-of-1 F)))
and
cls-S-C": «clausesyor S Epm add-mset L C"y and
F-C": (F [=as CNot C') and
dist: (distinct-mset (add-mset L C')y and
not-tauto: — tautology (add-mset L C’)) and
cond: (backjump-l-cond C C' L S S*
(D = add-mset L C*
by (elim backjump-lE) simp
interpret backjumping-ops trail clausesyor prepend-trail tl-trail add-clsyoT remove-clsyor
backjump-conds
by unfold-locales
have 3 T. backjump S T)
apply rule
apply (rule backjump.intros)
using tr-S apply simp
apply (rule state-eqyor-ref)
using C apply simp
using tr-S-C apply simp
using undef-L apply simp
using atm-L tr-S apply simp
using cls-S-C’ apply simp
using F-C' apply simp
using dist not-tauto cond by simp
}
then show ?Zcase using 1 bj-merge-can-jump by meson
next
case 2
then show ?Zcase
using can-propagate-or-decide-or-backjump-l backjump-l-implies-exists-backjump by blast
qed
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sublocale conflict-driven-clause-learning-ops trail clausesyor prepend-trail ti-trail add-clsyor
remove-clsy ot inv decide-conds backjump-conds propagate-conds
AC -. distinct-mset C' N\ —tautology C)
forget-conds
by unfold-locales

lemma backjump-Il-learn-backjump:
assumes bt: backjump-1 S T) and inv: nv S
shows (3 C’' L D. learn S (add-clsyor D S)
A D = add-mset L C’
A backjump (add-clsyor D S) T
A atms-of (add-mset L C') C atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-l (trail S))
proof —
obtain C F/ K F L | C' D where
tr-S: «trail S = F' Q Decided K # F) and
T: (T ~ prepend-trail (Propagated L 1) (reduce-trail-tonor F (add-clsyor D S))» and
C-cls-S: «(C €# clausesyor S> and
tr-S-CNot-C": <trail S =as CNot C)» and
undef: undefined-lit F' L) and
atm-L: «atm-of L € atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-l (trail S))» and
clss-C: «clausesyor S Epm D) and
D: (D = add-mset L C"
(F =as CNot C'y and
distinct: <distinct-mset D) and
not-tauto: (- tautology Dy and
cond: <backjump-l-cond C C' L § T)
using bt inv by (elim backjump-lE) simp
have atms-C": <atms-of C' C atm-of ¢ (lits-of-l F)»
by (metis D(2) atms-of-def image-subset] true-annots-CNot-all-atms-defined)
then have (atms-of (add-mset L C') C atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-1 (trail S))
using atm-L tr-S by auto
moreover 