Formalisation of Ground Resolution and CDCL in Isabelle/HOL

Mathias Fleury and Jasmin Blanchette
January 20, 2020

Contents

0.1 Weidenbach's DPLL 4
0.1.1 Rules 4
0.1.2 Invariants 4
0.1.3 Termination 12
0.1.4 Final States 15
1 Weidenbach's CDCL 27
1.1 Weidenbach's CDCL with Multisets 27
1.1.1 The State 27
1.1.2 CDCL Rules 37
1.1.3 Structural Invariants 45
1.1.4 CDCL Strong Completeness 73
1.1.5 Higher level strategy 74
1.1.6 Structural Invariant 102
1.1.7 Strategy-Specific Invariant 104
1.1.8 Additional Invariant: No Smaller Propagation 105
1.1.9 More Invariants: Conflict is False if no decision 110
1.1.10 Some higher level use on the invariants 115
1.1.11 Termination 120
1.2 Merging backjump rules 143
1.2.1 Inclusion of the States 143
1.2.2 More lemmas about Conflict, Propagate and Backjumping 145
1.2.3 CDCL with Merging 151
1.2.4 CDCL with Merge and Strategy 156
2 NOT's CDCL and DPLL 161
2.1 Measure 161
2.2 NOT's CDCL 165
2.2.1 Auxiliary Lemmas and Measure 165
2.2.2 Initial Definitions 166
2.2.3 DPLL with Backjumping 170
2.2.4 CDCL 188
2.2.5 CDCL with Restarts 210
2.2.6 Merging backjump and learning 218
2.2.7 Instantiations 233
2.3 Link between Weidenbach's and NOT's CDCL 248
2.3.1 Inclusion of the states 248
2.3.2 Inclusion of Weidendenbch's CDCL without Strategy 250
2.3.3 Additional Lemmas between NOT and W states 251
2.3.4 Inclusion of Weidenbach's CDCL in NOT's CDCL 252
2.3.5 Inclusion of Weidendenbch's CDCL with Strategy 262
3 Extensions on Weidenbach's CDCL 275
3.1 Restarts 275
3.2 Incremental SAT solving 286
4 List-based Implementation of DPLL and CDCL 299
4.1 Simple List-Based Implementation of the DPLL and CDCL 299
4.1.1 Common Rules 299
4.1.2 CDCL specific functions 302
4.1.3 Simple Implementation of DPLL 305
4.1.4 List-based CDCL Implementation 315
4.1.5 Abstract Clause Representation 336
4.2 Instantiation of Weidenbach's CDCL by Multisets 338
theory $D P L L-W$
imports
Entailment-Definition.Partial-Herbrand-Interpretation
Entailment-Definition.Partial-Annotated-Herbrand-Interpretation
Weidenbach-Book-Base.Wellfounded-More
begin
0.1 Weidenbach's DPLL
0.1.1 Rules
type-synonym 'a dpll ${ }_{W}$-ann-lit $=\left({ }^{\prime} a\right.$, unit) ann-lit
type-synonym 'a dpll ${ }_{W}$-ann-lits $=($ ('a, unit) ann-lits
type-synonym 'v dpll W_{W}-state $=$ ' v dpll $_{W}$-ann-lits \times 'v clauses
abbreviation trail :: 'v dpll W_{W}-state $\Rightarrow{ }^{\prime} v$ dpll $_{W}$-ann-lits where
trail $\equiv f s t$
abbreviation clauses $::$ ' v dpll W_{W}-state $\Rightarrow{ }^{\prime} v$ clauses where
clauses \equiv snd
inductive $d p l l_{W}::$ ' dpll $_{W}$-state $\Rightarrow{ }^{\prime} v$ dpll $_{W}$-state \Rightarrow bool where
propagate: add-mset $L C \in \#$ clauses $S \Longrightarrow$ trail $S \models$ as CNot $C \Longrightarrow$ undefined-lit (trail S) L
$\Longrightarrow \operatorname{dpll}_{W} S$ (Propagated L () \# trail S, clauses S)
decided: undefined-lit (trail S) $L \Longrightarrow$ atm-of $L \in$ atms-of-mm (clauses S)
$\Longrightarrow \operatorname{dpll}_{W} S$ (Decided $L \#$ trail S, clauses $\left.S\right) \mid$
backtrack: backtrack-split (trail $S)=\left(M^{\prime}, L \# M\right) \Longrightarrow$ is-decided $L \Longrightarrow D \in \#$ clauses S
\Longrightarrow trail $S \models$ as CNot $D \Longrightarrow \operatorname{dpll}_{W} S$ (Propagated ($-($ lit-of $L)$) () \# M, clauses S)

0.1.2 Invariants

```
lemma dpll}\mp@subsup{W}{W}{-distinct-inv:
    assumes dpll}\mp@subsup{W}{}{S}\mp@subsup{S}{}{\prime
    and no-dup (trail S)
    shows no-dup (trail S')
    using assms
proof (induct rule: dpll W.induct)
    case (decided L S)
    then show ?case using defined-lit-map by force
next
    case (propagate C L S)
```

```
    then show ?case using defined-lit-map by force
next
    case (backtrack S M'L M D) note extracted = this(1) and no-dup = this(5)
    show ?case
        using no-dup backtrack-split-list-eq[of trail S, symmetric] unfolding extracted
        by (auto dest: no-dup-appendD)
qed
lemma dpll}\mp@subsup{W}{}{-consistent-interp-inv:
    assumes dpll}\mp@subsup{W}{}{S}S\mp@subsup{S}{}{\prime
    and consistent-interp (lits-of-l (trail S))
    and no-dup (trail S)
    shows consistent-interp (lits-of-l (trail S'))
    using assms
proof (induct rule: dpll W.induct)
    case (backtrack S M'L M D) note extracted = this(1) and decided = this(2) and D = this(4) and
        cons=this(5) and no-dup = this(6)
    have no-dup': no-dup M
        by (metis (no-types) backtrack-split-list-eq distinct.simps(2) distinct-append extracted
            list.simps(9) map-append no-dup snd-conv no-dup-def)
    then have insert (lit-of L) (lits-of-l M)\subseteq lits-of-l (trail S)
        using backtrack-split-list-eq[of trail S, symmetric] unfolding extracted by auto
    then have cons: consistent-interp (insert (lit-of L) (lits-of-l M))
        using consistent-interp-subset cons by blast
    moreover have undef:undefined-lit M (lit-of L)
        using no-dup backtrack-split-list-eq[of trail S, symmetric] unfolding extracted by force
    moreover have lit-of L # lits-of-l M
        using undef by (auto simp: Decided-Propagated-in-iff-in-lits-of-l)
    ultimately show ?case by simp
qed (auto intro: consistent-add-undefined-lit-consistent)
lemma dpll W-vars-in-snd-inv:
    assumes dpll}\mp@subsup{W}{}{S}S\mp@subsup{S}{}{\prime
    and atm-of '(lits-of-l (trail S))\subseteqatms-of-mm (clauses S)
    shows atm-of '(lits-of-l (trail S'))\subseteqatms-of-mm (clauses S')
    using assms
proof (induct rule: dpll}\mp@subsup{W}{W}{}.induct
    case (backtrack S M'L M D)
    then have atm-of (lit-of L) \inatms-of-mm (clauses S)
        using backtrack-split-list-eq[of trail S, symmetric] by auto
    moreover
    have atm-of 'lits-of-l (trail S)\subseteqatms-of-mm (clauses S)
        using backtrack(5) by simp
    then have }\bigwedgexb.xb\in set M\Longrightarrowatm-of (lit-of xb) \inatms-of-mm (clauses S
        using backtrack-split-list-eq[symmetric, of trail S] backtrack.hyps(1)
        unfolding lits-of-def by auto
    ultimately show ?case by (auto simp : lits-of-def)
qed (auto simp: in-plus-implies-atm-of-on-atms-of-ms)
lemma atms-of-ms-lit-of-atms-of:atms-of-ms (unmark'c)=atm-of'lit-of 'c
    unfolding atms-of-ms-def using image-iff by force
theorem 2.8.3 page 86 of Weidenbach's book
lemma dpll}\mp@subsup{W}{-propagate-is-conclusion:}{
    assumes dpll}\mp@subsup{W}{}{S}S\mp@subsup{S}{}{\prime
    and all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
```

and atm-of ' lits-of-l (trail S) \subseteq atms-of-mm (clauses S)
shows all-decomposition-implies-m (clauses S^{\prime}) (get-all-ann-decomposition (trail $\left.S^{\prime}\right)$)
using assms
proof (induct rule: $d p l l_{W}$. induct)
case (decided $L S$)
then show ?case unfolding all-decomposition-implies-def by simp
next
case (propagate $L C S$) note $\operatorname{inS}=$ this(1) and cnot $=$ this(2) and $I H=t h i s(4)$ and undef $=$ this(3) and atms-incl $=$ this(5)
let $? I=$ set $($ map unmark $($ trail $S)) \cup$ set-mset $($ clauses $S)$
have ? $I \models p$ add-mset $L C$ by (auto simp add: inS)
moreover have ? $I \neq p s$ CNot C using true-annots-true-clss-cls cnot by fastforce
ultimately have ?I $\models p\{\# L \#\}$ using true-clss-cls-plus-CNot[of ?I $L C]$ inS by blast
\{
assume get-all-ann-decomposition (trail S) $=[]$
then have ?case by blast
\}
moreover \{
assume n: get-all-ann-decomposition $($ trail $S) \neq[]$
have 1: $\bigwedge a b .(a, b) \in \operatorname{set}(t l($ get-all-ann-decomposition $($ trail $S)))$ $\Longrightarrow($ unmark-l $a \cup$ set-mset (clauses $S)) \models p s$ unmark-l b
using IH unfolding all-decomposition-implies-def by (fastforce simp add: list.set-sel(2) n)
moreover have 2: $\bigwedge a c$. hd (get-all-ann-decomposition $($ trail $S))=(a, c)$
$\Longrightarrow($ unmark-l $a \cup$ set-mset (clauses $S)) \models$ ps (unmark-l c)
by (metis IH all-decomposition-implies-cons-pair all-decomposition-implies-single list.collapse n)
moreover have 3: $\bigwedge a c$. hd (get-all-ann-decomposition $($ trail $S))=(a, c)$ $\Longrightarrow($ unmark-l $a \cup$ set-mset (clauses $S)) \models p\{\# L \#\}$
proof -
fix $a c$
assume h : hd (get-all-ann-decomposition $($ trail $S))=(a, c)$
have $h^{\prime}:$ trail $S=c$ @ a using get-all-ann-decomposition-decomp h by blast
have I : set (map unmark a) \cup set-mset (clauses S)
\cup unmark-l $c \models p s C N o t C$
using 〈? $I \models p s$ CNot C 〉 unfolding h^{\prime} by (simp add: Un-commute Un-left-commute)
have
atms-of-ms $($ CNot $C) \subseteq$ atms-of-ms $($ set $($ map unmark $a) \cup$ set-mset $($ clauses $S))$
and
atms-of-ms (unmark-l c) \subseteq atms-of-ms (set (map unmark a)
\cup set-mset (clauses S))
using atms-incl cnot
apply (auto simp: atms-of-def dest!: true-annots-CNot-all-atms-defined; fail)[]
using inS atms-of-atms-of-ms-mono atms-incl by (fastforce simp: h^{\prime})
then have unmark-l $a \cup$ set-mset (clauses $S) \models p s$ CNot C
using true-clss-clss-left-right $[O F-I] h 2$ by auto
then show unmark-l $a \cup$ set-mset (clauses S) $\models p\{\# L \#\}$
using inS true-clss-cls-plus-CNot true-clss-clss-in-imp-true-clss-cls union-trus-clss-clss by blast
qed
ultimately have ?case
by (cases hd (get-all-ann-decomposition (trail S)))
(auto simp: all-decomposition-implies-def)
\}
ultimately show ?case by auto
next
case (backtrack $\left.S M^{\prime} L M D\right)$ note extracted $=$ this(1) and decided $=t h i s(2)$ and $D=$ this(3) and cnot $=$ this(4) and cons $=$ this(4) and $I H=$ this(5) and atms-incl $=$ this(6)
have S : trail $S=M^{\prime} @ L \# M$
using backtrack-split-list-eq[of trail S] unfolding extracted by auto
have $M^{\prime}: \forall l \in \operatorname{set} M^{\prime}$. $\neg i s$-decided l
using extracted backtrack-split-fst-not-decided $[$ of - trail S] by simp
have n : get-all-ann-decomposition $($ trail $S) \neq[]$ by auto
then have all-decomposition-implies-m (clauses S) ($\left(L \# M, M^{\prime}\right)$
\# tl (get-all-ann-decomposition (trail S)))
by (metis (no-types) IH extracted get-all-ann-decomposition-backtrack-split list.exhaust-sel)
then have 1: unmark-l $(L \# M) \cup$ set-mset (clauses $S) \models p s\left(\lambda a .\left\{\#\right.\right.$ lit-of a\#\})' set M^{\prime}
by simp
moreover
have unmark-l $(L \# M) \cup$ unmark-l $M^{\prime} \models p s$ CNot D
by (metis (mono-tags, lifting) S Un-commute cons image-Un set-append true-annots-true-clss-clss)
then have 2: unmark-l $(L \# M) \cup$ set-mset (clauses $S) \cup$ unmark-l M^{\prime} \models ps CNot D
by (metis (no-types, lifting) Un-assoc Un-left-commute true-clss-clss-union-l-r)
ultimately
have set (map unmark $(L \# M)) \cup$ set-mset (clauses $S) \models p s$ CNot D using true-clss-clss-left-right by fastforce
then have set (map unmark $(L \# M)) \cup$ set-mset (clauses S) $\models p\{\#\}$ by (metis (mono-tags, lifting) D Un-def mem-Collect-eq true-clss-clss-contradiction-true-clss-cls-false)
then have IL: unmark-l $M \cup$ set-mset (clauses $S) \models p\{\#-$ lit-of $L \#\}$
using true-clss-clss-false-left-right by auto
show ?case unfolding S all-decomposition-implies-def
proof
fix $x P$ level
assume $x: x \in$ set (get-all-ann-decomposition
(fst (Propagated (- lit-of L) P \# M, clauses $S)$))
let $? M^{\prime}=$ Propagated $(-$ lit-of $L) P \# M$
let $? h d=h d$ (get-all-ann-decomposition ? $\left.M^{\prime}\right)$
let $? t l=t l\left(\right.$ get-all-ann-decomposition ? $\left.M^{\prime}\right)$
have $x=$? $h d \vee x \in$ set ? tl
using x
by (cases get-all-ann-decomposition? M^{\prime})
auto
moreover \{
assume $x^{\prime}: x \in$ set ?tl
have $L^{\prime}:$ Decided $($ lit-of $L)=L$ using decided by (cases L, auto)
have $x \in$ set (get-all-ann-decomposition (M^{\prime} @ $L \# M$))
using x^{\prime} get-all-ann-decomposition-except-last-choice-equal $\left[\right.$ of M^{\prime} lit-of L P M]
L^{\prime} by (metis (no-types) M^{\prime} list.set-sel(2) tl-Nil)
then have case x of $(L s$, seen $) \Rightarrow$ unmark-l Ls \cup set-mset (clauses S)
$\models p$ s unmark-l seen
using decided IH by (cases L) (auto simp add: S all-decomposition-implies-def)
\}
moreover \{
assume $x^{\prime}: x=$? $h d$
have tl: tl (get-all-ann-decomposition $\left.\left(M^{\prime} @ L \# M\right)\right) \neq[]$
proof -
have f1: $\bigwedge m s$. length (get-all-ann-decomposition ($\left.M^{\prime} @ m s\right)$)
$=$ length (get-all-ann-decomposition ms)
by (simp add: M^{\prime} get-all-ann-decomposition-remove-undecided-length)

```
            have Suc (length (get-all-ann-decomposition \(M)\) ) \(\neq\) Suc 0
                by blast
            then show ?thesis
                using \(f 1[\) of \(\langle L \# M\rangle]\) decided by (cases 〈get-all-ann-decomposition
                ( \(M^{\prime}\) @ \(\left.L \# M\right)\); cases \(L\) ) auto
    qed
    obtain \(M 0^{\prime} M 0\) where
        L0: hd (tl (get-all-ann-decomposition ( \(\left.\left.M^{\prime} @ L \# M\right)\right)\) ) \(\left(M 0, M 0{ }^{\prime}\right)\)
        by (cases hd (tl (get-all-ann-decomposition ( \(M^{\prime}\) @ \(L\) \# M))))
    have \(x^{\prime \prime}: x=\left(M 0\right.\), Propagated \(\left(-\right.\) lit-of L) \(\left.P \# M 0^{\prime}\right)\)
        unfolding \(x^{\prime}\) using get-all-ann-decomposition-last-choice tl \(M^{\prime}\) L0
        by (smt is-decided-ex-Decided lit-of.simps(1) local.decided old.unit.exhaust)
    obtain l-get-all-ann-decomposition where
        get-all-ann-decomposition (trail \(S)=\left(L \# M, M^{\prime}\right) \#\left(M 0, M 0^{\prime}\right) \#\)
        l-get-all-ann-decomposition
        using get-all-ann-decomposition-backtrack-split extracted by (metis (no-types) LO S
        \(h d\)-Cons-tl \(n t l\) )
    then have \(M=M 0\) ' @ M0 using get-all-ann-decomposition-hd-hd by fastforce
    then have \(I L^{\prime}\) : unmark-l M0 \(\cup\) set-mset (clauses \(S\) )
        \(\cup\) unmark-l \(M 0^{\prime} \models p s\{\{\#-\) lit-of \(L \#\}\}\)
        using \(I L\) by (simp add: Un-commute Un-left-commute image-Un)
    moreover have \(H\) : unmark-l MO \(\cup\) set-mset (clauses \(S\) )
        \(\models p s\) unmark-l M0'
        using IH \(x^{\prime \prime}\) unfolding all-decomposition-implies-def by (metis (no-types, lifting) LO S
                list.set-sel(1) list.set-sel(2) old.prod.case tl tl-Nil)
    ultimately have case \(x\) of \((L s\), seen \() \Rightarrow\) unmark-l \(L s \cup\) set-mset (clauses \(S\) )
        \(\models p s\) unmark-l seen
        using true-clss-clss-left-right unfolding \(x^{\prime \prime}\) by auto
    \}
    ultimately show case \(x\) of \((L s\), seen \() \Rightarrow\)
        unmark-l Ls \(\cup\) set-mset (snd (?M', clauses \(S\) ))
            \(\models p\) s unmark-l seen
        unfolding snd-conv by blast
    qed
qed
```

theorem 2.8.4 page 86 of Weidenbach's book
theorem dpll $_{W}$-propagate-is-conclusion-of-decided:
assumes $d p l l_{W} S S^{\prime}$
and all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
and atm-of' lits-of-l (trail S) \subseteq atms-of-mm (clauses S)
shows set-mset (clauses $\left.S^{\prime}\right) \cup\left\{\{\#\right.$ lit-of $L \#\} \mid L$. is-decided $L \wedge L \in$ set $\left(\right.$ trail $\left.\left.S^{\prime}\right)\right\}$
$\models p s$ unmark ‘ $\bigcup\left(\right.$ set 'snd ' set (get-all-ann-decomposition (trail $\left.\left.S^{\prime}\right)\right)$)
using all-decomposition-implies-trail-is-implied[OF dpll W_{W}-propagate-is-conclusion[OF assms]].
theorem 2.8.5 page 86 of Weidenbach's book
lemma only-propagated-vars-unsat:
assumes decided: $\forall x \in$ set $M . \neg$ is-decided x
and $D N: D \in N$ and $D: M \models$ as CNot D
and inv: all-decomposition-implies N (get-all-ann-decomposition M)
and atm-incl: atm-of ' lits-of-l $M \subseteq a t m s-o f-m s N$
shows unsatisfiable N
proof (rule ccontr)
assume \neg unsatisfiable N
then obtain I where
$I: I \models s N$ and

```
    cons: consistent-interp I and
    tot: total-over-m I N
    unfolding satisfiable-def by auto
    then have I-D:I\modelsD
    using DN unfolding true-clss-def by auto
    have l0: {{#lit-of L#} |L. is-decided L}\wedgeL\in set M}={} using decided by aut
    have atms-of-ms ( N\cup unmark-l M) = atms-of-ms N
    using atm-incl unfolding atms-of-ms-def lits-of-def by auto
    then have total-over-m I (N\cupunmark' (set M))
        using tot unfolding total-over-m-def by auto
    then have I }\modelss\mathrm{ unmark' (set M)
        using all-decomposition-implies-propagated-lits-are-implied[OF inv] cons I
        unfolding true-clss-clss-def l0 by auto
    then have IM:I\modelss unmark-l M by auto
    {
        fix }
        assume K\in#D
        then have -K lits-of-l M
            by (auto split: if-split-asm
            intro: allE[OF D[unfolded true-annots-def Ball-def], of {#-K#}])
    then have -K\inI using IM true-clss-singleton-lit-of-implies-incl by fastforce
    }
    then have }\negI\modelsD\mathrm{ using cons unfolding true-cls-def consistent-interp-def by auto
    then show False using I-D by blast
qed
lemma dpllW-same-clauses:
    assumes dpll}\mp@subsup{W}{}{S}S\mp@subsup{S}{}{\prime
    shows clauses S= clauses }\mp@subsup{S}{}{\prime
    using assms by (induct rule: dpll W
lemma rtranclp-dpll}\mp@subsup{W}{}{-inv:
    assumes rtranclp dpll W S S'
    and inv: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
    and atm-incl: atm-of 'lits-of-l (trail S)\subseteqatms-of-mm (clauses S)
    and consistent-interp (lits-of-l (trail S))
    and no-dup (trail S)
    shows all-decomposition-implies-m (clauses S')(get-all-ann-decomposition (trail S'))
    and atm-of' lits-of-l (trail S') \subseteqatms-of-mm (clauses S')
    and clauses S = clauses S'
    and consistent-interp (lits-of-l (trail S'))
    and no-dup (trail S')
    using assms
proof (induct rule: rtranclp-induct)
    case base
    show
        all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
        atm-of'lits-of-l (trail S)\subseteqatms-of-mm (clauses S) and
        clauses S = clauses }S\mathrm{ and
        consistent-interp (lits-of-l (trail S)) and
        no-dup (trail S) using assms by auto
next
    case (step S' S') note dpllW Star = this(1) and IH = this(3,4,5,6,7) and
        dpll}\mp@subsup{W}{}{\prime}=this(2
```


moreover

assume
inv: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and atm-incl: atm-of ' lits-of-l (trail S) \subseteq atms-of-mm (clauses S) and cons: consistent-interp (lits-of-l (trail S)) and no-dup (trail S)
ultimately have decomp: all-decomposition-implies-m (clauses S^{\prime})
(get-all-ann-decomposition (trail S^{\prime})) and
atm-incl': atm-of ' lits-of-l (trail $\left.S^{\prime}\right) \subseteq$ atms-of-mm (clauses S^{\prime}) and
snd: clauses $S=$ clauses S^{\prime} and
cons': consistent-interp (lits-of-l (trail $\left.S^{\prime}\right)$) and
no-dup': no-dup (trail S^{\prime}) by blast+
show clauses $S=$ clauses $S^{\prime \prime}$ using $d p l l_{W}$-same-clauses $\left[O F d p l l_{W}\right]$ snd by metis
show all-decomposition-implies-m (clauses $\left.S^{\prime \prime}\right)$ (get-all-ann-decomposition (trail $\left.S^{\prime \prime}\right)$)
using $d p l l_{W}$-propagate-is-conclusion $\left[O F d p l l_{W}\right]$ decomp atm-incl' by auto
show atm-of ' lits-of-l (trail $\left.S^{\prime \prime}\right) \subseteq$ atms-of-mm (clauses $S^{\prime \prime}$)
using $d p l l_{W}$-vars-in-snd-inv[OF dpll $\left.l_{W}\right]$ atm-incl atm-incl' by auto
show no-dup (trail $S^{\prime \prime}$) using $d_{p l l_{W}-d i s t i n c t-i n v}\left[O F d p l l_{W}\right] n o-d u p{ }^{\prime} d p l l_{W}$ by auto
show consistent-interp (lits-of-l (trail $\left.S^{\prime \prime}\right)$)
using cons ${ }^{\prime}$ no-dup ${ }^{\prime} d p l l_{W}$-consistent-interp-inv $\left[O F d p l l_{W}\right]$ by auto qed
definition $d p l l_{W}$-all-inv $S \equiv$
(all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
\wedge atm-of'lits-of-l (trail S) \subseteq atms-of-mm (clauses S)
\wedge consistent-interp (lits-of-l (trail $S)$)
$\wedge \operatorname{no-dup}($ trail $S)$)
lemma $\operatorname{dpll}_{W}-a l l-i n v-d e s t[d e s t]:$
assumes $d p l l_{W}$-all-inv S
shows all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
and atm-of' lits-of-l (trail S) \subseteq atms-of-mm (clauses S)
and consistent-interp (lits-of-l (trail $S)$) \wedge no-dup (trail S)
using assms unfolding dpll $_{W}$-all-inv-def lits-of-def by auto
lemma rtranclp-dpll W_{W}-all-inv:
assumes rtranclp $d p l l_{W} S S^{\prime}$
and $d p l l_{W}-a l l-i n v S$
shows $d p l l_{W}$-all-inv S^{\prime}
using assms rtranclp-dpll $W_{W}-i n v[O F \operatorname{assms}(1)]$ unfolding $d p l l_{W}$-all-inv-def lits-of-def by blast
lemma $d p l l_{W}$-all-inv:
assumes $d p l l_{W} S S^{\prime}$
and $d p l l_{W}$-all-inv S
shows $d p l l_{W}$-all-inv S^{\prime}
using assms rtranclp-dpll $W_{W}-a l l-i n v$ by blast
lemma rtranclp-dpll ${ }_{W}$-inv-starting-from-0:
assumes rtranclp $\operatorname{dpll}_{W} S S^{\prime}$
and inv: trail $S=[]$
shows $d p l l_{W}-a l l-i n v S^{\prime}$
proof -
have $d p l l_{W}$-all-inv S
using assms unfolding all-decomposition-implies-def $d_{\text {pll }}^{W}$-all-inv-def by auto
then show ?thesis using rtranclp-dpll ${ }_{W}$-all-inv $[O F \operatorname{assms}(1)]$ by blast
qed

```
lemma dpll}\mp@subsup{W}{}{\prime}\mathrm{ -can-do-step:
    assumes consistent-interp (set M)
    and distinct M
    and atm-of ' (set M)\subseteqatms-of-mm N
    shows rtranclp dpll W ([],N) (map Decided M,N)
    using assms
proof (induct M)
    case Nil
    then show ?case by auto
next
    case (Cons L M)
    then have undefined-lit (map Decided M) L
        unfolding defined-lit-def consistent-interp-def by auto
    moreover have atm-of L\inatms-of-mm N using Cons.prems(3) by auto
    ultimately have dpllW (map Decided M,N) (map Decided (L#M),N)
        using dpll}\mp@subsup{W}{}{\prime}\mathrm{ .decided by auto
    moreover have consistent-interp (set M) and distinct M and atm-of' set M\subseteqatms-of-mm N
        using Cons.prems unfolding consistent-interp-def by auto
    ultimately show ?case using Cons.hyps by auto
qed
definition conclusive-dpll W-state (S:: 'v dpll W-state) \longleftrightarrow
    (trail S =asm clauses S \vee ((\forallL\in set (trail S). ᄀis-decided L)
    \wedge(\existsC\in# clauses S. trail S =as CNot C)))
```

theorem 2.8.7 page 87 of Weidenbach's book
lemma dpll $_{W}$-strong-completeness:
assumes set $M \models s m N$
and consistent-interp (set M)
and distinct M
and atm-of ' $($ set $M) \subseteq$ atms-of-mm N
shows $\operatorname{dpll}_{W}{ }^{* *}([], N)($ map Decided $M, N)$
and conclusive-dpll ${ }_{W}$-state (map Decided M, N)
proof -
show rtranclp $d p l l_{W}([], N)($ map Decided $M, N)$ using $d p l l_{W}$-can-do-step assms by auto
have map Decided $M \models$ asm N using assms(1) true-annots-decided-true-cls by auto
then show conclusive-dpll ${ }_{W}$-state (map Decided M, N)
unfolding conclusive-dpll ${ }_{W}$-state-def by auto
qed
theorem 2.8.6 page 86 of Weidenbach's book

```
lemma dpll}\mp@subsup{W}{}{\prime}\mathrm{ -sound:
    assumes
        rtranclp dpll}\mp@subsup{W}{}{(}([,N)(M,N) an
        \forallS.\negdpll}\mp@subsup{W}{}{\prime}(M,N)
    shows M\modelsasm N\longleftrightarrow satisfiable (set-mset N) (is ?A \longleftrightarrow ?B)
proof
    let ?M'= lits-of-l M
    assume ?A
    then have ? M' }=smN by (simp add: true-annots-true-cls
    moreover have consistent-interp ?M'
        using rtranclp-dpll W-inv-starting-from-0[OF assms(1)] by auto
    ultimately show ?B by auto
next
```

```
assume ? B
show ?A
    proof (rule ccontr)
        assume n: ᄀ?A
        have (\existsL. undefined-lit ML^atm-of L\inatms-of-mm N)\vee(\existsD\in#N. M =as CNot D)
            proof -
                obtain D :: 'a clause where D: D\in#N and }\negM\modelsa
                using n unfolding true-annots-def Ball-def by auto
                    then have ( }\exists\mathrm{ L. undefined-lit ML}\\mathrm{ atm-of L Gatms-of D) 
                        unfolding true-annots-def Ball-def CNot-def true-annot-def
                using atm-of-lit-in-atms-of true-annot-iff-decided-or-true-lit true-cls-def
                    by (smt mem-Collect-eq union-single-eq-member)
                then show ?thesis
                by (metis Bex-def D atms-of-atms-of-ms-mono rev-subsetD)
            qed
        moreover {
            assume \existsL. undefined-lit ML}\wedge\mathrm{ atm-of L Gatms-of-mm N
            then have False using assms(2) decided by fastforce
        }
        moreover {
            assume }\existsD\in#N.M\modelsas CNot 
            then obtain D where DN: D\in#N and MD: M\modelsas CNot D by auto
            {
            assume }\foralll\in\mathrm{ set M. ᄀ is-decided l
            moreover have dpll}\mp@subsup{W}{}{-all-inv ([],N)
                    using assms unfolding all-decomposition-implies-def dpll}\mp@subsup{W}{}{-}\mathrm{ -all-inv-def by auto
            ultimately have unsatisfiable (set-mset N)
                    using only-propagated-vars-unsat[of M D set-mset N] DN MD
                    rtranclp-dpll W-all-inv[OF assms(1)] by force
            then have False using <?B> by blast
        }
            moreover {
                    assume l:}\existsl\in\mathrm{ set M. is-decided l
                    then have False
                    using backtrack[of (M,N) - - D ] DN MD assms(2)
                        backtrack-split-some-is-decided-then-snd-has-hd[OF l]
                    by (metis backtrack-split-snd-hd-decided fst-conv list.distinct(1) list.sel(1) snd-conv)
        }
            ultimately have False by blast
        }
        ultimately show False by blast
        qed
qed
```


0.1.3 Termination

definition $d p l l_{W}$-mes $M n=$
$\operatorname{map}(\lambda l$. if is-decided l then 2 else $(1:: n a t))($ rev $M) @$ replicate $(n-$ length $M) 3$
lemma length-dpll W_{W}-mes:
assumes length $M \leq n$
shows length $\left(\right.$ dpll $_{W}$-mes $\left.M n\right)=n$
using assms unfolding dpll_{W}-mes-def by auto
lemma distinctcard-atm-of-lit-of-eq-length:
assumes no-dup S
shows card (atm-of' lits-of-l S) $=$ length S
using assms by (induct S) (auto simp add: image-image lits-of-def no-dup-def)
lemma Cons-lexn-iff:
shows $«(x \# x s, y \# y s) \in$ lexn $R n \longleftrightarrow($ length $(x \# x s)=n \wedge$ length $(y \# y s)=n \wedge$ $((x, y) \in R \vee(x=y \wedge(x s, y s) \in \operatorname{lexn} R(n-1))))\rangle$
unfolding lexn-conv apply (rule iffI; clarify)
subgoal for xys xa ya $x s^{\prime} y^{\prime}$
by (cases xys) (auto simp: lexn-conv)
subgoal by (auto 55 simp: lexn-conv simp del: append-Cons simp: append-Cons[symmetric])
done
declare append-same-lexn[simp] prepend-same-lexn[simp] Cons-lexn-iff[simp]
declare lexn.simps(2)[simp del]
lemma dpll $_{W}$-card-decrease:
assumes
$d p l l: d p l l_{W} S S^{\prime}$ and
[simp]: length $\left(\right.$ trail $\left.S^{\prime}\right) \leq$ card vars and
length $($ trail $S) \leq$ card vars
shows
(dpll W_{W}-mes $\left(\right.$ trail $\left.S^{\prime}\right)($ card vars $)$, dpll $_{W}$-mes (trail $\left.S\right)($ card vars $\left.)\right) \in$ lexn less-than (card vars)
using assms
proof (induct rule: $d p l l_{W}$. induct)
case (propagate C LS)
then have m :card vars - length $($ trail $S)=S u c($ card vars $-S u c(l e n g t h($ trail $S)))$
by fastforce
then show $\left\langle\left(d_{p l l}^{W}{ }_{W}\right.\right.$-mes (trail (Propagated $C() \#$ trail S, clauses $\left.\left.S\right)\right)($ card vars $)$,
$d p l l_{W}-$ mes $($ trail $S)($ card vars $\left.)\right) \in$ lexn less-than (card vars)>
unfolding dpll_{W}-mes-def by auto
next
case (decided SL)
have m : card vars - length $($ trail $S)=$ Suc (card vars - Suc $($ length $($ trail $S)))$
using decided.prems[simplified] using Suc-diff-le by fastforce
then show $\left\langle\left(d_{p l l}^{W}\right.\right.$-mes (trail (Decided $L \#$ trail S, clauses $\left.S\right)$) (card vars), $d_{p l l_{W}-m e s}($ trail $S)($ card vars $\left.)\right) \in$ lexn less-than (card vars)>
unfolding $\mathrm{dpll}_{W}-m e s-d e f$ by auto
next
case (backtrack S $M^{\prime} L M D$)
moreover have S : trail $S=M^{\prime} @ L \# M$
using backtrack.hyps(1) backtrack-split-list-eq[of trail $S]$ by auto
ultimately show $\left\langle\left(d_{\text {pll }}^{W}\right.\right.$-mes (trail (Propagated (- lit-of L) () \# M, clauses $\left.S\right)$) (card vars), $d p l l_{W}$-mes $($ trail $S)($ card vars $\left.)\right) \in$ lexn less-than (card vars)>
using backtrack-split-list-eq[of trail S] unfolding dpll $_{W}$-mes-def by fastforce
qed
theorem 2.8.8 page 87 of Weidenbach's book
lemma $d p l l_{W}$-card-decrease ${ }^{\prime}$:
assumes dpll: ${d p l l_{W}} S S^{\prime}$
and atm-incl: atm-of 'lits-of-l (trail S) \subseteq atms-of-mm (clauses S)
and no-dup: no-dup (trail S)
shows (dpll $W^{-m e s}\left(\right.$ trail $\left.S^{\prime}\right)\left(\right.$ card (atms-of-mm (clauses $\left.S^{\prime}\right)$),
dpll $_{W}$-mes $($ trail $S)($ card (atms-of-mm $($ clauses $\left.\left.S))\right)\right) \in$ lex less-than
proof -
have finite (atms-of-mm (clauses S)) unfolding atms-of-ms-def by auto
then have 1: length $($ trail $S) \leq$ card (atms-of-mm (clauses S))
using distinctcard-atm-of-lit-of-eq-length[OF no-dup] atm-incl card-mono by metis

```
    moreover {
    have no-dup': no-dup (trail S') using dpll dpll}\mp@subsup{W}{W}{}\mathrm{ -distinct-inv no-dup by blast
    have SS': clauses S' = clauses S using dpll by (auto dest!: dpll}\mp@subsup{W}{}{\prime}\mathrm{ -same-clauses)
    have atm-incl': atm-of ' lits-of-l (trail S')\subseteqatms-of-mm (clauses S')
        using atm-incl dpll dpll w-vars-in-snd-inv[OF dpll] by force
    have finite (atms-of-mm (clauses S'))
        unfolding atms-of-ms-def by auto
    then have 2:length (trail S')\leqcard (atms-of-mm (clauses S))
        using distinctcard-atm-of-lit-of-eq-length[OF no-dup] atm-incl' card-mono SS' by metis }
    ultimately have (dpll W-mes (trail S') (card (atms-of-mm (clauses S))),
        dpll W-mes (trail S) (card (atms-of-mm (clauses S))))
    \epsilonlexn less-than (card (atms-of-mm (clauses S)))
    using dpll W-card-decrease[OF assms(1), of atms-of-mm (clauses S)] by blast
then have (dpll W-mes (trail S') (card (atms-of-mm (clauses S))),
                dpll}\mp@subsup{W}{W}{-mes (trail S) (card (atms-of-mm (clauses S)))) \in lex less-than
    unfolding lex-def by auto
then show (dpll W-mes (trail S') (card (atms-of-mm (clauses S')),
                dpll}\mp@subsup{W}{W}{}-mes (trail S) (card (atms-of-mm (clauses S))))\in lex less-than
    using dpll}\mp@subsup{W}{}{-same-clauses[OF assms(1)] by auto
qed
lemma wf-lexn:wf (lexn {(a,b). (a::nat)<b} (card (atms-of-mm (clauses S))))
proof -
    have m: {(a,b).a<b} = measure id by auto
    show ?thesis apply (rule wf-lexn) unfolding m by auto
qed
lemma wf-dpll}\mp@subsup{W}{W}{
    wf {(S',S).dpll W-all-inv S ^ dpll}\mp@subsup{W}{W}{}S\mp@subsup{S}{}{\prime}
    apply (rule wf-wf-if-measure'[OF wf-lex-less, of --
            \lambdaS. dpll}\mp@subsup{W}{}{-mes (trail S) (card (atms-of-mm (clauses S)))])
    using dpll}\mp@subsup{W}{}{-}\mathrm{ -card-decrease' by fast
lemma dpll}\mp@subsup{W}{W}{}\mathrm{ -tranclp-star-commute:
    {(S',S).dpll}\mp@subsup{W}{}{-}\mathrm{ -all-inv S}\wedge dpll W S S'}+'={(S',S).dpll W-all-inv S ^ tranclp dpll W S S'
    (is ? }A=?B
proof
    { fix S S'
    assume (S, S') \in?A
        then have (S, S')\in?B
        by (induct rule: trancl.induct, auto)
    }
    then show ?A \subseteq?B by blast
    { fix S S'
        assume (S, S')\in?B
        then have dpll}\mp@subsup{W}{}{++}\mp@subsup{S}{}{\prime}S\mathrm{ and }dpl\mp@subsup{l}{W}{}\mathrm{ -all-inv S' by auto
        then have (S, S')\in?A
        proof (induct rule: tranclp.induct)
            case r-into-trancl
            then show ?case by (simp-all add: r-into-trancl')
        next
            case (trancl-into-trancl S S' }\mp@subsup{S}{}{\prime\prime}\mathrm{ )
            then have (S',S)\in{a. case a of (S',S)=>dpll W-all-inv S ^dpll }\mp@subsup{S}{W}{}S\mp@subsup{S}{}{\prime}\mp@subsup{}}{}{+}\mathrm{ by blast
```

```
        moreover have dpll}\mp@subsup{W}{}{-all-inv S'
            using rtranclp-dpll W-all-inv[OF tranclp-into-rtranclp[OF trancl-into-trancl.hyps(1)]]
                trancl-into-trancl.prems by auto
            ultimately have (S'', S') \in{(pa,p).dpll}\mp@subsup{W}{}{-all-inv p}\wedgedpl\mp@subsup{l}{W}{
                using <dpll W-all-inv S'` trancl-into-trancl.hyps(3) by blast
            then show ?case
                using}«(\mp@subsup{S}{}{\prime},S)\in{a.case a of (S',S)=>dpll W-all-inv S\wedgedpll W S S S } `` > by aut
    qed
    }
    then show ?B \subseteq?A by blast
qed
lemma wf-dpll W-tranclp:wf {(S',S).dpll }\mp@subsup{W}{W}{-all-inv S ^dpll}\mp@subsup{W}{}{++}S S S'
    unfolding dpll}\mp@subsup{W}{}{-tranclp-star-commute[symmetric] by (simp add: wf-dpll}\mp@subsup{W}{W}{}\mathrm{ wf-trancl)
lemma wf-dpll W-plus:
    wf {( S',}([],N))| S'.dpllWW ++ ([],N) S'} (is wf ?P)
    apply (rule wf-subset[OF wf-dpll}\mp@subsup{W}{W}{-tranclp, of ?P])
    unfolding dpll}\mp@subsup{W}{}{-all-inv-def by auto
```


0.1.4 Final States

Proposition 2.8.1: final states are the normal forms of dpll_{W}
lemma $d p l l_{W}$-no-more-step-is-a-conclusive-state:

$$
\text { assumes } \forall S^{\prime} . \neg d p l l_{W} S S^{\prime}
$$

shows conclusive-dpll ${ }_{W}$-state S
proof -
have vars: $\forall s \in$ atms-of-mm (clauses S). $s \in$ atm-of' lits-of-l (trail S) proof (rule ccontr)
assume $\neg(\forall s \in$ atms-of-mm (clauses $S) . s \in$ atm-of 'lits-of-l (trail $S)$)
then obtain L where
L-in-atms: $L \in$ atms-of-mm (clauses S) and
L-notin-trail: $L \notin$ atm-of ' lits-of-l (trail S) by metis
obtain L^{\prime} where L^{\prime} : atm-of $L^{\prime}=L$ by (meson literal.sel(2)) then have undefined-lit (trail S) L^{\prime}
unfolding Decided-Propagated-in-iff-in-lits-of-l by (metis L-notin-trail atm-of-uminus imageI) then show False using dpll $_{W}$.decided assms(1) L-in-atms L^{\prime} by blast qed
show ?thesis proof (rule ccontr)
assume not-final: \neg ?thesis
then have
\neg trail $S \models$ asm clauses S and
$(\exists L \in$ set $($ trail $S)$. is-decided $L) \vee(\forall C \in \#$ clauses $S . \neg$ trail $S \models$ as CNot $C)$
unfolding conclusive-dpll l_{W}-state-def by auto
moreover \{
assume $\exists L \in$ set (trail S). is-decided L
then obtain $L M^{\prime} M$ where $L:$ backtrack-split $($ trail $S)=\left(M^{\prime}, L \# M\right)$
using backtrack-split-some-is-decided-then-snd-has-hd by blast
obtain D where $D \in \#$ clauses S and \neg trail $S \models a D$
using $\neg \neg$ trail $S \models$ asm clauses S 〉 unfolding true-annots-def by auto
then have $\forall s \in$ atms-of-ms $\{D\} . s \in$ atm-of'lits-of-l (trail S)
using vars unfolding atms-of-ms-def by auto
then have trail $S \models$ as CNot D
using all-variables-defined-not-imply-cnot $[$ of $D] \prec \neg$ trail $S \models a D$ by auto

```
            moreover have is-decided L
            using L by (metis backtrack-split-snd-hd-decided list.distinct(1) list.sel(1) snd-conv)
            ultimately have False
            using assms(1) dpll}\mp@subsup{W}{W}{}\mathrm{ .backtrack L}\langle\langleD\in# clauses S\rangle\langletrail S =as CNot D\rangle by blas
        }
        moreover {
            assume tr: }\forallC\in#\mathrm{ clauses S. ᄀtrail S =as CNot C
            obtain C where C-in-cls:C \in# clauses S and trC: ᄀ trail S =a C
                using «\neg trail S \modelsasm clauses S〉 unfolding true-annots-def by auto
        have }\foralls\inatms-of-ms {C}.s\inatm-of'lits-of-l (trail S
            using vars \C \in# clauses S` unfolding atms-of-ms-def by auto
        then have trail S\modelsas CNot C
            by (meson C-in-cls tr trC all-variables-defined-not-imply-cnot)
        then have False using tr C-in-cls by auto
    }
        ultimately show False by blast
        qed
qed
lemma dpll }\mp@subsup{W}{W}{}\mathrm{ -conclusive-state-correct:
    assumes dpll}\mp@subsup{W}{}{**}([],N)(M,N) and conclusive-dpll W-state (M,N
    shows }M\models\operatorname{asm}N\longleftrightarrow\mathrm{ satisfiable (set-mset N) (is ?A }\longleftrightarrow\mathrm{ ? )B)
proof
    let ? M'= lits-of-l M
    assume ?A
    then have ? M'\modelssm N by (simp add: true-annots-true-cls)
    moreover have consistent-interp ?M'
        using rtranclp-dpll W-inv-starting-from-0[OF assms(1)] by auto
    ultimately show ?B by auto
next
    assume ?B
    show ?A
    proof (rule ccontr)
        assume n:\neg?A
        have no-mark: }\forallL\inset M.\neg is-decided L \existsC\in#N.M\modelsas CNot C
            using n assms(2) unfolding conclusive-dpll W-state-def by auto
        moreover obtain D where DN: D\in#N and MD:M\modelsas CNot D using no-mark by auto
        ultimately have unsatisfiable (set-mset N)
            using only-propagated-vars-unsat rtranclp-dpll W-all-inv[OF assms(1)]
            unfolding dpll}\mp@subsup{W}{}{-}\mathrm{ -all-inv-def by force
        then show False using \?B\rangle by blast
    qed
qed
lemma dpll W
    assumes \langledpll W}ST
    shows
        `GK' M1 M2' M2'".
            (rev (trail T) = rev (trailS)@M2' ^ M2' }=|])
            (rev (trail S) = M1 @ Decided (-K') # M2'^
            rev (trail T) = M1 @ Propagated K'()# M2'" ^
            Suc (length M1) \leq length (trail S))>
using assms
apply (induction S T rule: dpll W.induct)
subgoal for L CT
```

```
    by auto
    subgoal
    by auto
subgoal for S M'L M D
    using backtrack-split-snd-hd-decided[of <trail S\rangle]
        backtrack-split-list-eq[of \langletrail S\rangle, symmetric]
    apply - apply (rule exI[of - <-lit-of L\rangle], rule exI[of - <rev M\rangle], rule exI[of - <rev M '}\rangle],\mathrm{ rule exI[of -
<[]]])
    by (cases L)
        auto
    done
lemma tranclp-dpll}\mp@subsup{W}{}{\prime}\mathrm{ -trail-after-step:
    assumes }\langledpl\mp@subsup{l}{W}{++}ST
    shows
    `\existsK' M1 M2' M2'".
    (rev (trail T) = rev (trail S)@M2'^M2' = [])\vee
    (rev (trail S) = M1 @ Decided (-K') # M2'^
        rev (trail T) = M1 @ Propagated K'()# M2'" ^ Suc (length M1) \leqlength (trail S))>
    using assms(1)
proof (induction rule: tranclp-induct)
    case (base y)
    then show ?case by (auto dest!: dpll}\mp@subsup{W}{}{-trail-after-step1)
next
    case (step y z)
    then consider
        (1) M2' where
            <rev (DPLL-W.trail y) = rev (DPLL-W.trail S)@ M2'\\langleM2' = []>
            (2) K' M1 M2' M2'' where <rev (DPLL-W.trail S) = M1 @ Decided (- K') # M2'`
            <rev (DPLL-W.trail y) = M1 @ Propagated K'()# M2'` and 〈Suc (length M1) \leq length (trail
S)>
            by blast
then show ?case
proof cases
    case (1 M2')
    consider
            (a)M2' where
            <rev (DPLL-W.trail z) = rev (DPLL-W.trail y)@ M2'> <M2' = []>|
            (b) K''M1'M2' M2''\prime where <rev (DPLL-W.trail y) = M1'@ Decided ( - K') # M2'">
                <rev (DPLL-W.trail z) = M1'@ Propagated K'\prime}()#M\mp@subsup{)}{}{\prime\prime\prime}\rangle and
                \Suc (length M1') \leq length (trail y)>
            using dpll}\mp@subsup{W}{W}{-trail-after-step1[OF step(2)]
            by blast
                    then show ?thesis
proof cases
            case a
            then show ?thesis using 1 by auto
    next
            case b
            have H:\langlerev(DPLL-W.trail S)@M2' = M1'@ Decided (- K'') # M2'' }
                length M1' = length (DPLL-W.trail S) \Longrightarrow
                length M1' < Suc (length (DPLL-W.trail S)) \Longrightarrowrev (DPLL-W.trail S) =
                M1'@ Decided (- K') # drop (Suc (length M1')) (rev (DPLL-W.trail S))>
            apply (drule arg-cong[of - - <take (length (trail S))\rangle])
            by (auto simp: take-Cons')
            show ?thesis using b 1 apply -
```

apply（rule exI［of－〈$\left.\left.{ }^{\prime \prime}\right\rangle\right]$ ）
apply（rule exI［of－＜M1＇\rangle ）
apply（rule exI［of－〈if length（trail S ）\leq length M1＇then drop（length（DPLL－W．trail S ））（rev
（DPLL－W．trail z））else
drop（Suc（length M1 $)$ ）（rev（DPLL－W．trail S））$\left.)^{7}\right)$
apply（cases＜length（trail S ）＜length M1＇〉）
subgoal
apply auto
by（simp add：append－eq－append－conv－if）
apply（cases 〈length $M 1^{\prime}=$ length $($ trail $S)$ ））
subgoal by auto
subgoal
using H
apply（clarsimp simp：）
done
done
qed
next
case（2 K＂M1＇M2＇$M 2^{\prime \prime \prime}$ ）
consider
（a）M2＇where
$\left\langle\right.$ rev $(D P L L-W . \operatorname{trail} z)=\operatorname{rev}(D P L L-W$ ．trail $\left.y) @ M 2^{\prime}\right\rangle\left\langle M 2^{\prime} \neq[]\right\rangle \mid$
（b）$K^{\prime \prime} M 1^{\prime} M 2^{\prime \prime} M 2^{\prime \prime \prime}$ where $\left\langle r e v(D P L L-W . t r a i l y)=M 1^{\prime} @ D e c i d e d ~\left(-K^{\prime \prime}\right) \# M 2^{\prime \prime}\right\rangle$ $\left\langle\operatorname{rev}(D P L L-W\right.$. trail $z)=M 1^{\prime}$＠Propagated $\left.K^{\prime \prime}() \# M 2^{\prime \prime \prime}\right\rangle$ and \langle Suc（length M1）\leq length（trail y）〉
using dpll $_{W}$－trail－after－step1［OF step（2）］
by blast
then show？thesis
proof cases
case a
then show ？thesis using 2 by auto

next

case（b $\left.K^{\prime \prime \prime} M 1^{\prime \prime} M 2^{\prime \prime \prime \prime} M 2^{\prime \prime \prime \prime \prime}\right)$
have［iff］：〈M1＇＠Propagated $K^{\prime \prime}() \# M 2^{\prime \prime \prime}=M 1^{\prime \prime} @$ Decided $\left(-K^{\prime \prime \prime}\right) \# M 2^{\prime \prime \prime \prime} \longleftrightarrow$
$\left.\left(\exists N 1^{\prime \prime} . M 1^{\prime \prime}=M 1^{\prime} @ \operatorname{Propagated} K^{\prime \prime}() \# N 1^{\prime \prime} \wedge M 2^{\prime \prime \prime}=N 1^{\prime \prime} @ \operatorname{Decided}\left(-K^{\prime \prime \prime}\right) \# M 2^{\prime \prime \prime \prime}\right)\right\rangle$
if＜length M1＇＜length M1＂）
using that apply（auto simp：append－eq－append－conv－if）
by（metis（no－types，lifting）Cons－eq－append－conv append－take－drop－id drop－eq－Nil leD）
have［iff］：〈M1＇＠Propagated $K^{\prime \prime}() \# M 2^{\prime \prime \prime}=M 1^{\prime \prime} @$ Decided $\left(-K^{\prime \prime \prime}\right) \# M 2^{\prime \prime \prime \prime} \longleftrightarrow$
$\left(\exists N 1^{\prime \prime} . M 1^{\prime}=M 1^{\prime \prime} @\right.$ Decided $\left(-K^{\prime \prime \prime}\right) \# N 1^{\prime \prime} \wedge M 2^{\prime \prime \prime \prime}=N 1^{\prime \prime} @$ Propagated $\left.K^{\prime \prime}() \# M 2^{\prime \prime \prime}\right)$ ）
if $\left\langle\neg\right.$ length $M 1^{\prime}<$ length $\left.M 1{ }^{\prime \prime}\right\rangle$
using that apply（auto simp：append－eq－append－conv－if）
by（metis（no－types，lifting）Cons－eq－append－conv append－take－drop－id drop－eq－Nil le－eq－less－or－eq）
show ？thesis using $b 2$ apply－
apply（rule exI［of－〈if length $M 1^{\prime}<$ length $M 1{ }^{\prime \prime}$ then $K^{\prime \prime}$ else $\left.\left.K^{\prime \prime \prime}\right\rangle\right]$ ）
apply（rule exI $\left[\right.$ of－＜if length $M 1^{\prime}<$ length $M 1^{\prime \prime}$ then $M 1^{\prime}$ else $\left.M 1^{\prime \prime \prime}\right\rangle$ ）
apply（cases 〈length $($ trail $S)<\min \left(\right.$ length $\left.M 1{ }^{\prime}\right)\left(\right.$ length $\left.M 1{ }^{\prime \prime}\right)$ ））
subgoal
by auto
apply（cases $\left\langle\min \left(\right.\right.$ length $\left.M 1{ }^{\prime}\right)\left(\right.$ length $\left.M 1^{\prime \prime}\right)=$ length $($ trail $\left.\left.S)\right\rangle\right)$
subgoal by auto
subgoal
by（auto simp：）
done
qed

```
    qed
```

qed

This theorem is an important（although rather obvious）property：the model induced by trails are not repeated．
lemma tranclp－dpll W_{W}－no－dup－trail：
assumes $\left\langle d p l l_{W}{ }^{++} S T\right\rangle$ and $\left\langle d p l l_{W}\right.$－all－inv $\left.S\right\rangle$
shows \langle set $($ trail $S) \neq \operatorname{set}($ trail $T)\rangle$
proof－
have $[\operatorname{simp}]:\langle A=B \cup A \longleftrightarrow B \subseteq A\rangle$ for $A B$
by auto
have $[$ simp $]:\langle$ rev $($ trail $U)=x s \longleftrightarrow$ trail $U=$ rev xs〉 for $x s U$
by auto
have $\left\langle d p l l_{W}\right.$－all－inv $\left.T\right\rangle$
by（metis assms（1）assms（2）reflclp－tranclp rtranclp－dpll ${ }_{W}$－all－inv sup2CI）
then have n－d：〈no－dup（trail S ）〉〈no－dup（trail T ）〉
using assms unfolding dpll $_{W}$－all－inv－def by（auto dest：no－dup－imp－distinct）
have［simp］：＜no－dup（rev M2＇＠DPLL－W．trail S ）\Longrightarrow
dpll $_{W}$－all－inv $S \Longrightarrow$ set $M 2^{\prime} \subseteq \operatorname{set}(D P L L-W$ ．trail $S) \longleftrightarrow M 2^{\prime}=[]$ for $M 2^{\prime}$
by（cases M2＇rule：rev－cases）
（auto simp：undefined－notin）
show ？thesis
using n－d tranclp－dpll ${ }_{W}$－trail－after－step［OF assms（1）］assms（2）apply auto
by（metis（no－types，lifting）Un－insert－right insertI1 list．simps（15）lit－of．simps（1，2） n－d（1）no－dup－cannot－not－lit－and－uminus set－append set－rev）
qed
end
theory $C D C L$－W－Level
imports
Entailment－Definition．Partial－Annotated－Herbrand－Interpretation
begin

Level of literals and clauses

Getting the level of a variable，implies that the list has to be reversed．Here is the function after reversing．
definition count－decided ：：（＇v，＇b，＇m）annotated－lit list \Rightarrow nat where
count－decided $l=$ length（filter is－decided l ）
definition get－level $::(' v, ' m)$ ann－lits \Rightarrow＇v literal \Rightarrow nat where
get－level $S L=$ length $($ filter is－decided $($ drop While $(\lambda S$ ．atm－of $($ lit－of $S) \neq$ atm－of $L) S)$ ）
lemma get－level－uminus［simp］：\langle get－level $M(-L)=$ get－level $M L\rangle$
by（auto simp：get－level－def）
lemma get－level－Neg－Pos：〈get－level $M($ Neg $L)=$ get－level $M($ Pos $L)\rangle$
unfolding get－level－def by auto
lemma count－decided－0－iff：
〈count－decided $M=0 \longleftrightarrow(\forall L \in$ set M ．$\neg i s$－decided $L)$ 〉
by（auto simp：count－decided－def filter－empty－conv）

lemma

shows
count－decided－nil［simp］：〈count－decided []$=0\rangle$ and
count－decided－cons［simp］：
〈count－decided $(a \neq M)=($ if is－decided a then Suc（count－decided $M)$ else count－decided $M)\rangle$ and count－decided－append［simp］：
（count－decided $\left(M @ M^{\prime}\right)=$ count－decided $M+$ count－decided M^{\prime} 〉
by（auto simp：count－decided－def）
lemma atm－of－notin－get－level－eq－ $0[$ simp］：
assumes undefined－lit ML
shows get－level $M L=0$
using assms by（induct M rule：ann－lit－list－induct）（auto simp：get－level－def defined－lit－map）
lemma get－level－ge－0－atm－of－in：
assumes get－level $M L>n$
shows atm－of $L \in$ atm－of＇lits－of－l M
using atm－of－notin－get－level－eq－ $0[$ of $M L]$ assms unfolding defined－lit－map
by（auto simp：lits－of－def simp del：atm－of－notin－get－level－eq－0）
In get－level（resp．get－level），the beginning（resp．the end）can be skipped if the literal is not in the beginning（resp．the end）．
lemma get－level－skip［simp］：
assumes undefined－lit ML
shows get－level（ M＠M^{\prime} ）$L=$ get－level $M^{\prime} L$
using assms by（induct M rule：ann－lit－list－induct）（auto simp：get－level－def defined－lit－map）
If the literal is at the beginning，then the end can be skipped
lemma get－level－skip－end［simp］：
assumes defined－lit $M L$
shows get－level（ M＠M^{\prime} ）$L=$ get－level $M L+$ count－decided M^{\prime}
using assms by（induct M^{\prime} rule：ann－lit－list－induct）
（auto simp：lits－of－def get－level－def count－decided－def defined－lit－map）
lemma get－level－skip－beginning［simp］：
assumes atm－of $L^{\prime} \neq a t m$－of（lit－of K ）
shows get－level $(K \# M) L^{\prime}=$ get－level $M L^{\prime}$
using assms by（auto simp：get－level－def）
lemma get－level－take－beginning［simp］：
assumes atm－of $L^{\prime}=a t m$－of（lit－of $\left.K\right)$
shows get－level $(K \# M) L^{\prime}=$ count－decided $(K \# M)$
using assms by（auto simp：get－level－def count－decided－def）
lemma get－level－cons－if：
〔get－level $(K \# M) L^{\prime}=$
（if atm－of $L^{\prime}=$ atm－of（lit－of K ）then count－decided $(K \# M)$ else get－level M L^{\prime} ）＞
by auto
lemma get－level－skip－beginning－not－decided［simp］：
assumes undefined－lit $S L$
and $\forall s \in$ set S ．$\neg i s$－decided s
shows get－level（ M＠S ）$L=$ get－level $M L$
using assms apply（induction S rule：ann－lit－list－induct）
apply auto［2］

```
apply (case-tac atm-of L \in atm-of ' lits-of-l M)
    apply (auto simp: image-iff lits-of-def filter-empty-conv count-decided-def defined-lit-map
        dest: set-dropWhileD)
done
lemma get-level-skip-all-not-decided[simp]:
    fixes M
    assumes }\forallm\in\mathrm{ set M. ᄀ is-decided m
    shows get-level M L = 0
    using assms by (auto simp: filter-empty-conv get-level-def dest: set-drop WhileD)
the {#0::'a#} is there to ensures that the set is not empty.
definition get-maximum-level :: ('a, 'b) ann-lits = ' 'a clause }=>\mathrm{ nat
    where
get-maximum-level M D = Max-mset ({#0#} + image-mset (get-level M) D)
lemma get-maximum-level-ge-get-level:
    L \in \# D \Longrightarrow \text { get-maximum-level M D \ get-level ML}
    unfolding get-maximum-level-def by auto
lemma get-maximum-level-empty[simp]:
    get-maximum-level M {#} = 0
    unfolding get-maximum-level-def by auto
lemma get-maximum-level-exists-lit-of-max-level:
    D\not={#}\Longrightarrow\existsL\in# D. get-level ML = get-maximum-level M D
    unfolding get-maximum-level-def
    apply (induct D)
    apply simp
    by (rename-tac x D, case-tac D ={#})(auto simp add: max-def)
lemma get-maximum-level-empty-list[simp]:
    get-maximum-level [] D = 0
    unfolding get-maximum-level-def by (simp add: image-constant-conv)
lemma get-maximum-level-add-mset:
    get-maximum-level M (add-mset L D ) = max (get-level M L) (get-maximum-level M D)
    unfolding get-maximum-level-def by simp
lemma get-level-append-if:
    get-level (M@ M') L = (if defined-lit M L then get-level M L + count-decided M'
        else get-level M' L)>
    by (auto)
Do mot activate as [simp] rules. It breaks everything.
lemma get-maximum-level-single:
\(\langle\) get-maximum-level \(M\{\# x \#\}=\) get-level \(M x\rangle\)
by (auto simp: get-maximum-level-add-mset)
lemma get-maximum-level-plus: get-maximum-level \(M\left(D+D^{\prime}\right)=\max (\) get-maximum-level \(M D)\left(\right.\) get-maximum-level \(\left.M D^{\prime}\right)\) by (induction \(D)\) (simp-all add: get-maximum-level-add-mset)
lemma get-maximum-level-cong:
assumes \(\left\langle\forall L \in \# D\right.\). get-level \(M L=\) get-level \(\left.M^{\prime} L\right\rangle\)
shows \(\left\langle\right.\) get-maximum-level \(M D=\) get-maximum-level \(M^{\prime} D\) 〉
```

```
    using assms by (induction D) (auto simp: get-maximum-level-add-mset)
lemma get-maximum-level-exists-lit:
    assumes n: n>0
    and max: get-maximum-level M D=n
    shows }\existsL\in#D\mathrm{ . get-level M L=n
proof -
    have f: finite (insert 0 (( }\lambda\mathrm{ L. get-level M L)' set-mset D)) by auto
    then have }n\in((\lambdaL.get-level M L)' set-mset D
        using n max Max-in[OF f] unfolding get-maximum-level-def by simp
    then show }\existsL\in#D\mathrm{ . get-level M L = n by auto
qed
lemma get-maximum-level-skip-first[simp]:
    assumes atm-of (lit-of K) # atms-of D
    shows get-maximum-level ( }K#M)D=\mathrm{ get-maximum-level M D
    using assms unfolding get-maximum-level-def atms-of-def
    atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
    by (smt atm-of-in-atm-of-set-in-uminus get-level-skip-beginning image-iff lit-of.simps(2)
        multiset.map-cong0)
lemma get-maximum-level-skip-beginning:
    assumes }DH:\forallx\in#D. undefined-lit c x
    shows get-maximum-level (c @ H) D = get-maximum-level H D
proof -
    have (get-level (c @ H))'set-mset D = (get-level H)' set-mset D
        apply (rule image-cong)
        apply (simp; fail)
        using DH unfolding atms-of-def by auto
    then show ?thesis using DH unfolding get-maximum-level-def by auto
qed
lemma get-maximum-level-D-single-propagated:
    get-maximum-level [Propagated x21 x22] D=0
    unfolding get-maximum-level-def by (simp add: image-constant-conv)
lemma get-maximum-level-union-mset:
    get-maximum-level M (A\cup# B) = get-maximum-level M (A+B)
    unfolding get-maximum-level-def by (auto simp: image-Un)
lemma count-decided-rev[simp]:
    count-decided (rev M) = count-decided M
    by (auto simp: count-decided-def rev-filter[symmetric])
lemma count-decided-ge-get-level:
    count-decided M \geq get-level ML
    by (induct M rule: ann-lit-list-induct)
        (auto simp add: count-decided-def le-max-iff-disj get-level-def)
lemma count-decided-ge-get-maximum-level:
    count-decided M \geq get-maximum-level M D
    using get-maximum-level-exists-lit-of-max-level unfolding Bex-def
    by (metis get-maximum-level-empty count-decided-ge-get-level le0)
lemma get-level-last-decided-ge:
    <defined-lit (c @ [Decided K]) L'\Longrightarrow0 < get-level (c@ [Decided K]) L'\rangle
```

```
by (induction c) (auto simp: defined-lit-cons get-level-cons-if)
```

lemma get-maximum-level-mono:
$\left\langle D \subseteq \# D^{\prime} \Longrightarrow\right.$ get-maximum-level $M D \leq$ get-maximum-level $\left.M D^{\prime}\right\rangle$
unfolding get-maximum-level-def by auto
fun get-all-mark-of-propagated where
get-all-mark-of-propagated [] = [] |
get-all-mark-of-propagated (Decided - \# L) = get-all-mark-of-propagated $L \mid$
get-all-mark-of-propagated (Propagated - mark \# L) = mark \# get-all-mark-of-propagated L
lemma get-all-mark-of-propagated-append[simp]:
get-all-mark-of-propagated $(A$ @ $B)=$ get-all-mark-of-propagated A @ get-all-mark-of-propagated B
by (induct A rule: ann-lit-list-induct) auto
lemma get-all-mark-of-propagated-tl-proped:
$\langle M \neq \square] \Longrightarrow$ is-proped $(h d M) \Longrightarrow$ get-all-mark-of-propagated $(t l M)=t l$ (get-all-mark-of-propagated M) >
by (induction M rule: ann-lit-list-induct) auto

Properties about the levels

```
lemma atm-lit-of-set-lits-of-l:
    ( \(\lambda\) l. atm-of \((\) lit-of \(l)\) )' set \(x s=\) atm-of' lits-of-l \(x s\)
    unfolding lits-of-def by auto
```

Before I try yet another time to prove that I can remove the assumption no-dup M : It does not work. The problem is that get-level $M K=$ Suc i peaks the first occurrence of the literal K. This is for example an issue for the trail replicate n (Decided K). An explicit counter-example is below.

```
lemma le-count-decided-decomp:
    assumes \no-dup M`
    shows }\langlei<count-decided M\longleftrightarrow(\existscK c'.M=c@ Decided K # c'^ get-level M K=Suc i)>
        (is ?A}\longleftrightarrow?B
proof
    assume ?B
    then obtain cK c' where
        M=c@ Decided K # c' and get-level M K = Suc i
        by blast
    then show ?A using count-decided-ge-get-level[of M K] by auto
next
    assume ?A
    then show ?B
        using \no-dup M>
    proof (induction M rule: ann-lit-list-induct)
        case Nil
        then show ?case by simp
    next
        case (Decided L M) note IH = this(1) and i= this(2) and n-d = this(3)
        then have n-d-M: no-dup M by simp
        show ?case
        proof (cases i< count-decided M)
            case True
            then obtain cK c' where
M:M=c@ Decided K # c' and lev-K: get-level M K = Suc i
```

```
using IH n-d-M by blast
    show ?thesis
apply (rule exI[of-Decided L # c])
apply (rule exI[of-K])
apply (rule exI[of - c])
using lev-K n-d unfolding M by (auto simp: get-level-def defined-lit-map)
    next
        case False
        show ?thesis
apply (rule exI[of - []])
apply (rule exI[of - L])
apply (rule exI[of - M])
using False i by (auto simp: get-level-def count-decided-def)
    qed
    next
        case (Propagated L mark' M) note i = this(2) and IH = this(1) and n-d = this(3)
        then obtain cK c' where
M:M=c@ Decided K # c' and lev-K: get-level M K = Suc i
by (auto simp: count-decided-def)
        show ?case
apply (rule exI[of - Propagated L mark' # c])
apply (rule exI[of - K])
apply (rule exI[of - c ])
using lev-K n-d unfolding M by (auto simp: atm-lit-of-set-lits-of-l get-level-def
    defined-lit-map)
    qed
qed
The counter-example if the assumption no-dup \(M\).
```


lemma

```
    fixes }
    defines 〈M \equiv replicate 3 (Decided K)>
    defines <i\equiv1>
    assumes }<i<count-decided M\longleftrightarrow(\existscKc'.M=c@ Decided K # c'^^ get-level M K=Suc i)>
    shows False
    using assms(3-) unfolding M-def i-def numeral-3-eq-3
    by (auto simp: Cons-eq-append-conv)
lemma Suc-count-decided-gt-get-level:
    <get-level M L < Suc (count-decided M)>
    by (induction M rule: ann-lit-list-induct) (auto simp: get-level-cons-if)
lemma get-level-neq-Suc-count-decided[simp]:
    <get-level M L = Suc (count-decided M)〉
    using Suc-count-decided-gt-get-level[of M L] by auto
lemma length-get-all-ann-decomposition:<length (get-all-ann-decomposition M) = 1+count-decided M`
    by (induction M rule: ann-lit-list-induct) auto
lemma get-maximum-level-remove-non-max-lvl:
        get-level M a < get-maximum-level M D\Longrightarrow
    get-maximum-level M (remove1-mset a D) = get-maximum-level M D>
    by (cases }<a\in#D\
        (auto dest!: multi-member-split simp: get-maximum-level-add-mset)
lemma exists-lit-max-level-in-negate-ann-lits:
```

\langle negate-ann-lits $M \neq\{\#\} \Longrightarrow \exists L \in \#$ negate-ann-lits M. get-level $M L=$ count-decided $M\rangle$ by (cases $\langle M\rangle$) (auto simp: negate-ann-lits-def)
end
theory $C D C L-W$
imports CDCL-W-Level Weidenbach-Book-Base.Wellfounded-More
begin

Chapter 1

Weidenbach's CDCL

The organisation of the development is the following:

- CDCL_W.thy contains the specification of the rules: the rules and the strategy are defined, and we proof the correctness of CDCL.
- CDCL_W_Termination.thy contains the proof of termination, based on the book.
- CDCL_W_Merge.thy contains a variant of the calculus: some rules of the raw calculus are always applied together (like the rules analysing the conflict and then backtracking). This is useful for the refinement from NOT.
- CDCL_WNOT.thy proves the inclusion of Weidenbach's version of CDCL in NOT's version. We use here the version defined in CDCL_W_Merge.thy. We need this, because NOT's backjump corresponds to multiple applications of three rules in Weidenbach's calculus. We show also the termination of the calculus without strategy. There are two different refinement: on from NOT's to Weidenbach's CDCL and another to W's CDCL with strategy.

We have some variants build on the top of Weidenbach's CDCL calculus:

- CDCL_W_Incremental.thy adds incrementality on the top of CDCL_W.thy. The way we are doing it is not compatible with CDCL_W_Merge.thy, because we add conflicts and the CDCL_W_Merge.thy cannot analyse conflicts added externally, since the conflict and analyse are merged.
- CDCL_W_Restart.thy adds restart and forget while restarting. It is built on the top of CDCL_W_Merge.thy.

1.1 Weidenbach's CDCL with Multisets

declare upt.simps(2)[simp del]

1.1.1 The State

We will abstract the representation of clause and clauses via two locales. We here use multisets, contrary to CDCL_W_Abstract_State.thy where we assume only the existence of a conversion to the state.

```
locale state \(_{W}\)-ops \(=\)
    fixes
        state \(::\) 'st \(\Rightarrow(' v, ' v\) clause \()\) ann-lits \(\times\) ' \(v\) clauses \(\times\) 'v clauses \(\times\) ' \(v\) clause option \(\times\)
            'b and
    trail \(::\) 'st \(\Rightarrow(' v\), 'v clause) ann-lits and
    init-clss :: 'st \(\Rightarrow\) 'v clauses and
    learned-clss \(::\) 'st \(\Rightarrow\) 'v clauses and
    conflicting \(::\) 'st \(\Rightarrow\) 'v clause option and
    cons-trail :: ('v, 'v clause) ann-lit \(\Rightarrow\) 'st \(\Rightarrow\) 'st and
    tl-trail :: 'st \(\Rightarrow\) 'st and
    add-learned-cls :: 'v clause \(\Rightarrow\) 'st \(\Rightarrow\) 'st and
    remove-cls \(::\) 'v clause \(\Rightarrow\) 'st \(\Rightarrow\) 'st and
    update-conflicting \(::\) ' \(v\) clause option \(\Rightarrow\) 'st \(\Rightarrow\) 'st and
    init-state :: 'v clauses \(\Rightarrow\) 'st
begin
abbreviation \(h d\)-trail \(::\) 'st \(\Rightarrow\left(' v,{ }^{\prime} v\right.\) clause \()\) ann-lit where
\(h d-\) trail \(S \equiv h d(\) trail \(S)\)
definition clauses :: 'st \(\Rightarrow\) 'v clauses where
clauses \(S=\) init-clss \(S+\) learned-clss \(S\)
abbreviation resolve-cls :: 〈'a literal \(\Rightarrow\) ' \(a\) clause \(\Rightarrow\) ' \(a\) clause \(\Rightarrow\) 'a clause \(\rangle\) where
resolve-cls \(L D^{\prime} E \equiv\) remove1-mset \((-L) D^{\prime} \cup \#\) remove1-mset \(L E\)
abbreviation state-butlast :: 'st \(\Rightarrow(' v\), 'v clause) ann-lits \(\times\) ' \(v\) clauses \(\times\) ' \(v\) clauses
    \(\times\) 'v clause option where
state-butlast \(S \equiv(\) trail \(S\), init-clss \(S\), learned-clss \(S\), conflicting \(S)\)
definition additional-info \(::\) 'st \(\Rightarrow\) ' \(b\) where
additional-info \(S=(\lambda(-,-,-,-, D) . D)(\) state \(S)\)
end
```

We are using an abstract state to abstract away the detail of the implementation: we do not need to know how the clauses are represented internally, we just need to know that they can be converted to multisets.

Weidenbach state is a five-tuple composed of:

1. the trail is a list of decided literals;
2. the initial set of clauses (that is not changed during the whole calculus);
3. the learned clauses (clauses can be added or remove);
4. the conflicting clause (if any has been found so far).

Contrary to the original version, we have removed the maximum level of the trail, since the information is redundant and required an additional invariant.
There are two different clause representation: one for the conflicting clause ('v clause, standing for conflicting clause) and one for the initial and learned clauses ('v clause, standing for clause).

The representation of the clauses annotating literals in the trail is slightly different: being able to convert it to 'v clause is enough (needed for function $h d$-trail below).
There are several axioms to state the independance of the different fields of the state: for example, adding a clause to the learned clauses does not change the trail.

```
locale state \(_{W}\)-no-state \(=\)
    state \(_{W}\)-ops
        state
    - functions about the state:
        - getter:
        trail init-clss learned-clss conflicting
        - setter:
        cons-trail tl-trail add-learned-cls remove-cls
        update-conflicting
        - Some specific states:
        init-state
for
    state-eq :: 'st \(\Rightarrow\) 'st \(\Rightarrow\) bool (infix \(\sim 50\) ) and
    state \(::\) 'st \(\Rightarrow(' v\), 'v clause \()\) ann-lits \(\times\) 'v clauses \(\times\) 'v clauses \(\times\) 'v clause option \(\times\)
        'b and
    trail \(::\) 'st \(\Rightarrow(' v, ' v\) clause) ann-lits and
    init-clss :: 'st \(\Rightarrow\) 'v clauses and
    learned-clss :: 'st \(\Rightarrow\) 'v clauses and
    conflicting \(::\) 'st \(\Rightarrow\) 'v clause option and
    cons-trail :: ('v, 'v clause) ann-lit \(\Rightarrow\) 'st \(\Rightarrow\) 'st and
    tl-trail :: 'st \(\Rightarrow\) 'st and
    add-learned-cls :: 'v clause \(\Rightarrow\) 'st \(\Rightarrow\) 'st and
    remove-cls \(::\) 'v clause \(\Rightarrow\) 'st \(\Rightarrow\) 'st and
    update-conflicting :: 'v clause option \(\Rightarrow\) 'st \(\Rightarrow\) 'st and
    init-state :: 'v clauses \(\Rightarrow\) 'st +
assumes
    state-eq-ref \([\) simp, intro \(]:\langle S \sim S\rangle\) and
    state-eq-sym: \(\langle S \sim T \longleftrightarrow T \sim S\rangle\) and
    state-eq-trans: \(\left\langle S \sim T \Longrightarrow T \sim U^{\prime} \Longrightarrow S \sim U^{\prime}\right\rangle\) and
    state-eq-state: \(\langle S \sim T \Longrightarrow\) state \(S=\) state \(T\rangle\) and
    cons-trail:
    \(\bigwedge S^{\prime}\). state st \(=\left(M, S^{\prime}\right) \Longrightarrow\)
        state (cons-trail L st \()=\left(L \# M, S^{\prime}\right)\) and
    tl-trail:
    \(\bigwedge S^{\prime}\). state st \(=\left(M, S^{\prime}\right) \Longrightarrow\) state \((t l-t r a i l ~ s t)=\left(t l M, S^{\prime}\right)\) and
    remove-cls:
    \(\bigwedge S^{\prime}\). state st \(=\left(M, N, U, S^{\prime}\right) \Longrightarrow\)
        state \((\) remove-cls \(C\) st \()=\)
            ( \(M\), removeAll-mset \(C\), removeAll-mset \(C U, S^{\prime}\) ) and
    add-learned-cls:
    \(\bigwedge S^{\prime}\). state st \(=\left(M, N, U, S^{\prime}\right) \Longrightarrow\)
        state (add-learned-cls \(C\) st \()=\left(M, N,\{\# C \#\}+U, S^{\prime}\right)\) and
    update-conflicting:
```

```
    \ S ^ { \prime } . \text { state st = (M,N,U,D,S) } \Longrightarrow
    state (update-conflicting E st) =(M,N,U,E,S') and
init-state:
    state-butlast (init-state N)=([],N,{#},None) and
cons-trail-state-eq:
    <S~ S'\Longrightarrow cons-trail L S~ cons-trail L S'` and
tl-trail-state-eq:
    \langleS~ S'\Longrightarrow tl-trail S~ tl-trail S}\mp@subsup{S}{}{\prime}\rangle\mathrm{ and
add-learned-cls-state-eq:
    <S~ S'\Longrightarrow add-learned-cls C S ~ add-learned-cls C S'` and
remove-cls-state-eq:
    \S~S'S}\Longrightarrow\mathrm{ remove-cls C S ~ remove-cls C S '
    update-conflicting-state-eq:
    <S~ S'\Longrightarrow update-conflicting D S~ update-conflicting D S'` and
tl-trail-add-learned-cls-commute:
    <tl-trail (add-learned-cls C T) ~ add-learned-cls C (tl-trail T)> and
tl-trail-update-conflicting:
    <tl-trail (update-conflicting D T) ~ update-conflicting D (tl-trail T)> and
update-conflicting-update-conflicting:
    \\D D'S S'. S~ S'\Longrightarrow
        update-conflicting D (update-conflicting D'S) ~ update-conflicting D S'>}\mathrm{ and
update-conflicting-itself:
    \D S'.conflicting S'=D\Longrightarrow update-conflicting D S'~ S'>
locale state}\mp@subsup{W}{W}{=
state}\mp@subsup{W}{W}{}\mathrm{ -no-state
    state-eq state
    - functions about the state:
    - getter:
    trail init-clss learned-clss conflicting
        - setter:
    cons-trail tl-trail add-learned-cls remove-cls
    update-conflicting
    - Some specific states:
    init-state
for
state-eq :: 'st => 'st => bool (infix ~ 50) and
state ::'st }=>\mathrm{ ('v,'v clause) ann-lits }\times\mathrm{ 'v clauses }\times\mathrm{ 'v clauses }\times\mathrm{ 'v clause option }
    'b and
trail :: 'st }=>\mathrm{ ('v, 'v clause) ann-lits and
init-clss :: 'st }=>\mathrm{ 'v clauses and
learned-clss :: 'st => 'v clauses and
conflicting :: 'st => 'v clause option and
cons-trail :: ('v, 'v clause) ann-lit }=>\mathrm{ 'st }=>\mathrm{ 'st and
tl-trail :: 'st }=>\mathrm{ 'st and
add-learned-cls :: 'v clause }=>\mathrm{ 'st }=>\mathrm{ 'st and
```

remove-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
update-conflicting :: 'v clause option \Rightarrow 'st \Rightarrow 'st and
init-state :: 'v clauses \Rightarrow 'st +
assumes
state-prop $[$ simp $]$:
\langle state $S=($ trail S, init-clss S, learned-clss S, conflicting S, additional-info $S)\rangle$
begin

lemma

trail-cons-trail[simp]:
trail (cons-trail L st) $=L \#$ trail st and
trail-tl-trail[simp]: trail (tl-trail st) $=t l($ trail st $)$ and
trail-add-learned-cls[simp]:
trail (add-learned-cls C st) $=$ trail st and
trail-remove-cls[simp]:
trail $($ remove-cls C st $)=$ trail st and
trail-update-conflicting [simp]: trail (update-conflicting Est) = trail st and
init-clss-cons-trail[simp]:
init-clss $($ cons-trail M st $)=$ init-clss st
and
init-clss-tl-trail[simp]:
init-clss (tl-trail st) $=$ init-clss st and
init-clss-add-learned-cls[simp]:
init-clss (add-learned-cls C st) $=$ init-clss st and
init-clss-remove-cls[simp]:
init-clss $($ remove-cls C st $)=$ removeAll-mset C (init-clss st $)$ and
init-clss-update-conflicting[simp]:
init-clss (update-conflicting E st) $=$ init-clss st and
learned-clss-cons-trail[simp]:
learned-clss (cons-trail M st) $=$ learned-clss st and
learned-clss-tl-trail[simp]:
learned-clss $(t l-t r a i l ~ s t)=$ learned-clss st and
learned-clss-add-learned-cls[simp]:
learned-clss (add-learned-cls C st) $=\{\# C \#\}+$ learned-clss st and
learned-clss-remove-cls[simp]:
learned-clss (remove-cls C st) $=$ removeAll-mset C (learned-clss st) and
learned-clss-update-conflicting[simp]:
learned-clss (update-conflicting Est) $=$ learned-clss st and
conflicting-cons-trail[simp]:
conflicting (cons-trail M st) $=$ conflicting st and
conflicting-tl-trail[simp]:
conflicting (tl-trail st) $=$ conflicting st and
conflicting-add-learned-cls[simp]:
conflicting (add-learned-cls C st) $=$ conflicting st
and
conflicting-remove-cls[simp]:
conflicting (remove-cls C st) $=$ conflicting st and
conflicting-update-conflicting[simp]:
conflicting (update-conflicting E st) $=E$ and
init-state-trail $[$ simp $]$: trail (init-state $N)=[]$ and
init-state-clss[simp]: init-clss (init-state N) $=N$ and

```
init-state-learned-clss[simp]:learned-clss (init-state N)={#} and
init-state-conflicting[simp]: conflicting (init-state N) = None
using cons-trail[of st] tl-trail[of st] add-learned-cls[of st - - - C]
    update-conflicting[of st - - - - ]
    remove-cls[of st - - - C]
    init-state[of N]
by auto
lemma
    shows
        clauses-cons-trail[simp]:
            clauses (cons-trail M S)= clauses S and
    clss-tl-trail[simp]: clauses (tl-trail S) = clauses S and
    clauses-add-learned-cls-unfolded:
        clauses (add-learned-cls US)={#U#} + learned-clss S + init-clss S
        and
    clauses-update-conflicting[simp]:clauses (update-conflicting D S) =clauses S and
    clauses-remove-cls[simp]:
        clauses (remove-cls C S) = removeAll-mset C (clauses S) and
        clauses-add-learned-cls[simp]:
            clauses (add-learned-cls C S)={#C#}+ clauses S and
    clauses-init-state[simp]: clauses (init-state N)=N
    by (auto simp: ac-simps replicate-mset-plus clauses-def intro: multiset-eqI)
lemma state-eq-trans': }\langleS~\mp@subsup{S}{}{\prime}\LongrightarrowT~\mp@subsup{S}{}{\prime}\LongrightarrowT~S
    by (meson state-eq-trans state-eq-sym)
abbreviation backtrack-lvl :: 'st }=>\mathrm{ nat where
<aacktrack-lvl S \equiv count-decided (trail S)>
named-theorems state-simp <contains all theorems of the form @{term <S~T\LongrightarrowPS=PT`}.
    These theorems can cause a signefecant blow-up of the simp-space>
lemma
    shows
        state-eq-trail[state-simp]:S~T\Longrightarrow trail S=trail T and
        state-eq-init-clss[state-simp]:S~T\Longrightarrow init-clss S=init-clss T and
        state-eq-learned-clss[state-simp]:S~T\Longrightarrow learned-clss S = learned-clss T and
        state-eq-conflicting[state-simp]: S~T\Longrightarrow conflicting S=conflicting T and
        state-eq-clauses[state-simp]:S~T\Longrightarrow clauses S = clauses T and
        state-eq-undefined-lit[state-simp]:S~T\Longrightarrow undefined-lit (trail S) L = undefined-lit (trail T) L and
        state-eq-backtrack-lvl[state-simp]:S ~ T\Longrightarrow backtrack-lvl S = backtrack-lvl T
    using state-eq-state unfolding clauses-def by auto
lemma state-eq-conflicting-None:
    S~T\Longrightarrow conflicting T=None \Longrightarrow conflicting S = None
    using state-eq-state unfolding clauses-def by auto
```

We combine all simplification rules about (\sim) in a single list of theorems. While they are handy as simplification rule as long as we are working on the state, they also cause a huge slow-down in all other cases.
declare state-simp [simp]
function reduce-trail-to :: 'a list \Rightarrow 'st \Rightarrow 'st where

```
reduce-trail-to \(F S=\)
    (if length \((\) trail \(S)=\) length \(F \vee\) trail \(S=[]\) then \(S\) else reduce-trail-to \(F(\) tl-trail \(S)\) )
by fast+
termination
    by (relation measure \((\lambda(-, S)\). length (trail \(S))\) ) simp-all
declare reduce-trail-to.simps[simp del]
lemma reduce-trail-to-induct:
    assumes
    〈 \(\triangle\) F S. length \((\) trail \(S)=\) length \(F \Longrightarrow P F S\) ) and
    \(\langle\bigwedge F S\). trail \(S=[] \Longrightarrow P F S\rangle\) and
    \(\langle\wedge\) S. length \((\) trail \(S) \neq\) length \(F \Longrightarrow\) trail \(S \neq[] \Longrightarrow P F(\) tl-trail \(S) \Longrightarrow P\) F \(S\rangle\)
    shows
    \(\langle P F S\rangle\)
    apply (induction rule: reduce-trail-to.induct)
    subgoal for \(F S\) using assms
    by \((\) cases \(\langle l e n g t h ~(\) trail \(S)=\) length \(F\rangle\); cases \(\langle\) trail \(S=[]\rangle)\) auto
    done
lemma
    shows
        reduce-trail-to-Nil[simp]: trail \(S=[] \Longrightarrow\) reduce-trail-to \(F S=S\) and
        reduce-trail-to-eq-length \([\) simp \(]\) : length \((\) trail \(S)=\) length \(F \Longrightarrow\) reduce-trail-to \(F S=S\)
    by (auto simp: reduce-trail-to.simps)
lemma reduce-trail-to-length-ne:
    length \((\) trail \(S) \neq\) length \(F \Longrightarrow\) trail \(S \neq[] \Longrightarrow\)
        reduce-trail-to \(F S=\) reduce-trail-to \(F\) (tl-trail \(S\) )
    by (auto simp: reduce-trail-to.simps)
lemma trail-reduce-trail-to-length-le:
    assumes length \(F>\) length (trail \(S\) )
    shows trail (reduce-trail-to \(F S\) ) \(=[]\)
    using assms apply (induction F \(S\) rule: reduce-trail-to.induct)
    by (metis (no-types, hide-lams) length-tl less-imp-diff-less less-irrefl trail-tl-trail
        reduce-trail-to.simps)
lemma trail-reduce-trail-to-Nil[simp]:
    trail (reduce-trail-to [] S) = []
    apply (induction []::('v, 'v clause) ann-lits \(S\) rule: reduce-trail-to.induct)
    by (metis length-0-conv reduce-trail-to-length-ne reduce-trail-to-Nil)
lemma clauses-reduce-trail-to-Nil:
    clauses \((\) reduce-trail-to [] \(S)=\) clauses \(S\)
proof (induction [] S rule: reduce-trail-to.induct)
    case (1 Sa)
    then have clauses (reduce-trail-to ([]::'a list) (tl-trail Sa)) = clauses (tl-trail Sa)
        \(\vee\) trail \(S a=[]\)
        by fastforce
    then show clauses (reduce-trail-to ([]::'a list) Sa) = clauses \(S a\)
        by (metis (no-types) length-0-conv reduce-trail-to-eq-length clss-tl-trail
            reduce-trail-to-length-ne)
qed
lemma reduce-trail-to-skip-beginning:
```

```
assumes trail S= F'@ F
shows trail (reduce-trail-to F S)=F
using assms by (induction F' arbitrary: S) (auto simp: reduce-trail-to-length-ne)
lemma clauses-reduce-trail-to[simp]:
    clauses (reduce-trail-to FS)= clauses S
    apply (induction F S rule: reduce-trail-to.induct)
    by (metis clss-tl-trail reduce-trail-to.simps)
lemma conflicting-update-trail[simp]:
    conflicting (reduce-trail-to F S) = conflicting S
    apply (induction F S rule: reduce-trail-to.induct)
    by (metis conflicting-tl-trail reduce-trail-to.simps)
lemma init-clss-update-trail[simp]:
    init-clss (reduce-trail-to F S) = init-clss S
    apply (induction F S rule: reduce-trail-to.induct)
    by (metis init-clss-tl-trail reduce-trail-to.simps)
lemma learned-clss-update-trail[simp]:
    learned-clss (reduce-trail-to F S) = learned-clss S
    apply (induction F S rule: reduce-trail-to.induct)
    by (metis learned-clss-tl-trail reduce-trail-to.simps)
lemma conflicting-reduce-trail-to[simp]:
    conflicting (reduce-trail-to F S)=None \longleftrightarrow conflicting S=None
    apply (induction F S rule: reduce-trail-to.induct)
    by (metis conflicting-update-trail)
lemma trail-eq-reduce-trail-to-eq:
    trail S= trail T\Longrightarrow trail (reduce-trail-to F S)= trail (reduce-trail-to F T)
    apply (induction F S arbitrary:T rule: reduce-trail-to.induct)
    by (metis trail-tl-trail reduce-trail-to.simps)
lemma reduce-trail-to-trail-tl-trail-decomp[simp]:
    trail S=F' @ Decided K#F\Longrightarrow trail (reduce-trail-to F S)=F
    apply (rule reduce-trail-to-skip-beginning[of - F' @ Decided K # []])
    by (cases F') (auto simp add: tl-append reduce-trail-to-skip-beginning)
lemma reduce-trail-to-add-learned-cls[simp]:
    trail (reduce-trail-to F (add-learned-cls C S)) = trail (reduce-trail-to F S)
    by (rule trail-eq-reduce-trail-to-eq) auto
lemma reduce-trail-to-remove-learned-cls[simp]:
    trail (reduce-trail-to F (remove-cls C S)) = trail (reduce-trail-to F S)
    by (rule trail-eq-reduce-trail-to-eq) auto
lemma reduce-trail-to-update-conflicting[simp]
    trail (reduce-trail-to F (update-conflicting C S)) = trail (reduce-trail-to F S)
    by (rule trail-eq-reduce-trail-to-eq) auto
lemma reduce-trail-to-length:
    length M = length M' \Longrightarrow reduce-trail-to M S = reduce-trail-to M' S
    apply (induction M S rule: reduce-trail-to.induct)
    by (simp add: reduce-trail-to.simps)
```

```
lemma trail-reduce-trail-to-drop:
    trail (reduce-trail-to F S)=
        (if length (trail S) \geq length F
        then drop (length (trail S) - length F) (trail S)
        else [])
    apply (induction F S rule: reduce-trail-to.induct)
    apply (rename-tac F S, case-tac trail S)
    apply (auto; fail)
    apply (rename-tac list, case-tac Suc (length list) > length F)
    prefer 2 apply (metis diff-is-0-eq drop-Cons' length-Cons nat-le-linear nat-less-le
        reduce-trail-to-eq-length trail-reduce-trail-to-length-le)
    apply (subgoal-tac Suc (length list) - length F = Suc (length list - length F))
    by (auto simp add: reduce-trail-to-length-ne)
lemma in-get-all-ann-decomposition-trail-update-trail[simp]:
    assumes H:(L# M1, M2) \in set (get-all-ann-decomposition (trail S))
    shows trail (reduce-trail-to M1 S)= M1
proof -
    obtain K where
        L:L=Decided K
        using H by (cases L) (auto dest!: in-get-all-ann-decomposition-decided-or-empty)
    obtain c where
        tr-S: trail S=c@ M2 @ L # M1
        using H by auto
    show ?thesis
        by (rule reduce-trail-to-trail-tl-trail-decomp[of - c @ M2 K])
        (auto simp: tr-S L)
qed
lemma reduce-trail-to-state-eq:
    < ~ S' \Longrightarrow length M = length M' }\Longrightarrow\mathrm{ reduce-trail-to M S ~ reduce-trail-to M M S'>
    apply (induction M S arbitrary: M' S' rule: reduce-trail-to-induct)
    apply ((auto;fail)+)[2]
    by (simp add: reduce-trail-to-length-ne tl-trail-state-eq)
lemma conflicting-cons-trail-conflicting[iff]:
    conflicting (cons-trail L S)=None \longleftrightarrow conflicting S = None
    using conflicting-cons-trail[of L S] map-option-is-None by fastforce+
lemma conflicting-add-learned-cls-conflicting[iff]:
    conflicting (add-learned-cls C S)=None \longleftrightarrowconflicting S=None
    by fastforce+
lemma reduce-trail-to-compow-tl-trail-le:
    assumes \length M < length (trail M')>
    shows <reduce-trail-to M M' = (tl-trail`^(length (trail M') - length M)) M'>
proof -
    have [simp]:<(\forall ka.k\not= Suc ka) \longleftrightarrowk=0` for k
        by (cases k) auto
    show ?thesis
        using assms
        apply (induction M\equivM S\equivM' arbitrary: M M'rule: reduce-trail-to.induct)
        subgoal for F S
            by (subst reduce-trail-to.simps; cases \length F < length (trail S) - Suc 0`)
            (auto simp:less-iff-Suc-add funpow-swap1)
        done
```


qed

lemma reduce－trail－to－compow－tl－trail－eq：
〈length $M=$ length $\left(\right.$ trail $\left.M^{\prime}\right) \Longrightarrow$ reduce－trail－to $M^{\prime} M^{\prime}=\left(t l-t r a i l ` へ\left(\right.\right.$ length $\left(\right.$ trail $\left.M^{\prime}\right)-$ length $\left.\left.M\right)\right)$ M^{\prime}
by auto
lemma reduce－trail－to－compow－tl－trail：
 M^{\prime}
using reduce－trail－to－compow－tl－trail－eq［of M M $]$ reduce－trail－to－compow－tl－trail－le［of M M $]$
by（cases 〈length $M<$ length（trail $M{ }^{\prime}$ ））auto
lemma tl－trail－reduce－trail－to－cons：
$\left\langle l e n g t h(L \# M)<\right.$ length $\left(\right.$ trail $\left.M^{\prime}\right) \Longrightarrow$ tl－trail（reduce－trail－to $\left.(L \# M) M^{\prime}\right)=$ reduce－trail－to $\left.M^{\prime} M^{\prime}\right\rangle$
by（auto simp：reduce－trail－to－compow－tl－trail－le funpow－swap1 reduce－trail－to－compow－tl－trail－eq less－iff－Suc－add）
lemma compow－tl－trail－add－learned－cls－swap：
$\langle(t l-t r a i l \leadsto n)($ add－learned－cls $D S) \sim$ add－learned－cls $D((t l-t r a i l \sim n) S)\rangle$
by（induction n ）
（auto intro：tl－trail－add－learned－cls－commute state－eq－trans tl－trail－state－eq）
lemma reduce－trail－to－add－learned－cls－state－eq：
〈length $M \leq$ length $($ trail $S) \Longrightarrow$ reduce－trail－to M（add－learned－cls $D S) \sim$ add－learned－cls D（reduce－trail－to M S ）＞ by（cases 〈length $M<$ length（trail S ）））
（auto simp：compow－tl－trail－add－learned－cls－swap reduce－trail－to－compow－tl－trail－le reduce－trail－to－compow－tl－trail－eq）
lemma compow－tl－trail－update－conflicting－swap：

```
<(tl-trail ^n ) (update-conflicting D S ) ~ update-conflicting D ((tl-trail ^~n)S)>
by (induction n)
    (auto intro: tl-trail-add-learned-cls-commute state-eq-trans
        tl-trail-state-eq tl-trail-update-conflicting)
```

lemma reduce-trail-to-update-conflicting-state-eq:
〈length $M \leq$ length $($ trail $S) \Longrightarrow$
reduce-trail-to M (update-conflicting $D S) \sim$ update-conflicting $D($ reduce-trail-to $M S$) >
by (cases 〈length $M<$ length (trail S))
(auto simp: compow-tl-trail-add-learned-cls-swap reduce-trail-to-compow-tl-trail-le
reduce-trail-to-compow-tl-trail-eq compow-tl-trail-update-conflicting-swap)

lemma

additional－info－cons－trail［simp］： \langle additional－info（cons－trail LS）$=$ additional－info $S\rangle$ and additional－info－tl－trail［simp］： additional－info $($ tl－trail $S)=$ additional－info S and
additional－info－add－learned－cls－unfolded： additional－info（add－learned－cls $U S$ ）$=$ additional－info S and
additional－info－update－conflicting［simp］： additional－info（update－conflicting $D S$ ）＝additional－info S and
additional－info－remove－cls $[\operatorname{simp}]$ ： additional－info（remove－cls C S $)=$ additional－info S and

```
additional-info-add-learned-cls[simp]:
    additional-info (add-learned-cls C S) = additional-info S
unfolding additional-info-def
    using tl-trail[of S] cons-trail[of S] add-learned-cls[of S]
    update-conflicting[of S] remove-cls[of S]
by (cases «state S`; auto; fail)+
lemma additional-info-reduce-trail-to[simp]:
    <additional-info (reduce-trail-to F S) = additional-info S>
by (induction F S rule: reduce-trail-to.induct)
    (metis additional-info-tl-trail reduce-trail-to.simps)
lemma reduce-trail-to:
    state (reduce-trail-to F S) =
        ((if length (trail S) \geq length F
        then drop (length (trail S) - length F) (trail S)
        else []), init-clss S, learned-clss S, conflicting S, additional-info S)
proof (induction F S rule: reduce-trail-to.induct)
    case (1FS) note IH=this
    show ?case
    proof (cases trail S)
        case Nil
        then show ?thesis using IH by (subst state-prop) auto
    next
        case (Cons L M)
        show ?thesis
        proof (cases Suc (length M) > length F)
            case True
            then have Suc (length M) - length F = Suc (length M - length F)
                by auto
            then show ?thesis
            using Cons True reduce-trail-to-length-ne[of S F] IH by (auto simp del: state-prop)
        next
            case False
            then show ?thesis
                using IH reduce-trail-to-length-ne[of S F] apply (subst state-prop)
            by (simp add: trail-reduce-trail-to-drop)
        qed
    qed
qed
end - end of stateW locale
```


1.1.2 CDCL Rules

Because of the strategy we will later use, we distinguish propagate, conflict from the other rules
locale conflict-driven-clause-learning $W_{W}=$
state $_{W}$
state-eq
state

- functions for the state:
- access functions:
trail init-clss learned-clss conflicting
- changing state:
cons-trail tl-trail add-learned-cls remove-cls
update-conflicting
- get state:
init-state
for
state-eq :: 'st \Rightarrow 'st \Rightarrow bool (infix ~ 50) and
state $::$ 'st \Rightarrow ('v, 'v clause) ann-lits \times 'v clauses \times 'v clauses \times ' v clause option \times 'b and
trail :: 'st \Rightarrow ('v, 'v clause) ann-lits and init-clss :: 'st \Rightarrow 'v clauses and
learned-clss :: 'st \Rightarrow 'v clauses and
conflicting $::$ 'st \Rightarrow 'v clause option and
cons-trail $::(' v$, 'v clause) ann-lit \Rightarrow 'st \Rightarrow 'st and
tl-trail $::$ 'st \Rightarrow 'st and
add-learned-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
remove-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
update-conflicting $::$ 'v clause option \Rightarrow 'st \Rightarrow 'st and
init-state :: 'v clauses \Rightarrow 'st
begin
inductive propagate :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
propagate-rule: conflicting $S=$ None \Longrightarrow
$E \in \#$ clauses $S \Longrightarrow$
$L \in \# E \Longrightarrow$
trail $S \models$ as $\operatorname{CNot}(E-\{\# L \#\}) \Longrightarrow$
undefined-lit (trail S) $L \Longrightarrow$
$T \sim$ cons-trail (Propagated LE) $S \Longrightarrow$
propagate $S T$
inductive-cases propagateE: propagate $S T$
inductive conflict $::$ 'st \Rightarrow 'st \Rightarrow bool for $S::$ 'st where
conflict-rule:
conflicting $S=$ None \Longrightarrow
$D \in \#$ clauses $S \Longrightarrow$
trail $S \models$ as CNot $D \Longrightarrow$
$T \sim$ update-conflicting (Some D) $S \Longrightarrow$
conflict $S T$
inductive-cases conflictE: conflict $S T$
inductive backtrack :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
backtrack-rule:
conflicting $S=$ Some (add-mset $L D) \Longrightarrow$
(Decided K \# M1, M2) $\in \operatorname{set}($ get-all-ann-decomposition $($ trail $S)) \Longrightarrow$
get-level (trail S) $L=$ backtrack-lvl $S \Longrightarrow$
get-level $($ trail $S) L=$ get-maximum-level $($ trail $S)\left(\right.$ add-mset $\left.L D^{\prime}\right) \Longrightarrow$
get-maximum-level (trail S) $D^{\prime} \equiv i \Longrightarrow$
get-level (trail S) $K=i+1 \Longrightarrow$
$D^{\prime} \subseteq \# D \Longrightarrow$
clauses $S \models p m$ add-mset $L D^{\prime} \Longrightarrow$
$T \sim$ cons-trail (Propagated L (add-mset L $\left.D^{\prime}\right)$)
(reduce-trail-to M1
(add-learned-cls (add-mset L D^{\prime})

```
    (update-conflicting None S))) \Longrightarrow
backtrack S T
```

inductive-cases backtrackE: backtrack S T
Here is the normal backtrack rule from Weidenbach's book:
inductive simple-backtrack :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where simple-backtrack-rule:
conflicting $S=$ Some (add-mset $L D) \Longrightarrow$
(Decided K \# M1, M2) \in set (get-all-ann-decomposition $($ trail $S)) \Longrightarrow$
get-level (trail S) $L=$ backtrack-lvl $S \Longrightarrow$
get-level $($ trail $S) L=$ get-maximum-level $($ trail $S)($ add-mset $L D) \Longrightarrow$
get-maximum-level (trail S) $D \equiv i \Longrightarrow$
get-level (trail S) $K=i+1 \Longrightarrow$
$T \sim$ cons-trail (Propagated L(add-mset LD))
(reduce-trail-to M1
(add-learned-cls (add-mset L D)
(update-conflicting None S))) \Longrightarrow
simple-backtrack S T
inductive-cases simple-backtrackE: simple-backtrack $S T$
This is a generalised version of backtrack: It is general enough te also include OCDCL's version.

```
inductive backtrackg :: 'st => 'st =>b bool for S :: 'st where
backtrackg-rule:
    conflicting S = Some (add-mset L D) \Longrightarrow
    (Decided K # M1, M2) \in set (get-all-ann-decomposition (trail S)) \Longrightarrow
    get-level (trail S) L = backtrack-lvl S \Longrightarrow
    get-level (trail S) L = get-maximum-level (trail S) (add-mset L D')\Longrightarrow
    get-maximum-level (trail S) D'\equivi\Longrightarrow
    get-level (trail S) K=i+1\Longrightarrow
    D'\subseteq# D\Longrightarrow
    T cons-trail (Propagated L (add-mset L D'))
    (reduce-trail-to M1
                        (add-learned-cls (add-mset L D')
            (update-conflicting None S))) \Longrightarrow
    backtrackg S T
```

inductive-cases backtrackgE: backtrackg S T
inductive decide :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
decide-rule:
conflicting $S=$ None \Longrightarrow
undefined-lit (trail S) $L \Longrightarrow$
atm-of $L \in$ atms-of-mm (init-clss S) \Longrightarrow
$T \sim$ cons-trail (Decided L) $S \Longrightarrow$
decide $S T$
inductive-cases decideE: decide $S T$
inductive skip :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
skip-rule:
trail $S=$ Propagated $L C^{\prime} \# M \Longrightarrow$
conflicting $S=$ Some $E \Longrightarrow$
$-L \notin \# E \Longrightarrow$
$E \neq\{\#\} \Longrightarrow$

```
T~ tl-trail S\Longrightarrow
```

skip S T
inductive-cases skipE: skip $S T$
get-maximum-level (Propagated $L(C+\{\# L \#\}) \# M) D=k \vee k=0$ (that was in a previous version of the book) is equivalent to get-maximum-level (Propagated $L(C+\{\# L \#\}) \# M) D$ $=k$, when the structural invariants holds.

```
inductive resolve :: 'st \(\Rightarrow\) 'st \(\Rightarrow\) bool for \(S\) :: 'st where
resolve-rule: trail \(S \neq[] \Longrightarrow\)
    hd-trail \(S=\) Propagated \(L E \Longrightarrow\)
    \(L \in \# E \Longrightarrow\)
    conflicting \(S=\) Some \(D^{\prime} \Longrightarrow\)
    \(-L \in \# D^{\prime} \Longrightarrow\)
    get-maximum-level (trail \(S\) ) ((remove1-mset \(\left.\left.(-L) D^{\prime}\right)\right)=\) backtrack-lvl \(S \Longrightarrow\)
    \(T \sim\) update-conflicting (Some (resolve-cls L \(\left.D^{\prime} E\right)\) )
        (tl-trail \(S\) ) \(\Longrightarrow\)
    resolve \(S T\)
```

inductive-cases resolveE: resolve $S T$
Christoph's version restricts restarts to the the case where $\neg M \models N+U$. While it is possible to implement this (by watching a clause), This is an unnecessary restriction.
inductive restart :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
restart: state $S=\left(M, N, U\right.$, None, $\left.S^{\prime}\right) \Longrightarrow$
$U^{\prime} \subseteq \# U \Longrightarrow$
state $T=\left([], N, U^{\prime}\right.$, None, $\left.S^{\prime}\right) \Longrightarrow$
restart $S T$
inductive-cases restartE: restart $S T$
We add the condition $C \notin \#$ init-clss S, to maintain consistency even without the strategy.
inductive forget $::$ 'st \Rightarrow 'st \Rightarrow bool where
forget-rule:
conflicting $S=$ None \Longrightarrow
$C \in \#$ learned-clss $S \Longrightarrow$
$\neg($ trail $S) \models$ asm clauses $S \Longrightarrow$
$C \notin$ set (get-all-mark-of-propagated $($ trail $S)) \Longrightarrow$
$C \notin \#$ init-clss $S \Longrightarrow$
removeAll-mset C (clauses $S) \models p m C \Longrightarrow$
$T \sim$ remove-cls $C S \Longrightarrow$
forget $S T$
inductive-cases forgetE: forget $S T$
inductive $c d c l_{W}-r f::$ 'st \Rightarrow 'st \Rightarrow bool for $S::$ 'st where
restart: restart $S T \Longrightarrow c d c l_{W}-r f S T \mid$
forget: forget $S T \Longrightarrow c d c l_{W}-r f S T$
inductive $c d c l_{W}-b j:: ~ ' s t \Rightarrow$ 'st \Rightarrow bool where
skip: skip $S S^{\prime} \Longrightarrow$ cdcl $_{W}-b j S S^{\prime} \mid$
resolve: resolve $S S^{\prime} \Longrightarrow c d c l_{W}$-bj $S S^{\prime} \mid$
backtrack: backtrack $S S^{\prime} \Longrightarrow \operatorname{cdcl}_{W}-b j S S^{\prime}$
inductive-cases $c d c l_{W}-b j E$: $c d c l_{W}-b j S T$
inductive $c d c l_{W}-o$:: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
decide: decide $S S^{\prime} \Longrightarrow$ cdcl $_{W}$-o $S S^{\prime} \mid$
$b j: c d c l_{W}-b j S S^{\prime} \Longrightarrow c d c l_{W}-o S S^{\prime}$
inductive $c d c l_{W}$-restart $::$ 'st \Rightarrow 'st \Rightarrow bool for $S::$ 'st where
propagate: propagate $S S^{\prime} \Longrightarrow c d c l_{W}$-restart $S S^{\prime} \mid$
conflict: conflict $S S^{\prime} \Longrightarrow \operatorname{cdcl}_{W}$-restart $S S^{\prime} \mid$
other: cdcl_{W}-o $S S^{\prime} \Longrightarrow c d c l_{W}$-restart $S S^{\prime}$
$r f: c d c l_{W}-r f S S^{\prime} \Longrightarrow c d c l_{W}$-restart $S S^{\prime}$
lemma rtranclp-propagate-is-rtranclp-cdcl ${ }_{W}$-restart:
propagate** $S S^{\prime} \Longrightarrow \operatorname{cdcl}_{W}$-restart** $S S^{\prime}$
apply (induction rule: rtranclp-induct)
apply (simp; fail)
apply (frule propagate)
using rtranclp-trans $\left[\right.$ of cdcl $_{W}$-restart $]$ by blast
inductive $c d c l_{W}::$ 'st \Rightarrow 'st \Rightarrow bool for $S::$ 'st where
W-propagate: propagate $S S^{\prime} \Longrightarrow c d c l_{W} S S^{\prime} \mid$
W-conflict: conflict $S S^{\prime} \Longrightarrow \operatorname{cdcl}_{W} S S^{\prime} \mid$
W-other: cdcl_{W}-o $S S^{\prime} \Longrightarrow \operatorname{cdcl}_{W} S S^{\prime}$
lemma $^{2} d c l_{W}-c d c l_{W}$-restart:
$c d c l_{W} S T \Longrightarrow c d c l_{W}$-restart $S T$
by (induction rule: $c d c l_{W}$.induct) (auto intro: $c d c l_{W}$-restart.intros simp del: state-prop)
lemma rtranclp-cdcl $W_{W}-c d c l_{W}$-restart:
$\left\langle c d c l_{W}{ }^{* *} S T \Longrightarrow c d c l_{W}\right.$-restart $\left.^{* *} S T\right\rangle$
apply (induction rule: rtranclp-induct)
apply (auto; fail)[]
by (meson $c d c l_{W}-c d c l_{W}$-restart rtranclp.rtrancl-into-rtrancl)
lemma $c d c l_{W}$-restart-all-rules-induct[consumes 1, case-names propagate conflict forget restart decide skip resolve backtrack]:
fixes S :: 'st
assumes
$c d c l_{W}$-restart: cdcl_{W}-restart $S S^{\prime}$ and propagate: $\wedge T$. propagate $S T \Longrightarrow P S T$ and conflict: $\wedge T$. conflict $S T \Longrightarrow P S T$ and forget: $\wedge T$. forget $S T \Longrightarrow P S T$ and restart: $\bigwedge T$. restart $S T \Longrightarrow P S T$ and decide: $\bigwedge T$. decide $S T \Longrightarrow P S T$ and skip: $\wedge T$. skip $S T \Longrightarrow P S T$ and resolve: $\wedge T$. resolve $S T \Longrightarrow P S T$ and backtrack: $\wedge T$. backtrack $S T \Longrightarrow P S T$
shows $P S S^{\prime}$
using assms(1)
proof (induct S^{\prime} rule: cdcl ${ }_{W}$-restart.induct)
case (propagate S^{\prime}) note propagate $=$ this(1)
then show ?case using assms(2) by auto
next
case (conflict S^{\prime})
then show ?case using assms(3) by auto
next
case (other S^{\prime})

```
    then show ?case
    proof (induct rule: cdcl W-o.induct)
        case (decide U)
        then show ?case using assms(6) by auto
    next
        case (bj S')
        then show ?case using assms(7-9) by (induction rule: cdcl}\mp@subsup{W}{W}{}\mathrm{ -bj.induct) auto
    qed
next
    case (rf S')
    then show ?case
    by (induct rule: cdcl W-rf.induct) (fast dest: forget restart)+
qed
lemma cdcl \(_{W}\)-restart-all-induct[consumes 1, case-names propagate conflict forget restart decide skip resolve backtrack]:
fixes \(S\) :: 'st
assumes
\({ }^{\operatorname{cdc}}{ }_{W}{ }_{W}\)-restart: \(\mathrm{cdcl}_{W}\)-restart \(S S^{\prime}\) and
propagateH: \(\bigwedge C L T\). conflicting \(S=\) None \(\Longrightarrow\)
\(C \in \#\) clauses \(S \Longrightarrow\)
\(L \in \# C \Longrightarrow\)
trail \(S \models\) as \(C\) Not (remove1-mset \(L C) \Longrightarrow\)
undefined-lit (trail \(S\) ) \(L \Longrightarrow\)
\(T \sim\) cons-trail (Propagated \(L C\) ) \(S \Longrightarrow\)
\(P S T\) and
conflict \(H: \bigwedge D T\). conflicting \(S=\) None \(\Longrightarrow\)
\(D \in \#\) clauses \(S \Longrightarrow\)
trail \(S \models\) as CNot \(D \Longrightarrow\)
\(T \sim\) update-conflicting (Some \(D\) ) \(S \Longrightarrow\)
PST and
forget \(H: \wedge C T\). conflicting \(S=\) None \(\Longrightarrow\)
\(C \in \#\) learned-clss \(S \Longrightarrow\)
\(\neg(\) trail \(S) \models\) asm clauses \(S \Longrightarrow\)
\(C \notin\) set \((\) get-all-mark-of-propagated \((\) trail \(S)) \Longrightarrow\)
\(C \notin \#\) init-clss \(S \Longrightarrow\)
removeAll-mset \(C\) (clauses \(S\) ) \(\models p m C \Longrightarrow\)
\(T \sim\) remove-cls \(C S \Longrightarrow\)
PST and
restart \(H: \wedge T U\). conflicting \(S=\) None \(\Longrightarrow\)
state \(T=([]\), init-clss \(S, U\), None, additional-info \(S) \Longrightarrow\)
\(U \subseteq \#\) learned-clss \(S \Longrightarrow\)
PST and
decide \(H: \bigwedge L T\). conflicting \(S=\) None \(\Longrightarrow\)
undefined-lit (trail \(S\) ) \(L \Longrightarrow\)
atm-of \(L \in\) atms-of-mm (init-clss \(S\) ) \(\Longrightarrow\)
\(T \sim\) cons-trail (Decided L) \(S \Longrightarrow\)
PST and
skipH: \(\bigwedge L C^{\prime} M E T\).
trail \(S=\) Propagated \(L C^{\prime} \# M \Longrightarrow\)
conflicting \(S=\) Some \(E \Longrightarrow\)
\(-L \notin \# E \Longrightarrow E \neq\{\#\} \Longrightarrow\)
\(T \sim\) tl-trail \(S \Longrightarrow\)
\(P S T\) and
resolveH: \(\bigwedge L E M D T\).
trail \(S=\) Propagated \(L E \# M \Longrightarrow\)
```

```
    L\in#E\Longrightarrow
    hd-trail S = Propagated L E\Longrightarrow
    conflicting S = Some D\Longrightarrow
    -L\in# D\Longrightarrow
    get-maximum-level (trail S) ((remove1-mset (-L) D)) = backtrack-lvl S \Longrightarrow
    T ~ update-conflicting
        (Some (resolve-cls L D E)) (tl-trail S)\Longrightarrow
    PST and
    backtrackH: \LD K i M1 M2 T D'.
        conflicting S = Some (add-mset L D)\Longrightarrow
        (Decided K # M1, M2) \in set (get-all-ann-decomposition (trail S)) \Longrightarrow
        get-level (trail S) L= backtrack-lvl S\Longrightarrow
        get-level (trail S) L = get-maximum-level (trail S) (add-mset L D')\Longrightarrow
        get-maximum-level (trail S) D'\equivi\Longrightarrow
        get-level (trail S) K=i+1\Longrightarrow
        D'\subseteq#D\Longrightarrow
        clauses }S\modelspm add-mset L D' \Longrightarrow '
        T cons-trail (Propagated L (add-mset L D}\mp@subsup{D}{}{\prime}
        (reduce-trail-to M1
        (add-learned-cls (add-mset L D')
            (update-conflicting None S))) \Longrightarrow
    PS T
    shows PS S'
    using cdclW-restart
proof (induct S S' rule: cdcl W-restart-all-rules-induct)
    case (propagate S')
    then show ?case
        by (auto elim!: propagateE intro!: propagateH)
next
    case (conflict S')
    then show ?case
        by (auto elim!: conflictE intro!: conflictH)
next
    case (restart S')
    then show ?case
        by (auto elim!: restartE intro!: restartH)
next
    case (decide T)
    then show ?case
        by (auto elim!: decideE intro!: decideH)
next
    case (backtrack S')
    then show ?case by (auto elim!: backtrackE intro!: backtrackH simp del: state-simp)
next
    case (forget S')
    then show ?case by (auto elim!: forgetE intro!: forgetH)
next
    case (skip S')
    then show ?case by (auto elim!: skipE intro!: skipH)
next
    case (resolve S')
    then show ?case
        by (cases trail S) (auto elim!: resolveE intro!: resolveH)
qed
lemma cdcl \(_{W}\)-o-induct[consumes 1, case-names decide skip resolve backtrack]:
```

fixes S :: 'st
assumes $c d c l_{W}$-restart: $c d c l_{W}$-o $S T$ and
decideH: $\wedge L T$. conflicting $S=$ None \Longrightarrow undefined-lit (trail S) L
\Longrightarrow atm-of $L \in$ atms-of-mm (init-clss S)
$\Longrightarrow T \sim$ cons-trail (Decided L) S
$\Longrightarrow P S T$ and
skipH: $\bigwedge L C^{\prime} M E T$.
trail $S=$ Propagated $L C^{\prime} \# M \Longrightarrow$
conflicting $S=$ Some $E \Longrightarrow$
$-L \notin \# E \Longrightarrow E \neq\{\#\} \Longrightarrow$
$T \sim$ tl-trail $S \Longrightarrow$
$P S T$ and
resolveH: $\wedge L E M D T$.
trail $S=$ Propagated $L E \# M \Longrightarrow$
$L \in \# E \Longrightarrow$
hd-trail $S=$ Propagated $L E \Longrightarrow$
conflicting $S=$ Some $D \Longrightarrow$
$-L \in \# D \Longrightarrow$
get-maximum-level (trail $S)(($ remove1-mset $(-L) D))=$ backtrack-lvl $S \Longrightarrow$
$T \sim$ update-conflicting
(Some (resolve-cls LDE)) (tl-trail S) \Longrightarrow
$P S T$ and
backtrackH: $\wedge L D K i \operatorname{M1~M2~T~} D^{\prime}$.
conflicting $S=$ Some (add-mset $L D) \Longrightarrow$
(Decided K \# M1, M2) $\in \operatorname{set}($ get-all-ann-decomposition $($ trail $S)) \Longrightarrow$
get-level (trail S) $L=$ backtrack-lvl $S \Longrightarrow$
get-level $($ trail $S) L=$ get-maximum-level $($ trail $S)\left(\right.$ add-mset $\left.L D^{\prime}\right) \Longrightarrow$
get-maximum-level (trail S) $D^{\prime} \equiv i \Longrightarrow$
get-level (trail S) $K=i+1 \Longrightarrow$
$D^{\prime} \subseteq \# D \Longrightarrow$
clauses $S \models p m$ add-mset $L D^{\prime} \Longrightarrow$
$T \sim$ cons-trail (Propagated L(add-mset LD $\left.D^{\prime}\right)$
(reduce-trail-to M1
(add-learned-cls (add-mset L D^{\prime})
$($ update-conflicting None $S))) \Longrightarrow$
PST
shows $P S T$
using $c d c l_{W}$-restart apply (induct T rule: $^{\text {cd }} \mathrm{cl}_{W}$-o.induct)
subgoal using assms(2) by (auto elim: decideE; fail)
subgoal apply (elim $c d c l_{W}$-bjE skipE resolveE backtrackE)
apply (frule skipH; simp; fail)
apply (cases trail S; auto elim!: resolveE intro!: resolveH; fail)
apply (frule backtrackH; simp; fail)
done
done
lemma $c d c l_{W}$-o-all-rules-induct[consumes 1, case-names decide backtrack skip resolve]:
fixes $S T::$ 'st
assumes
${ }^{c d c l}{ }_{W}-o S T$ and
$\wedge T$. decide $S T \Longrightarrow P S T$ and
$\wedge T$. backtrack $S T \Longrightarrow P S T$ and
$\wedge T$. skip $S T \Longrightarrow P S T$ and
$\wedge T$. resolve $S T \Longrightarrow P S T$
shows $P S T$
using assms by (induct T rule: $c d c l_{W}$-o.induct) (auto simp: $c d c l_{W}$-bj.simps)

```
lemma cdclW-o-rule-cases[consumes 1, case-names decide backtrack skip resolve]:
    fixes S T :: 'st
    assumes
        cdcl}\mp@subsup{W}{-o S T and}{
        decide S T\LongrightarrowP and
        backtrack S T\LongrightarrowP and
        skip ST\LongrightarrowP and
        resolve S T\LongrightarrowP
    shows P
    using assms by (auto simp: cdcl W-o.simps cdcl W-bj.simps)
lemma backtrack-backtrackg:
    〈backtrack S T \Longrightarrow backtrackg S T>
    unfolding backtrack.simps backtrackg.simps
    by blast
lemma simple-backtrack-backtrackg:
    <simple-backtrack S T \Longrightarrow backtrackg S T>
    unfolding simple-backtrack.simps backtrackg.simps
    by blast
```


1．1．3 Structural Invariants

Properties of the trail

We here establish that：
－the consistency of the trail；
－the fact that there is no duplicate in the trail．

Nitpicking 0．1．As one can see in the following proof，the properties of the levels are re－ quired to prove Item 1 page 94 of Weidenbach＇s book．However，this point is only mentioned later，and only in the proof of Item 7 page 95 of Weidenbach＇s book．

```
lemma backtrack-lit-skiped:
    assumes
        L: get-level (trail \(S\) ) \(L=\) backtrack-lvl \(S\) and
        M1: (Decided K \# M1, M2) \(\in\) set (get-all-ann-decomposition (trail S)) and
        no-dup: no-dup (trail S) and
        lev-K: get-level (trail \(S\) ) \(K=i+1\)
    shows undefined-lit M1 L
proof (rule ccontr)
    let ? \(M=\) trail \(S\)
    assume L-in-M1: ᄀ ?thesis
    obtain M2' where
        Mc: trail \(S=\) M2 \(^{\prime} @\) M2 @ Decided \(K \# M 1\)
        using M1 by blast
    have Kc: 〈undefined-lit M2' \(K\) 〉 and KM2: 〈undefined-lit M2 \(K\rangle\langle a t m-o f ~ L \neq a t m\)-of \(K\rangle\) and
        (undefined-lit M2' L〉 (undefined-lit M2 L)
        using L-in-M1 no-dup unfolding Mc by (auto simp: atm-of-eq-atm-of dest: defined-lit-no-dupD)
    then have \(g\)-M-eq-g-M1: get-level ?M \(L=\) get-level M1 \(L\)
```

using L-in-M1 unfolding $M c$ by auto
then have get-level M1 L < Suc i
using count-decided-ge-get-level[of M1 L] KM2 lev-K Kc unfolding Mc by auto
moreover have Suc $i \leq b a c k t r a c k-l v l ~ S ~ u s i n g ~ K M 2 ~ l e v-K ~ K c ~ u n f o l d i n g ~ M c ~ b y ~(s i m p ~ a d d: ~ M c) ~$
ultimately show False using $L g-M-e q-g-M 1$ by auto
qed
lemma cdcl_{W}-restart-distinctinv-1:
assumes
$c d c l_{W}$-restart $S S^{\prime}$ and
$n-d$: no-dup (trail S)
shows no-dup (trail S^{\prime})
using assms(1)
proof (induct rule: cdcl $_{W}$-restart-all-induct)
case (backtrack LDKi M1 M2 T D^{\prime}) note decomp $=\operatorname{this(2)}$ and $L=\operatorname{this(3)}$ and lev-K $=$ this(6)
and

$$
T=\operatorname{this}(9)
$$

obtain c where $M c$: trail $S=c$ @ M2 @ Decided K \# M1
using decomp by auto
have no-dup (M2 @ Decided K \# M1)
using Mc n-d by (auto dest: no-dup-appendD simp: defined-lit-map image-Un)
moreover have L-M1: undefined-lit M1 L
using backtrack-lit-skiped[of S L K M1 M2 i] L decomp lev-K n-d
unfolding defined-lit-map lits-of-def by fast
ultimately show ?case using decomp $T n$-d by (auto dest: no-dup-appendD)
qed (use n-d in auto)
Item 1 page 94 of Weidenbach's book
lemma $c d c l_{W}$-restart-consistent-inv-2: assumes
${ }^{c d} d_{W}$-restart $S S^{\prime}$ and
no-dup (trail S)
shows consistent-interp (lits-of-l (trail $\left.S^{\prime}\right)$)
using $c d c l_{W}$-restart-distinctinv-1 [OF assms] distinct-consistent-interp by fast
definition $\operatorname{cdcl}_{W}-M$-level-inv :: 'st \Rightarrow bool where
$c^{2} c l_{W}$-M-level-inv $S \longleftrightarrow$
consistent-interp (lits-of-l (trail S))
\wedge no-dup (trail S)
lemma $c d c l_{W}-M$-level-inv-decomp:
assumes $c d c l_{W}-M$-level-inv S
shows
consistent-interp (lits-of-l (trail S)) and
no-dup (trail S)
using assms unfolding cdcl_{W}-M-level-inv-def by fastforce+
lemma cdcl $_{W}$-restart-consistent-inv:
fixes $S S^{\prime}$:: 'st
assumes
${ }^{c d c} l_{W}$-restart $S S^{\prime}$ and
cdcl_{W}-M-level-inv S
shows $c d c l_{W}$-M-level-inv S^{\prime}
using assms cdcl W_{W}-restart-consistent-inv-2 cdcl $_{W}$-restart-distinctinv-1
unfolding cdcl_{W}-M-level-inv-def by meson+

```
lemma rtranclp-cdcl}\mp@subsup{W}{}{-}\mathrm{ -restart-consistent-inv:
    assumes
        cdcl}\mp@subsup{W}{}{-restart** S S' and
        cdcl}\mp@subsup{W}{}{-M-level-inv S
    shows cdcl W-M-level-inv S'
    using assms by (induct rule: rtranclp-induct) (auto intro: cdcl W-restart-consistent-inv)
lemma tranclp-cdcl}\mp@subsup{W}{}{\prime}\mathrm{ -restart-consistent-inv:
    assumes
        cdcl}\mp@subsup{W}{}{-restart}\mp@subsup{}{}{++}S S S' and
        cdcl W-M-level-inv S
    shows cdcl W-M-level-inv S'
    using assms by (induct rule: tranclp-induct) (auto intro: cdcl W-restart-consistent-inv)
lemma cdclW-M-level-inv-S0-cdclW-restart[simp]:
    cdcl}\mp@subsup{W}{W}{}-M-level-inv (init-state N
    unfolding cdcl}\mp@subsup{W}{}{-M}\mathrm{ -level-inv-def by auto
lemma backtrack-ex-decomp:
    assumes
        M-l: no-dup (trail S) and
        i-S:i< backtrack-lvl S
    shows \existsK M1 M2. (Decided K # M1, M2) \in set (get-all-ann-decomposition (trail S))}
    get-level (trail S) K=Suc i
proof -
    let ?M = trail S
    have i< count-decided (trail S)
        using i-S by auto
    then obtain cK c' where tr-S: trail S=c@ Decided K# c' and
        lev-K: get-level (trail S) K=Suc i
        using le-count-decided-decomp[of trail S i] M-l by auto
    obtain M1 M2 where (Decided K # M1, M2) \in set (get-all-ann-decomposition (trail S))
        using Decided-cons-in-get-all-ann-decomposition-append-Decided-cons unfolding tr-S by fast
    then show ?thesis using lev-K by blast
qed
lemma backtrack-lvl-backtrack-decrease:
    assumes inv: cdcl W-M-level-inv S and bt: backtrack S T
    shows backtrack-lvl T < backtrack-lvl S
    using inv bt le-count-decided-decomp[of trail S backtrack-lvl T]
    unfolding cdcl}\mp@subsup{W}{W}{}-M\mathrm{ -level-inv-def
    by (fastforce elim!: backtrackE simp: append-assoc[of - - # -, symmetric]
        simp del: append-assoc)
```


Compatibility with (~)

```
declare state-eq-trans[trans]
lemma propagate-state-eq-compatible:
assumes
        propa: propagate S T and
        SS':S~ S' and
        TT':T~ T'
    shows propagate S' T'
proof -
    obtain CL where
```

```
    conf: conflicting S=None and
    C:C\in# clauses S and
    L:L\in#C and
    tr: trail S =as CNot (remove1-mset L C) and
    undef: undefined-lit (trail S) L and
    T:T~ cons-trail (Propagated L C) S
    using propa by (elim propagateE) auto
    have C':C\in# clauses S'
    using SS' C
    by (auto simp: clauses-def)
    have }\mp@subsup{T}{}{\prime}:\langle\mp@subsup{T}{}{\prime}~\mathrm{ cons-trail (Propagated L C) S'
    using state-eq-trans[of T' T] SS'TT'
    by (meson T cons-trail-state-eq state-eq-sym state-eq-trans)
show ?thesis
    apply (rule propagate-rule[of-C])
    using SS' conf C'}L\mathrm{ tr undef TT' T T' by auto
qed
lemma conflict-state-eq-compatible:
    assumes
    confl: conflict S T and
    TT':T~ T' and
    SS':S~S'
    shows conflict S' T'
proof -
    obtain D where
    conf: conflicting S = None and
    D:D \in# clauses S and
    tr: trail S =as CNot D and
    T:T~update-conflicting (Some D) S
    using confl by (elim conflictE) auto
    have D': D\in# clauses S'
    using D SS' by fastforce
    have T':}\langle\mp@subsup{T}{}{\prime}~\mathrm{ update-conflicting (Some D) S'`
    using state-eq-trans[of T'T]SS'}T\mp@subsup{T}{}{\prime
    by (meson T update-conflicting-state-eq state-eq-sym state-eq-trans)
    show ?thesis
    apply (rule conflict-rule[of - D])
    using S\mp@subsup{S}{}{\prime}}\mathrm{ conf D' tr TT' T T' by auto
qed
lemma backtrack-state-eq-compatible:
    assumes
        bt: backtrack S T and
        SS':S~ S' and
        TT':}T~\mp@subsup{T}{}{\prime
    shows backtrack S' T'
proof -
    obtain D L K i M1 M2 D' where
        conf: conflicting S=Some (add-mset L D) and
        decomp: (Decided K # M1, M2) \in set (get-all-ann-decomposition (trail S)) and
        lev: get-level (trail S) L = backtrack-lvl S and
        max: get-level (trail S) L = get-maximum-level (trail S) (add-mset L D') and
```

max-D: get-maximum-level (trail S) $D^{\prime} \equiv i$ and
lev-K: get-level (trail S) $K=S u c i$ and
$D^{\prime}-D:\left\langle D^{\prime} \subseteq \# D\right\rangle$ and
NU-DL: 〈clauses $S \models p m$ add-mset $\left.L D^{\prime}\right\rangle$ and
$T: T \sim$ cons-trail (Propagated L (add-mset $\left.L D^{\prime}\right)$)
(reduce-trail-to M1
(add-learned-cls (add-mset L D^{\prime})
(update-conflicting None S)))
using bt by (elim backtrackE) metis
let $? D=\langle$ add-mset $L D\rangle$
let ? $D^{\prime}=\left\langle\right.$ add-mset $\left.L D^{\prime}\right\rangle$
have D^{\prime} : conflicting $S^{\prime}=$ Some ? D
using $S S^{\prime}$ conf by (cases conflicting S^{\prime}) auto
have $T^{\prime}-S: T^{\prime} \sim$ cons-trail (Propagated $\left.L ? D^{\prime}\right)$
(reduce-trail-to M1 (add-learned-cls ? D^{\prime}
(update-conflicting None S)))
using $T T T^{\prime}$ state-eq-sym state-eq-trans by blast
have $T^{\prime}: T^{\prime} \sim$ cons-trail (Propagated $L ? D^{\prime}$)
(reduce-trail-to M1 (add-learned-cls ? D^{\prime}
(update-conflicting None S^{\prime})))
apply (rule state-eq-trans $\left[O F T^{\prime}-S\right]$)
by (auto simp: cons-trail-state-eq reduce-trail-to-state-eq add-learned-cls-state-eq update-conflicting-state-eq $S S^{\prime}$)
show ?thesis
apply (rule backtrack-rule[of - LD K M1 M2 D^{\prime} i])
subgoal by (rule D^{\prime})
subgoal using $T T^{\prime}$ decomp $S S^{\prime}$ by auto
subgoal using lev $T T^{\prime} S S^{\prime}$ by auto
subgoal using max $T T^{\prime} S S^{\prime}$ by auto
subgoal using max-D $T T^{\prime} S S^{\prime}$ by auto
subgoal using lev-K $T T^{\prime} S S^{\prime}$ by auto
subgoal by (rule $D^{\prime}-D$)
subgoal using $N U-D L T T^{\prime} S S^{\prime}$ by auto
subgoal by (rule T^{\prime})
done
qed
lemma decide-state-eq-compatible:
assumes
dec: decide $S T$ and
$S S^{\prime}: S \sim S^{\prime}$ and
$T T^{\prime}: T \sim T^{\prime}$
shows decide $S^{\prime} T^{\prime}$
using assms
proof -
obtain $L::$ 'v literal where
f4: undefined-lit (trail S) L
atm-of $L \in$ atms-of-mm (init-clss S)
$T \sim$ cons-trail (Decided L) S
using dec decide.simps by blast
have cons-trail (Decided L) $S^{\prime} \sim T^{\prime}$
using $f_{4} S S^{\prime} T T^{\prime}$ by (metis (no-types) cons-trail-state-eq state-eq-sym
state-eq-trans)
then show ?thesis
using $f 4 S S^{\prime} T T^{\prime}$ dec by (auto simp: decide.simps state-eq-sym)

qed

lemma skip-state-eq-compatible:
assumes
skip: skip $S T$ and
$S S^{\prime}: S \sim S^{\prime}$ and
$T T^{\prime}: T \sim T^{\prime}$
shows skip $S^{\prime} T^{\prime}$
proof -
obtain $L C^{\prime} M E$ where
tr: trail $S=$ Propagated $L C^{\prime} \# M$ and
raw: conflicting $S=$ Some E and
$L:-L \notin \# E$ and
$E: E \neq\{\#\}$ and
$T: T \sim t l-t r a i l S$
using skip by (elim skipE) simp
obtain E^{\prime} where E^{\prime} : conflicting $S^{\prime}=$ Some E^{\prime}
using $S S^{\prime}$ raw by (cases conflicting S^{\prime}) auto
have $T^{\prime}:\left\langle T^{\prime} \sim\right.$ tl-trail $\left.S^{\prime}\right\rangle$
by (meson SS' T TT' state-eq-sym state-eq-trans tl-trail-state-eq)
show ?thesis
apply (rule skip-rule)
using tr raw L E T SS' apply (auto; fail) []
using E^{\prime} apply (simp; fail)
using $E^{\prime} S S^{\prime} L$ raw E apply ((auto; fail)+)[2]
using T^{\prime} by auto
qed
lemma resolve-state-eq-compatible:
assumes
res: resolve $S T$ and
$T T^{\prime}: T \sim T^{\prime}$ and
$S S^{\prime}: S \sim S^{\prime}$
shows resolve $S^{\prime} T^{\prime}$
proof -
obtain $E D L$ where
tr: trail $S \neq[]$ and
$h d: h d$-trail $S=$ Propagated $L E$ and
$L: L \in \# E$ and
raw: conflicting $S=$ Some D and
$L D:-L \in \# D$ and
i : get-maximum-level (trail $S)(($ remove1-mset $(-L) D))=$ backtrack-lvl S and
$T: T \sim$ update-conflicting (Some (resolve-cls L D E)) (tl-trail S)
using assms by (elim resolveE) simp

obtain D^{\prime} where

D^{\prime} : conflicting $S^{\prime}=$ Some D^{\prime}
using $S S^{\prime}$ raw by fastforce
have [simp]: $D=D^{\prime}$
using $D^{\prime} S S^{\prime}$ raw state-simp(5) by fastforce
have $T^{\prime} T: T^{\prime} \sim T$
using $T T^{\prime}$ state-eq-sym by auto
have $T^{\prime}:\left\langle T^{\prime} \sim\right.$ update-conflicting (Some (remove1-mset $(-L) D^{\prime} \cup \#$ remove1-mset $\left.L E\right)$)
(tl-trail S^{\prime})
proof -
have tl-trail $S \sim$ tl-trail S^{\prime}

```
        using SS' by (auto simp: tl-trail-state-eq)
    then show ?thesis
        using T T'T\ \D = D'` state-eq-trans update-conflicting-state-eq by blast
    qed
    show ?thesis
    apply (rule resolve-rule)
            using tr SS' apply (simp; fail)
            using hd SS' apply (simp; fail)
            using L apply (simp; fail)
            using \mp@subsup{D}{}{\prime}}\mathrm{ apply (simp; fail)
            using D' SS' raw LD apply (auto; fail)[]
    using D'SS' raw LD i apply (auto; fail)[]
    using T' by auto
qed
lemma forget-state-eq-compatible:
    assumes
        forget: forget S T and
        SS':S~ S' and
        TT':}T~\mp@subsup{T}{}{\prime
    shows forget S' T'
proof -
    obtain C where
        conf: conflicting S=None and
        C:C\in# learned-clss S and
        tr:\neg(trail S) \modelsasm clauses S and
        C1:C # set (get-all-mark-of-propagated (trail S)) and
        C2: C ## init-clss S and
        ent: <removeAll-mset C (clauses S) \modelspm C` and
        T:T ~ remove-cls C S
        using forget by (elim forgetE) simp
    have T':}\langle\mp@subsup{T}{}{\prime}~\mathrm{ remove-cls C S S
        by (meson SS'T TT' remove-cls-state-eq state-eq-sym state-eq-trans)
    show ?thesis
        apply (rule forget-rule)
            using SS' conf apply (simp; fail)
            using CSS' apply (simp; fail)
            using S\mp@subsup{S}{}{\prime}}\mathrm{ tr apply (simp; fail)
            using SS' C1 apply (simp; fail)
            using SS' C2 apply (simp; fail)
            using ent SS' apply (simp; fail)
            using T' by auto
qed
lemma cdclW-restart-state-eq-compatible:
    assumes
        cdcl}\mp@subsup{W}{W}{}\mathrm{ -restart S T and }\neg\mathrm{ restart S T and
        S~S'
        T~
    shows cdcl W-restart S' }\mp@subsup{S}{}{\prime
    using assms by (meson backtrack backtrack-state-eq-compatible bj cdclW-restart.simps
        cdcl}\mp@subsup{W}{W}{-o-rule-cases cdcl}\mp@subsup{W}{}{-rr.cases conflict-state-eq-compatible decide decide-state-eq-compatible
        forget forget-state-eq-compatible propagate-state-eq-compatible
        resolve resolve-state-eq-compatible skip skip-state-eq-compatible state-eq-ref)
lemma cdcl}\mp@subsup{W}{W}{-bj-state-eq-compatible:
```


assumes

${ }^{c d} c_{W}-b j S T$
$T \sim T^{\prime}$
shows $c d c l_{W}-b j S T^{\prime}$
using assms by (meson backtrack backtrack-state-eq-compatible cdcl ${ }_{W}$-bjE resolve resolve-state-eq-compatible skip skip-state-eq-compatible state-eq-ref)
lemma tranclp-cdcl ${ }_{W}$-bj-state-eq-compatible:
assumes

$$
c d c l_{W}-b j^{++} S T
$$

$S \sim S^{\prime}$ and
$T \sim T^{\prime}$
shows $c d c l_{W}-b j^{++} S^{\prime} T^{\prime}$
using assms
proof (induction arbitrary: $S^{\prime} T^{\prime}$)
case base
then show? case
unfolding tranclp-unfold-end by (meson backtrack-state-eq-compatible $c d c l_{W}$-bj.simps
resolve-state-eq-compatible rtranclp-unfold skip-state-eq-compatible)
next
case (step $T U$) note $I H=$ this(3)[OF this(4)]
have cdcl $_{W}$-restart ${ }^{++} S T$
using tranclp-mono[of $c d c l_{W}$-bj $c d c l_{W}$-restart] step.hyps(1) $c d c l_{W}$-restart.other $c d c l_{W}$-o.bj by blast
then have $c d c l_{W}-b j^{++} T T^{\prime}$
using $\left\langle U \sim T^{\prime}\right\rangle c d c l_{W}$-bj-state-eq-compatible $[o f T U]\left\langle c d c l_{W}-b j T U\right\rangle$ by auto
then show ?case
using $I H[o f T]$ by auto
qed
lemma skip-unique:
skip $S T \Longrightarrow \operatorname{skip} S T^{\prime} \Longrightarrow T \sim T^{\prime}$
by (auto elim!! skipE intro: state-eq-trans')
lemma resolve-unique:
resolve $S T \Longrightarrow$ resolve $S T^{\prime} \Longrightarrow T \sim T^{\prime}$
by (fastforce intro: state-eq-trans' elim: resolveE)
The same holds for backtrack, but more invariants are needed.

Conservation of some Properties

lemma $^{\prime} d c l_{W}$-o-no-more-init-clss:
assumes
${ }^{c d c l}{ }_{W}-o S S^{\prime}$ and
inv: $c d c l_{W}$-M-level-inv S
shows init-clss $S=$ init-clss S^{\prime}
using assms by (induct rule: $c d c l_{W}$-o-induct) (auto simp: inv $c d c l_{W}$-M-level-inv-decomp)
lemma tranclp-cdcl ${ }_{W}$-o-no-more-init-clss:
assumes
$c d c l_{W-o^{++}} S S^{\prime}$ and
inv: $\operatorname{cdcl}_{W}-M$-level-inv S
shows init-clss $S=$ init-clss S^{\prime}
using assms apply (induct rule: tranclp.induct)
by (auto
dest!: tranclp-cdcl ${ }_{W}$-restart-consistent-inv
dest：tranclp－mono－explicit［of $\operatorname{cdcl}_{W}-o-c^{-} d c l_{W}$－restart $] ~ c d c l_{W}$－o－no－more－init－clss
simp：other）
lemma rtranclp－cdcl ${ }_{W}$－o－no－more－init－clss：

assumes

$c d c l_{W}-o^{* *} S S^{\prime}$ and
inv： cdcl $_{W}-M$－level－inv S
shows init－clss $S=$ init－clss S^{\prime}
using assms unfolding rtranclp－unfold by（auto intro：tranclp－cdcl ${ }_{W}$－o－no－more－init－clss）
lemma cdcl_{W}－restart－init－clss： assumes cdcl_{W}－restart $S T$
shows init－clss $S=$ init－clss T
using assms by（induction rule：$c d c l_{W}$－restart－all－induct）
（auto simp：not－in－iff）
lemma rtranclp－cdcl ${ }_{W}$－restart－init－clss：
cdcl $_{W}$－restart ${ }^{* *} S T \Longrightarrow$ init－clss $S=$ init－clss T
by（induct rule：rtranclp－induct）（auto dest： cdcl $_{W}$－restart－init－clss rtranclp－cdcl ${ }_{W}$－restart－consistent－inv）
lemma tranclp－cdcl ${ }_{W}$－restart－init－clss：
cdcl $_{W}$－restart ${ }^{++} S T \Longrightarrow$ init－clss $S=$ init－clss T
using rtranclp－cdcl W_{W}－restart－init－clss［of $\left.S T\right]$ unfolding rtranclp－unfold by auto

Learned Clause

This invariant shows that：
－the learned clauses are entailed by the initial set of clauses．
－the conflicting clause is entailed by the initial set of clauses．
－the marks belong to the clauses．We could also restrict it to entailment by the clauses，to allow forgetting this clauses．
definition（in state ${ }_{W}$－ops）reasons－in－clauses ：：〈＇st \Rightarrow bool where〈reasons－in－clauses（ S ：：＇st）\longleftrightarrow $($ set $($ get－all－mark－of－propagated $($ trail $S)) \subseteq$ set－mset $($ clauses $S))$ ）
definition（in state ${ }_{W}$－ops）$c d c l_{W}$－learned－clause ：：〈＇st \Rightarrow bool where cdcl $_{W}$－learned－clause $(S::$＇st）\longleftrightarrow $((\forall T$ ．conflicting $S=$ Some $T \longrightarrow$ clauses $S \models p m T)$ \wedge reasons－in－clauses S ）
lemma $c d c l_{W}$－learned－clause－alt－def： $\left\langle c d c l_{W}\right.$－learned－clause（ $S::$＇st）\longleftrightarrow $((\forall T$ ．conflicting $S=$ Some $T \longrightarrow$ clauses $S \models p m T)$ \wedge set $($ get－all－mark－of－propagated $($ trail $S)) \subseteq$ set－mset（clauses $S)$ ）＞
by（auto simp： cdcl $_{W}$－learned－clause－def reasons－in－clauses－def）
lemma reasons－in－clauses－init－state $[$ simp $]:\langle r e a s o n s-i n-c l a u s e s ~(i n i t-s t a t e ~ N) 〉 ~$
by（auto simp：reasons－in－clauses－def）
Item 3 page 95 of Weidenbach＇s book for the inital state and some additional structural prop－ erties about the trail．

```
lemma \(\mathrm{cdcl}_{W}\)-learned-clause-SO-cdcl \({ }_{W}\)-restart[simp]:
    \({ }^{c d c} l_{W}\)-learned-clause (init-state \(N\) )
    unfolding \(\mathrm{cdcl}_{W}\)-learned-clause-alt-def by auto
Item 4 page 95 of Weidenbach's book
lemma \(c d c l_{W}\)-restart-learned-clss:
    assumes
        \({ }^{c d c l}{ }_{W}\)-restart \(S S^{\prime}\) and
        learned: \(c d c l_{W}\)-learned-clause \(S\) and
        lev-inv: \(c d c l_{W}-M\)-level-inv \(S\)
    shows \(c d c l_{W}\)-learned-clause \(S^{\prime}\)
    using assms(1)
proof (induct rule: \(\operatorname{cdcl}_{W}\)-restart-all-induct)
    case (backtrack L D K i M1 M2 T \(D^{\prime}\) ) note decomp \(=\) this(2) and confl \(=\) this(1) and lev-K \(=\) this
(6)
    and \(T=\operatorname{this}(9)\)
    show ?case
    using decomp learned confl \(T\) unfolding cdcl \(_{W}\)-learned-clause-alt-def reasons-in-clauses-def
    by (auto dest!: get-all-ann-decomposition-exists-prepend)
next
    case (resolve LCMD) note trail \(=\) this(1) and \(C L=t h i s(2)\) and \(\operatorname{confl}=t h i s(4)\) and \(D L=t h i s(5)\)
        and \(l v l=\operatorname{this}(6)\) and \(T=\operatorname{this}(7)\)
    moreover
        have clauses \(S \models p m\) add-mset \(L C\)
            using trail learned unfolding cdcl \(_{W}\)-learned-clause-alt-def clauses-def reasons-in-clauses-def
            by (auto dest: true-clss-clss-in-imp-true-clss-cls)
    moreover have remove1-mset \((-L) D+\{\#-L \#\}=D\)
        using \(D L\) by (auto simp: multiset-eq-iff)
    moreover have remove1-mset \(L C+\{\# L \#\}=C\)
        using \(C L\) by (auto simp: multiset-eq-iff)
    ultimately show ?case
        using learned \(T\)
        by (auto dest: mk-disjoint-insert
            simp add: cdcl \({ }_{W}\)-learned-clause-alt-def clauses-def reasons-in-clauses-def
            intro!: true-clss-cls-union-mset-true-clss-cls-or-not-true-clss-cls-or \([\) of - \(L]\) )
next
    case (restart \(T\) )
    then show?case
        using learned
        by (auto
            simp: clauses-def cdcl \(_{W}\)-learned-clause-alt-def reasons-in-clauses-def
            dest: true-clss-clssm-subsetE)
next
    case propagate
    then show ?case using learned by (auto simp: cdcl \({ }_{W}\)-learned-clause-alt-def reasons-in-clauses-def)
next
    case conflict
    then show ?case using learned
        by (fastforce simp: \(c d c l_{W}\)-learned-clause-alt-def clauses-def
            true-clss-clss-in-imp-true-clss-cls reasons-in-clauses-def)
next
    case (forget \(U\) )
    then show ?case using learned
        by (auto simp: cdcl \({ }_{W}\)-learned-clause-alt-def clauses-def reasons-in-clauses-def
            split: if-split-asm)
qed (use learned in «auto simp: cdcl \(_{W}\)-learned-clause-alt-def clauses-def reasons-in-clauses-def〉)
```

lemma rtranclp-cdcl W_{W}-restart-learned-clss:

assumes

cdcl_{W}-restart ${ }^{* *} S S^{\prime}$ and
${ }^{c} d c l_{W}-M$-level-inv S
$c d c l_{W}$-learned-clause S
shows cdcl $_{W}$-learned-clause S^{\prime}
using assms
by induction (auto dest: $c d c l_{W}$-restart-learned-clss intro: rtranclp-cdcl ${ }_{W}$-restart-consistent-inv)
lemma $c d c l_{W}$-restart-reasons-in-clauses:

assumes

${ }^{c d c l}{ }_{W}$-restart $S S^{\prime}$ and
learned: reasons-in-clauses S
shows reasons-in-clauses S^{\prime}
using assms(1) learned
by (induct rule: $c d c l_{W}$-restart-all-induct)
(auto simp: reasons-in-clauses-def dest!: get-all-ann-decomposition-exists-prepend)
lemma rtranclp-cdcl ${ }_{W}$-restart-reasons-in-clauses:
assumes
$c^{\prime} c^{W}{ }_{W}$-restart** $S S^{\prime}$ and
learned: reasons-in-clauses S
shows reasons-in-clauses S^{\prime}
using assms(1) learned
by (induct rule: rtranclp-induct)
(auto simp: cdcl $_{W}$-restart-reasons-in-clauses)

No alien atom in the state

This invariant means that all the literals are in the set of clauses. These properties are implicit in Weidenbach's book.

```
definition no-strange-atm S'\longleftrightarrow
    (\forallT. conflicting S'
    \wedge (\forallL mark. Propagated L mark }\in\mathrm{ set (trail S')}\longrightarrowatms-of mark \subseteqatms-of-mm (init-clss S'))
    ^ atms-of-mm (learned-clss S')\subseteqatms-of-mm (init-clss S')
    \wedge atm-of '(lits-of-l (trail S'))\subseteqatms-of-mm (init-clss S')
lemma no-strange-atm-decomp:
    assumes no-strange-atm S
    shows conflicting S = Some T\Longrightarrowatms-of T\subseteqatms-of-mm (init-clss S)
    and ( }\forallL\mathrm{ mark. Propagated L mark }\in\mathrm{ set (trail S) }\longrightarrow\mathrm{ atms-of mark }\subseteqatms-of-mm (init-clss S))
    and atms-of-mm(learned-clss S)\subseteqatms-of-mm (init-clss S)
    and atm-of ' (lits-of-l (trail S))\subseteqatms-of-mm (init-clss S)
    using assms unfolding no-strange-atm-def by blast+
lemma no-strange-atm-S0 [simp]: no-strange-atm (init-state N)
    unfolding no-strange-atm-def by auto
lemma propagate-no-strange-atm-inv:
    assumes
        propagate S T and
        alien: no-strange-atm S
    shows no-strange-atm T
    using assms(1)
```

```
proof (induction rule: propagate.induct)
    case (propagate-rule C L T) note confl = this(1) and C = this(2) and C-L = this(3) and
        tr = this(4) and undef = this(5) and T = this(6)
    have atm-CL: atms-of C\subseteqatms-of-mm (init-clss S)
        using C alien unfolding no-strange-atm-def
        by (auto simp: clauses-def dest!: multi-member-split)
    show ?case
    unfolding no-strange-atm-def
    proof (intro conjI allI impI, goal-cases)
    case (1 C)
    then show ?case
        using confl T undef by auto
    next
        case (2 L'mark')
        then show ?case
            using C-L T alien undef atm-CL unfolding no-strange-atm-def clauses-def by (auto 5 5)
    next
        case 3
        show ?case using T alien undef unfolding no-strange-atm-def by auto
    next
        case 4
        show ?case
            using T alien undef C-L atm-CL unfolding no-strange-atm-def by (auto simp: atms-of-def)
    qed
qed
lemma atms-of-ms-learned-clss-restart-state-in-atms-of-ms-learned-clssI:
    atms-of-mm (learned-clss S)\subseteqatms-of-mm (init-clss S)\Longrightarrow
    x\in atms-of-mm (learned-clss T)\Longrightarrow
    learned-clss T\subseteq# learned-clss S\Longrightarrow
    x\in atms-of-mm (init-clss S)
    by (meson atms-of-ms-mono contra-subsetD set-mset-mono)
lemma (in -) atms-of-subset-mset-mono: }\langle\mp@subsup{D}{}{\prime}\subseteq#D\Longrightarrowatms-of D' 利 atms-of D
    by (auto simp: atms-of-def)
lemma cdcl}\mp@subsup{W}{W}{}\mathrm{ -restart-no-strange-atm-explicit:
    assumes
        cdcl}\mp@subsup{W}{}{-restart S S' and
        lev: cdcl }\mp@subsup{W}{W}{-M-level-inv S and
        conf: }\forallT\mathrm{ . conflicting S = Some T }\longrightarrow\mathrm{ atms-of T}\subseteqatms-of-mm (init-clss S) and
        decided: }\forallL\mathrm{ mark. Propagated L mark }\in\mathrm{ set (trail S)
            \longrightarrow a t m s - o f ~ m a r k ~ \subseteq a t m s - o f - m m ~ ( i n i t - c l s s ~ S ) ~ a n d ~
        learned: atms-of-mm (learned-clss S)\subseteqatms-of-mm (init-clss S) and
        trail: atm-of ' (lits-of-l (trail S))\subseteqatms-of-mm (init-clss S)
    shows
        (\forall T. conflicting S'=Some T \longrightarrow atms-of T\subseteqatms-of-mm (init-clss S'))^
        (\forallL mark. Propagated L mark }\in\mathrm{ set (trail S') }\longrightarrow\mathrm{ atms-of mark }\subseteqatms-of-mm (init-clss S'))
        atms-of-mm (learned-clss S')\subseteqatms-of-mm (init-clss S')^
        atm-of '(lits-of-l (trail S'))\subseteqatms-of-mm(init-clss S')
        (is ?C S S'^?M S S'^?U S 的^?V S')
    using assms(1)
proof (induct rule: cdclW-restart-all-induct)
    case (propagate C L T) note confl = this(1) and C-L = this(2) and tr = this(3) and undef =
this(4)
    and T=this(5)
```

```
    show ?case
    using propagate-rule[OF propagate.hyps(1-3) - propagate.hyps(5,6), simplified]
    propagate.hyps(4) propagate-no-strange-atm-inv[of S T]
    conf decided learned trail unfolding no-strange-atm-def by presburger
next
    case (decide L)
    then show ?case using learned decided conf trail unfolding clauses-def by auto
next
    case (skip L C M D)
    then show ?case using learned decided conf trail by auto
next
    case (conflict D T) note D-S = this(2) and T = this(4)
    have D: atm-of ' set-mset D\subseteq\bigcup(atms-of '(set-mset (clauses S)))
        using D-S by (auto simp add: atms-of-def atms-of-ms-def)
    moreover {
    fix xa :: 'v literal
    assume a1: atm-of ' set-mset D\subseteq(\bigcupx\inset-mset (init-clss S). atms-of x)
            \cup ( \bigcup x \in \text { set-mset (learned-clss S). atms-of x)}
    assume a2:
        (Ux\inset-mset (learned-clss S).atms-of x)\subseteq(\bigcupx\inset-mset (init-clss S). atms-of x)
    assume xa \in# D
    then have atm-of xa \inUNION (set-mset (init-clss S)) atms-of
        using a2 a1 by (metis (no-types) Un-iff atm-of-lit-in-atms-of atms-of-def subset-Un-eq)
    then have \existsm\inset-mset (init-clss S). atm-of xa \inatms-of m
                by blast
    } note H= this
    ultimately show ?case using conflict.prems T learned decided conf trail
    unfolding atms-of-def atms-of-ms-def clauses-def
    by (auto simp add: H)
next
    case (restart T)
    then show ?case using learned decided conf trail
    by (auto intro:atms-of-ms-learned-clss-restart-state-in-atms-of-ms-learned-clssI)
next
    case (forget C T) note confl = this(1) and C = this(4) and C-le = this(5) and
        T = this(7)
    have H: \L mark. Propagated L mark \in set (trail S)\Longrightarrowatms-of mark \subseteqatms-of-mm (init-clss S)
    using decided by simp
    show ?case unfolding clauses-def apply (intro conjI)
                using conf confl T trail C unfolding clauses-def apply (auto dest!: H)[]
                using T trail C C-le apply (auto dest!: H)[]
        using T learned C-le atms-of-ms-remove-subset[of set-mset (learned-clss S)] apply auto[]
    using T trail C-le apply (auto simp: clauses-def lits-of-def)[]
    done
next
    case (backtrack L D K i M1 M2 T D') note confl = this(1) and decomp = this(2) and
        lev-K = this(6) and D-D' = this(7) and M1-D' = this(8) and T = this(9)
    have ?C T
        using conf T decomp lev lev-K by (auto simp: cdcl W-M-level-inv-decomp)
    moreover have set M1 \subseteq set (trail S)
    using decomp by auto
    then have M: ?M T
    using decided conf confl T decomp lev lev-K D-D'
    by (auto simp: image-subset-iff clauses-def cdclW -M-level-inv-decomp
                dest!: atms-of-subset-mset-mono)
    moreover have ?U T
```

using learned decomp conf confl T lev lev-K $D-D^{\prime}$ unfolding clauses-def
by (auto simp: $c d c l_{W}$-M-level-inv-decomp dest: atms-of-subset-mset-mono)
moreover have ? $V T$
using M conf confl trail T decomp lev lev- K
by (auto simp: cdcl_{W}-M-level-inv-decomp atms-of-def
dest!: get-all-ann-decomposition-exists-prepend)
ultimately show ?case by blast
next
case (resolve LCMD T) note trail-S $=$ this(1) and confl $=$ this(4) and $T=$ this(7)
let ? $T=$ update-conflicting (Some (resolve-cls LD C)) (tl-trail S)
have ? C ? T
using confl trail-S conf decided by (auto dest!: in-atms-of-minusD)
moreover have ?M ?T
using confl trail-S conf decided by auto
moreover have ? U ?T
using trail learned by auto
moreover have ? V ? T
using confl trail-S trail by auto
ultimately show ? case using T by simp
qed
lemma $c d c l_{W}$-restart-no-strange-atm-inv:
assumes $c d c l_{W}$-restart $S S^{\prime}$ and no-strange-atm S and $c d c l_{W}$-M-level-inv S
shows no-strange-atm S^{\prime}
using $c d c l_{W}$-restart-no-strange-atm-explicit $[$ OF $\operatorname{assms}(1)] \operatorname{assms}(2,3)$ unfolding no-strange-atm-def
by fast
lemma rtranclp-cdcl ${ }_{W}$-restart-no-strange-atm-inv:
assumes $c d c l_{W}$-restart** $S S^{\prime}$ and no-strange-atm S and $c d c l_{W}$-M-level-inv S
shows no-strange-atm S^{\prime}
using assms by (induction rule: rtranclp-induct)
(auto intro: $c d c l_{W}$-restart-no-strange-atm-inv rtranclp-cdcl W_{W}-restart-consistent-inv)

No Duplicates all Around

This invariant shows that there is no duplicate (no literal appearing twice in the formula). The last part could be proven using the previous invariant also. Remark that we will show later that there cannot be duplicate clause.

```
definition distinct-cdcl \({ }_{W}\)-state ( \(S\) ::'st)
    \(\longleftrightarrow((\forall T\). conflicting \(S=\) Some \(T \longrightarrow\) distinct-mset \(T)\)
    \(\wedge\) distinct-mset-mset (learned-clss \(S\) )
    \(\wedge\) distinct-mset-mset (init-clss S)
    \(\wedge(\forall L\) mark. \((\) Propagated \(L\) mark \(\in \operatorname{set}(\) trail \(S) \longrightarrow\) distinct-mset mark \()))\)
lemma distinct-cdcl \({ }_{W}\)-state-decomp:
    assumes distinct- \(c d c l_{W}\)-state \(S\)
    shows
        \(\forall T\). conflicting \(S=\) Some \(T \longrightarrow\) distinct-mset \(T\) and
        distinct-mset-mset (learned-clss \(S\) ) and
        distinct-mset-mset (init-clss \(S\) ) and
        \(\forall L\) mark. (Propagated \(L\) mark \(\in\) set (trail \(S\) ) \(\longrightarrow\) distinct-mset mark)
    using assms unfolding distinct-cdcl \({ }_{W}\)-state-def by blast+
lemma distinct-cdcl \({ }_{W}\)-state-decomp-2:
    assumes distinct-cdcl \({ }_{W}\)-state \(S\) and conflicting \(S=\) Some \(T\)
```

```
    shows distinct-mset T
    using assms unfolding distinct-cdcl W-state-def by auto
lemma distinct-cdcl }\mp@subsup{W}{}{\prime}\mathrm{ -state-S0-cdcl W-restart[simp]:
    distinct-mset-mset N \Longrightarrow distinct-cdcl W-state (init-state N)
    unfolding distinct-cdcl W-state-def by auto
lemma distinct-cdcl}\mp@subsup{W}{}{-state-inv:
    assumes
        cdcl}\mp@subsup{W}{}{\prime}\mathrm{ -restart S S' and
        lev-inv: cdcl W}-M\mathrm{ -level-inv S and
        distinct-cdcl W-state S
    shows distinct-cdcl W}\mp@subsup{W}{}{-state }\mp@subsup{S}{}{\prime
    using assms(1,2,2,3)
proof (induct rule: cdclW-restart-all-induct)
    case (backtrack L D K i M1 M2 D')
    then show ?case
        using lev-inv unfolding distinct-cdcl W-state-def
        by (auto dest: get-all-ann-decomposition-incl distinct-mset-mono simp: cdcl W}\mp@subsup{W}{}{\prime}-M\mathrm{ -level-inv-decomp)
next
    case restart
    then show ?case
        unfolding distinct-cdcl W-state-def distinct-mset-set-def clauses-def by auto
next
    case resolve
    then show ?case
    by (auto simp add: distinct-cdclW-state-def distinct-mset-set-def clauses-def)
qed (auto simp: distinct-cdcl W-state-def distinct-mset-set-def clauses-def
    dest!: in-diffD)
lemma rtanclp-distinct-cdcl W-state-inv:
    assumes
    cdcl}\mp@subsup{W}{W}{-restart** S S' and
    cdcl }\mp@subsup{W}{W}{}-M\mathrm{ -level-inv S and
    distinct-cdcl}\mp@subsup{W}{W}{}\mathrm{ -state S
    shows distinct-cdcl W-state }\mp@subsup{S}{}{\prime
    using assms apply (induct rule: rtranclp-induct)
    using distinct-cdcl W-state-inv rtranclp-cdcl W-restart-consistent-inv by blast+
```


Conflicts and Annotations

This invariant shows that each mark contains a contradiction only related to the previously defined variable.
abbreviation every-mark-is-a-conflict $::$ 'st \Rightarrow bool where
every-mark-is-a-conflict $S \equiv$
$\forall L$ mark ab.a @ Propagated L mark $\# b=($ trail $S)$
$\longrightarrow(b \models$ as CNot $($ mark $-\{\# L \#\}) \wedge L \in \#$ mark $)$

${ }^{c} d c l_{W}$-conflicting $S \longleftrightarrow$
$(\forall T$. conflicting $S=$ Some $T \longrightarrow$ trail $S \models$ as CNot $T) \wedge$ every-mark-is-a-conflict S
lemma backtrack-atms-of-D-in-M1:
fixes $S T$:: 'st and $D D^{\prime}::\left\langle^{\prime} v\right.$ clause and $K L:: \iota^{\prime} v$ literal and $i::$ nat and
M1 M2::〈('v, 'v clause) ann-lits〉

assumes

inv: no-dup (trail S) and
i : get-maximum-level (trail S) $D^{\prime} \equiv i$ and
decomp: (Decided K \# M1, M2)
\in set (get-all-ann-decomposition (trail S)) and
S-lvl: backtrack-lvl $S=$ get-maximum-level (trail S) (add-mset $L D^{\prime}$) and
S-confl: conflicting $S=$ Some D and
lev-K: get-level (trail S) $K=S u c i$ and
$T: T \sim$ cons-trail $K^{\prime \prime}$
(reduce-trail-to M1
(add-learned-cls (add-mset L D^{\prime})
(update-conflicting None S))) and
confl: $\forall T$. conflicting $S=$ Some $T \longrightarrow$ trail $S \models$ as $C N o t ~ T$ and
$D-D^{\prime}:\left\langle D^{\prime} \subseteq \# D\right\rangle$
shows atms-of $D^{\prime} \subseteq$ atm-of ' lits-of-l $(t l($ trail $T))$
proof (rule ccontr)
let $? k=$ get-maximum-level $($ trail $S)\left(\right.$ add-mset $\left.L D^{\prime}\right)$
have trail $S \models$ as CNot D using confl S-confl by auto
then have trail $S \models$ as CNot D^{\prime}
using D - D^{\prime} by (auto simp: true-annots-true-cls-def-iff-negation-in-model)
then have vars-of-D: atms-of $D^{\prime} \subseteq$ atm-of ' lits-of-l (trail S) unfolding atms-of-def by (meson image-subsetI true-annots-CNot-all-atms-defined)
obtain M0 where M : trail $S=$ M0 @ M2 @ Decided K \# M1
using decomp by auto
have max: ?k = count-decided (M0 @ M2 @ Decided K \# M1)
using S-lvl unfolding M by simp
assume a : \neg ?thesis
then obtain L^{\prime} where
$L^{\prime}: L^{\prime} \in \operatorname{atms}$-of D^{\prime} and
L^{\prime}-notin-M1: L' \notin atm-of' lits-of-l M1
using T decomp inv by (auto simp: $c d c l_{W}-M$-level-inv-decomp)
obtain $L^{\prime \prime}$ where
$L^{\prime \prime} \in \# D^{\prime}$ and
$L^{\prime \prime}: L^{\prime}=a t m-o f L^{\prime \prime}$
using $L^{\prime} L^{\prime}$-notin-M1 unfolding atms-of-def by auto
then have L^{\prime}-in: defined-lit (M0 @ M2 @ Decided K \# []) $L^{\prime \prime}$
using vars-of-D L^{\prime}-notin-M1 L^{\prime} unfolding M
by (auto dest: in-atms-of-minusD
simp: defined-lit-append defined-lit-map lits-of-def image-Un)
have $L^{\prime \prime}-M 1$: 〈undefined-lit M1 $\left.L^{\prime \prime}\right\rangle$
using L^{\prime}-notin-M1 $L^{\prime \prime}$ by (auto simp: defined-lit-map lits-of-def)
have <undefined-lit (M0 @ M2) K〉
using inv by (auto simp: $c d c l_{W}$-M-level-inv-def M)
then have count-decided M1 $=i$
using lev-K unfolding M by (auto simp: image-Un)
then have lev- $L^{\prime \prime}$:
get-level (trail S) $L^{\prime \prime}=$ get-level (M0 @ M2 @ Decided K \# []) $L^{\prime \prime}+i$
using L^{\prime}-notin-M1 $L^{\prime \prime}$-M1 $L^{\prime \prime}$ get-level-skip-end[OF L^{\prime}-in[unfolded $\left.L^{\prime \prime}\right]$, of M1] M by auto
moreover \{
consider
(M0) defined-lit M0 $L^{\prime \prime} \mid$
(M2) defined-lit M2 $L^{\prime \prime} \mid$

```
    (K) L' = atm-of K
    using inv L'-in unfolding L''
    by (auto simp: cdcl W-M-level-inv-def defined-lit-append)
    then have get-level (M0 @ M2 @ Decided K # []) L' \geq Suc 0
    proof cases
        case M0
        then have }\mp@subsup{L}{}{\prime}\not=atm\mathrm{ -of K
            using <undefined-lit (M0 @ M2) K> unfolding L'l by (auto simp: atm-of-eq-atm-of)
    then show ?thesis using M0 unfolding L" by auto
    next
        case M2
        then have undefined-lit (M0 @ Decided K # []) L''
        by (rule defined-lit-no-dupD(1))
            (use inv in <auto simp: M L'' cdcl W
    then show ?thesis using M2 unfolding }\mp@subsup{L}{}{\prime\prime}\mathrm{ by (auto simp: image-Un)
    next
    case K
    have undefined-lit (M0 @ M2) L'\prime
        by (rule defined-lit-no-dupD(3)[of \[Decided K]> - M1])
            (use inv K in <auto simp: M L'" cdcl W-M-level-inv-def no-dup-def`)
    then show ?thesis using K unfolding L" by (auto simp: image-Un)
    qed }
ultimately have get-level (trail S) L'\prime}\geqi+
    using lev-L" unfolding M by simp
then have get-maximum-level (trail S) D'\geqi+1
    using get-maximum-level-ge-get-level[OF \langleL'\prime}\in# D'\, of trail S] by aut
then show False using i by auto
qed
lemma distinct-atms-of-incl-not-in-other:
    assumes
    a1: no-dup (M@ M') and
    a2: atms-of D\subseteqatm-of ' lits-of-l M' and
    a3: x fatms-of D
shows x & atm-of 'lits-of-l M
using assms by (auto simp: atms-of-def no-dup-def atm-of-eq-atm-of lits-of-def)
lemma backtrack-M1-CNot-D':
fixes S T :: 'st and D D':: <'v clause> and K L :: <'v literal 年d i :: nat and
    M1 M2::<('v,'v clause) ann-lits>
assumes
    inv: no-dup (trail S) and
    i: get-maximum-level (trail S) D' }\equivi\mathrm{ and
    decomp: (Decided K # M1, M2)
        \epsilonset (get-all-ann-decomposition (trail S)) and
    S-lvl: backtrack-lvl S = get-maximum-level (trail S) (add-mset L D') and
    S-confl:conflicting S = Some D and
    lev-K:get-level (trail S) K = Suc i and
    T:T~ cons-trail K'\prime
                    (reduce-trail-to M1
                    (add-learned-cls (add-mset L D')
                            (update-conflicting None S))) and
    confl: }\forallT\mathrm{ . conflicting S = Some T }\longrightarrow\mathrm{ trail S as CNot T and
    D-D': \langleD'㞰# D>
shows M1 \modelsas CNot D' and
    <atm-of (lit-of K'') = atm-of L \Longrightarrow no-dup (trail T)>
```

proof－
obtain M0 where M ：trail $S=$ M0＠M2＠Decided K \＃M1
using decomp by auto
have vars－of－D：atms－of $D^{\prime} \subseteq$ atm－of＇lits－of－l M1
using backtrack－atms－of－D－in－M1［OF assms］decomp T by auto
have no－dup（trail S ）using inv by（auto simp：cdcl ${ }_{W}$－M－level－inv－decomp）
then have vars－in－M1：$\forall x \in$ atms－of D^{\prime} ．$x \notin$ atm－of＇lits－of－l（M0＠M2＠Decided K \＃［］） using vars－of－D distinct－atms－of－incl－not－in－other［of M0＠M2＠Decided K \＃［］M1］ unfolding M by auto
have trail $S \models$ as CNot D using S－confl confl unfolding M true－annots－true－cls－def－iff－negation－in－model by（auto dest！：in－diffD）
then have trail $S \models$ as CNot D^{\prime}
using D－D^{\prime} unfolding true－annots－true－cls－def－iff－negation－in－model by auto
then show M1－D＇：M1 \models as CNot D^{\prime}
using true－annots－remove－if－notin－vars［of M0＠M2＠Decided K \＃［］M1 CNot D＇ vars－in－M1 S－confl confl unfolding M lits－of－def by simp
have M1：〈count－decided M1 $=i\rangle$
using lev－K inv i vars－in－M1 unfolding M
by simp
have lev－L：〈get－level（trail S ）$L=$ backtrack－lvl $S\rangle$ and $\langle i<$ backtrack－lvl $S\rangle$ using S－lvl i lev－K
by（auto simp：max－def get－maximum－level－add－mset）
have 〈no－dup M1）
using T decomp inv by（auto simp：M dest：no－dup－appendD）
moreover have 〈undefined－lit M1 L〉
using backtrack－lit－skiped［of S L，OF－decomp］
using lev－L inv i M1 〈i＜backtrack－lvl $S\rangle$ unfolding M
by（auto simp：split：if－splits）
moreover have ＜atm－of（lit－of $K^{\prime \prime}$ ）$=$ atm－of $L \Longrightarrow$
undefined－lit M1 $L \longleftrightarrow$ undefined－lit M1（lit－of $K^{\prime \prime}$ ）＞
by（simp add：defined－lit－map）
ultimately show $\left\langle\right.$ atm－of（lit－of $K^{\prime \prime}$ ）＝atm－of $L \Longrightarrow$ no－dup（trail T ）〉
using T decomp inv by auto
qed
Item 5 page 95 of Weidenbach＇s book
lemma $c d c l_{W}$－restart－propagate－is－conclusion：
assumes
cdcl_{W}－restart $S S^{\prime}$ and
inv：$c d c l_{W}-M$－level－inv S and
decomp：all－decomposition－implies－m（clauses S ）（get－all－ann－decomposition（trail S））and
learned：$c d c l_{W}$－learned－clause S and
confl：$\forall T$ ．conflicting $S=$ Some $T \longrightarrow$ trail $S \models$ as CNot T and
alien：no－strange－atm S
shows all－decomposition－implies－m（clauses S^{\prime} ）（get－all－ann－decomposition（trail S^{\prime} ））
using assms（1）
proof（induct rule： cdcl_{W}－restart－all－induct）
case restart
then show？case by auto
next
case（forget $C T$ ）note $C=$ this（2）and cls－C $=$ this（6）and $T=$ this（7）
show ？case
unfolding all－decomposition－implies－def Ball－def
proof（intro allI，clarify）
fix $a b$

```
    assume (a,b)\in set (get-all-ann-decomposition (trail T))
    then have unmark-l a \cup set-mset (clauses S) =ps unmark-l b
        using decomp T by (auto simp add: all-decomposition-implies-def)
    moreover {
        have a1:C \in# clauses S
        using C by (auto simp: clauses-def)
        have clauses T= clauses (remove-cls C S)
        using T by auto
    then have clauses T\modelspsm clauses S
        using a1 by (metis (no-types) clauses-remove-cls cls-C insert-Diff order-refl
                set-mset-minus-replicate-mset(1) true-clss-clss-def true-clss-clss-insert) }
    ultimately show unmark-l a \cup set-mset (clauses T) \modelsps unmark-l b
    using true-clss-clss-generalise-true-clss-clss by blast
    qed
next
    case conflict
    then show ?case using decomp by auto
next
    case (resolve L C M D) note tr = this(1) and T = this(7)
    let ?decomp = get-all-ann-decomposition M
    have M: set ?decomp = insert (hd ?decomp) (set (tl ?decomp))
        by (cases ?decomp) auto
    show ?case
        using decomp tr T unfolding all-decomposition-implies-def
        by (cases hd (get-all-ann-decomposition M))
            (auto simp: M)
next
    case (skip L C'MD) note tr = this(1) and T = this(5)
    have M: set (get-all-ann-decomposition M)
        = insert (hd (get-all-ann-decomposition M)) (set (tl (get-all-ann-decomposition M)))
        by (cases get-all-ann-decomposition M) auto
    show ?case
        using decomp tr T unfolding all-decomposition-implies-def
        by (cases hd (get-all-ann-decomposition M))
            (auto simp add:M)
next
    case decide note S=this(1) and undef = this(2) and T= this(4)
    show ?case using decomp T undef unfolding S all-decomposition-implies-def by auto
next
    case (propagate C L T) note propa = this(2) and L = this(3) and S-CNot-C = this(4) and
    undef = this(5) and T = this(6)
    obtain a y where ay:hd (get-all-ann-decomposition (trail S))}=(a,y
    by (cases hd (get-all-ann-decomposition (trail S)))
    then have M: trail S=y @ a using get-all-ann-decomposition-decomp by blast
    have M': set (get-all-ann-decomposition (trail S))
    = insert (a,y) (set (tl (get-all-ann-decomposition (trail S))))
    using ay by (cases get-all-ann-decomposition (trail S)) auto
    have unm-ay: unmark-l a \cup set-mset (clauses S) \modelsps unmark-l y
    using decomp ay unfolding all-decomposition-implies-def
    by (cases get-all-ann-decomposition (trail S)) fastforce+
    then have a-Un-N-M: unmark-l a \cup set-mset (clauses S) }=\mathrm{ ps unmark-l (trail S)
    unfolding M by (auto simp add: all-in-true-clss-clss image-Un)
    have unmark-l a \cup set-mset (clauses S) \modelsp {#L#} (is ?I \modelsp -)
    proof (rule true-clss-cls-plus-CNot)
    show ?I }\modelsp\mathrm{ add-mset L (remove1-mset L C)
```

apply (rule true-clss-clss-in-imp-true-clss-cls[of-set-mset (clauses S)])
using learned propa L by (auto simp: cdcl_{W}-learned-clause-alt-def true-annot-CNot-diff)
next
have unmark-l (trail S) $\models p s$ CNot (remove1-mset L C)
using S-CNot-C by (blast dest: true-annots-true-clss-clss)
then show ? $I \models p s C N o t$ (remove1-mset $L C$)
using a-Un-N-M true-clss-clss-left-right true-clss-clss-union-l-r by blast
qed
moreover have $\bigwedge a a b$.
$\forall(L s$, seen $) \in$ set (get-all-ann-decomposition (y @ a)). unmark-l Ls \cup set-mset (clauses $S) \models p s$ unmark-l seen \Longrightarrow $(a a, b) \in \operatorname{set}(t l($ get-all-ann-decomposition $(y @ a))) \Longrightarrow$ unmark-l aa \cup set-mset (clauses S) \models ps unmark-l b
by (metis (no-types, lifting) case-prod-conv get-all-ann-decomposition-never-empty-sym list.collapse list.set-intros(2))
ultimately show ?case
using decomp T undef unfolding ay all-decomposition-implies-def
using M unm-ay ay by auto
next
case (backtrack L D K i M1 M2 T D') note conf $=$ this(1) and decomp' $=$ this(2) and
lev-L $=\operatorname{this}(3)$ and $l e v-K=\operatorname{this}(6)$ and $D-D^{\prime}=\operatorname{this}(7)$ and $N U-L D^{\prime}=t h i s(8)$
and $T=\operatorname{this}(9)$
let $? D^{\prime}=$ remove1-mset $L D$
have $\forall l \in$ set M2. ᄀis-decided l
using get-all-ann-decomposition-snd-not-decided decomp' by blast
obtain M0 where M : trail $S=$ M0 @ M2 @ Decided K \# M1
using decomp' by auto
let $? \mathrm{D}=\langle a d d-m s e t L D\rangle$
let $? D^{\prime}=\left\langle\right.$ add-mset $\left.L D^{\prime}\right\rangle$
show ?case unfolding all-decomposition-implies-def
proof
fix x
assume $x \in$ set (get-all-ann-decomposition (trail T))
then have $x: x \in$ set (get-all-ann-decomposition (Propagated L ? $D^{\prime} \#$ M1))
using T decomp' inv by (simp add: cdcl_{W}-M-level-inv-decomp)
let ? $m=$ get-all-ann-decomposition (Propagated L ?D' \# M1)
let ? $h d=h d ? m$
let ? $t l=t l$? m
consider
(hd) $x=? h d$
(tl) $x \in$ set ? tl
using x by (cases ?m) auto
then show case x of $(L s$, seen $) \Rightarrow$ unmark-l Ls \cup set-mset (clauses $T) \models p$ s unmark-l seen
proof cases
case $t l$
then have $x \in$ set (get-all-ann-decomposition (trail S))
using tl-get-all-ann-decomposition-skip-some[of $x]$ by (simp add: list.set-sel(2) M)
then show ?thesis
using decomp learned decomp confl alien inv $T M$
unfolding all-decomposition-implies-def $c d c l_{W}$-M-level-inv-def
by auto
next
case $h d$
obtain $M 1^{\prime} M 1^{\prime \prime}$ where $M 1$: hd (get-all-ann-decomposition M1) $=\left(M 1^{\prime}, M 1^{\prime \prime}\right)$
by (cases hd (get-all-ann-decomposition M1))

```
    then have }\mp@subsup{x}{}{\prime}:x=(M\mp@subsup{1}{}{\prime},\mathrm{ Propagated L ?D' # M1'')
        using <x = ?hd` by auto
    have (M1',M1') ) set (get-all-ann-decomposition (trail S))
        using M1[symmetric] hd-get-all-ann-decomposition-skip-some[OF M1[symmetric],
            of M0 @ M2] unfolding M by fastforce
    then have 1: unmark-l M1'\cup set-mset (clauses S) \modelsps unmark-l M1"
        using decomp unfolding all-decomposition-implies-def by auto
    have \no-dup (trail S)`
        using inv unfolding cdcl w-M-level-inv-def
by blast
    then have M1-D': M1 =as CNot D' and <no-dup (trail T)>
        using backtrack-M1-CNot-D'Tof S D'〈i\rangle K M1 M2 L <add-mset L D) T <Propagated L (add-mset
L D')]
            confl inv backtrack by (auto simp: subset-mset-trans-add-mset)
        have M1 = M1" @ M1' by (simp add: M1 get-all-ann-decomposition-decomp)
        have TT: unmark-l M1'\cup set-mset (clauses S)\modelsps CNot D'
            using true-annots-true-clss-cls[OF \M1 =as CNot D'\] true-clss-clss-left-right[OF 1]
            unfolding (M1 = M1'" @ M1'` by (auto simp add: inf-sup-aci(5,7))
            have T': unmark-l M1'U set-mset (clauses S) \modelsp ?D' using NU-LD' by auto
            moreover have unmark-l M1'\cup set-mset (clauses S) \modelsp {#L#}
            using true-clss-cls-plus-CNot[OF T'TT] by auto
            ultimately show ?thesis
                using T' T decomp' inv 1 unfolding }\mp@subsup{x}{}{\prime}\mathrm{ by (simp add: cdcl W-M-level-inv-decomp)
    qed
    qed
qed
lemma cdclW-restart-propagate-is-false:
    assumes
        cdcl}\mp@subsup{W}{}{-restart S S' and
        lev: cdcl}\mp@subsup{W}{W}{-M-level-inv S and
        learned: cdcl W-learned-clause S and
        decomp:all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
        confl: }\forallT\mathrm{ . conflicting S = Some T }\longrightarrow\mathrm{ trail S =as CNot T and
        alien: no-strange-atm S and
        mark-confl: every-mark-is-a-conflict S
    shows every-mark-is-a-conflict S'
    using assms(1)
proof (induct rule: cdcl W-restart-all-induct)
    case (propagate C L T) note LC = this(3) and confl = this(4) and undef = this(5) and T=
this(6)
    show ?case
    proof (intro allI impI)
        fix L' mark a b
        assume a @ Propagated L' mark # b = trail T
        then consider
            (hd) a = [] and L = L' and mark =C and b= trail S
            (tl) tl a @ Propagated L' mark # b = trail S
            using T undef by (cases a) fastforce+
        then show b \modelsas CNot (mark - {#L'#}) ^ L' 
            using mark-confl confl LC by cases auto
    qed
next
    case (decide L) note undef[simp] = this(2) and T = this(4)
    have <tl a @ Propagated La mark # b = trail S>
```

if $\langle a$ @ Propagated La mark $\# b=$ Decided $L \#$ trail $S\rangle$ for a La mark b using that by (cases a) auto
then show ?case using mark-confl T unfolding decide.hyps(1) by fastforce next
case (skip $L C^{\prime} M D T$) note $\operatorname{tr}=$ this(1) and $T=$ this(5)
show ?case
proof (intro allI impI)
fix L^{\prime} mark a b
assume $a @$ Propagated L^{\prime} mark $\# b=$ trail T
then have $a @$ Propagated L^{\prime} mark $\# b=M$ using $\operatorname{tr} T$ by simp
then have (Propagated $\left.L C^{\prime} \# a\right) @$ Propagated L^{\prime} mark $\# b=$ Propagated $L C^{\prime} \# M$ by auto moreover have $\langle b \models a s C N o t($ mark $-\{\# L a \#\}) \wedge L a \in \#$ mark \rangle
if a @ Propagated La mark \# b = Propagated $L C^{\prime} \# M$ for La mark $a b$
using mark-confl that unfolding skip.hyps(1) by simp
ultimately show $b \models$ as CNot (mark $\left.-\left\{\# L^{\prime} \#\right\}\right) \wedge L^{\prime} \in \#$ mark by blast
qed
next
case (conflict D)
then show ?case using mark-confl by simp
next
case (resolve LCMDT) note $\operatorname{tr}-S=$ this(1) and $T=\operatorname{this}(7)$
show ?case unfolding resolve.hyps(1)
proof (intro allI impI)
fix L^{\prime} mark a b
assume $a @$ Propagated L^{\prime} mark $\# b=$ trail T
then have (Propagated $L(C+\{\# L \#\}) \# a) @$ Propagated L^{\prime} mark \# b
$=$ Propagated $L(C+\{\# L \#\}) \# M$
using $T t r-S$ by auto
then show $b \models$ as CNot (mark $\left.-\left\{\# L^{\prime} \#\right\}\right) \wedge L^{\prime} \in \#$ mark using mark-confl unfolding $t r-S$ by (metis Cons-eq-appendI list.sel(3))
qed
next
case restart
then show? case by auto
next
case forget
then show ?case using mark-confl by auto
next
case (backtrack LDKiM1 M2 T D^{\prime}) note $\operatorname{conf}=$ this(1) and decomp $=$ this(2) and lev-K $=$ this(6) and $D-D^{\prime}=$ this(7) and M1- $D^{\prime}=$ this (8) and $T=$ this(9)
have $\forall l \in$ set M2. \neg is-decided l
using get-all-ann-decomposition-snd-not-decided decomp by blast
obtain M0 where M : trail $S=$ M0 @ M2 @ Decided K \# M1
using decomp by auto
have [simp]: trail (reduce-trail-to M1 (add-learned-cls D (update-conflicting None S))) M1
using decomp lev by (auto simp: cdcl $_{W}$-M-level-inv-decomp)
let ? $D=$ add-mset $L D$
let $? D^{\prime}=$ add-mset $L D^{\prime}$
have M1-D': M1 \models as CNot D^{\prime}
using backtrack-M1-CNot- $D^{\prime}\left[\right.$ of $S D^{\prime}{ }_{\langle i\rangle} K$ M1 M2 $L\langle a d d$-mset $L D\rangle T\langle$ Propagated L (add-mset L $\left.D^{\prime}\right)$)]
confl lev backtrack by (auto simp: subset-mset-trans-add-mset $c d c l_{W}$-M-level-inv-def)
show ?case
proof (intro alli impI)
fix La :: 'v literal and mark :: 'v clause and $a b::\left(' v,{ }^{\prime} v\right.$ clause) ann-lits

```
        assume a @ Propagated La mark # b = trail T
        then consider
        (hd-tr) a = [] and
        (Propagated La mark :: ('v,'v clause) ann-lit) = Propagated L ?D' and
        b=M1 |
        (tl-tr) tl a @ Propagated La mark # b = M1
        using M T decomp lev by (cases a) (auto simp: cdcl W
    then show b\modelsas CNot (mark - {#La#}) ^La\in# mark
    proof cases
        case hd-tr note A=this(1) and P=this(2) and b=this(3)
        show b =as CNot (mark - {#La#})^La G# mark
        using P M1-D' b by auto
    next
        case tl-tr
        then obtain }\mp@subsup{c}{}{\prime}\mathrm{ where c' @ Propagated La mark # b = trail S
        unfolding M by auto
    then show b\modelsas CNot (mark - {#La#}) ^La\in# mark
        using mark-confl by auto
    qed
    qed
qed
lemma cdcl}\mp@subsup{W}{W}{-conflicting-is-false:
    assumes
        cdcl}\mp@subsup{W}{W}{-restart S S' and
        M-lev: cdcl W-M-level-inv S and
        confl-inv: }\forallT\mathrm{ . conflicting S=Some T }\longrightarrow\mathrm{ trail S =as CNot T and
        decided-confl: }\forallL\mathrm{ mark a b. a @ Propagated L mark #b = (trail S)
        \longrightarrow ( b \models a s ~ C N o t ~ ( m a r k ~ - ~ \{ \# L \# \} ) \wedge L \in \# ~ m a r k ) ~ a n d ~
        dist: distinct-cdcl}\mp@subsup{W}{W}{-state S
    shows }\forallT\mathrm{ . conflicting }\mp@subsup{S}{}{\prime}=\mathrm{ Some T }\longrightarrow\mathrm{ trail S' }\models\mathrm{ as CNot T
    using assms(1,2)
proof (induct rule: cdcl}\mp@subsup{W}{}{\prime}\mathrm{ -restart-all-induct)
    case (skip L C'MD T) note tr-S = this(1) and confl = this(2) and L-D = this(3) and T=
this(5)
    have D: Propagated L C'# M as CNot D using assms skip by auto
    moreover have L\not\in#D
    proof (rule ccontr)
        assume }\neg\mathrm{ ?thesis
        then have - L\in lits-of-l M
            using in-CNot-implies-uminus(2)[of L D Propagated L C' # M]
                <Propagated L C' # M =as CNot D> by simp
    then show False
        using M-lev tr-S by (fastforce dest: cdcl W-M-level-inv-decomp(2)
                simp: Decided-Propagated-in-iff-in-lits-of-l)
    qed
    ultimately show ?case
        using tr-S confl L-D T unfolding cdclW-M-level-inv-def
        by (auto intro: true-annots-CNot-lit-of-notin-skip)
next
    case (resolve L CMD T) note tr = this(1) and LC = this(2) and confl = this(4) and LD=
this(5)
    and T= this(7)
    let ?C = remove1-mset L C
    let ?D = remove1-mset (-L) D
    show ?case
```

```
proof (intro allI impI)
    fix T'
    have tl (trail S)\modelsas CNot?C using tr decided-confl by fastforce
    moreover
    have distinct-mset (?D + {#-L#}) using confl dist LD
        unfolding distinct-cdcl }\mp@subsup{W}{W}{}-state-def by auto
    then have -L\not\in#?D using <distinct-mset (?D + {#-L#})> by auto
    have Propagated L (?C + {#L#}) # M =as CNot ?D \cup CNot {#-L#}
        using confl tr confl-inv LC by (metis CNot-plus LD insert-DiffM2)
    then have M\modelsas CNot ?D
        using M-lev <-L\not##?D> tr
        unfolding cdclW}\mp@subsup{W}{}{-M-level-inv-def by (force intro: true-annots-lit-of-notin-skip)
    moreover assume conflicting T=Some T'
    ultimately show trail T\models as CNot T'
        using tr T by auto
    qed
qed (auto simp: M-lev cdcl}\mp@subsup{W}{W}{}-M\mathrm{ -level-inv-decomp)
lemma }cdc\mp@subsup{l}{W}{W}\mathrm{ -conflicting-decomp:
    assumes cdcl W-conflicting S
    shows
    \forall.conflicting S = Some T\longrightarrow trail S =as CNot T and
    L mark ab.a@ Propagated L mark # b= (trail S)\longrightarrow
        (b =as CNot (mark - {#L#}) ^L\in# mark)
    using assms unfolding cdcl W-conflicting-def by blast+
lemma cdclW-conflicting-decomp2:
    assumes cdcl W
    shows trail S =as CNot T
    using assms unfolding cdcl}\mp@subsup{W}{}{-conflicting-def by blast+
lemma cdcl W-conflicting-S0-cdcl W-restart[simp]:
    cdclW-conflicting (init-state N)
    unfolding cdcl}\mp@subsup{W}{}{-conflicting-def by auto
definition cdclw-learned-clauses-entailed-by-init where
    <cdcl}\mp@subsup{W}{W}{}\mathrm{ -learned-clauses-entailed-by-init S }\longleftrightarrow\mathrm{ init-clss S }\models\mathrm{ psm learned-clss S〉
lemma cdcl}\mp@subsup{W}{W}{}\mathrm{ -learned-clauses-entailed-init[simp]:
    <cdcl W}\mp@subsup{W}{}{-learned-clauses-entailed-by-init (init-state N)\rangle
    by (auto simp: cdclW-learned-clauses-entailed-by-init-def)
lemma cdcl W-learned-clauses-entailed:
    assumes
        cdcl}\mp@subsup{W}{}{-restart: cdcl}\mp@subsup{W}{}{-restart S S' and
        2: cdcl W-learned-clause S and
        9: <cdcl W-learned-clauses-entailed-by-init S
    shows \cdcl W-learned-clauses-entailed-by-init S'`
    using cdcl}\mp@subsup{W}{}{-restart }
proof (induction rule: cdcl W-restart-all-induct)
    case backtrack
    then show ?case
        using assms unfolding cdclW-learned-clause-alt-def cdcl}\mp@subsup{W}{W}{}\mathrm{ -learned-clauses-entailed-by-init-def
        by (auto dest!: get-all-ann-decomposition-exists-prepend
        simp: clauses-def cdcl W-M-level-inv-decomp dest: true-clss-clss-left-right)
qed (auto simp: cdclW-learned-clauses-entailed-by-init-def elim: true-clss-clssm-subsetE)
```

lemma rtranclp-cdcl ${ }_{W}$-learned-clauses-entailed:

assumes

2: $c d c l_{W}$-learned-clause S and
4: $c d c l_{W}-M$-level-inv S and
9: $\left\langle c d c l_{W}\right.$-learned-clauses-entailed-by-init $\left.S\right\rangle$
shows $\left\langle c d c l_{W}\right.$-learned-clauses-entailed-by-init $\left.S^{\prime}\right\rangle$
using assms apply (induction rule: rtranclp-induct)
apply (simp; fail)
using cdcl_{W}-learned-clauses-entailed rtranclp-cdcl ${ }_{W}$-restart-learned-clss by blast

Putting all the Invariants Together

lemma $c d c l_{W}$-restart-all-inv:
assumes
$c d c l_{W}$-restart: $c d c l_{W}$-restart $S S^{\prime}$ and
1: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
2: $c d c l_{W}$-learned-clause S and
4: $c d c l_{W}-M$-level-inv S and
5: no-strange-atm S and
7: distinct-cdcl W_{W}-state S and
8: cdcl_{W}-conflicting S

shows

all-decomposition-implies-m (clauses $\left.S^{\prime}\right)$ (get-all-ann-decomposition (trail $\left.S^{\prime}\right)$) and
$c d c l_{W}$-learned-clause S^{\prime} and
${ }^{c d c} l_{W}-M$-level-inv S^{\prime} and
no-strange-atm S^{\prime} and
distinct-cdcl ${ }_{W}$-state S^{\prime} and
cdcl_{W}-conflicting S^{\prime}
proof -
show S1: all-decomposition-implies-m (clauses S^{\prime}) (get-all-ann-decomposition (trail $\left.S^{\prime}\right)$) using cdcl $_{W}$-restart-propagate-is-conclusion[OF cdcl $_{W}$-restart 412 - 5] 8 unfolding $c d c l_{W}$-conflicting-def by blast
show S2: cdcl ${ }_{W}$-learned-clause S^{\prime} using cdcl $_{W}$-restart-learned-clss $\left[O F ~ c d c l_{W}\right.$-restart 24$]$.
show S_{4} : $c d c l_{W}$-M-level-inv S^{\prime} using cdcl_{W}-restart-consistent-inv[OF $c d c l_{W}$-restart 4].

show S7: distinct-cdcl W_{W}-state S^{\prime} using distinct-cdcl W_{W}-state-inv[OF cdcl $_{W}$-restart 4 7].
show $S 8$: $c d c l_{W}$-conflicting S^{\prime}
using cdcl $_{W}$-conflicting-is-false[OF cdcl $_{W}$-restart 4--7] 8
$c d c l_{W}$-restart-propagate-is-false[OF cdcl_{W}-restart 421 - 2] unfolding $c d c l_{W}$-conflicting-def by fast
qed
lemma rtranclp-cdcl ${ }_{W}$-restart-all-inv:

assumes

$c d c l_{W}$-restart: rtranclp $c d c l_{W}$-restart $S S^{\prime}$ and
1: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
2: cdcl_{W}-learned-clause S and
4: $\operatorname{cdcl}_{W}-M$-level-inv S and
5: no-strange-atm S and
7: distinct-cdcl ${ }_{W}$-state S and
8: $c d c l_{W}$-conflicting S

shows

all-decomposition-implies-m (clauses $\left.S^{\prime}\right)$ (get-all-ann-decomposition (trail $\left.S^{\prime}\right)$) and ${ }^{c d c l}{ }_{W}$-learned-clause S^{\prime} and

```
    cdcl}\mp@subsup{W}{}{-M-level-inv S' and
    no-strange-atm S' and
    distinct-cdcl W-state S' and
    cdcl}\mp@subsup{W}{W}{}\mathrm{ -conflicting S'
    using assms
proof (induct rule: rtranclp-induct)
    case base
        case 1 then show ?case by blast
        case 2 then show ?case by blast
        case 3 then show ?case by blast
        case 4 then show ?case by blast
        case 5 then show ?case by blast
        case }6\mathrm{ then show ?case by blast
next
    case (step S' S') note H= this
        case 1 with H(3-7)[OF this(1-6)] show ?case using cdclW-restart-all-inv[OF H(2)]
                H by presburger
    case 2 with H(3-7)[OF this(1-6)] show ?case using cdclw -restart-all-inv[OF H(2)]
                H by presburger
    case 3 with H(3-7)[OF this(1-6)] show ?case using cdclW-restart-all-inv[OF H(2)]
                H by presburger
    case 4 with H(3-7)[OF this(1-6)] show ?case using cdcl w-restart-all-inv[OF H(2)]
                H by presburger
    case 5 with H(3-7)[OF this(1-6)] show ?case using cdcl W-restart-all-inv[OF H(2)]
                H by presburger
    case 6 with H(3-7)[OF this(1-6)] show ?case using cdcl W-restart-all-inv[OF H(2)]
                H by presburger
qed
lemma all-invariant-S0-cdcl W-restart:
    assumes distinct-mset-mset N
    shows
        all-decomposition-implies-m (init-clss (init-state N))
                            (get-all-ann-decomposition (trail (init-state N))) and
    cdcl}\mp@subsup{W}{W}{}\mathrm{ -learned-clause (init-state N) and
    \forallT.conflicting (init-state N)=Some T\longrightarrow(trail (init-state N))\modelsas CNot T and
    no-strange-atm (init-state N) and
    consistent-interp (lits-of-l (trail (init-state N))) and
    \forall mark a b.a @ Propagated L mark # b= trail (init-state N)}
    (b\modelsas CNot (mark - {#L#})^L\in# mark) and
    distinct-cdcl}\mp@subsup{W}{W}{}\mathrm{ -state (init-state N)
    using assms by auto
Item 6 page 95 of Weidenbach's book
lemma cdcl W-only-propagated-vars-unsat:
    assumes
        decided: }\forallx\in\mathrm{ set M. ᄀis-decided x and
        DN: D \in# clauses S and
        D:M\modelsas CNot D and
        inv: all-decomposition-implies-m (N+U) (get-all-ann-decomposition M) and
        state: state S = (M,N,U,k,C) and
        learned-cl: cdclW-learned-clause S and
        atm-incl: no-strange-atm S
    shows unsatisfiable (set-mset (N+U))
proof (rule ccontr)
    assume }\neg\mathrm{ unsatisfiable (set-mset (N+U))
```

then obtain I where

```
    \(I: I \models s\) set-mset \(N I \models s\) set-mset \(U\) and
    cons: consistent-interp I and
    tot: total-over-m I (set-mset N)
    unfolding satisfiable-def by auto
have atms-of-mm \(N \cup\) atms-of-mm \(U=a t m s\)-of-mm \(N\)
    using atm-incl state unfolding total-over-m-def no-strange-atm-def
    by (auto simp add: clauses-def)
then have tot- \(N\) : total-over-m I (set-mset \(N\) ) using tot unfolding total-over-m-def by auto
moreover have total-over-m I (set-mset (learned-clss \(S\) ))
    using atm-incl state tot- \(N\) unfolding no-strange-atm-def total-over-m-def total-over-set-def
    by auto
ultimately have \(I-D: I \models D\)
    using I DN cons state unfolding true-clss-clss-def true-clss-def Ball-def
    by (auto simp add: clauses-def)
```

 have 10 : \{unmark \(L \mid L\). is-decided \(L \wedge L \in\) set \(M\}=\{ \}\) using decided by auto
 have atms-of-ms (set-mset \((N+U) \cup\) unmark-l \(M)=\) atms-of-mm \(N\)
 using atm-incl state unfolding no-strange-atm-def by auto
 then have total-over-m I (set-mset \((N+U) \cup\) unmark-l \(M\))
 using tot unfolding total-over-m-def by auto
 then have \(I M: I \models s\) unmark-l \(M\)
 using all-decomposition-implies-propagated-lits-are-implied \([\) OF inv] cons I
 unfolding true-clss-clss-def l0 by auto
 have \(-K \in I\) if \(K \in \# D\) for \(K\)
 proof -
 have \(-K \in\) lits-of-l \(M\)
 using \(D\) that unfolding true-annots-def by force
 then show \(-K \in I\) using IM true-clss-singleton-lit-of-implies-incl by fastforce
 qed
 then have \(\neg I \models D\) using cons unfolding true-cls-def true-lit-def consistent-interp-def by auto
 then show False using \(I-D\) by blast
 qed

Item 5 page 95 of Weidenbach's book
We have actually a much stronger theorem, namely all-decomposition-implies-propagated-lits-are-implied, that show that the only choices we made are decided in the formula

lemma

assumes all-decomposition-implies-m N (get-all-ann-decomposition M)
and $\forall m \in$ set M. $\neg i s$-decided m
shows set-mset $N \models p$ s unmark-l M
proof -
have T : \{unmark $L \mid L$. is-decided $L \wedge L \in$ set $M\}=\{ \}$ using $\operatorname{assms(2)}$ by auto then show?thesis
using all-decomposition-implies-propagated-lits-are-implied[OF assms(1)] unfolding T by simp qed

Item 7 page 95 of Weidenbach's book (part 1)
lemma conflict-with-false-implies-unsat:
assumes
${ }^{c d c l_{W}}$-restart: cdcl_{W}-restart $S S^{\prime}$ and
lev: $c d c l_{W}-M$-level-inv S and
[simp]: conflicting $S^{\prime}=$ Some $\{\#\}$ and
learned: $c d c l_{W}$-learned-clause S and
learned-entailed: $\left\langle c d c l_{W}\right.$-learned-clauses-entailed-by-init $\left.S\right\rangle$

```
    shows unsatisfiable (set-mset (clauses S))
    using assms
proof -
    have cdcl W-learned-clause S' using cdcl W-restart-learned-clss cdcl W-restart learned lev by auto
    then have entail-false:clauses S'\modelspm {#} using assms(3) unfolding cdcl W-learned-clause-alt-def
by auto
    moreover have entailed: <cdcl W-learned-clauses-entailed-by-init S'\rangle
        using cdcl W-learned-clauses-entailed[OF cdcl W-restart learned learned-entailed] .
    ultimately have set-mset (init-clss S') \modelsps {{#}}
        unfolding cdclW-learned-clauses-entailed-by-init-def
        by (auto simp: clauses-def dest: true-clss-clss-left-right)
    then have clauses S}\modelspm{#
        by (simp add: cdcl W-restart-init-clss[OF assms(1)] clauses-def)
    then show ?thesis unfolding satisfiable-def true-clss-cls-def by auto
qed
```

Item 7 page 95 of Weidenbach's book (part 2)
lemma conflict-with-false-implies-terminated:
assumes $c^{\prime} c l_{W}$-restart $S S^{\prime}$ and conflicting $S=\operatorname{Some}\{\#\}$
shows False
using assms by (induct rule: cdcl ${ }_{W}$-restart-all-induct) auto

No tautology is learned

This is a simple consequence of all we have shown previously. It is not strictly necessary, but helps finding a better bound on the number of learned clauses.

```
lemma learned-clss-are-not-tautologies:
    assumes
        \({ }^{c d c l}{ }_{W}\)-restart \(S S^{\prime}\) and
        lev: \(c d c l_{W}-M\)-level-inv \(S\) and
        conflicting: \(\operatorname{cdcl}_{W}\)-conflicting \(S\) and
        no-tauto: \(\forall s \in \#\) learned-clss \(S\). ᄀtautology s
    shows \(\forall s \in \#\) learned-clss \(S^{\prime}\). \(\neg\) tautology s
    using assms
proof (induct rule: cdcl \(_{W}\)-restart-all-induct)
    case (backtrack L D K i M1 M2 T \(D^{\prime}\) ) note confl \(=\) this(1) and \(D-D^{\prime}=\) this(7) and M1- \(D^{\prime}=t h i s(8)\)
and
        \(N U-L D^{\prime}=\) this(9)
    let ? \(D=\langle\) add-mset \(L D\rangle\)
    let \(? D^{\prime}=\left\langle\right.\) add-mset \(\left.L D^{\prime}\right\rangle\)
    have consistent-interp (lits-of-l (trail \(S\) )) using lev by (auto simp: \(c d c l_{W}\)-M-level-inv-decomp)
    moreover \{
        have trail \(S \models\) as CNot? \(D\)
```



```
        then have lits-of-l (trail \(S\) ) \(\models s\) CNot ? D
        using true-annots-true-cls by blast \}
    ultimately have \(\neg\) tautology ?D using consistent-CNot-not-tautology by blast
    then have \(\neg\) tautology? \(D^{\prime}\)
        using \(D-D^{\prime}\) not-tautology-mono \(\left[o f\right.\) ? \(\left.D^{\prime} ? D\right]\) by auto
    then show ?case using backtrack no-tauto lev
        by (auto simp: \(\operatorname{cdcl}_{W}\)-M-level-inv-decomp split: if-split-asm)
next
    case restart
    then show ?case using state-eq-learned-clss no-tauto
        by (auto intro: atms-of-ms-learned-clss-restart-state-in-atms-of-ms-learned-clssI)
```

```
qed (auto dest!: in-diffD)
definition final-cdcl \(_{W}\)-restart-state ( \(S\) :: 'st)
    \(\longleftrightarrow(\) trail \(S \models\) asm init-clss \(S\)
    \(\vee((\forall L \in \operatorname{set}(\) trail \(S)\). \(\neg\) is-decided \(L) \wedge\)
        \((\exists C \in \#\) init-clss \(S\). trail \(S \models\) as \(C N o t C)))\)
definition termination-cdcl \(W_{W}\)-restart-state ( \(S\) :: 'st)
    \(\longleftrightarrow(\) trail \(S \models\) asm init-clss \(S\)
    \(\vee((\forall L \in\) atms-of-mm (init-clss S). \(L \in\) atm-of 'lits-of-l (trail \(S))\)
            \(\wedge(\exists C \in \#\) init-clss \(S\). trail \(S \models\) as \(C N o t C)))\)
```


1.1.4 CDCL Strong Completeness

```
lemma \(c d c l_{W}\)-restart-can-do-step:
    assumes
        consistent-interp (set M) and
        distinct \(M\) and
        atm-of ' \((\) set \(M) \subseteq a t m s\)-of-mm \(N\)
    shows \(\exists S\). rtranclp \(c d c l_{W}\)-restart (init-state \(N\) ) \(S\)
        \(\wedge\) state-butlast \(S=(\operatorname{map}(\lambda L\). Decided \(L) M, N,\{\#\}\), None \()\)
    using assms
proof (induct \(M\) )
    case Nil
    then show ?case apply - by (auto intro!: exI[of - init-state \(N]\) )
next
    case (Cons \(L M\) ) note \(I H=\) this(1) and dist \(=\) this(2)
    have consistent-interp (set \(M\) ) and distinct \(M\) and atm-of' set \(M \subseteq\) atms-of-mm \(N\)
        using Cons.prems (1-3) unfolding consistent-interp-def by auto
    then obtain \(S\) where
        st: cdcl \(_{W}\)-restart** \({ }^{*}\) init-state \(\left.N\right) S\) and
        \(S:\) state-butlast \(S=(\operatorname{map}(\lambda L\). Decided L) \(M, N,\{\#\}\), None \()\)
        using \(I H\) by blast
    let ? \(S_{0}=\) cons-trail (Decided L) \(S\)
    have undef: undefined-lit (map ( \(\lambda\) L. Decided L) M) L
        using Cons.prems(1,2) unfolding defined-lit-def consistent-interp-def by fastforce
    moreover have init-clss \(S=N\)
        using \(S\) by blast
    moreover have atm-of \(L \in\) atms-of-mm \(N\) using Cons.prems(3) by auto
    moreover have undef: undefined-lit (trail S) L
        using \(S\) dist undef by (auto simp: defined-lit-map)
    ultimately have \(c d c l_{W}\)-restart \(S\) ? \(S_{0}\)
        using cdcl \(_{W}\)-restart.other[OF cdcl \(_{W}\)-o.decide[OF decide-rule[of \(S L\) ? \(S_{0}\) ]]] \(S\)
        by auto
    then have \(c d c l_{W}\)-restart** \((\) init-state \(N) ? S_{0}\)
        using st by auto
    then show? ?ase
        using \(S\) undef by (auto intro!: exI \(\left[\right.\) of - ? \(\left.S_{0}\right]\) simp del: state-prop)
qed
```

theorem 2.9.11 page 98 of Weidenbach's book

```
lemma cdclW-restart-strong-completeness:
    assumes
        MN: set M }\modelssmN an
        cons: consistent-interp (set M) and
        dist: distinct M and
```

```
        atm: atm-of ' \((\) set \(M) \subseteq a t m s\)-of-mm \(N\)
    obtains \(S\) where
    state-butlast \(S=(\operatorname{map}(\lambda L\). Decided \(L) M, N,\{\#\}\), None \()\) and
    rtranclp cdcl \(_{W}\)-restart (init-state \(N\) ) \(S\) and
    final-cdcl \({ }_{W}\)-restart-state \(S\)
proof -
    obtain \(S\) where
        st: rtranclp cdcl \(_{W}\)-restart (init-state \(N\) ) \(S\) and
        \(S:\) state-butlast \(S=(\operatorname{map}(\lambda L\). Decided L) M, N, \{\#\}, None \()\)
        using cdcl \(_{W}\)-restart-can-do-step \([O F\) cons dist atm] by auto
    have lits-of-l \((\operatorname{map}(\lambda L\). Decided \(L) M)=\) set \(M\)
        by (induct \(M\), auto)
    then have map \((\lambda L\). Decided \(L) M \models\) asm \(N\) using \(M N\) true-annots-true-cls by metis
    then have final-cdcl \({ }_{W}\)-restart-state \(S\)
    using \(S\) unfolding final- \(c d c l_{W}\)-restart-state-def by auto
    then show ?thesis using that st \(S\) by blast
qed
```


1.1.5 Higher level strategy

The rules described previously do not necessary lead to a conclusive state. We have to add a strategy:

- do propagate and conflict when possible;
- otherwise, do another rule (except forget and restart).

Definition

lemma tranclp-conflict:
tranclp conflict $S S^{\prime} \Longrightarrow$ conflict $S S^{\prime}$
by (induct rule: tranclp.induct) (auto elim!: conflictE)
lemma no-chained-conflict:
assumes conflict $S S^{\prime}$ and conflict $S^{\prime} S^{\prime \prime}$
shows False
using assms unfolding conflict.simps
by (metis conflicting-update-conflicting option.distinct(1) state-eq-conflicting)
lemma tranclp-conflict-iff:
full1 conflict $S S^{\prime} \longleftrightarrow$ conflict $S S^{\prime}$
by (auto simp: full1-def dest: tranclp-conflict no-chained-conflict)
lemma no-conflict-after-conflict:
conflict $S T \Longrightarrow \neg$ conflict $T U$
by (auto elim!: conflictE simp: conflict.simps)
lemma no-propagate-after-conflict:
conflict $S T \Longrightarrow \neg$ propagate $T U$
by (metis conflictE conflicting-update-conflicting option.distinct(1) propagate.cases state-eq-conflicting)
inductive $c d c l_{W}$-stgy $::$ 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
conflict': conflict $S S^{\prime} \Longrightarrow c d c l_{W}$-stgy $S S^{\prime} \mid$
propagate＇：propagate $S S^{\prime} \Longrightarrow c d c l_{W}-$ stgy $S S^{\prime} \mid$
other＇：no－step conflict $S \Longrightarrow$ no－step propagate $S \Longrightarrow c d c l_{W}$－o $S S^{\prime} \Longrightarrow \operatorname{cdcl}_{W}$－stgy $S S^{\prime}$
lemma $c d c l_{W}$－stgy－cdcl ${ }_{W}: \operatorname{cdcl}_{W}$－stgy $S T \Longrightarrow c d c l_{W} S T$
by（induction rule：$c d c l_{W}$－stgy．induct）（auto intro：$c d c l_{W}$ ．intros）
lemma cdcl_{W}－stgy－induct［consumes 1，case－names conflict propagate decide skip resolve backtrack］：
assumes
$\left\langle c d c l_{W}\right.$－stgy $\left.S T\right\rangle$ and
$\langle\bigwedge T$ ．conflict $S T \Longrightarrow P T\rangle$ and
$\langle\backslash T$ ．propagate $S T \Longrightarrow P T$ ，and
« \backslash ．no－step conflict $S \Longrightarrow$ no－step propagate $S \Longrightarrow$ decide $S T \Longrightarrow P T$ and
〈 \backslash ．no－step conflict $S \Longrightarrow$ no－step propagate $S \Longrightarrow$ skip $S T \Longrightarrow P T$ and
$\langle\backslash$ ．no－step conflict $S \Longrightarrow$ no－step propagate $S \Longrightarrow$ resolve $S T \Longrightarrow P T$ and
〈 \backslash T．no－step conflict $S \Longrightarrow$ no－step propagate $S \Longrightarrow$ backtrack $S T \Longrightarrow P T$ 〉
shows
$\langle P T\rangle$
using $\operatorname{assms}(1)$ by（induction rule： cdcl $_{W}$－stgy．induct）
（auto simp：assms（2－）$c d c l_{W}$－o．simps $c d c l_{W}$－bj．simps）
lemma cdcl $_{W}$－stgy－cases［consumes 1，case－names conflict propagate decide skip resolve backtrack］： assumes
$\left\langle c d c l_{W}-s t g y S T\right\rangle$ and
＜conflict $S T \Longrightarrow P\rangle$ and
\langle propagate $S T \Longrightarrow P\rangle$ and
«no－step conflict $S \Longrightarrow$ no－step propagate $S \Longrightarrow$ decide $S T \Longrightarrow P$ ）and
«no－step conflict $S \Longrightarrow$ no－step propagate $S \Longrightarrow$ skip $S T \Longrightarrow P\rangle$ and
\langle no－step conflict $S \Longrightarrow$ no－step propagate $S \Longrightarrow$ resolve $S T \Longrightarrow P\rangle$ and
〈no－step conflict $S \Longrightarrow$ no－step propagate $S \Longrightarrow$ backtrack $S T \Longrightarrow P$ 〉

shows

$\langle P\rangle$
using assms（1）by（cases rule： cdcl $_{W}$－stgy．cases）
（auto simp： $\operatorname{assms}(2-) c d c l_{W}$－o．simps $\left.c d c l_{W}-b j . \operatorname{simps}\right)$

Invariants

lemma $c d c l_{W}$－stgy－consistent－inv：
assumes $c d c l_{W}$－stgy $S S^{\prime}$ and $c d c l_{W}-M$－level－inv S
shows $c d c l_{W}$－M－level－inv S^{\prime}
using assms by（induct rule：$c d c l_{W}$－stgy．induct）（blast intro：$c d c l_{W}$－restart－consistent－inv $c d c l_{W}$－restart．intros）＋
lemma rtranclp－cdcl ${ }_{W}$－stgy－consistent－inv：
assumes $c d c l_{W}$－stgy＊＊$S S^{\prime}$ and $c d c l_{W}$－M－level－inv S
shows cdcl $_{W}$－M－level－inv S^{\prime}
using assms by induction（auto dest！：cdcl ${ }_{W}$－stgy－consistent－inv）
lemma cdcl_{W}－stgy－no－more－init－clss：
assumes cdcl $_{W}$－stgy $S S^{\prime}$
shows init－clss $S=$ init－clss S^{\prime}
using assms $\operatorname{cdcl}_{W}-c d c l_{W}$－restart $c d c l_{W}$－restart－init－clss $c d c l_{W}-s t g y-c d c l_{W}$ by blast
lemma rtranclp－cdcl ${ }_{W}$－stgy－no－more－init－clss：
assumes $c d c l_{W}-s t g y^{* *} S S^{\prime}$
shows init－clss $S=$ init－clss S^{\prime}
using assms
apply（induct rule：rtranclp－induct，simp）
using $c d c l_{W}$－stgy－no－more－init－clss by（simp add：rtranclp－cdcl ${ }_{W}$－stgy－consistent－inv）

Literal of highest level in conflicting clauses

One important property of the $c d c l_{W}$－restart with strategy is that，whenever a conflict takes place，there is at least a literal of level k involved（except if we have derived the false clause）． The reason is that we apply conflicts before a decision is taken．

```
definition conflict-is-false-with-level :: 'st }=>\mathrm{ bool where
conflict-is-false-with-level S \equiv\forallD.conflicting S=Some D\longrightarrowD
```

 \(\longrightarrow(\exists L \in \# D\). get-level (trail \(S) L=\) backtrack-lvl \(S\))
 declare conflict－is－false－with－level－def［simp］

Literal of highest level in decided literals

```
definition mark-is-false-with-level :: 'st }=>\mathrm{ bool where
mark-is-false-with-level S' \equiv
    \forallD M1 M2 L.M1 @ Propagated L D # M2 = trail S'\longrightarrowD - {#L#} = {#}
        \longrightarrow ( \exists L . L \in \# D \wedge ~ g e t - l e v e l ~ ( t r a i l ~ S ' ) ~ L = ~ c o u n t - d e c i d e d ~ M 1 ) ~
```

```
lemma backtrack \({ }_{W}\)-rule:
    assumes
        confl: 〈conflicting \(S=\) Some (add-mset \(L D\) )〉 and
        decomp: 〈(Decided \(K \#\) M1, M2) \(\in\) set (get-all-ann-decomposition (trail \(S\) )) 〉 and
        lev-L: \(\langle\) get-level (trail \(S\) ) \(L=\) backtrack-lvl \(S\rangle\) and
        max-lev: 〈get-level (trail S) L = get-maximum-level (trail S) (add-mset LD) > and
        max-D: «get-maximum-level (trail \(S\) ) \(D \equiv i\rangle\) and
        lev- \(K\) : 〈get-level (trail \(S\) ) \(K=i+1\rangle\) and
        \(T:\langle T \sim\) cons-trail (Propagated L (add-mset LD))
            (reduce-trail-to M1
            (add-learned-cls (add-mset L D)
                (update-conflicting None \(S\) ))) > and
    lev-inv: \(c d c l_{W}-M\)-level-inv \(S\) and
    conf: \(\left\langle c d c l_{W}\right.\)-conflicting \(\left.S\right\rangle\) and
    learned: \(\left\langle c d c l_{W}\right.\)-learned-clause \(\left.S\right\rangle\)
    shows 〈backtrack S T〉
    using confl decomp lev-L max-lev max-D lev-K
proof (rule backtrack-rule)
    let ?i \(=\) get-maximum-level \((\) trail \(S) D\)
    let \(? D=\langle\) add-mset \(L D\rangle\)
    show \(\langle D \subseteq \# D\rangle\)
        by \(\operatorname{simp}\)
    obtain M3 where
        M3: 〈trail \(S=\) M3 @ M2 @ Decided \(K \#\) M1〉
        using decomp by auto
    have trail-S-D: 〈trail \(S \models\) as CNot ?D〉
        using conf confl unfolding \(\mathrm{cdcl}_{W}\)-conflicting-def by auto
    then have atms-E-M1: 〈atms-of \(D \subseteq a t m\)-of 'lits-of-l M1〉
        using backtrack-atms-of-D-in-M1[OF - decomp, of D ?i L ?D
            〈cons-trail (Propagated L ?D) (reduce-trail-to M1 (add-learned-cls ?D (update-conflicting None S)) )
            〈Propagated L (add-mset L D) 〉]
        conf lev-K decomp max-lev lev-L confl T max-D lev-inv unfolding cdcl \(_{W}\)-M-level-inv-def
        by auto
    have \(n\)-d: \(\langle n o-d u p(M 3\) @ M2 @ Decided \(K\) \# M1) 〉
```

using lev－inv no－dup－rev［of 〈rev M1＠rev M2＠rev M3〉，unfolded rev－append］
by（auto simp： cdcl $_{W}$－M－level－inv－def M3）
then have n－$d^{\prime}:\langle n o-d u p$（M3＠M2＠M1）
by auto
have atm－L－M1：〈atm－of $L \notin$ atm－of＇lits－of－l M1〉
using lev－L n－d defined－lit－no－dupD（2－3）［of M1 L M3 M2］count－decided－ge－get－level［of 〈Decided K
\＃M1）L ］
unfolding M3
by（auto simp：atm－of－eq－atm－of Decided－Propagated－in－iff－in－lits－of－l get－level－cons－if split：if－splits）

```
have \(\langle L a \neq L\rangle\langle-L a \notin\) lits-of-l M3><-La \(\neq\) lits-of-l M2〉 \(\langle-L a \neq K\rangle\) if \(\langle L a \in \# D\rangle\) for \(L a\)
proof -
    have \(\langle-L a \in\) lits-of-l \((\) trail \(S)\rangle\)
        using trail-S-D that by (auto simp: true-annots-true-cls-def-iff-negation-in-model
            dest!: get-all-ann-decomposition-exists-prepend)
    moreover have \(\langle\) defined-lit M1 La〉
        using atms-E-M1 that by (auto simp: Decided-Propagated-in-iff-in-lits-of-l atms-of-def
                dest!: atm-of-in-atm-of-set-in-uminus)
```



```
        by (rule same-mset-no-dup-iff[THEN iffD1, OF - n-d \(]\) ) auto
    moreover have 〈no-dup (rev M3 @ rev M2 @ rev M1) 〉
        by (rule same-mset-no-dup-iff[THEN iffD1, OF - n-d \(]\) ) auto
    ultimately show \(\langle L a \neq L\rangle\langle-L a \notin\) lits-of-l M3〉〈-La \(\notin\) lits-of-l M2〉 〈-La \(\neq K\) 〉
        using defined-lit-no-dupD(2-3)[of 〈rev M1〉La〈rev M3〉〈rev M2〉]
            defined-lit-no-dupD(1)[of〈rev M1〉La 〈rev M3 @ rev M2〉] atm-L-M1 n-d
    by (auto simp: M3 Decided-Propagated-in-iff-in-lits-of-l atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)
qed
```

show 〈clauses $S \models p m$ add-mset $L D$ 〉
using cdcl_{W}-learned-clause-alt-def confl learned by blast
show $\langle T \sim$ cons-trail (Propagated L (add-mset L D)) (reduce-trail-to M1 (add-learned-cls (add-mset
$L D)($ update-conflicting None $S)$))
using T by blast
qed
lemma backtrack－no－decomp：

assumes

S：conflicting $S=$ Some（add－mset $L E$ ）and
L：get－level（trail S ）$L=$ backtrack－lvl S and
D：get－maximum－level（trail S）$E<$ backtrack－lvl S and
bt：backtrack－lvl $S=$ get－maximum－level（trail $S)($ add－mset $L E)$ and
lev－inv：$c d c l_{W}-M$－level－inv S and
conf：$\left\langle c d c l_{W}\right.$－conflicting $\left.S\right\rangle$ and
learned：$\left\langle c d c l_{W}\right.$－learned－clause $\left.S\right\rangle$
shows $\exists S^{\prime}$ ．cdcl W_{W} o $S S^{\prime} \exists S^{\prime}$ ．backtrack $S S^{\prime}$
proof－
have L－D：get－level（trail S ）$L=$ get－maximum－level（trail S ）（add－mset $L E$ ）
using $L D$ bt by（simp add：get－maximum－level－plus）
let $? i=$ get－maximum－level $($ trail $S) E$
let ？$D=\langle a d d-m s e t L E\rangle$
obtain K M1 M2 where
K：（Decided K \＃M1，M2）\in set（get－all－ann－decomposition（trail $S)$ ）and
lev－K ：get－level（trail S ）$K=? i+1$
using backtrack－ex－decomp［of S ？$i] D S$ lev－inv
unfolding $\mathrm{cdcl}_{W}-M$－level－inv－def by auto

```
    show <Ex (backtrack S)〉
```

 using backtrack \({ }_{W}\)-rule \([O F S K L L-D\) - lev-K] lev-inv conf learned by auto
 then show \(\left\langle E x\left(c d c l_{W}-o S\right)\right\rangle\)
 using \(b j\) by (auto simp: \(c d c l_{W}\)-bj.simps)
 qed
lemma no-analyse-backtrack-Ex-simple-backtrack:
assumes
bt: 〈backtrack $S T\rangle$ and
lev-inv: $c d c l_{W}-M$-level-inv S and
conf: $\left\langle c d c l_{W}\right.$-conflicting $\left.S\right\rangle$ and
learned: $\left\langle c d c l_{W}\right.$-learned-clause $\left.S\right\rangle$ and
no-dup: 〈distinct-cdcl ${ }_{W}$-state $\left.S\right\rangle$ and
$n s$-s: $\langle n o-s t e p ~ s k i p ~ S\rangle$ and
$n s-r:\langle n o-s t e p ~ r e s o l v e ~ S 〉$
shows 〈Ex(simple-backtrack S)〉
proof -
obtain $D L K$ i M1 M2 D^{\prime} where
confl: conflicting $S=$ Some (add-mset $L D$) and
decomp: (Decided K \# M1, M2) \in set (get-all-ann-decomposition (trail S)) and
lev: get-level (trail S) $L=$ backtrack-lvl S and
max: get-level (trail S) $L=$ get-maximum-level (trail S) (add-mset $L D^{\prime}$) and
max-D: get-maximum-level (trail S) $D^{\prime} \equiv i$ and
lev-K: get-level (trail S) $K=$ Suc i and
$D^{\prime}-D:\left\langle D^{\prime} \subseteq \# D\right\rangle$ and
$N U$-DL: $\left\langle\right.$ clauses $S \models p m$ add-mset $\left.L D^{\prime}\right\rangle$ and
$T: T \sim$ cons-trail (Propagated $L\left(\right.$ add-mset $\left.L D^{\prime}\right)$)
(reduce-trail-to M1
(add-learned-cls (add-mset L D^{\prime})
(update-conflicting None S)))
using bt by (elim backtrackE) metis
have n-d: 〈no-dup (trail S)〉
using lev-inv unfolding $c d c l_{W}$-M-level-inv-def by auto
have trail-S-Nil: 〈trail $S \neq[]\rangle$
using decomp by auto
then have $h d$-in-annot: 〈lit-of $(h d$-trail $S) \in \#$ mark-of (hd-trail S) $\mathbf{i f}$ ifs-proped (hd-trail S) \rangle
using conf that unfolding cdcl_{W}-conflicting-def
by (cases 〈trail $S\rangle$; cases 〈hd (trail S) 〉) fastforce+
have max- D-L-hd: <get-maximum-level (trail S) $D<$ get-level (trail S) $L \wedge L=-$ lit-of (hd-trail S) >
proof cases
assume is-p: <is-proped (hd (trail S)) >
then have $\langle-l i t-$ of $(h d($ trail $S)) \in \#$ add-mset $L D$ 〉
using ns-s trail-S-Nil confl skip-rule[of $S\langle l i t-o f(h d(t r a i l ~ S))\rangle-<$ add-mset $L D\rangle]$
by (cases 〈trail $S\rangle$; cases $\langle h d$ (trail S)〉) auto
then have \langle get-maximum-level $($ trail $S)($ remove1-mset $(-$ lit-of $(h d$-trail $S))($ add-mset $L D)) \neq$
backtrack-lvl S >
using ns-r trail-S-Nil confl resolve-rule $[$ of $S\langle l i t-o f(h d($ trail $S)\rangle\langle m a r k-o f(h d-t r a i l ~ S)\rangle\langle a d d-m s e t$
$L D\rangle] i s-p$
hd-in-annot
by (cases 〈trail $S\rangle$; cases 〈hd (trail S)〉) auto
then have lev-L-D: «get-maximum-level (trail S) (remove1-mset (- lit-of (hd-trail S)) (add-mset L
D)) $<$
backtrack-lvl S>
using count-decided-ge-get-maximum-level[of 〈trail S〉〈remove1-mset (- lit-of (hd-trail S)) (add-mset
L D) 〉]
by auto
then have $\langle L=-$ lit－of $(h d$－trail $S)\rangle$
using get－maximum－level－ge－get－level［of L 〈remove1－mset（－lit－of（hd－trail S））（add－mset L D）〉〈trail S 〉］lev apply－
by（rule ccontr）auto
then show ？thesis
using lev－L－D lev by auto
next
assume is－p：〈ᄀ is－proped（hd（trail S））〉
obtain L^{\prime} where
$L^{\prime}:\left\langle L^{\prime} \in \#\right.$ add－mset $\left.L D\right\rangle$ and
lev－L^{\prime} ：〈get－level（trail S）$L^{\prime}=$ backtrack－lvl $\left.S\right\rangle$
using lev by auto
moreover have $u L^{\prime}$－trail：$\left\langle-L^{\prime} \in\right.$ lits－of－l（trail $\left.\left.S\right)\right\rangle$
using conf confl L^{\prime} unfolding $c d c l_{W}$－conflicting－def true－annots－true－cls－def－iff－negation－in－model
by auto
moreover have $\left\langle L^{\prime} \notin\right.$ lits－of－l（trail S ）\rangle
using n－d $u L^{\prime}$－trail by（blast dest：no－dup－consistentD）
ultimately have $L^{\prime}-h d:\left\langle L^{\prime}=-l i t-o f(h d-t r a i l S)\right\rangle$
using is－p trail－S－Nil by（cases 〈trail $S\rangle$ ；cases 〈hd（trail S ）〉）
（auto simp：get－level－cons－if atm－of－eq－atm－of split：if－splits）
have 〈distinct－mset（add－mset $L D$ ）＞
using no－dup confl unfolding distinct－cdcl ${ }_{W}$－state－def by auto
then have $\left\langle L^{\prime} \notin \#\right.$ remove1－mset $L^{\prime}($ add－mset $\left.L D)\right\rangle$
using L^{\prime} by（meson distinct－mem－diff－mset multi－member－last）
moreover have $\left\langle-L^{\prime} \notin \#\right.$ add－mset $\left.L D\right\rangle$
proof（rule ccontr）
assume 〈 \neg ？thesis〉
then have $\left\langle L^{\prime} \in\right.$ lits－of－l（trail S ）\rangle
using conf confl trail－S－Nil unfolding cdcl $_{W}$－conflicting－def true－annots－true－cls－def－iff－negation－in－model by auto
then show False
using $n-d L^{\prime}-h d$ by（cases \langle trail $S\rangle$ ；cases $\langle h d($ trail $\left.S)\rangle\right)$
（auto simp：Decided－Propagated－in－iff－in－lits－of－l）
qed
ultimately have $\left\langle\right.$ atm－of $\left(\right.$ lit－of $\left(\right.$ Decided $\left.\left.\left(-L^{\prime}\right)\right)\right) \notin$ atms－of（remove1－mset $L^{\prime}($ add－mset L D））〉
using $\left\langle-L^{\prime} \notin \#\right.$ add－mset $\left.L D\right\rangle$ by（auto simp：atm－of－in－atm－of－set－iff－in－set－or－uminus－in－set atms－of－def dest：in－diffD）
then have $\left\langle\right.$ get－maximum－level $\left(\right.$ Decided $\left(-L^{\prime}\right) \# t l($ trail $\left.S)\right)\left(\right.$ remove1－mset $L^{\prime}($ add－mset $\left.L D)\right)=$ get－maximum－level（tl（trail S））（remove1－mset L＇（add－mset L D））＞
by（rule get－maximum－level－skip－first）
also have＜get－maximum－level $(t l($ trail $S))\left(\right.$ remove1－mset $L^{\prime}($ add－mset $\left.L D)\right)<$ backtrack－lvl $\left.S\right\rangle$
using count－decided－ge－get－maximum－level［of $\langle t l($ trail $S)\rangle\left\langle\right.$ remove1－mset $L^{\prime}($ add－mset L D）〉］
trail－S－Nil is－p by（cases 〈trail $S\rangle$ ；cases $\langle h d($ trail $S)\rangle)$ auto
finally have lev－L＇－L：＜get－maximum－level（trail S）（remove1－mset $L^{\prime}($ add－mset LD $)$ ）backtrack－lvl
S 〉
using trail－S－Nil is－p $L^{\prime}-h d$ by（cases 〈trail $\left.S\right\rangle$ ；cases 〈hd（trail S ）〉）auto
then have $\left\langle L=L^{\prime}\right\rangle$
using get－maximum－level－ge－get－level $\left[\right.$ of $L\left\langle\right.$ remove1－mset $L^{\prime}($ add－mset $L D)$ 〉 \langle trail $S\rangle] L^{\prime}$ lev－L^{\prime} lev by auto
then show ？thesis
using lev－L＇－L lev $L^{\prime}-h d$ by auto
qed
let $? i=\langle$ get－maximum－level $($ trail $S) D\rangle$
obtain $K^{\prime} M 1^{\prime} M 2^{\prime}$ where
decomp ${ }^{\prime}:\left\langle\left(\right.\right.$ Decided $\left.K^{\prime} \# M 1^{\prime}, ~ M 2^{\prime}\right) \in$ set（get－all－ann－decomposition（trail S））\rangle and

```
    lev-K':〈get-level (trail S) K'= Suc ?i>
    using backtrack-ex-decomp[of S ?i] lev-inv max-D-L-hd
    unfolding lev cdcl}\mp@subsup{W}{}{-M-level-inv-def by blast
    show ?thesis
    apply standard
    apply (rule simple-backtrack-rule[of S L D K' M1' M2'`get-maximum-level (trail S) D`
        <cons-trail (Propagated L (add-mset L D)) (reduce-trail-to M1' (add-learned-cls (add-mset L D)
(update-conflicting None S)))\])
    subgoal using confl by auto
    subgoal using decomp' by auto
    subgoal using lev .
    subgoal using count-decided-ge-get-maximum-level[of 〈trail S\rangle D] lev
        by (auto simp: get-maximum-level-add-mset)
    subgoal .
    subgoal using lev-K' by simp
    subgoal by simp
    done
qed
lemma trail－begins－with－decided－conflicting－exists－backtrack：
```


assumes

```
confl－k：〈conflict－is－false－with－level \(S\rangle\) and
conf：\(\left\langle c d c l_{W}\right.\)－conflicting \(\left.S\right\rangle\) and
level－inv：\(\left\langle c d c l_{W}-M\right.\)－level－inv \(\left.S\right\rangle\) and
no－dup：〈distinct－cdcl \({ }_{W}\)－state \(\left.S\right\rangle\) and
learned：\(\left\langle c d c l_{W}\right.\)－learned－clause \(\left.S\right\rangle\) and
alien：〈no－strange－atm \(S\rangle\) and
tr－ne：〈trail \(S \neq[]\rangle\) and
\(L^{\prime}:\left\langle h d-\right.\) trail \(S=\) Decided \(\left.L^{\prime}\right\rangle\) and
nempty：\(\langle C \neq\{\#\}\rangle\) and
confl：〈conflicting \(S=\) Some \(C\rangle\)
shows \(\langle E x\)（backtrack \(S\) ） and 〈no－step skip \(S\rangle\) and 〈no－step resolve \(S\rangle\)
proof－
let \(? M=\) trail \(S\)
let ？\(N=\) init－clss \(S\)
let \(? k=\) backtrack－lvl \(S\)
let ？\(U=\) learned－clss \(S\)
obtain \(L D\) where
\(E^{\prime}[\) simp \(]: C=D+\{\# L \#\}\) and
lev－L：get－level ？M \(L=? k\)
using nempty confl by（metis（mono－tags）confl－k insert－DiffM2 conflict－is－false－with－level－def）
let \(? D=D+\{\# L \#\}\)
have \(? D \neq\{\#\}\) by auto
have ？\(M \models\) as \(C N o t\) ？D using confl conf unfolding \(c d c l_{W}\)－conflicting－def by auto
then have \(? M \neq[]\) unfolding true－annots－def Ball－def true－annot－def true－cls－def by force
define \(M^{\prime}\) where \(M^{\prime}:\left\langle M^{\prime}=t l ? M\right\rangle\)
have \(M: ? M=h d ? M \# M^{\prime}\) using \(\langle ? M \neq[]\rangle\) list．collapse \(M^{\prime}\) by fastforce
obtain \(k^{\prime}\) where \(k^{\prime}: k^{\prime}+1=? k\)
using level－inv tr－ne \(L^{\prime}\) unfolding \(\operatorname{cdcl}_{W}-M\)－level－inv－def by（cases trail \(S\) ）auto
have \(n\)－s：no－step conflict \(S\) no－step propagate \(S\)
using confl by（auto elim！：conflictE propagateE）
```

have g－k ：get－maximum－level（trail S ）$D \leq ? k$
using count－decided－ge－get－maximum－level［of ？M］level－inv unfolding cdcl_{W}－M－level－inv－def by auto
have $L^{\prime}-L: L^{\prime}=-L$
proof（rule ccontr）
assume \neg ？thesis
moreover \｛
have $-L \in$ lits－of－l ？M
using confl conf unfolding cdcl_{W}－conflicting－def by auto
then have $\left\langle a t m\right.$－of $L \neq a t m$－of L^{\prime} 〉
using $c d c l_{W}-M$－level－inv－decomp（2）［OF level－inv］M calculation L^{\prime}
by（auto simp：atm－of－eq－atm－of all－conj－distrib uminus－lit－swap lits－of－def no－dup－def）\}
ultimately have get－level $\left(h d(\right.$ trail $\left.S) \# M^{\prime}\right) L=$ get－level $(t l ? M) L$
using cdcl_{W}－M－level－inv－decomp（1）［OF level－inv］M unfolding consistent－interp－def
by（simp add：atm－of－eq－atm－of $L^{\prime} M^{\prime}[$ symmetric $\left.]\right)$
moreover \｛
have count－decided $($ trail $S)=? k$
using level－inv unfolding $\mathrm{cdcl}_{W}-M$－level－inv－def by auto
then have count：count－decided $M^{\prime}=? k-1$
using level－inv M by（auto simp add：$L^{\prime} M^{\prime}$［symmetric］）
then have get－level $(t l ? M) L<? k$
using count－decided－ge－get－level $\left[\right.$ of $\left.M^{\prime} L\right]$ unfolding $k^{\prime}[$ symmetric $] M^{\prime}$ by auto $\}$
finally show False using lev－$L M$ unfolding M^{\prime} by auto
qed
then have $L: h d ? M=$ Decided $(-L)$ using L^{\prime} by auto
have H ：get－maximum－level（trail S）$D<? k$
proof（rule ccontr）
assume \neg ？thesis
then have get－maximum－level（trail S ）$D=? k$ using $M g$－k unfolding L by auto
then obtain $L^{\prime \prime}$ where $L^{\prime \prime} \in \# D$ and L－k：get－level ？M $L^{\prime \prime}=? k$
using get－maximum－level－exists－lit［of ？k ？M D］unfolding $k^{\prime}[$ symmetric $]$ by auto
have $L \neq L^{\prime \prime}$ using no－dup $\left\langle L^{\prime \prime} \in \# D\right.$ 〉
unfolding distinct－cdcl ${ }_{W}$－state－def confl
by（metis E^{\prime} add－diff－cancel－right＇distinct－mem－diff－mset union－commute union－single－eq－member）
have $L^{\prime \prime}=-L$
proof（rule ccontr）
assume \neg ？thesis
then have get－level ？M $L^{\prime \prime}=$ get－level（ $t l$ ？M）$L^{\prime \prime}$
using $M\left\langle L \neq L^{\prime \prime}\right\rangle$ get－level－skip－beginning［of $L^{\prime \prime} h d$ ？M tl ？M］unfolding L
by（auto simp：atm－of－eq－atm－of）
moreover have get－level（ $t l($ trail $S)$ ）$L=0$
using level－inv $L^{\prime} M$ unfolding $\operatorname{cdcl}_{W}-M$－level－inv－def
by（auto simp：image－iff $L^{\prime} L^{\prime}-L$ ）
moreover \｛
have 〈backtrack－lvl $S=$ count－decided（hd ？M \＃tl ？M）〉 unfolding M［symmetric］$M^{\prime}[$ symmetric $]$ ．．
then have get－level（ $t l($ trail $S)) L^{\prime \prime}<$ backtrack－lvl S
using count－decided－ge－get－level［of 〈tl（trail S）＞$\left.L^{\prime \prime}\right]$
by（auto simp：image－iff $L^{\prime} L^{\prime}-L$ ）\}
ultimately show False
using $M\left[\right.$ unfolded $L^{\prime} M^{\prime}[$ symmetric $\left.]\right] L-k$ by（auto simp：$L^{\prime} L^{\prime}-L$ ）
qed
then have taut：tautology $(D+\{\# L \#\})$
using $\left\langle L^{\prime \prime} \in \# D\right\rangle$ by（metis add．commute mset－subset－eqD mset－subset－eq－add－left multi－member－this tautology－minus）
moreover have consistent－interp（lits－of－l ？M）
using level－inv unfolding $c d c l_{W}-M$－level－inv－def by auto
ultimately have \neg ？$M \models$ as CNot ？D
by（metis $\left\langle L^{\prime \prime}=-L\right\rangle\left\langle L^{\prime \prime} \in \# D\right\rangle$ add．commute consistent－interp－def
diff－union－cancelR in－CNot－implies－uminus（2）in－diffD multi－member－this）
moreover have ？M $=$ as CNot ？D
using confl no－dup conf unfolding $c d c l_{W}$－conflicting－def by auto
ultimately show False by blast
qed
have confl－$D:$ ：conflicting $S=$ Some（add－mset L D）〉
using confl［unfolded E ］by simp
have get－maximum－level（trail S ）$D<$ get－maximum－level（trail S ）（add－mset L D ）
using H by（auto simp：get－maximum－level－plus lev－L max－def get－maximum－level－add－mset）
moreover have backtrack－lvl $S=$ get－maximum－level（trail S ）（add－mset L D）
using H by（auto simp：get－maximum－level－plus lev－L max－def get－maximum－level－add－mset）
ultimately show 〈Ex（backtrack S）〉
using backtrack－no－decomp［OF confl－D－］level－inv alien conf learned by（auto simp add：lev－L max－def n－s）
show 〈no－step resolve S 〉
using L by（auto elim！：resolveE）
show 〈no－step skip S 〉
using L by（auto elim！：skipE）
qed
lemma conflicting－no－false－can－do－step：
assumes
confl：〈conflicting $S=$ Some $C\rangle$ and
nempty：$\langle C \neq\{\#\}\rangle$ and
confl－k：〈conflict－is－false－with－level S ）and
conf：$\left\langle c d c l_{W}\right.$－conflicting $\left.S\right\rangle$ and
level－inv：$\left\langle c d c l_{W}-M\right.$－level－inv $\left.S\right\rangle$ and
no－dup：$\left\langle\right.$ distinct－cdcl $_{W}$－state $\left.S\right\rangle$ and
learned：$\left\langle c d c l_{W}\right.$－learned－clause $\left.S\right\rangle$ and
alien：〈no－strange－atm $S\rangle$ and
termi：〈no－step cdcl $_{W}$－stgy $\left.S\right\rangle$
shows False
proof－
let ？$M=$ trail S
let $? N=$ init－clss S
let $? k=$ backtrack－lvl S
let ？$U=$ learned－clss S
define M^{\prime} where $\left\langle M^{\prime}=t l ? M\right\rangle$
obtain $L D$ where
$E^{\prime}[$ simp $]: C=D+\{\# L \#\}$ and
lev－L：get－level ？M $L=? k$
using nempty confl by（metis（mono－tags）confl－k insert－DiffM2 conflict－is－false－with－level－def）
let $? D=D+\{\# L \#\}$
have ？$D \neq\{\#\}$ by auto
have ？$M \neq$ as $C N o t ? D$ using confl conf unfolding $c d c l_{W}$－conflicting－def by auto
then have $? M \neq[]$ unfolding true－annots－def Ball－def true－annot－def true－cls－def by force
have $M^{\prime}: ? M=h d ? M \# t l ? M$ using $\langle ? M \neq[]$＞by fastforce
then have $M: ? M=h d ? M \# M^{\prime}$ unfolding M^{\prime}－def．
have n－s：no－step conflict S no－step propagate S
using termi by（blast intro：$c d c l_{W}$－stgy．intros）+
have 〈no－step backtrack $S\rangle$
using termi by（blast intro：$c d c l_{W}$－stgy．intros $c d c l_{W}$－o．intros $c d c l_{W}$－bj．intros）
then have not－is－decided：$\neg i s$－decided（hd ？M）
using trail－begins－with－decided－conflicting－exists－backtrack（1）［OF confl－k conf level－inv no－dup learned alien 〈？$M \neq[]\rangle$－nempty confl $]$ by（cases 〈hd－trail S ）（auto）
have g－k ：get－maximum－level（trail S ）$D \leq ? k$
using count－decided－ge－get－maximum－level［of ？M］level－inv unfolding cdcl_{W}－M－level－inv－def by auto
let $? D=$ add－mset $L D$
have $? D \neq\{\#\}$ by auto
have ？$M \models$ as $C N o t$ ？D using confl conf unfolding $c d c l_{W}$－conflicting－def by auto
then have $? M \neq[]$ unfolding true－annots－def Ball－def true－annot－def true－cls－def by force
then obtain $L^{\prime} C$ where $L^{\prime} C$ ：hd－trail $S=$ Propagated $L^{\prime} C$
using not－is－decided by（cases hd－trail S ）auto
then have $h d ? M=$ Propagated $L^{\prime} C$
using $\langle ? M \neq[]$ by fastforce
then have $M: ? M=$ Propagated $L^{\prime} C \# M^{\prime}$ using M by simp
then have $M^{\prime}: ? M=$ Propagated $L^{\prime} C \# t l ? M$ using M by simp
then obtain C^{\prime} where $C^{\prime}: C=$ add－mset $L^{\prime} C^{\prime}$
using conf M unfolding $c d c l_{W}$－conflicting－def by（metis append－Nil diff－single－eq－union）
have $L^{\prime} D:-L^{\prime} \in \#$ ？D
using n－s alien level－inv termi skip－rule［OF M^{\prime} confl］
by（auto dest：other ${ }^{\prime} c d c l_{W}$－o．intros $c d c l_{W}$－bj．intros）
obtain D^{\prime} where $D^{\prime}: ? D=a d d-m s e t\left(-L^{\prime}\right) D^{\prime}$ using $L^{\prime} D$ by（metis insert－DiffM）
then have get－maximum－level（trail S ）$D^{\prime} \leq ? k$
using count－decided－ge－get－maximum－level［ of Propagated $\left.L^{\prime} C \# t l ? M\right] M$
level－inv unfolding cdcl_{W}－M－level－inv－def by auto
then consider
（ D^{\prime}－max－lvl）get－maximum－level（trail S ）$D^{\prime}=? k \mid$
（ D^{\prime}－le－max－lvl）get－maximum－level（trail S ）$D^{\prime}<? k$
using le－neq－implies－less by blast
then show False
proof cases
case g－D^{\prime}－k：D^{\prime}－max－lvl
then have f1：get－maximum－level（trail S ）$D^{\prime}=$ backtrack－lvl S
using M by auto
then have $E x\left(c d c l_{W}-o S\right)$
using resolve－rule $\left[\right.$ of $S L^{\prime} C$ ，OF 〈trail $\left.S \neq[]\right\rangle-$ confl $]$ conf
$L^{\prime} C L^{\prime} D D^{\prime} C^{\prime}$ by（auto dest：$c d c l_{W}$－o．intros $c d c l_{W}$－bj．intros）
then show False
using n－s termi by（auto dest：other＇${ }^{\prime} \operatorname{cdcl}_{W}$－o．intros $c d c l_{W}$－bj．intros）
next
case a1：D^{\prime}－le－max－lvl
then have f3：get－maximum－level（trail $S) D^{\prime}<$ get－level（trail S ）$\left(-L^{\prime}\right)$
using a1 lev－L D^{\prime} by（metis D^{\prime} get－maximum－level－ge－get－level insert－noteq－member not－less）
moreover have get－level（trail $S) L^{\prime}=$ get－maximum－level $($ trail $S)\left(D^{\prime}+\left\{\#-L^{\prime} \#\right\}\right)$
using a1 by（auto simp add：get－maximum－level－add－mset max－def M）
ultimately show False
using M backtrack－no－decomp［of $\left.S-L^{\prime} D^{\prime}\right]$ confl level－inv n－s termi E^{\prime} learned conf by（auto simp：D^{\prime} dest：other ${ }^{\prime} c d c l_{W}$－o．intros $c d c l_{W}$－bj．intros）
qed
qed
lemma cdcl_{W}－stgy－final－state－conclusive2：

assumes

termi: no-step cdcl $_{W}$-stgy S and
decomp: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
learned: $c d c l_{W}$-learned-clause S and
level-inv: $c d c l_{W}-M$-level-inv S and
alien: no-strange-atm S and
no-dup: distinct-cdcl ${ }_{W}$-state S and
confl: cdcl $_{W}$-conflicting S and
confl-k: conflict-is-false-with-level S
shows (conflicting $S=$ Some $\{\#\} \wedge$ unsatisfiable (set-mset (clauses $S)$))
$\vee($ conflicting $S=$ None \wedge trail $S \models$ as set-mset (clauses $S)$)
proof -
let $? M=$ trail S
let ? $N=$ clauses S
let ? $k=$ backtrack-lvl S
let ? $U=$ learned-clss S
consider
(None) conflicting $S=$ None
\mid (Some-Empty) E where conflicting $S=$ Some E and $E=\{\#\}$
using conflicting-no-false-can-do-step[of S, OF - - confl-k confl level-inv no-dup learned alien] termi
by (cases conflicting S, simp) auto
then show?thesis
proof cases
case (Some-Empty E)
then have conflicting $S=$ Some $\{\#\}$ by auto
then have unsat-clss-S: unsatisfiable (set-mset (clauses S))
using learned unfolding cdcl_{W}-learned-clause-alt-def true-clss-cls-def conflict-is-false-with-level-def
by (metis (no-types, lifting) Un-insert-right atms-of-empty satisfiable-def
sup-bot.right-neutral total-over-m-insert total-over-set-empty true-cls-empty)
then show ?thesis using Some-Empty by (auto simp: clauses-def)
next
case None
have ? $M \models a s m$? N
proof (rule ccontr)
assume $M N$: \neg ?thesis
have all-defined: atm-of ' (lits-of-l ?M) = atms-of-mm ? N (is ? $A=? B$)
proof
show ? $A \subseteq ? B$ using alien unfolding no-strange-atm-def clauses-def by auto
show ? $B \subseteq$? A
proof (rule ccontr)
assume $\neg ? B \subseteq ? A$
then obtain l where $l \in ? B$ and $l \notin ? A$ by auto
then have undefined-lit ? M (Pos l)
using $\langle l \notin$? A \rangle unfolding lits-of-def by (auto simp add: defined-lit-map)
then have $\exists S^{\prime} . c d c l_{W}-o S S^{\prime}$
using $c^{\prime} d_{W}{ }_{W}$-o.decide[of $\left.S\right]$ decide-rule[of $S\langle$ Pos $l\rangle\langle c o n s$-trail (Decided (Pos l)) $S\rangle$]
$\langle l \in ? B\rangle$ None alien unfolding clauses-def no-strange-atm-def by fastforce
then show False
using termi by (blast intro: cdcl_{W}-stgy.intros)
qed
qed
obtain D where $\neg ? M \models a D$ and $D \in \# ? N$
using $M N$ unfolding lits-of-def true-annots-def Ball-def by auto have atms-of $D \subseteq$ atm-of ' (lits-of-l ?M)
using $\langle D \in \#$? $N\rangle$ unfolding all-defined atms-of-ms-def by auto

```
        then have total-over-m (lits-of-l ?M) {D}
            using atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
            by (fastforce simp: total-over-set-def)
            then have ?M }=\mathrm{ as CNot D
            using < trail S =a D` unfolding true-annot-def true-annots-true-cls
            by (fastforce simp: total-not-true-cls-true-clss-CNot)
            then have }\exists\mp@subsup{S}{}{\prime}\mathrm{ . conflict S S'
            using <trail S =as CNot D\rangle\langleD\in# clauses S\rangle
            None unfolding clauses-def by (auto simp: conflict.simps clauses-def)
            then show False
            using termi by (blast intro: cdcl W-stgy.intros)
    qed
    then show ?thesis
        using None by auto
    qed
qed
lemma cdclW-stgy-final-state-conclusive:
    assumes
    termi: no-step cdcl W-stgy S and
    decomp: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
    learned: cdcl W-learned-clause S and
    level-inv: cdcl}\mp@subsup{W}{}{-M-level-inv S and
    alien: no-strange-atm S and
    no-dup: distinct-cdcl }\mp@subsup{W}{}{-state}S\mathrm{ and
    confl: cdcl }\mp@subsup{W}{}{-conflicting S and
    confl-k:conflict-is-false-with-level S and
    learned-entailed: <cdcl W-learned-clauses-entailed-by-init S\rangle
shows (conflicting S = Some {#} ^ unsatisfiable (set-mset (init-clss S)))
            \vee ~ ( ~ c o n f l i c t i n g ~ S = N o n e ~ \wedge ~ t r a i l ~ S ~ = a s ~ s e t - m s e t ~ ( i n i t - c l s s ~ S ) ) ,
proof -
    let ?M = trail S
    let ?N = init-clss S
    let ?k = backtrack-lvl S
    let ?U = learned-clss S
    consider
    (None) conflicting S = None 
    (Some-Empty) E where conflicting S=Some E and E={#}
    using conflicting-no-false-can-do-step[of S,OF - - confl-k confl level-inv no-dup learned alien] termi
    by (cases conflicting S, simp) auto
then show ?thesis
proof cases
    case (Some-Empty E)
    then have conflicting S=Some {#} by auto
    then have unsat-clss-S:unsatisfiable (set-mset (clauses S))
        using learned learned-entailed unfolding cdclW-learned-clause-alt-def true-clss-cls-def
            conflict-is-false-with-level-def
        by (metis (no-types, lifting) Un-insert-right atms-of-empty satisfiable-def
            sup-bot.right-neutral total-over-m-insert total-over-set-empty true-cls-empty)
    then have unsatisfiable (set-mset (init-clss S))
    proof -
    have atms-of-mm (learned-clss S)\subseteqatms-of-mm (init-clss S)
                using alien no-strange-atm-decomp(3) by blast
    then have f3:atms-of-ms (set-mset (init-clss S)\cup set-mset (learned-clss S))=
                atms-of-mm (init-clss S)
                by auto
```

```
        have init-clss S\modelspsm learned-clss S
            using learned-entailed
            unfolding cdcl}\mp@subsup{W}{W}{-learned-clause-alt-def cdclW-learned-clauses-entailed-by-init-def by blast
            then show ?thesis
            using f3 unsat-clss-S
            unfolding true-clss-clss-def total-over-m-def clauses-def satisfiable-def
            by (metis (no-types) set-mset-union true-clss-union)
    qed
    then show ?thesis using Some-Empty by auto
    next
    case None
    have ?M \modelsasm ?N
    proof (rule ccontr)
        assume MN:\neg ?thesis
        have all-defined: atm-of '(lits-of-l ?M) = atms-of-mm ?N (is ?A = ?B)
        proof
            show ?A \subseteq?B using alien unfolding no-strange-atm-def by auto
            show ? B\subseteq?A
            proof (rule ccontr)
            assume \neg?B\subseteq?A
            then obtain l where l\in?B and l\not\in?A by auto
            then have undefined-lit ?M (Pos l)
                using 〈l\not\in?A` unfolding lits-of-def by (auto simp add: defined-lit-map)
            then have }\exists\mp@subsup{S}{}{\prime}..cdc\mp@subsup{l}{W}{-o S S S
                using cdcl }\mp@subsup{W}{W}{}\mathrm{ -o.decide decide-rule }\langlel\in?B\rangle\mathrm{ no-strange-atm-def None
                by (metis literal.sel(1) state-eq-ref)
            then show False
                using termi by (blast intro: cdcl W-stgy.intros)
        qed
        qed
        obtain D where ᄀ?M \modelsa D and D\in# ?N
            using MN unfolding lits-of-def true-annots-def Ball-def by auto
        have atms-of D\subseteqatm-of '(lits-of-l ?M)
            using}\langleD\in# ?N\rangle unfolding all-defined atms-of-ms-def by aut
        then have total-over-m (lits-of-l ?M) {D}
            using atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
            by (fastforce simp: total-over-set-def)
        then have M-CNot-D: ?M =as CNot D
            using & trail S}\modelsa D` unfolding true-annot-def true-annots-true-cls
            by (fastforce simp: total-not-true-cls-true-clss-CNot)
            then have \exists}\mp@subsup{S}{}{\prime}\mathrm{ . conflict S S'
            using M-CNot-D \langleD\in# init-clss S\rangle
                None unfolding clauses-def by (auto simp: conflict.simps clauses-def)
    then show False
        using termi by (blast intro: cdcl W-stgy.intros)
    qed
    then show ?thesis
        using None by auto
    qed
qed
lemma cdcl \(_{W}\)-stgy-tranclp-cdcl \(W_{W}\)-restart:
\(\operatorname{cdcl}_{W}-\) stgy \(S S^{\prime} \Longrightarrow \operatorname{cdcl}_{W}\)-restart \(^{++} S S^{\prime}\)
by (simp add: \(c d c l_{W}-c d c l_{W}\)-restart \(c d c l_{W}-s t g y-c d c l_{W}\) tranclp.r-into-trancl)
```

lemma tranclp-cdcl ${ }_{W}$-stgy-tranclp-cdcl W_{W}-restart:
$c d c l_{W}$-stgy ${ }^{++} S S^{\prime} \Longrightarrow c d c l_{W}$-restart ${ }^{++} S S^{\prime}$
apply (induct rule: tranclp.induct)
using cdcl_{W}-stgy-tranclp-cdcl ${ }_{W}$-restart apply blast
by (meson cdcl W_{W}-stgy-tranclp-cdcl W_{W}-restart tranclp-trans)
lemma rtranclp-cdcl ${ }_{W}$-stgy-rtranclp-cdcl W_{W}-restart:
$c d c l_{W}$-stgy ${ }^{* *} S S^{\prime} \Longrightarrow c d c l_{W}$-restart** $S S^{\prime}$
using rtranclp-unfold[of cdcl_{W}-stgy $\left.S S^{\prime}\right]$ tranclp-cdcl W_{W}-stgy-tranclp-cdcl W_{W}-restart $[o f ~ S ~ S]$ by auto
lemma $c d c l_{W}$-o-conflict-is-false-with-level-inv:
assumes
$c d c l_{W}-o S S^{\prime}$ and
lev: $c d c l_{W}$-M-level-inv S and
confl-inv: conflict-is-false-with-level S and
n-d: distinct-cdcl ${ }_{W}$-state S and
conflicting: $c d c l_{W}$-conflicting S
shows conflict-is-false-with-level S^{\prime}
using $\operatorname{assms}(1,2)$
proof (induct rule: cdcl $_{W}$-o-induct)
case (resolve $L C M D T$) note $\operatorname{tr}-S=$ this(1) and confl $=\operatorname{this}(4)$ and $L D=\operatorname{this}(5)$ and $T=$ this(7)
have $u L$-not- $D:-L \notin \#$ remove1-mset $(-L) D$
using n-d confl unfolding distinct-cdcl W_{W}-state-def distinct-mset-def
by (metis distinct-cdcl W_{W}-state-def distinct-mem-diff-mset multi-member-last n-d)
moreover \{
have L-not-D: L $\notin \#$ remove1-mset $(-L) D$
proof (rule ccontr)
assume \neg ?thesis
then have $L \in \# D$
by (auto simp: in-remove1-mset-neq)
moreover have Propagated $L C \# M \models$ as CNot D
using conflicting confl tr-S unfolding cdcl_{W}-conflicting-def by auto
ultimately have $-L \in$ lits-of-l (Propagated $L C \# M$)
using in-CNot-implies-uminus(2) by blast
moreover have no-dup (Propagated L C \# M)
using lev tr-S unfolding cdcl_{W}-M-level-inv-def by auto
ultimately show False unfolding lits-of-def
by (metis imageI insertCI list.simps(15) lit-of.simps(2) lits-of-def no-dup-consistentD)
qed
\}
ultimately have g-D: get-maximum-level (Propagated $L C$ \# M) (remove1-mset $(-L) D)$
$=$ get-maximum-level M (remove1-mset $(-L) D)$
by (simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set atms-of-def)
have lev-L[simp]: get-level $M L=0$
using lev unfolding $c d c l_{W}$-M-level-inv-def tr-S by (auto simp: lits-of-def)
have D : get-maximum-level M (remove1-mset $(-L) D)=$ backtrack-lvl S
using resolve.hyps (6) LD unfolding $t r-S$ by (auto simp: get-maximum-level-plus max-def g - D)
have get-maximum-level M (remove1-mset $L C$) \leq backtrack-lvl S
using count-decided-ge-get-maximum-level $\left[\right.$ of M] lev unfolding $t r-S ~ c d c l_{W}$-M-level-inv-def by auto then have
get-maximum-level M (remove1-mset $(-L) D \cup \#$ remove1-mset $L C$) backtrack-lvl S
by (auto simp: get-maximum-level-union-mset get-maximum-level-plus max-def D)
then show ?case
using tr-S get-maximum-level-exists-lit-of-max-level[of

```
        remove1-mset (-L) D U# remove1-mset L C M] T
    by auto
next
    case (skip L C'M D T) note tr-S = this(1) and D=this(2) and T = this(5)
    then obtain La where
        La\in#D and
        get-level (Propagated L C'# M) La = backtrack-lvl S
        using skip confl-inv by auto
    moreover {
        have atm-of La }\not=atm-of 
        proof (rule ccontr)
            assume \neg ?thesis
            then have La: La=L using \langleLa\in# D\rangle\langle- L\not\in# D>
                by (auto simp add: atm-of-eq-atm-of)
            have Propagated L C' # M\modelsas CNot D
                using conflicting tr-S D unfolding cdcl}\mp@subsup{W}{W}{}\mathrm{ -conflicting-def by auto
            then have -L\in lits-of-l M
                using <La \in# D` in-CNot-implies-uminus(2)[of L D Propagated L C' # M] unfolding La
                by auto
            then show False using lev tr-S unfolding cdcl W-M-level-inv-def consistent-interp-def by auto
        qed
        then have get-level (Propagated L C'# M) La = get-level M La by auto
    }
    ultimately show ?case using D tr-S T by auto
next
    case backtrack
    then show ?case
    by (auto split: if-split-asm simp: cdcl W-M-level-inv-decomp lev)
qed auto
```


Strong completeness

```
lemma propagate-high-levelE:
    assumes propagate S T
    obtains M' N'ULC where
    state-butlast S = ( M', N',U,None) and
    state-butlast T = (Propagated L (C + {#L#}) # M', N',U,None) and
    C+{#L#} \in# local.clauses S and
    M' =as CNot C and
    undefined-lit (trail S) L
proof -
    obtain E L where
    conf: conflicting S = None and
    E: E \in# clauses S and
    LE:L\in# E and
    tr: trail S =as CNot (E-{#L#}) and
    undef: undefined-lit (trail S) L and
    T:T ~ cons-trail (Propagated L E) S
    using assms by (elim propagateE) simp
    obtain MNU where
    S: state-butlast S = (M,N,U,None)
    using conf by auto
    show thesis
    using that[of M N U L remove1-mset L E] S T LE E tr undef
    by auto
qed
```

lemma $c d c l_{W}$-propagate-conflict-completeness:

```
    assumes
        \(M N\) : set \(M \models s\) set-mset \(N\) and
        cons: consistent-interp (set M) and
        tot: total-over-m (set \(M\) ) (set-mset \(N\) ) and
        lits-of-l \((\) trail \(S) \subseteq\) set \(M\) and
        init-clss \(S=N\) and
        propagate** \(S S^{\prime}\) and
        learned-clss \(S=\{\#\}\)
    shows length \((\) trail \(S) \leq\) length \(\left(\right.\) trail \(\left.S^{\prime}\right) \wedge\) lits-of-l \(\left(\right.\) trail \(\left.S^{\prime}\right) \subseteq\) set \(M\)
    using \(\operatorname{assms}(6,4,5,7)\)
proof (induction rule: rtranclp-induct)
    case base
    then show ?case by auto
next
    case (step \(Y\) Z)
    note st \(=\) this(1) and propa \(=\) this(2) and \(I H=\) this(3) and lits \(^{\prime}=\) this(4) and NS \(=\) this(5) and
        learned \(=\) this( 6 )
    then have len: length \((\) trail \(S) \leq\) length \((\) trail \(Y)\) and \(L M\) : lits-of-l \((\) trail \(Y) \subseteq\) set \(M\)
        by blast+
    obtain \(M^{\prime} N^{\prime} U C L\) where
        \(Y\) : state-butlast \(Y=\left(M^{\prime}, N^{\prime}, U, N o n e\right)\) and
        \(Z\) : state-butlast \(Z=\left(\right.\) Propagated \(\left.L(C+\{\# L \#\}) \# M^{\prime}, N^{\prime}, U, N o n e\right)\) and
        \(C: C+\{\# L \#\} \in \#\) clauses \(Y\) and
        \(M^{\prime}-C: M^{\prime} \models\) as \(C N o t C\) and
        undefined-lit (trail \(Y\) ) \(L\)
        using propa by (auto elim: propagate-high-levelE)
    have init-clss \(S=\) init-clss \(Y\)
        using st by induction (auto elim: propagateE)
    then have \(\left[\right.\) simp]: \(N^{\prime}=N\) using \(N S Y Z\) by simp
    have learned-clss \(Y=\{\#\}\)
        using st learned by induction (auto elim: propagateE)
    then have \([\) simp \(]: U=\{\#\}\) using \(Y\) by auto
    have set \(M \models s\) CNot \(C\)
        using \(M^{\prime}\)-C LM Y unfolding true-annots-def Ball-def true-annot-def true-clss-def true-cls-def
        by force
    moreover
        have set \(M \models C+\{\# L \#\}\)
            using MN C learned \(Y\) NS 〈init-clss \(S=\) init-clss \(Y\rangle\langle l e a r n e d-c l s s ~ Y=\{\#\}\rangle\)
            unfolding true-clss-def clauses-def by fastforce
    ultimately have \(L \in\) set \(M\) by (simp add: cons consistent-CNot-not)
    then show ?case using \(L M\) len \(Y Z\) by auto
qed
lemma
    assumes propagate** \(S X\)
    shows
        rtranclp-propagate-init-clss: init-clss \(X=\) init-clss \(S\) and
        rtranclp-propagate-learned-clss: learned-clss \(X=\) learned-clss \(S\)
    using assms by (induction rule: rtranclp-induct) (auto elim: propagateE)
lemma \(c d c l_{W}\)-stgy-strong-completeness- \(n\) :
    assumes
        \(M N\) : set \(M \models s\) set-mset \(N\) and
```

```
    cons: consistent-interp (set M) and
    tot: total-over-m (set M) (set-mset N) and
    atm-incl: atm-of ' (set M)\subseteqatms-of-mm N and
    distM: distinct M and
    length: n \leq length M
    shows
    \existsM}\mp@subsup{M}{}{\prime}\mathrm{ S. length }\mp@subsup{M}{}{\prime}\geqn
        lits-of-l M'\subseteq set M^
        no-dup M'^
        state-butlast S = (M',N,{#},None) ^
        cdcl W-stgy** (init-state N)S
    using length
proof (induction n)
    case 0
    have state-butlast (init-state N)=([],N,{#},None)
        by auto
    moreover have
        0 \leqlength [] and
        lits-of-l [] \subseteq set M and
        cdcl W-stgy** (init-state N) (init-state N)
        and no-dup []
        by auto
    ultimately show ?case by blast
next
    case (Suc n) note IH = this(1) and n=this(2)
    then obtain M'S where
        l-M': length }\mp@subsup{M}{}{\prime}\geqn\mathrm{ and
        M': lits-of-l M}\mp@subsup{M}{}{\prime}\subseteq\mathrm{ set }M\mathrm{ and
        n-d[simp]: no-dup M' and
    S: state-butlast S=(M',N,{#},None) and
    st:cdcl}\mp@subsup{W}{}{-stgy** (init-state N)S
    by auto
have
    M: cdcl }\mp@subsup{W}{}{-M-level-inv S and
    alien: no-strange-atm S
        using cdcl W-M-level-inv-S0-cdcl W-restart rtranclp-cdcl }\mp@subsup{W}{W}{}\mathrm{ -stgy-consistent-inv st apply blast
    using cdcl W-M-level-inv-S0-cdclW-restart no-strange-atm-S0 rtranclp-cdcl W-restart-no-strange-atm-inv
    rtranclp-cdcl W
    { assume no-step: \negno-step propagate S
    then obtain S' where S': propagate S S'
        by auto
    have lev: cdcl }\mp@subsup{W}{W}{}-M\mathrm{ -level-inv S'
        using M S' rtranclp-cdcl W-restart-consistent-inv rtranclp-propagate-is-rtranclp-cdcl W-restart by
blast
    then have n-d'[simp]: no-dup (trail S')
        unfolding }cdc\mp@subsup{l}{W}{}-M\mathrm{ -level-inv-def by auto
    have length (trail S) \leqlength (trail S') ^ lits-of-l (trail S')\subseteq set M
        using S' cdcl W-propagate-conflict-completeness[OF assms(1-3), of S] M'S
        by (auto simp: comp-def)
    moreover have cdclW-stgy S S' using S' by (simp add: cdcl W-stgy.propagate')
    moreover {
        have trail S=M'
            using S by (auto simp: comp-def rev-map)
            then have length (trail S') > n
            using S' l-M' by (auto elim: propagateE) }
```

```
moreover {
    have stS': cdcl W-stgy** (init-state N) S'
        using st cdcl w-stgy.propagate'[OF S] by (auto simp: r-into-rtranclp)
    then have init-clss S'}=
        using rtranclp-cdclW-stgy-no-more-init-clss by fastforce}
    moreover {
        have
        [simp]:learned-clss S' = {#} and
        [simp]: init-clss S' = init-clss S and
        [simp]: conflicting S'= None
        using S S' by (auto elim: propagateE)
    have state-butlast S'=(trail S',N,{#},None)
        using S by auto }
    moreover
have cdcl}\mp@subsup{W}{}{-stgy** (init-state N) S'
    apply (rule rtranclp.rtrancl-into-rtrancl)
    using st apply simp
    using <cdcl W
ultimately have ?case
    apply -
    apply (rule exI[of-trail S'], rule exI[of - S'])
    by auto
}
moreover {
    assume no-step: no-step propagate S
have ?case
    proof (cases length M' }\mp@subsup{M}{}{\prime}\mathrm{ Suc n)
        case True
        then show ?thesis using l-M' M' st M alien S n-d by blast
        next
        case False
        then have }\mp@subsup{n}{}{\prime}:l\mathrm{ length }\mp@subsup{M}{}{\prime}=n\mathrm{ using l-M' by auto
        have no-confl: no-step conflict S
        proof -
        { fix D
            assume D\in#N and M'\modelsas CNot D
            then have set M\modelsD using MN unfolding true-clss-def by auto
            moreover have set M \modelss CNot D
                using <M'\models as CNot D` M'
                by (metis le-iff-sup true-annots-true-cls true-clss-union-increase)
            ultimately have False using cons consistent-CNot-not by blast
        }
        then show ?thesis
            using S by (auto simp: true-clss-def comp-def rev-map
                clauses-def elim!: conflictE)
        qed
        have lenM: length M = card (set M) using distM by (induction M) auto
        have no-dup M' using S M unfolding cdclW}\mp@subsup{W}{}{\prime}-M\mathrm{ -level-inv-def by auto
        then have card (lits-of-l M') = length M'
        by (induction M}\mp@subsup{M}{}{\prime}\mathrm{ ) (auto simp add:lits-of-def card-insert-if defined-lit-map)
        then have lits-of-l M'\subset set M
            using n M' n' lenM by auto
        then obtain L where L:L\in set M and undef-m: L& lits-of-l M' by auto
        moreover have undef: undefined-lit M'L
        using M' Decided-Propagated-in-iff-in-lits-of-l calculation(1,2) cons
        consistent-interp-def by (metis (no-types, lifting) subset-eq)
```

```
        moreover have atm-of L\inatms-of-mm (init-clss S)
            using atm-incl calculation S by auto
            ultimately have dec: decide S (cons-trail (Decided L) S)
            using decide-rule[of S-cons-trail (Decided L) S] S by auto
            let ? }\mp@subsup{S}{}{\prime}=\mathrm{ cons-trail (Decided L) S
            have lits-of-l (trail ?S')\subseteq set M using L M'S undef by auto
            moreover have no-strange-atm ?S'
            using alien dec M by (meson cdclW-restart-no-strange-atm-inv decide other)
            have cdclW}\mp@subsup{W}{}{-M-level-inv ?S'
            using M dec rtranclp-mono[of decide cdcl W-restart] by (meson cdcl}\mp@subsup{W}{W}{}\mathrm{ -restart-consistent-inv
                decide other)
            then have lev'': cdcl}\mp@subsup{W}{W}{}-M\mathrm{ -level-inv ?S'
            using S rtranclp-cdclW-restart-consistent-inv rtranclp-propagate-is-rtranclp-cdcl}\mp@subsup{W}{W}{}\mathrm{ -restart
            by blast
            then have n-d': no-dup (trail ?S')
            unfolding cdclW}\mp@subsup{W}{}{-M-level-inv-def by auto
            have length (trail S) \leqlength (trail ?S') ^ lits-of-l (trail ?S')\subseteq set M
            using SL M'S undef by simp
            then have Suc n\leqlength (trail ?S') ^ lits-of-l (trail ?S')\subseteq set M
                using l-M'S undef by auto
            moreover have }\mp@subsup{S}{}{\prime\prime}:\mathrm{ state-butlast ? }\mp@subsup{S}{}{\prime}=(\mathrm{ trail ? S', N, {#}, None)
            using S undef n-d" lev"' by auto
            moreover have cdcl}\mp@subsup{W}{}{-stgy** (init-state N) ?S'
                using S'" no-step no-confl st dec by (auto dest:decide cdcl}\mp@subsup{W}{W}{}\mathrm{ -stgy.intros)
            ultimately show ?thesis using n-d d}\mathrm{ by blast
            qed
}
ultimately show ?case by blast
qed
lemma cdcl W-stgy-strong-completeness':
    assumes
    MN: set M }\modelss\mathrm{ set-mset N}\mathrm{ and
    cons: consistent-interp (set M) and
    tot: total-over-m (set M) (set-mset N) and
    atm-incl: atm-of ' (set M)\subseteqatms-of-mm N and
    distM: distinct M
shows
    \existsM'S. lits-of-l M' = set M^
        state-butlast S = (M',N,{#}, None) ^
        cdcl}\mp@subsup{W}{W}{-stgy** (init-state N)S
proof -
    have }\exists\mp@subsup{M}{}{\prime}S\mathrm{ . lits-of-l M}\mp@subsup{M}{}{\prime}\subseteq\mathrm{ set M ^
        no-dup M'^ length M}\mp@subsup{M}{}{\prime}=n
        state-butlast S = (M',N,{#}, None) ^
        cdcl W-stgy** (init-state N) S>
    if <n\leqlength M> for n :: nat
    using that
proof (induction n)
    case 0
    then show ?case by (auto intro!: exI[of - <init-state N\rangle])
next
    case (Suc n) note IH = this(1) and n-le-M = this(2)
    then obtain M'S where
        M': lits-of-l M' }\subseteq\mathrm{ set M and
        n-d[simp]: no-dup M' and
```

S : state-butlast $S=\left(M^{\prime}, N,\{\#\}\right.$, None $)$ and
st: cdcl_{W}-stgy** (init-state $\left.N\right) S$ and
$l-M^{\prime}:\left\langle l e n g t h ~ M^{\prime}=n\right\rangle$
by auto
have
M: $c d c l_{W}-M-l e v e l-i n v S$ and
alien: no-strange-atm S
using $c d c l_{W}$-M-level-inv-S0-cdcl W_{W}-restart rtranclp- $c d c l_{W}$-stgy-consistent-inv st apply blast
using $c d c l_{W}$-M-level-inv-S0-cdcl W_{W}-restart no-strange-atm-S0 rtranclp-cdcl ${ }_{W}$-restart-no-strange-atm-inv rtranclp-cdcl ${ }_{W}$-stgy-rtranclp-cdcl W_{W}-restart st by blast
\{ assume no-step: \neg no-step propagate S
then obtain S^{\prime} where $S^{\prime}:$ propagate $S S^{\prime}$
by auto
have lev: $c d c l_{W}$-M-level-inv S^{\prime}
using $M S^{\prime}$ rtranclp-cdcl W_{W}-restart-consistent-inv rtranclp-propagate-is-rtranclp-cdcl W_{W}-restart by
blast
then have $n-d^{\prime}[$ simp $]$: no-dup (trail S^{\prime})
unfolding $c d c l_{W}-M$-level-inv-def by auto
have length $($ trail $S) \leq$ length $\left(\right.$ trail $\left.S^{\prime}\right) \wedge$ lits-of-l $\left(\right.$ trail $\left.S^{\prime}\right) \subseteq$ set M
using S^{\prime} cdcl $_{W}$-propagate-conflict-completeness $[$ OF assms $(\overline{1}-3)$, of $S] M^{\prime} S$
by (auto simp: comp-def)
moreover have $c d c l_{W}$-stgy $S S^{\prime}$ using S^{\prime} by (simp add: cdcl W_{W}-stgy.propagate ${ }^{\prime}$)
moreover \{
have trail $S=M^{\prime}$
using S by (auto simp: comp-def rev-map)
then have length (trail $\left.S^{\prime}\right)=$ Suc n
using $S^{\prime} l-M^{\prime}$ by (auto elim: propagateE) \}
moreover \{
have $s t S^{\prime}: c d c l_{W}$-stgy** $($ init-state $N) S^{\prime}$
using st $c d c l_{W}$-stgy.propagate $[$ OF S] by (auto simp: r-into-rtranclp)
then have init-clss $S^{\prime}=N$
using rtranclp-cdcl ${ }_{W}$-stgy-no-more-init-clss by fastforce $\}$
moreover \{
have
[simp]:learned-clss $S^{\prime}=\{\#\}$ and
[simp]: init-clss $S^{\prime}=$ init-clss S and
[simp]: conflicting $S^{\prime}=$ None
using $S S^{\prime}$ by (auto elim: propagateE)
have state-butlast $S^{\prime}=\left(\right.$ trail $S^{\prime}, N,\{\#\}$, None $)$
using S by auto \}
moreover
have $c d c l_{W}$-stgy** $($ init-state $N) S^{\prime}$
apply (rule rtranclp.rtrancl-into-rtrancl)
using st apply simp
using $\left\langle c d c l_{W}\right.$-stgy $\left.S S^{\prime}\right\rangle$ by simp
ultimately have ?case
apply -
apply (rule exI[of-trail S], rule exI[of-S $]$)
by auto
\}
moreover \{ assume no-step: no-step propagate S
have no-confl: no-step conflict S
proof -
$\{$ fix D
assume $D \in \# N$ and $M^{\prime} \models$ as CNot D
then have set $M \models D$ using $M N$ unfolding true－clss－def by auto
moreover have set $M \models s$ CNot D
using $\left\langle M^{\prime} \models\right.$ as CNot $\left.D\right\rangle M^{\prime}$
by（metis le－iff－sup true－annots－true－cls true－clss－union－increase）
ultimately have False using cons consistent－CNot－not by blast
\}
then show ？thesis
using S by（auto simp：true－clss－def comp－def rev－map clauses－def elim！：conflictE）
qed
have len M ：length $M=$ card（set M ）using distM by（induction M ）auto
have no－dup M^{\prime} using $S M$ unfolding $c d c l_{W}-M$－level－inv－def by auto
then have card（lits－of－l M^{\prime} ）$=$ length M^{\prime}
by（induction M^{\prime} ）（auto simp add：lits－of－def card－insert－if defined－lit－map）
then have lits－of－l $M^{\prime} \subset$ set M
using $M^{\prime} l-M^{\prime}$ len M－le－M by auto
then obtain L where $L: L \in$ set M and undef－m：$L \notin$ lits－of－l M^{\prime} by auto
moreover have undef：undefined－lit $M^{\prime} L$
using M^{\prime} Decided－Propagated－in－iff－in－lits－of－l calculation $(1,2)$ cons
consistent－interp－def by（metis（no－types，lifting）subset－eq）
moreover have atm－of $L \in$ atms－of－mm（init－clss S ）
using atm－incl calculation S by auto
ultimately have dec：decide S（cons－trail（Decided L）S ）
using decide－rule［of S－cons－trail（Decided L）S ］S by auto
let ？$S^{\prime}=$ cons－trail $($ Decided $L) S$
have lits－of－l（trail ？$\left.S^{\prime}\right) \subseteq$ set M using $L M^{\prime} S$ undef by auto
moreover have no－strange－atm ？S^{\prime}
using alien dec M by（meson cdcl $_{W}$－restart－no－strange－atm－inv decide other）
have $c d c l_{W}$－M－level－inv？S^{\prime}
using M dec rtranclp－mono［of decide cdcl $_{W}$－restart］by（meson $c d c l_{W}$－restart－consistent－inv decide other）
then have lev ${ }^{\prime \prime}: c d c l_{W}-M$－level－inv ？$S^{\prime}$
using S rtranclp－cdcl W_{W}－restart－consistent－inv rtranclp－propagate－is－rtranclp－cdcl W_{W}－restart by blast
then have n－$d^{\prime \prime}$ ：no－dup（trail ？S＇）
unfolding $c d c l_{W}$－M－level－inv－def by auto
have Suc $($ length $($ trail $S))=$ length $\left(\right.$ trail ？$\left.S^{\prime}\right) \wedge$ lits－of－l $\left(\right.$ trail ？$\left.S^{\prime}\right) \subseteq$ set M
using $S L M^{\prime} S$ undef by simp
then have Suc $n=$ length（trail ？S^{\prime} ）\wedge lits－of－l（trail ？S^{\prime} ）\subseteq set M
using $l-M^{\prime} S$ undef by auto
moreover have $S^{\prime \prime}$ ：state－butlast ？$S^{\prime}=\left(\right.$ trail ？$S^{\prime}, N,\{\#\}$ ，None $)$
using S undef $n-d^{\prime \prime}$ lev＂by auto
moreover have $c d c l_{W}$－stgy＊＊$($ init－state $N)$ ？S^{\prime}
using $S^{\prime \prime}$ no－step no－confl st dec by（auto dest：decide cdcl W_{W}－stgy．intros）
ultimately have ？case using $n-d^{\prime \prime} L M^{\prime}$ by（auto intro！：exI［of－\langle Decided $L \#$ trail $S\rangle$ ］exI［of－
ultimately show ？case by blast
qed
from this［of 〈length $M\rangle$ ］obtain $M^{\prime} S$ where
$M^{\prime}-M:\left\langle l i t s-o f-l M^{\prime} \subseteq\right.$ set $\left.M\right\rangle$ and
n－d：$\left\langle n o-d u p M^{\prime}\right\rangle$ and
〈length $M^{\prime}=$ length M 〉 and
$\left\langle\right.$ state－butlast $S=\left(M^{\prime}, N,\{\#\}\right.$, None $) \wedge c d c l_{W}$－stgy ${ }^{* *}($ init－state $\left.N) S\right\rangle$
by auto
moreover have $\left\langle l i t s-o f-l M^{\prime}=\right.$ set $\left.M\right\rangle$

```
    apply (rule card-subset-eq)
    subgoal by auto
    subgoal using M'-M .
        subgoal using M'-M n-d no-dup-length-eq-card-atm-of-lits-of-l[OF n-d] M'-M 〈finite (set M)〉
distinct-card[OF distM] calculation(3)
            card-image-le[of <lits-of-l M'> atm-of] card-seteq[OF <finite (set M)\rangle,of <lits-of-l M'>]
        by auto
    done
    ultimately show ?thesis
    by (auto intro!: exI[of-S])
qed
```

theorem 2.9.11 page 98 of Weidenbach's book (with strategy)

```
lemma cdcl W-stgy-strong-completeness:
    assumes
        MN: set M }\modelss\mathrm{ set-mset N}\mathrm{ and
        cons: consistent-interp (set M) and
        tot: total-over-m (set M) (set-mset N) and
        atm-incl: atm-of ' (set M)\subseteqatms-of-mm N and
        distM: distinct M
    shows
    \existsM' kS.
        lits-of-l M' = set M ^
        state-butlast S = (M',N,{#},None) ^
        cdcl }\mp@subsup{W}{W}{-stg\mp@subsup{y}{}{**}}(\mathrm{ init-state N) S}
        final-cdcl W-restart-state S
proof -
    from cdcl W
    obtain M' T where
        l: length M < length M' and
        M'-M: lits-of-l M'\subseteq set M and
        no-dup: no-dup M' and
        T: state-butlast T = (M',N,{#},None) and
        st: cdcl W-stgy** (init-state N) T
        by auto
    have card (set M) = length M using distM by (simp add: distinct-card)
    moreover {
        have cdcl}\mp@subsup{W}{}{-M-level-inv T
            using rtranclp-cdclW-stgy-consistent-inv[OF st] T by auto
            then have card (set ((map ( }\lambdal\mathrm{ l.atm-of (lit-of l)) M}\mp@subsup{M}{}{\prime})))=\mathrm{ length M'
                using distinct-card no-dup by (fastforce simp: lits-of-def image-image no-dup-def) }
    moreover have card (lits-of-l M') = card (set ((map (\lambdal. atm-of (lit-of l)) M')))
        using no-dup by (induction M') (auto simp add: defined-lit-map card-insert-if lits-of-def)
    ultimately have card (set M) \leq card (lits-of-l M') using l unfolding lits-of-def by auto
    then have s: set M = lits-of-l M'
        using M'-M card-seteq by blast
    moreover {
        have M'\modelsasm N
            using MN s unfolding true-annots-def Ball-def true-annot-def true-clss-def by auto
    then have final-cdcl W
            using T no-dup unfolding final-cdcl W-restart-state-def by auto }
    ultimately show ?thesis using st T by blast
qed
```


No conflict with only variables of level less than backtrack level

This invariant is stronger than the previous argument in the sense that it is a property about all possible conflicts.

definition no-smaller-confl (S ::'st) \equiv

$\left(\forall M K M^{\prime} D\right.$. trail $S=M^{\prime} @$ Decided $K \# M \longrightarrow D \in \#$ clauses $S \longrightarrow \neg M \models$ as CNot $\left.D\right)$
lemma no-smaller-confl-init-sate[simp]:
no-smaller-confl (init-state N) unfolding no-smaller-confl-def by auto
lemma $c d c l_{W}$-o-no-smaller-confl-inv:
fixes $S S^{\prime}::$ 'st
assumes
${ }^{c d c l}{ }_{W}-o S S^{\prime}$ and
n-s: no-step conflict S and
lev: $\operatorname{cdcl}_{W}-M$-level-inv S and
max-lev: conflict-is-false-with-level S and
smaller: no-smaller-confl S
shows no-smaller-confl S^{\prime}
using $\operatorname{assms}(1,2)$ unfolding no-smaller-confl-def
proof (induct rule: cdcl $_{W}$-o-induct)
case (decide $L T$) note confl $=$ this(1) and undef $=$ this(2) and $T=$ this(4)
have [simp]: clauses $T=$ clauses S
using T undef by auto
show ? case
proof (intro allI impI)
fix $M^{\prime \prime} K M^{\prime} D a$
assume trail $T=M^{\prime \prime} @$ Decided $K \# M^{\prime}$ and $D: D a \in \#$ local.clauses T
then have trail $S=t l M^{\prime \prime} @$ Decided $K \# M^{\prime}$
$\vee\left(M^{\prime \prime}=[] \wedge\right.$ Decided $K \# M^{\prime}=$ Decided $L \#$ trail $\left.S\right)$
using T undef by (cases $M^{\prime \prime}$) auto
moreover \{
assume trail $S=t l M^{\prime \prime} @$ Decided $K \# M^{\prime}$
then have $\neg M^{\prime} \models$ as CNot $D a$
using D T undef confl smaller unfolding no-smaller-confl-def smaller by fastforce \}
moreover \{
assume Decided $K \# M^{\prime}=$ Decided $L \#$ trail S
then have $\neg M^{\prime} \models$ as CNot Da using smaller D confl $T n$-s by (auto simp: conflict.simps) \}
ultimately show $\neg M^{\prime} \models$ as CNot Da by fast
qed
next
case resolve
then show ?case using smaller max-lev unfolding no-smaller-confl-def by auto
next
case skip
then show ?case using smaller max-lev unfolding no-smaller-confl-def by auto next
case (backtrack LDKiM1 M2 T D^{\prime}) note confl $=$ this(1) and decomp $=$ this(2) and $T=t h i s(9)$
obtain c where M : trail $S=c$ @ M2 @ Decided K \# M1 using decomp by auto
show ?case

```
proof (intro allI impI)
    fix M ia K' M' Da
    assume trail T= M' @ Decided K' # M
    then have M1 = tl M' @ Decided K' # M
        using T decomp lev by (cases M') (auto simp: cdcl W-M-level-inv-decomp)
    let ? D' = {add-mset L D '
    let ?S' = (cons-trail (Propagated L ?D')
                    (reduce-trail-to M1 (add-learned-cls ?D' (update-conflicting None S))))
    assume D: Da \in# clauses T
    moreover{
        assume Da \in# clauses S
        then have }\negM\models\mathrm{ as CNot Da using <M1 = tl M' @ Decided K' # M` M confl smaller
            unfolding no-smaller-confl-def by auto
    }
    moreover {
        assume Da: Da=add-mset L D'
        have }\negM\modelsas CNot D
        proof (rule ccontr)
        assume }\neg\mathrm{ ?thesis
        then have -L \in lits-of-l M
            unfolding Da by (simp add: in-CNot-implies-uminus(2))
        then have -L\in lits-of-l (Propagated L D # M1)
            using UnI2 〈M1 = tl M'@ Decided K' # M \
            by auto
        moreover
        have backtrack S ?S'
                using backtrack-rule[OF backtrack.hyps(1-8) T] backtrack-state-eq-compatible[of S T S]T
                by force
        then have }cdc\mp@subsup{l}{W}{}-M\mathrm{ -level-inv ?S'
            using cdcl }\mp@subsup{W}{W}{-restart-consistent-inv[OF - lev] other[OF bj]
            by (auto intro: cdcl}\mp@subsup{W}{}{-}\mathrm{ -bj.intros)
        then have no-dup (Propagated L D # M1)
                using decomp lev unfolding }cdc\mp@subsup{l}{W}{}-M\mathrm{ -level-inv-def by auto
        ultimately show False
            using Decided-Propagated-in-iff-in-lits-of-l defined-lit-map
            by (auto simp: no-dup-def)
        qed
    }
    ultimately show }\negM\models\mathrm{ as CNot Da
    using T decomp lev unfolding }cdc\mp@subsup{l}{W}{}-M\mathrm{ -level-inv-def by fastforce
qed
qed
lemma conflict-no-smaller-confl-inv:
    assumes conflict S S'
    and no-smaller-confl S
    shows no-smaller-confl S'
    using assms unfolding no-smaller-confl-def by (fastforce elim: conflictE)
lemma propagate-no-smaller-confl-inv:
    assumes propagate: propagate S S'
    and n-l: no-smaller-confl S
    shows no-smaller-confl S'
    unfolding no-smaller-confl-def
proof (intro allI impI)
    fix }\mp@subsup{M}{}{\prime}K\mp@subsup{M}{}{\prime\prime}
```

assume M^{\prime} : trail $S^{\prime}=M^{\prime \prime} @$ Decided $K \# M^{\prime}$
and $D \in \#$ clauses S^{\prime}
obtain $M N U C L$ where
S : state-butlast $S=(M, N, U$, None $)$ and
$S^{\prime}:$ state-butlast $S^{\prime}=($ Propagated $L(C+\{\# L \#\}) \# M, N, U, N o n e)$ and
$C+\{\# L \#\} \in \#$ clauses S and
$M \models$ as $C N o t C$ and
undefined-lit ML
using propagate by (auto elim: propagate-high-levelE)
have $t l M^{\prime \prime} @$ Decided $K \# M^{\prime}=$ trail S using $M^{\prime} S S^{\prime}$
by (metis Pair-inject list.inject list.sel(3) annotated-lit.distinct(1) self-append-conv2 tl-append2)
then have $\neg M^{\prime} \models$ as CNot D
using $\left\langle D \in \#\right.$ clauses $\left.S^{\prime}\right\rangle n$-l $S S^{\prime}$ clauses-def unfolding no-smaller-confl-def by auto
then show $\neg M^{\prime} \models$ as CNot D by auto
qed
lemma $c d c l_{W}$-stgy-no-smaller-conf:
assumes cdcl $_{W}$-stgy $S S^{\prime}$
and n-l: no-smaller-confl S
and conflict-is-false-with-level S
and $c d c l_{W}-M$-level-inv S
shows no-smaller-confl S^{\prime}
using assms
proof (induct rule: cdcl $_{W}$-stgy.induct)
case (conflict ${ }^{\prime} S^{\prime}$)
then show?case using conflict-no-smaller-confl-inv[of $\left.S S^{\prime}\right]$ by blast
next
case (propagate' S^{\prime})
then show ?case using propagate-no-smaller-confl-inv[of S S] by blast
next
case (other ${ }^{\prime} S^{\prime}$)
then show ?case
using $\left.\mathrm{cdcl}_{W^{-o-n o-s m a l l e r-c o n f l-i n v}[o f ~} S\right]$ by auto
qed
lemma conflict-conflict-is-false-with-level:
assumes
conflict: conflict $S T$ and
smaller: no-smaller-confl S and
M-lev: cdcl_{W}-M-level-inv S
shows conflict-is-false-with-level T
using conflict
proof (cases rule: conflict.cases)
case (conflict-rule D) note confl $=$ this(1) and $D=\operatorname{this}(2)$ and not- $D=\operatorname{this}(3)$ and $T=$ this(4)
then have $[$ simp $]$: conflicting $T=$ Some D
by auto
have M-lev- T : $c d c l_{W}$-M-level-inv T
using conflict M-lev by (auto simp: cdcl $_{W}$-restart-consistent-inv dest: cdcl $_{W}$-restart.intros)
then have bt: backtrack-lvl $T=$ count-decided $($ trail $T)$
unfolding $\mathrm{cdcl}_{W}-M$-level-inv-def by auto
have n-d: no-dup (trail T)
using M-lev- T unfolding $c d c l_{W}$-M-level-inv-def by auto
show ?thesis
proof (rule ccontr, clarsimp)
assume
empty: $D \neq\{\#\}$ and
lev: $\forall L \in \# D$. get-level (trail T) $L \neq$ backtrack-lvl T
moreover \{
have get-level (trail T) $L \leq$ backtrack-lvl T if $L \in \# D$ for L
using that count-decided-ge-get-level[of trail $T L] M$-lev-T
unfolding $c d c l_{W}-M$-level-inv-def by auto
then have get-level ($\operatorname{trail} T$) $L<$ backtrack-lvl T if $L \in \# D$ for L
using lev that by fastforce $\}$ note $l e v^{\prime}=$ this
ultimately have count-decided $($ trail $T)>0$
using M-lev- T unfolding $c d c l_{W}$-M-level-inv-def by (cases D) fastforce+
then have ex: $\exists x \in$ set (trail $T)$. is-decided $x\rangle$
unfolding no-dup-def count-decided-def by cases auto
have $\langle\exists$ M2 L M1. trail T = M2 @ Decided L \# M1 ^ ($\forall m \in$ set M2. \neg is-decided $m)\rangle$
by (rule split-list-first-propE[of trail T is-decided, OF ex])
(force elim!: is-decided-ex-Decided)
then obtain M2 L M1 where
tr-T: trail $T=M 2$ @ Decided $L \# M 1$ and $n m: \forall m \in$ set M2. \neg is-decided m by blast
moreover \{
have get-level (trail $T) L a=b a c k t r a c k-l v l T$ if $-L a \in l i t s-o f-l$ M2 for $L a$ unfolding $t r-T b t$
apply (subst get-level-skip-end)
using that apply (simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
Decided-Propagated-in-iff-in-lits-of-l; fail)
using $n m$ bt tr-T by (simp add: count-decided-0-iff) \}
moreover \{
have tr: M2 @ Decided $L \# M 1=($ M2 @ $[$ Decided $L])$ @ M1
by auto
have get-level (trail T) $L=$ backtrack-lvl T
using n - $d n m$ unfolding $t r$ - T tr $b t$
by (auto simp: image-image atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set atm-lit-of-set-lits-of-l count-decided-O-iff[symmetric]) \}
moreover have trail $S=$ trail T
using T by auto
ultimately have M1 \models as CNot D
using lev' not-D unfolding true-annots-true-cls-def-iff-negation-in-model
by (force simp: count-decided-0-iff [symmetric] get-level-def)
then show False
using smaller T tr-T D by (auto simp: no-smaller-confl-def)
qed
qed
lemma $c d c l_{W}$-stgy-ex-lit-of-max-level:
assumes
${ }^{c d c l_{W}}{ }^{-s t g y} S S^{\prime}$ and
n-l: no-smaller-confl S and
conflict-is-false-with-level S and
$c d c l_{W}-M$-level-inv S and
distinct-cdcl ${ }_{W}$-state S and
$c d c l_{W}$-conflicting S
shows conflict-is-false-with-level S^{\prime}
using assms
proof (induct rule: cdcl $_{W}$-stgy.induct)
case (conflict ${ }^{\prime} S^{\prime}$)
then have no-smaller-confl S^{\prime}
using conflict'.hyps conflict-no-smaller-confl-inv n-l by blast
moreover have conflict-is-false-with-level S^{\prime}
using conflict-conflict-is-false-with-level assms(4) conflict'.hyps n-l by blast
then show ?case by blast

next

case (propagate ${ }^{\prime} S^{\prime}$)
then show ?case by (auto elim: propagateE)
next
case $\left(\right.$ other $\left.^{\prime} S^{\prime}\right)$ note $n-s=$ this(1,2) and $o=t h i s(3)$ and $l e v=$ this (6)
show ?case
using cdcl $_{W}$-o-conflict-is-false-with-level-inv $\left[\right.$ OF o] other' ${ }^{\prime}$ prems by blast
qed
lemma rtranclp-cdcl ${ }_{W}$-stgy-no-smaller-confl-inv:
assumes
$c d c l_{W}-s t g y^{* *} S S^{\prime}$ and
n-l: no-smaller-confl S and
cls-false: conflict-is-false-with-level S and
lev: $c d c l_{W}$-M-level-inv S and
dist: distinct-cdcl ${ }_{W}$-state S and
conflicting: $c d c l_{W}$-conflicting S and
decomp: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
learned: $c d c l_{W}$-learned-clause S and
alien: no-strange-atm S
shows no-smaller-confl $S^{\prime} \wedge$ conflict-is-false-with-level S^{\prime}
using assms(1)
proof (induct rule: rtranclp-induct)
case base
then show ?case using n-l cls-false by auto
next
case $\left(\right.$ step $\left.S^{\prime} S^{\prime \prime}\right)$ note $s t=t h i s(1)$ and $c d c l=t h i s(2)$ and $I H=t h i s(3)$
have no-smaller-confl S^{\prime} and conflict-is-false-with-level S^{\prime}
using $I H$ by blast+
moreover have $c d c l_{W}$-M-level-inv S^{\prime}
using st lev rtranclp-cdcl W_{W}-stgy-rtranclp- $c d c l_{W}$-restart
by (blast intro: rtranclp-cdcl ${ }_{W}$-restart-consistent-inv) +
moreover have distinct-cdcl W_{W}-state S^{\prime}
using rtanclp-distinct-cdcl W_{W}-state-inv[of $S S$] lev rtranclp-cdcl W_{W}-stgy-rtranclp-cdcl ${ }_{W}$-restart[OF st] dist by auto
moreover have $c d c l_{W}$-conflicting S^{\prime}
using rtranclp-cdcl W_{W}-restart-all-inv(6$)\left[\right.$ of $\left.S S^{\prime}\right]$ st alien conflicting decomp dist learned lev rtranclp-cdcl W_{W}-stgy-rtranclp-cdcl W_{W}-restart by blast
ultimately show ?case
using cdcl $_{W}$-stgy-no-smaller-confl[OF \quad cdcl] $c d c l_{W}$-stgy-ex-lit-of-max-level[$[O F c d c l] c d c l$
by (auto simp del: simp add: cdcl_{W}-stgy.simps elim!: propagateE)
qed

Final States are Conclusive

theorem 2.9.9 page 97 of Weidenbach's book
lemma full-cdcl ${ }_{W}$-stgy-final-state-conclusive:
fixes $S^{\prime}::$ 'st
assumes full: full cdcl $_{W}$-stgy (init-state N) S^{\prime}
and no-d: distinct-mset-mset N
shows $\left(\right.$ conflicting $S^{\prime}=$ Some $\{\#\} \wedge$ unsatisfiable (set-mset $\left(\right.$ init-clss $\left.\left.S^{\prime}\right)\right)$)

```
    \vee ( \text { conflicting S'=None } \wedge \text { trail } S ^ { \prime } \models \text { asm init-clss S')}
proof -
    let ?S = init-state N
    have
        termi: \forall\mp@subsup{S}{}{\prime\prime}.\negcdcl}\mp@subsup{W}{W}{}-stgy S' S'' and
        step: cdcl}\mp@subsup{W}{}{-stgy** ?S S' using full unfolding full-def by auto
    have
        learned: cdcl W-learned-clause S' and
        level-inv: cdcl}\mp@subsup{W}{}{-M-level-inv S' and
        alien: no-strange-atm S' and
        no-dup: distinct-cdcl W-state S' and
        confl: cdcl W-conflicting S' and
        decomp: all-decomposition-implies-m (clauses S')(get-all-ann-decomposition (trail S}\mp@subsup{S}{}{\prime})\mathrm{ )
        using no-d tranclp-cdclW-stgy-tranclp-cdcl W-restart[of ?S S] step
        rtranclp-cdcl W-restart-all-inv(1-6)[of ?S S]
        unfolding rtranclp-unfold by auto
    have confl-k:conflict-is-false-with-level S'
        using rtranclp-cdcl W-stgy-no-smaller-confl-inv[OF step] no-d by auto
    have learned-entailed: <cdcl W-learned-clauses-entailed-by-init S'>
        using rtranclp-cdcl W-learned-clauses-entailed[of \langle?S\rangle\langleS'\] step
        by (simp add: rtranclp-cdcl}\mp@subsup{W}{W}{-stgy-rtranclp-cdcl W}\mp@subsup{W}{W}{-restart)
    show ?thesis
        using cdcl W-stgy-final-state-conclusive[OF termi decomp learned level-inv alien no-dup confl
            confl-k learned-entailed] .
qed
lemma cdcl}\mp@subsup{W}{}{-o-fst-empty-conflicting-false:
    assumes
        cdcl}\mp@subsup{W}{}{-o}S S S' and
        trail S = [] and
        conflicting S = None
    shows False
    using assms by (induct rule: cdcl W-o-induct) auto
lemma cdcl}\mp@subsup{W}{W}{-stgy-fst-empty-conflicting-false:
    assumes
        cdcl}\mp@subsup{W}{}{-stgy S S'
        trail S = [] and
        conflicting S = None
    shows False
    using assms apply (induct rule: cdclW-stgy.induct)
    apply (auto elim: conflictE; fail)[]
    apply (auto elim: propagateE; fail)[]
    using cdcl w-o-fst-empty-conflicting-false by blast
lemma cdcl}\mp@subsup{W}{W}{-o-conflicting-is-false:
    cdcl}\mp@subsup{W}{}{-o}S\mp@subsup{S}{}{\prime}\Longrightarrow\mathrm{ conflicting S=Some {#} }\Longrightarrow\mathrm{ False
    by (induction rule: cdcl}\mp@subsup{W}{}{-o-induct) auto
lemma cdcl}\mp@subsup{W}{W}{-stgy-conflicting-is-false:
    cdclW-stgy S S' }\Longrightarrow\mathrm{ conflicting S = Some {#} }\Longrightarrow\mathrm{ False
    apply (induction rule: cdcl W-stgy.induct)
    apply (auto elim: conflictE; fail)[]
    apply (auto elim: propagateE; fail)[]
    by (metis conflict-with-false-implies-terminated other)
```

```
lemma rtranclp-cdcl}\mp@subsup{W}{W}{-stgy-conflicting-is-false:
    cdcl}\mp@subsup{W}{}{\mathrm{ -stgy** }}S\mp@subsup{S}{}{\prime}\Longrightarrow\mathrm{ conflicting S = Some {#} }\Longrightarrow\mp@subsup{S}{}{\prime}=
    apply (induction rule: rtranclp-induct)
        apply simp
    using cdclW-stgy-conflicting-is-false by blast
definition conflict-or-propagate :: 'st }=>\mathrm{ 'st }=>\mathrm{ bool where
conflict-or-propagate S T\longleftrightarrow conflict S T \vee propagate S T
declare conflict-or-propagate-def[simp]
lemma conflict-or-propagate-intros:
    conflict ST\Longrightarrow conflict-or-propagate S T
    propagate S T\Longrightarrow conflict-or-propagate S T
    by auto
theorem 2.9.9 page 97 of Weidenbach's book
lemma full-cdcl }\mp@subsup{W}{}{-}\mathrm{ -stgy-final-state-conclusive-from-init-state:
    fixes S' :: 'st
    assumes full: full cdcl w-stgy (init-state N) S'
    and no-d: distinct-mset-mset N
    shows (conflicting S' = Some {#} ^ unsatisfiable (set-mset N))
        \vee (conflicting S'}\mp@subsup{S}{}{\prime}=None \wedge trail S' =asm N ^ satisfiable (set-mset N)
proof -
    have N: init-clss S'=N
        using full unfolding full-def by (auto dest: rtranclp-cdcl w-stgy-no-more-init-clss)
    consider
            (confl) conflicting S'=Some {#} and unsatisfiable (set-mset (init-clss S'))
        | (sat) conflicting }\mp@subsup{S}{}{\prime}=None and trail S' =asm init-clss S'
        using full-cdcl w-stgy-final-state-conclusive[OF assms] by auto
    then show ?thesis
    proof cases
        case confl
        then show ?thesis by (auto simp:N)
    next
        case sat
        have cdcl}\mp@subsup{W}{}{-M-level-inv (init-state N) by auto
        then have cdcl}\mp@subsup{W}{}{-M-level-inv S'
            using full rtranclp-cdclW-stgy-consistent-inv unfolding full-def by blast
        then have consistent-interp (lits-of-l (trail S'))
                unfolding }cdc\mp@subsup{l}{W}{}-M\mathrm{ -level-inv-def by blast
        moreover have lits-of-l (trail S') \modelss set-mset (init-clss S')
            using sat(2) by (auto simp add: true-annots-def true-annot-def true-clss-def)
        ultimately have satisfiable (set-mset (init-clss S')) by simp
        then show ?thesis using sat unfolding N by blast
    qed
qed
```


1.1.6 Structural Invariant

The condition that no learned clause is a tautology is overkill for the termination (in the sense that the no-duplicate condition is enough), but it allows to reuse simple-clss.

The invariant contains all the structural invariants that holds,
definition $c d c l_{W}$-all-struct-inv where
$c d c l_{W}$-all-struct-inv $S \longleftrightarrow$
no-strange-atm $S \wedge$
$c d c l_{W}$-M-level-inv $S \wedge$
$(\forall s \in \#$ learned-clss S. \neg tautology s) \wedge
distinct-cdcl ${ }_{W}$-state $S \wedge$
$c d c l_{W}$-conflicting $S \wedge$
all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) \wedge
${ }^{c d c l}{ }_{W}$-learned-clause S
lemma cdcl $_{W}$-all-struct-inv-inv:
assumes $c d c l_{W}$-restart $S S^{\prime}$ and $c d c l_{W}$-all-struct-inv S
shows cdcl $_{W}$-all-struct-inv S^{\prime}
unfolding $c d c l_{W}$-all-struct-inv-def
proof (intro HOL.conjI)
show no-strange-atm S^{\prime}
using cdcl_{W}-restart-all-inv[OF assms(1)] assms(2) unfolding $c d c l_{W}$-all-struct-inv-def by auto show $\mathrm{cdcl}_{W}-M$-level-inv S^{\prime}
using cdcl $_{W}$-restart-all-inv[OF assms(1)] assms(2) unfolding $c d c l_{W}$-all-struct-inv-def by fast show distinct-cdcl ${ }_{W}$-state S^{\prime}

show $c d c l_{W}$-conflicting S^{\prime}
using cdcl_{W}-restart-all-inv[OF assms(1)] assms(2) unfolding $c d c l_{W}$-all-struct-inv-def by fast
show all-decomposition-implies-m (clauses S^{\prime}) (get-all-ann-decomposition (trail $\left.S^{\prime}\right)$)
using cdcl_{W}-restart-all-inv[OF $\operatorname{assms(1)]} \operatorname{assms(2)}$ unfolding $c d c l_{W}$-all-struct-inv-def by fast show $c d c l_{W}$-learned-clause S^{\prime}
using cdcl $_{W}$-restart-all-inv[OF assms(1)] assms(2) unfolding $c d c l_{W}$-all-struct-inv-def by fast
show $\forall s \in \#$ learned-clss S^{\prime}. \neg tautology s
using assms(1)[THEN learned-clss-are-not-tautologies] assms(2)
unfolding cdcl $_{W}$-all-struct-inv-def by fast
qed
lemma rtranclp-cdcl ${ }_{W}$-all-struct-inv-inv:
assumes cdcl $_{W}$-restart** $S S^{\prime}$ and $c d c l_{W}$-all-struct-inv S
shows cdcl $_{W}$-all-struct-inv S^{\prime}
using assms by induction (auto intro: ${c d c l_{W} \text {-all-struct-inv-inv) }}^{\text {and }}$
lemma $\operatorname{cdcl}_{W}-s t g y-c d c l_{W}$-all-struct-inv:
cdcl_{W}-stgy $S T \Longrightarrow \operatorname{cdcl}_{W}$-all-struct-inv $S \Longrightarrow$ cdcl $_{W}$-all-struct-inv T
by (meson $c d c l_{W}$-stgy-tranclp-cdcl W_{W}-restart rtranclp-cdcl W_{W}-all-struct-inv-inv rtranclp-unfold)
lemma rtranclp-cdcl W_{W}-stgy-cdcl W_{W}-all-struct-inv:
$c d c l_{W}$-stgy ${ }^{* *} S T \Longrightarrow$ cdcl $_{W}$-all-struct-inv $S \Longrightarrow$ cdcl $_{W}$-all-struct-inv T
by (induction rule: rtranclp-induct) (auto intro: cdcl_{W}-stgy-cdcl W_{W}-all-struct-inv)
lemma beginning-not-decided-invert:
assumes $A: M$ @ $A=M^{\prime} @$ Decided $K \# H$ and
$n m: \forall m \in$ set M. $\neg i s$-decided m
shows $\exists M . A=M$ @ Decided $K \# H$
proof -
have $A=$ drop (length M) (M^{\prime} @ Decided $\left.K \# H\right)$
using arg-cong $[O F A$, of drop (length M)] by auto
moreover have drop (length M) (M^{\prime} @ Decided $\left.K \# H\right)=$ drop (length M) $M^{\prime} @$ Decided $K \# H$ using $n m$ by (metis (no-types, lifting) A drop-Cons' drop-append annotated-lit.disc(1) not-gr0 nth-append nth-append-length nth-mem zero-less-diff)
finally show ?thesis by fast

1.1.7 Strategy-Specific Invariant

definition $c d c l_{W}$-stgy-invariant where
$c d c l_{W}$-stgy-invariant $S \longleftrightarrow$
conflict-is-false-with-level S
\wedge no-smaller-confl S
lemma $c d c l_{W}$-stgy-cdcl ${ }_{W}$-stgy-invariant:
assumes
$c d c l_{W}$-restart: $c d c l_{W}-s t g y ~ S T$ and
inv-s: $c d c l_{W}$-stgy-invariant S and
inv: $c d c l_{W}$-all-struct-inv S
shows
cdcl_{W}-stgy-invariant T
unfolding $c d c l_{W}$-stgy-invariant-def $c d c l_{W}$-all-struct-inv-def apply (intro conjI)
apply (rule cdcl W_{W}-stgy-ex-lit-of-max-level $[$ of $S]$)
using assms unfolding cdcl_{W}-stgy-invariant-def $c d c l_{W}$-all-struct-inv-def apply auto[7]
using cdcl_{W}-stgy-invariant-def $c d c l_{W}$-stgy-no-smaller-confl inv-s by blast
lemma rtranclp-cdcl ${ }_{W}$-stgy-cdcl ${ }_{W}$-stgy-invariant:
assumes
cdcl_{W}-restart: $c d c l_{W}$-stgy** $S T$ and
inv-s: $c d c l_{W}$-stgy-invariant S and
inv: cdcl $_{W}$-all-struct-inv S
shows
${ }^{c} d c l_{W}$-stgy-invariant T
using assms apply induction
apply (simp; fail)
using $c d c l_{W}$-stgy-cdcl W_{W}-stgy-invariant rtranclp- $c d c l_{W}$-all-struct-inv-inv
rtranclp-cdcl W_{W}-stgy-rtranclp-cdcl W_{W}-restart by blast
lemma full-cdcl $_{W}$-stgy-inv-normal-form:

assumes

full: full cdcl $_{W}-$ stgy $S T$ and
inv-s: $c d c l_{W}$-stgy-invariant S and
inv: cdcl $_{W}$-all-struct-inv S and
learned-entailed: $\left\langle c d c l_{W}\right.$-learned-clauses-entailed-by-init $\left.S\right\rangle$
shows conflicting $T=S o m e\{\#\} \wedge$ unsatisfiable (set-mset (init-clss S))
\vee conflicting $T=$ None \wedge trail $T \models$ asm init-clss $S \wedge$ satisfiable (set-mset (init-clss S))
proof -
have no-step $c d c l_{W}$-stgy T and $s t: c d c l_{W}$-stgy** $S T$
using full unfolding full-def by blast+
moreover have cdcl_{W}-all-struct-inv T and inv-s: $c d c l_{W}$-stgy-invariant T
apply (metis rtranclp-cdcl ${ }_{W}$-stgy-rtranclp- $c d c l_{W}$-restart full full-def inv rtranclp-cdcl ${ }_{W}$-all-struct-inv-inv)
by (metis full full-def inv inv-s rtranclp-cdcl W_{W}-stgy-cdcl W_{W}-stgy-invariant)
moreover have $\left\langle c d c l_{W}\right.$-learned-clauses-entailed-by-init $\left.T\right\rangle$
using inv learned-entailed unfolding cdcl_{W}-all-struct-inv-def
using rtranclp-cdcl W_{W}-learned-clauses-entailed rtranclp-cdcl ${ }_{W}$-stgy-rtranclp-cdcl ${ }_{W}$-restart $[O F$ st] by blast
ultimately have conflicting $T=$ Some $\{\#\} \wedge$ unsatisfiable (set-mset (init-clss T)
\vee conflicting $T=$ None \wedge trail $T \models$ asm init-clss T
using cdcl_{W}-stgy-final-state-conclusive $[$ of T] full
unfolding $c d c l_{W}$-all-struct-inv-def $c d c l_{W}$-stgy-invariant-def full-def by fast

```
    moreover have consistent-interp (lits-of-l (trail T))
        using <cdcl W-all-struct-inv T> unfolding cdcl W-all-struct-inv-def cdcl}\mp@subsup{W}{W}{}-M\mathrm{ -level-inv-def
        by auto
    moreover have init-clss S = init-clss T
    using inv unfolding cdcl W-all-struct-inv-def
    by (metis rtranclp-cdclW-stgy-no-more-init-clss full full-def)
    ultimately show ?thesis
    by (metis satisfiable-carac' true-annot-def true-annots-def true-clss-def)
qed
lemma full-cdcl W-stgy-inv-normal-form2:
    assumes
        full: full cdcl}\mp@subsup{W}{W}{-stgy S T and
        inv-s: cdcl}\mp@subsup{W}{W}{-stgy-invariant S and
        inv: cdcl W-all-struct-inv S
    shows conflicting T = Some {#} ^ unsatisfiable (set-mset (clauses T))
        \vee ~ c o n f l i c t i n g ~ T ~ = ~ N o n e ~ \wedge ~ s a t i s f i a b l e ~ ( s e t - m s e t ~ ( c l a u s e s ~ T ) ) ,
proof -
    have no-step cdcl}\mp@subsup{W}{}{-}\mathrm{ -stgy T and st: cdcl W-stgy** S T
        using full unfolding full-def by blast+
    moreover have cdcl}\mp@subsup{W}{}{\prime}\mathrm{ -all-struct-inv T and inv-s: cdcl W-stgy-invariant T
        apply (metis rtranclp-cdclW-stgy-rtranclp-cdcl}\mp@subsup{W}{W}{}-restart full full-def inv
            rtranclp-cdcl}\mp@subsup{W}{W}{}\mathrm{ -all-struct-inv-inv)
        by (metis full full-def inv inv-s rtranclp-cdcl W-stgy-cdcl W-stgy-invariant)
    ultimately have conflicting T = Some {#} ^ unsatisfiable (set-mset (clauses T))
        \vee ~ c o n f l i c t i n g ~ T ~ = ~ N o n e ~ \wedge ~ t r a i l ~ T ~ = a s m ~ c l a u s e s ~ T
        using cdcl W}\mp@subsup{W}{}{-stgy-final-state-conclusive2[of T] full
        unfolding cdcl W-all-struct-inv-def cdcl W-stgy-invariant-def full-def by fast
    moreover have consistent-interp (lits-of-l (trail T))
        using <cdcl W-all-struct-inv T> unfolding cdcl W-all-struct-inv-def cdcl}\mp@subsup{W}{W}{}\mathrm{ -M-level-inv-def
        by auto
    ultimately show ?thesis
        by (metis satisfiable-carac' true-annot-def true-annots-def true-clss-def)
qed
```


1.1.8 Additional Invariant: No Smaller Propagation

definition no-smaller-propa :: 〈'st \Rightarrow bool $>$ where
no-smaller-propa (S ::'st) \equiv
$\left(\forall M K M^{\prime} D L\right.$. trail $S=M^{\prime} @$ Decided $K \# M \longrightarrow D+\{\# L \#\} \in \#$ clauses $S \longrightarrow$ undefined-lit M L

$$
\longrightarrow \neg M \models \text { as CNot } D)
$$

lemma propagated-cons-eq-append-decide-cons:
Propagated $L E \# M s=M^{\prime} @$ Decided $K \# M \longleftrightarrow$
$M^{\prime} \neq[] \wedge M s=t l M^{\prime} @$ Decided $K \# M \wedge h d M^{\prime}=$ Propagated $L E$
by (metis (no-types, lifting) annotated-lit.disc(1) annotated-lit.disc(2) append-is-Nil-conv hd-append list.exhaust-sel list.sel(1) list.sel(3) tl-append2)
lemma in-get-all-mark-of-propagated-in-trail:
$\langle C \in$ set (get-all-mark-of-propagated $M) \longleftrightarrow(\exists L$. Propagated $L C \in$ set M) 〉
by (induction M rule: ann-lit-list-induct) auto
lemma no-smaller-propa-tl:
assumes

〈no－smaller－propa S 〉 and
＜trail $S \neq[]$ and
$\langle\neg i s$－decided $(h d$－trail $S)\rangle$ and
＜trail $U=t l($ trail $S)\rangle$ and
〈clauses $U=$ clauses $S\rangle$

shows

〈no－smaller－propa U 〉
using assms by（cases 〈trail $S\rangle$ ）（auto simp：no－smaller－propa－def）
lemmas rules $E=$
skipE resolveE backtrackE propagateE conflictE decideE restartE forgetE backtrackgE
lemma decide－no－smaller－step：
assumes dec：$\langle d e c i d e ~ S T\rangle$ and smaller－propa：$\langle n o-s m a l l e r-p r o p a ~ S\rangle$ and n－s：〈no－step propagate $S\rangle$
shows 〈no－smaller－propa $T\rangle$
unfolding no－smaller－propa－def
proof clarify
fix $M K M^{\prime} D L$
assume
tr：$\left\langle\right.$ trail $T=M^{\prime} @$ Decided $\left.K \# M\right\rangle$ and
$D:\langle D+\{\# L \#\} \in \#$ clauses $T\rangle$ and
undef：〈undefined－lit $M L$ ）and
$M:\langle M \models$ as CNot D〉
then have Ex（propagate S ）
apply（cases M^{\prime} ）
using propagate－rule $[$ of $S D+\{\# L \#\} L$ cons－trail（Propagated $L(D+\{\# L \#\})) S]$ dec smaller－propa
by（auto simp：no－smaller－propa－def elim！：rulesE）
then show False
using n－s by blast
qed
lemma no－smaller－propa－reduce－trail－to：
〈no－smaller－propa $S \Longrightarrow$ no－smaller－propa（reduce－trail－to M1 S）〉
unfolding no－smaller－propa－def
by（subst（asm）append－take－drop－id［symmetric，of－〈length（trail S）－length M1〕］）
（auto simp：trail－reduce－trail－to－drop
simp del：append－take－drop－id）
lemma backtrackg－no－smaller－propa：
assumes o：〈backtrackg $S T\rangle$ and smaller－propa：〈no－smaller－propa $S\rangle$ and
$n-d:\langle n o-d u p($ trail S ）\rangle and
n－s：〈no－step propagate $S\rangle$ and
tr－CNot：〈trail $S \models$ as CNot（the（conflicting S ））〉
shows \langle no－smaller－propa $T\rangle$
proof－
obtain $D D^{\prime}::{ }^{\prime} v$ clause and $K L::$＇v literal and
M1 M2 ：：（＇v，＇v clause）ann－lit list and $i::$ nat where
confl：conflicting $S=$ Some（add－mset $L D$ ）and
decomp：（Decided K \＃M1，M2）\in set（get－all－ann－decomposition（trail S ））and
bt：get－level（trail S ）$L=$ backtrack－lvl S and
lev－L：get－level（trail S ）$L=$ get－maximum－level（trail S ）（add－mset $L D^{\prime}$ ）and
i ：get－maximum－level（trail S ）$D^{\prime} \equiv i$ and
lev－K：get－level（trail S ）$K=i+1$ and
$D-D^{\prime}:\left\langle D^{\prime} \subseteq \# D\right\rangle$ and

```
    T:T~ cons-trail (Propagated L (add-mset L D'))
        (reduce-trail-to M1
        (add-learned-cls (add-mset L D')
            (update-conflicting None S)))
    using o by (auto elim!: rulesE)
let ?D' = \add-mset L D >
have [simp]: trail (reduce-trail-to M1 S) = M1
    using decomp by auto
obtain }\mp@subsup{M}{}{\prime\prime}c\mathrm{ where }\mp@subsup{M}{}{\prime\prime}:\mathrm{ trail S = M'I @ tl (trail T) and c: <M'' = c @ M2 @ [Decided K]>
    using decomp T by auto
have M1:M1 = tl (trail T) and tr-T: trail T = Propagated L?D' # M1
    using decomp T by auto
have i-lvl: <i = backtrack-lvl T\rangle
    using no-dup-append-in-atm-notin[of <c @ M2><Decided K # tl (trail T)>K]
    n-d lev-K unfolding c M'' by (auto simp: image-Un tr-T)
from o show ?thesis
    unfolding no-smaller-propa-def
proof clarify
    fix M K' M' E' L'
    assume
        tr: <trail T = M' @ Decided K'# M> and
        E:\langle\mp@subsup{E}{}{\prime}+{#\mp@subsup{L}{}{\prime}#}\in# clauses T\rangle and
        undef: <undefined-lit M L'> and
        M: <M =as CNot E'>
    have n-d-T: <no-dup (trail T)\rangle and M1-D': M1 =as CNot D'
        using backtrack-M1-CNot-D'[OF n-d i decomp - confl - T] lev-K bt lev-L tr-CNot
confl D-D'
        by (auto dest: subset-mset-trans-add-mset)
    have False if D: <add-mset L D' = add-mset L' E'` and M-D: <M =as CNot E`
    proof -
        have <i\not=0\rangle
        using i-lvl tr T by auto
    moreover
        have get-maximum-level M1 D' = i
            using T i n-d D-D' M1-D' unfolding M" tr-T
            by (subst (asm) get-maximum-level-skip-beginning)
                (auto dest: defined-lit-no-dupD dest!: true-annots-CNot-definedD)
    ultimately obtain L-max where
        L-max-in: L-max }\in# D' and
        lev-L-max: get-level M1 L-max = i
        using i get-maximum-level-exists-lit-of-max-level[of D' M1]
        by (cases D') auto
    have count-dec-M: count-decided M<i
        using T i-lvl unfolding tr by auto
    have - L-max # lits-of-l M
    proof (rule ccontr)
        assume «\neg ?thesis`
        then have <undefined-lit (M'@ [Decided K'])L-max>
            using n-d-T unfolding tr
            by (auto dest: in-lits-of-l-defined-litD dest:defined-lit-no-dupD simp: atm-of-eq-atm-of)
            then have get-level (tl M' @ Decided K' # M) L-max < i
            apply (subst get-level-skip)
            apply (cases M'; auto simp add: atm-of-eq-atm-of lits-of-def; fail)
            using count-dec-M count-decided-ge-get-level[of M L-max] by auto
```

```
            then show False
            using lev-L-max tr unfolding tr-T by (auto simp: propagated-cons-eq-append-decide-cons)
    qed
    moreover have - L\not\in lits-of-l M
    proof (rule ccontr)
        define }MM\mathrm{ where <MM = tl M'〉
        assume «\neg?thesis`
        then have <-L\not\in lits-of-l (M'@ [Decided K'])>
            using n-d-T unfolding tr by (auto simp: lits-of-def no-dup-def)
        have <undefined-lit (M'@ [Decided K\) L>
            apply (rule no-dup-uminus-append-in-atm-notin)
            using n-d-T<\neg-L\not\in lits-of-l M` unfolding tr by auto
        moreover have }\mp@subsup{M}{}{\prime}=\mathrm{ Propagated L ? D' # MM
        using tr-T MM-def by (metis hd-Cons-tl propagated-cons-eq-append-decide-cons tr)
        ultimately show False
        by simp
    qed
    moreover have L-max }\in#\mp@subsup{D}{}{\prime}\veeL\in# D
        using D L-max-in by (auto split: if-splits)
    ultimately show False
        using M-D D by (auto simp: true-annots-true-cls true-clss-def add-mset-eq-add-mset)
    qed
    then show False
        using M" smaller-propa tr undef M T E
        by (cases M') (auto simp: no-smaller-propa-def trivial-add-mset-remove-iff elim!: rulesE)
    qed
qed
lemmas backtrack-no-smaller-propa = backtrackg-no-smaller-propa[OF backtrack-backtrackg]
lemma cdcl}\mp@subsup{W}{}{-stgy-no-smaller-propa:
    assumes
        cdcl:}\langlecdc\mp@subsup{l}{W}{}-stgy S T\rangle and
        smaller-propa: \no-smaller-propa S` and
        inv: <cdcl W-all-struct-inv S\rangle
    shows <no-smaller-propa T\rangle
    using cdcl
proof (cases rule: cdcl W
    case conflict
    then show ?thesis
        using smaller-propa by (auto simp: no-smaller-propa-def elim!: rulesE)
next
    case propagate
    then show ?thesis
        using smaller-propa by (auto simp: no-smaller-propa-def propagated-cons-eq-append-decide-cons
                elim!: rulesE)
next
    case skip
    then show ?thesis
        using smaller-propa by (auto intro: no-smaller-propa-tl elim!: rulesE)
next
    case resolve
    then show ?thesis
        using smaller-propa by (auto intro: no-smaller-propa-tl elim!: rulesE)
next
    case decide note n-s = this(1,2) and dec = this(3)
```

show ？thesis
using n－s dec decide－no－smaller－step $[$ of $S T]$ smaller－propa
by auto
next
case backtrack note $n-s=$ this $(1,2)$ and $o=$ this（3）
have $i n v$－T ： cdcl $_{W}$－all－struct－inv T
using $c d c l ~ c d c l_{W}-s t g y-c d c l_{W}$－all－struct－inv inv by blast
have 〈trail $S \models$ as CNot（the（conflicting S ））〉 and 〈no－dup（trail S ）〉
using inv o unfolding cdcl_{W}－all－struct－inv－def
by（auto simp：$c d c l_{W}$－M－level－inv－def $c d c l_{W}$－conflicting－def elim：rulesE）
then show ？thesis
using backtrack－no－smaller－propa［of $S T$ ］n－s o smaller－propa
by auto
qed
lemma rtranclp－cdcl ${ }_{W}$－stgy－no－smaller－propa：
assumes
$c d c l:\left\langle c d c l_{W}-s t g y^{* *} S T\right\rangle$ and smaller－propa：〈no－smaller－propa $S\rangle$ and inv：〈cdcl ${ }_{W}$－all－struct－inv $\left.S\right\rangle$
shows $\langle n o-s m a l l e r-p r o p a ~ T\rangle$
using $c d c l$ apply（induction rule：rtranclp－induct）
subgoal using smaller－propa by simp
subgoal using inv by（auto intro：rtranclp－cdcl W_{W}－stgy－$c d c l_{W}$－all－struct－inv $c d c l_{W}$－stgy－no－smaller－propa）
done
lemma hd－trail－level－ge－1－length－gt－1：
fixes S ：：＇st
defines $M[$ symmetric，simp］：$\langle M \equiv$ trail $S\rangle$
defines $L[$ symmetric，simp $]:\langle L \equiv h d M\rangle$
assumes
smaller：〈no－smaller－propa $S\rangle$ and
struct：$\left\langle c d c l_{W}\right.$－all－struct－inv $\left.S\right\rangle$ and
dec：〈count－decided $M \geq 1$ ）and
proped：〈is－proped L〉
shows 〈size（mark－of L）＞1〉
proof（rule ccontr）
assume size－C：〔ᄀ ？thesis〉
have $n d$ ：$\langle n o-d u p ~ M\rangle$
using struct unfolding $c d c l_{W}$－all－struct－inv－def $c d c l_{W}$－M－level－inv－def M［symmetric］ by blast
obtain M^{\prime} where $M^{\prime}:\left\langle M=L \# M^{\prime}\right\rangle$
using dec L by（cases M ）（auto simp del：L ）
obtain $K C$ where $K:\langle L=$ Propagated $K C\rangle$
using proped by（cases L）auto
obtain K^{\prime} M1 M2 where decomp：$\left\langle M=\right.$ M2＠Decided $K^{\prime} \#$ M1 \rangle
using dec le－count－decided－decomp［of M 0］nd by auto
then have decomp $:\left\langle M^{\prime}=t l\right.$ M2＠Decided $K^{\prime} \#$ M1 \rangle
unfolding $M^{\prime} K$ by（cases M2）auto
have $\langle K \in \# C\rangle$
using struct unfolding cdcl_{W}－all－struct－inv－def $c d c l_{W}$－conflicting－def

$$
M M^{\prime} K \text { by blast }
$$

then have $C:\langle C=\{\#\}+\{\# K \#\}\rangle$
using size－$C K$ by（cases C ）auto
have 〈undefined－lit M1 K）
using $n d$ unfolding $M^{\prime} K$ decomp＇by simp
moreover have $\langle\{\#\}+\{\# K \#\} \in \#$ clauses $S\rangle$
using struct unfolding cdcl_{W}－all－struct－inv－def $c d c l_{W}$－learned－clause－alt－def $M M^{\prime} K C$
reasons－in－clauses－def
by auto
moreover have 〈M1 \models as $\operatorname{CNot}\{\#\}$ 〉
by auto
ultimately show False
using smaller unfolding no－smaller－propa－def M decomp
by blast
qed

1．1．9 More Invariants：Conflict is False if no decision

If the level is higher than 0 ，then the conflict is not empty．
definition conflict－non－zero－unless－level－0 ：：〈＇st \Rightarrow bool $>$ where
〈conflict－non－zero－unless－level－0 $S \longleftrightarrow$
（conflicting $S=$ Some $\{\#\} \longrightarrow$ count－decided $($ trail $S)=0)$ 〉
definition no－false－clause：：〈＇st \Rightarrow bool \rangle where
\langle no－false－clause $S \longleftrightarrow(\forall C \in \#$ clauses $S . C \neq\{\#\})\rangle$
lemma $c d c l_{W}$－restart－no－false－clause：
assumes
$\left\langle c d c l_{W}\right.$－restart $\left.S T\right\rangle$
〈no－false－clause S 〉
shows 〈no－false－clause T 〉
using assms unfolding no－false－clause－def
by（induction rule： cdcl_{W}－restart－all－induct）（auto simp add：clauses－def）
The proofs work smoothly thanks to the side－conditions about levels of the rule resolve．
lemma $c d c l_{W}$－restart－conflict－non－zero－unless－level－0：
assumes
$\left\langle c d c l_{W}\right.$－restart $\left.S T\right\rangle$
〈no－false－clause S 〉 and
〈conflict－non－zero－unless－level－0 S〉
shows 〈conflict－non－zero－unless－level－0 T〉
using assms by（induction rule：$c d c l_{W}$－restart－all－induct）
（auto simp add：conflict－non－zero－unless－level－0－def no－false－clause－def）
lemma rtranclp－cdcl ${ }_{W}$－restart－no－false－clause：

assumes

$\left\langle c d c l_{W}\right.$－restart $\left.{ }^{* *} S T\right\rangle$
〈no－false－clause S 〉
shows $\langle n o-f a l s e-c l a u s e ~ T\rangle$
using assms by（induction rule：rtranclp－induct）（auto intro：$c d c l_{W}$－restart－no－false－clause）
lemma rtranclp－cdcl ${ }_{W}$－restart－conflict－non－zero－unless－level－0：
assumes
$\left\langle c d c l_{W}\right.$－restart $\left.{ }^{* *} S T\right\rangle$

〈no－false－clause $S\rangle$ and
〈conflict－non－zero－unless－level－0 S〉
shows 〈conflict－non－zero－unless－level－0 T〉
using assms by（induction rule：rtranclp－induct）
（auto intro：rtranclp－cdcl ${ }_{W}$－restart－no－false－clause $c d c l_{W}$－restart－conflict－non－zero－unless－level－0）
definition propagated－clauses－clauses ：：＇st \Rightarrow bool where
\langle propagated－clauses－clauses $S \equiv \forall L K$ ．Propagated $L K \in$ set（trail S ）$\longrightarrow K \in \#$ clauses $S\rangle$
lemma propagate－single－literal－clause－get－level－is－0：
assumes
smaller：〈no－smaller－propa $S\rangle$ and
propa－tr：\langle Propagated $L\{\# L \#\} \in \operatorname{set}($ trail $S)\rangle$ and
n－d：〈no－dup（trail S ） and
propa：〈propagated－clauses－clauses $S\rangle$
shows \langle get－level（trail S ）$L=0$ 〉
proof（rule ccontr）
assume H ：«ᄀ ？thesis
then obtain $M M^{\prime} K$ where
tr：$\left\langle\right.$ trail $S=M^{\prime} @$ Decided $\left.K \# M\right\rangle$ and
$n m:\langle\forall m \in$ set M ．$\neg i s$－decided $m\rangle$
using split－list－last－prop［of trail S is－decided］
by（auto simp：filter－empty－conv is－decided－def get－level－def dest！：List．set－drop WhileD）
have $u L$ ：$\langle-L \notin$ lits－of－l（trail S ）\rangle
using n－d propa－tr unfolding lits－of－def by（fastforce simp：no－dup－cannot－not－lit－and－uminus）
then have［iff］：〈defined－lit $M^{\prime} L \longleftrightarrow L \in$ lits－of－l $\left.M^{\prime}\right\rangle$
by（auto simp add：tr Decided－Propagated－in－iff－in－lits－of－l）
have \langle get－level $M L=0$ 〉 for L
using $n m$ by auto
have $[\operatorname{simp}]:\langle L \neq-K\rangle$
using tr propa－tr n－d unfolding lits－of－def by（fastforce simp：no－dup－cannot－not－lit－and－uminus
in－set－conv－decomp）
have $\left\langle L \in\right.$ lits－of－l $\left(M^{\prime} @[\right.$ Decided $\left.\left.K]\right)\right\rangle$
apply（rule ccontr）
using H unfolding $t r$
apply（subst（asm）get－level－skip）
using $u L$ tr apply（auto simp：atm－of－eq－atm－of Decided－Propagated－in－iff－in－lits－of－l；fail）［］
apply（subst（asm）get－level－skip－beginning）
using 〈get－level $M L=0$ 〉 by（auto simp：atm－of－eq－atm－of uminus－lit－swap lits－of－def）
then have＜undefined－lit $M L$ 〉
using n－d unfolding tr by（auto simp：defined－lit－map lits－of－def image－Un no－dup－def）
moreover have $\{\#\}+\{\# L \#\} \in \#$ clauses S
using propa propa－tr unfolding propagated－clauses－clauses－def by auto
moreover have $M \models$ as $\operatorname{CNot}\{\#\}$
by auto
ultimately show False
using smaller tr unfolding no－smaller－propa－def by blast
qed

Conflict Minimisation

Remove Literals of Level 0 lemma conflict－minimisation－level－0：
fixes S ：：＇st
defines $D[$ simp $]:\langle D \equiv$ the（conflicting S ）\rangle
defines $[$ simp $]:\langle M \equiv$ trail $S\rangle$
defines $\left\langle D^{\prime} \equiv\right.$ filter－mset $(\lambda L$ ．get－level $\left.M L>0) D\right\rangle$

assumes

$n s$－s：$\langle n o-s t e p ~ s k i p ~ S\rangle$ and
$n s-r$ ：$\langle n o-$ step resolve $S\rangle$ and
inv－s：$c d c l_{W}$－stgy－invariant S and
inv：$c d c l_{W}$－all－struct－inv S and
conf：〈conflicting $S \neq$ None〉〈conflicting $S \neq$ Some $\{\#\}\rangle$ and
M－nempty：$\left\langle M{ }^{\sim}=[]\right\rangle$
shows
clauses $S \models p m D^{\prime}$ and
＜－lit－of $(h d M) \in \# D^{\prime}$ ’
proof－
define $D 0$ where $D 0:\langle D 0=$ filter－mset $(\lambda L$ ．get－level $M L=0) D\rangle$
have $D-D 0-D^{\prime}:\left\langle D=D 0+D^{\prime}\right\rangle$
using multiset－partition［of $D\langle(\lambda L$ ．get－level $M L=0)\rangle]$
unfolding $D 0 D^{\prime}$－def by auto
have
conft：$\left\langle c d_{c l}^{W}{ }_{W}\right.$－conflicting $\left.S\right\rangle$ and
decomp：＜all－decomposition－implies－m（clauses S ）（get－all－ann－decomposition（trail S ））〉 and
learned：$\left\langle c d c l_{W}\right.$－learned－clause $\left.S\right\rangle$ and
M－lev：$\left\langle c d c l_{W}\right.$－M－level－inv $\left.S\right\rangle$ and
alien：〈no－strange－atm $S\rangle$
using inv unfolding cdcl_{W}－all－struct－inv－def by fast＋
have clss－D ：〈clauses $S \models p m D$ 〉
using learned conf unfolding cdcl $_{W}$－learned－clause－alt－def by auto
have M－CNot－D：〈trail $S \models$ as CNot $D\rangle$ and m－confl：〈every－mark－is－a－conflict $S\rangle$
using conf confl unfolding cdcl $_{W}$－conflicting－def by auto
have n－d：〈no－dup $M\rangle$
using M－lev unfolding cdcl_{W}－M－level－inv－def by auto
have uhd－D：$\langle-$ lit－of $(h d M) \in \# D\rangle$
using ns－s ns－r conf M－nempty inv－s M－CNot－D n－d
unfolding $c d c l_{W}$－stgy－invariant－def conflict－is－false－with－level－def
by（cases \langle trail $S\rangle$ ；cases $\langle h d$（trail S ）〉）（auto simp：skip．simps resolve．simps get－level－cons－if atm－of－eq－atm－of true－annots－true－cls－def－iff－negation－in－model uminus－lit－swap Decided－Propagated－in－iff－in－lits－of－l split：if－splits）
have count－dec－ge－0：＜count－decided $M>0\rangle$
proof（rule ccontr）
assume $H:<\sim$ ？thesis
then have \langle get－maximum－level $M D=0\rangle$ for D
by（metis（full－types）count－decided－ge－get－maximum－level gr0I le－0－eq）
then show False
using $n s$－s ns－r conf M－nempty m－confl uhd－D H
by（cases 〈trail S ；cases 〈hd（trail S）〉）
（auto 55 simp：skip．simps resolve．simps intro！：state－eq－ref）
qed
then obtain M0 K M1 where
$M:\langle M=M 1 @$ Decided $K \# M 0\rangle$ and
lev－K：\langle get－level $($ trail $S) K=$ Suc 0〉
using backtrack－ex－decomp［of S 0，OF ］M－lev
by（auto dest！：get－all－ann－decomposition－exists－prepend simp： cdcl $_{W}-M$－level－inv－def simp flip：append．assoc simp del：append－assoc）
have count－M0：＜count－decided $M 0=0\rangle$
using n－d lev－K unfolding M－def［symmetric］M by auto
have $[$ simp $]$ ：〈get－all－ann－decomposition M0 $=[([], M 0)]\rangle$
using count－M0 by（induction M0 rule：ann－lit－list－induct）auto
have［simp］：〈get－all－ann－decomposition（M1＠Decided K \＃M0）$\neq[([], M 0)]\rangle$ for M1 K M0
using length－get－all－ann－decomposition［of 〈M1＠Decided K \＃M0〉］
unfolding M by auto
have＜last（get－all－ann－decomposition（M1＠Decided K \＃M0））＝（［］，M0）＞
apply（induction M1 rule：ann－lit－list－induct）
subgoal by auto
subgoal by auto
subgoal for $L m$ M1
by（cases 〈get－all－ann－decomposition（M1＠Decided K \＃M0）））auto
done
then have clss－S－M0：＜set－mset（clauses S ）\models ps unmark－l M0〉
using decomp unfolding M－def［symmetric］M
by（cases 〈get－all－ann－decomposition（M1＠Decided K \＃M0）〉rule：rev－cases）
（auto simp：all－decomposition－implies－def）
have H ：＜total－over－m I（set－mset（clauses $S) \cup$ unmark－l MO）$=$ total－over－m I（set－mset（clauses S））＞
for I
using alien unfolding no－strange－atm－def total－over－m－def total－over－set－def
M－def［symmetric］M
by（auto simp：clauses－def）
have $u L-M 0-D 0:\langle-L \in$ lits－of－l $M 0\rangle$ if $\langle L \in \# D 0\rangle$ for L
proof（rule ccontr）
assume L－M0：«～？thesis»
have $\langle L \in \# D\rangle$ and lev－L：〈get－level $M L=0\rangle$
using that unfolding $D-D 0-D^{\prime}$ unfolding $D 0$ by auto
then have $\langle-L \in$ lits－of－l $M\rangle$
using M－CNot－D that by（auto simp：true－annots－true－cls－def－iff－negation－in－model）
then have $\langle-L \in$ lits－of－l（M1＠［Decided K］）＞
using $L-M 0$ unfolding M by auto
then have $\langle 0<$ get－level（M1＠［Decided K］）L〉 and $\langle d e f i n e d-l i t(M 1 @[D e c i d e d ~ K]) L\rangle$
using get－level－last－decided－ge［of M1 K L］unfolding Decided－Propagated－in－iff－in－lits－of－l
by fast＋
then show False
using n－d lev－L get－level－skip－end［of 〈M1＠［Decided K］〉L M0］
unfolding M by auto
qed
have clss－D0：〈clauses $S \models p m\{\#-L \#\}$ if $\langle L \in \# D 0\rangle$ for L
using that clss－S－M0 uL－M0－D0［of L］unfolding true－clss－clss－def H true－clss－cls－def true－clss－def lits－of－def
by auto
have $l D 0 D^{\prime}:\langle l \in$ atms－of $D 0 \Longrightarrow l \in$ atms－of $D\rangle\left\langle l \in\right.$ atms－of $D^{\prime} \Longrightarrow l \in$ atms－of $\left.D\right\rangle$ for l
unfolding $D-D 0-D^{\prime}$ by auto
have
H1：〈total－over－m $I($ set－mset $($ clauses $S) \cup\{\{\#-L \#\}\})=$ total－over－m $I($ set－mset $($ clauses $S))\rangle$
if $\langle L \in \# D 0\rangle$ for L
using alien conf atm－of－lit－in－atms－of［OF that］
unfolding no－strange－atm－def total－over－m－def total－over－set－def
M－def［symmetric］M that by（auto 55 simp：clauses－def dest！：lD0D＇）
then have I－D0：＜total－over－m I（set－mset（clauses S ））\longrightarrow consistent－interp $I \longrightarrow$ Multiset．Ball（clauses $S)((\models) I) \longrightarrow \sim^{\sim} I \models D 0$ ）for I
using clss－D0 unfolding true－clss－cls－def true－cls－def consistent－interp－def
true－cls－def true－cls－mset－def－TODO tune proof
apply auto
by（metis atm－of－in－atm－of－set－iff－in－set－or－uminus－in－set literal．sel（1）
true-cls-def true-cls-mset-def true-lit-def uminus-Pos)

have

H1：〈total－over－m I（set－mset（clauses $\left.S) \cup\left\{D 0+D^{\prime}\right\}\right)=$ total－over－m $I($ set－mset $($ clauses $\left.S))\right\rangle$

and

H2：〈total－over－m I（set－mset（clauses $\left.S) \cup\left\{D^{\prime}\right\}\right)=$ total－over－m I（set－mset（clauses $\left.S\right)$ ） for I
using alien conf unfolding no－strange－atm－def total－over－m－def total－over－set－def
M－def［symmetric］M by（auto 55 simp：clauses－def dest！：lD0D＇）
show 〈clauses $S \models p m D^{\prime}$ 〉
using clss－D clss－D0 I－D0 unfolding D－D0－D＇true－clss－cls－def true－clss－def H1 H2
by auto
have $\langle 0<$ get－level（trail S ）（lit－of（hd－trail $S)$ ）＞
apply（cases 〈trail $S\rangle$ ）
using M－nempty count－dec－ge－0 by auto
then show $<-$ lit－of $(h d M) \in \# D^{\prime}$
using uhd－D unfolding D^{\prime}－def by auto
qed
lemma literals－of－level0－entailed：
assumes
struct－invs：$\left\langle c d c l_{W}\right.$－all－struct－inv $\left.S\right\rangle$ and
in－trail：$\langle L \in$ lits－of－l（trail S ）\rangle and
lev：〈get－level（trail S ）$L=0\rangle$
shows
〈clauses $S \models p m\{\# L \#\}\rangle$
proof－
have decomp：〈all－decomposition－implies－m（clauses S ）（get－all－ann－decomposition（trail S ））〉
using struct－invs unfolding cdcl $_{W}$－all－struct－inv－def
by fast
have L－trail：$\langle\{\# L \#\} \in$ unmark－l $($ trail $S)\rangle$
using in－trail by（auto simp：in－unmark－l－in－lits－of－l－iff）
have n－d：$\langle n o-d u p($ trail S ）〉
using struct－invs unfolding cdcl_{W}－all－struct－inv－def $c d c l_{W}$－M－level－inv－def
by fast
show ？thesis
proof（cases （count－decided $($ trail $S)=0 〉$ ）
case True
have \langle get－all－ann－decomposition（trail $S)=[([]$ ，trail $S)]\rangle$
apply（rule no－decision－get－all－ann－decomposition）
using True by（auto simp：count－decided－0－iff）
then show ？thesis
using decomp L－trail unfolding all－decomposition－implies－def
by（auto intro：true－clss－clss－in－imp－true－clss－cls）
next
case False
then obtain K M1 M2 M3 where
decomp ${ }^{\prime}:\langle($ Decided K \＃M1，M2）\in set（get－all－ann－decomposition $($ trail $S))\rangle$ and
lev－K：〈get－level（trail S）$K=$ Suc 0\rangle and
M3：\langle trail $S=$ M3＠M2＠Decided K \＃M1〉
using struct－invs backtrack－ex－decomp［of S 0］n－d unfolding $c d c l_{W}$－all－struct－inv－def by blast
then have dec－M1：〈count－decided M1 $=0$ 〉
using n－d by auto
define $M 2^{\prime}$ where $\left\langle M 2^{\prime}=M 3\right.$＠M2 \rangle
then have M3：＜trail $S=M 2^{\prime} @$ Decided $\left.K \# M 1\right\rangle$ using M3 by auto

```
    have <get-all-ann-decomposition M1 = [([], M1)]>
        apply (rule no-decision-get-all-ann-decomposition)
        using dec-M1 by (auto simp: count-decided-0-iff)
    then have <([],M1) \in set (get-all-ann-decomposition (trail S))>
        using hd-get-all-ann-decomposition-skip-some[of Nil M1 M1 <- @ ->] decomp'
        by auto
    then have <set-mset (clauses S) \modelsps unmark-l M1>
        using decomp
        unfolding all-decomposition-implies-def by auto
    moreover {
        have 〈L \inlits-of-l M1>
            using n-d lev M3 in-trail
            by (cases <undefined-lit (M2' @ Decided K # []) L`) (auto dest: in-lits-of-l-defined-litD)
            then have <{#L#}\in unmark-l M1>
            using in-trail by (auto simp: in-unmark-l-in-lits-of-l-iff)
    }
    ultimately show ?thesis
        unfolding all-decomposition-implies-def
        by (auto intro: true-clss-clss-in-imp-true-clss-cls)
    qed
qed
```


1.1.10 Some higher level use on the invariants

In later refinement we mostly us the group invariants and don't try to be as specific as above. The corresponding theorems are collected here.

```
lemma conflict-conflict-is-false-with-level-all-inv:
    conflict S T\Longrightarrow
    no-smaller-confl S\Longrightarrow
    cdcl W}\mp@subsup{W}{}{\mathrm{ -all-struct-inv }}S
    conflict-is-false-with-level T>
    by (rule conflict-conflict-is-false-with-level) (auto simp: cdcl W-all-struct-inv-def)
lemma cdcl}\mp@subsup{W}{W}{-stgy-ex-lit-of-max-level-all-inv:
    assumes
    cdcl}\mp@subsup{W}{}{-stgy S S' and
    n-l: no-smaller-confl S and
    conflict-is-false-with-level S and
    cdcl W}\mp@subsup{W}{}{-all-struct-inv S
shows conflict-is-false-with-level S'
by (rule cdcl W-stgy-ex-lit-of-max-level) (use assms in <auto simp: cdcl W-all-struct-inv-def〉)
lemma }cdc\mp@subsup{l}{W}{}\mathrm{ -o-conflict-is-false-with-level-inv-all-inv:
    assumes
        <cdcl w-o S T>
        <cdcl W
        <conflict-is-false-with-level S>
    shows <conflict-is-false-with-level T\rangle
    by (rule cdcl W}\mp@subsup{W}{}{-o-conflict-is-false-with-level-inv)
    (use assms in <auto simp: cdclW-all-struct-inv-def`)
```

lemma no-step-cdcl ${ }_{W}$-total:
assumes

```
    \no-step cdcl}\mp@subsup{W}{}{S}S
    <conflicting S = None〉
    <no-strange-atm S>
    shows <total-over-m (lits-of-l (trail S)) (set-mset (clauses S))>
proof (rule ccontr)
    assume <\neg ?thesis`
    then obtain L where <L\inatms-of-mm (clauses S)\rangle and «undefined-lit (trail S) (Pos L)\rangle
        by (auto simp: total-over-m-def total-over-set-def
            Decided-Propagated-in-iff-in-lits-of-l)
    then have <Ex (decide S)\rangle
        using decide-rule[of S〈Pos L\rangle\langlecons-trail (Decided (Pos L)) S\rangle] assms
        unfolding no-strange-atm-def clauses-def
        by force
    then show False
        using assms by (auto simp: cdcl W.simps cdcl W
qed
lemma cdcl}\mp@subsup{W}{W}{-Ex-cdcl}\mp@subsup{W}{W}{-stgy:
    assumes
        <cdcl W
    shows <Ex(cdcl}\mp@subsup{W}{}{-stgy S)\rangle
    using assms by (meson assms cdcl W.simps cdcl W
lemma no-step-skip-hd-in-conflicting:
    assumes
    inv-s: <cdcl W
    inv: <cdcl }\mp@subsup{W}{W}{}\mathrm{ -all-struct-inv S> and
    ns: \no-step skip S\rangle and
    confl:<conflicting S = None〉<conflicting S # Some {#}>
    shows <-lit-of (hd (trail S)) \in# the (conflicting S)>
proof -
    let
        ?M = \langletrail S\rangle and
        ?N = \langleinit-clss S\rangle and
        ?U = \learned-clss S\rangle and
        ?k=\langlebacktrack-lvl S\rangle and
        ?D = <conflicting S\rangle
    obtain D where D: <? D = Some D>
        using confl by (cases ?D) auto
    have M-D:〈?M =as CNot D>
        using inv D unfolding cdcl W-all-struct-inv-def cdcl}\mp@subsup{W}{W}{}\mathrm{ -conflicting-def by auto
    then have tr: <trail S # []>
        using confl D by auto
    obtain L M where M: <? M = L # M>
        using tr by (cases <?M`) auto
    have conlf-k:〈conflict-is-false-with-level S`
        using inv-s unfolding }cdc\mp@subsup{l}{W}{}\mathrm{ -stgy-invariant-def by simp
    then obtain L-k where
        L-k:\langleL-k \in# D> and lev-L-k:〈get-level ?M L-k=? \
        using confl D by auto
    have dec: <?k = count-decided ?M>
        using inv unfolding cdcl W-all-struct-inv-def cdcl}\mp@subsup{W}{W}{}-M-level-inv-def by auto
    moreover {
        have <no-dup ?M>
            using inv unfolding cdcl W-all-struct-inv-def cdclW-M-level-inv-def by auto
```

```
    then have <-lit-of L # lits-of-l M>
        unfolding M by (auto simp: defined-lit-map lits-of-def uminus-lit-swap)
    }
    ultimately have L-D: <lit-of L&# D>
    using M-D unfolding M by (auto simp add: true-annots-true-cls-def-iff-negation-in-model
        uminus-lit-swap)
    show ?thesis
    proof (cases L)
    case (Decided L') note }\mp@subsup{L}{}{\prime}=\mathrm{ this(1)
    moreover have <atm-of L' = atm-of L-k>
        using lev-L-k count-decided-ge-get-level[of M L-k] unfolding M dec L'
        by (auto simp: get-level-cons-if split: if-splits)
    then have }\langle\mp@subsup{L}{}{\prime}=-L-k
        using L-k L-D L' by (auto simp: atm-of-eq-atm-of)
    then show ?thesis using L-k unfolding D M L' by simp
next
    case (Propagated L' C)
    then show ?thesis
        using ns confl by (auto simp: skip.simps M D)
    qed
qed
lemma
    fixes }
    assumes
        nss: <no-step skip S` and
        nsr: <no-step resolve S` and
        invs: <cdcl W-all-struct-inv S\rangle and
        stgy: <cdcl }\mp@subsup{W}{W}{}\mathrm{ -stgy-invariant S> and
        confl: <conflicting S = None〉 and
        confl': <conflicting S = Some {#}>
    shows no-skip-no-resolve-single-highest-level:
        <the (conflicting S)=
            add-mset (-(lit-of (hd (trail S)))) {#L\in# the (conflicting S).
                get-level (trail S) L < local.backtrack-lvl S#}> (is ?A) and
            no-skip-no-resolve-level-lvl-nonzero:
        <0 < backtrack-lvl S> (is ?B) and
            no-skip-no-resolve-level-get-maximum-lvl-le:
        <get-maximum-level (trail S) (remove1-mset (-(lit-of (hd (trail S)))) (the (conflicting S)))
            < backtrack-lvl S> (is ?C)
proof -
    define K where <K \equivlit-of (hd (trail S))\rangle
    have K:<-K\in# the (conflicting S)>
        using no-step-skip-hd-in-conflicting[OF stgy invs nss confl confl']
        unfolding K-def .
    have
        <no-strange-atm S> and
        lev: <cdcl }\mp@subsup{W}{W}{}-M\mathrm{ -level-inv S` and
         \forall s\in#learned-clss S. ᄀ tautology s\rangle and
        dist:〈distinct-cdcl}\mp@subsup{W}{W}{}\mathrm{ -state S〉 and
        conf: <cdcl }\mp@subsup{W}{W}{-conflicting S\rangle and
        <ll-decomposition-implies-m (local.clauses S)
            (get-all-ann-decomposition (trail S))> and
    learned: <cdcl W-learned-clause S〉
    using invs unfolding cdcl W-all-struct-inv-def
    by auto
```

```
obtain D where
    D[simp]:\conflicting S = Some (add-mset (-K) D)〉
    using confl K by (auto dest: multi-member-split)
have dist: <distinct-mset (the (conflicting S))>
    using dist confl unfolding distinct-cdcl W-state-def by auto
then have [iff]:〈L\not\in# remove1-mset L (the (conflicting S))\rangle for L
    by (meson distinct-mem-diff-mset union-single-eq-member)
from this[of K] have [simp]: <-K\not\in# D> using dist by auto
have nd: <no-dup (trail S)\rangle
    using lev unfolding cdcl W-M-level-inv-def by auto
have CNot: <trail S =as CNot (add-mset ( }-K\mathrm{ ) D)>
    using conf unfolding cdcl W-conflicting-def
    by fastforce
then have tr: <trail S 
    by auto
have [simp]: <K\not## D>
    using nd K-def tr CNot unfolding true-annots-true-cls-def-iff-negation-in-model
    by (cases 〈trail S\rangle)
        (auto simp:uminus-lit-swap Decided-Propagated-in-iff-in-lits-of-l dest!: multi-member-split)
have H1:
    <0 < backtrack-lvl S>
proof (cases <is-proped (hd (trail S))>)
    case proped:True
    obtain C M where
        [simp]: <trail S = Propagated K C# M>
        using tr proped K-def
        by (cases \trail S\rangle; cases 〈hd (trail S)\rangle)
            (auto simp:K-def)
    have <a@ Propagated L mark # b = Propagated K C # M \longrightarrow
        b}=as CNot (remove1-mset L mark) ^L \in# mark> for L mark a b
        using conf unfolding cdcl W
        by fastforce
    from this[of <[]\rangle] have [simp]: <K ## C\rangle\langleM\modelsas CNot (remove1-mset K C)\rangle
        by auto
    have [simp]:〈get-maximum-level (Propagated K C # M) D = get-maximum-level M D`
        by (rule get-maximum-level-skip-first)
            (auto simp: atms-of-def atm-of-eq-atm-of uminus-lit-swap[symmetric])
    have \get-maximum-level M D < count-decided M>
        using nsr tr confl K proped count-decided-ge-get-maximum-level[of M D]
        by (auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
    then show?thesis by simp
next
    case proped: False
    have <get-maximum-level (tl (trail S)) D < count-decided (trail S)>
        using tr confl K proped count-decided-ge-get-maximum-level[of <tl (trail S)> D]
        by (cases <trail S`; cases \hd (trail S)〉)
            (auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
    then show ?thesis
        by simp
qed
show H2:?C
proof (cases <is-proped (hd (trail S))`)
```

case proped：True
obtain $C M$ where
［simp］：\langle trail $S=$ Propagated $K C \# M\rangle$
using tr proped K－def
by（cases 〈trail S ；cases $\langle h d($ trail $S)\rangle)$ （auto simp：K－def）
have $\langle a$＠Propagated L mark $\# b=$ Propagated $K C \# M \longrightarrow$ $b \models a s$ CNot（remove1－mset L mark）$\wedge L \in \#$ mark for L mark a b
using conf unfolding $c d c l_{W}$－conflicting－def
by fastforce
from this $[$ of $\langle[]\rangle]$ have $[$ simp $]:\langle K \in \# C\rangle\langle M \models$ as CNot（remove1－mset $K C$ ）\rangle
by auto
have［simp］：〈get－maximum－level（Propagated $K C \# M) D=$ get－maximum－level M D 〉
by（rule get－maximum－level－skip－first）
（auto simp：atms－of－def atm－of－eq－atm－of uminus－lit－swap［symmetric］）
have 〈get－maximum－level $M D<$ count－decided M 〉
using nst tr confl K proped count－decided－ge－get－maximum－level［of M D］
by（auto simp：resolve．simps get－level－cons－if atm－of－eq－atm－of）
then show？？thesis by simp
next
case proped：False
have \langle get－maximum－level $(t l($ trail $S)) D=$ get－maximum－level（trail S ）$D\rangle$
apply（rule get－maximum－level－cong）
using K－def $\langle-K \notin \# D\rangle\langle K \notin \# D\rangle$
apply（cases 〈trail $S\rangle$ ）
by（auto simp：get－level－cons－if atm－of－eq－atm－of）
moreover have 〈get－maximum－level（tl（trail S ））$D<$ count－decided（trail S ）＞ using tr confl K proped count－decided－ge－get－maximum－level［of 〈tl（trail S）〉D］ by（cases 〈trail $S\rangle$ ；cases 〈hd（trail S）〉）
（auto simp：resolve．simps get－level－cons－if atm－of－eq－atm－of）
ultimately show ？thesis
by（simp add：K－def）
qed
have H ：
\langle get－level（trail S）$L<$ local．backtrack－lvl $S\rangle$
if $\langle L \in \#$ remove1－mset $(-K)$（the（conflicting S ））〉
for L
proof（cases «is－proped $(h d($ trail $S))\rangle)$
case proped：True
obtain $C M$ where
［simp］：\langle trail $S=$ Propagated $K C \# M\rangle$
using tr proped K－def
by（cases \langle trail $S\rangle$ ；cases $\langle h d($ trail $S)\rangle)$
（auto simp：K－def）
have $<a$＠Propagated L mark $\# b=$ Propagated $K C \# M \longrightarrow$
$b \models$ as CNot（remove1－mset L mark）$\wedge L \in \#$ mark for L mark a b
using conf unfolding $c d c l_{W}$－conflicting－def
by fastforce
from this $[$ of $\langle[]\rangle]$ have $[$ simp $]:\langle K \in \# C\rangle\langle M \models$ as CNot（remove1－mset $K C$ ）〉 by auto
have $[$ simp $]:\langle$ get－maximum－level（Propagated $K C \# M) D=$ get－maximum－level $M D\rangle$ by（rule get－maximum－level－skip－first） （auto simp：atms－of－def atm－of－eq－atm－of uminus－lit－swap［symmetric］）

```
    have <get-maximum-level M D < count-decided M>
        using nsr tr confl K that proped count-decided-ge-get-maximum-level[of M D]
        by (auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
    then show ?thesis
        using get-maximum-level-ge-get-level[of L D M] that
        by (auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
next
    case proped: False
    have L-K:\langleL\not=-K\rangle\langle-L\not=K\rangle\langleL\not=-lit-of (hd (trail S))\rangle
        using that by (auto simp: uminus-lit-swap K-def[symmetric])
    have <L\not=lit-of (hd (trail S))>
        using tr that K-def <K ##D>
        by (cases <trail S`; cases <hd (trail S)〉)
            (auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
    have <get-maximum-level (tl (trail S)) D < count-decided (trail S)>
        using tr confl K that proped count-decided-ge-get-maximum-level[of <tl (trail S)>D]
        by (cases <trail S〉; cases <hd (trail S)〉)
            (auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
    then show ?thesis
        using get-maximum-level-ge-get-level[of L D \(trail S)\rangle] that tr L-K <L = lit-of (hd (trail S))>
                count-decided-ge-get-level[of <tl (trail S)> L] proped
    by (cases <trail S`; cases 〈hd (trail S)〉)
        (auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
qed
have [simp]: <get-level (trail S) K = local.backtrack-lvl S>
    using tr K-def
    by (cases 〈trail S>; cases <hd (trail S)>)
        (auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
show ?A
    apply (rule distinct-set-mset-eq)
    subgoal using dist by auto
    subgoal using dist by (auto simp: distinct-mset-filter K-def[symmetric])
    subgoal using H by (auto simp: K-def[symmetric])
    done
show ?B
    using H1 .
qed
end
end
theory CDCL-W-Termination
imports CDCL-W
begin
context conflict-driven-clause-learning}\mp@subsup{W}{}{\prime
begin
```


1．1．11 Termination

No Relearning of a clause

Because of the conflict minimisation，this version is less clear than the version without：instead of extracting the clause from the conflicting clause，we must take it from the clause used to backjump；i．e．，the annotation of the first literal of the trail．

We also prove below that no learned clause is subsumed by a（smaller）clause in the clause set．

```
lemma \(^{2} c l_{W}\)-stgy-no-relearned-clause:
    assumes
        cdcl: 〈backtrack \(S T\rangle\) and
        inv: \(\left\langle c d c l_{W}\right.\)-all-struct-inv \(\left.S\right\rangle\) and
        smaller: 〈no-smaller-propa \(S\rangle\)
    shows
        〈mark-of (hd-trail T) \(\notin \#\) clauses \(S\rangle\)
proof (rule ccontr)
    assume \(n\)-dist: 〈ᄀ ?thesis〉
    obtain \(K L\) :: 'v literal and
        M1 M2 :: ('v, 'v clause) ann-lit list and \(i::\) nat and \(D D^{\prime}\) where
        confl-S: conflicting \(S=\) Some (add-mset \(L D\) ) and
        decomp: (Decided K \# M1, M2) \(\in\) set (get-all-ann-decomposition (trail S)) and
        lev-L: get-level (trail \(S\) ) \(L=\) backtrack-lvl \(S\) and
        max-D-L: get-level (trail \(S\) ) \(L=\) get-maximum-level (trail \(S\) ) (add-mset \(L D^{\prime}\) ) and
        \(i\) : get-maximum-level (trail \(S\) ) \(D^{\prime} \equiv i\) and
        lev-K: get-level (trail \(S\) ) \(K=i+1\) and
        \(T: T \sim\) cons-trail (Propagated L (add-mset L \(\left.D^{\prime}\right)\) )
            (reduce-trail-to M1
                (add-learned-cls (add-mset L D')
                (update-conflicting None S))) and
    \(D-D^{\prime}:\left\langle D^{\prime} \subseteq \# D\right\rangle\) and
    〈clauses \(S \models p m\) add-mset \(\left.L D^{\prime}\right\rangle\)
    using cdcl by (auto elim!: rulesE)
    obtain M2' where M2': <trail \(S=(\) M2' @ M2) @ Decided \(K\) \# M1)
    using decomp by auto
    have inv-T: \(\left\langle c d c l_{W}\right.\)-all-struct-inv \(\left.T\right\rangle\)
        using \(\operatorname{cdcl}\) cdcl \(W_{W}\)-stgy- \(c d c l_{W}\)-all-struct-inv inv \(W\)-other backtrack bj
        \({ } d c l_{W}\)-all-struct-inv-inv \(c d c l_{W}-c d c l_{W}\)-restart by blast
    have \(M 1-D^{\prime}:\left\langle M 1 \models\right.\) as \(\left.C N o t D^{\prime}\right\rangle\)
    using backtrack-M1-CNot-D'[of S \(D^{\prime}\langle i\rangle K\) M1 M2 L 〈add-mset \(\left.L D\right\rangle T\)
            \(\left\langle\text { Propagated } L \text { (add-mset } L D^{\prime}\right)^{\wedge}\) ] inv confl-S decomp i \(T\) D- \(D^{\prime}\) lev-K lev-L max-D-L
        unfolding \(c d c l_{W}\)-all-struct-inv-def \(c d c l_{W}\)-conflicting-def \(c d c l_{W}\)-M-level-inv-def
        by (auto simp: subset-mset-trans-add-mset)
    have 〈undefined-lit M1 L〉
        using inv-T T decomp unfolding \(\operatorname{cdcl}_{W}\)-all-struct-inv-def \(c d c l_{W}\)-M-level-inv-def
        by (auto simp: defined-lit-map)
    moreover have \(\left\langle D^{\prime}+\{\# L \#\} \in \#\right.\) clauses \(\left.S\right\rangle\)
        using \(n\)-dist \(T\) by (auto simp: clauses-def)
    ultimately show False
        using smaller M1-D' unfolding no-smaller-propa-def M2' by blast
qed
lemma \(c d c l_{W}\)-stgy-no-relearned-larger-clause:
    assumes
        cdcl: 〈backtrack \(S T\rangle\) and
        inv: \(\left\langle c d c l_{W}\right.\)-all-struct-inv \(\left.S\right\rangle\) and
        smaller: 〈no-smaller-propa \(S\rangle\) and
        smaller-conf: 〈no-smaller-confl \(S\rangle\) and
        E-subset: 〈E \(\subset \#\) mark-of \((h d\)-trail \(T)\rangle\)
    shows \(\langle E \notin \#\) clauses \(S\rangle\)
proof (rule ccontr)
```

assume n－dist：〈ᄀ？thesis〉
obtain $K L::$＇v literal and
M1 M2 ：：（＇v，＇v clause）ann－lit list and $i::$ nat and $D D^{\prime}$ where
confl－S：conflicting $S=$ Some（add－mset LD）and
decomp：（Decided K \＃M1，M2）\in set（get－all－ann－decomposition（trail S ））and lev－L：get－level（trail S ）$L=$ backtrack－lvl S and
max－D－L：get－level（trail S ）$L=$ get－maximum－level（trail S ）（add－mset $L D^{\prime}$ ）and
i ：get－maximum－level（trail S ）$D^{\prime} \equiv i$ and
lev－K：get－level（trail S ）$K=i+1$ and
$T: T \sim$ cons－trail（Propagated $L\left(\right.$ add－mset $\left.\left.L D^{\prime}\right)\right)$
（reduce－trail－to M1 （add－learned－cls（add－mset L D＇）
（update－conflicting None S）））and
$D-D^{\prime}:\left\langle D^{\prime} \subseteq \# D\right\rangle$ and
‘clauses $S \models p m$ add－mset $L D^{\prime}$ 〉
using $c d c l$ by（auto elim！：rulesE）
obtain M2＇where M2＇：〈trail $S=\left(\right.$ M2＇$^{\prime} @$ M2）＠Decided K \＃M1 $>$
using decomp by auto
have inv－T：$\left\langle c d c l_{W}\right.$－all－struct－inv $\left.T\right\rangle$
using cdcl cdcl W_{W}－stgy－$c d c l_{W}$－all－struct－inv inv W－other backtrack bj
$c d c l_{W}$－all－struct－inv－inv $c d c l_{W}-c d c l_{W}$－restart by blast
have 〈distinct－mset（add－mset L D^{\prime} ）〉
using inv－T T unfolding cdcl_{W}－all－struct－inv－def distinct－cdcl W_{W}－state－def
by auto
then have dist－E：〈distinct－mset $E\rangle$
using distinct－mset－mono－strict［OF E－subset］T by auto
have M1－D＇：〈M1 \models as CNot $\left.D^{\prime}\right\rangle$
using backtrack－M1－CNot－D＇［of S $D^{\prime}\langle i\rangle K$ M1 M2 L 〈add－mset L D〉T
〈Propagated L（add－mset $\left.L D^{\prime}\right)^{\wedge}$ ］inv confl－S decomp i T D－D’ lev－K lev－L max－D－L
unfolding $c d c l_{W}$－all－struct－inv－def $c d c l_{W}$－conflicting－def $c d c l_{W}$－M－level－inv－def
by（auto simp：subset－mset－trans－add－mset）
have undef－L：〈undefined－lit M1 L〉
using inv－T T decomp unfolding cdcl_{W}－all－struct－inv－def $c d c l_{W}$－M－level－inv－def
by（auto simp：defined－lit－map）

```
show False
proof (cases \(\langle L \in \# E\rangle\) )
    case True
    then obtain \(E^{\prime}\) where
        \(E:\left\langle E=\right.\) add-mset \(\left.L E^{\prime}\right\rangle\)
        by (auto dest: multi-member-split)
    then have \(\left\langle\right.\) distinct-mset \(\left.E^{\prime}\right\rangle\) and \(\left\langle L \notin \# E^{\prime}\right\rangle\) and \(E^{\prime}-E^{\prime}:\left\langle E^{\prime} \subseteq \# D^{\prime}\right\rangle\)
        using dist-E \(T\) E-subset by auto
    then have \(M 1-E^{\prime}:\left\langle M 1 \models\right.\) as \(\left.C N o t E^{\prime}\right\rangle\)
        using M1-D' T unfolding true-annots-true-cls-def-iff-negation-in-model
        by (auto dest: multi-member-split[of - E] mset-subset-eq-insertD)
    have propa: 〈 \(\bigwedge M^{\prime} K M L D\). trail \(S=M^{\prime} @\) Decided \(K \# M \Longrightarrow\)
        \(D+\{\# L \#\} \in \#\) clauses \(S \Longrightarrow\) undefined-lit \(M L \Longrightarrow \neg M \models\) as CNot D
        using smaller unfolding no-smaller-propa-def by blast
    show False
        using M1-E' propa[of 〈M2' @ M2〉K M1 E', OF M2' - undef-L] n-dist unfolding \(E\)
        by auto
next
    case False
```

```
    then have \langleE\subseteq# D
        using E-subset T by (auto simp: subset-add-mset-notin-subset)
    then have M1-E: <M1 \modelsas CNot E>
        using M1-D' T dist-E E-subset unfolding true-annots-true-cls-def-iff-negation-in-model
        by (auto dest: multi-member-split[of - E] mset-subset-eq-insertD)
    have confl: <\M' K M L D. trail S = M`@ Decided K # M\Longrightarrow
        D\in# clauses S\Longrightarrow\negM\modelsas CNot D>
        using smaller-conf unfolding no-smaller-confl-def by blast
    show False
        using confl[of <M2'@ M2>K M1 E, OF M2] n-dist M1-E
        by auto
    qed
qed
lemma cdclW-stgy-no-relearned-highest-subres-clause:
    assumes
    cdcl: <backtrack S T\rangle and
    inv: <cdcl }\mp@subsup{W}{W}{}\mathrm{ -all-struct-inv S> and
    smaller: <no-smaller-propa S〉 and
    smaller-conf: <no-smaller-confl S\rangle and
    E-subset: <mark-of (hd-trail T) = add-mset (lit-of (hd-trail T)) E>
    shows <add-mset (- lit-of (hd-trail T)) E ## clauses S〉
proof (rule ccontr)
    assume n-dist: <\neg ?thesis〉
    obtain K L :: 'v literal and
    M1 M2 :: ('v, 'v clause) ann-lit list and i :: nat and D D' where
    confl-S:conflicting S = Some (add-mset L D) and
    decomp: (Decided K # M1, M2) \in set (get-all-ann-decomposition (trail S)) and
    lev-L: get-level (trail S) L = backtrack-lvl S and
    max-D-L: get-level (trail S) L = get-maximum-level (trail S) (add-mset L D') and
    i: get-maximum-level (trail S) D' }\equivi\mathrm{ and
    lev-K: get-level (trail S) K=i+1 and
    T:T~cons-trail (Propagated L (add-mset L D'))
        (reduce-trail-to M1
        (add-learned-cls (add-mset L D')
            (update-conflicting None S))) and
    D-D': \D'\subseteq# D> and
    <clauses }S\modelspm\mathrm{ add-mset L D'>
    using cdcl by (auto elim!: rulesE)
obtain M2' where M2': <trail S = (M2' @ M2) @ Decided K # M1>
    using decomp by auto
have inv-T: <cdcl W-all-struct-inv T\rangle
    using cdcl cdcl W-stgy-cdcl W-all-struct-inv inv W-other backtrack bj
        cdcl lW-all-struct-inv-inv cdcl W
have \distinct-mset (add-mset L D')〉
    using inv-T T unfolding cdcl W-all-struct-inv-def distinct-cdcl}\mp@subsup{W}{W}{}\mathrm{ -state-def
    by auto
have M1-D': <M1 \modelsas CNot D>
    using backtrack-M1-CNot-D'[of S D' }\mp@subsup{}{<}{<i\rangle}\mathrm{ K M1 M2 L <add-mset L D> T
        <Propagated L (add-mset L D')`] inv confl-S decomp i T D-D' lev-K lev-L max-D-L
    unfolding cdcl}\mp@subsup{W}{}{-all-struct-inv-def cdcl}\mp@subsup{W}{}{-conflicting-def cdcl}\mp@subsup{W}{}{-M-level-inv-def
    by (auto simp: subset-mset-trans-add-mset)
have undef-L: <undefined-lit M1 L>
    using inv-T T decomp unfolding cdcl W-all-struct-inv-def cdcl}\mp@subsup{W}{W}{}-M-level-inv-def
```

by（auto simp：defined－lit－map）
then have undef－uL：〈undefined－lit M1（ $-L$ ）〉
by auto
have propa：〈 $\backslash M^{\prime} K M L D$ ．trail $S=M^{\prime} @$ Decided $K \# M \Longrightarrow$
$D+\{\# L \#\} \in \#$ clauses $S \Longrightarrow$ undefined－lit $M L \Longrightarrow \neg M \models$ as CNot D＞
using smaller unfolding no－smaller－propa－def by blast
have $E[\operatorname{simp}]:\left\langle E=D^{\prime}\right\rangle$
using E－subset T by（auto dest：multi－member－split）
have propa：〈 $\backslash M^{\prime} K M L D$ ．trail $S=M^{\prime} @$ Decided $K \# M \Longrightarrow$
$D+\{\# L \#\} \in \#$ clauses $S \Longrightarrow$ undefined－lit $M L \Longrightarrow \neg M \models$ as CNot D＞
using smaller unfolding no－smaller－propa－def by blast
show False
using TM1－D＇propa［of 〈M2＇＠M2〉K M1 D＇，OF M2＇－undef－uL］n－dist unfolding E by auto
qed
lemma cdcl_{W}－stgy－distinct－mset：
assumes
$c d c l:\left\langle c d c l_{W}-s t g y ~ S T\right\rangle$ and
inv：$c d c l_{W}$－all－struct－inv S and
smaller：〈no－smaller－propa $S\rangle$ and
dist：〈distinct－mset（clauses S ）〉
shows
〈distinct－mset（clauses T ）〉
proof（rule ccontr）
assume n－dist：$\langle\neg$ distinct－mset（clauses $T)\rangle$
then have 〈backtrack $S T\rangle$
using $c d c l$ dist by（auto simp：$c d c l_{W}$－stgy．simps $c d c l_{W}$－o．simps $c d c l_{W}-b j . \operatorname{simps}$ elim：propagateE conflictE decideE skipE resolveE）
then show False
using n－dist cdcl $_{W}$－stgy－no－relearned－clause［of $\left.S T\right]$ dist
by（auto simp：inv smaller elim！：rulesE）
qed
This is a more restrictive version of the previous theorem，but is a better bound for an imple－ mentation that does not do duplication removal（esp．as part of preprocessing）．

```
lemma }cdc\mp@subsup{l}{W}{}\mathrm{ -stgy-learned-distinct-mset:
    assumes
    cdcl:}\langlecdc\mp@subsup{l}{W}{}-stgy S T\rangle and
    inv: cdcl W-all-struct-inv S and
    smaller: <no-smaller-propa S〉 and
    dist:<distinct-mset (learned-clss S + remdups-mset (init-clss S))\rangle
    shows
    <distinct-mset (learned-clss T + remdups-mset (init-clss T))\rangle
proof (rule ccontr)
    assume n-dist: \ᄀ ?thesis`
    then have 〈backtrack S T>
    using cdcl dist by (auto simp: cdcl W-stgy.simps cdcl }\mp@subsup{W}{W}{-o.simps cdcl w-bj.simps
        elim: propagateE conflictE decideE skipE resolveE)
    then show False
    using n-dist cdcl W-stgy-no-relearned-clause[of S T] dist
    by (auto simp: inv smaller clauses-def elim!: rulesE)
qed
lemma rtranclp-cdcl W-stgy-distinct-mset-clauses:
```

```
st: cdcl}\mp@subsup{W}{W}{-stgy** R S and
invR: cdcl W-all-struct-inv R and
dist: distinct-mset (clauses R) and
no-smaller: <no-smaller-propa R`
shows distinct-mset (clauses S)
using assms by (induction rule: rtranclp-induct)
    (auto simp: cdcl W-stgy-distinct-mset rtranclp-cdcl W-stgy-no-smaller-propa
    rtranclp-cdcl W-stgy-cdcl W-all-struct-inv)
```

lemma rtranclp-cdcl ${ }_{W}$-stgy-distinct-mset-learned-clauses:
assumes
st: $c d c l_{W}$-stgy** $R S$ and
invR: cdcl ${ }_{W}$-all-struct-inv R and
dist: distinct-mset (learned-clss $R+$ remdups-mset (init-clss R)) and
no-smaller: 〈no-smaller-propa $R\rangle$
shows distinct-mset (learned-clss $S+$ remdups-mset (init-clss S))
using assms by (induction rule: rtranclp-induct)
(auto simp: cdcl $_{W}$-stgy-learned-distinct-mset rtranclp-cdcl ${ }_{W}$-stgy-no-smaller-propa
rtranclp-cdcl W_{W}-stgy-cdcl W_{W}-all-struct-inv)
lemma cdcl $_{W}$-stgy-distinct-mset-clauses:
assumes
st: $c d c l_{W}$-stgy** (init-state N) S and
no-duplicate-clause: distinct-mset N and
no-duplicate-in-clause: distinct-mset-mset N
shows distinct-mset (clauses S)
using rtranclp-cdcl ${ }_{W}$-stgy-distinct-mset-clauses[OF st] assms
by (auto simp: cdcl $_{W}$-all-struct-inv-def distinct-cdcl W_{W}-state-def no-smaller-propa-def)
lemma cdcl_{W}－stgy－learned－distinct－mset－new：
assumes
$c d c l:\left\langle c d c l_{W}-s t g y S T\right\rangle$ and
inv: $c d c l_{W}$-all-struct-inv S and
smaller: 〈no-smaller-propa $S\rangle$ and
dist: 〈distinct-mset (learned-clss $S-A$)〉
shows 〈distinct-mset (learned-clss $T-A$) 〉
proof (rule ccontr)
have [iff]: \langle distinct-mset (add-mset C (learned-clss S) $-A$) \longleftrightarrow
$C \notin \#($ learned-clss $S)-A>$ for C
using dist distinct-mset-add-mset[of C 〈learned-clss $S-A\rangle]$
proof -
have f1: learned-clss $S-A=$ remove1-mset C (add-mset C (learned-clss $S)-A$)
by (metis Multiset.diff-right-commute add-mset-remove-trivial)
have remove1-mset C (add-mset C (learned-clss $S)-A)=$ add-mset C (learned-clss S) $-A \longrightarrow$
distinct-mset (add-mset C (learned-clss S) - A)
by (metis (no-types) Multiset.diff-right-commute add-mset-remove-trivial dist)
then have \neg distinct-mset (add-mset C (learned-clss $S-A$)) \vee
distinct-mset (add-mset C (learned-clss $S)-A) \neq(C \in \#$ learned-clss $S-A)$
by (metis (full-types) Multiset.diff-right-commute
distinct-mset-add-mset[of C 〈learned-clss $S-A\rangle$ add-mset-remove-trivial
diff-single-trivial insert-DiffM)
then show ?thesis
using $f 1$ by (metis (full-types) distinct-mset-add-mset[of C 〈learned-clss $S-A\rangle$]
diff-single-trivial dist insert-DiffM)

qed

assume n－dist：〈 \neg ？thesis〉
then have \langle backtrack $S T\rangle$
using $c d c l$ dist by（auto simp：$c d c l_{W}-$ stgy．simps $c d c l_{W}-o . \operatorname{simps} c d c l_{W}-b j . \operatorname{simps}$ elim：propagateE conflictE decideE skipE resolveE）
then show False
using n－dist cdcl $_{W}$－stgy－no－relearned－clause $[$ of $S T]$
by（auto simp：inv smaller clauses－def elim！：rulesE dest！：in－diffD）
qed
lemma rtranclp－cdcl ${ }_{W}$－stgy－distinct－mset－clauses－new－abs：

assumes

st：$c d c l_{W}$－stgy＊＊$R S$ and
invR： cdcl $_{W}$－all－struct－inv R and
no－smaller：〈no－smaller－propa R 〉 and
〈distinct－mset（learned－clss $R-A$ ）〉
shows distinct－mset（learned－clss $S-A$ ）
using assms by（induction rule：rtranclp－induct）
（auto simp： cdcl $_{W}$－stgy－distinct－mset rtranclp－cdcl W_{W}－stgy－no－smaller－propa rtranclp－cdcl $W_{W}-$ stgy－cdcl W_{W}－all－struct－inv ${ }^{c} d c l_{W}$－stgy－learned－distinct－mset－new）
lemma rtranclp－cdcl ${ }_{W}$－stgy－distinct－mset－clauses－new：
assumes
st：$c d c l_{W}-s t g y^{* *} R S$ and
invR： cdcl $_{W}$－all－struct－inv R and
no－smaller：〈no－smaller－propa R 〉
shows distinct－mset（learned－clss S－learned－clss R ）
using assms by（rule rtranclp－cdcl W_{W}－stgy－distinct－mset－clauses－new－abs）auto

Decrease of a Measure

fun $c d c l_{W}$－restart－measure where
$c d c l_{W}$－restart－measure $S=$
［（3：：nat）へ（card（atms－of－mm（init－clss S）））－card（set－mset（learned－clss S））， if conflicting $S=$ None then 1 else 0 ，
if conflicting $S=$ None then card（atms－of－mm（init－clss S ））length（trail S ） else length（trail S ）
］
lemma length－model－le－vars：
assumes
no－strange－atm S and
no－d：no－dup（trail S ）and
finite（atms－of－mm（init－clss S））
shows length $($ trail $S) \leq$ card（atms－of－mm（init－clss S ）$)$
proof－
obtain $M N U k D$ where S ：state $S=(M, N, U, k, D)$ by（cases state S ，auto）
have finite（atm－of＇lits－of－l（trail S））
using $\operatorname{assms}(1,3)$ unfolding S by（auto simp add：finite－subset）
have length（trail S ）$=$ card（atm－of＇lits－of－l（trail S ））
using no－dup－length－eq－card－atm－of－lits－of－l no－d by blast
then show ？thesis using assms（1）unfolding no－strange－atm－def
by（auto simp add：assms（3）card－mono）

qed

```
lemma length-model-le-vars-all-inv:
    assumes cdcl W-all-struct-inv S
    shows length (trail S) \leqcard (atms-of-mm (init-clss S))
    using assms length-model-le-vars[of S] unfolding cdclW -all-struct-inv-def
    by (auto simp: cdcl W
lemma learned-clss-less-upper-bound:
    fixes S :: 'st
    assumes
        distinct-cdcl}\mp@subsup{W}{}{-}\mathrm{ -state S and
    \foralls\in# learned-clss S. ᄀtautology s
    shows card(set-mset (learned-clss S)) \leq 3^card (atms-of-mm (learned-clss S))
proof -
    have set-mset (learned-clss S)\subseteq simple-clss (atms-of-mm (learned-clss S))
        apply (rule simplified-in-simple-clss)
    using assms unfolding distinct-cdcl W-state-def by auto
    then have card(set-mset (learned-clss S))
        \leqcard (simple-clss (atms-of-mm (learned-clss S)))
        by (simp add: simple-clss-finite card-mono)
    then show ?thesis
        by (meson atms-of-ms-finite simple-clss-card finite-set-mset order-trans)
qed
```

lemma cdcl $_{W}$-restart-measure-decreasing:
fixes S :: 'st
assumes
${ }^{c d c} l_{W}$-restart $S S^{\prime}$ and
no-restart:
$\neg\left(\right.$ learned-clss $S \subseteq \#$ learned-clss $S^{\prime} \wedge[]=$ trail $S^{\prime} \wedge$ conflicting $S^{\prime}=$ None $)$
and
no-forget: learned-clss $S \subseteq \#$ learned-clss S^{\prime} and
no-relearn: $\wedge S^{\prime}$. backtrack $S S^{\prime} \Longrightarrow$ mark-of $\left(h d-t r a i l ~ S^{\prime}\right) \notin \#$ learned-clss S
and
alien: no-strange-atm S and
M-level: $c d c l_{W}-M$-level-inv S and
no-taut: $\forall s \in \#$ learned-clss S. \neg tautology s and
no-dup: distinct-cdcl ${ }_{W}$-state S and
confl: cdcl $_{W}$-conflicting S
shows $\left(c d c l_{W}\right.$-restart-measure $S^{\prime}, c d c l_{W}$-restart-measure $\left.S\right) \in$ lexn less-than 3
using $\operatorname{assms}(1) \operatorname{assms}(2,3)$
proof (induct rule: cdcl ${ }_{W}$-restart-all-induct)
case (propagate $C L$) note conf $=$ this(1) and undef $=$ this(5) and $T=\operatorname{this}(6)$
have propa: propagate S (cons-trail (Propagated LC) S)
using propagate-rule [OF propagate.hyps(1,2)] propagate.hyps by auto
then have no-dup': no-dup (Propagated L C \# trail S)
using M-level $c^{2} d_{W}$-M-level-inv-decomp(2) undef defined-lit-map by auto
let $? N=$ init-clss S
have no-strange-atm (cons-trail (Propagated LC)S)
using alien $c d c l_{W}$-restart.propagate $c d c l_{W}$-restart-no-strange-atm-inv propa M-level by blast
then have atm-of' lits-of-l (Propagated L C \# trail S)
\subseteq atms-of-mm (init-clss S)
using undef unfolding no-strange-atm-def by auto
then have card (atm-of ' lits-of-l (Propagated LC C trail S))
$\leq \operatorname{card}$ (atms-of-mm (init-clss S))
by (meson atms-of-ms-finite card-mono finite-set-mset)
then have length (Propagated $L C \#$ trail S) \leq card (atms-of-mm ?N)
using no-dup-length-eq-card-atm-of-lits-of-l no-dup' by fastforce
then have H : card (atms-of-mm (init-clss S)) - length (trail S)
$=$ Suc (card (atms-of-mm (init-clss S)) - Suc (length (trail S)))
by simp
show ?case using conf T undef by (auto simp: H lexn3-conv)
next
case $($ decide $L)$ note conf $=\operatorname{this}(1)$ and undef $=\operatorname{this}(2)$ and $T=$ this(4)
moreover \{
have dec: decide S (cons-trail (Decided L) S)
using decide-rule decide.hyps by force
then have cdcl_{W}-restart $S($ cons-trail (Decided L) S)
using $c d c l_{W}$-restart.simps $c d c l_{W}$-o.intros by blast $\}$ note $c d c l_{W}$-restart $=$ this
moreover \{
have lev: $c d c l_{W}$-M-level-inv (cons-trail (Decided L) S)
using $c d c l_{W}$-restart M-level $c d c l_{W}$-restart-consistent-inv[OF $c d c l_{W}$-restart $]$ by auto
then have no-dup: no-dup (Decided $L \#$ trail S)
using undef unfolding $c d c l_{W}-M$-level-inv-def by auto
have no-strange-atm (cons-trail (Decided L) S)
using M-level alien calculation(4) cdcl ${ }_{W}$-restart-no-strange-atm-inv by blast
then have length (Decided $L \#($ trail $S)$)
$\leq \operatorname{card}($ atms-of-mm (init-clss $S))$
using no-dup undef
length-model-le-vars $[$ of cons-trail (Decided L) S] by fastforce \}
ultimately show ?case using conf by (simp add: lexn3-conv)
next
case (skip $L C^{\prime} M D$) note $\operatorname{tr}=\operatorname{this(1)}$ and $\operatorname{conf}=\operatorname{this(2)}$ and $T=\operatorname{this(5)}$
show ? case using conf T by (simp add: tr lexn3-conv)

next

case conflict
then show ?case by (simp add: lexn3-conv)
next
case resolve
then show ?case using finite by (simp add: lexn3-conv)
next
case (backtrack L D K i M1 M2 T D^{\prime}) note $\operatorname{conf}=$ this(1) and decomp $=$ this(3) and $D-D^{\prime}=$ this(7)
and $T=\operatorname{this}(9)$
let $? D^{\prime}=\left\langle\right.$ add-mset $\left.L D^{\prime}\right\rangle$
have bt: backtrack $S T$
using backtrack-rule[OF backtrack.hyps] by auto
have ? $D^{\prime} \notin \#$ learned-clss S
using no-relearn $[O F b t]$ conf T by auto
then have card-T:
card $\left(\right.$ set-mset $\left(\left\{\# ? D^{\prime} \#\right\}+\right.$ learned-clss $\left.\left.S\right)\right)=$ Suc $($ card $($ set-mset $($ learned-clss $S)))$
by simp
have distinct-cdcl ${ }_{W}$-state T
using bt M-level distinct-cdcl ${ }_{W}$-state-inv no-dup other $c d c l_{W}$-o.intros $c d c l_{W}$-bj.intros by blast
moreover have $\forall s \in \#$ learned-clss T. ᄀtautology s
using learned-clss-are-not-tautologies $\left[O F ~ c d c l_{W}\right.$-restart.other $\left[O F ~ c d c l_{W}-o . b j[O F\right.$
$c d c l_{W}$-bj.backtrack[OF bt]]]] M-level no-taut confl by auto
ultimately have card (set-mset (learned-clss $T)$) $\leq 3^{\wedge}$ card (atms-of-mm (learned-clss $\left.T\right)$)
by（auto simp：learned－clss－less－upper－bound）
then have H ：card（set－mset（\｛\＃？D＇\＃\} + learned-clss S ））
$\leq 3^{\wedge}$ card（atms－of－mm（\｛\＃？$\left.D^{\prime} \#\right\}+$ learned－clss $\left.S\right)$ ）
using T decomp M－level by（simp add： cdcl $_{W}$－M－level－inv－decomp）
moreover
have atms－of－mm $\left(\left\{\# ? D^{\prime} \#\right\}+\right.$ learned－clss $\left.S\right) \subseteq$ atms－of－mm（init－clss S ）
using alien conf atms－of－subset－mset－mono［OF D－D $]$ unfolding no－strange－atm－def by auto
then have card－f：card（atms－of－mm（\｛\＃？D＇\＃\} + learned-clss S))
$\leq \operatorname{card}($ atms－of－mm（init－clss S））
by（meson atms－of－ms－finite card－mono finite－set－mset）
then have（ $3::$ nat $)$ card（atms－of－mm（\｛\＃？$\left.D^{\prime} \#\right\}+$ learned－clss $\left.S\right)$ ）
$\leq 3^{\wedge}$ card（atms－of－mm（init－clss S ））by simp
ultimately have（3：：nat）＾card（atms－of－mm（init－clss S））
\geq card（set－mset $\left(\left\{\# ? D^{\prime} \#\right\}+\right.$ learned－clss $\left.\left.S\right)\right)$
using le－trans by blast
then show ？case using decomp diff－less－mono2 card－T T M－level
by（auto simp：$c d c l_{W}$－M－level－inv－decomp lexn3－conv）
next
case restart
then show ？case using alien by auto
next
case（forget $C T$ ）note no－forget $=$ this (9)
then have $C \in \#$ learned－clss S and $C \notin \#$ learned－clss T
using forget．hyps by auto
then have \neg learned－clss $S \subseteq \#$ learned－clss T
by（auto simp add：mset－subset－eqD）
then show ？case using no－forget by blast
qed
lemma cdcl $_{W}$－stgy－step－decreasing：
fixes $S T$ ：：＇st
assumes
$c d c l:\left\langle c d c l_{W}-s t g y ~ S T\right\rangle$ and
struct－inv：$\left\langle c d c l_{W}\right.$－all－struct－inv $\left.S\right\rangle$ and
smaller：〈no－smaller－propa $S\rangle$
shows $\left(\right.$ cdcl $_{W}$－restart－measure $T, \operatorname{cdcl}_{W}$－restart－measure $\left.S\right) \in$ lexn less－than 3
proof（rule cdcl ${ }_{W}$－restart－measure－decreasing）
show $\left\langle c d c l_{W}\right.$－restart $\left.S T\right\rangle$
using $c d c l ~ c d c l_{W}-c d c l_{W}$－restart $c d c l_{W}-s t g y-c d c l_{W}$ by blast
show $\langle\neg$（learned－clss $S \subseteq \#$ learned－clss $T \wedge[]=$ trail $T \wedge$ conflicting $T=$ None $)\rangle$
using $c d c l$ by（cases rule： cdcl $_{W}$－stgy－cases）（auto elim！：rulesE）
show 〈learned－clss $S \subseteq$ \＃learned－clss T 〉
using $c d c l$ by（cases rule： cdcl $_{W}$－stgy－cases）（auto elim！：rulesE）
show 〈mark－of（hd－trail S^{\prime} ）$\neq \#$ learned－clss $\left.S\right\rangle$ if 〈backtrack $\left.S S^{\prime}\right\rangle$ for S^{\prime}
using cdcl $_{W}$－stgy－no－relearned－clause［of $\left.S S^{\prime}\right] c d c l_{W}$－stgy－no－smaller－propa［of $\left.S S^{\prime}\right]$
cdcl struct－inv smaller that unfolding clauses－def
by（auto elim！：rulesE）
show \langle no－strange－atm $S\rangle$ and $\left\langle c d c l_{W}\right.$－M－level－inv $\left.S\right\rangle$ and $\left\langle d i s t i n c t-c d c l_{W}\right.$－state $\left.S\right\rangle$ and $\left\langle c d c l_{W}\right.$－conflicting $\left.S\right\rangle$ and $\langle\forall s \in \#$ learned－clss S ．\neg tautology $s\rangle$
using struct－inv unfolding cdcl_{W}－all－struct－inv－def by blast＋
qed
lemma empty－trail－no－smaller－propa：\langle trail $R=[] \Longrightarrow$ no－smaller－propa $R\rangle$
by（simp add：no－smaller－propa－def）

Roughly corresponds to theorem 2．9．15 page 100 of Weidenbach＇s book but using a different bound（the bound is below）

```
lemma tranclp-cdcl \({ }_{W}\)-stgy-decreasing:
    fixes \(R S T\) :: 'st
    assumes \(\operatorname{cdcl}_{W}-\) stgy \(^{++} R S\) and
    tr: trail \(R=[]\) and
    \({ }^{\text {cd }} l_{W}{ }_{W}\)-all-struct-inv \(R\)
    shows \(\left(c d c l_{W}\right.\)-restart-measure \(S, c d c l_{W}\)-restart-measure \(R\) ) \(\in\) lexn less-than 3
    using assms
    apply induction
        using empty-trail-no-smaller-propa cdcl \(_{W}\)-stgy-no-relearned-clause \(c d c l_{W}\)-stgy-step-decreasing
        apply blast
    using tranclp-into-rtranclp[of \(\operatorname{cdcl}_{W}\)-stgy \(R\) ] lexn-transI[OF trans-less-than, of 3]
        rtranclp-cdcl \({ }_{W}\)-stgy-no-smaller-propa unfolding trans-def
    by (meson cdcl \(_{W}\)-stgy-step-decreasing empty-trail-no-smaller-propa
        rtranclp-cdcl \(W_{W}\)-stgy-cdcl \(W_{W}\)-all-struct-inv)
lemma tranclp-cdcl \({ }_{W}\)-stgy-S0-decreasing:
    fixes \(R S T\) :: 'st
    assumes
        \(p l: c d c l_{W}\)-stgy \({ }^{++}(\)init-state \(N) S\) and
        no-dup: distinct-mset-mset \(N\)
    shows \(\left(c d c l_{W}\right.\)-restart-measure \(S, c d c l_{W}\)-restart-measure (init-state \(N\) )) \(\in\) lexn less-than 3
proof -
    have \(\operatorname{cdcl}_{W}\)-all-struct-inv (init-state \(N\) )
        using no-dup unfolding \(\operatorname{cdcl}_{W}\)-all-struct-inv-def by auto
    then show? ?thesis using \(p l\) tranclp-cdcl \(W_{W}\)-stgy-decreasing init-state-trail by blast
qed
lemma wf-tranclp-cdcl \({ }_{W}\)-stgy:
    \(w f\left\{(S:: ' s t\right.\), init-state \(N) \mid S N\). distinct-mset-mset \(N \wedge c d c l_{W}\)-stgy \({ }^{++}(\)init-state \(\left.N) S\right\}\)
    apply (rule wf-wf-if-measure'-notation2[of lexn less-than 3--cdcl \({ }_{W}\)-restart-measure])
    apply (simp add: wf wf-lexn)
    using tranclp-cdcl \({ }_{W}\)-stgy-S0-decreasing by blast
```

The following theorems is deeply linked with the strategy：It shows that a decision alone cannot lead to a conflict．This is obvious but I expect this to be a major part of the proof that the number of learnt clause cannot be larger that（ $\left.2::^{\prime} a\right)^{n}$ ．

```
lemma no-conflict-after-decide:
    assumes
        dec: 〈decide \(S T\rangle\) and
        inv: \(\left\langle c d c l_{W}\right.\)-all-struct-inv \(\left.T\right\rangle\) and
        smaller: 〈no-smaller-propa \(T\rangle\) and
        smaller-confl: 〈no-smaller-conft \(T\rangle\)
    shows \(\langle\neg\) conflict \(T\) 〉
proof (rule ccontr)
    assume «ᄀ ?thesis
    then obtain \(D\) where
        \(D:\langle D \in \#\) clauses \(T\rangle\) and
        confl: 〈trail \(T \models\) as CNot \(D\rangle\)
        by (auto simp: conflict.simps)
    obtain \(L\) where
    〈conflicting \(S=\) None〉 and
    undef: <undefined-lit (trail \(S\) ) \(L\rangle\) and
    \(\langle a t m-o f L \in a t m s\)-of-mm (init-clss \(S\) ) 〉 and
```

$T:\langle T \sim$ cons－trail（Decided L）$S\rangle$
using dec by（auto simp：decide．simps）
have dist：〈distinct－mset D 〉
using inv D unfolding cdcl $_{W}$－all－struct－inv－def distinct－cdcl W_{W}－state－def
by（auto dest！：multi－member－split simp：clauses－def）
have $L-D$ ：$\langle L \notin \# D$ 〉
using confl undef T
by（auto dest！：multi－member－split simp：Decided－Propagated－in－iff－in－lits－of－l）
show False
proof（cases $\langle-L \in \# D$ ）
case True
have $H:<$ trail $T=M^{\prime} @$ Decided $K \# M \Longrightarrow$ $D+\{\# L \#\} \in \#$ clauses $T \Longrightarrow$ undefined－lit $M L \Longrightarrow \neg M \models$ as CNot D＞ for $M K M^{\prime} D L$
using smaller unfolding no－smaller－propa－def
by auto
have \langle trail $S \models$ as CNot（remove1－mset $(-L) D$ ）＞
using true－annots－CNot－lit－of－notin－skip［of $\langle D e c i d e d ~ L\rangle\langle$ trail $S\rangle\langle$ remove1－mset $(-L) D\rangle$ T True dist confl L－D
by（auto dest：multi－member－split）
then show False
using True $H[$ of \langle Nil〉 $L\langle$ trail $S\rangle\langle$ remove1－mset $(-L) D\rangle\langle-L\rangle] T D$ confl undef
by auto
next
case False
have H ：$\left\langle\right.$ trail $T=M^{\prime} @$ Decided $K \# M \Longrightarrow$
$D \in \#$ clauses $T \Longrightarrow \neg M \models$ as CNot D 〉
for $M K M^{\prime} D$
using smaller－confl unfolding no－smaller－confl－def
by auto
have \langle trail $S \models$ as CNot D 〉
using true－annots－CNot－lit－of－notin－skip［of \langle Decided $L\rangle\langle$ trail $S\rangle D] T$ False
dist confl L－D
by（auto dest：multi－member－split）
then show False
using False $H[$ of 〈Nil〉 L 〈trail S〉D］T D confl undef
by auto
qed
qed
abbreviation list－weight－propa－trail ：：＜（＇v literal，＇v literal，＇v literal multiset）annotated－lit list \Rightarrow bool list）where
$\langle l i s t-w e i g h t-p r o p a-t r a i l ~ M \equiv$ map is－proped M 〉
definition comp－list－weight－propa－trail ：：〈nat \Rightarrow（＇v literal，＇v literal，＇v literal multiset）annotated－lit list \Rightarrow bool list＞where
〈comp－list－weight－propa－trail b $M \equiv$ replicate（ b－length M ）False＠list－weight－propa－trail M 〉
lemma comp－list－weight－propa－trail－append［simp］：
＜comp－list－weight－propa－trail b（ M＠M^{\prime} ）＝
comp－list－weight－propa－trail（ b－length M^{\prime} ）M＠list－weight－propa－trail M^{\prime}＇
by（auto simp：comp－list－weight－propa－trail－def）
lemma comp－list－weight－propa－trail－append－single［simp］：
＜comp－list－weight－propa－trail b $(M @[K])=$

```
    comp-list-weight-propa-trail (b-1)M@ [is-proped K]>
    by (auto simp: comp-list-weight-propa-trail-def)
lemma comp-list-weight-propa-trail-cons[simp]:
    <comp-list-weight-propa-trail b (K # M ) =
        comp-list-weight-propa-trail (b - Suc (length M')) [] @ is-proped K # list-weight-propa-trail M'>
    by (auto simp: comp-list-weight-propa-trail-def)
fun of-list-weight :: 〈bool list }=>\mathrm{ nat〉 where
    <of-list-weight [] = 0\rangle
| <of-list-weight (b# xs) = (if b then 1 else 0) + 2* of-list-weight xs\rangle
lemma of-list-weight-append[simp]:
    <of-list-weight (a@ b) = of-list-weight a + 2^(length a) * of-list-weight b\rangle
    by (induction a) auto
lemma of-list-weight-append-single[simp]:
    <of-list-weight (a@ [b]) = of-list-weight a + 2^(length a) * (if b then 1 else 0)>
    using of-list-weight-append[of \langlea\rangle\langle[b]\rangle]
    by (auto simp del: of-list-weight-append)
lemma of-list-weight-replicate-False[simp]:\langleof-list-weight (replicate n False) = 0\rangle
    by (induction n) auto
lemma of-list-weight-replicate-True[simp]:<of-list-weight (replicate n True) = 2`n - 1`
    apply (induction n)
    subgoal by auto
    subgoal for m
        using power-gt1-lemma[of <2 :: nat>]
        by (auto simp add: algebra-simps Suc-diff-Suc)
    done
lemma of-list-weight-le:<of-list-weight xs \leq 2^(length xs) - 1`
proof -
    have <of-list-weight xs \leq of-list-weight (replicate (length xs) True)>
        by (induction xs) auto
    then show <?thesis`
        by auto
qed
lemma of-list-weight-lt:<of-list-weight xs < 2^(length xs)\
    using of-list-weight-le[of xs] by (metis One-nat-def Suc-le-lessD
        Suc-le-mono Suc-pred of-list-weight-le zero-less-numeral zero-less-power)
lemma [simp]:\of-list-weight (comp-list-weight-propa-trail n [])=0\rangle
    by (auto simp: comp-list-weight-propa-trail-def)
abbreviation propa-weight
    :: <nat }=>\mathrm{ ('v literal,'v literal,'v literal multiset) annotated-lit list }=>\mathrm{ nat>
where
    <propa-weight n M \equivof-list-weight (comp-list-weight-propa-trail n M)>
lemma length-comp-list-weight-propa-trail[simp]: <length (comp-list-weight-propa-trail a M) = max (length
M) a>
    by (auto simp:comp-list-weight-propa-trail-def)
```

lemma（in－）pow2－times－n：

```
    〈Suc \(a \leq n \Longrightarrow 2 * \mathcal{Z}^{\wedge}(n-\) Suc \(\left.a)=(\text { 2::nat })^{\wedge}(n-a)\right\rangle\)
    〈Suc \(a \leq n \Longrightarrow 2^{\wedge}(n-\) Suc \(\left.a) * 2=(2:: n a t) \wedge(n-a)\right\rangle\)
    \(\left\langle\right.\) Suc \(a \leq n \Longrightarrow 2^{\wedge}(n-\) Suc \(\left.a) * b * 2=(2:: \text { nat })^{\wedge}(n-a) * b\right\rangle\)
    \(\left\langle\right.\) Suc \(a \leq n \Longrightarrow 2^{\wedge}(n-\) Suc \(\left.a) *(b * 2)=(2:: \text { nat })^{\wedge}(n-a) * b\right\rangle\)
    \(\left\langle\right.\) Suc \(a \leq n \Longrightarrow 2^{\wedge}(n-\) Suc \(\left.a) *(2 * b)=(2:: n a t) \wedge(n-a) * b\right\rangle\)
    \(\left\langle\right.\) Suc \(a \leq n \Longrightarrow 2 * b *\) 2 \(^{\wedge}(n-\) Suc \(\left.a)=(2:: \text { nat })^{\wedge}(n-a) * b\right\rangle\)
    \(\left\langle\right.\) Suc \(a \leq n \Longrightarrow 2 *\left(b * \mathbb{Z}^{\wedge}(n-\right.\) Suc \(\left.\left.a)\right)=(2:: n a t) \wedge(n-a) * b\right\rangle\)
    apply (simp-all add: Suc-diff-Suc semiring-normalization-rules(27))
    using Suc-diff-le by fastforce+
```

lemma decide-propa-weight:
〈decide $S T \Longrightarrow n \geq$ length $($ trail $T) \Longrightarrow$ propa-weight $n($ trail $S) \leq$ propa-weight $n($ trail $T)$ 〉
by (auto elim!: decideE simp: comp-list-weight-propa-trail-def
algebra-simps pow2-times-n)
lemma propagate－propa－weight：
\langle propagate $S T \Longrightarrow n \geq$ length $($ trail $T) \Longrightarrow$ propa－weight $n($ trail $S)<$ propa－weight $n($ trail $T)\rangle$
by（auto elim！：propagateE simp：comp－list－weight－propa－trail－def algebra－simps pow2－times－n）

The theorem below corresponds the bound of theorem 2．9．15 page 100 of Weidenbach＇s book． In the current version there is no proof of the bound．
The following proof contains an immense amount of stupid bookkeeping．The proof itself is rather easy and Isabelle makes it extra－complicated．
Let＇s consider the sequence $S \rightarrow \ldots \rightarrow T$ ．The bookkeping part：

1．We decompose it into its components $f 0 \rightarrow f 1 \rightarrow \ldots \rightarrow f n$ ．
2．Then we extract the backjumps out of it，which are at position nth－nj 0 ，nth－nj $1, \ldots$
3．Then we extract the conflicts out of it，which are at position nth－confl 0 ，nth－confl $1, \ldots$

Then the simple part：

1．each backtrack increases propa－weight
2．but propa－weight is bounded by（2：：＇a）card（atms－of－mm（init－clss S））Therefore，we get the bound．

Comments on the proof：
－The main problem of the proof is the number of inductions in the bookkeeping part．
－The proof is actually by contradiction to make sure that enough backtrack step exists． This could probably be avoided，but without change in the proof．

Comments on the bound：
－The proof is very very crude：Any propagation also decreases the bound．The lemma $\llbracket d e c i d e$ ？S ？T；$c^{2} d_{W}$－all－struct－inv ？T；no－smaller－propa ？T；no－smaller－confl ？T】 \Longrightarrow \neg conflict ？T ？U above shows that a decision cannot lead immediately to a conflict．
－TODO：can a backtrack could be immediately followed by another conflict（if there are several conflicts for the initial backtrack）？If not the bound can be divided by two．
lemma cdcl－pow2－n－learned－clauses：
assumes
$c d c l:\left\langle c d c l_{W}{ }^{* *} S T\right\rangle$ and
confl：〈conflicting $S=$ None〉 and inv：〈cdcl ${ }_{W}$－all－struct－inv $\left.S\right\rangle$
shows $\left\langle\right.$ size $($ learned－clss $T) \leq$ size $($ learned－clss $S)+2^{\wedge}($ card $($ atms－of－mm $($ init－clss $S)))$ 〉 （is $<-\leq-+? b\rangle)$
proof（rule ccontr）
assume ge：〈ᄀ？thesis〉
let $? m=\langle$ card $($ atms－of－mm（init－clss S $))\rangle$
obtain n ：：nat where
$n:\left\langle\left(c d c l_{W} \sim_{n} n\right) S T\right\rangle$
using $c d c l$ unfolding rtranclp－power by fast
then obtain $f::\langle n a t \Rightarrow$＇st〉 where
［simp］：$\langle f 0=S\rangle$ and
［simp］：$\langle f n=T\rangle$
using power－ex－decomp［OF n ］
by auto
have $c d c l-s t-k$ ：$\left\langle c d c l_{W}{ }^{* *} S(f k)\right\rangle$ if $\langle k \leq n\rangle$ for k
using that
apply（induction k ）
subgoal by auto
subgoal for k using $f[$ of $k]$ by（auto）
done
let $? g=\langle\lambda i$ ．size $($ learned－clss $(f i))\rangle$
have $\langle ? g 0=$ size（learned－clss S ）〉
by auto
have $g-n$ ：＜？$g n>$ ？$g 0+2{ }^{\wedge}($ card $($ atms－of－mm（init－clss $\left.S))\right)$ 〉
using ge by auto
have $g:\langle ? g($ Suc $i)=? g i \vee(? g($ Suc $i)=S u c(? g i) \wedge \operatorname{backtrack}(f i)(f(S u c i)))\rangle$ if $\langle i<n\rangle$ for i
using $f[O F$ that $]$
by（cases rule： cdcl $\left._{W} . c a s e s\right)$
（auto elim：propagateE conflictE decideE backtrackE skipE resolveE
simp：$c d c l_{W}$－o．simps $c d c l_{W}$－bj．simps）
have g－le：〈？$i \leq i+$ ？$g 0\rangle$ if $\langle i \leq n\rangle$ for i
using that
apply（induction i ）
subgoal by auto
subgoal for i
using g［of $i]$
by auto
done
from this $[$ of $n]$ have n－ge－m：$\langle n\rangle$ ？$b\rangle$
using $g-n$ ge by auto
then have $n 0:\langle n>0\rangle$
using not－add－less1 by fastforce
define $n t h-b j$ where $\langle n$ th－bj $=$ rec－nat $0(\lambda-j$ ．$($ LEAST $i . i>j \wedge i<n \wedge \operatorname{backtrack}(f i)(f(S u c i))))\rangle$
have $[$ simp］：$\langle n t h-b j 0=0\rangle$
by（auto simp：nth－bj－def）
have n th－bj－Suc：$\langle n t h-b j($ Suc $i)=($ LEAST $x . n t h-b j i<x \wedge x<n \wedge$ backtrack $(f x)(f(S u c x)))\rangle$ for i
by（auto simp：nth－bj－def）
have between－nth－bj－not－bt：

$$
\text { 乞backtrack }(f k)(f(\text { Suc } k))\rangle
$$

if $\langle k\langle n\rangle\langle k>n t h-b j i\rangle\langle k<n t h-b j$（Suc i ） ）for $k i$
using not－less－Least［of $k\langle\lambda x$ ．nth－bj $i<x \wedge x<n \wedge$ backtrack $(f x)(f(S u c x))\rangle$ that unfolding nth－bj－Suc［symmetric］
by auto
have g－nth－bj－eq：
$\langle ? g($ Suc $k)=? g k\rangle$
if $\langle k<n\rangle\langle k>n t h-b j i\rangle\langle k<n t h-b j(S u c i)\rangle$ for $k i$
using between－nth－bj－not－bt［OF that（1－3）］$f[o f k$ ，OF that（1）］
by（auto elim：propagateE conflictE decideE backtrackE skipE resolveE
simp：$c d c l_{W}$－o．simps $\left.c d c l_{W}-b j . \operatorname{simps} \quad c d c l_{W} . \operatorname{simps}\right)$
have g－$n t h-b j-e q 2$ ：
$\langle ? g($ Suc $k)=? g($ Suc $($ nth－bj i）$)\rangle$
if $\langle k<n\rangle\langle k>n$ th－bj $i\rangle\langle k<n t h-b j($ Suc $i)\rangle$ for $k i$
using that
apply（induction k ）
subgoal by blast
subgoal for k
using g－nth－bj－eq less－antisym by fastforce
done
have $[$ simp $]:\langle ? g($ Suc 0$)=$ ？g 0\rangle
using confl f［of 0］n0
by（auto elim：propagateE conflictE decideE backtrackE skipE resolveE simp：$c d c l_{W}$－o．simps $c d c l_{W}$－bj．simps $\left.c d c l_{W} . \operatorname{simps}\right)$
have $\langle(? g($ nth－bj $i)=$ size $($ learned－clss $S)+(i-1)) \wedge$
nth－bj $i<n \wedge$
nth－bj $i \geq i \wedge$
$(i>0 \longrightarrow$ backtrack $(f($ nth－bj $i))(f($ Suc $($ nth－bj $i)))) \wedge$
$(i>0 \longrightarrow$ ？$g($ Suc $($ nth－bj $i))=$ size $($ learned－clss $S)+i) \wedge$
$(i>0 \longrightarrow n t h-b j i>n t h-b j(i-1))$ ）
if $\langle i \leq ? b+1\rangle$
for i
using that
proof（induction i ）
case 0
then show ？case using n0 by auto
next
case（Suc i）
then have $I H:\langle ? g($ nth－bj $i)=$ size $($ learned－clss $S)+(i-1)\rangle$
$\langle 0<i \Longrightarrow$ backtrack $(f(n t h-b j i))(f(S u c(n t h-b j i)))\rangle$
$\langle 0<i \Longrightarrow$ ？g $($ Suc $(n t h-b j i))=$ size $($ learned－clss $S)+i\rangle$ and i－le－m：$\langle S u c i \leq ? b+1\rangle$ and $l e-n:\langle n t h-b j i<n\rangle$ and gei：$\langle n t h-b j i \geq i\rangle$
by auto
have ex－larger：$\langle\exists x>n$ th－bj i．$x<n \wedge$ backtrack $(f x)(f(S u c x))\rangle$
proof（rule ccontr）
assume « \neg ？thesis〉
then have $[$ simp $]:\langle n\rangle x \Longrightarrow x>n t h-b j i \Longrightarrow ? g($ Suc $x)=? g x\rangle$ for x using $g[o f x] n$－ge－m
by auto
have eq1：\langle nth－bj $i<$ Suc $x \Longrightarrow \neg$ nth－bj $i<x \Longrightarrow x=$ nth－bj $i\rangle$ and eq2：〈nth－bj $i<x \Longrightarrow \neg$ nth－bj $i<x-S u c 0 \Longrightarrow$ nth－bj $i=x-S u c 0\rangle$

```
for }
            by simp-all
                            have ex-larger: }\langlen>x\Longrightarrowx>nth-bji\Longrightarrow?g(Suc x)=?g (Suc (nth-bj i))\rangle\mathrm{ for }
                            apply (induction x)
subgoal by auto
subgoal for }
    by (cases \nth-bj i<x>) (auto dest: eq1)
done
    from this[of <n-1\rangle] have g-n-nth-bj: <?g n =?g (Suc (nth-bj i))\rangle
        using n-ge-m i-le-m le-n
by (cases <nth-bj i<n-Suc 0〉)
            (auto dest: eq2)
        then have <size (learned-clss (f (Suc (nth-bj i)))) < size (learned-clss T)>
        using g-n i-le-m n-ge-m g-le[of \langleSuc (nth-bj i)\rangle] le-n ge
    <?g(nth-bj i) = size (learned-clss S) + (i-1)`
using Suc.IH by auto
    then show False
        using g-n i-le-m n-ge-m g-le[of \Suc (nth-bj i)\rangle] g-n-nth-bj by auto
    qed
    from LeastI-ex[OF ex-larger]
    have bt:<backtrack (f (nth-bj (Suc i))) (f (Suc (nth-bj (Suc i))))\rangle and
    le: <nth-bj (Suc i) < n> and
    nth-mono:<nth-bj i < nth-bj (Suc i)>
    unfolding nth-bj-Suc[symmetric]
    by auto
    have g-nth-Suc-g-Suc-nth:<?g (nth-bj (Suc i)) = ?g (Suc (nth-bj i))>
    using g-nth-bj-eq2[of <nth-bj (Suc i) - 1>i] le nth-mono
    apply auto
    by (metis Suc-pred gr0I less-Suc0 less-Suc-eq less-imp-diff-less)
have H1:«size (learned-clss (f (Suc (nth-bj (Suc i))))) =
        1+ size (learned-clss (f (nth-bj (Suc i))))\rangle if <i=0\rangle
    using bt unfolding that
    by (auto simp: that elim: backtrackE)
have ?case if }\langlei>0
    using IH that nth-mono le bt gei
    by (auto elim: backtrackE simp: g-nth-Suc-g-Suc-nth)
moreover have ?case if 〈i=0\rangle
    using le bt gei nth-mono IH g-nth-bj-eq2[of <nth-bj (Suc i) - 1> i]
        g-nth-Suc-g-Suc-nth
    apply (intro conjI)
    subgoal by (simp add: that)
    subgoal by (auto simp: that elim: backtrackE)
    subgoal by (auto simp: that elim: backtrackE)
    subgoal Hk by (auto simp: that elim: backtrackE)
    subgoal using H1 by (auto simp: that elim: backtrackE)
    subgoal using nth-mono by auto
    done
    ultimately show ?case by blast
qed
then have
    <(?g(nth-bj i) = size (learned-clss S) + (i - 1))> and
    nth-bj-le: <nth-bj i<n` and
    nth-bj-ge: <nth-bj i\geqi\rangle and
    bt-nth-bj: <i> 0\Longrightarrowbacktrack (f (nth-bj i)) (f (Suc (nth-bj i)))\rangle and
```

```
    \(\langle i>0 \Longrightarrow ? g(\) Suc \((\) nth-bj \(i))=\) size \((\) learned-clss \(S)+i\rangle\) and
    nth-bj-mono: \(\langle i>0 \Longrightarrow n t h-b j(i-1)<n t h-b j i\rangle\)
    if \(\langle i \leq ? b+1\rangle\)
    for \(i\)
    using that by blast+
have
    confl-None: 〈conflicting \((f(\) Suc (nth-bj i) )) \(=\) None〉 and
    confl-nth-bj: 〈conflicting \((f(n t h-b j ~ i)) \neq\) None〉
    if \(\langle i \leq ? b+1\rangle\langle i>0\rangle\)
    for \(i\)
    using bt-nth-bj[OF that] by (auto simp: backtrack.simps)
have conflicting-still-conflicting:
    \(\langle\) conflicting \((f k) \neq\) None \(\longrightarrow\) conflicting \((f(\) Suc \(k)) \neq\) None〉
    if \(\langle k<n\rangle\langle k>n t h-b j i\rangle\langle k<n t h-b j(S u c i)\rangle\) for \(k i\)
    using between-nth-bj-not-bt[OF that \(] f[O F\) that (1)]
    by (auto elim: propagateE conflictE decideE backtrackE skipE resolveE
        simp: \(c d c l_{W}\)-o.simps \(c d c l_{W}\)-bj.simps \(\left.c d c l_{W} . \operatorname{simps}\right)\)
define \(n\) th-confl where
    \(\langle n\) th-confl \(n \equiv\) LEAST \(i . i>n t h-b j n \wedge i<n t h-b j(S u c n) \wedge \operatorname{conflict~}(f i)(f(\) Suc \(i))\) ) for \(n\)
have \(\langle\exists i>n t h-b j a . i<n t h-b j(\) Suc a) \(\wedge\) conflict \((f i)(f(\) Suc \(i))\rangle\)
    if \(a-n:\langle a \leq ? b\rangle\langle a\rangle 0\rangle\)
    for \(a\)
proof (rule ccontr)
    assume \(H: \triangleleft\) ?thesis \(\rangle\)
    have \(\langle\) conflicting \((f(\) nth-bj \(a+\) Suc \(i))=\) None〉
        if \(\langle n\) th-bj \(a+\) Suc \(i \leq n t h-b j(\) Suc \(a)\rangle\) for \(i::\) nat
    using that
    apply (induction \(i\) )
    subgoal
        using confl-None[of a] a-n n-ge-m by auto
    subgoal for \(i\)
        apply (cases \(\langle S u c(n t h-b j a+i)<n\rangle)\)
        using \(f[\) of \(\langle n t h-b j a+S u c i\rangle] H\)
        apply (auto elim: propagateE conflictE decideE backtrackE skipE resolveE
            simp: \(c d c l_{W}\)-o.simps \(c d c l_{W}\)-bj.simps \(\left.c d c l_{W} . \operatorname{simps}\right)[]\)
using nth-bj-le[of \(\langle S u c a\rangle]\) a-n(1) by auto
        done
    from this[of \(\langle n t h-b j(S u c a)-1-n t h-b j a\rangle] a-n\)
    show False
        using nth-bj-mono[of 〈Suc a〉] a-n nth-bj-le[of 〈Suc a〉] confl-nth-bj[of 〈Suc a〉]
        by auto
qed
from LeastI-ex[OF this] have nth-bj-le-nth-confl: \(\langle n t h-b j a<n t h-c o n f l a\rangle\) and
    nth-confl: <conflict ( \(f\) (nth-confl a)) (f (Suc (nth-confl a))) > and
    nth-confl-le-nth-bj-Suc: 〈nth-confl \(a<n t h-b j\) (Suc a) 〉
    if \(a-n\) : \(\langle a \leq\) ? \(b\rangle\langle a\rangle 0\rangle\)
    for \(a\)
    using that unfolding nth-confl-def[symmetric]
    by blast+
have nth-confl-conflicting: 〈conflicting \((f(\) Suc \((\) nth-confl \(a))) \neq\) None〉
    if \(a-n:\langle a \leq ? b\rangle\langle a>0\rangle\)
    for \(a\)
    using \(n\) th-confl[ \(\left[\begin{array}{ll}\text { OF } & a-n]\end{array}\right.\)
    by (auto simp: conflict.simps)
```

have no－conflict－before－nth－confl：〈ᄀconflict $(f k)(f(S u c k))\rangle$
if $\langle k>n t h-b j a\rangle$ and
$\langle k<n t h-c o n f l$ à and
$a-n:\langle a \leq ? b\rangle\langle a\rangle 0\rangle$
for $k a$
using not－less－Least［of $k\langle\lambda i . i>n t h-b j a \wedge i<n t h-b j(S u c a) \wedge \operatorname{conflict}(f i)(f($ Suc $i))\rangle]$ that nth－confl－le－nth－bj－Suc［of a］
unfolding nth－confl－def［symmetric］
by auto
have conflicting－after－nth－confl：〈conflicting $(f(S u c(n t h-c o n f l a)+k)) \neq$ None〉
if $a-n$ ：$\langle a \leq ? b\rangle\langle a>0\rangle$ and
$k:\langle S u c(n t h-c o n f l a)+k<n t h-b j($ Suc a）\rangle
for $a k$
using k
apply（induction k ）
subgoal using nth－confl－conflicting $[O F a-n]$ by simp
subgoal for k
using conflicting－still－conflicting［of 〈Suc（nth－confl $a+k$ ）〉a］$a-n$ nth－bj－le［of a］nth－bj－le－nth－confl［of a］
apply（cases $\langle S u c$（ n th－confl $a+k$ ）$<n$ ）
apply auto
by（metis（no－types，lifting）Suc－le－lessD add．commute le－less less－trans－Suc nth－bj－le plus－1－eq－Suc）
done
have conflicting－before－nth－confl：〈conflicting $(f(S u c(n t h-b j a)+k))=$ None〉
if $a-n:\langle a \leq ? b\rangle\langle a>0\rangle$ and
$k:\langle S u c(n t h-b j a)+k<n t h-c o n f l a\rangle$
for $a k$
using k
apply（induction k ）
subgoal using confl－None［of a］a－n by simp
subgoal for k
using $f[$ of $\langle S u c(n t h-b j a)+k\rangle] n o$－conflict－before－nth－confl［of $a\langle S u c(n t h-b j a)+k\rangle] a-n$ nth－confl－le－nth－bj－Suc［of a］nth－bj－le［of 〈Suc a〉］
apply（cases $\langle S u c$（ n th－bj $a+k$ ）＜n〉）
apply（auto elim！：propagateE conflictE decideE backtrackE skipE resolveE simp：$c d c l_{W}$－o．simps $c d c l_{W}$－bj．simps cdcl $_{W}$ ．simps）[]
by linarith
done
have
ex－trail－decomp：$\exists \exists$ ．trail $(f($ Suc $(n t h-c o n f l ~ a)))=M @ \operatorname{trail}(f(S u c(n t h-c o n f l a+k)))\rangle$
if $a-n:\langle a \leq ? b\rangle\langle a>0\rangle$ and
$k:\langle S u c(n t h-c o n f l a)+k \leq n t h-b j($ Suc $a)\rangle$
for $a k$
using k
proof（induction k ）
case 0
then show 〈？case〉 by auto
next
case（Suc k）
moreover have ${ }^{\text {nthth－confl }} a+k<n$ 〉 proof－
have nth－bj（Suc a）＜n
by（rule nth－bj－le）（use a－n（1）in simp）
then show ？thesis
using Suc．prems by linarith
qed
moreover have $\measuredangle \exists$ Ma．M＠trail $(f($ Suc $(n t h-c o n f l a+k)))=$ $M a @ t l(\operatorname{trail}(f(S u c(n t h-c o n f l a+k))))$ for M
by（cases＜trail $(f($ Suc（ n th－confl $a+k)))$ ））auto
ultimately show ？case
using $f[$ of 〈Suc（nth－confl $a+k)\rangle]$ conflicting－after－nth－confl［of a $\langle k\rangle$ ，OF a－$n]$ Suc
between－nth－bj－not－bt［of $\langle S u c$（nth－confl $a+k$ ）〉 $\langle a\rangle$ ］
nth－bj－le－nth－confl［of a，OF $a-n$ ］
apply（cases $\langle S u c$（ n th－confl $a+k$ ）$<n$ ）
subgoal
by（auto elim！：propagateE conflictE decideE skipE resolveE simp：$c d c l_{W}$－o．simps $c d c l_{W}$－bj．simps $\left.c d c l_{W} . \operatorname{simps}\right)[]$
subgoal
by（metis（no－types，lifting）Suc－leD Suc－lessI a－n（1）add．commute add－Suc
add－mono－thms－linordered－semiring（1）le－numeral－extra（4）not－le nth－bj－le plus－1－eq－Suc）

done

qed
have propa－weight－decreasing－confl：
\langle propa－weight $n($ trail $(f($ Suc $(n t h-b j(S u c ~ a)))))>\operatorname{propa-weight~} n($ trail $(f(n t h-c o n f l a)))\rangle$
if $a-n:\langle a \leq ? b\rangle\langle a>0\rangle$ and $n:\langle n \geq$ length $($ trail $(f(n t h-c o n f l ~ a)))\rangle$
for $a n$
proof－
have pw0：＜propa－weight $n(\operatorname{trail}(f($ Suc $($ nth－confl a $))))=$ propa－weight $n($ trail $(f(n t h-c o n f l ~ a)))\rangle$ and $[\operatorname{simp}]:\langle\operatorname{trail}(f($ Suc $(n t h-c o n f l a)))=$ trail $(f(n t h-c o n f l a))\rangle$ using nth－confl［ OF a－n］by（auto elim！：conflictE）
have $H:\langle n t h-b j($ Suc $a)=$ Suc $(n t h-c o n f l ~ a) \vee n t h-b j(S u c a) \geq$ Suc $(S u c(n t h-c o n f l a))\rangle$ using nth－bj－le－nth－confl［of a ，OF $a-n]$ using a－n（1）nth－confl－le－nth－bj－Suc that（2）by force
from ex－trail－decomp［of a 〈nth－bj（Suc a）－（1＋nth－confl a）〉，OF a－n］
obtain M where
$M:\langle\operatorname{trail}(f(S u c(n t h-c o n f l a)))=M @ \operatorname{trail}(f(n t h-b j($ Suc a $)))\rangle$
apply－
apply（rule disjE［OF H］）
subgoal
by auto
subgoal
using nth－bj－le－nth－confl［of a，OF $a-n]$ nth－bj－ge［of $\langle S u c a\rangle] a-n$
by（auto simp add：numeral－2－eq－2）
done
obtain K M1 M2 $D D^{\prime} L$ where
decomp：«（Decided K \＃M1，M2）
$\in \operatorname{set}($ get－all－ann－decomposition（trail $(f(n t h-b j(S u c a)))))$ ）and
＜get－maximum－level（trail $(f(n t h-b j(S u c ~ a))))\left(\right.$ add－mset $\left.L D^{\prime}\right)=$
backtrack－lvl $(f(n t h-b j(S u c ~ a)))$ ）and
〈get－level $($ trail $(f(n t h-b j(S u c ~ a)))) L=b a c k t r a c k-l v l(f(n t h-b j(S u c a)))\rangle$ and
＜get－level $($ trail $(f(n t h-b j(S u c ~ a)))) K=$
Suc（get－maximum－level（trail $\left.\left.(f(n t h-b j(S u c a)))) D^{\prime}\right)\right\rangle$ and
$\left\langle D^{\prime} \subseteq \# D\right\rangle$ and
〈clauses $(f(n t h-b j(S u c ~ a))) \models p m$ add－mset $\left.L D^{\prime}\right\rangle$ and
st－Suc：〈f（Suc（nth－bj（Suc a）））～
cons－trail（Propagated L（add－mset L $\left.D^{\prime}\right)$ ）
（reduce－trail－to M1
（add－learned－cls（add－mset L D^{\prime} ）

```
        (update-conflicting None \((f(\) nth-bj \((\) Suc a \()))))\) )
        using bt-nth-bj[of 〈Suc a〉] a-n
        by (auto elim!: backtrackE)
    obtain M3 where
        \(\operatorname{tr}:\langle\operatorname{trail}(f(n t h-b j(S u c a)))=\) M3 @ M2 @ Decided K \# M1>
        using decomp by auto
    define \(M{ }^{2}\) ' where
        \(\left\langle M 2^{\prime}=M 3\right.\) @ M2〉
    then have
    tr: \(\langle\operatorname{trail}(f(n t h-b j(S u c ~ a)))=M 2 ' @ D e c i d e d ~ K ~ \# ~ M 1>~\)
    using \(t r\) by auto
    define \(M^{\prime}\) where
    \(\left\langle^{\prime}=M\right.\) @ \(\left.\mathbf{M 2}^{\prime}\right\rangle\)
    then have tr2: <trail \((f(n t h-c o n f l ~ a))=M^{\prime} @\) Decided \(\left.K \# M 1\right\rangle\)
    using \(\operatorname{tr} M n\)
    by auto
    have \([\operatorname{simp}]:\left\langle\max (\right.\) length \(M)\left(n-\right.\) Suc (length \(M 1+\left(\right.\) length M2 \(\left.\left.\left.{ }^{\prime}\right)\right)\right)\)
    \(=\left(n-\right.\) Suc \(\left(\right.\) length M1 \(+\left(\right.\) length M2 \(\left.\left.\left.{ }^{\prime}\right)\right)\right)\) )
    using \(\operatorname{tr} M\) st-Suc \(n\) by auto
    have \([\operatorname{simp}]:<2 *\)
    (of-list-weight (list-weight-propa-trail M1) *
        (2 \({ }^{\text {- length M2' * }}\)
        \(\left(2^{\wedge}(n-S u c(\right.\) length M1 + length M2') \(\left.\left.))\right)\right)=\)
of-list-weight (list-weight-propa-trail M1) * 2 ~ \((n-\) length M1) >
using \(\operatorname{tr} M \mathrm{n}\) by (auto simp: algebra-simps field-simps pow2-times- \(n\)
    comm-semiring-1-class.semiring-normalization-rules(26))
    have \(n\)-ge: \(\left\langle S u c\left(\right.\right.\) length \(M+\left(\right.\) length \(M 2^{\prime}+\) length \(\left.\left.\left.M 1\right)\right) \leq n\right\rangle\)
        using \(n\) st-Suc tr \(M\) by auto
    have WTF: \(\langle a<b \Longrightarrow b \leq c \Longrightarrow a<c\rangle\) and
        \(W T F^{\prime}:\langle a \leq b \Longrightarrow b<c \Longrightarrow a<c\rangle\) for \(a b c::\) nat
        by auto
    have 3: <propa-weight ( \(n-\) Suc (length M1 \(+(\) length M2 \()\) )) \(M\)
        \(\leq \mathcal{Z}^{\wedge}(n-S u c(\) length \(M 1+\) length M2' \())-1\) )
        using of-list-weight-le
        apply auto
        by \((\) metis \(\langle\max (\) length \(M)(n-S u c(\) length \(M 1+(\) length M2 \()))=n-\) Suc \((\) length \(M 1+(\) length
M2')) \({ }^{\prime}\)
            length-comp-list-weight-propa-trail)
    have 1: «of-list-weight (list-weight-propa-trail M2') *
        2 \(^{\text {^ }}(n-\) Suc (length \(M 1+\) length M2 \()\) ) \(<\) Suc (if M2' \(=[]\) then 0
```



```
        apply (cases \(\left\langle\right.\) M2 \(\left.\left.^{\prime}=[]\right\rangle\right)\)
        subgoal by auto
        subgoal
apply (rule \(W T F^{\prime}\) )
    apply (rule Nat.mult-le-mono1[of 〈of-list-weight (list-weight-propa-trail M2')〉,
    OF of-list-weight-le[of 〈(list-weight-propa-trail M2') \()]])\)
using of-list-weight-le[of 〈(list-weight-propa-trail M2') \()\) ] n M tr
by (auto simp add: comm-semiring-1-class.semiring-normalization-rules(26)
    algebra-simps)
        done
    have WTF2:
        \(\left\langle a \leq a^{\prime} \Longrightarrow b<b^{\prime} \Longrightarrow a+b<a^{\prime}+b^{\prime}\right\rangle\) for \(a b c a^{\prime} b^{\prime} c^{\prime}::\) nat
        by auto
```

have $\left\langle\right.$ propa－weight（ $n-$ Suc（length M1＋length M2 $\left.{ }^{\prime}\right)$ ）$M+$
of－list－weight（list－weight－propa－trail M2＇）＊
2 $^{\wedge}$（ $n-$ Suc（length M1＋length M2 $)$ ）
$<2^{\wedge}(n-$ Suc（length M1））
apply（rule WTF）
apply（rule WTF2［OF 3 1］）
using n－ge［unfolded nat－le－iff－add］by（auto simp：ac－simps algebra－simps）
then have＜propa－weight $n($ trail $(f(n t h-c o n f l a)))<$ propa－weight n（trail $(f$（Suc（ n th－bj（Suc
a）））））＞
using tr2 M st－Suc n tr
by（auto simp：pow2－times－n algebra－simps comm－semiring－1－class．semiring－normalization－rules（26））
then show 〈？thesis〉
using $p w 0$ by auto
qed
have length－trail－le－m：〈length $($ trail $(f k))<? m+1$ 〉
if $\langle k \leq n\rangle$
for k
proof－
have 〈cdcl ${ }_{W}$－all－struct－inv $\left.(f k)\right\rangle$
using rtranclp－cdcl ${ }_{W}-c d c l_{W}$－restart $[$ OF cdcl－st－$k[O F$ that $]]$ inv rtranclp－cdcl W_{W}－all－struct－inv－inv by blast
then have $\left\langle c d c l_{W}-M\right.$－level－inv $\left.(f k)\right\rangle$ and $\langle n o-s t r a n g e-a t m ~(f k)\rangle$ unfolding cdcl $_{W}$－all－struct－inv－def by blast＋
then have $\langle n o-d u p(\operatorname{trail}(f k))\rangle$ and incl：$\langle a t m-o f$＇lits－of－l $($ trail $(f k)) \subseteq$ atms－of－mm（init－clss $(f k))\rangle$ unfolding cdcl_{W}－M－level－inv－def no－strange－atm－def
by auto
have eq：〈（atms－of－mm（init－clss $(f k)))=($ atms－of－mm $($ init－clss $S))\rangle$
using rtranclp－cdcl W_{W}－restart－init－clss［OF rtranclp－cdcl ${ }_{W}$－cdcl ${ }_{W}$－restart［OF cdcl－st－k［OF that］］］
by auto
have 〈length $($ trail $(f k))=$ card（atm－of＇lits－of－l $($ trail $(f k)))$ 〉
using 〈no－dup（trail $(f k)$ ）〉 no－dup－length－eq－card－atm－of－lits－of－l by blast
also have＜card（atm－of＇lits－of－l（trail $(f k))) \leq$ ？m
using card－mono［OF－incl］eq by auto
finally show？thesis
by linarith
qed
have propa－weight－decreasing－propa：
\langle propa－weight ？$m($ trail $(f($ nth－confl $a))) \geq$ propa－weight $? m($ trail $(f($ Suc $(n t h-b j a))))\rangle$
if $a-n:\langle a \leq ? b\rangle\langle a>0\rangle$
for a
proof－
have ppa：〈propa－weight ？m（trail $(f($ Suc $(n t h-b j a)+$ Suc $k)))$
\geq propa－weight ？$m($ trail $(f($ Suc $(n t h-b j a)+k)))\rangle$
if $\langle k<$ nth－confl $a-S u c(n t h-b j a)\rangle$
for k
proof－
have $\langle S u c(n t h-b j a+k)<n\rangle$ and $\langle S u c(n t h-b j a+k)<n t h$－confl $a\rangle$
using that nth－bj－le－nth－confl［ $\left[\begin{array}{ll}O F & a-n]\end{array}\right.$ nth－confl－le－nth－bj－Suc［ $\left.\begin{array}{ll}O F & a-n\end{array}\right]$
$n t h-b j-l e[o f\langle S u c a\rangle] a-n$
by auto
then show ？thesis
using $f[$ of $\langle(S u c(n t h-b j a)+k)\rangle]$ conflicting－before－nth－confl［OF $a-n$ ，of $\langle k\rangle]$
no－conflict－before－nth－confl［OF－a－n，of $\langle S u c(n t h-b j a)+k\rangle$ that
length－trail－le－m［of $\langle S u c$（Suc（nth－bj a）$+k$ ）$\rangle]$

```
    by (auto elim!: skipE resolveE backtrackE
        simp: cdcl W-o.simps cdcl W}\mp@subsup{W}{W}{-bj.simps cdcl W.simps
    dest!: propagate-propa-weight[of - - ?m]
    decide-propa-weight[of - - ?m])
qed
have WTF3:〈(Suc (nth-bj a + (nth-confl a - Suc (nth-bj a)))) = nth-confl a>
    using a-n(1) nth-bj-le-nth-confl that(2) by fastforce
have <propa-weight?m (trail (f (Suc (nth-bj a) + k)))
    \geq propa-weight?m (trail (f (Suc (nth-bj a))))>
    if 〈k\leqnth-confl a - Suc (nth-bj a)>
    for }
    using that
    apply (induction k)
    subgoal by auto
    subgoal for k using ppa[of k]
        apply (cases <k< nth-confl a - Suc (nth-bj a)`)
subgoal by auto
subgoal by linarith
    done
    done
    from this[of <nth-confl a - (Suc (nth-bj a))\rangle]
    show ?thesis
        by (auto simp:WTF3)
qed
have propa-weight-decreasing-confl:
    <propa-weight ?m (trail (f (Suc (nth-bj a))))
        < propa-weight ?m (trail (f (Suc (nth-bj (Suc a)))))>
    if a-n: <a\leq? ? \}\langlea>0
    for a
proof -
    have WTF: <b<c\Longrightarrowa\leqb\Longrightarrowa<c\rangle for a b c :: nat by linarith
    have <nth-confl a<n>
        by (metis Suc-le-mono a-n(1) add.commute add-lessD1 less-imp-le nat-le-iff-add
            nth-bj-le nth-confl-le-nth-bj-Suc plus-1-eq-Suc that(2))
    show ?thesis
        apply (rule WTF)
            apply (rule propa-weight-decreasing-confl[OF a-n, of ?m])
subgoal using length-trail-le-m[of <nth-confl a\rangle] \langlenth-confl a<n\rangle by auto
        apply (rule propa-weight-decreasing-propa[OF a-n])
        done
qed
have weight1: <propa-weight ?m (trail (f (Suc (nth-bj 1)))) \geq 1>
    using bt-nth-bj[of 1]
    by (auto simp: elim!: backtrackE intro!: trans-le-add1)
have <propa-weight ?m (trail (f (Suc (nth-bj (Suc a))))) \geq
        propa-weight?m(trail (f(Suc (nth-bj 1)))) + a>
    if a-n:\langlea\leq?b\rangle
    for a :: nat
    using that
    apply (induction a)
    subgoal by auto
    subgoal for a
        using propa-weight-decreasing-confl[of 〈Suc a\]
        by auto
    done
```

```
    from this[of 〈?b\rangle] have <propa-weight ?m (trail (f (Suc (nth-bj (Suc (?b)))))) \geq1 + ?b>
    using weight1 by auto
moreover have
    <max (length (trail (f (Suc (nth-bj (Suc ?b)))))) ?m = ?m>
    using length-trail-le-m[of 〈(Suc (nth-bj (Suc ?b)))\rangle] Suc-leI nth-bj-le
    nth-bj-le[of \langleSuc (?b)\rangle] by (auto simp: max-def)
ultimately show <False>
    using of-list-weight-le[of <comp-list-weight-propa-trail ?m (trail (f (Suc (nth-bj (Suc ?b)))))>]
    by (simp del: state-eq-init-clss state-eq-trail)
qed
Application of the previous theorem to an initial state:
```

```
corollary cdcl-pow2-n-learned-clauses2:
```

corollary cdcl-pow2-n-learned-clauses2:
assumes
assumes
cdcl: }\langlecdc\mp@subsup{l}{W}{**}(\mathrm{ init-state N) T> and
cdcl: }\langlecdc\mp@subsup{l}{W}{**}(\mathrm{ init-state N) T> and
inv: <cdcl W-all-struct-inv (init-state N)\rangle
inv: <cdcl W-all-struct-inv (init-state N)\rangle
shows <size (learned-clss T) \leq 2 ^ (card (atms-of-mm N))>
shows <size (learned-clss T) \leq 2 ^ (card (atms-of-mm N))>
using assms cdcl-pow2-n-learned-clauses[of <init-state N`T] using assms cdcl-pow2-n-learned-clauses[of <init-state N`T]
by auto
by auto
end
end

```

\subsection*{1.2 Merging backjump rules}
theory \(C D C L\) - \(W\)-Merge
imports \(C D C L-W\)
begin
Before showing that Weidenbach's CDCL is included in NOT's CDCL, we need to work on a variant of Weidenbach's calculus: NOT's backjump assumes the existence of a clause that is suitable to backjump. This clause is obtained in W's CDCL by applying:
1. conflict-driven-clause-learning \(W_{W}\).conflict to find the conflict
2. the conflict is analysed by repetitive application of conflict-driven-clause-learning \({ }_{W}\).resolve and conflict-driven-clause-learning \({ }_{W}\).skip,
3. finally conflict-driven-clause-learning \({ }_{W}\).backtrack is used to backtrack.

We show that this new calculus has the same final states than Weidenbach's CDCL if the calculus starts in a state such that the invariant holds and no conflict has been found yet. The latter condition holds for initial states.

\subsection*{1.2.1 Inclusion of the States}
context conflict-driven-clause-learning \({ }_{W}\)
begin
declare \(c d c l_{W}\)-restart.intros[intro] \(c d c l_{W}\)-bj.intros[intro] \(c d c l_{W}\)-o.intros[intro]
state-prop [simp del]
lemma backtrack-no-cdcl \({ }_{W}-b j\) :
```

assumes cdcl: cdcl W}\mp@subsup{W}{}{-bj}T
shows \negbacktrack V T
using cdcl
apply (induction rule: cdcl}\mp@subsup{W}{}{-bj.induct)
apply (elim skipE, force elim!: backtrackE simp:cdcl w-M-level-inv-def)
apply (elim resolveE, force elim!: backtrackE simp: cdcl W-M-level-inv-def)
apply standard
apply (elim backtrackE)
apply (force simp add: cdcl W
done

```
skip-or-resolve corresponds to the analyze function in the code of MiniSAT.
inductive skip-or-resolve :: 'st \(\Rightarrow\) 'st \(\Rightarrow\) bool where
s-or-r-skip[intro]: skip \(S T \Longrightarrow\) skip-or-resolve \(S T \mid\)
s-or-r-resolve[intro]: resolve \(S T \Longrightarrow\) skip-or-resolve \(S T\)
lemma rtranclp-cdcl \({ }_{W}\)-bj-skip-or-resolve-backtrack:
assumes \(c d c l_{W}-b j^{* *} S U\)
shows skip-or-resolve** \(S U \vee(\exists T\). skip-or-resolve** \(S T \wedge\) backtrack \(T U)\)
using assms
proof induction
case base
then show ?case by simp
next
case \((\) step \(U V)\) note st \(=\) this(1) and \(b j=t h i s(2)\) and \(I H=t h i s(3)\)
consider
\((S U) S=U\)
| (SUp) \(c d c l_{W}-b j^{++} S U\)
using st unfolding rtranclp-unfold by blast
then show? case
proof cases
case \(S U p\)
have \(\wedge T\). skip-or-resolve** \(S T \Longrightarrow\) cdcl \(_{W}\)-restart** \(S T\)
using mono-rtranclp[of skip-or-resolve cdcl \(_{W}\)-restart]
by (blast intro: skip-or-resolve.cases)
then have skip-or-resolve** \(S U\)
using bj IH backtrack-no-cdcl \(W_{W}\)-bj by meson
then show ?thesis
using \(b j\) by (auto simp: \(c d c l_{W}\)-bj.simps dest!: skip-or-resolve.intros)
next
case \(S U\)
then show ?thesis
using \(b j\) by (auto simp: \(c d c l_{W}\)-bj.simps dest!: skip-or-resolve.intros)
qed
qed
lemma rtranclp-skip-or-resolve-rtranclp-cdcl \({ }_{W}\)-restart:
skip-or-resolve** \(S T \Longrightarrow \operatorname{cdcl}_{W}\)-restart** \({ }^{*} T\)
by (induction rule: rtranclp-induct)
(auto dest!: cdcl \(W_{W}\)-bj.intros \(c d c l_{W}\)-restart.intros \(c d c l_{W}\)-o.intros simp: skip-or-resolve.simps)
definition backjump-l-cond \(::\) 'v clause \(\Rightarrow\) 'v clause \(\Rightarrow\) 'v literal \(\Rightarrow\) 'st \(\Rightarrow\) 'st \(\Rightarrow\) bool where
backjump-l-cond \(\equiv \lambda C C^{\prime} L S T\). True
lemma wf-skip-or-resolve:
\(w f\{(T, S)\). skip-or-resolve \(S T\}\)
```

proof -
have skip-or-resolve x y length (trail y) < length (trail x) for x y
by (auto simp: skip-or-resolve.simps elim!: skipE resolveE)
then show ?thesis
using wfP-if-measure[of \lambda-. True skip-or-resolve }\lambda\mathrm{ S.length (trail S)]
by meson
qed
definition inv NOT :: 'st }=>\mathrm{ bool where
inv NOT }\equiv\lambdaS.no-dup (trail S
declare inv NOT-def[simp]
end
context conflict-driven-clause-learning}\mp@subsup{W}{}{\prime
begin

```

\subsection*{1.2.2 More lemmas about Conflict, Propagate and Backjumping}

\section*{Termination}
lemma \(c d c l_{W}\)-bj-measure:
assumes \(c d c l_{W}-b j S T\)
shows length (trail \(S)+(\) if conflicting \(S=\) None then 0 else 1)
\(>\) length \((\) trail \(T)+(\) if conflicting \(T=\) None then 0 else 1\()\)
using assms by (induction rule: cdcl \({ }_{W}\)-bj.induct) (force elim!: backtrackE skipE resolveE)+
lemma \(w f-c d c l_{W}-b j\) :
\(w f\left\{(b, a) . c d c l_{W}-b j a b\right\}\)
apply (rule wfP-if-measure[of \(\lambda\)-. True
- \(\lambda T\). length \((\operatorname{trail} T)+(\) if conflicting \(T=\) None then 0 else 1\()\), simplified \(])\)
using \(c d c l_{W}\)-bj-measure by simp
lemma cdcl \(_{W}\)-bj-exists-normal-form:
shows \(\exists T\). full \(c d c l_{W}-b j S T\)
using wf-exists-normal-form-full[OF wf-cdcl \(W_{W}\)-bj] .
lemma rtranclp-skip-state-decomp:
assumes skip** \(S T\)
shows
\(\exists M\). trail \(S=M @ \operatorname{trail} T \wedge(\forall m \in\) set \(M\). \(\neg\) is-decided \(m)\)
init-clss \(S=\) init-clss \(T\)
learned-clss \(S=\) learned-clss \(T\)
backtrack-lvl \(S=\) backtrack-lvl \(T\)
conflicting \(S=\) conflicting \(T\)
using assms by (induction rule: rtranclp-induct) (auto elim!: skipE)

\section*{Analysing is confluent}
```

lemma backtrack-reduce-trail-to-state-eq:
assumes
V-T: \langleV ~ tl-trail T\rangle and
decomp: <(Decided K \# M1, M2) \in set (get-all-ann-decomposition (trail V))>
shows <reduce-trail-to M1 (add-learned-cls E (update-conflicting None V))
~ reduce-trail-to M1 (add-learned-cls E (update-conflicting None T))>
proof -

```
let ？f \(=\langle\lambda T\) ．add－learned－cls \(E\)（update－conflicting None \(T)\rangle\)
have \([\) simp \(]\) ：〈length \((\) trail \(T) \neq\) length M1〉〈trail \(T \neq[]\rangle\)
using decomp \(V-T\) by（cases＜trail \(T\) ；auto）+
have 〈reduce－trail－to M1（？f V）～reduce－trail－to M1（？f（tl－trail T））〉
apply（rule reduce－trail－to－state－eq）
using \(V\)－\(T\) by（simp－all add：add－learned－cls－state－eq update－conflicting－state－eq）
moreover \｛
have 〈add－learned－cls E（update－conflicting None（tl－trail T））～
tl－trail（add－learned－cls E（update－conflicting None T））
apply（rule state－eq－trans［OF state－eq－sym［THEN iffD1］，of〈add－learned－cls E（tl－trail（update－conflicting None T））\(\rangle\) ］）
apply（auto simp：tl－trail－update－conflicting tl－trail－add－learned－cls－commute update－conflicting－state－eq add－learned－cls－state－eq tl－trail－state－eq；fail）［］
apply（rule state－eq－trans［OF state－eq－sym［THEN iffD1］，of〈add－learned－cls E（tl－trail（update－conflicting None T））\(]\) ）
apply（auto simp：tl－trail－update－conflicting tl－trail－add－learned－cls－commute update－conflicting－state－eq add－learned－cls－state－eq tl－trail－state－eq；fail）［］
apply（rule state－eq－trans［OF state－eq－sym［THEN iffD1］，of〈tl－trail（add－learned－cls E（update－conflicting None T））〉］）
apply（auto simp：tl－trail－update－conflicting tl－trail－add－learned－cls－commute update－conflicting－state－eq add－learned－cls－state－eq tl－trail－state－eq） done
note \(-=\) reduce－trail－to－state－eq［OF this，of M1 M1］\}
ultimately show 〈reduce－trail－to M1（？f V）～reduce－trail－to M1（？f T）＞
by（subst（2）reduce－trail－to．simps）
（auto simp：tl－trail－update－conflicting tl－trail－add－learned－cls－commute intro：state－eq－trans）
qed
lemma rtranclp－skip－backtrack－reduce－trail－to－state－eq：
assumes
\(V-T:\left\langle s k i p^{* *} T V\right\rangle\) and
decomp：«（Decided K \＃M1，M2）\(\in\) set（get－all－ann－decomposition（trail V））\(\rangle\)
shows＜reduce－trail－to M1（add－learned－cls E（update－conflicting None T））
\(\sim\) reduce－trail－to M1（add－learned－cls E（update－conflicting None V））＞
using \(V\)－\(T\) decomp
proof（induction arbitrary：M2 rule：rtranclp－induct）
case base
then show ？case by auto
next
case \((\) step \(U V)\) note \(s t=\) this（1）and skip \(=\) this（2）and \(I H=\) this（3）and decomp \(=\) this（4）
obtain M2＇where
decomp＇：〈（Decided K \＃M1，M2 \(\left.{ }^{\prime}\right) \in\) set（get－all－ann－decomposition（trail U））\({ }^{\prime}\)
using get－all－ann－decomposition－exists－prepend［OF decomp］skip
by atomize（auto elim！：rulesE simp del：get－all－ann－decomposition．simps
simp：Decided－cons－in－get－all－ann－decomposition－append－Decided－cons append－Cons［symmetric］append－assoc［symmetric］
simp del：append－Cons append－assoc）
show ？case
using backtrack－reduce－trail－to－state－eq［OF－decomp，of U E］skip IH［OF decomp］
by（auto elim！：skipE simp del：get－all－ann－decomposition．simps intro：state－eq－trans＇）
qed

Backjumping after skipping or jump directly lemma rtranclp－skip－backtrack－backtrack： assumes
skip \({ }^{* *} S T\) and
backtrack \(T W\) and
\(c d c l_{W}\)-all-struct-inv \(S\)
shows backtrack \(S\) W
using assms
proof induction
case base
then show? case by simp
next
case \((\) step \(T V)\) note st \(=\) this(1) and skip \(=\) this(2) and \(I H=\) this(3) and \(b t=\) this(4) and \(i n v=t h i s(5)\)
have skip** \(S V\)
using st skip by auto
then have \(c d c l_{W}\)-all-struct-inv \(V\)
using rtranclp-mono[of skip cdcl \(W_{W}\)-restart \(]\) assms(3) rtranclp-cdcl \({ }_{W}\)-all-struct-inv-inv mono-rtranclp by (auto dest!: bj other cdcl \(W_{W}\)-bj.skip)
then have \(c d c l_{W}-M\)-level-inv \(V\)
unfolding cdcl \(_{W}\)-all-struct-inv-def by auto
then obtain \(K\) i M1 M2 L \(D D^{\prime}\) where
conf: conflicting \(V=\) Some (add-mset \(L D\) ) and
decomp: (Decided K \# M1, M2) \(\in\) set (get-all-ann-decomposition (trail V)) and
lev-L: get-level (trail \(V\) ) \(L=\) backtrack-lvl \(V\) and
max: get-level (trail V) \(L=\) get-maximum-level (trail \(V\) ) (add-mset \(L D^{\prime}\) ) and
max-D: get-maximum-level (trail \(V\) ) \(D^{\prime} \equiv i\) and
lev-k: get-level (trail \(V\) ) \(K=\) Suc \(i\) and
\(W: W \sim\) cons-trail (Propagated \(L\) (add-mset \(\left.L D^{\prime}\right)\) )
(reduce-trail-to M1
(add-learned-cls (add-mset L D \({ }^{\prime}\) )
(update-conflicting None \(V\) ))) and
\(D-D^{\prime}:\left\langle D^{\prime} \subseteq \# D\right\rangle\) and
\(N U-D^{\prime}:\left\langle c l a u s e s ~ V \models p m\right.\) add-mset \(\left.L D^{\prime}\right\rangle\)
using bt inv by (elim backtrackE) metis
obtain \(L^{\prime} C^{\prime} M E\) where
tr: trail \(T=\) Propagated \(L^{\prime} C^{\prime} \# M\) and
raw: conflicting \(T=\) Some \(E\) and
\(L E:-L^{\prime} \notin \# E\) and
\(E: E \neq\{\#\}\) and
\(V: V \sim\) tl-trail \(T\)
using skip by (elim skipE) metis
let \(? M=\) Propagated \(L^{\prime} C^{\prime} \# M\)
have \(t r-M\) : trail \(T=? M\)
using \(\operatorname{tr} V\) by auto
have \(M T: M=t l(\) trail \(T)\) and \(M V: M=\) trail \(V\) using \(t r V\) by auto
have \(D E[\) simp \(]: E=\) add-mset \(L D\)
using \(V\) conf raw by auto
have \(\operatorname{cdcl}_{W}\)-restart** \(S T\)
using \(b j c d c l_{W}\)-bj.skip mono-rtranclp[of skip \(c d c l_{W}\)-restart \(\left.S T\right]\) other st by meson
then have \(i n v^{\prime}: ~ c d c l_{W}\)-all-struct-inv \(T\)
using rtranclp-cdcl \(W_{W}\)-all-struct-inv-inv inv by blast
have \(M\)-lev: \(c d c l_{W}-M\)-level-inv \(T\) using inv \(^{\prime}\) unfolding \(c d c l_{W}\)-all-struct-inv-def by auto
then have \(n\) - \(d^{\prime}:\) no-dup ? \(M\)
using \(t r-M\) unfolding \(\mathrm{cdcl}_{W}-M\)-level-inv-def by auto
let \(? k=\) backtrack-lvl \(T\)
have [simp]:
backtrack-lvl \(V=? k\)
using \(V \operatorname{tr}-M\) by simp
have ? \(k>0\)
using decomp \(M\)-lev \(V\) tr unfolding \(c d c l_{W}\)-M-level-inv-def by auto
then have atm-of \(L \in\) atm-of 'lits-of-l (trail \(V\) )
using lev-L get-level-ge-0-atm-of-in[of 0 trail V L] by auto
then have \(L\) - \(L^{\prime}\) : atm-of \(L \neq\) atm-of \(L^{\prime}\)
using \(n\) - \(d^{\prime}\) unfolding lits-of-def \(M V\) by (auto simp: defined-lit-map)
have \(L^{\prime}-M\) : undefined-lit \(M L^{\prime}\)
using \(n\)-d' unfolding lits-of-def by auto
have ? \(M \models\) as \(C N o t D\)
using \(i n v^{\prime}\) raw unfolding \(c d c l_{W}\)-conflicting-def \(c d c l_{W}\)-all-struct-inv-def tr-M by auto
then have \(L^{\prime} \notin \# D\)
using \(L\) - \(L^{\prime} L^{\prime}\) - \(M\) unfolding true-annots-true-cls true-clss-def
by (auto simp: uminus-lit-swap atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set defined-lit-map lits-of-def dest!: in-diffD)
have [simp]: trail (reduce-trail-to M1 T) = M1
using decomp tr \(W V\) by auto
have skip** \(S V\)
using st skip by auto
have no-dup (trail \(S\) )
using inv unfolding \(\operatorname{cdcl}_{W}\)-all-struct-inv-def \(c d c l_{W}\)-M-level-inv-def by auto
then have \([\) simp \(]\) : init-clss \(S=\) init-clss \(V\) and \([\) simp \(]\) : learned-clss \(S=\) learned-clss \(V\)
using rtranclp-skip-state-decomp[OF 〈skip** \(S V\rangle] V\) by auto
have \(V-T:\langle V \sim\) tl-trail \(T\rangle\)
using skip by (auto elim: rulesE)
have
\(W\)-S: \(W \sim\) cons-trail (Propagated \(L\) (add-mset \(\left.L D^{\prime}\right)\) ) (reduce-trail-to M1
(add-learned-cls (add-mset L D') (update-conflicting None T)))
apply (rule state-eq-trans[OF W])
unfolding \(D E\)
apply (rule cons-trail-state-eq)
apply (rule backtrack-reduce-trail-to-state-eq)
using \(V\) decomp by auto
have atm-of- \(L^{\prime}\) - \(D^{\prime}\) : atm-of \(L^{\prime} \notin\) atms-of \(D^{\prime}\)
by (metis \(D E L E\left\langle D^{\prime} \subseteq \# D\right\rangle\left\langle L^{\prime} \notin \# D\right\rangle\) atm-of-in-atm-of-set-in-uminus atms-of-def insert-iff mset-subset-eqD set-mset-add-mset-insert)
obtain M2' where
decomp': (Decided \(K \#\) M1, M2 \() \in\) set (get-all-ann-decomposition (trail T))
using decomp \(V\) unfolding \(t r-M M V\) by (cases hd (get-all-ann-decomposition (trail V)), cases get-all-ann-decomposition (trail \(V\) )) auto
moreover from \(L-L^{\prime}\) have get-level ?M \(L=? k\) using lev-L \(V\) tr-M by (auto split: if-split-asm)
moreover have get-level ?M \(L=\) get-maximum-level ?M (add-mset \(L D^{\prime}\) )
using count-decided-ge-get-maximum-level[of 〈trail \(\left.V\rangle D^{\prime}\right]\) calculation(2) lev-L max MVatm-of- \(L^{\prime}-D^{\prime}\)
unfolding get-maximum-level-add-mset
by auto
moreover have \(i=\) get-maximum-level ?M \(D^{\prime}\)
using max-D MV atm-of- \(L^{\prime}-D^{\prime}\) by auto
moreover have atm-of \(L^{\prime} \neq\) atm-of \(K\)
using inv' get-all-ann-decomposition-exists-prepend[OF decomp]
unfolding \(c d c l_{W}\)-all-struct-inv-def \(c d c l_{W}\)-M-level-inv-def \(\operatorname{tr} M V\) by (auto simp: defined-lit-map)
ultimately have backtrack \(T W\)
apply -
apply (rule backtrack-rule[of T L D K M1 M2' \(\left.D^{\prime} i\right]\) )
unfolding \(t r-M\) [symmetric]
subgoal using raw by (simp; fail)
subgoal by (simp; fail)
```

 subgoal by (simp; fail)
 subgoal by (simp; fail)
 subgoal by (simp; fail)
 subgoal using lev-k tr unfolding MV[symmetric] by (auto; fail)[]
 subgoal using D-D' by (simp; fail)
 subgoal using NU-D'V-T by (simp; fail)
 subgoal using W-S lev-k by (auto; fail)[]
 done
 then show ?thesis using IH inv by blast
 qed
See also theorem rtranclp-skip-backtrack-backtrack
lemma rtranclp-skip-backtrack-backtrack-end:
assumes
skip: skip** S T and
bt: backtrack S W and
inv: cdcl }\mp@subsup{W}{W}{}\mathrm{ -all-struct-inv S
shows backtrack T W
using assms
proof -
have M-lev: cdcl }\mp@subsup{W}{}{\prime}\mathrm{ -M-level-inv S
using bt inv unfolding cdcl W-all-struct-inv-def by (auto elim!: backtrackE)
then obtain K i M1 M2 L D D' where
S: conflicting S = Some (add-mset L D) and
decomp: (Decided K \# M1, M2) \in set (get-all-ann-decomposition (trail S)) and
lev-l: get-level (trail S) L = backtrack-lvl S and
lev-l-D: get-level (trail S) L = get-maximum-level (trail S) (add-mset L D') and
i: get-maximum-level (trail S) D'\equivi and
lev-K: get-level (trail S) K=Suc i and
W:W~ cons-trail (Propagated L (add-mset L D'))
(reduce-trail-to M1
(add-learned-cls (add-mset L D')
(update-conflicting None S))) and
D-D': \langleD'\subseteq\# D> and
NU-D': <clauses S \modelspm add-mset L D'`
using bt by (elim backtrackE) metis
let ?D = add-mset L D
let ? D' = add-mset L D'
have [simp]: no-dup (trail S)
using M-lev by (auto simp: cdcl W-M-level-inv-decomp)
have cdclW-all-struct-inv T
using mono-rtranclp[of skip cdcl W-restart] by (smt bj cdclW-bj.skip inv local.skip other
rtranclp-cdcl W-all-struct-inv-inv)
then have [simp]: no-dup (trail T)
unfolding cdcl}\mp@subsup{W}{W}{-all-struct-inv-def cdcl}\mp@subsup{W}{}{-M-level-inv-def by auto

```

```

\neg i s - d e c i d e d ~ m
using rtranclp-skip-state-decomp(1)[OF skip] S by auto
have T: state-butlast T = (M , init-clss S, learned-clss S,Some (add-mset L D)) and
bt-S-T: backtrack-lvl S = backtrack-lvl T and
clss-S-T: <clauses S = clauses T>
using M M rtranclp-skip-state-decomp[of S T] skip S by (auto simp: clauses-def)
have cdcl}\mp@subsup{W}{}{-all-struct-inv T

```
apply（rule rtranclp－cdcl \({ }_{W}\)－all－struct－inv－inv \([O F-i n v]\) ）
using bj cdcl \({ }_{W}\)－bj．skip local．skip other rtranclp－mono［of skip \(c d c l_{W}\)－restart］by blast
then have \(M_{T} \models\) as CNot？D
unfolding \(c d c l_{W}\)－all－struct－inv－def \(c d c l_{W}\)－conflicting－def using \(T\) by auto
then have \(\forall L^{\prime} \in \#\) ？\(D\) ．defined－lit \(M_{T} L^{\prime}\)
using Decided－Propagated－in－iff－in－lits－of－l
by（auto dest：true－annots－CNot－definedD）
moreover have no－dup（trail S）
using inv unfolding \(c d c l_{W}\)－all－struct－inv－def \(c d c l_{W}\)－M－level－inv－def by auto
ultimately have undef－\(D: \forall L^{\prime} \in \#\) ？\(D\) ．undefined－lit \(M S L^{\prime}\)
unfolding \(M\) by（auto dest：defined－lit－no－dupD）
then have \(H: \bigwedge L^{\prime} . L^{\prime} \in \# D \Longrightarrow\) get－level（trail \(S\) ）\(L^{\prime}=\) get－level \(M_{T} L^{\prime}\)
get－level（trail \(S\) ）\(L=\) get－level \(M_{T} L\)
unfolding \(M\) by（auto simp：lits－of－def）
have［simp］：get－maximum－level（trail S）\(D=\) get－maximum－level \(M_{T} D\)
using \(\left\langle M_{T} \models\right.\) as \(C N o t\)（add－mset \(L D\) ）〉Mnmundef－D by（auto simp：get－maximum－level－skip－beginning）
have lev－l＇：get－level \(M_{T} L=\) backtrack－lvl \(S\)
using lev－l \(n m\) by（auto simp：H）
have［simp］：trail（reduce－trail－to M1 T）＝M1
by（metis（no－types）M \(M_{T}\) append－assoc get－all－ann－decomposition－exists－prepend［OF decomp］ nm reduce－trail－to－trail－tl－trail－decomp beginning－not－decided－invert）
obtain \(c\) where \(c:\left\langle M_{T}=c\right.\)＠Decided \(\left.K \# M 1\right\rangle\)
using nm decomp by（auto dest！：get－all－ann－decomposition－exists－prepend
simp：\(M_{T}[\) symmetric］\(M\) append－assoc［symmetric］
simp del：append－assoc
dest！：beginning－not－decided－invert）
obtain \(c^{\prime \prime}\) where
\(c^{\prime \prime}:\left\langle\left(\right.\right.\) Decided \(\left.K \# M 1, c^{\prime}\right) \in \operatorname{set}(\) get－all－ann－decomposition \((c\)＠Decided K \＃M1））\()\)
using Decided－cons－in－get－all－ann－decomposition－append－Decided－cons［of K M1］by blast
have \(W\) ：\(W\)～cons－trail（Propagated \(L\)（add－mset L \(D^{\prime}\) ））（reduce－trail－to M1
（add－learned－cls（add－mset L \(\left.D^{\prime}\right)(\) update－conflicting None \(\left.T)\right)\) ）
apply（rule state－eq－trans \([O F W])\)
apply（rule cons－trail－state－eq）
apply（rule rtranclp－skip－backtrack－reduce－trail－to－state－eq［of－－K M1］）
using skip apply（simp；fail）
using \(c^{\prime \prime}\) by（auto simp：\(M_{T}[\) symmetric \(] M c\) ）
have max－trail－S－MT－L－D＇：〈get－maximum－level（trail \(S\) ）？\(D^{\prime}=\) get－maximum－level \(M_{T}\) ？\(\left.D^{\prime}\right\rangle\)
by（rule get－maximum－level－cong）（use \(H D-D^{\prime}\) in auto）
then have lev－l－\(D^{\prime}\) ：get－level \(M_{T} L=\) get－maximum－level \(M_{T}\) ？\(D^{\prime}\)
using lev－l－D \(H\) by auto
have \(i^{\prime}: i=\) get－maximum－level \(M_{T} D^{\prime}\)
unfolding \(i\)［symmetric］
by（rule get－maximum－level－cong）（use \(H D-D^{\prime}\) in auto）
have Decided \(K \# M 1 \in \operatorname{set}(\) map fst（get－all－ann－decomposition \((\) trail \(S))\) ）
using Set．imageI \([\) OF decomp，of fst \(]\) by auto
then have Decided \(K \# M 1 \in \operatorname{set}\left(\right.\) map fst（get－all－ann－decomposition \(\left.M_{T}\right)\) ）
using fst－get－all－ann－decomposition－prepend－not－decided \([O F n m]\) unfolding \(M\) by auto
then obtain M2＇\(^{\prime}\) where decomp＇：\((\) Decided \(K \# M 1, ~ M 2 ') \in\) set（get－all－ann－decomposition \(\left.M_{T}\right)\)
by auto
moreover \｛
have undefined－lit MS K
using \(\left\langle n o-d u p\right.\)（trail \(S\) ）〉 decomp \({ }^{\prime}\) unfolding \(M M_{T}\)
by（auto simp：lits－of－def defined－lit－map no－dup－def）
then have get－level（trail \(T\) ）\(K=\) get－level（trail \(S\) ）\(K\)
unfolding \(M M_{T}\) by auto \}
```

 ultimately show backtrack T W
 apply -
 apply (rule backtrack.intros[of T L D K M1 M2' D' i])
 subgoal using T by auto
 subgoal using T by auto
 subgoal using T lev-l' lev-l-D' bt-S-T by auto
 subgoal using T lev-l-D' bt-S-T by auto
 subgoal using i' W lev-K unfolding M}\mp@subsup{M}{T}{}[\mathrm{ [symmetric] clss-S-T by auto
 subgoal using lev-K unfolding M}\mp@subsup{M}{T}{[symmetric] clss-S-T by auto
 subgoal using D-D'.
 subgoal using NU-D' unfolding clss-S-T .
 subgoal using W unfolding i'[symmetric] by auto
 done
 qed
lemma cdcl W-bj-decomp-resolve-skip-and-bj:
assumes cdcl}\mp@subsup{W}{-}{-bj**}S
shows (skip-or-resolve** ST
\vee ~ (\exists U . ~ s k i p - o r - r e s o l v e * * ~ S ~ U ~ \wedge ~ b a c k t r a c k ~ U ~ T)) ~
using assms
proof induction
case base
then show?case by simp
next
case (step T U) note st = this(1) and bj = this(2) and IH = this(3)
have IH: skip-or-resolve** S T
proof -
{ assume \existsU. skip-or-resolve** S U^ backtrack U T
then obtain V where
bt: backtrack V T and
skip-or-resolve** S V
by blast
then have cdcl}\mp@subsup{W}{W}{-restart** S V
using rtranclp-skip-or-resolve-rtranclp-cdcl W-restart by blast
with bj bt have False using backtrack-no-cdclW -bj by simp
}
then show ?thesis using IH by blast
qed
show ?case
using bj
proof (cases rule: cdcl}\mp@subsup{W}{W}{-bj.cases)
case backtrack
then show ?thesis using IH by blast
qed (metis (no-types, lifting) IH rtranclp.simps skip-or-resolve.simps)+
qed

```

\subsection*{1.2.3 CDCL with Merging}
inductive \(c d c l_{W}\)-merge-restart \(::\) 'st \(\Rightarrow\) 'st \(\Rightarrow\) bool where
fw-r-propagate: propagate \(S S^{\prime} \Longrightarrow\) cdcl \(_{W}\)-merge-restart \(S S^{\prime} \mid\)
fw-r-conflict: conflict \(S T \Longrightarrow\) full \(^{\text {ch }}\) dcl \(_{W}\)-bj \(T U \Longrightarrow\) cdcl \(_{W}\)-merge-restart \(S U \mid\)
fw-r-decide: decide \(S S^{\prime} \Longrightarrow\) cdcl \(_{W}\)-merge-restart \(S S^{\prime} \mid\)
\(f w-r-r f: c d c l_{W}-r f S S^{\prime} \Longrightarrow \operatorname{cdcl}_{W}\)-merge-restart \(S S^{\prime}\)
lemma rtranclp-cdcl \({ }_{W}\)-bj-rtranclp-cdcl \(W_{W}\)-restart:
\(c d c l_{W}-b j^{* *} S T \Longrightarrow c d c l_{W}\)-restart \({ }^{* *} S T\)
using mono-rtranclp \(\left[\right.\) of \(c d c l_{W}-b j c d c l_{W}\)-restart \(]\) by blast
```

lemma cdcl W-merge-restart-cdcl W-restart:
assumes cdcl}\mp@subsup{W}{}{-}\mathrm{ -merge-restart ST
shows cdcl}\mp@subsup{W}{W}{-restart** ST
using assms
proof induction
case (fw-r-conflict S T U) note confl = this(1) and bj = this(2)
have cdcl}\mp@subsup{W}{W}{-restart S T using confl by (simp add: cdcl}\mp@subsup{W}{W}{}\mathrm{ -restart.intros r-into-rtranclp)
moreover
have cdclW-bj** T U using bj unfolding full-def by auto
then have cdclW-restart** T U using rtranclp-cdcl W-bj-rtranclp-cdcl}\mp@subsup{W}{W}{}-restart by blas
ultimately show ?case by auto
qed (simp-all add: cdclW-o.intros cdcl W-restart.intros r-into-rtranclp)
lemma cdclW-merge-restart-conflicting-true-or-no-step:
assumes cdclW-merge-restart ST
shows conflicting T = None \vee no-step cdcl W-restart T
using assms
proof induction
case (fw-r-conflict S T U) note confl = this(1) and n-s = this(2)
{ fix D V
assume cdcl}\mp@subsup{W}{W}{-restart U V and conflicting U = Some D
then have False
using n-s unfolding full-def
by (induction rule: cdcl W-restart-all-rules-induct)
(auto dest!: cdcl W-bj.intros elim: decideE propagateE conflictE forgetE restartE)
}
then show ?case by (cases conflicting U) fastforce+
qed (auto simp add: cdcl W-rf.simps elim: propagateE decideE restartE forgetE)
inductive cdclW-merge :: 'st }=>\mathrm{ 'st }=>\mathrm{ bool where
fw-propagate: propagate S S'\Longrightarrowcdcl}\mp@subsup{W}{}{\prime}\mathrm{ -merge S S'|

```

```

fw-decide: decide S S' \Longrightarrowcdclw
fw-forget: forget S S'}\Longrightarrow\mp@subsup{\textrm{cdcl}}{W}{\prime}\mathrm{ -merge S S'
lemma cdcl W-merge-cdcl W-merge-restart:
cdcl}\mp@subsup{W}{W}{-merge S T\Longrightarrowcdcl W-merge-restart S T

```

lemma rtranclp-cdcl \({ }_{W}\)-merge-tranclp-cdcl \(W_{W}\)-merge-restart:
    \(c^{\prime} c l_{W}\)-merge** \(S T \Longrightarrow \operatorname{cdcl}_{W}\)-merge-restart** \(S T\)
    using rtranclp-mono[of \(c d c l_{W}\)-merge \(\operatorname{cdcl}_{W}\)-merge-restart] \(c d c l_{W}\)-merge- \(c d c l_{W}\)-merge-restart by blast

    \(c d c l_{W}\)-merge \(S T \Longrightarrow c d c l_{W}\)-restart** \(S T\)
    using \(c d c l_{W}\)-merge- \(c d c l_{W}\)-merge-restart \(c d c l_{W}\)-merge-restart- \(c d c l_{W}\)-restart by blast
lemma rtranclp-cdcl \({ }_{W}\)-merge-rtranclp-cdcl \({ }_{W}\)-restart:
    \(\operatorname{cdcl}_{W}\)-merge** \(S T \Longrightarrow\) cdcl \(_{W}\)-restart \({ }^{* *} S T\)
    using rtranclp-mono[of \(c d c l_{W}\)-merge \(c d c l_{W}\)-restart**] \(c^{*} c l_{W}\)-merge-rtranclp-cdcl \(W_{W}\)-restart by auto
lemma cdcl \(_{W}\)-all-struct-inv-tranclp-cdcl \(W_{W}\)-merge-tranclp-cdcl \(W_{W}\)-merge- \(c d c l_{W}\)-all-struct-inv:
    assumes
        inv: \(c d c l_{W}\)-all-struct-inv b
\[
{c d c l_{W}-m e r g e}^{++} \text {b a }
\]
shows \(\left(\lambda S T . c d c l_{W} \text {-all-struct-inv } S \wedge c d c l_{W} \text {-merge } S T\right)^{++} b a\)
using assms(2)
proof induction
case base
then show? case using inv by auto
next
case \((\) step \(c \quad d)\) note \(s t=t h i s(1)\) and \(f w=t h i s(2)\) and \(I H=t h i s(3)\)
have cdcl \(_{W}\)-all-struct-inv \(c\) using tranclp-into-rtranclp[OF st] \(c d c l_{W}\)-merge-rtranclp-cdcl \({ }_{W}\)-restart assms(1) rtranclp-cdcl \(W_{W}\)-all-struct-inv-inv rtranclp-mono[of cdcl \(W_{W}\)-merge cdcl \(_{W}\)-restart**] by fastforce
then have \(\left(\lambda S T . c d c l_{W} \text {-all-struct-inv } S \wedge c d c l_{W} \text {-merge } S T\right)^{++} c d\) using \(f w\) by auto
then show ?case using \(I H\) by auto
qed
lemma backtrack-is-full1-cdcl \({ }_{W}\)-bj:
assumes bt: backtrack \(S T\)
shows full1 cdcl \({ }_{W}-b j S T\)
using bt backtrack-no-cdcl \(W_{W}\)-bj unfolding full1-def by blast
lemma rtrancl-cdcl \(W_{W}\)-conflicting-true-cdcl \(W_{W}\)-merge-restart:
assumes \(c d c l_{W}\)-restart** \(S V\) and inv: cdcl \(_{W}-M\)-level-inv \(S\) and conflicting \(S=\) None
shows ( \(\mathrm{cdcl}_{W}\)-merge-restart** \(S V \wedge\) conflicting \(V=\) None)
\(\vee\left(\exists T U . c d c l_{W}\right.\)-merge-restart** \(S T \wedge\) conflicting \(V \neq\) None \(\wedge\) conflict \(\left.T U \wedge c d c l_{W}-b j^{* *} U V\right)\)
using assms
proof induction
case base
then show? case by simp
next
case \((\) step \(U V)\) note \(s t=\) this(1) and \(c d c l_{W}\)-restart \(=\) this(2) and \(I H=t h i s(3)[O F\) this(4-)] and \(\operatorname{confl}[\operatorname{simp}]=\operatorname{this}(5)\) and \(i n v=\operatorname{this}(4)\)
from \(c d c l_{W}\)-restart
show ?case
proof cases
case propagate
moreover have conflicting \(U=\) None and conflicting \(V=\) None
using propagate propagate by (auto elim: propagateE)
ultimately show ?thesis using \(I H \operatorname{cdcl}_{W}\)-merge-restart.fw-r-propagate \([o f ~ U V]\) by auto
next
case conflict
moreover have conflicting \(U=\) None and conflicting \(V \neq\) None
using conflict by (auto elim!: conflictE)
ultimately show ?thesis using \(I H\) by auto
next
case other
then show? ?thesis
proof cases
case decide
then show ?thesis using \(I H ~ c d c l_{W}\)-merge-restart.fw-r-decide \([o f ~ U V]\) by (auto elim: decideE)
next
case \(b j\)
then consider
(s-or-r) skip-or-resolve \(U V \mid\)
(bt) backtrack \(U V\)
by (auto simp: \(c d c l_{W}\)-bj.simps)
```

 then show ?thesis
 proof cases
 case s-or-r
 have f1: cdcl W -bj++ U V
 by (simp add: local.bj tranclp.r-into-trancl)
 obtain T T' :: 'st where
 f2: cdcl W-merge-restart** S U
 \vee cdcl}\mp@subsup{W}{W}{-merge-restart** S T ^ conflicting U = None
 ^ conflict T T'^ cdcl}\mp@subsup{W}{W}{-bj** T
 using IH confl by blast
 have conflicting V\not= None ^ conflicting U\not= None
 using \skip-or-resolve U V
 by (auto simp: skip-or-resolve.simps elim!: skipE resolveE)
 then show ?thesis
 by (metis (full-types) IH f1 rtranclp-trans tranclp-into-rtranclp)
 next
case bt
then have conflicting U\not=None by (auto elim: backtrackE)
then obtain T T' where
cdcl}\mp@subsup{W}{}{-merge-restart** ST and
conflicting U\not= None and
conflict T T' and
cdcl}\mp@subsup{W}{}{-}-b\mp@subsup{j}{}{**}\mp@subsup{T}{}{\prime}
using IH confl by meson
have invU: cdcl}\mp@subsup{W}{W}{-M-level-inv U
using inv rtranclp-cdcl W-restart-consistent-inv step.hyps(1) by blast
then have conflicting V = None
using \backtrack U V` inv by (auto elim: backtrackE simp: cdcl l}\mp@subsup{W}{W}{}-M\mathrm{ -level-inv-decomp)
have full cdcl W}-bj T'
apply (rule rtranclp-fullI[of cdcl w-bj T' U V])
using <cdcl w}\mp@subsup{W}{}{-bj** T' U\rangle apply fast
using <backtrack U V \ backtrack-is-full1-cdcl W -bj invU unfolding full1-def full-def
by blast
then show ?thesis
using cdclW-merge-restart.fw-r-conflict[of T T' V] {conflict T T``
<cdcl }\mp@subsup{W}{W}{-merge-restart** S T\rangle\langleconflicting V = None\rangle by auto
qed
qed
next
case rf
moreover have conflicting U = None and conflicting V = None
using rf by (auto simp: cdcl W
ultimately show ?thesis using IH cdcl W-merge-restart.fw-r-rf[of U V] by auto
qed
qed
lemma no-step-cdclW-restart-no-step-cdcl W-merge-restart:
no-step cdcl W-restart S \Longrightarrow no-step cdcl}\mp@subsup{W}{W}{}\mathrm{ -merge-restart S
by (auto simp: cdcl W-restart.simps cdcl W-merge-restart.simps cdcl W-o.simps cdcl}\mp@subsup{W}{W}{}-bj.simps)
lemma no-step-cdclW-merge-restart-no-step-cdcl W-restart:
assumes
conflicting S = None and
cdcl}\mp@subsup{W}{}{-M}\mathrm{ -level-inv S and
no-step cdclW-merge-restart S
shows no-step cdclW-restart S

```
```

proof -
{ fix S'
assume conflict S S'
then have cdcl}\mp@subsup{W}{}{\prime}\mathrm{ -restart S S' using cdcl W-restart.conflict by auto
then have cdcl}\mp@subsup{W}{}{-M-level-inv S'
using assms(2) cdcl W-restart-consistent-inv by blast
then obtain }\mp@subsup{S}{}{\prime\prime}\mathrm{ where full cdcl WW-bj S' S''
using cdcl W}\mp@subsup{W}{}{-bj-exists-normal-form[of S'] by auto
then have False
using <conflict S S'` assms(3) fw-r-conflict by blast
}
then show ?thesis
using assms unfolding cdcl W-restart.simps cdcl W-merge-restart.simps cdcl W-o.simps cdcl W-bj.simps
by (auto elim: skipE resolveE backtrackE conflictE decideE restartE)
qed
lemma cdcl W-merge-restart-no-step-cdcl}\mp@subsup{W}{W}{}-bj
assumes
cdcl}\mp@subsup{W}{W}{-merge-restart S T
shows no-step cdcl}\mp@subsup{W}{}{-bj}
using assms
by (induction rule: cdcl}\mp@subsup{W}{W}{-merge-restart.induct)
(force simp:cdcl W-bj.simps cdcl W-rf.simps cdcl W-merge-restart.simps full-def
elim!: rulesE)+
lemma rtranclp-cdclw-merge-restart-no-step-cdcl }\mp@subsup{W}{W}{}-bj
assumes
cdcl }\mp@subsup{W}{W}{}\mathrm{ -merge-restart** ST and
conflicting S = None
shows no-step cdcl}\mp@subsup{W}{}{-bj}
using assms unfolding rtranclp-unfold
apply (elim disjE)
apply (force simp: cdcl W-bj.simps cdcl W}\mp@subsup{W}{W}{-rf.simps elim!: rulesE)
by (auto simp: tranclp-unfold-end simp: cdcl W-merge-restart-no-step-cdcl W-bj)

```

If conflicting \(S \neq\) None, we cannot say anything.
Remark that this theorem does not say anything about well-foundedness: even if you know that one relation is well-founded, it only states that the normal forms are shared.
```

lemma conflicting-true-full-cdcl}\mp@subsup{W}{W}{-restart-iff-full-cdcl}\mp@subsup{W}{W}{}-merge:
assumes confl: conflicting S = None and lev: cdcl W-M-level-inv S
shows full cdcl}\mp@subsup{W}{W}{-restart S V }\longleftrightarrow\mathrm{ full cdcl W-merge-restart S V
proof
assume full: full cdcl W-merge-restart S V
then have st: cdcl}\mp@subsup{W}{W}{-restart** S V
using rtranclp-mono[of cdcl W-merge-restart cdcl W-restart**] cdcl W-merge-restart-cdcl W-restart
unfolding full-def by auto
have n-s: no-step cdcl W-merge-restart V
using full unfolding full-def by auto
have n-s-bj: no-step cdclW -bj V
using rtranclp-cdcl W-merge-restart-no-step-cdcl W-bj confl full unfolding full-def by auto
have }
mp@subsup{S}{}{\prime}\mathrm{ . conflict V S'}\Longrightarrowcdc\mp@subsup{l}{W}{}-M\mathrm{ -level-inv S'
using cdcl W-restart.conflict cdcl W-restart-consistent-inv lev rtranclp-cdcl W-restart-consistent-inv st
by blast
then have }\bigwedge\mp@subsup{S}{}{\prime}.\mathrm{ . conflict V S' }\Longrightarrow\mathrm{ False

```
using \(n\)-s \(n\)-s-bj \(c d c l_{W}\)-bj-exists-normal-form \(c d c l_{W}\)-merge-restart.simps by meson
then have \(n\)-s-cdcl \(W_{W}\)-restart: no-step \(c d c l_{W}\)-restart \(V\)
using \(n\)-s \(n-s\)-bj by (auto simp: \(c d c l_{W}\)-restart.simps \(c d c l_{W}\)-o.simps \(c d c l_{W}\)-merge-restart.simps)
then show full cdcl \(_{W}\)-restart \(S V\) using st unfolding full-def by auto

\section*{next}
assume full: full \(\mathrm{cdcl}_{W}\)-restart \(S \mathrm{~V}\)
have no-step \(c d c l_{W}\)-merge-restart \(V\)
using full no-step-cdcl \({ }_{W}\)-restart-no-step-cdcl \({ }_{W}\)-merge-restart unfolding full-def by blast
moreover \{
consider
(fw) \(c d c l_{W}\)-merge-restart** \(S V\) and conflicting \(V=\) None \(\mid\)
(bj) \(T U\) where
\(c d c l_{W}\)-merge-restart** \(S T\) and
conflicting \(V \neq\) None and
conflict \(T U\) and
\(c d c l_{W}-b j^{* *} U V\)
using full rtrancl-cdcl \({ }_{W}\)-conflicting-true-cdcl \({ }_{W}\)-merge-restart confl lev unfolding full-def by meson
then have \(c d c l_{W}\)-merge-restart** \(S V\)
proof cases
case \(f w\)
then show ?thesis by fast
next
case (bj TU)
have no-step \(c d c l_{W}\)-bj \(V\)
using full unfolding full-def by (meson cdcl \(_{W}\)-o.bj other)
then have full \(c d c l_{W}-b j U V\)
using 〈 \(c d c l_{W}-b j^{* *} U V\) unfolding full-def by auto
then have \(c d c l_{W}\)-merge-restart \(T V\)
using <conflict \(T U\) <dcl \(W_{W}\)-merge-restart.fw-r-conflict by blast
then show ?thesis using \(\left\langle c d c l_{W}\right.\)-merge-restart** \(\left.S T\right\rangle\) by auto
qed \(\}\)
ultimately show full \(c d c l_{W}\)-merge-restart \(S V\) unfolding full-def by fast
qed
lemma init-state-true-full-cdcl \({ }_{W}\)-restart-iff-full-cdcl \({ }_{W}\)-merge:
shows full \(c d c l_{W}\)-restart (init-state \(\left.N\right) V \longleftrightarrow\) full \(c d c l_{W}\)-merge-restart (init-state \(N\) ) \(V\)
by (rule conflicting-true-full-cdcl \({ }_{W}\)-restart-iff-full-cdcl \({ }_{W}\)-merge) auto

\subsection*{1.2.4 CDCL with Merge and Strategy}

\section*{The intermediate step}
```

inductive }cdc\mp@subsup{l}{W}{}-\mp@subsup{s}{}{\prime}:: 'st => 'st => bool for S :: 'st wher

```
conflict': conflict \(S S^{\prime} \Longrightarrow c d c l_{W}-s^{\prime} S S^{\prime} \mid\)
propagate': propagate \(S S^{\prime} \Longrightarrow c d c l_{W}-s^{\prime} S S^{\prime} \mid\)
decide': no-step conflict \(S \Longrightarrow\) no-step propagate \(S \Longrightarrow\) decide \(S S^{\prime} \Longrightarrow \operatorname{cdcl}_{W}-s^{\prime} S S^{\prime} \mid\)
\(j^{\prime}:\) full1 \(^{\text {cd }} c l_{W}-b j S S^{\prime} \Longrightarrow c d c l_{W}-s^{\prime} S S^{\prime}\)
inductive-cases \(c d c l_{W}-s^{\prime} E: c d c l_{W}-s^{\prime} S T\)
lemma rtranclp-cdcl \({ }_{W}\)-bj-full1-cdclp-cdcl \({ }_{W}-s t g y:\)
\(c d c l_{W}-b j^{* *} S S^{\prime} \Longrightarrow c d c l_{W}-s t g y^{* *} S S^{\prime}\)
proof (induction rule: converse-rtranclp-induct)
case base
then show? case by simp
```

next
case (step T U) note st = this(2) and bj = this(1) and IH = this(3)
have n-s: no-step conflict T no-step propagate T
using bj by (auto simp add: cdclW-bj.simps elim!: rulesE)
consider
(U) U = S'
| (U') U' where cdcl}\mp@subsup{W}{W}{-bj U U' and cdcl W}\mp@subsup{W}{}{\prime}-b\mp@subsup{j}{}{**}\mp@subsup{U}{}{\prime}\mp@subsup{S}{}{\prime
using st by (metis converse-rtranclpE)
then show ?case
proof cases
case U
then show ?thesis
using n-s cdcl W-o.bj local.bj other' by (meson r-into-rtranclp)
next
case U' note }\mp@subsup{U}{}{\prime}=this(1
have no-step conflict U no-step propagate U
using U'by (fastforce simp: cdclW-bj.simps elim!: rulesE)+
then have cdcl}\mp@subsup{W}{}{-stgy TU
using n-s cdcl W
then show ?thesis using IH by auto
qed
qed
lemma cdcl W-s'-is-rtranclp-cdcl W
cdcl}\mp@subsup{W}{}{-}\mp@subsup{s}{}{\prime}ST\Longrightarrowcdcl W-stgy** S T
by (induction rule: cdcl W-s'.induct)
(auto simp: full1-def
dest: tranclp-into-rtranclp rtranclp-cdcl W-bj-full1-cdclp-cdcl w
lemma cdcl }\mp@subsup{W}{W}{-stgy-cdcl }\mp@subsup{W}{W}{-s'-no-step:
assumes cdcl W-stgy S U and cdcl W-all-struct-inv S and no-step cdcl}\mp@subsup{W}{W}{}-bj
shows }cdc\mp@subsup{l}{W}{}-\mp@subsup{s}{}{\prime}S
using assms apply (cases rule: cdcl W-stgy.cases)
using bj'[of S U] by (auto intro:cdcl W-s'.intros simp:cdcl w-o.simps full1-def)
lemma rtranclp-cdcl W-stgy-connected-to-rtranclp-cdcl w
assumes cdcl W-stgy** S U and inv: cdcl W-M-level-inv S

```

```

 using assms(1)
 proof induction
case base
then show ?case by simp
next
case (step T V) note st = this(1) and o=this(2) and IH = this(3)
from o show ?case
proof cases
case conflict'
then have }cdc\mp@subsup{l}{W}{-}-\mp@subsup{s}{}{**}S
using IH by (auto elim: conflictE)
moreover have f2: cdcl}\mp@subsup{W}{-}{-s**}T
using cdcl}\mp@subsup{W}{}{-}\mp@subsup{s}{}{\prime}.conflict' conflict' by blas
ultimately show ?thesis by auto
next
case propagate'
then have }cdc\mp@subsup{l}{W}{-}\mp@subsup{s}{}{\prime**}S
using IH by (auto elim: propagateE)

```
```

moreover have f2: cdcl W
using cdclWW-s'.propagate' propagate' by blast
ultimately show ?thesis by auto
next
case other' note o = this(3) and n-s = this(1,2) and full = this(3)
then show ?thesis
using o
proof (cases rule: cdcl W-o-rule-cases)
case decide
then have }cdcl=\mp@subsup{W}{}{-}\mp@subsup{s}{}{***}S
using IH by (auto elim: rulesE)
then show ?thesis
by (meson decide decide' full n-s rtranclp.rtrancl-into-rtrancl)
next
case backtrack
consider
(s) cdcl W}\mp@subsup{W}{}{-s}\mp@subsup{}{}{***}ST
(bj) S' where cdcl W-s'** S S' and cdcl W-bj++ S' T and conflicting T}
using IH by blast
then show ?thesis
proof cases
case }\mp@subsup{s}{}{\prime
moreover {
have }cdc\mp@subsup{l}{W}{}-M\mathrm{ -level-inv T
using inv local.step(1) rtranclp-cdcl W-stgy-consistent-inv by auto
then have full1 cdcl w
using backtrack-is-full1-cdclW -bj backtrack by blast
then have }cdc\mp@subsup{l}{W}{}-\mp@subsup{s}{}{\prime}T
using full bj' n-s by blast }
ultimately show ?thesis by auto
next
case (bj S') note S-S' = this(1) and bj-T = this(2)
moreover {
have }cdc\mp@subsup{l}{W}{}-M\mathrm{ -level-inv T
using inv local.step(1) rtranclp-cdcl W-stgy-consistent-inv by auto
then have full1 cdcl w-bj T V
using backtrack-is-full1-cdclW -bj backtrack by blast
then have full1 cdcl W-bj S'V
using bj-T unfolding full1-def by fastforce }
ultimately have }cdc\mp@subsup{l}{W}{}-\mp@subsup{s}{}{\prime}\mp@subsup{S}{}{\prime}V\mathrm{ by (simp add: cdcl W}\mp@subsup{W}{}{-}\mp@subsup{s}{}{\prime}.bj)
then show ?thesis using S-S' by auto
qed
next
case skip
then have confl-V: conflicting V}\not=\mathrm{ None
using skip by (auto elim: rulesE)
have cdcl}\mp@subsup{W}{}{-bj}T
using local.skip by blast
then show ?thesis
using confl-V step.IH by auto
next
case resolve
have confl-V:conflicting V}\not=\mathrm{ None
using resolve by (auto elim!: rulesE)
have cdcl}\mp@subsup{W}{W}{}-bjT V
using local.resolve by blast

```
```

 then show ?thesis
 using confl-V step.IH by auto
 qed
 qed
 qed
lemma n-step-cdcl W-stgy-iff-no-step-cdcl W-restart-cl-cdcl w-o:
assumes inv: cdcl}\mp@subsup{W}{}{\prime}\mathrm{ -all-struct-inv S
shows no-step cdcl W-s'}S\longleftrightarrow\mathrm{ no-step cdcl W-stgy S (is ?S'S S
proof
assume ?C S
then show ? S' }
by (auto simp: cdcl W-s'.simps full1-def tranclp-unfold-begin cdcl W-stgy.simps)
next
assume n-s:?S' S
then show ?C S
by (metis bj' cdclW-bj-exists-normal-form cdcl W-o.cases cdcl}\mp@subsup{W}{W}{}-\mp@subsup{s}{}{\prime}.\mathrm{ .intros
cdcl}\mp@subsup{W}{}{-stgy.cases decide' full-unfold)
qed
lemma }cdc\mp@subsup{l}{W}{}-\mp@subsup{s}{}{\prime}-tranclp-cdcl W-restart:
assumes }cdc\mp@subsup{l}{W}{-}\mp@subsup{s}{}{\prime}S S S' shows cdcl W-restart+++ S S'
using assms
proof (cases rule: cdcl W-s'.cases)
case conflict'
then show ?thesis by blast
next
case propagate'
then show ?thesis by blast
next
case decide'
then show ?thesis

```

```

next
case bj'
then show ?thesis
by (metis cdcl W-s'.bj' cdcl W-s'-is-rtranclp-cdcl }\mp@subsup{W}{W}{}-stgy full1-def
rtranclp-cdcl W-stgy-rtranclp-cdcl W-restart rtranclp-unfold tranclp-unfold-begin)
qed
lemma tranclp-cdcl}\mp@subsup{W}{W}{}-\mp@subsup{s}{}{\prime}-tranclp-cdcl W-restart:
cdcl W-s'++ S S' \Longrightarrow cdcl W-restart++ S S'
apply (induct rule: tranclp.induct)
using cdcl}\mp@subsup{W}{}{-}-\mp@subsup{s}{}{\prime}-tranclp-cdcl W-restart apply blast

```

```

lemma rtranclp-cdcl W-s'-rtranclp-cdcl W-restart:
cdcl}\mp@subsup{W}{-}{-s** S S' \Longrightarrow cdcl}\mp@subsup{W}{}{\prime*
using rtranclp-unfold[of cdcl W-s'S S \ tranclp-cdcl W-s'-tranclp-cdcl W-restart[of S S] by auto
lemma full-cdcl W-stgy-iff-full-cdcl W}\mp@subsup{W}{W}{}-\mp@subsup{s}{}{\prime}
assumes inv: cdcl W-all-struct-inv S
shows full cdcl }\mp@subsup{W}{}{-stgy S T \longleftrightarrow full cdcl}\mp@subsup{W}{-}{}-\mp@subsup{s}{}{\prime}ST(\mathrm{ is ?S }\longleftrightarrow\mathrm{ ? 'S')
proof
assume ?S'
then have cdcl}\mp@subsup{W}{}{-restart** ST

```
using rtranclp－cdcl \(W_{W}-s^{\prime}\)－rtranclp－cdcl \({ }_{W}\)－restart \([\) of \(S T]\) unfolding full－def by blast
then have inv \(^{\prime}: ~ c d c l_{W}\)－all－struct－inv \(T\)
using rtranclp－cdcl \(W_{W}\)－all－struct－inv－inv inv by blast
have \(c d c l_{W}\)－stgy＊＊\(S T\)
using \(\left\langle ? S^{\prime}\right.\) 〉 unfolding full－def
using \(c d c l_{W}-s^{\prime}\)－is－rtranclp－cdcl \(W_{W}-s t g y ~ r t r a n c l p-m o n o\left[o f ~ c d c l_{W}-s^{\prime} c d c l_{W}-s t g y^{* *}\right]\) by auto
then show？\(S\)
using 〈？S＇〉 inv \({ }^{\prime} n\)－step－cdcl \(W_{W}\)－stgy－iff－no－step－cdcl \(W_{W}\)－restart－cl－cdcl \(W_{W}-o\) unfolding full－def by blast
next
assume ？S
then have inv－T：\(c d c l_{W}\)－all－struct－inv \(T\)
by（metis assms full－def rtranclp－cdcl \(W_{W}\)－all－struct－inv－inv rtranclp－cdcl \(W_{W}\)－stgy－rtranclp－cdcl \({ }_{W}\)－restart）

\section*{consider}
\(\left(s^{\prime}\right) c d c l_{W}-s^{\prime * *} S T \mid\)
（st）\(S^{\prime}\) where \(c d c l_{W}-s^{* *} S S^{\prime}\) and \(c d c l_{W}-b j^{++} S^{\prime} T\) and conflicting \(T \neq\) None
using rtranclp－cdcl \(W_{W}\)－stgy－connected－to－rtranclp－cdcl \(W_{W}-s^{\prime}[\) of \(S T]\) inv 〈？S〉
unfolding full－def \(c d c l_{W}\)－all－struct－inv－def
by blast
then show？\(S^{\prime}\)
proof cases
case \(s^{\prime}\)
then show ？thesis
using \(\left\langle f u l l ~ c d c l_{W}\right.\)－stgy \(\left.S T\right\rangle\) unfolding full－def
by（metis inv－T \(n\)－step－cdcl \(W_{W}\)－stgy－iff－no－step－cdcl \(W_{W}\)－restart－cl－cdcl \(\left.W_{W}-o\right)\)
next
case \(\left(s t S^{\prime}\right)\) note \(s t=t h i s(1)\) and \(b j=\) this（2）and confl \(=\) this（3）
have no－step \(c d c l_{W}\)－bj \(T\)
using 〈？S〉 cdcl \(W_{W}\)－stgy．conflict＇ cdcl \(_{W}\)－stgy．intros（2）other＇unfolding full－def by blast
then have full1 \(c d c l_{W}-b j S^{\prime} T\)
using bj unfolding full1－def by blast
then have \(c d c l_{W}-s^{\prime} S^{\prime} T\)
using \(c d c l_{W}-s^{\prime} . b j^{\prime}\left[\right.\) of \(\left.S^{\prime} T\right]\) by blast
then have \(c d c l_{W}-s^{* *} S T\) using \(s t(1)\) by auto
moreover have no－step \(c d c l_{W}-s^{\prime} T\)
using inv－\(T\left\langle\right.\) full \(c d c l_{W}-\) stgy \(\left.S T\right\rangle n\)－step－cdcl \(W_{W}\)－stgy－iff－no－step－cdcl \(W_{W}\)－restart－cl－cdcl \({ }_{W}-o\) unfolding full－def by blast
ultimately show ？thesis
unfolding full－def by blast
qed
qed
end
end

\section*{Chapter 2}

\section*{NOT's CDCL and DPLL}

\author{
theory \(C D C L\)-WNOT-Measure \\ imports Weidenbach-Book-Base.WB-List-More \\ begin
}

The organisation of the development is the following:
- CDCL_WNOT_Measure.thy contains the measure used to show the termination the core of CDCL.
- CDCL_NOT. thy contains the specification of the rules: the rules are defined, and we proof the correctness and termination for some strategies CDCL.
- DPLL_NOT.thy contains the DPLL calculus based on the CDCL version.
- DPLL_W.thy contains Weidenbach's version of DPLL and the proof of equivalence between the two DPLL versions.

\subsection*{2.1 Measure}

This measure show the termination of the core of CDCL: each step improves the number of literals we know for sure.
This measure can also be seen as the increasing lexicographic order: it is an order on bounded sequences, when each element is bounded. The proof involves a measure like the one defined here (the same?).
definition \(\mu_{C}::\) nat \(\Rightarrow\) nat \(\Rightarrow\) nat list \(\Rightarrow\) nat where
\(\mu_{C} s b M \equiv\left(\sum i=0 . .<\right.\) length \(M . M!i * b^{\wedge}(s+i-\) length \(\left.M)\right)\)
lemma \(\mu_{C}-N i l[\operatorname{simp}]\) :
\(\mu_{C} s b[]=0\)
unfolding \(\mu_{C}\)-def by auto
lemma \(\mu_{C}\)-single \([\) simp \(]\) :
\(\mu_{C} s b[L]=L * b^{\wedge}(s-\) Suc 0\()\)
unfolding \(\mu_{C}\)-def by auto
lemma set-sum-atLeastLessThan-add:
\(\left(\sum i=k . .<k+(b:: n a t) . f i\right)=\left(\sum i=0 . .<b . f(k+i)\right)\)
by (induction b) auto
```

lemma set-sum-atLeastLessThan-Suc:
$\left(\sum i=1 . .<\right.$ Suc $\left.j . f i\right)=\left(\sum i=0 . .<j . f(\right.$ Suc $\left.i)\right)$
using set-sum-atLeastLessThan-add[of - $1 j$] by force
lemma μ_{C}-cons:
$\mu_{C} s b(L \# M)=L * b^{\wedge}(s-1-$ length $M)+\mu_{C} s b M$
proof -
have $\mu_{C} s b(L \# M)=\left(\sum i=0 . .<\right.$ length $\left.(L \# M) .(L \# M)!i * b^{\wedge}(s+i-l e n g t h(L \# M))\right)$
unfolding $\mu_{C}-$ def by blast
also have $\ldots=\left(\sum i=0 . .<1 .(L \# M)!i * b^{\wedge}(s+i-\right.$ length $\left.(L \# M))\right)$
$+\left(\sum i=1 . .<\right.$ length $(L \# M) .(L \# M)!i * b^{\wedge}(s+i-$ length $\left.(L \# M))\right)$
by (rule sum.atLeastLessThan-concat[symmetric]) simp-all
finally have $\mu_{C} s b(L \# M)=L * b^{\wedge}(s-1-$ length $M)$
$+\left(\sum i=1 . .<\right.$ length $(L \# M) .(L \# M)!i * b^{\wedge}(s+i-$ length $\left.(L \# M))\right)$
by auto
moreover \{
have $\left(\sum i=1 . .<\right.$ length $\left.(L \# M) .(L \# M)!i * b^{\wedge}(s+i-l e n g t h(L \# M))\right)=$
$\left(\sum i=0 . .<\right.$ length $M .(L \# M)!($ Suc $i) * b^{\wedge}(s+($ Suc $i)-$ length $\left.(L \# M))\right)$
unfolding length-Cons set-sum-atLeastLessThan-Suc by blast
also have $\ldots=\left(\sum i=0 . .<\right.$ length $M . M!i * b^{\wedge}(s+i-$ length $\left.M)\right)$
by auto
finally have $\left(\sum i=1 . .<\right.$ length $(L \# M) .(L \# M)!i * b^{\wedge}(s+i-$ length $\left.(L \# M))\right)=\mu_{C}$ s $b M$
unfolding μ_{C}-def.
\}
ultimately show ?thesis by presburger
qed
lemma μ_{C}-append:
assumes $s \geq$ length ($M @ M^{\prime}$)
shows $\mu_{C} s b\left(M @ M^{\prime}\right)=\mu_{C}\left(s-\right.$ length $\left.M^{\prime}\right) b M+\mu_{C} s b M^{\prime}$
proof -
have $\mu_{C} s b\left(M @ M^{\prime}\right)=\left(\sum i=0 . .<\right.$ length $\left(M @ M^{\prime}\right) .\left(M @ M^{\prime}\right)!i * b^{\wedge}\left(s+i-\right.$ length $\left.\left.\left(M @ M^{\prime}\right)\right)\right)$
unfolding μ_{C}-def by blast
moreover then have $\ldots=\left(\sum i=0 . .<\right.$ length $\left.M .\left(M @ M^{\prime}\right)!i * b^{\wedge}\left(s+i-\operatorname{length}\left(M @ M^{\prime}\right)\right)\right)$
$+\left(\sum i=\right.$ length $M . .<$ length $\left.\left(M @ M^{\prime}\right) .\left(M @ M^{\prime}\right)!i * b^{\wedge}\left(s+i-l e n g t h\left(M @ M^{\prime}\right)\right)\right)$
by (auto intro!: sum.atLeastLessThan-concat[symmetric])
moreover
have $\forall i \in\{0 . .<$ length $M\} .\left(M @ M^{\prime}\right)!i * b^{\wedge}\left(s+i-\right.$ length $\left.\left(M @ M^{\prime}\right)\right)=M!i * b^{\wedge}\left(s-\right.$ length M^{\prime}
$+i-l e n g t h ~ M)$
using $\left\langle s \geq\right.$ length $\left.\left(M @ M^{\prime}\right)\right\rangle$ by (auto simp add: nth-append ac-simps)
then have $\mu_{C}\left(s-\right.$ length $\left.M^{\prime}\right) b M=\left(\sum i=0 . .<\right.$ length $M .\left(M @ M^{\prime}\right)!i * b^{\wedge}(s+i-$ length
$\left.\left(M @ M^{\prime}\right)\right)$)
unfolding μ_{C}-def by auto
ultimately have $\mu_{C} s b\left(M^{\prime} @ M^{\prime}\right)=\mu_{C}\left(s-\right.$ length $\left.M^{\prime}\right) b M$
$+\left(\sum i=\right.$ length $M . .<$ length $\left.\left(M @ M^{\prime}\right) .\left(M @ M^{\prime}\right)!i * b^{\wedge}\left(s+i-l e n g t h\left(M @ M^{\prime}\right)\right)\right)$
by auto
moreover \{
have $\left(\sum i=\right.$ length $M . .<$ length $\left.\left(M @ M^{\prime}\right) .\left(M @ M^{\prime}\right)!i * b^{\wedge}\left(s+i-l e n g t h\left(M @ M^{\prime}\right)\right)\right)=$
($\sum i=0 . .<$ length $M^{\prime} . M^{\prime}!i * b^{\wedge}\left(s+i-\right.$ length $\left.\left.M^{\prime}\right)\right)$
unfolding length-append set-sum-atLeastLessThan-add by auto
then have $\left(\sum i=\right.$ length $M . .<$ length $\left.\left(M @ M^{\prime}\right) .\left(M @ M^{\prime}\right)!i * b^{\wedge}\left(s+i-l e n g t h\left(M @ M^{\prime}\right)\right)\right)=\mu_{C} s b$
M^{\prime}
unfolding μ_{C}-def .
\}
ultimately show ?thesis by presburger

```

\section*{qed}
```

lemma μ_{C}-cons-non-empty-inf:
assumes M-ge-1: $\forall i \in \operatorname{set} M . i \geq 1$ and $M: M \neq[]$
shows μ_{C} s $b M \geq b^{\wedge}(s-$ length $M)$
using assms by (cases M) (auto simp: mult-eq-if μ_{C}-cons)
Copy of $\sim \sim / s r c / H O L / e x / N a t S u m$. thy (but generalized to $0 \leq k$)
lemma sum-of-powers: $0 \leq k \Longrightarrow(k-1) *\left(\sum i=0 . .<n . k \widehat{i}\right)=k \widehat{n}-(1:: n a t)$
apply (cases $k=0$)
apply (cases n; simp)
by (induct n) (auto simp: Nat.nat-distrib)

```

In the degenerated cases, we only have the large inequality holds. In the other cases, the following strict inequality holds:
```

lemma μ_{C}-bounded-non-degenerated:
fixes b ::nat
assumes
$b>0$ and
$M \neq[]$ and
M-le: $\forall i<$ length $M . M!i<b$ and
$s \geq$ length M
shows μ_{C} s $b M<b \widehat{s}$
proof -
consider (b1) $b=1 \mid(b) b>1$ using $\langle b\rangle 0\rangle$ by (cases b) auto
then show ?thesis
proof cases
case b1
then have $\forall i<$ length $M . M!i=0$ using M-le by auto
then have μ_{C} s $b M=0$ unfolding μ_{C}-def by auto
then show? ?thesis using $\langle b>0\rangle$ by auto
next
case b
have $\forall i \in\{0 . .<$ length $M\} . M!i * b^{\wedge}(s+i-$ length $M) \leq(b-1) * b^{\wedge}(s+i-$ length $M)$
using M-le $\langle b>1\rangle$ by auto
then have μ_{C} s $b M \leq\left(\sum i=0 . .<\right.$ length $M .(b-1) * b^{\wedge}(s+i-$ length $\left.M)\right)$
using $\langle M \neq[]\rangle\langle b\rangle 0\rangle$ unfolding μ_{C}-def by (auto intro: sum-mono)
also
have $\forall i \in\{0 . .<$ length $M\} .(b-1) * b^{\wedge}(s+i-$ length $M)=(b-1) * b^{\wedge} i * b^{\wedge}(s-$ length $M)$
by (metis Nat.add-diff-assoc2 add.commute assms(4) mult.assoc power-add)
then have $\left(\sum i=0 . .<\right.$ length $M .(b-1) * b^{\wedge}(s+i-$ length $\left.M)\right)$
$=\left(\sum i=0 . .<\right.$ length $M .(b-1) * b^{\wedge} i * b^{\wedge}(s-$ length $\left.M)\right)$
by (auto simp add: ac-simps)
also have $\ldots=\left(\sum i=0 . .<\right.$ length $\left.M . b^{\wedge} i\right) * b^{\wedge}(s-$ length $M) *(b-1)$
by (simp add: sum-distrib-right sum-distrib-left ac-simps)
finally have $\mu_{C} s b M \leq\left(\sum i=0 . .<\right.$ length $\left.M . b^{\wedge} i\right) *(b-1) * b^{\wedge}(s-$ length $M)$
by (simp add: ac-simps)
also
have $\left(\sum i=0 . .<\right.$ length $\left.M . b^{\wedge} i\right) *(b-1)=b^{\wedge}($ length $M)-1$
using sum-of-powers [of b length M] $\langle b\rangle 1\rangle$
by (auto simp add: ac-simps)
finally have μ_{C} s $b M \leq(b \wedge$ (length $\left.M)-1\right) * b^{\wedge}(s-$ length $M)$
by auto
also have $\ldots<b^{\wedge}($ length $M) * b^{\wedge}(s-$ length $M)$

```
```

 using \langleb> 1\rangle by auto
 also have ... = b ^ s
 by (metis assms(4) le-add-diff-inverse power-add)
 finally show ?thesis unfolding }\mp@subsup{\mu}{C}{}\mathrm{ -def by (auto simp add: ac-simps)
 qed
 qed

```

In the degenerate case \(b=\left(0::^{\prime} a\right)\), the list \(M\) is empty (since the list cannot contain any element).
lemma \(\mu_{C}\)-bounded:
fixes \(b::\) nat
assumes
\(M\)-le: \(\forall i<\) length \(M . M!i<b\) and
\(s \geq\) length \(M\)
\(b>0\)
shows \(\mu_{C}\) s \(b M<b{ }^{\wedge} s\)
proof -
consider (M0) \(M=[] \mid(M) b>0\) and \(M \neq[]\)
using \(M\)-le by (cases \(b\), cases \(M\) ) auto
then show?thesis
proof cases
case M0
then show ?thesis using \(M\)-le \(\langle b\rangle 0\rangle\) by auto
next
case \(M\)
show ?thesis using \(\mu_{C}\)-bounded-non-degenerated[OF \(M\) assms(1,2)] by arith qed
qed
When \(b=0\), we cannot show that the measure is empty, since \(0^{0}=1\).
lemma \(\mu_{C}\)-base-0:
assumes length \(M \leq s\)
shows \(\mu_{C}\) s \(0 M \leq M!0\)
proof -
\{
assume \(s=\) length \(M\)
moreover \{
fix \(n\)
have \(\left(\sum i=0 . .<n . M!i *(0:: n a t)^{\wedge} i\right) \leq M!0\)
apply (induction \(n\) rule: nat-induct)
by simp (rename-tac n, case-tac n, auto)
\}
ultimately have ?thesis unfolding \(\mu_{C}\)-def by auto
\}
moreover
\{
assume length \(M<s\)
then have \(\mu_{C} s 0 M=0\) unfolding \(\mu_{C}\)-def by auto \(\}\)
ultimately show ?thesis using assms unfolding \(\mu_{C}\)-def by linarith
qed
lemma finite-bounded-pair-list:
fixes \(b::\) nat
shows finite \(\{(y s, x s)\). length \(x s<s \wedge\) length \(y s<s \wedge\)
\((\forall i<\) length xs. xs \(!i<b) \wedge(\forall i<\) length ys. ys \(!i<b)\}\)
```

proof -
have H: {(ys,xs). length xs < s ^ length ys < s ^
(\foralli< length xs. xs ! i<b)\wedge(\foralli< length ys. ys ! i<b)}
\subseteq
{xs.length xs <s\wedge(\foralli< length xs. xs ! i<b)}
{xs.length xs<s\wedge(\foralli< length xs. xs ! i<b)}
by auto
moreover have finite {xs. length xs <s\wedge (\foralli< length xs. xs !i<b)}
by (rule finite-bounded-list)
ultimately show ?thesis by (auto simp: finite-subset)
qed
definition \nuNOT :: nat }=>\mathrm{ nat }=>\mathrm{ (nat list }\times\mathrm{ nat list) set where
\nuOT s base = {(ys,xs). length xs < s ^ length ys < s ^
(\foralli< length xs. xs ! i< base) ^(\foralli< length ys. ys ! i< base) }
(ys,xs)\in lenlex less-than}
lemma finite-\nuNOT[simp]:
finite (\nuNOT s base)
proof -
have }\nuNOT s base \subseteq{(ys,xs). length xs < s ^ length ys < s ^
(\foralli< length xs. xs ! i< base) }\wedge(\foralli<length ys.ys!i< base)
by (auto simp: \nuNOT-def)
moreover have finite {(ys,xs). length xs <s^ length ys < s^
(\foralli< length xs. xs ! i< base) ^(}\foralli<length ys. ys ! i< base)
by (rule finite-bounded-pair-list)
ultimately show ?thesis by (auto simp: finite-subset)
qed
lemma acyclic-\nuNOT: acyclic (\nuNOT s base)
apply (rule acyclic-subset[of lenlex less-than \nuNOT s base])
apply (rule wf-acyclic)
by (auto simp: \nuNOT-def)
lemma wf-\nuNOT: wf (\nuNOT s base)
by (rule finite-acyclic-wf) (auto simp: acyclic-\nuNOT)
end
theory CDCL-NOT
imports
Weidenbach-Book-Base.WB-List-More
Weidenbach-Book-Base.Wellfounded-More
Entailment-Definition.Partial-Annotated-Herbrand-Interpretation
CDCL-WNOT-Measure
begin

```

\subsection*{2.2 NOT's CDCL}

\subsection*{2.2.1 Auxiliary Lemmas and Measure}

We define here some more simplification rules, or rules that have been useful as help for some tactic
lemma atms-of-uminus-lit-atm-of-lit-of:
<atms-of \(\{\#\)-lit-of \(x . x \in \# A \#\}=\) atm-of ‘(lit-of " (set-mset A)) )
unfolding atms-of-def by (auto simp add: Fun.image-comp)
lemma atms－of－ms－single－image－atm－of－lit－of：
〈atms－of－ms（unmark－s A）＝atm－of＇（lit－of ‘ \(A\) ）＞
unfolding atms－of－ms－def by auto

\section*{2．2．2 Initial Definitions}

\section*{The State}

We define here an abstraction over operation on the state we are manipulating．
```

locale dpll-state-ops =
fixes
trail :: <'st => ('v, unit) ann-lits> and
clauses NOT :: 〈'st }=>\mathrm{ 'v clauses > and
prepend-trail :: 〈('v, unit) ann-lit => 'st => 'st> and
tl-trail :: <'st \#>'st> and
add-cls NOT :: <'v clause m'st =>'st\rangle and
remove-cls NOT :: <'v clause }=>\mathrm{ 'st }=>\mathrm{ 'st>
begin
abbreviation state NOT :: <'st => ('v, unit) ann-lit list × 'v clauses> where
<state Not S \equiv(trail S, clauses NOT S)>
end

```

NOT＇s state is basically a pair composed of the trail（i．e．the candidate model）and the set of clauses．We abstract this state to convert this state to other states．like Weidenbach＇s five－tuple．
```

locale dpll-state $=$
dpll-state-ops
trail clauses ${ }_{N O T}$ prepend-trail tl-trail add-cls ${ }_{N O T}$ remove-cls ${ }_{N O T}$ — related to the state
for
trail :: <'st \Rightarrow ('v, unit) ann-lits> and
clauses $_{N O T}::$ 〈'st \Rightarrow 'v clauses \rangle and
prepend-trail :: 〈('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st〉 and
tl-trail :: 〈'st \Rightarrow 'st ${ }^{\prime}$ and
add-cls ${ }_{N O T}::\langle ' v$ clause \Rightarrow 'st \Rightarrow 'st \rangle and
remove-cls $N O T::$ ' $^{\prime} v$ clause \Rightarrow 'st \Rightarrow 'st $\rangle+$
assumes
prepend-trail ${ }_{\text {NOT }}$:
$\left\langle\right.$ state $_{\text {NOT }}($ prepend-trail L st $)=\left(L \#\right.$ trail st, clauses $_{N O T}$ st $\left.)\right\rangle$ and
tl-trail ${ }_{\text {NOT }}$:
$\left\langle\right.$ state $_{\text {NOT }}($ tl-trail st $)=\left(t l(\right.$ trail st $)$, clauses $\left.\left._{N O T} s t\right)\right\rangle$ and
add-cls ${ }_{\text {NOT }}$:
$\left\langle\right.$ state $_{N O T}\left(\right.$ add-cls $\left.s_{N O T} C s t\right)=\left(\right.$ trail st, add-mset $C\left(\right.$ clauses $\left.\left.\left._{N O T} s t\right)\right)\right\rangle$ and
remove-cls ${ }_{\text {NOT }}$:
$\left\langle\right.$ state $_{\text {NOT }}\left(\right.$ remove-cls ${ }_{\text {NOT }} C$ st $)=\left(\right.$ trail st, removeAll-mset $C\left(\right.$ clauses $_{\text {NOT }}$ st $\left.\left.)\right)\right\rangle$
begin
lemma
trail-prepend-trail[simp]:
〈trail $($ prepend-trail L st) $=L \#$ trail st \rangle
and
trail-tl-trail $_{N O T}[$ simp $]:\langle$ trail (tl -trail st) $=t l($ trail st $)\rangle$ and
trail-add-cls ${ }_{N O T}[$ simp $]:\left\langle\right.$ trail $\left(a d d-c l s_{N O T} C\right.$ st $)=$ trail st \rangle and
trail-remove-cls ${ }_{\text {NOT }}[$ simp $]$: 〈trail (remove-cls ${ }_{\text {NOT }} C$ st) $=$ trail st \rangle and
clauses-prepend-trail[$[$ simp $]$:
$\left\langle\right.$ clauses $_{N O T}($ prepend-trail L st $)=$ clauses $_{N O T}$ st \rangle

```

\section*{and}
```

clauses-tl-trail[simp]: 〈clauses ${ }_{N O T}(t l-t r a i l ~ s t)=$ clauses $_{N O T}$ st \rangle and
clauses-add-cls ${ }_{\text {NOT }}[$ simp]:
$\left\langle\right.$ clauses $_{\text {NOt }}\left(a d d-\right.$ cls $_{\text {NOT }} C$ st $)=$ add-mset $C\left(\right.$ clauses $_{\text {NOt }}$ st $\left.)\right\rangle$ and
clauses-remove-cls ${ }_{\text {NOT }}[$ simp]:
$\left\langle\right.$ clauses $_{\text {NOT }}\left(\right.$ remove-cls $_{\text {NOT }} C$ st $)=$ removeAll-mset $C\left(\right.$ clauses $_{\text {NOT }}$ st $\left.)\right\rangle$

```

```

by (cases $\left\langle\right.$ state $_{N O T}$ st ; auto)+

```

We define the following function doing the backtrack in the trail：
```

function reduce-trail-to ${ }_{N O T}::$ <'a list \Rightarrow 'st \Rightarrow 'st where
〈reduce-trail-to ${ }_{N O T} F S=$
(if length $($ trail $S)=$ length $F \vee$ trail $S=[]$ then S else reduce-trail-to ${ }_{N O T} F($ tl-trail $S)$) >
by fast+
termination by (relation <measure $(\lambda(-, S)$. length (trail $S))\rangle)$ auto
declare reduce-trail-to ${ }_{\text {NOT }} . \operatorname{simps}[\operatorname{simp}$ del]
Then we need several lemmas about the reduce-trail-to ${ }_{N O T}$.
lemma
shows
reduce-trail-to ${ }_{N O T}-$ Nil $[$ simp $]:\left\langle\right.$ trail $S=[] \Longrightarrow$ reduce-trail-to $\left._{N O T} F S=S\right\rangle$ and

```

```

 by (auto simp: reduce-trail-to \({ }_{N O T} . \operatorname{simps}\))
 lemma reduce-trail-to ${ }_{\text {NOT }}$-length-ne[simp]:
\langle length $($ trail $S) \neq$ length $F \Longrightarrow$ trail $S \neq[] \Longrightarrow$
reduce-trail-to ${ }_{\text {NOt }} F S=$ reduce-trail-to ${ }_{\text {NOt }} F($ tl-trail $S)$ >
by (auto simp: reduce-trail-to ${ }_{N O T}$.simps)
lemma trail-reduce-trail-to ${ }_{N O T}$-length-le:
assumes 〈length $F>$ length (trail S) 〉
shows $\left\langle\right.$ trail (reduce-trail-to ${ }_{\text {NOt }} F S$) = []>
using assms by (induction FS rule: reduce-trail-to ${ }_{\text {NOT }}$.induct)
(simp add: less-imp-diff-less reduce-trail-to ${ }_{\text {NOT }} . \operatorname{simps}$)
lemma trail-reduce-trail-to ${ }_{N O T}-$ Nil $[$ simp $]$:
〈trail (reduce-trail-to ${ }_{\text {NOT }}$ [] S) $\left.=[]\right\rangle$
by (induction 〈[]〉S rule: reduce-trail-to ${ }_{N O T}$.induct)
(simp add: less-imp-diff-less reduce-trail-to Not.simps)
lemma clauses-reduce-trail-to ${ }_{\text {NOT }}$-Nil:
$\left\langle\right.$ clauses $_{\text {NOT }}\left(\right.$ reduce-trail-to $\left.{ }_{\text {NOt }}[] S\right)=$ clauses $\left._{\text {NOt }} S\right\rangle$
by (induction 〈[]〉S rule: reduce-trail-to ${ }_{N O T}$.induct)
(simp add: less-imp-diff-less reduce-trail-to ${ }_{\text {NOT }} . \operatorname{simps}$)
lemma trail-reduce-trail-to ${ }_{N O T}$-drop:
<trail (reduce-trail-tonot $F S$) =
(if length $($ trail $S) \geq$ length F
then drop $($ length $($ trail $S)-$ length $F)($ trail $S)$
else [])>
apply (induction FS rule: reduce-trail-to ${ }_{\text {NOT }}$.induct)
apply (rename-tac FS, case-tac \langle trail S)
apply auto[]
apply (rename-tac list, case-tac 〈Suc (length list) > length $F\rangle$)
prefer 2 apply simp

```
```

apply (subgoal-tac 〈Suc (length list) - length F = Suc (length list - length F)`) apply simp apply simp done lemma reduce-trail-to NOT-skip-beginning: assumes <trail S=F'` @ >
shows <trail (reduce-trail-tonOT F S)=F>
using assms by (auto simp: trail-reduce-trail-to NOT-drop)
lemma reduce-trail-to NOT-clauses[simp]:
<clauses }\mp@subsup{N}{NOT}{(reduce-trail-to NOT F S) = clauses NOT S>
by (induction F S rule: reduce-trail-to NOT.induct)
(simp add: less-imp-diff-less reduce-trail-tonOt.simps)
lemma trail-eq-reduce-trail-to NOT-eq:
<trail S = trail T\Longrightarrow trail (reduce-trail-to NOT F S) = trail (reduce-trail-tonOT F T)>
apply (induction F S arbitrary: T rule: reduce-trail-tonOT.induct)
by (metis trail-tl-trail NOT reduce-trail-tonNOT-eq-length reduce-trail-tonOt-length-ne
reduce-trail-tonOT-Nil)
lemma trail-reduce-trail-to NOT-add-cls NOT [simp]:
no-dup (trail S)\Longrightarrow
trail (reduce-trail-to NOT F (add-cls NOT C S)) = trail (reduce-trail-tonOT F S)>
by (rule trail-eq-reduce-trail-to NOT-eq) simp
lemma reduce-trail-tonot-trail-tl-trail-decomp[simp]:
<trail S = F'@ Decided K \#F\Longrightarrow
trail (reduce-trail-to NOT F (tl-trail S)) = F>
apply (rule reduce-trail-to NOT-skip-beginning[of - <tl (F' @ Decided K \# [])>])
by (cases F') (auto simp add:tl-append reduce-trail-to NOT-skip-beginning)
lemma reduce-trail-tonOT-length:
<length M = length M' \Longrightarrow reduce-trail-to NOT M S = reduce-trail-to NOT M' M S
apply (induction M S rule: reduce-trail-to NOT.induct)
by (simp add: reduce-trail-tonOT.simps)
abbreviation trail-weight where
<trail-weight S \equivmap ((\lambdal. 1 + length l) o snd) (get-all-ann-decomposition (trail S))>

```

As we are defining abstract states, the Isabelle equality about them is too strong: we want the weaker equivalence stating that two states are equal if they cannot be distinguished, i.e. given the getter trail and clauses \({ }_{N O T}\) do not distinguish them.
```

definition state-eq NOT :: <'st => 'st => bool>(infix ~ 50) where
\langle S \sim T \longleftrightarrow ~ t r a i l ~ S = ~ t r a i l ~ T ~ \wedge ~ c l a u s e s ~ N O T ~ S = c l a u s e s ~ _ { N O T } T \rangle
lemma state-eqNOT-ref[intro, simp]:
<S~S>
unfolding state-eqNOT-def by auto
lemma state-eqNOT-sym:
<S~T\longleftrightarrowT~S>
unfolding state-eqNOT-def by auto
lemma state-eqNOT-trans:

```
\[
\langle S \sim T \Longrightarrow T \sim U \Longrightarrow S \sim U\rangle
\]
unfolding state－eq \({ }_{N O T}-\) def by auto
```

lemma
shows
state-eqNOT-trail: }\langleS~T\Longrightarrow\mathrm{ trail S = trail T> and
state-eq
unfolding state-eqNOT-def by auto
lemmas state-simp NOT}[\mathrm{ simp] = state-eqNOT-trail state-eqNOT-clauses
lemma reduce-trail-to NOT-state-eqNOT-compatible:
assumes ST: \langleS ~ T\rangle
shows <reduce-trail-to Not F S ~ reduce-trail-to NOt F T>
proof -
have <clauses }\mp@subsup{N}{NOT}{}(\mathrm{ reduce-trail-to NOT F S)= clauses NOT
using ST by auto
moreover have <trail (reduce-trail-to NOT F S) = trail (reduce-trail-to NOT F T)>
using trail-eq-reduce-trail-to NOT-eq[of S T F] ST by auto
ultimately show ?thesis by (auto simp del: state-simp NOT simp: state-eqNOT-def)
qed
end - End on locale dpll-state.

```

\section*{Definition of the Transitions}

Each possible is in its own locale．
```

locale propagate-ops $=$
dpll-state trail clauses $_{\text {NOT }}$ prepend-trail tl-trail add-cls ${ }_{N O T}$ remove-cls $_{\text {NOT }}$
for
trail :: 〈'st \Rightarrow ('v, unit) ann-lits and
clauses $_{\text {NOT }}::$ 〈'st \Rightarrow 'v clauses〉 and
prepend-trail :: 〈('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st and
tl-trail :: 〈'st \Rightarrow 'st and
add-cls NOT $::$ <'v clause \Rightarrow 'st \Rightarrow 'st \rangle and
remove-cls ${ }_{\text {NOT }}::\left\langle^{\prime} v\right.$ clause \Rightarrow 'st \Rightarrow 'st $\rangle+$
fixes
propagate-conds :: 〈('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st \Rightarrow bool
begin
inductive propagate ${ }_{N O T}::\langle ' s t \Rightarrow$ 'st \Rightarrow bool $>$ where
propagate $_{\text {NOT }}\left[\right.$ intro]: $\left\langle a d d-m s e t L C \in\right.$ clauses $_{\text {NOT }} S \Longrightarrow$ trail $S \models$ as $C N o t C$
\Longrightarrow undefined-lit (trail S) L
\Longrightarrow propagate-conds (Propagated L ()) S T
$\Longrightarrow T \sim$ prepend-trail (Propagated L()) S
\Longrightarrow propagate $\left._{N O T} S T\right\rangle$
inductive-cases propagate ${ }_{N O T} E\left[\right.$ elim] $:\left\langle\right.$ propagate $\left._{N O T} S T\right\rangle$
end
locale decide-ops $=$
dpll-state trail clauses ${ }_{N O T}$ prepend-trail tl-trail add-cls ${ }_{N O T}$ remove-cls $_{N O T}$
for
trail $::$ «'st \Rightarrow ('v, unit) ann-lits〉 and
clauses $_{N O T}::$ <'st \Rightarrow 'v clauses \rangle and
prepend-trail :: 〈('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st and

```
```

tl-trail :: 〈'st =>'st> and
add-cls NOT :: <'v clause }=>\mathrm{ 'st }=>\mathrm{ 'st> and
remove-cls NOT :: <'v clause }=>\mathrm{ 'st }=>\mathrm{ 'st> +
fixes
decide-conds :: <'st => 'st => bool>
begin
inductive decide NOT :: <'st => 'st => bool> where
decide NOT[intro]:
<undefined-lit (trail S) L\Longrightarrow
atm-of L G atms-of-mm (clauses
T ~ prepend-trail (Decided L) S\Longrightarrow
decide-conds ST\Longrightarrow
decide NOT ST>
inductive-cases decide NOT}E[elim]:\langledecide NOT S S'\
end
locale backjumping-ops =
dpll-state trail clauses}\mp@subsup{N}{NOT}{}\mathrm{ prepend-trail tl-trail add-cls NOT remove-cls NOT
for
trail :: <'st => ('v, unit) ann-lits> and
clauses NOT :: <'st }=>\mathrm{ 'v clauses> and
prepend-trail :: <('v, unit) ann-lit => 'st => 'st> and
tl-trail :: <'st \# 'st> and
add-cls NOT :: <'v clause }=>\mp@subsup{}{}{\prime}\mathrm{ 'st }=>\mathrm{ 'st> and
remove-cls NOT :: <'v clause \# 'st => 'st\rangle+
fixes
backjump-conds :: <'v clause }=>\mp@subsup{|}{}{\prime}v\mathrm{ clause }=>\mp@subsup{|}{}{\prime}v\mathrm{ literal }=>\mathrm{ 'st }=>\mathrm{ 'st }=>\mathrm{ bool>
begin
inductive backjump where
<trail S = F' @ Decided K \# F
\LongrightarrowT~ prepend-trail (Propagated L ()) (reduce-trail-to NOT F S)
C Є\# clauses NOT S
trail S =as CNot C
\Longrightarrow ~ u n d e f i n e d - l i t ~ F ~ L ~
\Longrightarrowatm-of L G atms-of-mm (clauses NOT S) \cup atm-of '(lits-of-l (trail S))
clauses
\LongrightarrowFas CNot C'
"backjump-conds C C'L ST
"backjump S T>

```
inductive-cases backjumpE: 〈backjump \(S T\rangle\)

The condition atm－of \(L \in\) atms－of－mm（clauses \(\left.{ }_{N O T} S\right) \cup\) atm－of＇lits－of－l（trail \(S\) ）is not implied by the the condition clauses \({ }_{N O T} S \models p m\) add－mset \(L C^{\prime}\)（no negation）．

\section*{end}

\section*{2．2．3 DPLL with Backjumping}
locale dpll－with－backjumping－ops \(=\)
propagate－ops trail clauses \(_{N O T}\) prepend－trail tl－trail add－cls \({ }_{N O T}\) remove－cls \({ }_{N O T}\) propagate－conds + decide－ops trail clauses \({ }_{N O T}\) prepend－trail tl－trail add－cls \({ }_{N O T}\) remove－cls \(_{\text {NOT }}\) decide－conds + backjumping－ops trail clauses \({ }_{N O T}\) prepend－trail tl－trail add－cls \({ }_{N O T}\) remove－cls \(s_{N O T}\) backjump－conds for
trail \(::\)＜＇st \(\Rightarrow(' v\) ，unit）ann－lits〉 and
clauses \(_{N O T}::\left\langle ' s t \Rightarrow{ }^{\prime} v\right.\) clauses \(\rangle\) and
```

 prepend-trail :: 〈('v, unit) ann-lit \(\Rightarrow\) 'st \(\Rightarrow\) 'st> and
 tl-trail :: 〈'st \(\Rightarrow\) 'st> and
 \(a d d-c l s_{N O T}:: \iota^{\prime} v\) clause \(\Rightarrow\) 'st \(\Rightarrow\) 'st \(>\) and
 remove-cls \({ }_{N O T}:: \iota^{\prime} v\) clause \(\Rightarrow\) 'st \(\Rightarrow\) 'st \(\rangle\) and
 inv :: 〈'st \(\Rightarrow\) bool〉 and
 decide-conds :: 〈'st \(\Rightarrow\) 'st \(\Rightarrow\) bool and
 backjump-conds :: <'v clause \(\Rightarrow\) 'v clause \(\Rightarrow\) 'v literal \(\Rightarrow\) 'st \(\Rightarrow\) 'st \(\Rightarrow\) bool and
 propagate-conds :: 〈('v, unit) ann-lit \(\Rightarrow\) 'st \(\Rightarrow\) 'st \(\Rightarrow\) bool \(\rangle+\)
 assumes
bj-can-jump:
$\measuredangle \backslash C F^{\prime} K F L$.
inv $S \Longrightarrow$
trail $S=F^{\prime} @$ Decided $K \# F \Longrightarrow$
$C \in \#$ clauses $_{\text {NOT }} S \Longrightarrow$
trail $S \models$ as CNot $C \Longrightarrow$
undefined-lit $F L \Longrightarrow$
atm-of $L \in$ atms-of-mm $\left(\right.$ clauses $\left._{N O T} S\right) \cup$ atm-of ' (lits-of-l $\left(F^{\prime} @\right.$ Decided $\left.\left.K \# F\right)\right) \Longrightarrow$
clauses $_{\text {NOT }} S \models p m$ add-mset $L C^{\prime} \Longrightarrow$
$F \models$ as CNot $C^{\prime} \Longrightarrow$
\neg no-step backjump $S_{>}$and
can-propagate-or-decide-or-backjump:
$\left\langle a t m-o f L \in\right.$ atms-of-mm clauses $\left._{N O T} S\right) \Longrightarrow$
undefined-lit (trail S) $L \Longrightarrow$
satisfiable (set-mset $\left(\right.$ clauses $\left.\left._{N O T} S\right)\right) \Longrightarrow$
inv $S \Longrightarrow$
no-dup (trail $S) \Longrightarrow$
$\exists T$. decide ${ }_{\text {NOT }} S T \vee$ propagate $_{\text {NOT }} S T \vee$ backjump $\left.S T\right\rangle$
begin

```

We cannot add a like condition atms－of \(C^{\prime} \subseteq a t m s\)－of－ms \(N\) to ensure that we can backjump even if the last decision variable has disappeared from the set of clauses．
The part of the condition atm－of \(L \in\) atm－of＇lits－of－l（ \(F^{\prime}\)＠Decided \(K \# F\) ）is important， otherwise you are not sure that you can backtrack．

\section*{Definition}

We define dpll with backjumping：
inductive \(d p l l-b j::\langle ' s t \Rightarrow\)＇st \(\Rightarrow\) bool for \(S::\)＇st where
bj－decide \({ }_{N O T}\) ：〈decide \({ }_{N O T} S S^{\prime} \Longrightarrow\) dpll－bj \(\left.S S^{\prime}\right\rangle \mid\)
bj－propagate \(_{\text {NOT }}:\left\langle\right.\) propagate \(_{\text {NOT }} S S^{\prime} \Longrightarrow\) dpll－bj \(\left.S S^{\prime}\right\rangle \mid\)
bj－backjump：＜backjump \(\left.S S^{\prime} \Longrightarrow d p l l-b j S S^{\prime}\right\rangle\)
lemmas dpll－bj－induct \(=\) dpll－bj．induct［split－format \((\) complete \()]\)
thm dpll－bj－induct［OF dpll－with－backjumping－ops－axioms］
lemma dpll－bj－all－induct［consumes 2，case－names decide \({ }_{N O T}\) propagate \(_{\text {NOT }}\) backjump］：
fixes \(S T\) ：：〈＇st \(\rangle\)

\section*{assumes}
\(\langle d p l l-b j S T\rangle\) and
\(\langle i n v S\rangle\)
« \(\backslash L T\) ．undefined－lit（trail \(S) L \Longrightarrow\) atm－of \(L \in\) atms－of－mm \(\left(\right.\) clauses \(\left._{N O T} S\right)\)
\(\Longrightarrow T \sim\) prepend－trail（Decided L）\(S\)
\(\Longrightarrow P S T\rangle\) and
\(\left\langle\backslash C L T\right.\) ．add－mset \(L C \in \#\) clauses \(_{N O T} S \Longrightarrow\) trail \(S \models\) as \(C N o t C \Longrightarrow\) undefined－lit \((\) trail \(S) L\)
\(\Longrightarrow T \sim\) prepend－trail（Propagated \(L\)（））\(S\)
\[
\Longrightarrow P S T\rangle \text { and }
\]

〈 C \(^{\prime}\) K \(F\) L \(C^{\prime} T . C \in \#\) clauses \(_{\text {Not }} S \Longrightarrow F^{\prime} @\) Decided \(K \# F \models\) as CNot \(C\)
\(\Longrightarrow\) trail \(S=F^{\prime} @\) Decided \(K \# F\)
\(\Longrightarrow\) undefined－lit \(F L\)
\(\Longrightarrow\) atm－of \(L \in\) atms－of－mm \(\left(\right.\) clauses \(\left._{N O T} S\right) \cup\) atm－of ‘（lits－of－l \(\left(F^{\prime} @\right.\) Decided K \＃F）\()\)
\(\Longrightarrow\) clauses \(_{N O T} S \models p m\) add－mset \(L C^{\prime}\)
\(\Longrightarrow F \models\) as CNot \(C^{\prime}\)
\(\Longrightarrow T \sim\) prepend－trail（Propagated \(L())(\) reduce－trail－to NOT \(F S\) ）
\(\Longrightarrow P S T\rangle\)
shows \(\langle P S T\rangle\)
apply（induct \(T\) rule：dpll－bj－induct［OF local．dpll－with－backjumping－ops－axioms］）
apply（rule assms（1））
using assms（3）apply blast
apply（elim propagate \({ }_{N O T} E\) ）using assms（4）apply blast
apply（elim backjumpE）using assms（5）〈inv S〉 by simp

\section*{Basic properties}

First，some better suited induction principle lemma dpll－bj－clauses：
assumes 〈dpll－bj \(S T\rangle\) and 〈inv \(S\rangle\)
shows \(\left\langle\right.\) clauses \(_{\text {NOT }} S=\) clauses \(\left._{\text {NOt }} T\right\rangle\)
using assms by（induction rule：dpll－bj－all－induct）auto

No duplicates in the trail lemma dpll－bj－no－dup：
assumes \(\langle d p l l-b j S T\rangle\) and \(\langle i n v S\rangle\)
and \(\langle n o-d u p(\) trail \(S\) ）〉
shows 〈no－dup（trail T）〉
using assms by（induction rule：dpll－bj－all－induct）
（auto simp add：defined－lit－map reduce－trail－to \({ }_{N O T}\)－skip－beginning dest：no－dup－appendD）

Valuations lemma dpll－bj－sat－iff：
assumes 〈dpll－bj \(S T\rangle\) and \(\langle i n v S\rangle\)
shows \(\left\langle I \models\right.\) sm clauses \(_{N O T} S \longleftrightarrow I \models\) sm clauses \(\left.{ }_{N O T} T\right\rangle\)
using assms by（induction rule：dpll－bj－all－induct）auto

Clauses lemma dpll－bj－atms－of－ms－clauses－inv：
assumes
\(\langle d p l l-b j S T\rangle\) and〈inv \(S\) 〉
shows \(\left\langle\right.\) atms－of－mm \(\left(\right.\) clauses \(\left._{N O T} S\right)=\) atms－of－mm \(\left(\right.\) clauses \(\left._{N O T} T\right)\) 〉
using assms by（induction rule：dpll－bj－all－induct）auto
lemma dpll－bj－atms－in－trail：
assumes
\(\langle d p l l-b j S T\rangle\) and
〈inv \(S\rangle\) and
〈atm－of＇\((\) lits－of－l \((\) trail \(S)) \subseteq\) atms－of－mm \(\left(\right.\) clauses \(\left.\left._{N O T} S\right)\right\rangle\)
shows \(\left\langle\right.\) atm－of＇\((\) lits－of－l \((\) trail \(T)) \subseteq\) atms－of－mm \(\left(\right.\) clauses \(\left._{\text {NOT }} S\right)\) ）
using assms by（induction rule：dpll－bj－all－induct）
（auto simp：in－plus－implies－atm－of－on－atms－of－ms reduce－trail－to \({ }_{N}\) OT－skip－beginning）\(^{\text {－}}\)（
lemma dpll－bj－atms－in－trail－in－set：
assumes 〈dpll－bj \(S T\) and
\(\langle i n v S\rangle\) and
\(\left\langle a t m s\right.\)－of－mm \(\left(\right.\) clauses \(\left.\left._{N O T} S\right) \subseteq A\right\rangle\) and
    \(\langle\) atm-of ' \((\) lits-of-l \((\) trail \(S)) \subseteq A\rangle\)
shows \(\langle\) atm-of ' (lits-of-l \((\) trail \(T)) \subseteq A\) 〉
using assms by (induction rule: dpll-bj-all-induct)
(auto simp: in-plus-implies-atm-of-on-atms-of-ms)
lemma dpll－bj－all－decomposition－implies－inv：
assumes
\(\langle d p l l-b j S T\rangle\) and
inv：〈inv \(S\) 〉 and
decomp：〈all－decomposition－implies－m（clauses \(\left.{ }_{N O T} S\right)\)（get－all－ann－decomposition（trail S））〉
shows 〈all－decomposition－implies－m（clauses \(\left.{ }_{N O T} T\right)\)（get－all－ann－decomposition（trail \(\left.T\right)\) ）〉
using \(\operatorname{assms}(1,2)\)
proof（induction rule：dpll－bj－all－induct）
case decide \({ }_{N O T}\)
then show ？case using decomp by auto
next
case \(\left(\right.\) propagate \(\left.{ }_{N O T} C L T\right)\) note propa \(=\) this（1）and undef \(=\) this（3）and \(T=\) this（4）
let ？\(M^{\prime}=\langle\) trail（prepend－trail（Propagated L（））S）\(\rangle\)
let \(? N=\left\langle\right.\) clauses \(\left._{N O T} S\right\rangle\)
obtain a y \(l\) where ay：〈get－all－ann－decomposition \(\left.?^{\prime} M^{\prime}=(a, y) \# l\right\rangle\)
by（cases 〈get－all－ann－decomposition ？\(\left.M^{\prime}\right\rangle\) ）fastforce＋
then have \(M^{\prime}:\left\langle ? M^{\prime}=y @ a\right\rangle\) using get－all－ann－decomposition－decomp［of ？M \(\left.{ }^{\eta}\right]\) by auto
have \(M\) ：〈get－all－ann－decomposition \((\) trail \(S)=(a, t l y) \# l\rangle\)
using ay undef by（cases＜get－all－ann－decomposition（trail S）〉）auto
have \(y_{0}:\langle y=(\) Propagated \(L()) \#(t l y)\rangle\)
using ay undef by（auto simp add：M）
from arg－cong \([\) OF this，of set \(]\) have \(y[\) simp \(]:\langle s e t y=\operatorname{insert}(\) Propagated \(L())(\) set \((t l y))\rangle\) by \(\operatorname{simp}\)
have \(t r\)－\(S\) ：〈trail \(S=t l y\)＠a〉
using arg－cong［OF \(M^{\prime}\) ，of tl］\(y_{0}\) M get－all－ann－decomposition－decomp by force
have \(a-U n-N-M:\) 〈unmark－l \(a \cup\) set－mset ？\(N \models p s\) unmark－l（ \(t l y\) y）〉
using decomp ay unfolding all－decomposition－implies－def by（simp add：M）＋
moreover have 〈unmark－l a \(\cup\) set－mset ？\(N \models p\{\# L \#\}\) 〉（is 〈？\(I \models p->)\)
proof（rule true－clss－cls－plus－CNot）
show 〈？\(I \models p\) add－mset \(L C\rangle\)
using propa propagate \({ }_{N O T}\) ．prems by（auto dest！：true－clss－clss－in－imp－true－clss－cls）
next
have 〈unmark－l ？\(M^{\prime} \models p s C N o t C\) 〉
using 〈trail \(S \models\) as CNot \(C\) 〉 undef by（auto simp add：true－annots－true－clss－clss）
have a1：〈unmark－l a unmark－l（tl y）\(\models p s\) CNot \(C\) 〉 using propagate \({ }_{\text {NOT }}\) ．hyps（2）tr－S true－annots－true－clss－clss by（force simp add：image－Un sup－commute）
then have＜unmark－l \(a \cup\) set－mset \(\left(\right.\) clauses \(\left._{N O T} S\right) \models p s\) unmark－l \(a \cup\) unmark－l \((t l y)\) ） using \(a-U n-N-M\) true－clss－clss－def by blast
then show 〈unmark－l \(a \cup\) set－mset \(\left(\right.\) clauses \(\left._{N O T} S\right) \models p s C N o t C 〉\) using a1 by（meson true－clss－clss－left－right true－clss－clss－union－and
true－clss－clss－union－l－r）
qed
ultimately have 〈unmark－l \(a \cup\) set－mset ？\(N \models p\) sunmark－l ？\(M^{\prime}\) ’
unfolding \(M^{\prime}\) by（auto simp add：all－in－true－clss－clss image－Un）
then show？？ase
using decomp \(T M\) undef unfolding ay all－decomposition－implies－def by（auto simp add：ay）
next
case（backjump C \(F^{\prime}\) K FLDT）note confl \(=\) this（2）and \(t r=\) this（3）and undef \(=\) this（4）and \(L=\operatorname{this}(5)\) and \(N-C=\operatorname{this}(6)\) and vars－D \(=\operatorname{this}(5)\) and \(T=\operatorname{this}(8)\)
have decomp：〈all－decomposition－implies－m（clauses \(\left.{ }_{N O T} S\right)\)（get－all－ann－decomposition \(F\) ）〉 using decomp unfolding tr all－decomposition－implies－def
by（metis（no－types，lifting）get－all－ann－decomposition．simps（1）
get－all－ann－decomposition－never－empty hd－Cons－tl insert－iff list．sel（3）list．set（2）
tl－get－all－ann－decomposition－skip－some）
obtain \(a b l i\) where \(F\) ：〈get－all－ann－decomposition \(F=(a, b) \# l i\rangle\)
by（cases＜get－all－ann－decomposition \(F\rangle\) ）auto
have \(\langle F=b\)＠\(a\rangle\)
using get－all－ann－decomposition－decomp［of Fab］F by auto
have \(a\)－\(N\)－b：＜unmark－l \(a \cup\) set－mset \(\left(\right.\) clauses \(\left._{N O T} S\right) \models p s\) unmark－l b＞
using decomp unfolding all－decomposition－implies－def by（auto simp add：F）
have \(F\)－D：〈unmark－l \(F \models p s\) CNot \(D\rangle\)
using \(\langle F \models\) as CNot \(D\rangle\) by（simp add：true－annots－true－clss－clss）
then have 〈unmark－l a unmark－l \(b=p s\) CNot \(D\) 〉
unfolding \(\langle F=b\)＠\(a\rangle\) by（simp add：image－Un sup．commute）
have \(a\)－N－CNot－D：〈unmark－l \(a \cup\) set－mset \(\left(\right.\) clauses \(\left._{N O T} S\right) \models p s C N o t D \cup\) unmark－l b〉 apply（rule true－clss－clss－left－right）
using \(a\)－\(N\)－b \(F\)－D unfolding \(\langle F=b\)＠\(a\rangle\) by（auto simp add：image－Un ac－simps）
have \(a-N\)－\(D\)－L：\(\left\langle\right.\) unmark－l \(a \cup\) set－mset \(\left(\right.\) clauses \(\left._{N O T} S\right) \models p\) add－mset \(\left.L D\right\rangle\)
by（simp add：\(N-C\) ）
have 〈unmark－l a \(\cup\) set－mset \(\left(\right.\) clauses \(\left.\left._{N O T} S\right) \models p\{\# L \#\}\right\rangle\)
using \(a-N-D-L a-N-C N o t-D\) by（blast intro：true－clss－cls－plus－CNot）
then show ？case
using decomp \(T\) tr undef unfolding all－decomposition－implies－def by（auto simp add：F） qed

\section*{Termination}

Using a proper measure lemma length－get－all－ann－decomposition－append－Decided：
＜length（get－all－ann－decomposition \(\left(F^{\prime} @\right.\) Decided \(\left.K \# F\right)\) ）＝ length（get－all－ann－decomposition \(F^{\prime}\) ）
+ length（get－all－ann－decomposition（Decided K \＃F））
－1）
by（induction \(F^{\prime}\) rule：ann－lit－list－induct）auto
lemma take－length－get－all－ann－decomposition－decided－sandwich：
＜take（length（get－all－ann－decomposition F））
\(\left(\operatorname{map}(f\right.\) o snd \()\left(\operatorname{rev}\left(\right.\right.\) get－all－ann－decomposition \(\left(F^{\prime} @\right.\) Decided \(\left.\left.\left.\left.K \# F\right)\right)\right)\right)\)
＝
map（ford）（rev（get－all－ann－decomposition \(F))\)
proof（induction \(F^{\prime}\) rule：ann－lit－list－induct）
case Nil
then show ？case by auto
next
case（Decided K）
then show？？ase by（simp add：length－get－all－ann－decomposition－append－Decided）
next
case（Propagated \(L m F^{\prime}\) ）note \(I H=\) this（1）
obtain \(a b l\) where \(F^{\prime}\) ：＜get－all－ann－decomposition \(\left(F^{\prime} @\right.\) Decided \(\left.K \# F\right)=(a, b) \# l\) ） by（cases＜get－all－ann－decomposition（ \(F^{\prime} @\) Decided \(\left.K \# F\right)\) ）auto
have＜length（get－all－ann－decomposition \(F\) ）－length \(l=0\) 〉
using length－get－all－ann－decomposition－append－Decided［of \(F^{\prime}\) K F］
```

 unfolding F' by (cases <get-all-ann-decomposition F}\mp@subsup{F}{}{\prime})\mathrm{) auto
 then show ?case
 using IH by (simp add: F')
 qed
lemma length-get-all-ann-decomposition-length:
<length (get-all-ann-decomposition M) \leq 1 + length M>
by (induction M rule: ann-lit-list-induct) auto
lemma length-in-get-all-ann-decomposition-bounded:
assumes i:<i\in set (trail-weight S)>
shows <i \leq Suc (length (trail S))>
proof -
obtain ab where
<(a,b) \in set (get-all-ann-decomposition (trail S))\rangle and
ib: <i = Suc (length b)>
using i by auto
then obtain c where <trail S=c@ b @ a>
using get-all-ann-decomposition-exists-prepend' by metis
from arg-cong[OF this, of length] show ?thesis using i ib by auto
qed

```

Well－foundedness The bounds are the following：
－ \(1+\operatorname{card}(a t m s-o f-m s A): \operatorname{card}(a t m s-o f-m s A)\) is an upper bound on the length of the list．As get－all－ann－decomposition appends an possibly empty couple at the end，adding one is needed．
－ \(2+\operatorname{card}\)（atms－of－ms A）：card（atms－of－ms \(A\) ）is an upper bound on the number of elements，where adding one is necessary for the same reason as for the bound on the list， and one is needed to have a strict bound．
abbreviation unassigned－lit ：：〈＇b clause set \(\Rightarrow\)＇a list \(\Rightarrow\) nat \(\rangle\) where
〈unassigned－lit \(N M \equiv\) card（atms－of－ms \(N\) ）－length \(M\) 〉
lemma dpll－bj－trail－mes－increasing－prop：
fixes \(M::\left\langle(' v\right.\) ，unit）ann－lits \(\rangle\) and \(N::\left\langle^{\prime} v\right.\) clauses
assumes
\(\langle d p l l-b j S T\rangle\) and
〈inv \(S\) 〉 and
NA：\(\left\langle a t m s\right.\)－of－mm \(\left(\right.\) clauses \(\left.\left._{N O T} S\right) \subseteq a t m s-o f-m s A\right\rangle\) and
MA：\(\langle a t m-o f\)＇lits－of－l（trail \(S) \subseteq\) atms－of－ms \(A\rangle\) and
\(n\)－d：〈no－dup（trail \(S\) ）〉 and
finite：\(\langle\) finite \(A\rangle\)
shows \(\left\langle\mu_{C}(1+\right.\) card（atms－of－ms A））（2＋card（atms－of－ms A））（trail－weight \(T)\)
\(>\mu_{C}(1+\) card \((\) atms－of－ms \(A))(2+\) card（atms－of－ms \(\left.A)\right)(\) trail－weight \(\left.S)\right\rangle\)
using \(\operatorname{assms}(1,2)\)
proof（induction rule：dpll－bj－all－induct）
case（propagate \({ }_{N O T} C L T\) ）note \(C L N=\operatorname{this}(1)\) and \(M C=\operatorname{this}(2)\) and undef－\(L=\) this（3）and \(T\)
\(=t h i s(4)\)
have incl：\(\langle a t m-o f\)＇lits－of－l（Propagated \(L() \#\) trail \(S) \subseteq a t m s-o f-m s A\rangle\)
using propagate \({ }_{N O T}\) dpll－bj－atms－in－trail－in－set bj－propagate \({ }_{N O T}\) NA MA CLN
by（auto simp：in－plus－implies－atm－of－on－atms－of－ms）
have no－dup：〈no－dup（Propagated \(L() \#\) trail \(S\) ）〉
using defined－lit－map \(n\)－d undef－\(L\) by auto
obtain \(a b l\) where \(M\) ：＜get－all－ann－decomposition（trail \(S)=(a, b) \# l\rangle\)
by（cases 〈get－all－ann－decomposition（trail S）〉）auto
have \(b\)－le－M：〈length \(b \leq\) length（trail \(S\) ）〉
using get－all－ann－decomposition－decomp［of 〈trail \(S\rangle\) ］by（simp add：M）
have \(\langle\) finite（atms－of－ms A）〉 using finite by simp
then have 〈length（Propagated \(L() \#\) trail \(S) \leq\) card（atms－of－ms A）〉
using incl finite unfolding no－dup－length－eq－card－atm－of－lits－of－l［OF no－dup］
by（simp add：card－mono）
then have latm：＜unassigned－lit \(A b=\) Suc（unassigned－lit A（Propagated \(L() \# b)\) ）〉
using \(b-l e-M\) by auto
then show ？case using \(T\) undef－\(L\) by（auto simp：latm \(M \mu_{C}\)－cons）
next
case \(\left(\right.\) decide \(\left._{\text {NOT }} L\right)\) note undef－\(L=\) this（1）and \(M C=\) this（2）and \(T=\) this（3）
have incl：\(\langle a t m-o f\)＇lits－of－l（Decided \(L \#(\) trail \(S)) \subseteq a t m s\)－of－ms \(A\rangle\)
using dpll－bj－atms－in－trail－in－set bj－decide NOT \(^{\text {decide }}{ }_{\text {NOt．}}\) decide \({ }_{\text {NOT }}[\) OF decide NOt．hyps ］NA MA MC
by auto
have no－dup：〈no－dup（Decided L \＃（trail S））〉
using defined－lit－map \(n\)－d undef－\(L\) by auto
obtain \(a b l\) where \(M\) ：＜get－all－ann－decomposition \((\) trail \(S)=(a, b) \# l\rangle\)
by（cases 〈get－all－ann－decomposition（trail S）〉）auto
then have 〈length \((\) Decided \(L \#(\) trail \(S)) \leq\) card（atms－of－ms A）〉
using incl finite unfolding no－dup－length－eq－card－atm－of－lits－of－l［OF no－dup］
by（simp add：card－mono）
show ？case using \(T\) undef－L by（simp add：\(\mu_{C}\)－cons）
next
case（backjump \(\left.C F^{\prime} K F L C^{\prime} T\right)\) note undef－\(L=\) this（4）and \(M C=t h i s(1)\) and \(t r-S=t h i s(3)\)
and
\(L=\operatorname{this}(5)\) and \(T=\operatorname{this}(8)\)
have incl：〈atm－of＇lits－of－l（Propagated \(L() \# F) \subseteq\) atms－of－ms A〉
using dpll－bj－atms－in－trail－in－set NA MA L by（auto simp：tr－S）
have no－dup：〈no－dup（Propagated \(L() \# F)\rangle\)
using defined－lit－map \(n\)－d undef－\(L\) tr－S by（auto dest：no－dup－appendD）
obtain \(a b l\) where \(M\) ：＜get－all－ann－decomposition \((\) trail \(S)=(a, b) \# l\rangle\)
by（cases 〈get－all－ann－decomposition（trail S）〉）auto
have \(b\)－le－M：〈length \(b \leq\) length（trail \(S\) ）〉
using get－all－ann－decomposition－decomp［of \(\langle\) trail \(S\rangle\) ］by（simp add：M）
have fin－atms－ ：\(\langle\) finite（atms－of－ms \(A\) ）〉 using finite by simp
then have \(F\)－le－A：〈length（Propagated \(L() \# F) \leq \operatorname{card}(\) atms－of－ms A）〉
using incl finite unfolding no－dup－length－eq－card－atm－of－lits－of－l［OF no－dup］
by（simp add：card－mono）
have \(t r-S\)－le－A：〈length \((\) trail \(S) \leq\) card（atms－of－ms \(A)\rangle\)
using \(n\)－d MA by（metis fin－atms－A card－mono no－dup－length－eq－card－atm－of－lits－of－l）
obtain \(a b l\) where \(F\) ：＜get－all－ann－decomposition \(F=(a, b) \# l\rangle\)
by（cases 〈get－all－ann－decomposition \(F\rangle\) ）auto
then have \(\langle F=b\)＠\(a\rangle\)
using get－all－ann－decomposition－decomp［of 〈Propagated L（）\＃F〉a \(\langle\) Propagated \(L() \# b\rangle]\) by simp
then have latm：〈unassigned－lit \(A b=\) Suc（unassigned－lit A（Propagated L（）\＃b））〉
using \(F-l e-A\) by simp
obtain rem where
rem： \(\operatorname{map}\left(\lambda a\right.\). Suc（length（snd a）））（rev（get－all－ann－decomposition（ \(F^{\prime} @\) Decided \(\left.\left.K \# F\right)\right)\) ）
\(=\operatorname{map}(\lambda a . S u c(l e n g t h(s n d a)))(\) rev（get－all－ann－decomposition \(F)) @\) rem＞
using take－length－get－all－ann－decomposition－decided－sandwich［of \(F\left\langle\lambda a\right.\) ．Suc（length a）＞\(\left.F^{\prime} K\right]\)
unfolding o－def by（metis append－take－drop－id）
then have rem：\(<\operatorname{map}(\lambda a\) ．Suc（length（snd a）））
（get－all－ann－decomposition（ \(F^{\prime}\)＠Decided \(\left.K \# F\right)\) ）
\(=\) rev rem＠map \((\lambda a . S u c(l e n g t h(s n d ~ a)))((\) get－all－ann－decomposition \(F))\) ）
by（simp add：rev－map［symmetric］rev－swap）
have＜length（rev rem＠map（ \(\lambda\) a．Suc（length（snd a）））（get－all－ann－decomposition \(F\) ）） \(\leq \operatorname{Suc}(\) card \((\) atms－of－ms A））＞
using arg－cong［OF rem，of length \(] \operatorname{tr}\)－S－le－\(A\)
length－get－all－ann－decomposition－length［of \(\left\langle F^{\prime} @\right.\) Decided \(\left.\left.K \# F\right\rangle\right] t r-S\) by auto
moreover \｛
\｛ fix \(i::\) nat and \(x s:: \iota^{\prime} a\) list \(\rangle\)
have \(\langle i<\) length \(x s \Longrightarrow\) length \(x s-S u c i<\) length \(x s\rangle\) by auto
then have \(H:\langle i<\) length \(x s \Longrightarrow\) rev \(x s!i \in\) set \(x s\rangle\)
using rev－nth［of ixs］unfolding in－set－conv－nth by（force simp add：in－set－conv－nth）
\} note \(H=\) this
have \(\langle\forall i<\) length rem．rev rem ！\(i<\operatorname{card}\)（atms－of－ms \(A)+2\rangle\)
using \(t r-S\)－le－A length－in－get－all－ann－decomposition－bounded \([o f-S]\) unfolding \(t r-S\)
by（force simp add：o－def rem dest！：H intro：length－get－all－ann－decomposition－length）\}
ultimately show ？case
using \(\mu_{C}\)－bounded［of 〈rev rem〉〈card（atms－of－ms A）＋2〉〈unassigned－lit A l＞］T undef－L
by（simp add：rem \(\mu_{C}\)－append \(\mu_{C}\)－cons \(F\) tr－S）
qed
lemma dpll－bj－trail－mes－decreasing－prop：
assumes dpll：〈dpll－bj \(S T\rangle\) and inv：\(\langle i n v S\rangle\) and
\(N\)－\(A\) ：\(\left\langle\right.\) atms－of－mm \(\left(\right.\) clauses \(\left._{N O T} S\right) \subseteq a t m s\)－of－ms \(\left.A\right\rangle\) and
\(M-A\) ：\(\langle a t m-o f\)＇lits－of－l（trail \(S\) ）\(\subseteq a t m s-o f-m s ~ A\rangle\) and
\(n d:\langle n o-d u p(\) trail \(S)\rangle\) and
fin－A：〈finite \(A\rangle\)
shows \(\langle(2+\) card \((\) atms－of－ms A））＾（1＋card（atms－of－ms A））
\(-\mu_{C}(1+\operatorname{card}(\) atms－of－ms A））\((2+\) card（atms－of－ms A））（trail－weight T）
\(<(2+\operatorname{card}(\) atms－of－ms A））～（1＋card（atms－of－ms A））
\(-\mu_{C}(1+\) card \((\) atms－of－ms \(A))(2+\) card（atms－of－ms A））（trail－weight \(\left.S)\right\rangle\)
proof－
let ？b \(=\langle 2+\) card（atms－of－ms A）\(\rangle\)
let ？s \(=\langle 1+\) card（atms－of－ms A）\(\rangle\)
let ？\(\mu=\left\langle\mu_{C}\right.\) ？s ？b \(\rangle\)
have \(M^{\prime}\)－\(A\) ：〈atm－of＇lits－of－l（trail \(T\) ）\(\subseteq\) atms－of－ms \(A\) 〉
by（meson \(M\)－\(A\) N－A dpll dpll－bj－atms－in－trail－in－set inv）
have \(n d^{\prime}:\langle n o-d u p(\) trail \(T)\rangle\)
using 〈dpll－bj \(S\) T〉dpll－bj－no－dup nd inv by blast
\｛ fix \(i::\) nat and \(x s::\langle\)＇a list \(\rangle\)
have \(\langle i<\) length \(x s \Longrightarrow\) length \(x s-\) Suc \(i<\) length \(x s\rangle\) by auto
then have \(H:\langle i<\) length \(x s \Longrightarrow x s!i \in\) set \(x s\rangle\) using rev－nth［of \(i x s]\) unfolding in－set－conv－nth by（force simp add：in－set－conv－nth）
\(\}\) note \(H=\) this
have \(l-M-A\) ：〈length \((\) trail \(S) \leq \operatorname{card}(\) atms－of－ms \(A)\rangle\)
by（simp add：fin－A M－A card－mono no－dup－length－eq－card－atm－of－lits－of－l nd）
have \(l-M^{\prime}-A\) ：＜length \((\) trail \(T) \leq\) card（atms－of－ms \(\left.A\right)\) 〉
by（simp add：fin－A \(M^{\prime}\)－A card－mono no－dup－length－eq－card－atm－of－lits－of－l \(n d^{\prime}\) ）
have l－trail－weight－M：〈length（trail－weight \(T) \leq 1+\) card（atms－of－ms A）〉
using \(l\)－\(M^{\prime}\)－A length－get－all－ann－decomposition－length \([\) of \(\langle\) trail \(T\rangle]\) by auto
have bounded－M：\(\forall \forall i<l e n g t h(\) trail－weight \(T) .(\) trail－weight \(T)!i<\operatorname{card}(a t m s-o f-m s A)+2\rangle\) using length－in－get－all－ann－decomposition－bounded［of－T］l－M＇－A
by（metis（no－types，lifting）H Nat．le－trans add－2－eq－Suc＇not－le not－less－eq－eq）
from dpll－bj－trail－mes－increasing－prop［OF dpll inv \(N-A M-A\) nd fin－A］
have \(\left\langle\mu_{C}\right.\) ？s ？b（trail－weight \(S\) ）\(<\mu_{C}\) ？s ？b（trail－weight \(T\) ）〉 by simp
moreover from \(\mu_{C}\)－bounded \([\) OF bounded－M l－trail－weight－\(M\) ］
have \(\left\langle\mu_{C} ? s ? b\right.\)（trail－weight \(T\) ）\(\leq ? b\)＾？\(\left.s\right\rangle\) by auto
ultimately show ？thesis by linarith
qed
lemma wf－dpll－bj：
assumes fin：〈finite \(A\) 〉
shows \(\langle w f\{(T, S)\) ．dpll－bj \(S T\)
\(\wedge\) atms－of－mm \(\left(\right.\) clauses \(\left._{N O T} S\right) \subseteq\) atms－of－ms \(A \wedge\) atm－of＇lits－of－l（trail \(S\) ）\(\subseteq\) atms－of－ms \(A\)
\(\wedge\) no－dup \((\) trail \(S) \wedge \operatorname{inv} S\}\) ）
（is 〈wf？\(A\rangle\) ）
proof（rule wf－bounded－measure［of－
\(\langle\lambda\)－．\((\mathcal{2}+\operatorname{card}(\) atms－of－ms \(A)) \wedge(1+\operatorname{card}(\) atms－of－ms \(A))\rangle\)
\(\left\langle\lambda S . \mu_{C}(1+\operatorname{card}(\right.\) atms－of－ms \(A))(2+\) card（atms－of－ms A））（trail－weight \(\left.\left.\left.S)\right\rangle\right]\right)\)
fix \(a b:\) ：〈＇st \({ }^{\prime}\)
let \(? b=\langle 2+\) card \((\) atms－of－ms \(A)\rangle\)
let ？\(s=\langle 1+\) card（atms－of－ms \(A)\rangle\)
let ？\(\mu=\left\langle\mu_{C}\right.\) ？s ？b \(\rangle\)
assume \(a b:\langle(b, a) \in ? A\rangle\)
have fin－A：〈finite（atms－of－ms A）〉
using fin by auto
have
\(d p l l-b j:\langle d p l l-b j a b\rangle\) and
\(N\)－\(A:\left\langle a t m s-o f-m m\left(\right.\right.\) clauses \(\left.\left._{N O T} a\right) \subseteq a t m s-o f-m s A\right\rangle\) and
M－A：〈atm－of＇lits－of－l（trail a）\(\subseteq\) atms－of－ms \(A\rangle\) and
\(n d:\langle n o-d u p(t r a i l ~ a)\rangle\) and
inv：〈inv a〉
using \(a b\) by auto
have \(M^{\prime}\)－\(A\) ：〈atm－of＇lits－of－l（trail b）\(\subseteq\) atms－of－ms \(\left.A\right\rangle\)
by（meson M－A N－A〈dpll－bj a b〉dpll－bj－atms－in－trail－in－set inv）
have \(n d^{\prime}:\langle n o-d u p\)（trail b）〉
using 〈dpll－bj a b〉dpll－bj－no－dup nd inv by blast
\｛ fix \(i::\) nat and \(x s::\)＜＇a list \(^{\prime}\)
have \(\langle i<\) length \(x s \Longrightarrow\) length \(x s-\) Suc \(i<\) length \(x s\rangle\) by auto
then have \(H:\langle i<l e n g t h ~ x s \Longrightarrow x s!i \in\) set \(x s\rangle\) using rev－nth［of \(i x s]\) unfolding in－set－conv－nth by（force simp add：in－set－conv－nth）
\} note \(H=\) this
have \(l-M\)－ ：＜length \((\) trail \(a) \leq\) card（atms－of－ms \(A)\) 〉
by（simp add：fin－A M－A card－mono no－dup－length－eq－card－atm－of－lits－of－l nd）
have \(l-M^{\prime}-A\) ：〈length（trail b）\(\leq\) card（atms－of－ms A）〉
by（simp add：fin－A \(M^{\prime}\)－A card－mono no－dup－length－eq－card－atm－of－lits－of－l \(n d^{\prime}\) ）
have l－trail－weight－\(M\) ：〈length（trail－weight b）\(\leq 1+\) card \((\) atms－of－ms \(A)\) 〉
using \(l\)－\(M^{\prime}\)－A length－get－all－ann－decomposition－length \([\) of \(\langle\) trail \(b\rangle]\) by auto
have bounded－\(M\) ：〈 \(\forall i<\) length（trail－weight \(b)\) ．（trail－weight b）！\(i<\) card（atms－of－ms \(A)+2\rangle\) using length－in－get－all－ann－decomposition－bounded \([o f-b] l-M^{\prime}-A\)
by（metis（no－types，lifting）Nat．le－trans One－nat－def Suc－1 add．right－neutral add－Suc－right le－imp－less－Suc less－eq－Suc－le nth－mem）
from dpll－bj－trail－mes－increasing－prop［OF dpll－bj inv N－A M－A nd fin］
have \(\left\langle\mu_{C}\right.\) ？s ？b（trail－weight a）\(<\mu_{C}\) ？s ？b（trail－weight b）〉 by simp
moreover from \(\mu_{C}\)－bounded \([O F\) bounded－M l－trail－weight－\(M\) ］
have \(\left\langle\mu_{C}\right.\) ？s ？b（trail－weight b）\(\leq ? b^{\wedge}\) ？s〉 by auto
ultimately show \(\left\langle ? b\right.\)＾\(s \leq \leq ? b^{\wedge} ? s \wedge\)
\(\mu_{C} ? s ? b(\) trail－weight \(b) \leq ? b \wedge ? s \wedge\)
\(\mu_{C} ? s ? b(\) trail－weight \(a)<\mu_{C}\) ？s ？\(b(\) trail－weight \(b)\) ）
by blast
qed
Alternative termination proof abbreviation \(D P L L-m e s_{W}\) where
\(\left\langle D P L L-\right.\) mes \(_{W} A M \equiv\)
\(\operatorname{map}(\lambda L\) ．if is－decided \(L\) then 2：：nat else 1）（rev \(M) @\) replicate（card \(A-\) length \(M\) ）3）
lemma distinctcard－atm－of－lit－of－eq－length：
assumes no－dup \(S\)
shows card（atm－of＇lits－of－l \(S\) ）\(=\) length \(S\)
using assms by（induct \(S\) ）（auto simp add：image－image lits－of－def no－dup－def）
lemma dpll－bj－trail－mes－decreasing－less－than：
assumes dpll：〈dpll－bj \(S T\rangle\) and inv：\(\langle i n v S\rangle\) and
\(N-A:\left\langle a t m s-o f-m m\left(\right.\right.\) clauses \(\left.\left._{N O T} S\right) \subseteq a t m s-o f-m s A\right\rangle\) and
M－A：〈atm－of＇lits－of－l（trail \(S\) ）\(\subseteq a t m s\)－of－ms \(A\rangle\) and
\(n d:\langle n o-d u p(\) trail \(S)\rangle\) and
fin－A：〈finite \(A\rangle\)
shows \(«\left(D P L L-\right.\) mes \(_{W}(\) atms－of－ms \(A)(\) trail \(T), D P L L-m e s_{W}(\) atms－of－ms \(A)(\) trail \(\left.S)\right) \in\) lexn less－than（card（（atms－of－ms A）））＞
using \(\operatorname{assms}(1,2)\)
proof（induction rule：dpll－bj－all－induct）
case （decide \(_{\text {NOT }} L T\) ）
define \(n\) where
```

 <n = card (atms-of-ms A) - card (atm-of'lits-of-l (trail S))>
    ```
have \([\) simp \(]\) ：〈length（trail \(S)=\) card（atm－of＇lits－of－l（trail S））〉
using nd by（auto simp：no－dup－def lits－of－def image－image dest：distinct－card）
have＜atm－of \(L \notin\) atm－of＇lits－of－l（trail S）〉
by（metis decide \({ }_{N O T} . h y p s(1)\) defined－lit－map imageE in－lits－of－l－defined－litD）
have \(\langle\operatorname{card}(\) atms－of－ms \(A)>\operatorname{card}(\) atm－of＇lits－of－l \((\) trail \(S))\rangle\)
by（metis \(N\)－\(A\) 〈atm－of \(L \notin\) atm－of＇lits－of－l（trail \(S\) ）〉 atms－of－ms－finite card－seteq decide \({ }_{N O T}\) ．hyps（2） \(M-A\) fin－A not－le subsetCE）

\section*{then have}
\[
n-0:\langle n>0\rangle \text { and }
\]
\(n\)－Suc：〈card（atms－of－ms A）－Suc（card（atm－of＇lits－of－l（trail S）））\(=n-1\rangle\)
unfolding \(n\)－def by auto
show ？case
using fin－A decide \({ }_{N O T}\) n－0 unfolding state－eq NOT－trail \(\left[O F ~_{\text {decide }}^{N O T}(3)\right]\)
by（cases \(n\) ）（auto simp：prepend－same－lexn n－def［symmetric］n－Suc lexn－Suc simp del：state－simp \({ }_{N O T}\) lexn．simps）
```

next
case (propagate NOT C L T) note C = this(1) and undef = this(3) and T = this(3)
then have <card (atms-of-ms A) > length (trail S)>
proof -
have f7: atm-of L \in atms-of-ms A
using N-A C in-m-in-literals by blast
have undefined-lit (trail S) (-L)
using undef by auto
then show ?thesis
using f7 nd fin-A M-A undef by (metis atm-of-in-atm-of-set-in-uminus atms-of-ms-finite
card-seteq in-lits-of-l-defined-litD leI no-dup-length-eq-card-atm-of-lits-of-l)
qed
then show ?case
using fin-A unfolding state-eqNOT-trail[OF propagate NOT(4)]
by (cases \card (atms-of-ms A) - length (trail S)〉)
(auto simp: prepend-same-lexn lexn-Suc
simp del: state-simp NOT lexn.simps)
next
case (backjump C F'KFL C'T) note tr-S = this(3)
have <trail (reduce-trail-to NOT F S) = F>
by (simp add: tr-S)
have \no-dup F\rangle
using nd tr-S by (auto dest: no-dup-appendD)
then have card-A-F: <card (atms-of-ms A) > length F>
using distinctcard-atm-of-lit-of-eq-length[of \langletrail S\rangle] card-mono[OF - M-A] fin-A nd tr-S
by auto
have <no-dup (F' @ F)>
using nd tr-S by (auto dest: no-dup-appendD)
then have <no-dup F'` apply (subst (asm) no-dup-rev[symmetric]) using nd tr-S by (auto dest: no-dup-appendD) then have card-A-F': <card (atms-of-ms A) > length F' + length F〉 using distinctcard-atm-of-lit-of-eq-length[of <trail S>] card-mono[OF - M-A] fin-A nd tr-S by auto show ?case using card-A-F card- A-F' unfolding state-eqNOT-trail[OF backjump(8)] by (cases <card (atms-of-ms A) - length F`)
(auto simp: tr-S prepend-same-lexn lexn-Suc simp del: state-simp NOT lexn.simps)
qed
lemma
assumes fin[simp]: <finite A>
shows <wf {(T,S). dpll-bj S T
^atms-of-mm (clauses NOT S)\subseteqatms-of-ms A ^ atm-of`lits-of-l (trail S)\subseteqatms-of-ms A ^ no-dup (trail S) ^ inv S}> (is <wf ?A`)
unfolding conj-commute[of \dpll-bj -->]
apply (rule wf-wf-if-measure'[of - - <\lambdaS. DPLL-mesW ((atms-of-ms A)) (trail S)\rangle])
apply (rule wf-lexn)
apply (rule wf-less-than)
by (rule dpll-bj-trail-mes-decreasing-less-than; use fin in simp)

```

\section*{Normal Forms}

We prove that given a normal form of DPLL，with some structural invariants，then either \(N\) is satisfiable and the built valuation \(M\) is a model；or \(N\) is unsatisfiable．
Idea of the proof：We have to prove tat satisfiable \(N, \neg M \models a s N\) and there is no remaining step is incompatible．

1．The decide rule tells us that every variable in \(N\) has a value．
2．The assumption \(\neg M \models\) as \(N\) implies that there is conflict．
3．There is at least one decision in the trail（otherwise，\(M\) would be a model of the set of clauses \(N\) ）．

4．Now if we build the clause with all the decision literals of the trail，we can apply the backjump rule．
The assumption are saying that we have a finite upper bound \(A\) for the literals，that we cannot do any step \(\forall S^{\prime} . \neg d p l l-b j S S^{\prime}\)
theorem dpll－backjump－final－state：
fixes \(A::\) 〈＇v clause set and \(S T::\) 〈＇st \(\rangle\)

\section*{assumes}
\(\left\langle a t m s\right.\)－of－mm \(\left(\right.\) clauses \(\left._{N O T} S\right) \subseteq\) atms－of－ms \(\left.A\right\rangle\) and
\(\langle a t m-o f\)＇lits－of－l \((\) trail \(S) \subseteq\) atms－of－ms \(A\) ）and
＜no－dup（trail S））and
\(\langle\) finite \(A\rangle\) and
inv：\(\langle i n v S\rangle\) and
\(n-d:\langle n o-d u p(\) trail \(S\) ）\(\rangle\) and
\(n\)－s：〈no－step dpll－bj \(S\) 〉 and
decomp：〈all－decomposition－implies－m（clauses \({ }_{N O T} S\) ）（get－all－ann－decomposition（trail S））〉
shows＜unsatisfiable（set－mset（clauses \({ }_{N O T} S\) ）

proof－
let \(? N=\left\langle\right.\) set－mset \(\left(\right.\) clauses \(\left.\left._{N O T} S\right)\right\rangle\)
let \(? M=\langle\) trail \(S\rangle\)
consider
（sat）〈satisfiable ？\(N\) ）and（？\(M \models\) as ？\(N\) 〉
｜（sat＇）〈satisfiable ？\(N\rangle\) and \(\langle\neg ? M \models\) as ？\(N\rangle\)
｜（unsat）（unsatisfiable ？\(N\) ）
by auto
then show ？thesis
proof cases
case \(s a t^{\prime}\) note \(s a t=t h i s(1)\) and \(M=\) this（2）
obtain \(C\) where \(\langle C \in ? N\rangle\) and \(\neg ?\) ？\(M \models a C\rangle\) using \(M\) unfolding true－annots－def by auto
obtain \(I:: \zeta^{\prime} v\) literal set \(\rangle\) where
〈 \(I \models s\) ？\(N\) 〉 and
cons：〈consistent－interp I）and
tot：〈total－over－m I ？N〉 and atm－I－N：〈atm－of＇\(I \subseteq a t m s-o f-m s ? N\) ？
using sat unfolding satisfiable－def－min by auto
let \(? I=\left\langle I \cup\left\{P \mid P . P \in\right.\right.\) lits－of－l ？\({ }^{\prime} M \wedge\) atm－of \(P \notin\) atm－of ‘ \(\left.\left.I\right\}\right\rangle\)
let ？\(O=\langle\{\) unmark \(L \mid L\) ．is－decided \(L \wedge L \in\) set ？\(M \wedge\) atm－of（lit－of \(L) \notin\) atms－of－ms ？\(N\}\rangle\)
have cons－I＇：（consistent－interp ？\({ }^{\text {I }}\) ）
using cons using «no－dup ？M〉 unfolding consistent－interp－def
by（auto simp add：atm－of－in－atm－of－set－iff－in－set－or－uminus－in－set lits－of－def dest！：no－dup－cannot－not－lit－and－uminus）
have tot－I＇：〈total－over－m ？I（？N \(\cup\) unmark－l ？M）〉
using tot atm－I－N unfolding total－over－m－def total－over－set－def
by（fastforce simp：image－iff lits－of－def）
have \(\langle\{P \mid P . P \in\) lits－of－l ？\(M \wedge\) atm－of \(P \notin\) atm－of＇\(I\} \models s\) ？\(O\) 〉
using \(\langle I \models s\) ？\(N\rangle\) atm－I－\(N\) by（auto simp add：atm－of－eq－atm－of true－clss－def lits－of－def）
then have \(I^{\prime}-N\) ：＜？\(I \models s\) ？\(N \cup\) ？\(O\) 〉
using \(\langle I \models s\) ？\(N\rangle\) true－clss－union－increase by force
have tot＇：〈total－over－m ？I（？N \(\cup\) ？O）＞
using atm－I－N tot unfolding total－over－m－def total－over－set－def
by（force simp：lits－of－def elim！：is－decided－ex－Decided）
have atms－\(N\)－\(M\) ：〈atms－of－ms ？\(N \subseteq\) atm－of＇lits－of－l ？M〉
proof（rule ccontr）
assume 〈 \(\neg\) ？thesis〉
then obtain \(l::{ }^{\prime} v\) where
\(l-N:\langle l \in a t m s-o f-m s ? N\rangle\) and
\(l-M:\langle l \notin\) atm－of＇lits－of－l ？\(M>\)
by auto
have 〈undefined－lit ？M（Pos l）＞
using \(l\)－\(M\) by（metis Decided－Propagated－in－iff－in－lits－of－l
atm－of－in－atm－of－set－iff－in－set－or－uminus－in－set literal．sel（1））
then show False
using \(l\)－N n－s can－propagate－or－decide－or－backjump［of 〈Pos l〉S］inv n－d sat
by（auto dest：dpll－bj．intros）
qed
have \(\langle ? M \models\) as \(C N o t C\rangle\)
apply（rule all－variables－defined－not－imply－cnot）
using \(\left\langle C \in\right.\) set－mset \(\left(\right.\) clauses \(\left.\left._{N O T} S\right)\right\rangle\langle\neg\) trail \(S \models a C\rangle\)
atms－\(N\)－\(M\) by（auto dest：atms－of－atms－of－ms－mono）
have \(\langle\exists l \in\) set ？M．is－decided \(l\rangle\)
proof（rule ccontr）
let ？\(O=\langle\{\) unmark \(L \mid L\) ．is－decided \(L \wedge L \in\) set？\(M \wedge\) atm－of（lit－of \(L) \notin\) atms－of－ms ？\(N\}\rangle\)
have \(\vartheta[i f f]: 〈 \bigwedge\) ．total－over－m \(I(? N \cup ? O \cup\) unmark－l ？M）
\(\longleftrightarrow\) total－over－m I（？N Uunmark－l ？M）＞
unfolding total－over－set－def total－over－m－def atms－of－ms－def by blast
assume \(\langle\neg\) ？thesis \(\rangle\)
then have \([\) simp \(]::\{\) unmark \(L \mid L\) ．is－decided \(L \wedge L \in\) set \(? M\}\)
\(=\{\) unmark \(L \mid L\) ．is－decided \(L \wedge L \in\) set ？\(M \wedge\) atm－of（lit－of \(L\) ）\(\notin\) atms－of－ms ？\(N\}\) ）
by auto
then have \(\langle ? N \cup\) ？\(O \models p s\) unmark－l ？\(M\) 〉
using all－decomposition－implies－propagated－lits－are－implied［OF decomp］by auto
then have 〈？\(I \models s\) unmark－l ？M
using cons－\(I^{\prime} I^{\prime}-N\) tot－\(I^{\prime}\langle ? I \models s\) ？\(N \cup\) ？\(O\) 〉 unfolding \(\vartheta\) true－clss－clss－def by blast
then have 〈lits－of－l ？\(M \subseteq\) ？I〉
unfolding true－clss－def lits－of－def by auto
then have \(\langle ? M \models\) as ？\(N\) 〉
using \(I^{\prime}-N\langle C \in ? N\rangle\langle\neg ? M \models a C\rangle\) cons－\(I^{\prime}\) atms－\(N-M\)
by（meson 〈trail \(S \models\) as CNot \(C\) 〉 consistent－CNot－not rev－subsetD sup－ge1 true－annot－def true－annots－def true－cls－mono－set－mset－l true－clss－def）
then show False using \(M\) by fast
qed
from List．split－list－first－propE［OF this］obtain \(K\) ：： ＇\(^{\prime} v\) literal \(\rangle\) and
\(F F^{\prime}::\left\langle\left({ }^{\prime} v\right.\right.\) ，unit \()\) ann－lits \(\rangle\) where
\(M-K:\left\langle ? M=F^{\prime} @\right.\) Decided \(\left.K \# F\right\rangle\) and
\(n m:\left\langle\forall f \in\right.\) set \(F^{\prime}\) ．\(\neg i s\)－decided \(\left.f\right\rangle\)
by（metis（full－types）is－decided－ex－Decided old．unit．exhaust）
let \(? K=\left\langle\right.\) Decided \(K::\left({ }^{\prime} v\right.\) ，unit）ann－lit \(\rangle\)
have \(\langle ? K \in\) set ？M \(\rangle\)
unfolding \(M-K\) by auto
let \(? C=\langle\) image－mset lit－of \(\{\# L \in \# m s e t\) ？M．is－decided \(L \wedge L \neq ? K \#\}::\)＇v clause〉
let ？\(C^{\prime}=\left\langle\right.\) set－mset（image－mset \(\left(\lambda L::{ }^{\prime} v\right.\) literal．\(\left.\{\# L \#\}\right)(? C+\) unmark ？\(K)\) ）\(\rangle\)
have \(\langle ? N \cup\{\) unmark \(L \mid L\) ．is－decided \(L \wedge L \in\) set ？\(M\} \models p s\) unmark－l ？\(M\) 〉
using all－decomposition－implies－propagated－lits－are－implied［OF decomp］．
moreover have \(C^{\prime}:\left\langle ? C^{\prime}=\{\right.\) unmark \(L \mid L\) ．is－decided \(L \wedge L \in\) set ？\(\left.M\}\right\rangle\)
unfolding \(M-K\) by standard force +
ultimately have \(N-C-M:\left\langle ? N \cup ? C^{\prime} \models p s\right.\) unmark－l ？\(\left.M\right\rangle\)
by auto
have \(N\)－M－False：〈？\(N \cup(\lambda L\) ．unmark \(L)\)＇\((\) set \(? M) \models p s\{\{\#\}\}\) 〉
unfolding true－clss－clss－def true－annots－def Ball－def true－annot－def
proof（intro alli impI）
fix \(L L\) ：：＇v literal set
assume
tot：〈total－over－m LL（set－mset \(\left(\right.\) clauses \(\left._{N O T} S\right) \cup\) unmark－l \((\) trail \(\left.\left.S) \cup\{\{\#\}\}\right)\right\rangle\) and
cons：〈consistent－interp \(L L\rangle\) and
\(L L:\left\langle L L \models\right.\) s set－mset \(\left(\right.\) clauses \(\left._{N O T} S\right) \cup\) unmark－l（trail S）〉
have 〈total－over－m LL（CNot C）＞
by（metis \(\left\langle C \in \#\right.\) clauses \(\left._{N O T} S\right\rangle\) insert－absorb tot total－over－m－CNot－toal－over－m total－over－m－insert total－over－m－union）
then have total－over－m LL（unmark－l（trail S）\(\cup C N o t C)\)
using tot by force
then show \(L L \models s\{\{\#\}\}\)
using tot cons \(L L\)
by（metis（no－types）\(\left\langle C \in \#\right.\) clauses \(\left._{N O T} S\right\rangle\langle\) trail \(S \models\) as CNot \(C\rangle\) consistent－CNot－not true－annots－true－clss－clss true－clss－clss－def true－clss－def true－clss－union）
qed
have 〈undefined－lit \(F\) K〉 using 〈no－dup ？M〉 unfolding \(M\)－\(K\) by（auto simp：defined－lit－map） moreover \｛
have 〈？\(\left.N \cup ? C^{\prime} \models p s\{\{\#\}\}\right\rangle\)
proof－
have \(A:\left\langle ? N \cup ? C^{\prime} \cup\right.\) unmark－l \(? M=? N \cup\) unmark－l ？\(M\) 〉
unfolding \(M-K\) by auto
show ？thesis
using true－clss－clss－left－right［OF N－C－M，of \(\langle\{\{\#\}\}\rangle] N\)－M－False unfolding \(A\) by auto
qed
have 〈？\(N \models p\) image－mset uminus \(? C+\{\#-K \#\}\rangle\)
unfolding true－clss－cls－def true－clss－clss－def total－over－m－def
proof（intro allI impI）
fix \(I\)
assume
tot：〈total－over－set I（atms－of－ms \((? N \cup\{\) image－mset uminus ？\(C+\{\#-K \#\}\})\) ） and cons：〈consistent－interp \(I\rangle\) and \(\langle I \models s\) ？\(N\rangle\)
have \(\langle(K \in I \wedge-K \notin I) \vee(-K \in I \wedge K \notin I)\rangle\) using cons tot unfolding consistent－interp－def by（cases K）auto
have \(\langle\{a \in\) set \((\) trail \(S)\) ．is－decided \(a \wedge a \neq\) Decided \(K\}=\) set \((\) trail \(S) \cap\{L\) ．is－decided \(L \wedge L \neq\) Decided \(K\}\) ）
by auto
then have tot＇：＜total－over－set I （atm－of＇lit－of＇（set ？\(M \cap\{L\) ．is－decided \(L \wedge L \neq\) Decided \(K\})\) ）＞
```

 using tot by (auto simp add: atms-of-uminus-lit-atm-of-lit-of)
 \{ fix \(x::<(' v\), unit \()\) ann-lit
 assume
 a3: \(\langle l i t-o f x \notin I\rangle\) and
 a1: \(\langle x \in\) set \(? M\rangle\) and
 a4: 〈is-decided \(x\rangle\) and
 a5: \(\langle x \neq\) Decided \(K\rangle\)
 then have \(\langle\operatorname{Pos}(\) atm-of \((\) lit-of \(x)) \in I \vee \operatorname{Neg}(\) atm-of \((\) lit-of \(x)) \in I\rangle\)
 using a5 a4 tot' a1 unfolding total-over-set-def atms-of-s-def by blast
 moreover have f6: 〈Neg (atm-of (lit-of \(x))=-\operatorname{Pos}(\) atm-of \((\) lit-of \(x))\rangle\)
 by simp
 ultimately have \(\langle-\) lit-of \(x \in I\rangle\)
 using f6 a3 by (metis (no-types) atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
 literal.sel(1))
 \(\}\) note \(H=\) this
 have \(\left\langle\neg I \models s\right.\) ? \(C^{\prime}\) 〉
 using 〈? \(\left.N \cup ? C^{\prime} \models p s\{\{\#\}\}\right\rangle\) tot cons \(\langle I \models s\) ? \(N\rangle\)
 unfolding true-clss-clss-def total-over-m-def
 by (simp add: atms-of-uminus-lit-atm-of-lit-of atms-of-ms-single-image-atm-of-lit-of)
 then show \(\langle I \models\) image-mset uminus ? \(C+\{\#-K \#\}\))
 unfolding true-clss-def true-cls-def using \(\langle(K \in I \wedge-K \notin I) \vee(-K \in I \wedge K \notin I)\rangle\)
 by (auto dest!: H)
 qed \(\}\)
 moreover have \(\langle F \models\) as CNot (image-mset uminus ? \(C\)) >
 using \(n m\) unfolding true-annots-def CNot-def \(M\)-K by (auto simp add: lits-of-def)
 ultimately have False
 using bj-can-jump of \(S F^{\prime} K F C\langle-K\rangle\)
 〈image-mset uminus (image-mset lit-of \(\{\# L: \#\) mset ? \(M\). is-decided \(L \wedge L \neq\) Decided K\#\}) \(]\)
 \(\langle C \in ? N\rangle n\)-s 〈?M \(\models\) as CNot \(C\rangle\) bj-backjump inv 〈no-dup (trail S)〉 sat
 unfolding \(M-K\) by auto
 then show ?thesis by fast
 qed auto
 qed
end - End of the locale dpll-with-backjumping-ops.
locale dpll-with-backjumping $=$
dpll-with-backjumping-ops trail clauses ${ }_{N O T}$ prepend-trail tl-trail add-cls $s_{N O T}$ remove-cls $s_{N O T}$ inv
decide-conds backjump-conds propagate-conds
for
trail $::$ 〈'st \Rightarrow ('v, unit) ann-lits〉 and
clauses $_{N O T}::$ 〈'st \Rightarrow 'v clauses $>$ and
prepend-trail :: 〈('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st〉 and
tl-trail :: 〈'st \Rightarrow 'st> and
$a d d-c l s_{N O T}::{ }^{\text {' }} v$ clause \Rightarrow 'st \Rightarrow 'st \rangle and
remove-cls ${ }_{N O T}:: \iota^{\prime} v$ clause \Rightarrow 'st \Rightarrow 'st \rangle and
inv :: <'st \Rightarrow bool〉 and
decide-conds :: 〈'st \Rightarrow 'st \Rightarrow bool \rangle and
backjump-conds $:: \zeta^{\prime} v$ clause \Rightarrow 'v clause \Rightarrow 'v literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool \rangle and
propagate-conds :: 〈('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st \Rightarrow bool
$+$
assumes dpll-bj-inv: 〈\S T. dpll-bj $S T \Longrightarrow$ inv $S \Longrightarrow i n v T\rangle$
begin
lemma rtranclp－dpll－bj－inv：

```
```

assumes \langledpll-bj** S T\rangle and 〈inv S\rangle
shows <inv T\rangle
using assms by (induction rule: rtranclp-induct)
(auto simp add: dpll-bj-no-dup intro: dpll-bj-inv)
lemma rtranclp-dpll-bj-no-dup:
assumes \langledpll-bj** S T\rangle and \langleinv S\rangle
and <no-dup (trail S)>
shows \no-dup (trail T)\
using assms by (induction rule: rtranclp-induct)
(auto simp add:dpll-bj-no-dup dest: rtranclp-dpll-bj-inv dpll-bj-inv)
lemma rtranclp-dpll-bj-atms-of-ms-clauses-inv:
assumes
\langledpll-bj** S T\rangle and 〈inv S\rangle
shows <atms-of-mm (clauses NOT S)=atms-of-mm (clauses}\mp@subsup{}{NOT}{}T)\mathrm{)
using assms by (induction rule: rtranclp-induct)
(auto dest: rtranclp-dpll-bj-inv dpll-bj-atms-of-ms-clauses-inv)
lemma rtranclp-dpll-bj-atms-in-trail:
assumes
<dpll-bj** S T> and
inv S\rangle and
<atm-of ' (lits-of-l (trail S)) \subseteqatms-of-mm (clauses NOT S)>
shows <atm-of '(lits-of-l (trail T))\subseteqatms-of-mm (clauses NOT T)>
using assms apply (induction rule: rtranclp-induct)
using dpll-bj-atms-in-trail dpll-bj-atms-of-ms-clauses-inv rtranclp-dpll-bj-inv by auto
lemma rtranclp-dpll-bj-sat-iff:
assumes \langledpll-bj** S T\rangle and \langleinv S\rangle
shows <I\modelssm clauses NOT}\S\longleftrightarrowI\modelssm\mp@subsup{clauses}{NOT}{}T
using assms by (induction rule: rtranclp-induct)
(auto dest!: dpll-bj-sat-iff simp: rtranclp-dpll-bj-inv)
lemma rtranclp-dpll-bj-atms-in-trail-in-set:
assumes
<dpll-bj** S T\rangle and
<inv S>
<atms-of-mm (\mp@subsup{clauses}{NOT}{}S)\subseteqA\rangle
<atm-of '(lits-of-l (trail S))\subseteqA>
shows <atm-of ' (lits-of-l (trail T))\subseteqA>
using assms by (induction rule: rtranclp-induct)
(auto dest: rtranclp-dpll-bj-inv
simp:dpll-bj-atms-in-trail-in-set rtranclp-dpll-bj-atms-of-ms-clauses-inv rtranclp-dpll-bj-inv)
lemma rtranclp-dpll-bj-all-decomposition-implies-inv:
assumes
<dpll-bj** S T\rangle and
<inv S>
<all-decomposition-implies-m (clauses NOT S) (get-all-ann-decomposition (trail S))>
shows <all-decomposition-implies-m (clauses NOT T) (get-all-ann-decomposition (trail T))>
using assms by (induction rule: rtranclp-induct)
(auto intro:dpll-bj-all-decomposition-implies-inv simp: rtranclp-dpll-bj-inv)
lemma rtranclp-dpll-bj-inv-incl-dpll-bj-inv-trancl:
<{(T,S).dpll-bj++}S

```
```

 ^atms-of-mm (clauses NOT S)\subseteqatms-of-ms A ^ atm-of'lits-of-l (trail S)\subseteqatms-of-ms A
 ^no-dup (trail S) ^ inv S}
 \subseteq \{ (T , S) . d p l l - b j ~ S ~ T ~ \wedge ~ a t m s - o f - m m ~ (c l a u s e s ~ N O T ~ S ~ S ~ \ a t m s - o f - m s ~ A ^ { \sim }
 ^atm-of 'lits-of-l (trail S)\subseteqatms-of-ms A ^ no-dup (trail S) \ inv S}+
 (is <?A\subseteq? 施〉)
 proof standard
fix }
assume }x\mathrm{ - }A:\langlex\in?,A
obtain S T::<'st> where
x[simp]:\langlex=(T,S)\rangle by (cases x) auto
have
<dpll-bj++}ST\rangle\mathrm{ and
<atms-of-mm (\mp@subsup{clauses}{NOT}{}S)\subseteqatms-of-ms A〉 and
<atm-of 'lits-of-l (trail S)\subseteqatms-of-ms A> and
<no-dup (trail S)> and
<inv S>
using }x-A\mathrm{ by auto

```

```

 proof (induction rule: tranclp-induct)
 case base
 then show ?case by auto
 next
 case (step T U) note step = this(1) and ST = this(2) and IH=this(3)[OF this(4-7)]
 and N-A = this(4) and M-A = this(5) and nd = this(6) and inv = this(7)
 have [simp]:\atms-of-mm (clauses NOT S)=atms-of-mm (clauses
 using step rtranclp-dpll-bj-atms-of-ms-clauses-inv tranclp-into-rtranclp inv by fastforce
 have <no-dup (trail T)\rangle
 using local.step nd rtranclp-dpll-bj-no-dup tranclp-into-rtranclp inv by fastforce
 moreover have <atm-of '(lits-of-l (trail T))\subseteqatms-of-ms A>
 by (metis inv M-A N-A local.step rtranclp-dpll-bj-atms-in-trail-in-set
 tranclp-into-rtranclp)
 moreover have <inv T>
 using inv local.step rtranclp-dpll-bj-inv tranclp-into-rtranclp by fastforce
 ultimately have «(U,T)\in?B` using ST N-A M-A inv by auto
 then show ?case using IH by (rule trancl-into-trancl2)
 qed
 qed
lemma wf-tranclp-dpll-bj:
assumes fin: <finite A〉
shows <wf {(T,S).dpll-bj++ ST
^atms-of-mm (clauses NOT S)\subseteqatms-of-ms A ^atm-of'lits-of-l (trail S)\subseteqatms-of-ms A
\wedge no-dup (trail S)^inv S}>
using wf-trancl[OF wf-dpll-bj[OF fin]] rtranclp-dpll-bj-inv-incl-dpll-bj-inv-trancl
by (rule wf-subset)
lemma dpll-bj-sat-ext-iff:
<dpll-bj ST\Longrightarrow inv S\LongrightarrowI\modelssextm clauses NOT S }S\longleftrightarrowI\models\mp@subsup{\operatorname{sextm clauses}}{NOT}{}T
by (simp add: dpll-bj-clauses)
lemma rtranclp-dpll-bj-sat-ext-iff:

```

```

 by (induction rule: rtranclp-induct) (simp-all add: rtranclp-dpll-bj-inv dpll-bj-sat-ext-iff)
 theorem full－dpll－backjump－final－state：

```
fixes \(A::\left\langle^{\prime} v\right.\) clause set and \(S T::\left\langle^{\prime} s t\right\rangle\)
assumes
full：〈full dpll－bj \(S T\rangle\) and
atms－S：〈atms－of－mm \(\left(\right.\) clauses \(\left.\left._{N O T} S\right) \subseteq a t m s-o f-m s A\right\rangle\) and
atms－trail：〈atm－of＇lits－of－l（trail S）\(\subseteq\) atms－of－ms \(A\) ）and
\(n\)－d：＜no－dup（trail \(S\) ）＞and
\(\langle\) finite \(A\) 〉 and
inv：〈inv \(S\) 〉 and
decomp：〈all－decomposition－implies－m（clauses \(\left.{ }_{N O T} S\right)\)（get－all－ann－decomposition（trail S））〉
shows＜unsatisfiable（set－mset（clauses \({ }_{N O T} S\) ）

proof－
have st：\(\left\langle d p l l-b j^{* *} S T\right\rangle\) and \(\langle n o-s t e p ~ d p l l-b j ~ T\rangle\)
using full unfolding full－def by fast＋
moreover have \(\left\langle a t m s\right.\)－of－mm（clauses \(\left.{ }_{N O T} T\right) \subseteq\) atms－of－ms \(\left.A\right\rangle\)
using atms－S inv rtranclp－dpll－bj－atms－of－ms－clauses－inv st by blast
moreover have \(\langle a t m\)－of＇lits－of－l（trail \(T\) ）\(\subseteq a t m s\)－of－ms \(A\) 〉
using atms－S atms－trail inv rtranclp－dpll－bj－atms－in－trail－in－set st by auto
moreover have 〈no－dup（trail T）〉
using \(n\)－d inv rtranclp－dpll－bj－no－dup st by blast
moreover have inv：\(\langle i n v T\rangle\)
using inv rtranclp－dpll－bj－inv st by blast
moreover
have decomp：〈all－decomposition－implies－m（clauses \(\left.{ }_{N O T} T\right)\)（get－all－ann－decomposition（trail \(T\) ））〉 using 〈inv S〉decomp rtranclp－dpll－bj－all－decomposition－implies－inv st by blast
ultimately have＜unsatisfiable（set－mset（clauses \(\left.{ }_{N O T} T\right)\) ）

using 〈finite \(A\) 〉dpll－backjump－final－state by force
then show ？thesis
by（meson 〈inv S〉rtranclp－dpll－bj－sat－iff satisfiable－carac st true－annots－true－cls）
qed
corollary full－dpll－backjump－final－state－from－init－state：
fixes \(A::\langle ' v\) clause set \(\rangle\) and \(S T::\langle ' s t\rangle\)
assumes
full：\(\langle f u l l ~ d p l l-b j S T\rangle\) and
〈trail \(S=[]\) and
\(\left\langle\right.\) clauses \(\left._{N O T} S=N\right\rangle\) and
〈inv \(S\) 〉
shows \(\langle\) unsatisfiable（set－mset \(N) \vee(\) trail \(T \models\) asm \(N \wedge\) satisfiable（set－mset \(N)\) ）〉
using assms full－dpll－backjump－final－state［of \(S T\) 〈set－mset \(N\rangle\) ］by auto
lemma tranclp－dpll－bj－trail－mes－decreasing－prop：
assumes dpll：\(\left\langle d p l l-b j^{++} S T\right\rangle\) and inv：\(\langle i n v S\rangle\) and
\(N\)－A：〈atms－of－mm（clauses \(\left.\left.{ }_{N O T} S\right) \subseteq a t m s-o f-m s A\right\rangle\) and
\(M-A\) ：\(\langle a t m-o f\)＇lits－of－l（trail \(S) \subseteq a t m s-o f-m s A\rangle\) and
n－d：〈no－dup（trail \(S\) ）〉 and
fin－A：〈finite \(A\rangle\)
shows \(\langle(2+\) card（atms－of－ms A））へ（1＋card（atms－of－ms A））
\(-\mu_{C}(1+\) card（atms－of－ms A））\((2+\) card（atms－of－ms A））（trail－weight T）
\(<(2+\operatorname{card}(\) atms－of－ms A））＾（1＋card（atms－of－ms A））
\(-\mu_{C}(1+\) card（atms－of－ms A））\((2+\) card（atms－of－ms A））（trail－weight S）＞
using dpll
proof induction
case base
then show？case
using \(N-A M-A n\)－d dpll－bj－trail－mes－decreasing－prop fin－\(A\) inv by blast next
case \((\) step \(T U)\) note \(s t=t h i s(1)\) and \(d p l l=t h i s(2)\) and \(I H=t h i s(3)\)
have 〈atms－of－mm（clauses \(\left.{ }_{N O T} S\right)=\) atms－of－mm \(\left(\right.\) clauses \(\left.\left._{N O T} T\right)\right\rangle\)
using rtranclp－dpll－bj－atms－of－ms－clauses－inv by（metis dpll－bj－clauses dpll－bj－inv inv st tranclp \(D\) ）
then have \(N\)－\(A^{\prime}:\left\langle a t m s\right.\)－of－mm \(\left(\right.\) clauses \(\left.\left._{N O T} T\right) \subseteq a t m s-o f-m s A\right\rangle\) using \(N-A\) by auto
moreover have \(M\)－\(A^{\prime}\) ：〈atm－of＇lits－of－l（trail \(\left.T\right) \subseteq a t m s\)－of－ms \(\left.A\right\rangle\)
by（meson M－A N－A inv rtranclp－dpll－bj－atms－in－trail－in－set st dpll
tranclp．r－into－trancl tranclp－into－rtranclp tranclp－trans）
moreover have nd：〈no－dup（trail T）〉
by（metis inv n－d rtranclp－dpll－bj－no－dup st tranclp－into－rtranclp）
moreover have \(\langle\) inv \(T\) 〉
by（meson dpll dpll－bj－inv inv rtranclp－dpll－bj－inv st tranclp－into－rtranclp）
ultimately show ？case
using IH dpll－bj－trail－mes－decreasing－prop［of T U A］dpll fin－A by linarith
qed
end－End of the locale dpll－with－backjumping．

\section*{2．2．4 CDCL}

In this section we will now define the conflict driven clause learning above DPLL：we first introduce the rules learn and forget，and the add these rules to the DPLL calculus．

\section*{Learn and Forget}

Learning adds a new clause where all the literals are already included in the clauses．
```

locale learn-ops $=$
dpll-state trail clauses ${ }_{N O T}$ prepend-trail tl-trail add-cls ${ }_{N O T}$ remove-cls ${ }_{\text {NOT }}$
for
trail $::$ 〈'st \Rightarrow ('v, unit) ann-lits> and
clauses $_{N O T}::$ 〈'st \Rightarrow 'v clauses \rangle and
prepend-trail :: 〈('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st〉 and
tl-trail :: 〈'st $\Rightarrow{ }^{\prime}$ st> and
add-cls $s_{N O T}::\langle ' v$ clause \Rightarrow 'st \Rightarrow 'st \rangle and
remove-cls N OT $::\langle$ 'v clause \Rightarrow 'st \Rightarrow 'st $\rangle+$
fixes
learn-conds :: 〈'v clause \Rightarrow 'st \Rightarrow bool \rangle
begin
inductive learn :: 〈'st \Rightarrow 'st \Rightarrow bool \rangle where
learn $_{\text {NOT-rule: }}$ cclauses $_{\text {NOT }} S \models p m C \Longrightarrow$
atms-of $C \subseteq a t m s$-of-mm $\left(\right.$ clauses $\left._{N O T} S\right) \cup$ atm-of ${ }^{\prime}($ lits-of-l $($ trail $S)) \Longrightarrow$
learn-conds $C S \Longrightarrow$
$T \sim a d d-c l s_{\text {NOT }} C S \Longrightarrow$
learn $S T$ >
inductive-cases learn ${ }_{N O T} E$: 〈learn $\left.S T\right\rangle$
lemma learn- μ_{C}-stable:
assumes 〈learn $S T\rangle$ and 〈no-dup (trail S)〉
shows $\left\langle\mu_{C} A B(\right.$ trail-weight $S)=\mu_{C} A B($ trail-weight $\left.T)\right\rangle$
using assms by (auto elim: learn $\boldsymbol{N O T} E$)

```
end
Forget removes an information that can be deduced from the context（e．g．redundant clauses， tautologies）
locale forget－ops \(=\)
\(d^{2 l l-s t a t e ~ t r a i l ~ c l a u s e s ~}{ }_{N O T}\) prepend－trail tl－trail add－cls \({ }_{N O T}\) remove－cls \({ }_{N O T}\)
for
trail ：：«＇st \(\Rightarrow\)（＇v，unit）ann－lits〉 and
clauses \(_{\text {NOT }}::\)＜＇st \(\Rightarrow\)＇v clauses \(\rangle\) and
prepend－trail ：：〈（＇v，unit）ann－lit \(\Rightarrow\)＇st \(\Rightarrow\)＇st and
tl－trail ：：〈＇st \(\Rightarrow\)＇st＞and
\(a d d-c l s_{N O T}::{ }^{\prime} v\) clause \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(>\) and
remove－cls \({ }_{\text {NOT }}::\) ८＇v clause \(\Rightarrow\)＇st \(\Rightarrow\)＇st +

\section*{fixes}
forget－conds ：：〈＇v clause \(\Rightarrow\)＇st \(\Rightarrow\) bool \(\rangle\)
begin
inductive forget \(_{N O T}::\)＜＇st \(\Rightarrow\)＇st \(\Rightarrow\) bool \(\rangle\) where
forget \(_{N O T}\) ：
\(\left\langle\right.\) removeAll－mset \(C\left(\right.\) clauses \(\left._{N O T} S\right) \models p m C \Longrightarrow\)
forget－conds \(C S \Longrightarrow\)
\(C \in \#\) clauses \(_{\text {NOT }} S \Longrightarrow\)
\(T \sim\) remove－cls \(_{\text {NOT }} C S \Longrightarrow\)
forget \(_{\text {NOT }} S T\)＞

lemma forget－\(\mu_{C}\)－stable：
assumes \(\left\langle\right.\) forget \(\left._{N O T} S T\right\rangle\)
shows \(\left\langle\mu_{C} A B(\right.\) trail－weight \(S)=\mu_{C} A B(\) trail－weight \(\left.T)\right\rangle\)
using assms by（auto elim！：forget NOT \(E\) ）
end
locale learn－and－forget \({ }_{N O T}=\)
learn－ops trail clauses \(_{\text {NOT }}\) prepend－trail tl－trail add－cls \({ }_{\text {NOT }}\) remove－cls \(_{\text {NOT }}\) learn－conds +
forget－ops trail clauses \({ }_{N O T}\) prepend－trail tl－trail add－cls \({ }_{N O T}\) remove－cls \({ }_{\text {NOT }}\) forget－conds
for
trail \(::\)＜＇st \(\Rightarrow(' v\), unit \()\) ann－lits＞and
clauses \(_{\text {NOT }}::\) 〈＇st \(\Rightarrow\)＇v clauses \(>\) and
prepend－trail ：：〈（＇v，unit）ann－lit \(\Rightarrow\)＇st \(\Rightarrow\)＇st＞and
tl－trail ：：〈＇st \(\Rightarrow\)＇st＞and
add－cls \({ }_{N O T}::\left\langle^{\prime} v\right.\) clause \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(\rangle\) and
remove－cls \({ }_{N O T}::\left\langle ' v^{\prime}\right.\) clause \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(\rangle\) and
learn－conds forget－conds \(::\)＜＇v clause \(^{\prime} \Rightarrow\)＇st \(\Rightarrow\) bool \(\rangle\)
begin
inductive learn－and－forget \({ }_{N O T}::\) 〈＇st \(\Rightarrow\)＇st \(\Rightarrow\) bool
where
lf－learn：〈learn \(S T \Longrightarrow\) learn－and－forget \(\left._{N O T} S T\right\rangle \mid\)
lf－forget：\(\left\langle\right.\) forget \(_{N O T} S T \Longrightarrow\) learn－and－forget \(\left._{N O T} S T\right\rangle\)
end

\section*{Definition of CDCL}
locale conflict－driven－clause－learning－ops \(=\)
dpll－with－backjumping－ops trail clauses \({ }_{N O T}\) prepend－trail tl－trail add－cls \({ }_{\text {NOT }}\) remove－cls \({ }_{\text {NOT }}\) inv decide－conds backjump－conds propagate－conds +
```

learn-and-forget NOT trail clauses}\mp@subsup{\mp@code{NOT}}{N}{}\mathrm{ prepend-trail tl-trail add-cls}\mp@subsup{N}{NOT}{}remove-cls NOT learn-conds
forget-conds
for
trail :: \'st }=>('v,\mathrm{ unit) ann-lits> and
clauses (OT :: ('st \#> 'v clauses) and
prepend-trail::\('v,unit) ann-lit => 'st => 'st> and
tl-trail :: \'st \#'st> and
add-cls NOT :: <'v clause 在'st => 'st> and
remove-cls NOT :: \'v clause => 'st => 'st\rangle and
inv :: \'st }=>\mathrm{ bool` and decide-conds :: \'st => 'st }=>\mathrm{ bool >and backjump-conds :: \'v clause }=>\mathrm{ 'v clause }=>\mp@subsup{\}{}{\prime}v viteral => 'st => 'st => bool> and propagate-conds :: \('v,unit) ann-lit => 'st => 'st }=>\mathrm{ bool> and learn-conds forget-conds :: \'v clause = 'st }=>\mathrm{ bool> begin inductive cdcl \OT :: \'st # 'st => bool) for S :: 'st where c-dpll-bj: \dpll-bj S S'\Longrightarrowcdc\mp@subsup{l}{NOT}{}S S'`|
c-learn: <learn S S' \Longrightarrowcdcl NOT S S'`|

```

```

lemma cdcl NOT-all-induct[consumes 1, case-names dpll-bj learn forget NOT]:
fixes S T :: \'st>
assumes \langlecdcl \NOT ST\rangle and
dpll: \^T.dpll-bj ST\LongrightarrowPST` and learning: ^\C T. clauses (NOT S }=pmC atms-of C\subseteqatms-of-mm (clauses NOT S)\cup atm-of '(lits-of-l (trail S))\Longrightarrow T~add-cls NOT C S \Longrightarrow PST> and forgetting: <\C T. removeAll-mset C (clauses NOT S) \modelspm C\Longrightarrow C €# \mp@subsup{\mathrm{ clauses }}{NOT}{}S\Longrightarrow T~\mp@subsup{remove-cls}{NOT}{CSS}\Longrightarrow P S T> shows \PS T using assms(1) by (induction rule: cdcl NOт.induct) (auto intro: assms(2, 3, 4) elim!: learn (OT E forget NOT E)+ lemma cdcl l (От-no-dup: assumes <cdcl NOT ST> and <inv S> and <no-dup (trail S)> shows \no-dup (trail T)`
using assms by (induction rule: cdcl NOT-all-induct) (auto intro: dpll-bj-no-dup)
Consistency of the trail lemma cdcl lот-consistent:
assumes
\langlecdcl NOT S T\rangle and
<inv S> and
<no-dup (trail S)>
shows \consistent-interp (lits-of-l (trail T))>
using cdcl NOT-no-dup[OF assms] distinct-consistent-interp by fast

```

The subtle problem here is that tautologies can be removed, meaning that some variable can disappear of the problem. It is also means that some variable of the trail might not be present
in the clauses anymore．
```

lemma cdcl $_{\text {NOT-atms-of-ms-clauses-decreasing: }}$
assumes $\left\langle c d c l_{N O T} S T\right.$ and $\langle i n v S\rangle$
shows $\left\langle\right.$ atms-of-mm $\left(\right.$ clauses $\left._{\text {NOT }} T\right) \subseteq$ atms-of-mm $\left(\right.$ clauses $\left._{N O T} S\right) \cup$ atm-of ' (lits-of-l (trail S))’
using assms by (induction rule: cdcl $_{\text {NOT- }}$-all-induct)
(auto dest!: dpll-bj-atms-of-ms-clauses-inv set-mp simp add: atms-of-ms-def Union-eq)
lemma cdcl $_{\text {NOT-atms-in-trail: }}$
assumes $\left\langle c d c l_{\text {NOT }} S T\right.$)and $\langle i n v S\rangle$
and 〈atm-of ‘ (lits-of-l (trail S)) \subseteq atms-of-mm (clauses ${ }_{\text {NOt }} S$) ’
shows «atm-of ' $($ lits-of-l $($ trail $T)) \subseteq$ atms-of-mm $\left(\right.$ clauses $\left._{N O T} S\right)$)
using assms by (induction rule: cdcl $_{N O T}$-all-induct) (auto simp add: dpll-bj-atms-in-trail)
lemma cdcl $_{\text {NOT-atms-in-trail-in-set: }}$
assumes
$\left\langle c d c l_{N O T} S T\right\rangle$ and $\langle i n v S\rangle$ and
(atms-of-mm $\left(\right.$ clauses $\left.\left._{N O T} S\right) \subseteq A\right\rangle$ and
(atm-of ' $($ lits-of-l $($ trail $S)) \subseteq A$)
shows \langle atm-of ' $($ lits-of-l $($ trail $T)) \subseteq A$ 〉
using assms
by (induction rule: cdcl $_{\text {NOT- }}$-all-induct)
(simp-all add: dpll-bj-atms-in-trail-in-set dpll-bj-atms-of-ms-clauses-inv)
lemma cdcl $_{N O T}$-all-decomposition-implies:
assumes $\left\langle c d c l_{N O T} S T\right\rangle$ and $\langle i n v S\rangle$ and
〈all-decomposition-implies-m (clauses ${ }_{N O T} S$) (get-all-ann-decomposition (trail S))〉
shows
〈all-decomposition-implies-m clauses $\left._{N O T} T\right)$ (get-all-ann-decomposition (trail T)) 〉
using assms (1,2,3)
proof (induction rule: ${\left.c d c l_{N O T}-a l l-i n d u c t\right) ~}_{\text {(}}$
case dpll-bj
then show? ?case
using dpll-bj-all-decomposition-implies-inv by blast
next
case learn
then show? ?ase by (auto simp add: all-decomposition-implies-def)
next
case $\left(\right.$ forget $\left._{\text {NOT }} C T\right)$ note cls-C $=$ this(1) and $C=$ this(2) and $T=$ this(3) and inv $=$ this(4)
and
decomp $=$ this (5)
show ?case
unfolding all-decomposition-implies-def Ball-def
proof (intro allI, clarify)
fix $a b$
assume $\langle(a, b) \in$ set (get-all-ann-decomposition (trail $T))\rangle$
then have «unmark-l $a \cup$ set-mset (clauses $\left.{ }_{N O T} S\right) \models p s$ unmark-l b \rangle
using decomp T by (auto simp add: all-decomposition-implies-def)
moreover
have $a 1:\left\langle C \in\right.$ set-mset $\left(\right.$ clauses $_{N O T} S$)
using C by blast
have $\left\langle\right.$ clauses $_{\text {NOt }} T=$ clauses $_{\text {NOT }}\left(\right.$ remove-cls $_{N O T} C S$) 〉
using T state-eq ${ }_{\text {NOT-clauses }}$ by blast
then have $\left\langle\right.$ set-mset $\left(\right.$ clauses $\left._{N O T} T\right) \models$ ps set-mset $\left(\right.$ clauses $\left._{N O T} S\right)$),
using a1 by (metis (no-types) clauses-remove-cls ${ }_{N O T}$ cls-C insert-Diff order-refl
set-mset-minus-replicate-mset(1) true-clss-clss-def true-clss-clss-insert)

```
```

 ultimately show <unmark-l a \cup set-mset (clauses NOT T)
    ```
        \(\models p s\) unmark-l b>
        using true-clss-clss-generalise-true-clss-clss by blast
    qed
qed

\section*{Extension of models lemma \(c d c l_{N O T-b j-s a t-e x t-i f f: ~}^{\text {m }}\)}

\section*{assumes \(\left\langle c d c l_{N O T} S T\right\rangle\) and \(\langle i n v S\rangle\)}
shows \(\left\langle I \models\right.\) sextm clauses \({ }_{N O T} S \longleftrightarrow I \models{\left.\text { sextm } \text { clauses }_{N O T} T\right\rangle}^{T}\)
using assms
proof（induction rule：cdcl \({ }_{\text {NOT－all－induct）}}\)
case dpll－bj
then show？case by（simp add：dpll－bj－clauses）
next
```

 case (learn C T) note T=this(3)
    ```
\｛ fix \(J\)
assume
\(\left\langle I \models{\left.\text { sextm } \text { clauses }_{N O T} S\right\rangle \text { and }}\right.\)
\(\langle I \subseteq J\rangle\) and
tot：〈total－over－m J（set－mset（add－mset C \(\left(\right.\) clauses \(\left.\left.\left._{N O T} S\right)\right)\right)^{\text {and }}\)
cons：〈consistent－interp J〉
then have \(\left\langle J \models s m\right.\) clauses \(\left._{N O T} S\right\rangle\) unfolding true－clss－ext－def by auto

\section*{moreover}
with \(\left\langle\right.\) clauses \(\left._{\text {NOT }} S \models p m C\right\rangle\) have \(\langle J \models C\rangle\)
using tot cons unfolding true－clss－cls－def by auto
ultimately have \(\left\langle J \models s m\{\# C \#\}+\right.\) clauses \(\left._{N O T} S\right\rangle\) by auto
\}
then have \(H:\left\langle I \models \operatorname{sextm}\left(\right.\right.\) clauses \(\left._{N O T} S\right) \Longrightarrow I \models\) sext insert \(C\left(\right.\) set－mset \(\left(\right.\) clauses \(\left.\left.\left._{N O T} S\right)\right)\right\rangle\) unfolding true－clss－ext－def by auto
show ？case
apply standard
using \(T\) apply（auto simp add：H）［］
using \(T\) apply simp
by（metis Diff－insert－absorb insert－subset subsetI subset－antisym
true－clss－ext－decrease－right－remove－r）
next
case forget \(_{N O T} C T\) ）note cls－\(C=\) this（1）and \(T=\) this（3）
\｛ fix \(J\)

\section*{assume}
\(\left\langle I \models\right.\) sext set－mset \(\left(\right.\) clauses \(\left.\left._{N O T} S\right)-\{C\}\right\rangle\) and
\(\langle I \subseteq J\rangle\) and
tot：〈total－over－m J（set－mset（clauses \(\left.{ }_{N O T} S\right)\) ）＞and
cons：〈consistent－interp J〉
then have \(\left\langle J \models s\right.\) set－mset \(\left(\right.\) clauses \(\left.\left._{N O T} S\right)-\{C\}\right\rangle\)
unfolding true－clss－ext－def by（meson Diff－subset total－over－m－subset）
moreover
with cls－C have \(\langle J \models C\rangle\)
using tot cons unfolding true－clss－cls－def
by（metis Un－commute forget \({ }_{N O}\) ．hyps（2）insert－Diff insert－is－Un order－refl set－mset－minus－replicate－mset（1））
ultimately have \(\left\langle J \models s m\right.\)（clauses \({ }_{N O T} S\) ）＞by（metis insert－Diff－single true－clss－insert）
\}
then have \(H:\left\langle I \models\right.\) sext set－mset \(\left(\right.\) clauses \(\left._{N O T} S\right)-\{C\} \Longrightarrow I \models \operatorname{sextm}\left(\right.\) clauses \(\left.\left._{N O T} S\right)\right\rangle\)
unfolding true－clss－ext－def by blast
show ？case using \(T\) by（auto simp：true－clss－ext－decrease－right－remove－r \(H\) ） qed
end－End of the locale conflict－driven－clause－learning－ops．

\section*{CDCL with invariant}
locale conflict－driven－clause－learning \(=\)
conflict－driven－clause－learning－ops +
assumes \(c d c l_{N O T-i n v:}^{\langle }\left\langle\backslash T . c d c l_{N O T} S T \Longrightarrow \operatorname{inv} S \Longrightarrow i n v T\right\rangle\)
begin
sublocale dpll－with－backjumping
apply unfold－locales
using \(c d c l_{N O T} . \operatorname{simps} c d c l_{N O T-i n v}\) by auto
lemma rtranclp－cdcl \({ }_{N O T-i n v: ~}\)
\(\left\langle c d c l_{\text {OTT }^{* *}} S T \Longrightarrow \operatorname{inv} S \Longrightarrow i n v T\right\rangle\)
by（induction rule：rtranclp－induct）（auto simp add：cdcl \({ }_{N O T}-i n v\) ）
lemma rtranclp－cdcl \({ }_{\text {NOT }}-\) no－dup：
assumes \(\left\langle c d c l_{N O T}{ }^{* *} S T\right\rangle\) and \(\langle i n v S\rangle\)
and 〈no－dup（trail S）〉
shows 〈no－dup（trail T）〉

lemma rtranclp－cdcl \({ }_{\text {NOT }}\)－trail－clauses－bound：
assumes
\(c d c l:\left\langle c d c l_{N O T}{ }^{* *} S T\right\rangle\) and
inv：〈inv \(S\rangle\) and
atms－clauses－S：\(\left\langle\right.\) atms－of－mm \(\left(\right.\) clauses \(\left.\left._{N O T} S\right) \subseteq A\right\rangle\) and
atms－trail－S：\(\langle\) atm－of＇（lits－of－l（trail \(S)\) ）\(\subseteq A\) 〉
shows＜atm－of＇（lits－of－l（trail \(T)) \subseteq A \wedge a t m s-o f-m m\left(\right.\) clauses \(\left._{N O T} T\right) \subseteq A\) 〉
using \(c d c l\)
proof（induction rule：rtranclp－induct）
case base
then show ？case using atms－clauses－S atms－trail－S by simp
next
case \((\) step \(T U)\) note \(s t=t h i s(1)\) and \(c d c l_{N O T}=t h i s(2)\) and \(I H=t h i s(3)\)
have \(\langle i n v ~ T\rangle\) using inv st rtranclp－cdcl \({ }_{N O T}-i n v\) by blast
have \(\left\langle\right.\) atms－of－mm \(\left(\right.\) clauses \(\left._{N O T} U\right) \subseteq A\) 〉
using \(c d c l_{N O T}\)－atms－of－ms－clauses－decreasing［OF \(\left.c d c l_{N O T}\right] I H\langle\) inv \(T\rangle\) by fast
moreover
have 〈atm－of＇（lits－of－l（trail \(U)) \subseteq A\) 〉
using cdcl \(_{\text {NOT－atms－in－trail－in－set }}\left[O F \quad \operatorname{cdcl}_{\text {NOT }}\right.\) ，of \(\left.A\right]\) by（meson atms－trail－S atms－clauses－S IH 〈inv T〉cdcl \({ }_{\text {NOT }}\) ）
ultimately show ？case by fast
qed
lemma rtranclp－cdcl \({ }_{N O T}\)－all－decomposition－implies：
assumes \(\left\langle c d c l_{N O T}{ }^{* *} S T\right\rangle\) and \(\langle\) inv \(S\rangle\) and \(\langle\) no－dup（trail \(S\) ）〉 and
〈all－decomposition－implies－m（clauses \(\left.{ }_{N O T} S\right)\)（get－all－ann－decomposition（trail S））〉
shows
〈all－decomposition－implies－m（clauses \(\left.{ }_{N O T} T\right)\)（get－all－ann－decomposition（trail T））〉
using assms by（induction）
（auto intro：rtranclp－cdcl \({ }_{\text {NOT－inv }} c d c l_{N O T}\)－all－decomposition－implies rtranclp－cdcl \(l_{\text {NOT－no－dup }}\) ）
lemma rtranclp－cdcl \({ }_{N O T}\)－bj－sat－ext－iff：
assumes \(\left\langle c d c l_{N O T}{ }^{* *} S T\right.\) and \(\langle i n v S\rangle\)
shows \(\left\langle I \models\right.\) sextm clauses \({ }_{N O T} S \longleftrightarrow I \models\) sextm clauses \(\left._{N O T} T\right\rangle\)
using assms apply（induction rule：rtranclp－induct）
using \(c d c l_{N O T}\)－bj－sat－ext－iff by（auto intro：rtranclp－cdcl \({ }_{\text {NOT－}}\)－inv rtranclp－cdcl \(l_{\text {NOT－no－dup }}\) ）
definition \(c d c l_{N O T}\)－NOT－all－inv where
\(\left\langle c d c l_{N O T}\right.\)－NOT－all－inv \(A S \longleftrightarrow\)（finite \(A \wedge\) inv \(S \wedge\) atms－of－mm（clauses \(\left.{ }_{N O T} S\right) \subseteq\) atms－of－ms \(A\)
\(\wedge\) atm－of＇lits－of－l \((\) trail \(S) \subseteq\) atms－of－ms \(A \wedge\) no－dup \((\) trail \(S)\) ）＞
lemma \(c d c l_{N O T-N O T-a l l-i n v: ~}^{\text {N }}\)
assumes \(\left\langle c d c l_{N O T}{ }^{* *} S T\right\rangle\) and \(\left\langle c d c l_{N O T}-N O T\right.\)－all－inv \(\left.A S\right\rangle\)
shows \(\left\langle c d c l_{\text {NOT－NOT－all－inv }} A T\right\rangle\)
using assms unfolding \(\operatorname{cdcl}_{N O T}-N O T\)－all－inv－def
by（simp add：rtranclp－cdcl \({ }_{N O T}\)－inv rtranclp－cdcl \({ }_{N O T}\)－no－dup rtranclp－cdcl \({ }_{N O T}\)－trail－clauses－bound）
abbreviation learn－or－forget where
〈learn－or－forget \(S T \equiv\) learn \(S T \vee\) forget \(\left._{N O T} S T\right\rangle\)
lemma rtranclp－learn－or－forget－cdcl \({ }_{N O T}\) ：
〈learn－or－forget \({ }^{* *} S T \Longrightarrow\) cdcl \(_{\text {NOT }}{ }^{* *} S T\) 〉
using rtranclp－mono［of learn－or－forget \(\left.c d c l_{N O T}\right]\) by（blast intro：\(c d c l_{N O T} \cdot c\)－learn \(c d c l_{N O T} \cdot c\)－forget \({ }_{N O T}\) ）
lemma learn－or－forget－dpll－\(\mu_{C}\) ：
assumes
l－f：〈learn－or－forget \(\left.{ }^{* *} S T\right\rangle\) and
dpll：〈dpll－bj \(T U\) and
inv：\(\left\langle c d c l_{\text {NOT－NOT－all－inv }} A S\right\rangle\)
shows \(\langle(2+\) card（atms－of－ms A））＾（1＋card（atms－of－ms A））
\(-\mu_{C}(1+\) card（atms－of－ms A））（2＋card（atms－of－ms A））（trail－weight U）
\(<\left(2+\operatorname{card}(\text { atms－of－ms A）})^{\wedge}(1+c a r d(a t m s-o f-m s A))\right.\)
\(-\mu_{C}(1+\operatorname{card}(\) atms－of－ms \(A))(2+\) card \((\) atms－of－ms \(A))(\) trail－weight \(\left.S)\right\rangle\)
（is \(\langle ? \mu U<? \mu S\) 〉）
proof－
have \(\langle ? \mu S=? \mu T\rangle\)
using \(l\)－\(f\)
proof（induction）
case base
then show？case by simp
next
case（step T U）
moreover then have＜no－dup（trail T）＞
using rtranclp－cdcl \({ }_{\text {NOT－}}\)－no－dup \([\) of \(S T] \operatorname{cdcl}_{\text {NOT－}}\)－NOT－all－inv－def inv
rtranclp－learn－or－forget－cdcl \(l_{N O T}\) by auto
ultimately show ？case
using forget－\(\mu_{C}\)－stable learn－\(\mu_{C}\)－stable inv unfolding \(\operatorname{cdcl}_{N O T}\)－NOT－all－inv－def by presburger qed
moreover have \(\left\langle c d c l_{N O T}\right.\)－NOT－all－inv \(\left.A T\right\rangle\)
using rtranclp－learn－or－forget－cdcl \({ }_{N O T} c d c l_{N O T-N O T-a l l-i n v ~ l-f ~ i n v ~ b y ~ b l a s t ~}^{\text {b }}\)
ultimately show ？thesis
using dpll－bj－trail－mes－decreasing－prop［of T U A，OF dpll］finite
unfolding \(\operatorname{cdcl}_{\text {NOT }}-\) NOT－all－inv－def by presburger
qed
lemma infinite－cdcl \({ }_{N O T}\)－exists－learn－and－forget－infinite－chain：
```

assumes
<\i.cdcl NOT
inv: <cdcl NOT-NOT-all-inv A (f 0)>
shows
existsj.\foralli\geqj. learn-or-forget (f i)(f (Suc i))>
using assms
proof (induction<(2+card (atms-of-ms A)) ^ (1+card (atms-of-ms A))
- 每 (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight (f 0))>
arbitrary: f
rule: nat-less-induct-case)
case (Suc n) note IH = this(1) and }\mu=\mathrm{ this(2) and cdcl NOT = this(3) and inv = this(4)
consider
(dpll-end) }\existsj.\foralli\geqj. learn-or-forget (fi) (f (Suc i))>
| (dpll-more) <\neg(\existsj.\foralli\geqj.learn-or-forget (fi)(f (Suc i)))>
by blast
then show ?case
proof cases
case dpll-end
then show ?thesis by auto
next
case dpll-more
then have j: `\existsi.\neg learn (fi)(f(Suc i)) ^ \neg\mp@subsup{\mathrm{ forget }}{NOT}{}(fi)(f(Suc i))\rangle
by blast
obtain i where
i-learn-forget:<\neglearn (fi) (f (Suc i)) ^ \neg\mp@subsup{forget NOT}{N}{\prime}(fi)(f(Suc i))\rangle and
< k<i.learn-or-forget (fk) (f (Suc k))>
proof -

```

```

 using j by auto
    ```

```

 by auto
 let ?I = <{i. i\leqi i ^ ᄀlearn (fi) (f(Suc i)) ^ \negforget NOT (f i) (f (Suc i))}>
 let ?i = <Min ?I
 have <finite ?I>
 by auto
 have <\neg learn (f ?i) (f (Suc ?i)) ^ \neg\mp@subsup{forget NOT (f ?i) (f (Suc ?i))>}{}{\prime})
 using Min-in[OF <finite ?I> <?I # {}>] by auto
 moreover have <\forallk<?i. learn-or-forget (fk) (f (Suc k))>
 using Min.coboundedI[of <{i.i\leqi_ i ^ ᄀlearn (fi) (f(Suc i)) ^\neg forget NOT (f i)
 (f (Suc i))}>, simplified]
    ```

```

 dual-order.trans not-le)
 ultimately show ?thesis using that by blast
 qed
 define g}\mathrm{ where <g=((n.f (n+Suc i))>
 have <dpll-bj (f i)(g 0)>
 using i-learn-forget cdcl NOT cdcl NOT.cases unfolding g-def by auto
 {
 fix }
 assume <j \leqi`
 then have <learn-or-forget** (f 0) (f j)>
 apply (induction j)
 apply simp
 by (metis (no-types, lifting) Suc-leD Suc-le-lessD rtranclp.simps
 \forallk<i.learn (fk) (f(Suc k))\vee forget NOT (fk) (f (Suc k))>)
 }
 then have <learn-or-forget** (f 0) (fi)> by blast
    ```
```

 then have <(2 + card (atms-of-ms A))^ (1 + card (atms-of-ms A))
 - 的 (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight (g 0))
 < (2 + card (atms-of-ms A)) ^(1 + card (atms-of-ms A))
 - 每 (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight (f 0))>
 using learn-or-forget-dpll- -
 unfolding cdcl NOT-NOT-all-inv-def by linarith
 moreover have cdcl NOT-i: <cdcl NOT** (f 0) (g 0)>
 using rtranclp-learn-or-forget-cdcl NOт[of \langlef 0\rangle\langlef i\rangle] <learn-or-forget** (f 0) (f i)\rangle
 cdcl NOT
 moreover have <\i.cdcl NOT (gi) (g(Suc i))>
 using cdcl NOT g-def by auto
 moreover have <cdcl NOT-NOT-all-inv A (g 0)>
 using inv cdcl NOT-i rtranclp-cdcl NOT-trail-clauses-bound g-def cdcl NOT-NOT-all-inv by auto
 ultimately obtain j where j:\langle\i. i\geqj\Longrightarrow learn-or-forget (g i) (g (Suc i))>
 using IH unfolding }\mu[\mathrm{ symmetric] by presburger
 show ?thesis
 proof
 {
 fix }
 assume <k \geqj+ Suc i>
 then have <learn-or-forget (fk) (f (Suc k))>
 using j[of 〈k-Suc i\rangle] unfolding g-def by auto
 }
 then show \langle\forallk\geqj+Suc i. learn-or-forget (fk)(f(Suc k))\rangle
 by auto
 qed
 qed
 next
case 0 note H=this(1) and cdcl NOT = this(2) and inv = this(3)
show ?case
proof (rule ccontr)
assume
neg ?case`
then have j: «\existsi.\neglearn (fi)(f(Suc i))}\wedge\neg\neg\mp@subsup{\mathrm{ forget }}{NOT}{}(fi)(f(\mathrm{ Suc i))>
by blast
obtain i where
\neglearn (fi) (f (Suc i))^ \neg\mp@subsup{forget }{NOT}{}(fi)(f(Suc i))\rangle and
\forallk<i.learn-or-forget (fk) (f (Suc k))>
proof -

```

```

 using j by auto
 then have <{i. i\leqi0 ^ \neglearn (fi)(f(Suc i))\wedge \neg\mp@subsup{\mathrm{ forget }}{NOT}{\prime}(fi)(f(Suci))}\not={}>
 by auto
 let ?I = \{i. i\leqi_ ^\neg learn (fi) (f(Suc i)) ^ \negforget NOT (fi) (f (Suc i))}\rangle
 let ?i = <Min ?I }
 have 〈finite ?I>
 by auto
 have «\neg learn (f ?i) (f (Suc ?i)) ^ \neg\mp@subsup{forget }{NOT}{}(f?i)(f(Suc ?i))\rangle
 using Min-in[OF <finite ?I><?I # {}>] by auto
 moreover have <\forallk<?i. learn-or-forget (fk)(f(Suc k))>
    ```

```

 (f (Suc i))}>, simplified]
    ```

```

 dual-order.trans not-le)
 ultimately show ?thesis using that by blast
 qed
    ```
```

 have <dpll-bj (f i) (f (Suc i))>
    ```

```

 by blast
 {
 fix }
 assume <j \leqi>
 then have <learn-or-forget** (f 0) (f j)>
 apply (induction j)
 apply simp
 by (metis (no-types, lifting) Suc-leD Suc-le-lessD rtranclp.simps
 \forallk<i.learn (fk) (f(Suc k))\vee forget NOT (fk) (f (Suc k))`)
 }
 then have <learn-or-forget** (f 0) (fi)> by blast
 then show False
 using learn-or-forget-dpll- -
 <dpll-bj (fi) (f (Suc i))\rangle unfolding cdcl NOT-NOT-all-inv-def by linarith
 qed
 qed
lemma wf-cdcl NOT-no-learn-and-forget-infinite-chain:
assumes
no-infinite-lf:<\bigwedgefj.\neg(\foralli\geqj. learn-or-forget (f i) (f (Suc i)))>
shows <wf {(T,S).cdcl NOT ST ^ cdcl NOT-NOT-all-inv A S}>
(is <wf {(T,S).cdcl NOT S T ^ ? inv S}`) unfolding wf-iff-no-infinite-down-chain proof (rule ccontr) assume <\neg\neg(\existsf.\foralli.(f(Suc i),fi)\in{(T,S).cdcl NOT ST^?inv S})\rangle then obtain f}\mathrm{ where \forall i.cdcl NOT (fi) (f (Suc i)) ^ ?inv (f i)> by fast then have {\existsj.\foralli\geqj. learn-or-forget (fi) (f (Suc i))> using infinite-cdcl NOT-exists-learn-and-forget-infinite-chain[of f] by meson then show False using no-infinite-lf by blast qed lemma inv-and-tranclp-cdcl-NOt-tranclp-cdcl NOT-and-inv: <cdcl NOT ++ S T ^ cdcl NOT-NOT-all-inv A S \longleftrightarrow(}\mp@subsup{\}{NOT.cdcl NOT S T ^ cdcl NOT}{NO-NOT-all-inv A S)++}ST (is <?A ^?I \longleftrightarrow ?B`)
proof
assume <?A ^ ?I>
then have ?A and ?I by blast+
then show ?B
apply induction
apply (simp add: tranclp.r-into-trancl)
by (subst tranclp.simps) (auto intro: cdcl NOT-NOT-all-inv tranclp-into-rtranclp)
next
assume ?B
then have ?A by induction auto
moreover have ?I using <?B> tranclpD by fastforce
ultimately show \?A ^ ?I by blast
qed
lemma wf-tranclp-cdcl NOT-no-learn-and-forget-infinite-chain:
assumes

```
```

 no-infinite-lf:<\fj. ᄀ(\foralli\geqj. learn-or-forget (f i) (f (Suc i)))>
 shows <wf {(T,S).cdcl NOT ++ S T ^ cdcl NOT-NOT-all-inv A S}>
 using wf-trancl[OF wf-cdcl NOт-no-learn-and-forget-infinite-chain[OF no-infinite-lf]]
 apply (rule wf-subset)
 by (auto simp: trancl-set-tranclp inv-and-tranclp-cdcl-NOT-tranclp-cdcl NOT-and-inv)
 lemma cdcl NOT-final-state:
assumes
n-s: <no-step cdcl NOT S` and inv: <cdcl NOT-NOT-all-inv A S` and
decomp:<all-decomposition-implies-m (clauses }\mp@subsup{N}{NOT}{}S\mathrm{) (get-all-ann-decomposition (trail S))>
shows <unsatisfiable (set-mset (clauses NOT S))
\vee (trail S =asm clauses NOT S ^ satisfiable (set-mset (clauses NOT S)))>
proof -
have n-s': \no-step dpll-bj S` using n-s by (auto simp:cdcl NOT.simps) show ?thesis apply (rule dpll-backjump-final-state[of S A]) using inv decomp n-s' unfolding cdcl NOT-NOT-all-inv-def by auto qed lemma full-cdcl NOT-final-state: assumes full: <full cdcl NOT S T〉 and inv: <cdcl \ NOT-NOT-all-inv A S` and
n-d:〈no-dup (trail S)\rangle and
decomp:<all-decomposition-implies-m (clauses NOT S) (get-all-ann-decomposition (trail S))
shows <unsatisfiable (set-mset (clauses (
\vee (trail T =asm clauses NOT T ^ satisfiable (set-mset (clauses NOT T)))>
proof -
have st: <cdcl NOT** S T\rangle and n-s: \no-step cdcl NOT T\rangle
using full unfolding full-def by blast+
have n-s': <cdcl }\mp@subsup{N}{NOT}{}-NOT-all-inv A T
using cdcl NOT-NOT-all-inv inv st by blast
moreover have <all-decomposition-implies-m (clauses NOT T) (get-all-ann-decomposition (trail T))>
using cdcl NOT-NOT-all-inv-def decomp inv rtranclp-cdcl NOT-all-decomposition-implies st by auto
ultimately show ?thesis
using cdcl NOT-final-state n-s by blast
qed
end - End of the locale conflict-driven-clause-learning.

```

\section*{Termination}

To prove termination we need to restrict learn and forget. Otherwise we could forget and relearn the exact same clause over and over. A first idea is to forbid removing clauses that can be used to backjump. This does not change the rules of the calculus. A second idea is to "merge" backjump and learn: that way, though closer to implementation, needs a change of the rules, since the backjump-rule learns the clause used to backjump.

\section*{Restricting learn and forget}
locale conflict-driven-clause-learning-learning-before-backjump-only-distinct-learnt \(=\) dpll-state trail clauses \({ }_{\text {NOt }}\) prepend-trail tl-trail add-cls \(\mathrm{NOT}^{\text {remove-cls }}\) NOT + conflict-driven-clause-learning trail clauses \({ }_{N O T}\) prepend-trail tl-trail add-cls \({ }_{N O T}\) remove-cls \({ }_{N O T}\)
inv decide－conds backjump－conds propagate－conds
\(\langle\lambda C S\) ．distinct－mset \(C \wedge \neg\) tautology \(C \wedge\) learn－restrictions \(C S \wedge\)
\(\left(\exists F K d F^{\prime} C^{\prime}\right.\) L．trail \(S=F^{\prime} @\) Decided \(K \# F \wedge C=\) add－mset \(L C^{\prime} \wedge F \models\) as CNot \(C^{\prime}\) \(\wedge\) add－mset \(L C^{\prime} \notin \#\) clauses \(\left._{N O T} S\right)\)＞
〈 \(C S . \neg\left(\exists F^{\prime} F K d L\right.\) ．trail \(S=F^{\prime} @\) Decided \(K \# F \wedge F \models\) as CNot（remove1－mset LC）） \(\wedge\) forget－restrictions \(C\) S
for
trail ：：＜＇st \(\Rightarrow\)（＇v，unit）ann－lits＞and
clauses \(_{N O T}::\left\langle ' s t \Rightarrow{ }^{\prime} v\right.\) clauses \(\rangle\) and
prepend－trail ：：〈（＇v，unit）ann－lit \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(>\) and
tl－trail ：：〈＇st \(\Rightarrow\)＇st＞and
add－cls \(s_{N O T}::\langle ' v\) clause \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(\rangle\) and
remove－cls \({ }_{N O T}:: \iota^{\prime} v\) clause \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(\rangle\) and
inv ：：〈＇st \(\Rightarrow\) bool〉 and
decide－conds ：：〈＇st \(\Rightarrow\)＇st \(\Rightarrow\) bool \(\rangle\) and
backjump－conds ：：〈＇v clause \(\Rightarrow\)＇v clause \(\Rightarrow\)＇v literal \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(\Rightarrow\) bool \(>\) and
propagate－conds \(::\langle(' v\), unit \()\) ann－lit \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(\Rightarrow\) bool \(\rangle\) and
learn－restrictions forget－restrictions ：：〈＇v clause \(\Rightarrow\)＇st \(\Rightarrow\) bool
begin

fixes \(S T\) ：：〈＇st＞
assumes \(\left\langle c d c l_{N O T} S T\right\rangle\) and
\(d p l l:\langle\bigwedge T\) ．dpll－bj \(S T \Longrightarrow P S T\rangle\) and
learning：
〈 \(\ C F K F^{\prime} C^{\prime} L T\) ．clauses \({ }_{\text {NOT }} S \models p m C \Longrightarrow\)
atms－of \(C \subseteq\) atms－of－mm \(\left(\right.\) clauses \(\left._{N O T} S\right) \cup\) atm－of＇\((\) lits－of－l \((\) trail \(S)) \Longrightarrow\)
distinct－mset \(C \Longrightarrow\)
\(\neg\) tautology \(C \Longrightarrow\)
learn－restrictions \(C S \Longrightarrow\)
trail \(S=F^{\prime} @\) Decided \(K \# F \Longrightarrow\)
\(C=\) add－mset \(L C^{\prime} \Longrightarrow\)
\(F \models\) as CNot \(C^{\prime} \Longrightarrow\)
add－mset \(L C^{\prime} \notin \#\) clauses \(_{\text {NOT }} S \Longrightarrow\)
\(T \sim a d d-\) cls \(_{N O T} C S \Longrightarrow\)
\(P S T\rangle\) and
forgetting：〈 \(\bigwedge C T\) ．removeAll－mset \(C\left(\right.\) clauses \(\left._{N O T} S\right) \models p m C \Longrightarrow\)
\(C \in \#\) clauses \(_{\text {NOT }} S \Longrightarrow\)
\(\neg\left(\exists F^{\prime} F K\right.\) ．trail \(S=F^{\prime} @\) Decided \(K \# F \wedge F \models\) as \(\left.\operatorname{CNot}(C-\{\# L \#\})\right) \Longrightarrow\) \(T \sim\) remove－cls \({ }_{N O T} C S \Longrightarrow\)
forget－restrictions \(C S \Longrightarrow\)
PST＞
shows \(\langle P S T\rangle\)
using \(\operatorname{assms}(1)\)
apply（induction rule：\(c d c l_{N O T}\) ．induct）
apply（auto dest：assms（2）simp add：learn－ops－axioms）［］
apply（auto elim！：learn－ops．learn．cases［OF learn－ops－axioms］dest：assms（3））［］
apply（auto elim！：forget－ops．forget \({ }_{N O T} . \operatorname{cases}[\) OF forget－ops－axioms \(]\) dest！：assms（4））
done
lemma rtranclp－cdcl \({ }_{N O T-i n v: ~}\)
\(\left\langle c d c l_{N O T}{ }^{* *} S T \Longrightarrow \operatorname{inv} S \Longrightarrow i n v T\right\rangle\)
apply（induction rule：rtranclp－induct）
apply simp
using \(c d c l_{\text {NOT－inv }}\) unfolding conflict－driven－clause－learning－def
conflict－driven－clause－learning－axioms－def by blast
```

lemma learn-always-simple-clauses:
assumes
learn: <learn S T〉 and
n-d:<no-dup (trail S)〉
shows <set-mset (\mp@subsup{clauses}{NOT}{}T-\mp@subsup{\mathrm{ clauses }}{NOT}{}S)
\subseteq \mp@code { s i m p l e - c l s s ~ (a t m s - o f - m m ~ (c l a u s e s ~ N O T ~ S) \cup ~ a t m - o f ~ ' l i t s - o f - l ~ (t r a i l ~ S)) > }
proof
fix C assume C: <C E set-mset (clauses NOT T - clauses NOT S)\rangle
have 〈distinct-mset C\rangle<\negtautology C> using learn C n-d by (elim learn NOT E; auto)+
then have 〈C\in simple-clss (atms-of C)\rangle
using distinct-mset-not-tautology-implies-in-simple-clss by blast
moreover have <atms-of C \subseteqatms-of-mm (clauses NOT S) \cup atm-of'lits-of-l (trail S)
using learn C n-d by (elim learn NOT E) (auto simp: atms-of-ms-def atms-of-def image-Un
true-annots-CNot-all-atms-defined)
moreover have <finite (atms-of-mm (clauses NOT S) \cup atm-of 'lits-of-l (trail S))〉
by auto
ultimately show <C E simple-clss (atms-of-mm (clauses NOT S) \cup atm-of 'lits-of-l (trail S))>
using simple-clss-mono by (metis (no-types) insert-subset mk-disjoint-insert)
qed
definition <conflicting-bj-clss S\equiv
{C+{\#L\#} |CL.C+{\#L\#}\in\# clauses NOT S ^ distinct-mset (C+{\#L\#})
\wedge \negtautology (C+{\#L\#})
\wedge(\exists\mp@subsup{F}{}{\prime}KF. trail S = F'@ Decided K \# F^F\modelsas CNot C)}>
lemma conflicting-bj-clss-remove-cls NOT [simp]:
<conflicting-bj-clss (remove-cls NOT C S) = conflicting-bj-clss S - {C}` unfolding conflicting-bj-clss-def by fastforce lemma conflicting-bj-clss-remove-cls NOT '[simp]: <T ~ remove-cls NOT C S conflicting-bj-clss T = conflicting-bj-clss S - {C}`
unfolding conflicting-bj-clss-def by fastforce
lemma conflicting-bj-clss-add-clsNOT-state-eq:
assumes
T:\langleT~add-cls NOT }\mp@subsup{C}{}{\prime}S\rangle\mathrm{ and
n-d:<no-dup (trail S)>
shows <conflicting-bj-clss T
= conflicting-bj-clss S
\cup(if \existsCL. C'= add-mset L C ^ distinct-mset (add-mset L C) ^ ᄀtautology (add-mset L C)
\wedge(\exists\mp@subsup{F}{}{\prime}KdF. trail S = F'@ Decided K \# F^F\modelsas CNot C)
then {C'} else {})>
proof -
define P where <P = (\lambdaCLT. distinct-mset (add-mset L C) ^\neg tautology (add-mset L C) ^
(\exists\mp@subsup{F}{}{\prime}K F. trail T = F' @ Decided K \# F^F\modelsas CNot C))>
have conf:<\T. conflicting-bj-clss T = {add-mset L C | C L. add-mset L C G\# clauses Not T ^ P
CLT}>
unfolding conflicting-bj-clss-def P-def by auto
have P-S-T: 〈\bigwedgeCL. P CLT=PCLS\rangle
using T n-d unfolding P-def by auto
have P: <conflicting-bj-clss T = {add-mset L C | L. add-mset L C \in\# clauses Not S^PCLT} U
{add-mset L C |C L. add-mset L C \in\#{\#C'\#}^PCL T}>
using T n-d unfolding conf by auto
moreover have <{add-mset LC | L L. add-mset LC C\# clauses }\mp@subsup{N}{OT}{}S\wedgePCLT}= conflicting-bj-clss
S>

```
using \(T n\)－d unfolding \(P\)－def conflicting－bj－clss－def by auto
moreover have \(<\left\{a d d-m s e t L C \mid C L\right.\) ．add－mset \(\left.L C \in \#\left\{\# C^{\prime} \#\right\} \wedge P C L T\right\}=\) （if \(\exists C L . C^{\prime}=a d d\)－mset \(L C \wedge P C L S\) then \(\left\{C^{\prime}\right\}\) else \(\}\) ））
using \(n\)－d \(T\) by（force simp：\(P-S-T\) ）
ultimately show ？thesis unfolding \(P\)－def by presburger
qed
lemma conflicting－bj－clss－add－cls \({ }_{N O T}\) ：
〈no－dup（trail \(S\) ）\(\Longrightarrow\)
conflicting－bj－clss（add－cls \({ }_{\text {NOT }} C^{\prime} S\) ）
\(=\) conflicting－bj－clss \(S\)
\(\cup\left(\right.\) if \(\exists C L . C^{\prime}=C+\{\# L \#\} \wedge\) distinct－mset \((C+\{\# L \#\}) \wedge \neg\) tautology \((C+\{\# L \#\})\)
\(\wedge\left(\exists F^{\prime} K d F\right.\) ．trail \(S=F^{\prime} @\) Decided \(K \# F \wedge F \models\) as CNot \(\left.C\right)\)
then \(\left\{C^{\prime}\right\}\) else \(\}\) ）＞
using conflicting－bj－clss－add－cls \({ }_{N O T}\)－state－eq by auto
lemma conflicting－bj－clss－incl－clauses：
\(\left\langle\right.\) conflicting－bj－clss \(S \subseteq\) set－mset \(\left(\right.\) clauses \(\left.\left._{N O T} S\right)\right\rangle\)
unfolding conflicting－bj－clss－def by auto
lemma finite－conflicting－bj－clss［simp］：
\(\langle\) finite（conflicting－bj－clss \(S\) ）〉
using conflicting－bj－clss－incl－clauses［of \(S\) ］rev－finite－subset by blast
lemma learn－conflicting－increasing：
\(\langle\) no－dup \((\) trail \(S) \Longrightarrow\) learn \(S T \Longrightarrow\) conflicting－bj－clss \(S \subseteq\) conflicting－bj－clss \(T\rangle\)
apply（elim learn \(n_{N O T} E\) ）
by（subst conflicting－bj－clss－add－cls \({ }_{N O T}\)－state－eq \([o f T]\) ）auto
abbreviation＜conflicting－bj－clss－yet b \(S \equiv\)
\(3^{\wedge} b-c a r d\)（conflicting－bj－clss \(S\) ）＞
abbreviation \(\mu_{L}::\langle n a t \Rightarrow\)＇st \(\Rightarrow\) nat \(\times\) nat \(\rangle\) where
\(\left\langle\mu_{L} b S \equiv\left(\right.\right.\) conflicting－bj－clss－yet b \(S\) ，card \(\left(\right.\) set－mset \(\left(\right.\) clauses \(\left.\left._{N O T} S\right)\right)\) ）\(\rangle\)
lemma do－not－forget－before－backtrack－rule－clause－learned－clause－untouched：
assumes \(\left\langle\right.\) forget \(\left._{N O T} S T\right\rangle\)
shows 〈conflicting－bj－clss \(S=\) conflicting－bj－clss \(T\rangle\)
using assms apply（ elim \(^{\text {forget }_{N O T}} E\) ）
apply rule
apply（subst conflicting－bj－clss－remove－cls \({ }_{\text {NOT }}{ }^{\prime}[\) of \(T]\) ，simp）
apply（fastforce simp：conflicting－bj－clss－def remove1－mset－add－mset－If split：if－splits）
apply fastforce
done
lemma forget－\(\mu_{L}\)－decrease：
assumes forget \(_{N O T}\) ：\(\left\langle\right.\) forget \(\left._{N O T} S T\right\rangle\)
shows \(\left\langle\left(\mu_{L} b T, \mu_{L} b S\right) \in\right.\) less－than \(<*\) lex \(*>\) less－than \(\rangle\)
proof－
have \(\left\langle\right.\) card \(\left(\right.\) set－mset \(\left(\right.\) clauses \(\left.\left.\left._{N O T} S\right)\right)>0\right\rangle\)
using forget \({ }_{N O T}\) by（ elim forget \(_{N O T} E\) ）（auto simp：size－mset－removeAll－mset－le－iff card－gt－0－iff）
then have＜card（set－mset \(\left(\right.\) clauses \(\left.\left._{N O T} T\right)\right)<\operatorname{card}\left(\right.\) set－mset \(\left(\right.\) clauses \(\left._{\text {NOT }} S\right)\) ）〉
using forget \({ }_{N O T}\) by（elim forget \({ }_{N O T} E\) ）（auto simp：size－mset－removeAll－mset－le－iff）
then show ？thesis
unfolding do－not－forget－before－backtrack－rule－clause－learned－clause－untouched［OF forget \({ }_{N O T}\) ］
by auto
lemma set－condition－or－split：
\(\langle\{a .(a=b \vee Q a) \wedge S a\}=(\) if \(S b\) then \(\{b\}\) else \(\{ \}) \cup\{a . Q a \wedge S a\}\rangle\)
by auto
lemma set－insert－neq：
\(\langle A \neq\) insert \(a \quad A \longleftrightarrow a \notin A\rangle\)
by auto
lemma learn－\(\mu_{L}\)－decrease：
assumes learnST：〈learn \(S T\rangle\) and \(n\)－d：〈no－dup（trail \(S\) ）〉 and
A：〈atms－of－mm（clauses \(\left.{ }_{N O T} S\right) \cup\) atm－of＇lits－of－l \((\) trail \(\left.S) \subseteq A\right\rangle\) and
fin－A：\(\langle\) finite \(A\rangle\)
shows \(«\left(\mu_{L}(\operatorname{card} A) T, \mu_{L}(\right.\) card \(\left.A) S\right) \in\) less－than \(<*\) lex \(*>\) less－than \(\rangle\)
proof－
have［simp］：〈（atms－of－mm（clauses \(\left.{ }_{N O T} T\right) \cup\) atm－of＇lits－of－l（trail T））
\(=\left(\right.\) atms－of－mm \(\left(\right.\) clauses \(\left._{N O T} S\right) \cup\) atm－of＇lits－of－l（trail S））＞
using learnST \(n-d\) by（ elim learn \(_{N O T} E\) ）auto
then have \(\left\langle\right.\) card（atms－of－mm \(\left(\right.\) clauses \(\left._{N O T} T\right) \cup\) atm－of＇lits－of－l（trail T）） \(=\operatorname{card}\left(\right.\) atms－of－mm \(\left(\right.\) clauses \(\left._{N O T} S\right) \cup\) atm－of＇lits－of－l（trail S））＞
by（auto intro！：card－mono）
then have 3：＜（3：：nat）＾card（atms－of－mm（clauses \(\left.{ }_{N O T} T\right) \cup\) atm－of＇lits－of－l（trail T）） \(=3{ }^{\wedge}\) card \(\left(\right.\) atms－of－mm \(\left(\right.\) clauses \(\left._{\text {NOT }} S\right) \cup\) atm－of＇lits－of－l（trail \(\left.S\right)\) ）＞ by（auto intro：power－mono）
moreover have 〈conflicting－bj－clss \(S \subseteq\) conflicting－bj－clss \(T\rangle\)
using learnST \(n\)－\(d\) by（simp add：learn－conflicting－increasing）
moreover have 〈conflicting－bj－clss \(S \neq\) conflicting－bj－clss \(T\rangle\)
using learnST
proof（elim learn \({ }_{N O T} E\) ，goal－cases）
case（1 C）note clss－S＝this（1）and atms－C＝this（2）and inv＝this（3）and \(T=\) this（4）
then obtain \(F K F^{\prime} C^{\prime} L\) where
\(t r-S:\left\langle\right.\) trail \(S=F^{\prime} @\) Decided \(\left.K \# F\right\rangle\) and
\(C:\left\langle C=\right.\) add－mset \(\left.L C^{\prime}\right\rangle\) and
\(F:\left\langle F \models\right.\) as CNot \(\left.C^{\prime}\right\rangle\) and
\(C\)－S：\(\left\langle a d d-m s e t L C^{\prime} \notin \#\right.\) clauses \(\left._{N O T} S\right\rangle\)
by blast
moreover have \(\langle\) distinct－mset \(C\rangle\langle\neg\) tautology \(C\rangle\) using inv by blast＋
ultimately have \(\left\langle a d d\right.\)－mset \(L C^{\prime} \in\) conflicting－bj－clss \(\left.T\right\rangle\)
using \(T n\)－\(d\) unfolding conflicting－bj－clss－def by fastforce
moreover have \(\left\langle a d d\right.\)－mset \(L C^{\prime} \notin\) conflicting－bj－clss \(\left.S\right\rangle\)
using \(C\)－S unfolding conflicting－bj－clss－def by auto
ultimately show ？case by blast
qed
moreover have fin－T：〈finite（conflicting－bj－clss T）〉
using learnST by induction（auto simp add：conflicting－bj－clss－add－cls \({ }_{N O T}\) ）
ultimately have＜card（conflicting－bj－clss \(T) \geq\) card（conflicting－bj－clss S）〉
using card－mono by blast
moreover
have fin＇：〈finite（atms－of－mm（clauses \(\left.{ }_{N O T} T\right) \cup\) atm－of＇lits－of－l（trail T））〉
by auto
have 1：\atms－of－ms（conflicting－bj－clss \(T) \subseteq a t m s-o f-m m\left(\right.\) clauses \(\left._{N O T} T\right)\) ）
unfolding conflicting－bj－clss－def atms－of－ms－def by auto
have 2：〈 \(\backslash x . x \in\) conflicting－bj－clss \(T \Longrightarrow \neg\) tautology \(x \wedge\) distinct－mset \(x\rangle\)
unfolding conflicting－bj－clss－def by auto
have \(T\) ：〈conflicting－bj－clss \(T\)
\(\subseteq\) simple－clss（atms－of－mm（clauses \(\left.{ }_{N O T} T\right) \cup\) atm－of＇lits－of－l（trail T））＞
by standard（meson 12 fin＇\(^{\prime}\) 〈finite（conflicting－bj－clss T）〉 simple－clss－mono distinct－mset－set－def simplified－in－simple－clss subsetCE sup．coboundedI1）
moreover
then have \＃：«3＾card（atms－of－mm（clauses \(\left.{ }_{N O T} T\right) \cup\) atm－of＇lits－of－l（trail T）） \(\geq\) card（conflicting－bj－clss \(T\) ）＞ by（meson Nat．le－trans simple－clss－card simple－clss－finite card－mono fin＇）
have \(\left\langle\right.\) atms－of－mm \(\left(\right.\) clauses \(\left._{N O T} T\right) \cup\) atm－of＇lits－of－l \((\) trail \(T) \subseteq A\) 〉 using learn \({ }_{N O T} E[\) OF learnST］A by simp
then have \(\left\langle 3^{\wedge}\right.\)（card \(\left.A\right) \geq\) card（conflicting－bj－clss \(\left.\left.T\right)\right\rangle\)
using \＃fin－\(A\) by（meson simple－clss－card simple－clss－finite simple－clss－mono calculation（2）card－mono dual－order．trans）
ultimately show ？thesis
using psubset－card－mono［OF fin－T］
unfolding less－than－iff lex－prod－def by clarify
（meson〈conflicting－bj－clss \(S \neq\) conflicting－bj－clss \(T\) 〉
\(\langle\) conflicting－bj－clss \(S \subseteq\) conflicting－bj－clss \(T\rangle\)
diff－less－mono2 le－less－trans not－le psubsetI）
qed
We have to assume the following：
－inv \(S\) ：the invariant holds in the inital state．
－\(A\) is a（finite finite \(A\) ）superset of the literals in the trail atm－of＇lits－of－l（trail \(S\) ）\(\subseteq\) atms－of－ms \(A\) and in the clauses atms－of－mm（clauses \(\left.{ }_{N O T} S\right) \subseteq a t m s\)－of－ms \(A\) ．This can the the set of all the literals in the starting set of clauses．
－no－dup（trail \(S\) ）：no duplicate in the trail．This is invariant along the path．

\section*{definition \(\mu_{C D C L}\) where}
```

< (\mp@code{CCL A T \equiv ((2+card (atms-of-ms A)) ^ (1+card (atms-of-ms A))}
- \mp@subsup{\mu}{C}{}(1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T),
conflicting-bj-clss-yet (card (atms-of-ms A)) T, card (set-mset (clauses NOT T)))>
lemma cdcl NOT-decreasing-measure:
assumes
<cdcl NOT S T\rangle and
inv: <inv S> and
atm-clss: <atms-of-mm (clauses }\mp@subsup{N}{NOT}{}S)\subseteqatms-of-ms A> and
atm-lits:<atm-of 'lits-of-l (trail S)\subseteqatms-of-ms A> and
n-d:\langleno-dup (trail S)\rangle and
fin-A: <finite A>
shows }<(\mp@subsup{\mu}{CDCL}{}AT,\mp@subsup{\mu}{CDCL}{}AS
|less-than <*lex*> (less-than <*lex*> less-than)>
using assms(1)
proof induction
case (c-dpll-bj T)
from dpll-bj-trail-mes-decreasing-prop[OF this(1) inv atm-clss atm-lits n-d fin-A]
show ?case unfolding }\mp@subsup{\mu}{CDCL}{
by (meson in-lex-prod less-than-iff)
next
case (c-learn T) note learn = this(1)
then have S: <trail S= trail T>

```
```

 using inv atm-clss atm-lits n-d fin-A
 by (elim learn}\mp@subsup{\mp@code{NOT}}{}{E}\mathrm{) auto
 show ?case
using learn- }\mp@subsup{\mu}{L}{}\mathrm{ -decrease[OF learn n-d, of <atms-of-ms A〉] atm-clss atm-lits fin-A n-d
unfolding S \mu}\mp@subsup{\mu}{CDCL}{C-def by auto
next
case (c-forget }\mp@subsup{\mp@code{NOT}}{}{T
have <trail S = trail T> using forget NOT by induction auto
then show ?case
using forget-}\mp@subsup{\mu}{L}{}\mathrm{ -decrease[OF forget NOT
qed
lemma wf-cdcl NOT-restricted-learning:
assumes \finite A〉
shows <wf {(T,S).
(atms-of-mm (clauses NOT S)\subseteqatms-of-ms A ^ atm-of 'lits-of-l (trail S)\subseteqatms-of-ms A
no-dup (trail S)
^invS)
^cdcl NOT S T }>
by (rule wf-wf-if-measure'[of <less-than <*lex*> (less-than <*lex*> less-than)\])

 (auto intro:cdcl NOT-decreasing-measure[OF - - - assms])
    ```
definition \(\mu_{C}{ }^{\prime}:: \iota^{\prime} v\) clause set \(\Rightarrow\) 'st \(\Rightarrow\) nat \(\rangle\) where
\(\left\langle\mu_{C}{ }^{\prime} A T \equiv \mu_{C}(1+\right.\) card \((\) atms-of-ms \(A))(2+\) card \((\) atms-of-ms \(A))(\) trail-weight \(\left.T)\right\rangle\)
definition \(\mu_{C D C L}{ }^{\prime}:: \iota^{\prime} v\) clause set \(\Rightarrow\) 'st \(\Rightarrow\) nat \(\rangle\) where
```

<\muCDCL' A T \equiv

```

```

2
+ conflicting-bj-clss-yet (card (atms-of-ms A)) T * 2
+ card (set-mset (clauses NOT T))>

```
lemma \(c d c l_{N O T}\)-decreasing-measure \({ }^{\prime}\) :
    assumes
    \(\left\langle c d c l_{N O T} S T\right\rangle\) and
    inv: 〈inv \(S\) 〉 and
    atms-clss: \(\left\langle a t m s\right.\)-of-mm \(\left(\right.\) clauses \(\left.\left._{N O T} S\right) \subseteq a t m s-o f-m s A\right\rangle\) and
    atms-trail: \(\langle a t m-o f\) ' lits-of-l (trail \(S\) ) \(\subseteq a t m s\)-of-ms \(A\rangle\) and
    \(n\)-d: 〈no-dup (trail \(S\) ) \(\rangle\) and
    fin-A: \(\langle\) finite \(A\rangle\)
shows \(\left\langle\mu_{C D C L}{ }^{\prime} A T<\mu_{C D C L}{ }^{\prime} A S\right\rangle\)
    using assms(1)
proof (induction rule: \(c d c l_{\text {NOT-learn-all-induct) }}\)
    case (dpll-bj T)
    then have \(\langle(2+\) card (atms-of-ms \(A)) \wedge(1+\) card \((\) atms-of-ms \(A))-\mu_{C}{ }^{\prime} A T\)
        \(\left.<(2+\operatorname{card}(a t m s-o f-m s A))^{\wedge}(1+\operatorname{card}(a t m s-o f-m s A))-\mu_{C}{ }^{\prime} A S\right\rangle\)
        using dpll-bj-trail-mes-decreasing-prop fin-A inv n-d atms-clss atms-trail
        unfolding \(\mu_{C}{ }^{\prime}\)-def by blast
    then have \(X X:\left\langle\left((2+\right.\right.\) card \((\) atms-of-ms \(A)) \wedge(1+\) card \((\) atms-of-ms \(\left.A))-\mu_{C}{ }^{\prime} A T\right)+1\)
        \(\leq(2+\operatorname{card}(a t m s-o f-m s A)) \wedge(1+\operatorname{card}(\) atms-of-ms \(A))-\mu_{C}{ }^{\prime} A S\)
        by auto
    from mult-le-mono1[OF this, of \(\langle 1+3\) へ card (atms-of-ms A) \(\rangle\) ]
    have \(\left\langle\left(\left(2+\operatorname{card}(\right.\right.\right.\) atms-of-ms A) \() \wedge(1+\operatorname{card}(\) atms-of-ms \(\left.A))-\mu_{C}^{\prime} A T\right) *\)
        \((1+3\) ^ card \((\) atms-of-ms A) \()+(1+3\) ^card (atms-of-ms A) \()\)
        \(\leq\left((2+\operatorname{card}(a t m s-o f-m s A)) \wedge(1+\operatorname{card}(a t m s-o f-m s A))-\mu_{C}{ }^{\prime} A S\right)\)
        * \(\left(1+3^{\wedge}\right.\) card (atms-of-ms A))
```

 unfolding Nat.add-mult-distrib
 by presburger
 moreover
have cl-T-S: <clauses ${ }_{N O T} T=$ clauses $\left._{\text {NOT }} S\right\rangle$
using dpll-bj.hyps inv dpll-bj-clauses by auto
have <conflicting-bj-clss-yet (card (atms-of-ms A)) S<1+3^card (atms-of-ms A)
by simp
ultimately have $\left\langle\left((2+\operatorname{card}(a t m s-o f-m s A))^{\wedge}(1+\operatorname{card}(a t m s-o f-m s A))-\mu_{C}{ }^{\prime} A T\right)\right.$
$*\left(1+3{ }^{\text {^ card }}(\right.$ atms-of-ms A) $)+$ conflicting-bj-clss-yet (card (atms-of-ms A)) T
$<\left(\left(2+\operatorname{card}(\right.\right.$ atms-of-ms A) $) \wedge\left(1+\operatorname{card}\left(\right.\right.$ atms-of-ms A)) $\left.-\mu_{C}{ }^{\prime} A S\right) *(1+3$ ^card (atms-of-ms
A))
by linarith
then have $\left\langle\left((2+\operatorname{card}(\right.\right.$ atms-of-ms $A)) \wedge(1+\operatorname{card}($ atms-of-ms $\left.A))-\mu_{C}{ }^{\prime} A T\right)$
* $(1+3$ へ card (atms-of-ms A))
+ conflicting-bj-clss-yet (card (atms-of-ms A)) T
$<\left((2+\operatorname{card}(\text { atms-of-ms } A))^{\wedge}(1+\operatorname{card}(\right.$ atms-of-ms $\left.A))-\mu_{C}{ }^{\prime} A S\right)$
* $\left(1+3^{\wedge}\right.$ card (atms-of-ms A))
+ conflicting-bj-clss-yet (card (atms-of-ms A)) S〉
by linarith
then have $\left\langle\left((2+\operatorname{card}(\right.\right.$ atms-of-ms $A)) \wedge(1+\operatorname{card}($ atms-of-ms $\left.A))-\mu_{C}{ }^{\prime} A T\right)$
* $(1+3$ へ card (atms-of-ms A)) * 2
+ conflicting-bj-clss-yet (card (atms-of-ms A)) T*2
$<\left((2+\operatorname{card}(\text { atms-of-ms } A))^{\wedge}(1+\operatorname{card}(\right.$ atms-of-ms $\left.A))-\mu_{C}{ }^{\prime} A S\right)$
* $\left(1+3{ }^{\text {へ }}\right.$ card (atms-of-ms A)) * 2
+ conflicting-bj-clss-yet (card (atms-of-ms A))S*2〉
by linarith
then show ?case unfolding $\mu_{C D C L}{ }^{\prime}$-def cl-T-S by presburger
next
case (learn $\left.C F^{\prime} K F C^{\prime} L T\right)$ note clss- S - $C=$ this(1) and atms- $C=$ this(2) and dist $=$ this(3)
and tauto $=$ this(4) and learn-restr $=$ this(5) and $\operatorname{tr-S}=$ this(6) and $C^{\prime}=$ this(7) and
$F-C=\operatorname{this}(8)$ and C-new $=\operatorname{this}(9)$ and $T=\operatorname{this}(10)$
have <insert C (conflicting-bj-clss $S) \subseteq$ simple-clss $($ atms-of-ms $A)$)
proof -
have $\langle C \in$ simple-clss (atms-of-ms A) \rangle
using C^{\prime}
by (metis (no-types, hide-lams) Un-subset-iff simple-clss-mono
contra-subsetD dist distinct-mset-not-tautology-implies-in-simple-clss
dual-order.trans atms-C atms-clss atms-trail tauto)
moreover have 〈conflicting-bj-clss $S \subseteq$ simple-clss (atms-of-ms A) 〉
proof
fix $x:: \zeta^{\prime} v$ clause \rangle
assume $\langle x \in$ conflicting-bj-clss $S\rangle$
then have $\left\langle x \in \#\right.$ clauses $_{\text {NOT }} S \wedge$ distinct-mset $x^{\wedge} \neg$ tautology $\left.x\right\rangle$
unfolding conflicting-bj-clss-def by blast
then show $\langle x \in$ simple-clss (atms-of-ms A) 〉
by (meson atms-clss atms-of-atms-of-ms-mono atms-of-ms-finite simple-clss-mono
distinct-mset-not-tautology-implies-in-simple-clss fin-A finite-subset
set-rev-mp)
qed
ultimately show ?thesis
by auto
qed
then have 〈card (insert C (conflicting-bj-clss $S)) \leq 3^{\wedge}($ card $($ atms-of-ms $A))$ 〉
by (meson Nat.le-trans atms-of-ms-finite simple-clss-card simple-clss-finite
card-mono fin-A)
moreover have [simp]: 〈card (insert C (conflicting-bj-clss S))

```
\(=\) Suc \((\) card \(((\) conflicting－bj－clss S \()))\) ）
by（metis（no－types）\(C^{\prime} C\)－new card－insert－if conflicting－bj－clss－incl－clauses contra－subsetD finite－conflicting－bj－clss）
moreover have［simp］：〈conflicting－bj－clss \(\left(\right.\) add－cls \(\left.{ }_{N O T} C S\right)=\) conflicting－bj－clss \(\left.S \cup\{C\}\right\rangle\)
using dist tauto \(F-C\) by（subst conflicting－bj－clss－add－cls \({ }_{N O T}[O F n-d]\) ）（force simp：\(C^{\prime}\) tr－S n－d）
ultimately have［simp］：＜conflicting－bj－clss－yet（card（atms－of－ms A））S
\(=\) Suc（conflicting－bj－clss－yet（card（atms－of－ms A））（add－cls \(\left.{ }_{\text {NOT }} C S\right)\) ） by \(\operatorname{simp}\)
have 1：\(\left\langle\right.\) clauses \(_{N O T} T=\) clauses \(\left._{N O T}\left(a d d-c l s_{N O T} C S\right)\right\rangle\) using \(T\) by auto
have 2：＜conflicting－bj－clss－yet（card（atms－of－ms A））T
\(=\) conflicting－bj－clss－yet（card（atms－of－ms A））（add－cls \(\left.\left.{ }_{N O T} C S\right)\right\rangle\)
using \(T\) unfolding conflicting－bj－clss－def by auto
have 3：\(\left\langle\mu_{C}{ }^{\prime} A T=\mu_{C}{ }^{\prime} A\left(a d d-c l s_{N O T} C S\right)\right\rangle\)
using \(T\) unfolding \(\mu_{C}{ }^{\prime}\)－def by auto
have \(\left\langle\left(\left(2+\operatorname{card}(\operatorname{atms}\right.\right.\right.\)－of－ms A）\(\left.) \wedge(1+\operatorname{card}(a t m s-o f-m s A))-\mu_{C}{ }^{\prime} A\left(a d d-c l s_{N O T} C S\right)\right)\)
＊\(\left(1+3^{\wedge}\right.\) card（atms－of－ms A））＊ 2
\(=((2+\operatorname{card}(\) atms－of－ms \(A)) \wedge(1+\) card（atms－of－ms \(\left.A))-\mu_{C}{ }^{\prime} A S\right)\)
＊\(\left(1+3{ }^{\wedge}\right.\) card（atms－of－ms A））＊2＞
using \(n\)－d unfolding \(\mu_{C}{ }^{\prime}\)－def by auto
moreover
have＜conflicting－bj－clss－yet（card（atms－of－ms A））（add－cls \({ }_{N O T} C S\) ）
\[
\text { * } 2
\]
\(+\operatorname{card}\left(\right.\) set－mset \(\left(\right.\) clauses \(_{\text {NOT }}\left(\right.\) add－cls \(\left.\left.\left.{ }_{\text {NOT }} C S\right)\right)\right)\)
\(<\) conflicting－bj－clss－yet（card（atms－of－ms A））S＊2
\(+\operatorname{card}\left(\right.\) set－mset \(\left(\right.\) clauses \(\left._{\text {NOT }} S\right)\) ）\(\rangle\) by（ simp add：\(C^{\prime} C\)－new \(n-d\) ）
ultimately show ？case unfolding \(\mu_{C D C L}{ }^{\prime}\)－def 123 by presburger
next
case \(\left(\right.\) forget \(_{N O T} C T\) ）note \(T=\) this（4）
have \([\) simp \(]:\left\langle\mu_{C}{ }^{\prime} A\left(\right.\right.\) remove－cls \(\left.\left.{ }_{N O T} C S\right)=\mu_{C}{ }^{\prime} A S\right\rangle\)
unfolding \(\mu_{C}{ }^{\prime}\)－def by auto
have \(\left\langle\right.\) forget \(\left._{\text {NOT }} S T\right\rangle\)
apply（rule forget \({ }_{N O T}\) ．intros）using forget \({ }_{N O T}\) by auto
then have 〈conflicting－bj－clss \(T=\) conflicting－bj－clss \(S\rangle\)
using do－not－forget－before－backtrack－rule－clause－learned－clause－untouched by blast
moreover have 〈card（set－mset \(\left(\right.\) clauses \(\left.\left._{\text {NOT }} T\right)\right)<\operatorname{card}\left(\right.\) set－mset \(\left(\right.\) clauses \(\left._{\text {NOT }} S\right)\) ）〉
by（metis T card－Diff1－less clauses－remove－cls \({ }_{N O T}\) finite－set－mset forget \({ }_{N O T} . h y p s(2)\) order－refl set－mset－minus－replicate－mset（1）state－eq \({ }_{N O T}\)－clauses）
ultimately show ？case unfolding \(\mu_{C D C L}\)＇def
using \(T\left\langle\mu_{C}{ }^{\prime} A\left(\right.\right.\) remove－cls \(\left.\left.{ }_{N O T} C S\right)=\mu_{C}{ }^{\prime} A S\right\rangle\) by（metis（no－types）add－le－cancel－left \(\mu_{C}{ }^{\prime}\)－def not－le state－eq \({ }_{N O T}\)－trail）
qed
lemma \(c d c l_{\text {NOT }}\)－clauses－bound：
assumes
\(\left\langle c d c l_{N O T} S T\right\rangle\) and
〈inv \(S\) 〉 and
\(\left\langle a t m s\right.\)－of－mm \(\left(\right.\) clauses \(\left.\left._{N O T} S\right) \subseteq A\right\rangle\) and
\(\langle\) atm－of＇（lits－of－l \((\) trail \(S)) \subseteq A\rangle\) and
\(n\)－d：〈no－dup（trail \(S\) ）〉 and
fin－\(A[\) simp］：\(\langle\) finite \(A\rangle\)
shows \(\left\langle\right.\) set－mset \(\left(\right.\) clauses \(\left._{N O T} T\right) \subseteq\) set－mset \(\left(\right.\) clauses \(\left._{N O T} S\right) \cup\) simple－clss A〉
using assms
proof（induction rule：\(c d c l_{\text {NOT－learn－all－induct）}}\)
case dpll－bj
then show ？case using dpll－bj－clauses by simp
```

next
case forget NOT
then show ?case using clauses-remove-clsNOT unfolding state-eqNOT-def by auto
next
case (learn C F Kd F' C' L) note atms-C = this(2) and dist = this(3) and tauto = this(4) and
T= this(10) and atms-clss-S = this(12) and atms-trail-S = this(13)
have <atms-of C\subseteqA>
using atms-C atms-clss-S atms-trail-S by fast
then have <simple-clss (atms-of C)\subseteq simple-clss A>
by (simp add: simple-clss-mono)
then have }\langleC\in\mathrm{ simple-clss A
using finite dist tauto by (auto dest: distinct-mset-not-tautology-implies-in-simple-clss)
then show ?case using T n-d by auto
qed
lemma rtranclp-cdcl NOT-clauses-bound:
assumes
<cdcl NOT** S T> and
<inv S\rangle and
<atms-of-mm (clauses NOT S)\subseteqA> and
<atm-of '(lits-of-l (trail S))\subseteqA> and
n-d:<no-dup (trail S)` and finite: \finite A> shows <set-mset (clauses }\mp@subsup{N}{NOT}{}T)\subseteq\mathrm{ set-mset (clauses NOT S) U simple-clss A`
using assms(1-5)
proof induction
case base
then show ?case by simp
next
case (step T U) note st = this(1) and cdcl NOT = this(2) and IH = this(3)[OF this(4-7)] and
inv = this(4) and atms-clss-S = this(5) and atms-trail-S = this(6) and finite-cls-S = this(7)
have <inv T>
using rtranclp-cdcl NOT-inv st inv by blast
moreover have <atms-of-mm (clauses NOT T)\subseteqA> and <atm-of 'lits-of-l (trail T)\subseteqA>
using rtranclp-cdcl NOT-trail-clauses-bound[OF st] inv atms-clss-S atms-trail-S n-d by auto
moreover have <no-dup (trail T)>
using rtranclp-cdcl NOT-no-dup[OF st 〈inv S` n-d] by simp
ultimately have <set-mset (clauses}\mp@subsup{N}{NOT}{}U)\subseteq\mathrm{ set-mset (clauses}\mp@subsup{N}{NOT}{}T)\cup\mathrm{ simple-clss A>
using cdcl }\mp@subsup{N}{NOT}{}\mathrm{ finite n-d by (auto simp: cdcl NOT-clauses-bound)
then show ?case using IH by auto
qed
lemma rtranclp-cdcl NOT-card-clauses-bound:
assumes
<cdcl NOT** S T\rangle and
<inv S> and
<atms-of-mm (clauses}\mp@subsup{}{NOT}{}S)\subseteqA\rangle\mathrm{ and
<atm-of '(lits-of-l (trail S)) \subseteqA> and
n-d:<no-dup (trail S)> and
finite: <finite A>
shows <card (set-mset (clauses NOT T)) \leq card (set-mset (clauses NOT S)) + 3^ (card A)>
using rtranclp-cdcl NOT-clauses-bound[OF assms] finite by (meson Nat.le-trans
simple-clss-card simple-clss-finite card-Un-le card-mono finite-UnI
finite-set-mset nat-add-left-cancel-le)

```
lemma rtranclp-cdcl \({ }_{N O T}\)-card-clauses-bound \({ }^{\prime}\) :

\section*{assumes}
\(\left\langle c d c l_{N O T^{* *}} S T\right\rangle\) and
〈inv \(S\) 〉 and
\(\left\langle a t m s\right.\)－of－mm \(\left(\right.\) clauses \(\left.\left._{N O T} S\right) \subseteq A\right\rangle\) and
\(\langle a t m-o f\)＇（lits－of－l（trail \(S)) \subseteq A\rangle\) and
\(n-d:\langle n o-d u p(\) trail \(S\) ）\(>\) and
finite：\(\langle\) finite \(A\rangle\)
shows \(\left\langle\right.\) card \(\left\{C \mid C . C \in \#\right.\) clauses \(_{N O T} T \wedge(\) tautology \(C \vee \neg\) distinct－mset \(\left.C)\right\}\)
\(\leq\) card \(\left\{C \mid C . C \in \#\right.\) clauses \(_{N O T} S \wedge(\) tautology \(C \vee \neg\) distinct－mset \(\left.C)\right\}+3^{\wedge}(\) card \(\left.A)\right\rangle\)
（is \(\langle\) card ？\(T \leq\) card ？\(S+->\) ）
using rtranclp－cdcl \({ }_{N O T}\)－clauses－bound［OF assms］finite
proof－
have \(\langle ? T \subseteq ? S \cup\) simple－clss \(A\) 〉
using rtranclp－cdcl \({ }_{N O T}\)－clauses－bound \([\) OF assms］by force
then have 〈card ？\(T \leq\) card \((? S \cup\) simple－clss \(A)\) 〉
using finite by（simp add：assms（5）simple－clss－finite card－mono）
then show？thesis
by（meson le－trans simple－clss－card card－Un－le local．finite nat－add－left－cancel－le）
qed
lemma rtranclp－cdcl \({ }_{\text {NOT－card－simple－clauses－bound：}}\)
assumes
\(\left\langle c d c l_{N O T}{ }^{* *} S T\right\rangle\) and
〈inv \(S\) 〉 and
NA：\(\left\langle a t m s\right.\)－of－mm \(\left(\right.\) clauses \(\left.\left._{N O T} S\right) \subseteq A\right\rangle\) and
MA：\(\langle\) atm－of＇（lits－of－l \((\) trail \(S)) \subseteq A\rangle\) and
\(n\)－d：〈no－dup（trail \(S\) ）〉 and
finite：\(\langle f i n i t e ~ A\rangle\)
shows card （set－mset \(\left(\right.\) clauses \(\left._{N O T} T\right)\) ）
\(\leq\) card \(\left\{C . C \in \#\right.\) clauses \(_{\text {NOT }} S \wedge(\) tautology \(C \vee \neg\) distinct－mset \(\left.C)\right\}+3^{\wedge}(\) card \(\left.A)\right\rangle\) （is＜card？T \(\leq\) card ？\(S+-\)－）
using rtranclp－cdcl \({ }_{N O T}\)－clauses－bound \([O F\) assms］finite
proof－
have \(\left\langle\backslash x . x \in \#\right.\) clauses \(_{N O T} T \Longrightarrow \neg\) tautology \(x \Longrightarrow\) distinct－mset \(x \Longrightarrow x \in\) simple－clss \(\left.A\right\rangle\)
using rtranclp－cdcl \({ }_{\text {NOT }}\)－clauses－bound \([\) OF assms］by（metis（no－types，hide－lams）Un－iff NA atms－of－atms－of－ms－mono simple－clss－mono contra－subsetD subset－trans distinct－mset－not－tautology－implies－in－simple－clss）
then have \(\left\langle\right.\) set－mset \(\left(\right.\) clauses \(\left._{N O T} T\right) \subseteq ? S \cup\) simple－clss \(\left.A\right\rangle\)
using rtranclp－cdcl \({ }_{N O T}\)－clauses－bound \([\) OF assms］by auto
then have \(\left\langle\operatorname{card}\left(\right.\right.\) set－mset \(\left(\right.\) clauses \(\left.\left._{N O T} T\right)\right) \leq \operatorname{card}(? S \cup\) simple－clss \(\left.A)\right\rangle\)
using finite by（simp add：assms（5）simple－clss－finite card－mono）
then show？thesis
by（meson le－trans simple－clss－card card－Un－le local．finite nat－add－left－cancel－le）
qed
definition \(\mu_{C D C L}{ }^{\prime}\)－bound \(::<^{\prime} v\) clause set \(\Rightarrow\)＇st \(\Rightarrow\) nat where
＜\(\mu_{C D C L}{ }^{\prime}\)－bound \(A S=\)
```

 \(\left((2+\operatorname{card}(a t m s-o f-m s A))^{\wedge}(1+\operatorname{card}(\right.\) atms-of-ms A)\()) *\left(1+3^{\wedge}\right.\) card \((\) atms-of-ms A))\(* 2\)
 \(+2 * 3\) へ (card (atms-of-ms A))
 + card \(\left\{C . C \in \#\right.\) clauses \(_{N O T} S \wedge\) (tautology \(C \vee \neg\) distinct-mset \(\left.\left.C\right)\right\}+3^{\wedge}(\) card (atms-of-ms
 A))

```
lemma \(\mu_{C D C L}{ }^{\prime}\)－bound－reduce－trail－to \({ }_{N O T}[\) simp \(]\) ：
\(\left\langle\mu_{C D C L}{ }^{\prime}\right.\)－bound \(A\left(\right.\) reduce－trail－to \(\left.{ }_{N O T} M S\right)=\mu_{C D C L}{ }^{\prime}\)－bound \(\left.A S\right\rangle\)
unfolding \(\mu_{C D C L}{ }^{\prime}\)－bound－def by auto
lemma rtranclp－cdcl \({ }_{\text {NOT }}-\mu_{C D C L}{ }^{\prime}\)－bound－reduce－trail－to \({ }_{N O T}\) ：

\section*{assumes}
\(\left\langle c d c l_{N O T}{ }^{* *} S T\right\rangle\) and
〈inv \(S\rangle\) and
\(\left\langle a t m s\right.\)－of－mm \(\left(\right.\) clauses \(\left._{N O T} S\right) \subseteq a t m s\)－of－ms \(\left.A\right\rangle\) and
\(\langle a t m-o f\)＇\((\) lits－of－l \((\) trail \(S)) \subseteq\) atms－of－ms \(A\rangle\) and
\(n\)－d：〈no－dup（trail \(S\) ）〉 and
finite：\(\langle\) finite（atms－of－ms A）〉 and
\(U:\left\langle U \sim\right.\) reduce－trail－to \(\left.{ }_{\text {NOt }} M T\right\rangle\)
shows \(\left\langle\mu_{C D C L}{ }^{\prime} A U \leq \mu_{C D C L}{ }^{\prime}\right.\)－bound \(\left.A S\right\rangle\)
proof－
have \(\left\langle\left((2+\operatorname{card}(\right.\right.\) atms－of－ms \(A)) \wedge(1+\operatorname{card}(\) atms－of－ms \(\left.A))-\mu_{C}{ }^{\prime} A U\right)\)
\(\leq(2+\operatorname{card}(a t m s-o f-m s A)) \wedge(1+\operatorname{card}(\) atms－of－ms A）\()\) ）
by auto
then have \(\left\langle\left((2+\operatorname{card}(\right.\right.\) atms－of－ms \(A)) \wedge(1+\operatorname{card}(\) atms－of－ms \(\left.A))-\mu_{C}{ }^{\prime} A U\right)\)
\[
*(1+3 \wedge \operatorname{card}(\text { atms-of-ms } A)) * 2
\]
\(\leq(2+\operatorname{card}(a t m s\)－of－ms \(A)) \wedge(1+\operatorname{card}(a t m s-o f-m s A)) *\left(1+3^{\wedge} \operatorname{card}(a t m s\right.\)－of－ms \(\left.A)\right) * 2\) ）
using mult－le－mono1 by blast
moreover
have 〈conflicting－bj－clss－yet（card（atms－of－ms A））T＊2 \(\leq 2 * 3\)＾card（atms－of－ms A）〉
by linarith
moreover have \(\left\langle\right.\) card（set－mset \(\left(\right.\) clauses \(\left._{N O T} U\right)\) ）
\(\leq\) card \(\left\{C . C \in \#\right.\) clauses \(_{N O T} S \wedge(\) tautology \(C \vee \neg\) distinct－mset \(\left.C)\right\}+3 \wedge\) card（atms－of－ms \(\left.\left.A\right)\right\rangle\)
using rtranclp－cdcl \(l_{\text {NOT－card－simple－clauses－bound }[O F}\) assms \(\left.(1-6)\right] U\) by auto
ultimately show ？thesis
unfolding \(\mu_{C D C L}{ }^{\prime}\)－def \(\mu_{C D C L}{ }^{\prime}\)－bound－def by linarith
qed
lemma rtranclp－cdcl \({ }_{N O T}-\mu_{C D C L}{ }^{\prime}\)－bound：
assumes
\(\left\langle c d c l_{N O T}{ }^{* *} S T\right\rangle\) and
〈inv \(S\) 〉 and
\(\left\langle a t m s\right.\)－of－mm \(\left(\right.\) clauses \(\left.\left._{N O T} S\right) \subseteq a t m s-o f-m s A\right\rangle\) and
\(\langle\) atm－of＇（lits－of－l \((\) trail \(S)) \subseteq a t m s-o f-m s ~ A\rangle\) and
\(n\)－d：〈no－dup（trail \(S\) ）〉 and
finite：〈finite（atms－of－ms A）〉
shows \(\left\langle\mu_{C D C L}{ }^{\prime} A T \leq \mu_{C D C L}{ }^{\prime}\right.\)－bound \(\left.A S\right\rangle\)
proof－
have \(\left\langle\mu_{C D C L}{ }^{\prime} A\left(\right.\right.\) reduce－trail－to \({ }_{N O T}(\) trail \(\left.\left.T) T\right)=\mu_{C D C L}{ }^{\prime} A T\right\rangle\)
unfolding \(\mu_{C D C L}{ }^{\prime}\)－def \(\mu_{C}{ }^{\prime}\)－def conflicting－bj－clss－def by auto
then show ？thesis using rtranclp－cdcl \(l_{\text {NOT }}-\mu_{C D C L}{ }^{\prime}\)－bound－reduce－trail－to \({ }_{N O T}[\) OF assms，of－\(\langle\) trail \(T\rangle\) ］
state－eqnot－ref by fastforce
qed
lemma rtranclp－\(\mu_{C D C L}{ }^{\prime}\)－bound－decreasing：
assumes
\(\left\langle c d c l_{N O T}{ }^{* *} S T\right\rangle\) and
〈inv \(S\rangle\) and
\(\left\langle a t m s\right.\)－of－mm \(\left(\right.\) clauses \(\left.\left._{N O T} S\right) \subseteq a t m s-o f-m s A\right\rangle\) and
\(\langle a t m-o f\)＇\((\) lits－of－l \((\) trail \(S)) \subseteq a t m s-o f-m s ~ A\rangle\) and
\(n\)－d：＜no－dup（trail \(S\) ）\(\rangle\) and
finite \([\) simp \(]\) ：〈finite（atms－of－ms A）〉
shows \(\left\langle\mu_{C D C L}{ }^{\prime}\right.\)－bound \(A T \leq \mu_{C D C L}{ }^{\prime}\)－bound \(\left.A S\right\rangle\)
proof－
have \(«\left\{C . C \in \#\right.\) clauses \(_{N O T} T \wedge(\) tautology \(C \vee \neg\) distinct－mset \(\left.C)\right\}\)
    \(\subseteq\left\{C . C \in \#\right.\) clauses \(_{N O T} S \wedge(\) tautology \(C \vee \neg\) distinct-mset \(\left.C)\right\}\) 〉 \((\) is \(\langle ? T \subseteq ? S\rangle)\)
    proof (rule Set.subsetI)
    fix \(C\) assume \(\langle C \in\) ? \(T\rangle\)
    then have \(C-T:\left\langle C \in \#\right.\) clauses \(\left._{N O T} T\right\rangle\) and \(t-d:\langle t a u t o l o g y ~ C \vee \neg\) distinct-mset \(C\rangle\)
        by auto
    then have \(\langle C \notin\) simple-clss (atms-of-ms \(A\) ) 〉
        by (auto dest: simple-clssE)
    then show \(\langle C \in\) ? \(S\rangle\)
        using \(C\) - \(T\) rtranclp-cdcl \(l_{\text {NOT-clauses-bound }}[O F\) assms \(] t\)-d by force
    qed
then have \(\left\langle\right.\) card \(\left\{C . C \in \#\right.\) clauses \(_{N O T} T \wedge(\) tautology \(C \vee \neg\) distinct-mset \(\left.C)\right\} \leq\)
    card \(\left\{C . C \in \#\right.\) clauses \(_{N O T} S \wedge(\) tautology \(C \vee \neg\) distinct-mset \(\left.C)\right\}\) )
    by (simp add: card-mono)
then show ?thesis
    unfolding \(\mu_{C D C L}{ }^{\prime}\)-bound-def by auto
qed
end－End of the locale conflict－driven－clause－learning－learning－before－backjump－only－distinct－learnt．

\section*{2．2．5 CDCL with Restarts}

\section*{Definition}
locale restart－ops \(=\)

\section*{fixes}
\(c d c l_{N O T}:: \iota^{\prime} s t \Rightarrow\)＇st \(\Rightarrow\) bool \(\rangle\) and
restart ：：\(\langle ' s t \Rightarrow\)＇st \(\Rightarrow\) bool \(\rangle\)
begin
inductive \(c d c l_{N O T}\)－raw－restart \(::\)＜＇st \(\Rightarrow\)＇st \(\Rightarrow\) bool \(\rangle\) where
\(\left\langle c d c l_{N O T} S T \Longrightarrow c d c l_{\text {NOT－raw－restart }} S T\right\rangle \mid\)
\(\left\langle\right.\) restart \(S T \Longrightarrow c^{\prime} d l_{N O T}\)－raw－restart \(\left.S T\right\rangle\)
end
locale conflict－driven－clause－learning－with－restarts \(=\)
conflict－driven－clause－learning trail clauses \({ }_{N O T}\) prepend－trail tl－trail add－cls \({ }_{N O T}\) remove－cls \(\operatorname{lot}_{N}\) inv decide－conds backjump－conds propagate－conds learn－conds forget－conds
for
trail \(::\)＜＇st \(\Rightarrow(' v\), unit \()\) ann－lits and
clauses \(_{N O T}:: \iota^{\prime}\) st \(\Rightarrow\)＇v clauses \(\rangle\) and
prepend－trail \(::\langle(' v\), unit）ann－lit \(\Rightarrow\)＇st \(\Rightarrow\)＇st〉 and
tl－trail ：：〈＇st \(\Rightarrow{ }^{\prime}\) st \(\rangle\) and
\(a d d-c l s_{N O T}::{ }^{\prime} v\) clause \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(>\) and
remove－cls \({ }_{\text {NOT }}:: \iota^{\prime} v\) clause \(\Rightarrow\)＇st \(\Rightarrow\)＇st and
inv ：：〈＇st \(\Rightarrow\) bool〉 and
decide－conds \(::\langle\)＇st \(\Rightarrow\)＇st \(\Rightarrow\) bool \(\rangle\) and
backjump－conds ：：＜＇v clause \(\Rightarrow{ }^{\prime} v\) clause \(\Rightarrow\)＇v literal \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(\Rightarrow\) bool and
propagate－conds ：：«（＇v，unit）ann－lit \(\Rightarrow{ }^{\prime}\) st \(\Rightarrow\)＇st \(\Rightarrow\) bool \(\rangle\) and
learn－conds forget－conds \(::\)＜＇v clause \(^{\prime} \Rightarrow\)＇st \(\Rightarrow\) bool \(\rangle\)
begin
lemma \(c d c l_{N O T-i f f-c d c l}^{N O T-r a w-r e s t a r t-n o-r e s t a r t s: ~}\)
\(\left\langle c d c l_{N O T} S T \longleftrightarrow\right.\) restart－ops．cdcl \(_{\text {NOT－raw－restart }} c d c l_{N O T}(\lambda-\) ．False）\(S T\rangle\)
（is \(\langle ? C S T \longleftrightarrow\) ？\(R S T\) ）
proof
fix \(S T\)
```

 assume \?C S T>
 then show <?R S T〉 by (simp add: restart-ops.cdcl NOT-raw-restart.intros(1))
 next
fix ST
assume <?R S T>
then show <?C ST\rangle
apply (cases rule: restart-ops.cdcl NOT-raw-restart.cases)
using <?R S T` by fast+
qed
lemma cdcl NOT-cdcl NOT-raw-restart:
<dcl NOT S T \Longrightarrow restart-ops.cdcl NOT-raw-restart cdcl NOT restart S T\rangle
by (simp add: restart-ops.cdcl NOT-raw-restart.intros(1))
end

```

\section*{Increasing restarts}

Definition We define our increasing restart very abstractly：the predicate（called \(c d c l_{N O T}\) ） does not have to be a CDCL calculus．We just need some assuptions to prove termination：
－a function \(f\) that is strictly monotonic．The first step is actually only used as a restart to clean the state（e．g．to ensure that the trail is empty）．Then we assume that（ \(\left.1::^{\prime} a\right) \leq f\) \(n\) for \(\left(1::^{\prime} a\right) \leq n\) ：it means that between two consecutive restarts，at least one step will be done．This is necessary to avoid sequence．like：full－restart－full－．．．
－a measure \(\mu\) ：it should decrease under the assumptions bound－inv，whenever a \(c d c l_{N O T}\) or a restart is done．A parameter is given to \(\mu\) ：for conflict－driven clause learning，it is an upper－bound of the clauses．We are assuming that such a bound can be found after a restart whenever the invariant holds．
－we also assume that the measure decrease after any \(c d c l_{N O T}\) step．
－an invariant on the states \(c d c l_{N O T^{-}} i n v\) that also holds after restarts．
－it is not required that the measure decrease with respect to restarts，but the measure has to be bound by some function \(\mu\)－bound taking the same parameter as \(\mu\) and the initial state of the considered \(c d c l_{N O T}\) chain．
```

locale $c d c l_{\text {NOT-increasing-restarts-ops }}=$
restart-ops cdcl ${ }_{N O T}$ restart for
restart :: <'st \Rightarrow 'st \Rightarrow bool \rangle and
$c d c l_{\text {NOT }}::\langle$ 'st \Rightarrow 'st \Rightarrow bool $\rangle+$
fixes
$f::\langle n a t \Rightarrow n a t\rangle$ and
bound-inv :: <'bound \Rightarrow 'st \Rightarrow bool $>$ and
$\mu::\langle$ 'bound \Rightarrow 'st \Rightarrow nat \rangle and
$c d c l_{\text {NOT }}-i n v::$ <'st \Rightarrow bool $>$ and
μ-bound :: 〈'bound \Rightarrow 'st \Rightarrow nat \rangle
assumes
$f:\langle u n b o u n d e d f\rangle$ and
f-ge-1: 〈 $\backslash n . n \geq 1 \Longrightarrow f n \neq 0\rangle$ and
bound-inv: 〈 $\bigwedge A S T . c d c l_{N O T-i n v} S \Longrightarrow$ bound-inv $A S \Longrightarrow c d c l_{N O T} S T \Longrightarrow$ bound-inv $\left.A T\right\rangle$ and
$c d c l_{\text {NOT-measure: }<\bigwedge A S T . c d c l_{N O T-i n v ~} S \Longrightarrow \text { bound-inv } A S \Longrightarrow c d c l_{N O T} S T \Longrightarrow \mu A T<\mu} S$
$A S\rangle$ and

```
measure－bound2：〈 \(\bigwedge A T U\). cdcl \(_{N O T}-i n v T \Longrightarrow\) bound－inv \(A T \Longrightarrow c d c l_{N O T}{ }^{* *} T U\)
\(\Longrightarrow \mu A U \leq \mu\)－bound \(A T\rangle\) and
measure－bound4：〈 \(\bigwedge A T U\). cdcl \(_{N O T}-\) inv \(T \Longrightarrow\) bound－inv \(A T \Longrightarrow c d c l_{N O T}{ }^{* *} T U\)
\(\Longrightarrow \mu\)－bound \(A U \leq \mu\)－bound \(A T>\) and
\(c d c l_{N O T}\)－restart－inv：\(\left\langle\bigwedge A U V . c d c l_{N O T-i n v} U \Longrightarrow\right.\) restart \(U V \Longrightarrow\) bound－inv \(A U \Longrightarrow\) bound－inv \(A \quad V\rangle\)
and
exists－bound：\(\left\langle\backslash R S\right.\) ．cdcl \({ }_{N O T}-\) inv \(R \Longrightarrow\) restart \(R S \Longrightarrow \exists A\) ．bound－inv \(\left.A S\right\rangle\) and
 \(\left.c d c l_{N O T-i n v-r e s t a r t:}^{\langle } \backslash S T . c d c l_{N O T}-i n v S \Longrightarrow \operatorname{restart} S T \Longrightarrow c d c l_{N O T}-i n v T\right\rangle\)

\section*{begin}
lemma \(c d c l_{N O T}-c d c l_{N O T-i n v:}\)

\section*{assumes}
\(\left\langle\left(c d c l_{N O T} \sim_{n}\right) S T\right\rangle\) and
\(\left\langle c d c l_{N O T}-i n v S\right\rangle\)
shows \(\left\langle c d c l_{N O T}-i n v T\right\rangle\)
using assms by（induction \(n\) arbitrary：\(T\) ）（auto intro：bound－inv \(c d c l_{\left.N_{N O T}-i n v\right) ~}^{\text {（ }}\)
lemma cdcl \(_{\text {NOT }}\)－bound－inv：
assumes
\(\left\langle\left(c d c l_{\text {NOT }} \sim_{n}\right) S T\right\rangle\) and
\(\left\langle c d c l_{N O T}-i n v S\right\rangle\)
〈bound－inv A \(S\) 〉
shows 〈bound－inv \(A T\rangle\)
using assms by（induction \(n\) arbitrary：\(T\) ）（auto intro：bound－inv \(c d c l_{N O T}-c d c l_{N O T}-i n v\) ）
lemma rtranclp－cdcl \({ }_{N O T}-c d c l_{N O T}-i n v\) ：
assumes
```

 \langlecdcl NOT }\mp@subsup{}{}{**}ST\rangle\mathrm{ and
    ```
    \(\left\langle c d c l_{\text {NOT-}}-i n v S\right\rangle\)
    shows \(\left\langle c d c l_{N O T}-i n v T\right\rangle\)
    using assms by induction (auto intro: cdcl \(_{\text {NOT }}-\) inv \()\)
lemma rtranclp-cdcl \({ }_{N O T}\)-bound-inv:
    assumes
        \(\left\langle c d c l_{N O T}{ }^{* *} S T\right\rangle\) and
        〈bound-inv \(A S\) ) and
        \(\left\langle c d c l_{\text {NOT }}-\right.\) inv \(S\) 〉
    shows 〈bound-inv \(A T\) 〉
    using assms by induction (auto intro:bound-inv rtranclp-cdcl \({ }_{N O T}-c d c l_{N O T}-i n v\) )
lemma \(\operatorname{cdcl}_{N O T-c o m p-n-l e: ~}\)
    assumes
        \(\left\langle\left(c d c l_{N O T}{ }^{\wedge}(S u c n)\right) S T\right\rangle\) and
        〈bound-inv A S〉
        \(\left\langle c d c l_{\text {NOT-inv }} S\right\rangle\)
    shows \(\langle\mu A T<\mu A S-n\rangle\)
    using assms
proof (induction \(n\) arbitrary: \(T\) )
    case 0
    then show ?case using \(c d c l_{N O T-m e a s u r e ~ b y ~ a u t o ~}^{\text {a }}\)
next
    case \((S u c n)\) note \(I H=\) this(1) \([O F-\operatorname{this}(3)\) this(4) \(]\) and \(S-T=t h i s(2)\) and \(b-i n v=t h i s(3)\) and
    \(c-i n v=t h i s(4)\)
    obtain \(U\) :: 'st where \(S-U:\left\langle\left(c d c l_{N O T}{ }^{\sim}(S u c n)\right) S U\right\rangle\) and \(U-T:\left\langle c d c l_{N O T} U T\right\rangle\) using \(S-T\) by
```

auto
then have < }\muAU<\muAS-n\rangle\mathrm{ using IH[of U] by simp
moreover
have <bound-inv A U>
using S-U b-inv cdcl NOT-bound-inv c-inv by blast
then have < }\muAT<\muAU\rangle\mathrm{ using cdcl NOT-measure[OF--U-T] S-U c-inv cdcl NOT-cdcl NOT-inv
by auto
ultimately show ?case by linarith
qed
lemma wf-cdcl NOT:
<wf {(T,S).cdcl NOT S T ^cdcl NOT-inv S ^bound-inv A S}> (is <wf ?A>)
apply (rule wfP-if-measure2[of - - \langle\mu A \])

 using cdcl NOT-comp-n-le[of 0-- A] by auto
 lemma rtranclp-cdcl NOT-measure:
assumes
<cdcl NOT** S T\rangle and
<bound-inv A S` and
<cdcl NOT-inv S\rangle
shows }\langle\muAT\leq\muAS
using assms
proof (induction rule: rtranclp-induct)
case base
then show ?case by auto
next
case (step T U) note IH = this(3)[OF this(4) this(5)] and st = this(1) and cdcl NOT = this(2)
and
b-inv = this(4) and c-inv = this(5)
have \bound-inv A T>
by (meson cdcl NOT-bound-inv rtranclp-imp-relpowp st step.prems)
moreover have <cdcl NOT-inv T\rangle
using c-inv rtranclp-cdcl NOT-cdcl NOT-inv st by blast
ultimately have }\langle\muAU<\muAT\rangle\mathrm{ using cdcl NOT-measure[OF - cdcl NOT] by auto
then show ?case using IH by linarith
qed
lemma cdcl NOT-comp-bounded:
assumes
<bound-inv A S\rangle and <cdcl NOT-inv S\rangle and <m\geq1+\muAS\rangle
shows }\neg\neg(cdc\mp@subsup{l}{NOT}{~}~m)ST
using assms cdcl NOT-comp-n-le[of <m-1\rangleS T A] by fastforce

```
        - \(f n<m\) ensures that at least one step has been done.
inductive \(c d c l_{N O T \text {-restart }}\) where
restart-step: \(\left\langle\left(c d c l_{\text {NOT }}{ }^{\sim} m\right) S T \Longrightarrow m \geq f n \Longrightarrow\right.\) restart \(T U\)
    \(\left.\Longrightarrow c d c l_{\text {NOT-restart }}(S, n)(U, S u c n)\right\rangle \mid\)
restart-full: \(\left\langle f u l l 1 \operatorname{cdcl}_{N O T} S T \Longrightarrow \operatorname{cdcl}_{\text {NOT-restart }}(S, n)(T, S u c n)\right\rangle\)
lemmas \(c d c l_{N O T-w i t h-r e s t a r t-i n d u c t ~}=c d c l_{N O T}\)-restart.induct[split-format(complete),
    OF cdcl \({ }_{\text {NOT-increasing-restarts-ops-axioms] }}\)
lemma \(c d c l_{\text {NOT-restart-cdcl }}^{\text {NOT-raw-restart: }}\)
    \({ }^{\text {}}\) cdcl \(\left.l_{\text {NOT-restart }} S T \Longrightarrow{c d c l_{N O T} \text {-raw-restart** }}^{*}(f s t S)(f s t T)\right\rangle\)
```

proof (induction rule: cdcl NOT-restart.induct)
case (restart-step m S T n U)
then have }\langlecdc\mp@subsup{l}{NOT}{** S T\rangle by (meson relpowp-imp-rtranclp)
then have <cdcl NOT-raw-restart** S T\rangle using cdcl NOT-raw-restart.intros(1)
rtranclp-mono[of cdcl NOT cdcl NOT-raw-restart] by blast
moreover have \langlecdcl NOT-raw-restart T U \
using 〈restart T U` cdcl NOT-raw-restart.intros(2) by blast
ultimately show ?case by auto
next
case (restart-full S T)
then have <cdcl NOT** S T> unfolding full1-def by auto
then show ?case using cdcl NOT-raw-restart.intros(1)
rtranclp-mono[of cdcl NOT cdcl NOT-raw-restart] by auto
qed
lemma cdcl NOT-with-restart-bound-inv:
assumes
<cdcl NOT-restart S T\rangle and
<bound-inv A (fst S)> and
<cdcl NOT-inv (fst S)>
shows 〈bound-inv A (fst T)>
using assms apply (induction rule: cdcl NOT-restart.induct)
prefer 2 apply (metis rtranclp-unfold fstI full1-def rtranclp-cdcl NOT-bound-inv)
by (metis cdcl lNOT-bound-inv cdcl NOT-cdcl NOT-inv cdcl NOT-restart-inv fst-conv)
lemma cdcl NOT-with-restart-cdcl NOT-inv:
assumes
<cdcl NOT-restart S T\rangle and
<cdcl NOT-inv (fst S)>
shows <cdcl NOT-inv (fst T)\rangle
using assms apply induction
apply (metis cdcl NOT-cdcl NOT-inv cdcl NOT-inv-restart fst-conv)
apply (metis fstI full-def full-unfold rtranclp-cdcl NOT-cdcl NOT-inv)
done
lemma rtranclp-cdcl NOT-with-restart-cdcl NOT-inv:
assumes
<cdcl NOT-restart** S T\rangle and
<cdcl NOT-inv (fst S)>
shows <cdcl NOT-inv (fst T)>
using assms by induction (auto intro: cdcl NOT-with-restart-cdcl (NOT-inv)
lemma rtranclp-cdcl NOT-with-restart-bound-inv:
assumes
<cdcl NOT-restart** S T\rangle and
<dcl NOT-inv (fst S)> and
<bound-inv A (fst S)>
shows 〈bound-inv A (fst T)>
using assms apply induction
apply (simp add: cdcl NOT-cdcl NOT-inv cdcl NOT-with-restart-bound-inv)
using cdcl NOT-with-restart-bound-inv rtranclp-cdcl NOT-with-restart-cdcl NOT-inv by blast
lemma cdcl NOT-with-restart-increasing-number:
<cdcl NOT-restart S T\Longrightarrow snd T = 1 + snd S>
by (induction rule: cdcl NOT-restart.induct) auto
end

```
locale \(^{\text {cd }} l_{\text {NOT－increasing－restarts }}=\)
 dpll－state trail clauses \({ }_{N O T}\) prepend－trail tl－trail add－cls \({ }_{N O T}\) remove－cls \({ }_{\text {NOT }}\)
for
trail \(::\)＜＇st \(\Rightarrow(' v\) ，unit）ann－lits and
clauses \(_{N O T}::\) 〈＇st \(\Rightarrow\)＇v clauses \(\rangle\) and
prepend－trail ：：〈（＇v，unit）ann－lit \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(\rangle\) and
tl－trail ：：〈＇st \(\Rightarrow\)＇st＞and
\(a d d-c l s_{N O T}::\left\langle^{\prime} v\right.\) clause \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(\rangle\) and
remove－cls \({ }_{N O T}:: \iota^{\prime} v\) clause \(\Rightarrow\)＇st \(\Rightarrow\)＇st and
\(f::\langle n a t \Rightarrow\) nat \(\rangle\) and
restart ：：＜＇st \(\Rightarrow\)＇st \(\Rightarrow\) bool＞and
bound－inv ：：〈＇bound \(\Rightarrow\)＇st \(\Rightarrow\) bool \(>\) and
\(\mu::<\)＇bound \(\Rightarrow\)＇st \(\Rightarrow\) nat \(>\) and \(c d c l_{\text {NOT }}::\langle ' s t \Rightarrow\)＇st \(\Rightarrow\) bool \(\rangle\) and
\(c d c l_{\text {NOT－inv }}::\)＜＇st \(\Rightarrow\) bool \(\rangle\) and
\(\mu\)－bound \(::\) 〈＇bound \(\Rightarrow\)＇st \(\Rightarrow\) nat \(\rangle+\)

\section*{assumes}
measure－bound：〈 \(\backslash A T V\) n．cdcl \({ }_{N O T}-\) inv \(T \Longrightarrow\) bound－inv \(A T\)
\(\Longrightarrow c^{\prime} d_{\text {NOT－restart }}(T, n)(V\), Suc \(n) \Longrightarrow \mu A V \leq \mu\)－bound \(\left.A T\right\rangle\) and
\(c d c l_{\text {NOT－raw－restart－}} \mu\)－bound： \(\left\langle c d c l_{N O T}\right.\)－restart \((T, a)(V, b) \Longrightarrow c^{\prime} c_{\text {l }}{ }_{N O T \text {－inv }} T \Longrightarrow\) bound－inv \(A T\)
\(\Longrightarrow \mu\)－bound \(A V \leq \mu\)－bound \(A T\rangle\)
begin
lemma rtranclp－cdcl \({ }_{N O T}\)－raw－restart－\(\mu\)－bound：
\(\left\langle c d c l_{\text {NOT－restart }}{ }^{* *}(T, a)(V, b) \Longrightarrow c d c l_{N O T}\right.\)－inv \(T \Longrightarrow\) bound－inv \(A T\) \(\Longrightarrow \mu\)－bound \(A \quad V \leq \mu\)－bound \(A T\)＞
apply（induction rule：rtranclp－induct2） apply \(\operatorname{simp}\)
by（metis cdcl \({ }_{N O T}\)－raw－restart－\(\mu\)－bound dual－order．trans fst－conv
rtranclp－cdcl \({ }_{N O T}\)－with－restart－bound－inv rtranclp－cdcl \(l_{\text {NOT－with－restart－cdcl }}^{\text {NOT－inv }}\) ）
lemma \(c d c l_{N O T-r a w-r e s t a r t-m e a s u r e-b o u n d: ~}^{\text {l }}\)
\(\left\langle c d c l_{N O T}\right.\)－restart \((T, a)(V, b) \Longrightarrow c d c l_{N O T-i n v} T \Longrightarrow\) bound－inv \(A T\)
\(\Longrightarrow \mu A V \leq \mu\)－bound \(A T\rangle\)
apply（cases rule：cdcl \({ }_{N O T}\)－restart．cases）
apply simp
using measure－bound relpowp－imp－rtranclp apply fastforce
by（metis full－def full－unfold measure－bound2 prod．inject）
lemma rtranclp－cdcl \({ }_{N O T}\)－raw－restart－measure－bound：
\(\left\langle c d c l_{N O T}\right.\)－restart＊＊\((T, a)(V, b) \Longrightarrow \operatorname{cdcl}_{N O T}-\) inv \(T \Longrightarrow\) bound－inv \(A T\) \(\Longrightarrow \mu A V \leq \mu\)－bound \(A T\rangle\)
apply（induction rule：rtranclp－induct2）
apply（simp add：measure－bound2）
by（metis dual－order．trans fst－conv measure－bound2 r－into－rtranclp rtranclp．rtrancl－refl rtranclp－cdcl \(_{\text {NOT－with－restart－bound－inv }}\) rtranclp－cdcl \({ }_{N O T}\)－with－restart－cdcl \(l_{\text {NOT－inv }}\) rtranclp－cdcl \({ }_{N O T}\)－raw－restart－\(\mu\)－bound）
lemma \(w f-c d c l_{\text {NOT－restart：}}\)
\(\left\langle w f\left\{(T, S) . c d c l_{\text {NOT－restart }} S T \wedge \operatorname{cdcl}_{\text {NOT－inv }}(f s t S)\right\}\right\rangle(\) is \(\langle w f ? A\rangle)\)
proof（rule ccontr）
assume \(\langle\neg\) ？thesis〉
then obtain \(g\) where
\(g:\left\langle\bigwedge i . c d c l_{\text {NOT－restart }}(g i)(g(S u c i))\right\rangle\) and \(c d c l_{\text {NOT－inv－g：}}\left\langle\bigwedge i . c d c l_{\text {NOT }}-i n v(f s t(g i))\right\rangle\)
unfolding wf－iff－no－infinite－down－chain by fast
have snd－g：〈へi．snd \((g i)=i+\operatorname{snd}(g 0)\rangle\)
apply（induct－tac i）
apply \(\operatorname{simp}\)
by（metis Suc－eq－plus1－left add．commute add．left－commute \(c d c l_{\text {NOT－with－restart－increasing－number }} g\) ）
then have snd－g－0：〈\i．\(i>0 \Longrightarrow\) snd \((g i)=i+\operatorname{snd}\left(\begin{array}{ll}g & 0)\rangle \\ \hline\end{array}\right.\)
by blast
have unbounded－f－g：〈unbounded（ \(\lambda i . f(\operatorname{snd}(g i)))\rangle\)
using \(f\) unfolding bounded－def by（metis add．commute f less－or－eq－imp－le snd－g not－bounded－nat－exists－larger not－le le－iff－add）
\｛fix \(i\)
have \(H: 〈 \bigwedge T\) Ta \(m .\left(c d c l_{N O T}{ }^{\wedge} m\right) T T a \Longrightarrow\) no－step \(c d c l_{N O T} T \Longrightarrow m=0\) 〉 apply（case－tac m）by simp（meson relpowp－E2）
have \(\left.\exists \exists T m .\left(c d c l_{N O T}{ }^{\wedge} m\right)(f s t(g i)) T \wedge m \geq f(s n d(g i))\right\rangle\)
using \(g[\) of \(i]\) apply（cases rule：cdcl \({ }_{\text {NOT－restart．cases）}}\)
apply auto［］
using \(g[\) of 〈Suc \(i\rangle] f\)－ge－1 apply（cases rule：cdcl \({ }_{N O T}\)－restart．cases）
apply（auto simp add：full1－def full－def dest：\(H\) dest：tranclpD）
using \(H\) Suc－leI leD by blast
\} note \(H=\) this
obtain \(A\) where＜bound－inv \(A(f s t(g 1))\rangle\)
using \(\left.g[o f 0] c d c l_{N O T-i n v-g[o f ~}^{0} 0\right]\) apply（cases rule：\(c d c l_{N O T}\)－restart．cases）
apply（metis One－nat－def \(c d c l_{N O T}\)－inv exists－bound fst－conv relpowp－imp－rtranclp rtranclp－induct）
using \(H[o f\) 1］unfolding full1－def by（metis One－nat－def Suc－eq－plus1 diff－is－0－eq＇diff－zero f－ge－1 fst－conv le－add2 relpowp－E2 snd－conv）
let \(? j=\left\langle\mu\right.\)－bound \(\left.A\left(f s t\left(\begin{array}{ll}\text { l }\end{array}\right)\right)+1\right\rangle\)
obtain \(j\) where
\(j:\langle f(\operatorname{snd}(g j))>? j\rangle\) and \(\langle j>1\rangle\)
using unbounded－f－g not－bounded－nat－exists－larger by blast
\｛
fix \(i j\)
have \(c d c l_{N O T}\)－with－restart：\(\left\langle j \geq i \Longrightarrow c d c l_{N O T}\right.\)－restart＊＊\(\left.(g i)(g j)\right\rangle\) apply（induction \(j\) ） apply simp by（metis g le－Suc－eq rtranclp．rtrancl－into－rtrancl rtranclp．rtrancl－refl）
\(\}\) note \(c d c l_{\text {NOT }}\)－restart \(=\) this
have \(\left\langle c d c l_{\text {NOT－inv }}\left(f_{s t}(g(\right.\right.\) Suc 0\(\left.\left.))\right)\right\rangle\)
by（ simp add：cdcl \(\left.{ }_{N O T}-i n v-g\right)\)
have \(\left\langle c d c l_{N O T \text {－restart }}{ }^{* *}(f s t(g 1)\right.\) ，snd（ \(\left.g 1)\right)(f s t(g j)\) ，snd \(\left.(g j))\right\rangle\)
using \(\langle j\rangle 1\rangle\) by（simp add：cdcl \(l_{N O T \text {－restart }) ~}^{\text {（ }}\)
have \(\langle\mu A(f s t(g j)) \leq \mu\)－bound \(A(f s t(g 1))\rangle\)
apply（rule rtranclp－cdcl \({ }_{\text {NOT－raw－restart－measure－bound）}}\)

apply（simp add：cdcl \({ }_{N O T}-i n v-g\) ）
using 〈bound－inv \(A\left(f s t\left(\begin{array}{ll}g & 1)\end{array}\right)\right.\) 〉 apply \(\operatorname{simp}\)
done
then have \(\langle\mu A(f s t(g j)) \leq ? j\rangle\)
by auto
have inv：〈bound－inv \(\left.A\left(f_{s t}(g j)\right)\right\rangle\)
using 〈bound－inv \(A\left(f s t\left(\begin{array}{ll}g & 1)\end{array}\right)\left\langle c d c l_{N O T}-i n v(f s t(g(S u c ~ 0)))\right\rangle\right.\)
```

 <cdcl NOT-restart** (fst (g 1), snd (g 1)) (fst (g j), snd (g j))>
 rtranclp-cdcl NOT-with-restart-bound-inv by auto
 obtain Tm}\mathrm{ where
 cdcl NOT-m: <(cdcl NOT ^^ m) (fst (gj)) T> and
 f-m:\langlef (snd (g j)) \leqm>
 using H[of j] by blast
 have \??j < m`
 using f-m j Nat.le-trans by linarith
 then show False
 using < }\muA(fst (gj))\leq\mu-bound A (fst (g 1))\rangle
 cdcl NOT-comp-bounded[OF inv cdcl NOT-inv-g, of] cdcl NOT-inv-g cdcl NOT-m
 <? j < m> by auto
 qed
lemma cdcl NOT-restart-steps-bigger-than-bound:
assumes
<cdcl NOT-restart S T\rangle and
<bound-inv A (fst S)> and
<cdcl NOT-inv (fst S)> and
<f(snd S)> --bound A (fst S)>
shows <full1 cdcl NOT (fst S) (fst T)>
using assms
proof (induction rule: cdcl NOT-restart.induct)
case restart-full
then show ?case by auto
next
case (restart-step m S Tn U) note st = this(1) and f=this(2) and bound-inv = this(4) and
cdcl NOT-inv = this(5) and }\mu=\mathrm{ this(6)
then obtain m' where m: <m=Suc m'` by (cases m) auto
have }\langle\muAS-\mp@subsup{m}{}{\prime}=0
using f bound-inv cdcl NOT-inv }\mu\mathrm{ m rtranclp-cdcl NOT-raw-restart-measure-bound by fastforce
then have False using cdcl NOT-comp-n-le[of m'S T A] restart-step unfolding m by simp
then show ?case by fast
qed
lemma rtranclp-cdcl NOT-with-inv-inv-rtranclp-cdcl NOT
assumes
inv: <cdcl NOT-inv S\rangle and
binv: 〈bound-inv A S〉
shows «(\lambdaST.cdcl NOT ST ^ cdcl NOT-inv S ^ bound-inv A S)** ST < < cdcl NOT** S T>
(is <? A** ST\longleftrightarrow ? 'B** S T>)
apply (rule iffI)
using rtranclp-mono[of ?A ?B] apply blast
apply (induction rule: rtranclp-induct)
using inv binv apply simp
by (metis (mono-tags, lifting) binv inv rtranclp.simps rtranclp-cdcl NOT-bound-inv
rtranclp-cdcl NOT-cdclNOT-inv)
lemma no-step-cdcl NOT-restart-no-step-cdcl NOT :
assumes
n-s:\langleno-step cdcl NOT-restart S\rangle and
inv: <cdcl NOT-inv (fst S)\rangle and
binv:〈bound-inv A (fst S)〉
shows <no-step cdcl NOT (fst S)>
proof (rule ccontr)

```
```

assume «\neg ?thesis`
then obtain T where T: <cdcl NOT
by blast

```

```

 using wf-exists-normal-form-full[OF wf-cdcl NOT, of A T] by auto
 moreover have inv-T: \langlecdcl NOT-inv T\rangle
using <cdcl NOT (fst S) T〉cdcl NOT-inv inv by blast
moreover have b-inv-T: \langlebound-inv A T\rangle
using {cdcl NOT (fst S) T\rangle binv bound-inv inv by blast
ultimately have <full cdcl NOT}TT U
using rtranclp-cdcl NOT-with-inv-inv-rtranclp-cdcl NOT rtranclp-cdcl NOT-bound-inv
rtranclp-cdcl NOT-cdcl NOT-inv unfolding full-def by blast
then have <full1 cdcl NOT (fst S) U\rangle
using T full-fullI by metis
then show False by (metis n-s prod.collapse restart-full)
qed
end

```

\section*{2．2．6 Merging backjump and learning}
locale \(c d c l_{\text {NOT－merge－bj－learn－ops }}=\)
    decide-ops trail clauses \(\operatorname{sot}_{\text {OT }}\) prepend-trail tl-trail add-cls \(s_{N O T}\) remove-cls \(s_{N O T}\) decide-conds +
    forget-ops trail clauses \(_{\text {NOT }}\) prepend-trail tl-trail add-cls \({ }_{N O T}\) remove-cls \(_{\text {NOT }}\) forget-conds +
    propagate-ops trail clauses \({ }_{N O T}\) prepend-trail tl-trail add-cls \({ }_{\text {NOT }}\) remove-cls \({ }_{\text {NOT }}\) propagate-conds
    for
        trail :: <'st \(\Rightarrow\) ('v, unit) ann-lits> and
        clauses \(_{\text {NOT }}::\) <'st \(\Rightarrow\) 'v clauses \(\rangle\) and
        prepend-trail \(::\langle(' v\), unit) ann-lit \(\Rightarrow\) 'st \(\Rightarrow\) 'st〉 and
        tl-trail :: 〈'st \(\Rightarrow\) 'st> and
        \(a d d-c l s_{N O T}::\left\langle^{\prime} v\right.\) clause \(\Rightarrow\) 'st \(\Rightarrow\) 'st \(>\) and
        remove-cls \({ }_{N O T}::\langle\) 'v clause \(\Rightarrow\) 'st \(\Rightarrow\) 'st and
        decide-conds :: 〈'st \(\Rightarrow\) 'st \(\Rightarrow\) bool and
        propagate-conds :: 〈('v, unit) ann-lit \(\Rightarrow\) 'st \(\Rightarrow\) 'st \(\Rightarrow\) bool〉 and
    forget-conds :: 〈'v clause \(\Rightarrow\) 'st \(\Rightarrow\) bool \(\rangle+\)
    fixes backjump-l-cond \(::<' v\) clause \(\Rightarrow\) 'v clause \(\Rightarrow\) 'v literal \(\Rightarrow\) 'st \(\Rightarrow\) 'st \(\Rightarrow\) bool \(\rangle\)
begin

We have a new backjump that combines the backjumping on the trail and the learning of the used clause（called \(C^{\prime \prime}\) below）
inductive backjump－l where
backjump－l：＜trail \(S=F^{\prime} @\) Decided \(K \# F\)
```

\Longrightarrow T \sim ~ p r e p e n d - t r a i l ~ (P r o p a g a t e d ~ L ~ ()) ~ (r e d u c e - t r a i l - t o N O T ~ F ~ (a d d - c l s ~ N O T ~ C ' / ~ S)) ~

```
\(\Longrightarrow C \in \#\) clauses \(_{\text {NOT }} S\)
\(\Longrightarrow\) trail \(S \models\) as CNot \(C\)
\(\Longrightarrow\) undefined－lit \(F L\)
\(\Longrightarrow\) atm－of \(L \in\) atms－of－mm \(\left(\right.\) clauses \(\left._{N O T} S\right) \cup\) atm－of \({ }^{\prime}(\) lits－of－l \((\) trail \(S))\)
\(\Longrightarrow\) clauses \(_{\text {NOT }} S \models p m\) add－mset \(L C^{\prime}\)
\(\Longrightarrow C^{\prime \prime}=\) add－mset \(L C^{\prime}\)
\(\Longrightarrow F \models\) as CNot \(C^{\prime}\)
\(\Longrightarrow\) backjump－l－cond C \(C^{\prime} L S T\)
\(\Longrightarrow\) backjump－l \(S T\)＞
Avoid（meaningless）simplification in the theorem generated by inductive－cases：
declare reduce－trail－tonot－length－ne［simp del］Set．Un－iff［simp del］Set．insert－iff［simp del］
inductive－cases backjump－lE：〈backjump－l \(S T\rangle\)
thm backjump－lE
declare reduce－trail－to \({ }_{N O T}\)－length－ne［simp］Set．Un－iff［simp］Set．insert－iff［simp］
inductive \(c d c l_{N O T-m e r g e d-b j-l e a r n ~:: ~ 〈 ' s t ~} \Rightarrow\)＇st \(\Rightarrow\) bool \(\rangle\) for \(S\) ：：＇st where
\(c d c l_{N O T-m e r g e d-b j-l e a r n-d e c i d e ~}^{N O T}{ }^{\text {：}}\left\langle\right.\) decide \(_{N O T} S S^{\prime} \Longrightarrow\) cdcl \(_{N O T}\)－merged－bj－learn \(\left.S S^{\prime}\right\rangle \mid\)
\({c d c l_{N O T}-m e r g e d-b j-l e a r n-p r o p a g a t e ~}_{N O T}:\left\langle\right.\) propagate \(_{N O T} S S^{\prime} \Longrightarrow c d c l_{N O T}\)－merged－bj－learn \(\left.S S^{\prime}\right\rangle \mid\)
\(c d c l_{N O T}\)－merged－bj－learn－backjump－l：〈backjump－l \(S S^{\prime} \Longrightarrow c d c l_{N O T}\)－merged－bj－learn \(\left.S S^{\prime}\right\rangle \mid\)
\(c d c l_{N O T}-m e r g e d-b j-l e a r n-\) forget \(_{N O T}:\left\langle\right.\) forget \(\left._{N O T} S S^{\prime} \Longrightarrow c d c l_{\text {NOT－merged－bj－learn }} S S^{\prime}\right\rangle\)
lemma \(c d c l_{N O T-m e r g e d-b j-l e a r n-n o-d u p-i n v: ~}^{\text {－}}\)
\(\left\langle c d c l_{\text {NOT－merged－bj－learn }} S T \Longrightarrow\right.\) no－dup \((\) trail \(S) \Longrightarrow\) no－dup \((\) trail \(\left.T)\right\rangle\)
apply（induction rule：\(c d c l_{N O T-m e r g e d-b j-l e a r n . i n d u c t) ~}^{\text {（ }}\)（
using defined－lit－map apply fastforce
using defined－lit－map apply fastforce
apply（force simp：defined－lit－map elim！：backjump－lE dest：no－dup－appendD）［］
using forget \(_{\text {NOT．}}\) ．simps apply（auto；fail）
done
end
locale \(c d c l_{\text {NOT－merge－bj－learn－proxy }}=\)
\(c d c l_{N O T}\)－merge－bj－learn－ops trail clauses \({ }_{N O T}\) prepend－trail tl－trail add－cls \({ }_{N O T}\) remove－cls \(_{N O T}\) decide－conds propagate－conds forget－conds « \(\lambda C C^{\prime} L^{\prime} S T\) ．backjump－l－cond \(C C^{\prime} L^{\prime} S T\) \(\wedge\) distinct－mset \(C^{\prime} \wedge L^{\prime} \notin \# C^{\prime} \wedge \neg\) tautology \(\left(\right.\) add－mset \(\left.\left.L^{\prime} C^{\prime}\right)\right\rangle\)
for
trail \(::\)＜＇st \(\Rightarrow\)（＇v，unit）ann－lits〉 and
clauses \(_{\text {NOT }}::\) 〈＇st \(\Rightarrow\)＇v clauses \(\rangle\) and
prepend－trail \(::\) 〈（＇v，unit）ann－lit \(\Rightarrow\)＇st \(\Rightarrow\)＇st〉 and
tl－trail ：：〈＇st \(\Rightarrow\)＇st〉 and
\(a d d-c l s_{N O T}::\langle ' v\) clause \(\Rightarrow\)＇st \(\Rightarrow\)＇st〉 and
remove－cls \({ }_{N O T}::\)＇\(^{\prime}\) clause \(\Rightarrow\)＇st \(\Rightarrow\)＇st and
decide－conds ：：〈＇st \(\Rightarrow\)＇st \(\Rightarrow\) bool \(\rangle\) and
propagate－conds ：：«（＇v，unit）ann－lit \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(\Rightarrow\) bool〉 and
forget－conds \(::\) ८＇v clause \(\Rightarrow\)＇st \(\Rightarrow\) bool \(\rangle\) and
backjump－l－cond \(::\) ८＇v clause \(^{\prime}{ }^{\prime} v\) clause \(\Rightarrow\)＇v literal \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(\Rightarrow\) bool \(\rangle+\)
fixes
inv ：：〈＇st \(\Rightarrow\) bool \(>\)
begin
abbreviation backjump－conds \(:: \zeta^{\prime} v\) clause \(\Rightarrow\)＇v clause \(\Rightarrow{ }^{\prime} v\) literal \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(\Rightarrow\) bool \(\rangle\) where
\(\left\langle b a c k j u m p-c o n d s \equiv \lambda C C^{\prime} L^{\prime} S T\right.\) ．distinct－mset \(C^{\prime} \wedge L^{\prime} \notin \# C^{\prime} \wedge \neg\) tautology（add－mset \(L^{\prime} C^{\prime}\) ）
sublocale backjumping－ops trail clauses \(_{\text {NOT }}\) prepend－trail tl－trail add－cls \({ }_{N O T}\) remove－cls \({ }_{N O T}\) backjump－conds
by standard
end
locale \(c d c l_{N O T-m e r g e-b j-l e a r n ~}=\)
 decide－conds propagate－conds forget－conds backjump－l－cond inv
for
trail \(::\langle ' s t \Rightarrow(' v\), unit）ann－lits〉 and
clauses \(_{N O T}::\) 〈＇st \(\Rightarrow\)＇v clauses \(>\) and
```

 prepend-trail :: <('v, unit) ann-lit => 'st => 'st> and
 tl-trail :: 〈'st }=>\mathrm{ 'st> and
 add-cls NOT :: <'v clause }=>\mathrm{ 'st }=>\mathrm{ 'st> and
 remove-cls NOT :: <'v clause => 'st }=>\mathrm{ 'st 年d
 decide-conds :: <'st => 'st }=>\mathrm{ bool> and
 propagate-conds :: <('v, unit) ann-lit => 'st => 'st => bool> and
 forget-conds :: <'v clause => 'st }=>\mathrm{ bool> and
 backjump-l-cond :: <'v clause }=>\mathrm{ 'v clause }=>\mp@subsup{|}{}{\prime}v viteral = 'st = 'st => bool> and
 inv :: <'st = bool> +
 assumes
bj-merge-can-jump:

SC F`KFL. inv S trail S=F'\mp@code{@ Decided K # F} CC\in# clauses NOT S trail S =as CNot C \Longrightarrow ~ u n d e f i n e d - l i t ~ F ~ L ~ \Longrightarrowatm-of L \inatms-of-mm (clauses }\mp@subsup{N}{NOT}{}S)\cup\mathrm{ atm-of `(lits-of-l (F' @ Decided K \# F))
"clauses}NOT S\modelspm add-mset L C'
\LongrightarrowFas CNot C'
\nearrowno-step backjump-l S> and
cdcl-merged-inv:
\ST.cdcl NOT-merged-bj-learn S T\Longrightarrowinv S\Longrightarrowinv T> and
can-propagate-or-decide-or-backjump-l:
<atm-of L G atms-of-mm (clauses NOT S)\Longrightarrow
undefined-lit (trail S) L\Longrightarrow
inv S\Longrightarrow
satisfiable (set-mset (clauses}\mp@subsup{}{NOT}{}S))
\existsT. decide NOT S T\vee propagate NOT ST\vee backjump-l ST>
begin
lemma backjump-no-step-backjump-l:
〈aackjump S T \Longrightarrow inv S\Longrightarrow \negno-step backjump-l S>
apply (elim backjumpE)
apply (rule bj-merge-can-jump)
apply auto[7]
by blast
lemma tautology-single-add:
<tautology (L+{\#a\#})\longleftrightarrow tautology L\vee -a\in\# L>
unfolding tautology-decomp by (cases a) auto
lemma backjump-l-implies-exists-backjump:
assumes bj:\langlebackjump-l S T\rangle and <inv S\rangle and n-d:<no-dup (trail S)\rangle
shows {\existsU. backjump S U\rangle
proof -
obtain C F' K FL C' where
tr: <trail S = F' @ Decided K \# F> and
C:<C\in\# \mp@subsup{clauses}{NOT}{}S\rangle\mathrm{ and}
T:\langleT~ prepend-trail (Propagated L ()) (reduce-trail-to NOT F (add-cls NOT
and
tr-C: <trail S =as CNot C> and
undef: <undefined-lit F L`and L:<atm-of L \inatms-of-mm (clauses NOT S) \cup atm-of`(lits-of-l (trail S))> and
S-C-L:<clauses NOT S }=pm add-mset L C'` and
F-C': \F\modelsas CNot C }\mp@subsup{}{}{\prime}\mathrm{ \ and
cond: <backjump-l-cond C C'L ST> and

```
dist：〈distinct－mset（add－mset L \(C^{\prime}\) ）〉 and
taut：〈 \(\neg\) tautology（add－mset L \(C^{\prime}\) ）〉
using bj by（elim backjump－lE）force
have \(\left\langle L \notin \# C^{\prime}\right.\) 〉
using dist by auto
show ？thesis
using backjump．intros［OF tr－C tr－C undef \(L S-C-L F-C]\) cond dist taut by auto
qed
Without additional knowledge on backjump－l－cond，it is impossible to have the same invariant．
sublocale dpll－with－backjumping－ops trail clauses \({ }_{N O T}\) prepend－trail tl－trail add－cls \(s_{N O T}\) remove－cls \({ }_{N O T}\) inv decide－conds backjump－conds propagate－conds
proof（unfold－locales，goal－cases）
case 1
\(\left\{\right.\) fix \(S S^{\prime}\)
assume bj：〈backjump－l \(\left.S S^{\prime}\right\rangle\)
then obtain \(F^{\prime} K F L C^{\prime} C D\) where
\(S^{\prime}:\left\langle S^{\prime} \sim\right.\) prepend－trail \((\) Propagated \(L())\left(\right.\) reduce－trail－to \({ }_{N O T} F\left(\right.\) add－cls \(\left.\left.\left._{N O T} D S\right)\right)\right\rangle\) and
tr－S：\(\left\langle\right.\) trail \(S=F^{\prime} @\) Decided \(\left.K \# F\right\rangle\) and
\(C:\left\langle C \in \#\right.\) clauses \(\left._{\text {NOT }} S\right\rangle\) and
tr－S－C：\(\langle\) trail \(S \models\) as CNot \(C\rangle\) and
undef－L：〈undefined－lit \(F L\rangle\) and
atm－L：
\(\left\langle a t m-o f L \in \operatorname{insert}(\right.\) atm－of \(K)\left(\right.\) atms－of－mm \(\left(\right.\) clauses \(\left._{N O T} S\right) \cup\) atm－of＇（lits－of－l \(F^{\prime} \cup\) lits－of－l \(\left.F\right)\) ）〉
and
cls－S－C＇：＜clauses \({ }_{N O T} S \models p m\) add－mset \(L C^{\prime}\) 〉 and
\(F-C^{\prime}:\left\langle F \models\right.\) as CNot \(\left.C^{\prime}\right\rangle\) and
dist：〈distinct－mset（add－mset \(L C^{\prime}\) ）〉 and
not－tauto：\(\left\langle\neg\right.\) tautology（add－mset \(L C^{\wedge}\) ）〉 and
cond：〈backjump－l－cond C \(\left.C^{\prime} L S S^{\prime}\right\rangle\)
\(\left\langle D=\right.\) add－mset \(\left.L C^{\prime}\right\rangle\)
by（elim backjump－lE）simp
interpret backjumping－ops trail clauses \(_{N O T}\) prepend－trail tl－trail add－cls \({ }_{N O T}\) remove－cls \({ }_{N O T}\)
backjump－conds
by unfold－locales
have \(\langle\exists T\) ．backjump \(S T\rangle\)
apply rule
apply（rule backjump．intros）
using \(t r-S\) apply simp
apply（rule state－eq \({ }_{N O T}-r e f\) ）
using \(C\) apply simp
using \(t r-S-C\) apply \(\operatorname{simp}\)
using undef－\(L\) apply \(\operatorname{simp}\)
using \(\mathrm{atm}-L\) tr－S apply simp
using \(c l s-S-C^{\prime}\) apply \(\operatorname{simp}\)
using \(F-C^{\prime}\) apply simp
using dist not－tauto cond by simp \}
then show ？case using 1 bj－merge－can－jump by meson
next
case 2
then show？case
using can－propagate－or－decide－or－backjump－l backjump－l－implies－exists－backjump by blast
qed
```

sublocale conflict-driven-clause-learning-ops trail clauses}\mp@subsup{N}{NOT}{
remove-cls NOT inv decide-conds backjump-conds propagate-conds
\langle\lambdaC -. distinct-mset C ^ ᄀtautology C>
forget-conds
by unfold-locales
lemma backjump-l-learn-backjump:
assumes bt:<backjump-l S T〉 and inv:〈inv S〉
shows }\exists\mp@subsup{C}{}{\prime}LD.learn S(add-cls NOt D S
\wedge D = add-mset L C'
^ backjump (add-cls NOT D S)T
\wedge atms-of (add-mset L C')\subseteqatms-of-mm (clausesNOT S)\cup atm-of `(lits-of-l (trail S)) proof - obtain C F' K F L l C' D where tr-S: <trail S = F' @ Decided K # F> and T:<T~ prepend-trail (Propagated L l) (reduce-trail-to NOT F (add-cls NOT D S))\rangle and C-cls-S: <C \in# clauses NOT S` and
tr-S-CNot-C: <trail S =as CNot C> and
undef: <undefined-lit F L`and atm-L:<atm-of L \in atms-of-mm (clauses NOT S) \cup atm-of` (lits-of-l (trail S))` and clss-C: <clauses NOT }S\modelspm D\rangle an D: <D = add-mset L C'\rangle <F\modelsas CNot C'} and distinct: <distinct-mset D> and not-tauto:〈\neg tautology D\rangle and cond: <backjump-l-cond C C' L S T\rangle using bt inv by (elim backjump-lE) simp have atms-C': \atms-of C'\subseteq atm-of ' (lits-of-l F)> by (metis D(2) atms-of-def image-subsetI true-annots-CNot-all-atms-defined) then have <atms-of (add-mset L C')\subseteqatms-of-mm (clauses NOT S) \cup atm-of ' (lits-of-l (trail S))> using atm-L tr-S by auto moreover have learn: <learn S (add-cls NOT D S)〉 apply (rule learn.intros) apply (rule clss-C) using atms-C' atm-L D apply (fastforce simp add: tr-S in-plus-implies-atm-of-on-atms-of-ms) apply standard apply (rule distinct) apply (rule not-tauto) apply simp done moreover have bj:\langlebackjump (add-cls NOT D S) T\rangle apply (rule backjump.intros[of - - - L C C \) using 〈F\modelsas CNot C'`C-cls-S tr-S-CNot-C undef T distinct not-tauto D cond
by (auto simp: tr-S state-eqNOT-def simp del: state-simp NOT)
ultimately show ?thesis using D by blast
qed
lemma backjump-l-backjump-learn:
assumes bt: 〈backjump-l S T\rangle and inv:〈inv S\rangle
shows }\exists\exists\mp@subsup{C}{}{\prime}LD\mp@subsup{S}{}{\prime}.backjump S S'
^learn S' T
\wedge D = (add-mset L C')
\wedgeT~add-cls NOT D S'
^atms-of (add-mset L C')\subseteqatms-of-mm (clauses NOT S)\cupatm-of '(lits-of-l (trail S))
^clauses

```
```

proof -
obtain C F' K F L l C' D where
tr-S: <trail S = F' @ Decided K \# F> and
T: <T ~ prepend-trail (Propagated L l) (reduce-trail-to NOT F (add-cls NOT D S))\rangle and
C-cls-S:〈C \in\# clauses NOT S` and tr-S-CNot-C:<trail S =as CNot C> and undef: <undefined-lit F L` and
atm-L:\atm-of L G atms-of-mm (clauses NOT S) \cup atm-of '(lits-of-l (trail S))` and clss-C:<clauses NOT }S\modelspmD\rangle\mathrm{ and D: <D = add-mset L C }\mp@subsup{\}{}{\prime <F\modelsas CNot C'> and distinct:<distinct-mset D> and not-tauto: <\neg tautology D> and cond: <backjump-l-cond C C'L S T> using bt inv by (elim backjump-lE) simp let?S'=\langleprepend-trail (Propagated L ()) (reduce-trail-toNOT F S)\rangle have atms-C': <atms-of C'\subseteq atm-of ' (lits-of-l F)\rangle by (metis D(2) atms-of-def image-subsetI true-annots-CNot-all-atms-defined) then have <atms-of (add-mset L C')\subseteqatms-of-mm (clauses NOT S)\cup atm-of '(lits-of-l (trail S))`
using atm-L tr-S by auto
moreover have learn: <learn ?S' T>
apply (rule learn.intros)
using clss-C apply auto[]
using atms-C' atm-L D apply (fastforce simp add: tr-S in-plus-implies-atm-of-on-atms-of-ms)
apply standard
apply (rule distinct)
apply (rule not-tauto)
using T apply (auto simp: tr-S state-eqNOT-def simp del: state-simp}\mp@subsup{|}{NOT}{}\mathrm{)
done
moreover have bj: <backjump S (prepend-trail (Propagated L ()) (reduce-trail-to NOT F S))〉
apply (rule backjump.intros[of S F' K F - L])
using <F\modelsas CNot C'` C-cls-S tr-S-CNot-C undef T distinct not-tauto D cond clss-C atm-L
by (auto simp: tr-S)
moreover have <T ~ (add-cls NOT D ?S')\rangle
using T by (auto simp: tr-S state-eqNOT-def simp del: state-simp (NOT)
ultimately show ?thesis
using D clss-C by blast
qed
lemma cdcl NOT-merged-bj-learn-is-tranclp-cdcl NOT :
<cdcl NOT-merged-bj-learn ST\Longrightarrow inv S\Longrightarrowcdcl NOT
proof (induction rule: cdcl NOT-merged-bj-learn.induct)
case (cdcl NOT-merged-bj-learn-decide NOT T)
then have \cdcl NOT}\ST
using bj-decide NOT cdcl NOT.simps by fastforce
then show ?case by auto
next
case (cdcl NOT-merged-bj-learn-propagate NOT T)
then have \langlecdcl NOT S T\rangle
using bj-propagate NOT cdcl NOT.simps by fastforce
then show ?case by auto
next
case (cdcl NOT-merged-bj-learn-forget }\mp@subsup{N}{NOT}{}T\mathrm{ T)
then have }\langlecdc\mp@subsup{l}{NOT}{}ST
using c-forget }\mp@subsup{N}{NOT}{}\mathrm{ by blast
then show ?case by auto

```
```

next
case (cdcl NOT-merged-bj-learn-backjump-l T) note bt = this(1) and inv = this(2)
obtain }\mp@subsup{C}{}{\prime}::\mp@subsup{<'v}{\prime}{v}\mathrm{ clause > and L :: <'v literal> and D :: <'v clause> where
f3:<learn S (add-clsNOT DS)^
backjump (add-cls NOT D S) T ^
atms-of (add-mset L C')\subseteqatms-of-mm (clauses }\mp@subsup{\}{NOT}{\prime}S)\cup\mathrm{ atm-of 'lits-of-l (trail S)> and
D: <D = add-mset L C'
using backjump-l-learn-backjump[OF bt inv] by blast
then have f4: <cdcl NOT S (add-cls NOT D S)\rangle
using c-learn by blast
have <cdcl NOT (add-cls NOT D S) T>
using f3 bj-backjump c-dpll-bj by blast
then show ?case
using f4 by (meson tranclp.r-into-trancl tranclp.trancl-into-trancl)
qed
lemma rtranclp-cdcl NOT-merged-bj-learn-is-rtranclp-cdcl }\mp@subsup{N}{NOT}{
<cdcl NOT-merged-bj-learn** ST\Longrightarrowinv S\Longrightarrowcdcl NOT**}ST^inv T
proof (induction rule: rtranclp-induct)
case base
then show ?case by auto
next
case (step T U) note st = this(1) and cdcl NOT = this(2) and IH = this(3)[OF this(4-)] and
inv = this(4)
have <cdcl NOT** T U
using cdcl NOT-merged-bj-learn-is-tranclp-cdcl lot [OF cdcl NOT
inv by auto
then have }\langlecdc\mp@subsup{l}{NOT}{**}SU\rangle\mathrm{ using IH by fastforce
moreover have <inv U> using IH cdcl NOT cdcl-merged-inv inv by blast
ultimately show ?case using st by fast
qed
lemma rtranclp-cdcl NOT-merged-bj-learn-is-rtranclp-cdcl NOT
<cdcl NOT-merged-bj-learn** }ST\Longrightarrowinv S\Longrightarrowcdcl NOT** ST
using rtranclp-cdcl NOT-merged-bj-learn-is-rtranclp-cdcl NOT-and-inv by blast
lemma rtranclp-cdcl NOT-merged-bj-learn-inv:
<cdcl NOT-merged-bj-learn** ST\Longrightarrow inv S\Longrightarrowinv T>
using rtranclp-cdcl NOT-merged-bj-learn-is-rtranclp-cdcl }\mp@subsup{N}{NOT-and-inv by blast}{
lemma rtranclp-cdcl NOT-merged-bj-learn-no-dup-inv:
〈cdcl NOT-merged-bj-learn** S T \Longrightarrow no-dup (trail S) \Longrightarrow no-dup (trail T)>
by (induction rule: rtranclp-induct) (auto simp:cdcl NOT-merged-bj-learn-no-dup-inv)
definition }\mp@subsup{\mu}{C}{\prime
< \mp@subsup{\mu}{C}{\prime}}\mp@subsup{}{}{\prime}AT\equiv\mp@subsup{\mu}{C}{}(1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T)
definition }\mp@subsup{\mu}{CDCL}{C}'\mathrm{ -merged :: <'v clause set }=>\mathrm{ 'st }=>\mathrm{ nat> where
< }\mp@subsup{\mu}{CDCL''-merged A T }{\mathrm{ N}
((2+card (atms-of-ms A))^ (1+card (atms-of-ms A)) - \mp@subsup{\mu}{C}{\prime}}
T))>
lemma cdcl $_{\text {NOT- }}$-decreasing-measure':
assumes
<cdcl }\mp@subsup{N}{NOT-merged-bj-learn ST> and}{
inv: <inv S> and

```
```

 atm-clss: <atms-of-mm (clauses }\mp@subsup{~}{NOT}{}S)\subseteqatms-of-ms A> and
 atm-trail: <atm-of 'lits-of-l (trail S)\subseteqatms-of-ms A` and
 n-d:<no-dup (trail S)\rangle and
 fin-A: <finite A\rangle
    ```

```

 using assms(1)
 proof induction
case (cdcl NOT-merged-bj-learn-decide NOT T)
have <clauses
using cdcl NOT-merged-bj-learn-decide NOT.hyps by auto
moreover have
<(2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
- - \muC (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
< (2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
- \mu
apply (rule dpll-bj-trail-mes-decreasing-prop)
using cdcl NOT-merged-bj-learn-decide NOT fin-A atm-clss atm-trail n-d inv
by (simp-all add: bj-decide NOT cdcl NOT-merged-bj-learn-decide NOT.hyps)
ultimately show ?case
unfolding }\mp@subsup{\mu}{CDCL}{\prime}\mp@subsup{}{}{\prime}\mathrm{ -merged-def }\mp@subsup{\mu}{C}{\prime}\mp@subsup{}{}{\prime}\mathrm{ -def by simp
next
case (cdcl NOT-merged-bj-learn-propagate NOT T)
have <clauses }\mp@subsup{\mp@code{NOT}}{}{\prime}S=\mp@subsup{\mathrm{ clauses}}{NOT}{}T
using cdcl NOT-merged-bj-learn-propagate NOT.hyps
by (simp add: bj-propagate NOT inv dpll-bj-clauses)
moreover have
<(2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
- 的 (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
< (2 + card (atms-of-msA))^ (1 + card (atms-of-ms A))
- \mu
apply (rule dpll-bj-trail-mes-decreasing-prop)
using inv n-d atm-clss atm-trail fin-A by (simp-all add: bj-propagate NOT
cdcl NOT-merged-bj-learn-propagate NOT.hyps)
ultimately show ?case
unfolding }\mp@subsup{\mu}{CDCL}{\prime}\mp@subsup{}{}{\prime}\mathrm{ -merged-def }\mp@subsup{\mu}{C}{\prime}\mp@subsup{}{}{\prime}\mathrm{ -def by simp
next
case (cdcl NOT-merged-bj-learn-forget NOT T)
have <card (set-mset (clauses NOT T)) < card (set-mset (clauses NOT S))>
using 〈forget }\mp@subsup{}{NOT}{}ST\rangle\mathrm{ by (metis card-Diff1-less clauses-remove-cls NOT finite-set-mset
forget
moreover
have \langletrail S = trail T>
using \langleforget NOT ST\rangle by (auto elim: forget NOT E)
then have
<(2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
- - <C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
=(2 + card (atms-of-ms A))^ (1 + card (atms-of-ms A))
- \mu
by auto
ultimately show ?case
unfolding }\mp@subsup{\mu}{CDCL}{\prime}\mp@subsup{}{}{\prime}\mathrm{ -merged-def }\mp@subsup{\mu}{C}{\prime}\mp@subsup{}{}{\prime}\mathrm{ -def by simp
next
case (cdcl NOT-merged-bj-learn-backjump-l T) note bj-l = this(1)
obtain C' L D S' where
learn: <learn S' T\rangle and
bj: <backjump S S'` and

```
    atms-C: <atms-of \(\left(\right.\) add-mset \(\left.L C^{\prime}\right) \subseteq\) atms-of-mm \(\left(\right.\) clauses \(\left._{N O T} S\right) \cup\) atm-of ' \((\) lits-of-l \((\) trail \(S))\) )
and
    \(D:\left\langle D=\right.\) add-mset \(\left.L C^{\prime}\right\rangle\) and
    \(T:\left\langle T \sim a d d-c l s_{N O T} D S^{\prime}\right\rangle\)
    using bj-l inv backjump-l-backjump-learn [of \(S\) ] \(n\)-d atm-clss atm-trail by blast
    have card-T-S: 〈card (set-mset \(\left(\right.\) clauses \(\left.\left._{N O T} T\right)\right) \leq 1+\operatorname{card}\left(\right.\) set-mset \(\left(\right.\) clauses \(\left.\left.\left._{N O T} S\right)\right)\right\rangle\)
    using bj-l inv by (force elim!: backjump-lE simp: card-insert-if)
    have \(\operatorname{tr}\) - \(S\) - \(T\) : 〈trail-weight \(S^{\prime}=\) trail-weight \(\left.T\right\rangle\)
    using \(T\) by auto
    have
    \(\langle((2+\) card \((\) atms-of-ms A) \() \wedge(1+\) card (atms-of-ms A))
        \(-\mu_{C}(1+\operatorname{card}(\) atms-of-ms \(A))\left(2+\operatorname{card}(\right.\) atms-of-ms A) \()\left(\right.\) trail-weight \(\left.\left.S^{\prime}\right)\right)\)
    \(<\left((2+\operatorname{card}(a t m s-o f-m s A))^{\wedge}(1+\right.\) card (atms-of-ms A))
        \(-\mu_{C}(1+\operatorname{card}(a t m s-o f-m s A))(2+\operatorname{card}(a t m s-o f-m s A))\)
                (trail-weight \(S\) )) >
    apply (rule dpll-bj-trail-mes-decreasing-prop)
                using bj bj-backjump apply blast
            using inv apply blast
            using atms-C atm-clss atm-trail \(D\) apply (simp add: n-d; fail)
            using atm-trail n-d apply (simp; fail)
            apply (simp add: \(n\) - \(d\); fail)
    using fin- \(A\) apply (simp; fail)
    done
    then show ?case
    using card-T-S unfolding \(\mu_{C D C L}{ }^{\prime}\)-merged-def \(\mu_{C}{ }^{\prime}\)-def tr-S-T by linarith
qed
lemma \(w f\)-cdcl \({ }_{\text {NOT }}\)-merged-bj-learn:
    assumes
        fin-A: \(\langle\) finite \(A\rangle\)
    shows \(\langle w f\{(T, S)\).
        \(\left(\right.\) inv \(S \wedge\) atms-of-mm \(\left(\right.\) clauses \(\left._{N O T} S\right) \subseteq\) atms-of-ms \(A \wedge\) atm-of 'lits-of-l (trail \(\left.S\right) \subseteq\) atms-of-ms \(A\)
        \(\wedge\) no-dup (trail \(S)\) )
        \(\wedge c d c l_{N O T}\)-merged-bj-learn \(\left.S T\right\}\) )
    apply (rule wfP-if-measure[of \(-\left\langle\mu_{C D C L}{ }^{\prime}\right.\)-merged \(\left.\left.A\right\rangle\right]\) )
    using cdcl \(_{\text {NOT- }}\)-decreasing-measure' \(\operatorname{fin-A}\) by simp
lemma in-atms-neg-defined: \(\left\langle x \in\right.\) atms-of \(C^{\prime} \Longrightarrow F \models\) as CNot \(C^{\prime} \Longrightarrow x \in\) atm-of ' lits-of-l \(\left.F\right\rangle\)
    by (metis (no-types, lifting) atms-of-def imageE true-annots-CNot-all-atms-defined)
lemma \(c d c l_{N O T-m e r g e d-b j-l e a r n-a t m s-o f-m s-c l a u s e s-d e c r e a s i n g: ~}^{\text {: }}\)
    assumes \(\left\langle c d c l_{\text {NOT-merged-bj-learn }} S T\right\rangle\) and \(\langle i n v S\rangle\)
    shows <atms-of-mm \(\left(\right.\) clauses \(\left._{N O T} T\right) \subseteq\) atms-of-mm \(\left(\right.\) clauses \(\left._{N O T} S\right) \cup\) atm-of ' (lits-of-l (trail S)) 〉
    using assms
    apply (induction rule: \(c d c l_{N O T-m e r g e d-b j-l e a r n . i n d u c t) ~}^{\text {( }}\)
        prefer 4 apply (auto dest!: dpll-bj-atms-of-ms-clauses-inv set-mp
            simp add: atms-of-ms-def Union-eq
            elim!: decide NOT \(E\) propagate \(_{N \text { Ot }} E\) forget \(\left._{\text {NOT }} E\right)[3]\)
    apply (elim backjump-lE)
    by (auto dest!: in-atms-neg-defined simp del:)
lemma \(c d c l_{N O T-m e r g e d-b j-l e a r n-a t m s-i n-t r a i l-i n-s e t: ~}^{\text {N }}\)
    assumes
    \(\left\langle c d c l_{\text {NOT-merged-bj-learn }} S T\right\rangle\) and \(\langle i n v S\rangle\) and
    \(\left\langle a t m s\right.\)-of-mm \(\left(\right.\) clauses \(\left.\left._{N O T} S\right) \subseteq A\right\rangle\) and
    \(\langle\) atm-of ' \((\) lits-of-l \((\) trail \(S)) \subseteq A\rangle\)
```

shows <atm-of '(lits-of-l (trail T))\subseteqA>
using assms
apply (induction rule: cdcl NOT-merged-bj-learn.induct)
apply (meson bj-decide NOT dpll-bj-atms-in-trail-in-set)
apply (meson bj-propagate NOT dpll-bj-atms-in-trail-in-set)
defer
apply (metis forget NOT E state-eqNOT-trail trail-remove-cls NOT)
by (metis (no-types, lifting) backjump-l-backjump-learn bj-backjump dpll-bj-atms-in-trail-in-set
state-eqNOT-trail trail-add-cls NOT)

```
lemma rtranclp-cdcl \({ }_{N O T}\)-merged-bj-learn-trail-clauses-bound:
    assumes
    \(c d c l:\left\langle c d c l_{N O T-m e r g e d-b j-l e a r n * * ~}^{*} S T\right\rangle\) and
    inv: 〈inv \(S\) 〉 and
    atms-clauses-S: \(\left\langle a t m s\right.\)-of-mm \(\left(\right.\) clauses \(\left.\left._{N O T} S\right) \subseteq A\right\rangle\) and
    atms-trail-S: <atm-of '(lits-of-l (trail \(S)\) ) \(\subseteq A\rangle\)
    shows \(\left\langle\right.\) atm-of ' \((\) lits-of-l \((\) trail \(T)) \subseteq A \wedge\) atms-of-mm \(\left(\right.\) clauses \(\left._{N O T} T\right) \subseteq A\) 〉
    using \(c d c l\)
proof (induction rule: rtranclp-induct)
    case base
    then show ?case using atms-clauses-S atms-trail-S by simp
next
    case \((\) step \(T U)\) note \(s t=\) this(1) and \(c d c l_{N O T}=\) this(2) and \(I H=\) this(3)
    have \(\langle i n v ~ T\rangle\) using inv st rtranclp-cdcl \({ }_{N O T}\)-merged-bj-learn-is-rtranclp-cdcl \(l_{N O T}\)-and-inv by blast
    then have \(\left\langle\right.\) atms-of-mm \(\left(\right.\) clauses \(\left._{N O T} U\right) \subseteq A\) 〉
        using \(c d c l_{N_{O T}-m e r g e d-b j-l e a r n-a t m s-o f-m s-c l a u s e s-d e c r e a s i n g ~}^{c d c l} l_{N O T} I H\langle i n v ~ T\rangle\) by fast
    moreover
        have \(\langle\) atm-of '(lits-of-l \((\) trail \(U)) \subseteq A\) 〉
            using \(c d c l_{N O T}\)-merged-bj-learn-atms-in-trail-in-set \([\) of \(-A]\langle i n v T\rangle c d c l_{N O T}\) step.IH by auto
    ultimately show ?case by fast
qed
lemma \(c d c l_{\text {NOT-merged-bj-learn-trail-clauses-bound: }}\)
    assumes
        \(c d c l:\left\langle c d c l_{N O T}\right.\)-merged-bj-learn \(\left.S T\right\rangle\) and
        inv: 〈inv \(S\rangle\) and
        atms-clauses- \(S:\left\langle a t m s\right.\)-of-mm \(\left(\right.\) clauses \(\left.\left._{N O T} S\right) \subseteq A\right\rangle\) and
        atms-trail-S: \(\langle\) atm-of ' (lits-of-l (trail \(S)) \subseteq A\) 〉
    shows \(\left\langle\right.\) atm-of ' \((\) lits-of-l \((\) trail \(T)) \subseteq A \wedge\) atms-of-mm \(\left(\right.\) clauses \(\left._{N O T} T\right) \subseteq A\) 〉
    using rtranclp-cdcl \({ }_{N O T}\)-merged-bj-learn-trail-clauses-bound \([\) of \(S T\) ] assms by auto
lemma tranclp-cdcl \({ }_{\text {NOT- }}-c d c l_{N O T}\)-tranclp:
    assumes
        \(\left\langle c d c l_{\text {NOT-merged-bj-learn }}{ }^{++} S T\right\rangle\) and
        inv: \(\langle i n v S\rangle\) and
        atm-clss: \(\left\langle a t m s\right.\)-of-mm (clauses \(\left.{ }_{\text {NOt }} S\right) \subseteq a t m s\)-of-ms \(A\) ) and
        atm-trail: \(\langle a t m-o f\) ' lits-of-l (trail \(S\) ) \(\subseteq\) atms-of-ms \(A\rangle\) and
        \(n-d:\langle n o-d u p(t r a i l S)\rangle\) and
    fin- \(A[\) simp \(]\) : 〈finite \(A\) 〉
    shows \(\langle(T, S) \in\{(T, S)\).
        (inv \(S \wedge\) atms-of-mm \(\left(\right.\) clauses \(\left._{N O T} S\right) \subseteq\) atms-of-ms \(A \wedge\) atm-of'lits-of-l (trail \(S\) ) \(\subseteq\) atms-of-ms \(A\)
    \(\wedge\) no-dup (trail \(S\) ))
    \(\wedge c d c l_{N O T}\)-merged-bj-learn \(\left.\left.S T\right\}^{+}\right\rangle\left(\right.\)is \(\left.\left\langle-\in ? P^{+}\right\rangle\right)\)
    using \(\operatorname{assms}(1)\)
proof (induction rule: tranclp-induct)
    case base
then show ？case using \(n\)－d atm－clss atm－trail inv by auto
next
case \((\) step \(T U)\) note \(s t=\) this（1）and \(c d c l_{N O T}=\) this（2）and \(I H=\) this（3）
have st：〈cdcl \({ }_{\text {NOT－}}\)－merged－bj－learn＊＊\(\left.S T\right\rangle\)
using［［simp－trace］］
by（simp add：rtranclp－unfold st）
have \(\left\langle c d c l_{N O T}{ }^{* *} S T\right\rangle\)
apply（rule rtranclp－cdcl \(l_{\text {NOT－merged－bj－learn－is－rtranclp－cdcl }}^{N O T}\) ）
using st cdcl \({ }_{N O T}\) inv n－d atm－clss atm－trail inv by auto
have 〈inv \(T\) 〉
apply（rule rtranclp－cdcl \({ }_{N O T}\)－merged－bj－learn－inv）
using inv st cdcl \(l_{N O T} n\)－d atm－clss atm－trail inv by auto
moreover have \(\left\langle a t m s\right.\)－of－mm \(\left(\right.\) clauses \(\left._{N O T} T\right) \subseteq\) atms－of－ms \(A\) 〉
using rtranclp－cdcl \({ }_{N O T}\)－merged－bj－learn－trail－clauses－bound［OF st inv atm－clss atm－trail］
by fast
moreover have＜atm－of＇（lits－of－l（trail T））\(\subseteq\) atms－of－ms A＞
using rtranclp－cdcl \({ }_{N O T}\)－merged－bj－learn－trail－clauses－bound［OF st inv atm－clss atm－trail］ by fast
moreover have 〈no－dup（trail T）＞
using rtranclp－cdcl \({ }_{N O T}\)－merged－bj－learn－no－dup－inv［OF st n－d］by fast
ultimately have \(\langle(U, T) \in ? P\rangle\)
using \({c d c l_{N O T}}\) by auto
then show ？case using \(I H\) by（simp add：trancl－into－trancl2）
qed
lemma wf－tranclp－cdcl \({ }_{N O T}\)－merged－bj－learn：
assumes \(\langle\) finite \(A\rangle\)
shows \(\langle w f\{(T, S)\) ．
\(\left(\right.\) inv \(S \wedge\) atms－of－mm \(\left(\right.\) clauses \(\left._{N O T} S\right) \subseteq\) atms－of－ms \(A \wedge\) atm－of＇lits－of－l（trail \(\left.S\right) \subseteq\) atms－of－ms \(A\)
\(\wedge\) no－dup（trail S））
\(\wedge c d c l_{\text {NOT－merged－bj－learn }}{ }^{++}\)ST\}>
apply（rule wf－subset）
apply（rule wf－trancl［ OF wf－cdcl \({ }_{N O T}\)－merged－bj－learn］\()\)
using assms apply simp
using tranclp－cdcl \({ }_{N O T}-c d c l_{N O T}-\operatorname{tranclp}[O F---\langle\) inite \(A\rangle]\) by auto
lemma \(c d c l_{N O T-m e r g e d-b j-l e a r n-f i n a l-s t a t e: ~}\)
fixes \(A::\langle ' v\) clause set \(>\) and \(S T::\langle ' s t\rangle\)
assumes
\(n\)－s：〈no－step \(\left.c d c l_{\text {NOT－merged－bj－learn }} S\right\rangle\) and
atms－S：〈atms－of－mm clauses \(\left._{N O T} S\right) \subseteq\) atms－of－ms \(A\) ）and
atms－trail：〈atm－of＇lits－of－l（trail S）\(\subseteq\) atms－of－ms \(A\) 〉 and
\(n\)－d：\(\langle n o-d u p(\) trail \(S\) ）\(\rangle\) and
\(\langle\) finite \(A\) 〉 and
inv：〈inv \(S\) 〉 and
decomp：〈all－decomposition－implies－m（clauses \({ }_{N O T} S\) ）（get－all－ann－decomposition（trail S））〉
shows＜unsatisfiable（set－mset（clauses \({ }_{N O T} S\) ））

proof－
let ？\(N=\left\langle\right.\) set－mset \(\left(\right.\) clauses \(\left.\left._{N O T} S\right)\right\rangle\)
let ？\(M=\langle\) trail \(S\rangle\)
consider
（sat）〈satisfiable ？\(N\) 〉 and 〈？\(M \models\) as ？\(N\rangle\)
\(\mid(s a t ’)\langle s a t i s f i a b l e ? ~ N\rangle\) and \(\langle\neg\) ？\(M \models a s\) ？\(N\rangle\)
｜（unsat）〈unsatisfiable？\(N\) 〉
by auto
```

then show ?thesis
proof cases
case sat' note sat = this(1) and M = this(2)
obtain C where \langleC\in?N\rangle and }\neg\neg\mathrm{ ? M }\modelsaC\rangle\mathrm{ using M unfolding true-annots-def by auto
obtain I :: <'v literal set> where
<I\modelss ?N> and
cons: 〈consistent-interp I\rangle and
tot: \langletotal-over-m I ?N\rangle and
atm-I-N: <atm-of 'I }\subseteqatms-of-ms ?N
using sat unfolding satisfiable-def-min by auto
let ?I = \I\cup{P| P. P lits-of-l ?M ^ atm-of P \# atm-of' I}>
let ?O = <{unmark L |L. is-decided L}\wedgeL\in set?M ^atm-of (lit-of L) \# atms-of-ms ?N}>
have cons-I': \consistent-interp ?I` using cons using <no-dup ?M> unfolding consistent-interp-def by (auto simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set lits-of-def dest!: no-dup-cannot-not-lit-and-uminus) have tot-I':〈total-over-m ?I (?N \cup unmark-l ?M)> using tot atms-of-s-def unfolding total-over-m-def total-over-set-def by (fastforce simp: image-iff) have <{P|P.P lits-of-l ?M ^ atm-of P # atm-of ' I} =s ?O`
using \I\modelss ?N` atm-I-N by (auto simp add: atm-of-eq-atm-of true-clss-def lits-of-def) then have I' using \langleI\modelss ?N\rangle true-clss-union-increase by force have tot': <total-over-m ?I (?N\cup?O)> using atm-I-N tot unfolding total-over-m-def total-over-set-def by (force simp:lits-of-def elim!: is-decided-ex-Decided) have atms-N-M:\atms-of-ms?N\subseteqatm-of 'lits-of-l ?M`
proof (rule ccontr)
assume «\neg ?thesis
then obtain l:: 'v where
l-N: <l\inatms-of-ms ?N> and
l-M:〈l \& atm-of`lits-of-l?M`
by auto
have <undefined-lit ?M (Pos l)>
using l-M by (metis Decided-Propagated-in-iff-in-lits-of-l
atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set literal.sel(1))
then show False
using can-propagate-or-decide-or-backjump-l[of \langlePos l\rangle S] l-N
cdcl NOT-merged-bj-learn-decide NOT n-s inv sat
by (auto dest!:cdcl NOT-merged-bj-learn.intros)
qed
have <?M \modelsas CNot C` apply (rule all-variables-defined-not-imply-cnot) using atms-N-M〈C\in?N〉\langle\neg ?M =a C` atms-of-atms-of-ms-mono[OF〈C\in?N`] by (auto dest: atms-of-atms-of-ms-mono) have {\existsl\in set ?M. is-decided l> proof (rule ccontr) let ?O = {{unmark L |L. is-decided L ^L set?M ^ atm-of (lit-of L) #atms-of-ms ?N}> have \vartheta[iff]:〈\I. total-over-m I (?N \cup ?O \cup unmark-l ?M) total-over-m I (?N Uunmark-l ?M)> unfolding total-over-set-def total-over-m-def atms-of-ms-def by blast assume <\neg ?thesis`
then have [simp]::{unmark L |L. is-decided L}\wedgeL\in set?M
= {unmark L |L. is-decided L ^L\in set ?M ^atm-of (lit-of L) \#atms-of-ms ?N}>

```
by auto
then have 〈？\(N \cup\) ？\(O \models p s\) unmark－l ？\(M\) 〉
using all－decomposition－implies－propagated－lits－are－implied［OF decomp］by auto
then have \(\langle ? I \models s\) unmark－l ？\(M\) 〉
using cons－\(I^{\prime} I^{\prime}-N\) tot－\(I^{\prime}\langle ? I \models s\) ？\(N \cup\) ？\(O\) 〉 unfolding \(\vartheta\) true－clss－clss－def by blast
then have 〈lits－of－l ？\(M \subseteq\) ？I〉
unfolding true－clss－def lits－of－def by auto
then have \(\langle ? M \models\) as ？\(N\) 〉
using \(I^{\prime}-N\langle C \in\) ？\(N\rangle\langle\neg\) ？\(M \models a C\rangle\) cons－\(I^{\prime}\) atms－\(N-M\)
by（meson 〈trail \(S \models\) as CNot \(C\) 〉consistent－CNot－not rev－subsetD sup－ge1 true－annot－def true－annots－def true－cls－mono－set－mset－l true－clss－def）
then show False using \(M\) by fast
qed
from List．split－list－first－prop \(E[O F\) this \(]\) obtain \(K:: \iota^{\prime} v\) literal \(\rangle\) and \(d::\) unit and
\(F F^{\prime}:: 〈(' v\), unit）ann－lits〉 where
\(M-K:\left\langle ? M=F^{\prime} @\right.\) Decided \(\left.K \# F\right\rangle\) and
\(n m:\left\langle\forall f \in\right.\) set \(F^{\prime}\) ．\(\neg i s\)－decided \(\left.f\right\rangle\)
by（metis（full－types）is－decided－ex－Decided old．unit．exhaust）
let ？\(K=\langle\) Decided \(K::(' v\) ，unit）ann－lit \(\rangle\)
have \(\langle ? K \in\) set ？M）
unfolding \(M-K\) by auto
let ？\(C=\langle\) image－mset lit－of \(\{\# L \in \#\) mset ？\(M\) ．is－decided \(L \wedge L \neq ? K \#\}::\)＇v clause〉
let ？\(C^{\prime}=\left\langle\right.\) set－mset（image－mset \(\left(\lambda L::{ }^{\prime} v\right.\) literal．\(\left.\{\# L \#\}\right)(? C+\) unmark ？\(K)\) ）\(\rangle\)
have \(\langle ? N \cup\) \｛unmark \(L| L\) ．is－decided \(L \wedge L \in\) set ？\(M\} \models p s\) unmark－l ？\(M\) 〉
using all－decomposition－implies－propagated－lits－are－implied［OF decomp］．
moreover have \(C^{\prime}:\left\langle ? C^{\prime}=\{\right.\) unmark \(L \mid L\) ．is－decided \(L \wedge L \in\) set ？\(\left.M\}\right\rangle\)
unfolding \(M-K\) apply standard
apply force
by auto
ultimately have \(N-C-M:\left\langle ? N \cup\right.\) ？\(C^{\prime} \models p s\) unmark－l ？\(M\) 〉
by auto
have \(N\)－M－False：〈？\(N \cup(\lambda L\) ．unmark \(L)\)＇\((\) set \(? M) \models p s\{\{\#\}\}\rangle\)
unfolding true－clss－clss－def true－annots－def Ball－def true－annot－def
proof（intro allI impI）
fix \(L L\) ：：＇v literal set
assume
tot：〈total－over－m LL（set－mset \(\left(\right.\) clauses \(\left._{N O T} S\right) \cup\) unmark－l \((\) trail \(\left.\left.S) \cup\{\{\#\}\}\right)\right\rangle\) and cons：\(\langle\) consistent－interp \(L L\rangle\) and
\(L L:\left\langle L L \models\right.\) s set－mset \(\left(\right.\) clauses \(\left._{N O T} S\right) \cup\) unmark－l（trail \(S\) ）＞
have 〈total－over－m LL \((\operatorname{CNot} C)\rangle\)
by（metis \(\left\langle C \in \#\right.\) clauses \(\left._{N O T} S\right\rangle\) insert－absorb tot total－over－m－CNot－toal－over－m total－over－m－insert total－over－m－union）
then have total－over－m LL（unmark－l（trail S）\(\cup\) CNot \(C\) ）
using tot by force
then show \(L L \models s\{\{\#\}\}\)
using tot cons \(L L\)
by（metis（no－types）\(\left\langle C \in \#\right.\) clauses \(\left._{\text {NOT }} S\right\rangle\langle\) trail \(S \models\) as \(C N o t C\rangle\) consistent－CNot－not true－annots－true－clss－clss true－clss－clss－def true－clss－def true－clss－union）
qed
have 〈undefined－lit \(F K\) 〉 using 〈no－dup ？\(M\) 〉 unfolding \(M\)－\(K\) by（auto simp：defined－lit－map）
moreover \｛
have 〈？\(N \cup ? C^{\prime} \models p s\{\{\#\}\}\) 〉
proof－
have \(A:\left\langle ? N \cup ? C^{\prime} \cup\right.\) unmark－l \(? M=? N \cup\) unmark－l ？\(M\) 〉
```

 unfolding M-K by auto
 show ?thesis
 using true-clss-clss-left-right[OF N-C-M, of <{{#}}>] N-M-False unfolding A by auto
 qed
 have 〈?N }=p\mathrm{ image-mset uminus ?C + {#-K#}`
 unfolding true-clss-cls-def true-clss-clss-def total-over-m-def
 proof (intro allI impI)
 fix I
 assume
 tot:<total-over-set I (atms-of-ms (?N \cup{image-mset uminus ?C+ {#-K#}}))> and
 cons: <consistent-interp I` and
 \I\modelss ?N>
 have <(K\inI\wedge -K\not\inI)\vee (-K\inI^K\not\inI)>
 using cons tot unfolding consistent-interp-def by (cases K) auto
 have }\langle{a\in\mathrm{ set (trail S). is-decided a^a#= Decided K}=
 set (trail S) \cap{L. is-decided L}\wedgeL\not=Decided K})
 by auto
 then have tot': <total-over-set I
 (atm-of'lit-of '(set ?M \cap {L. is-decided L ^L\not= Decided K}))>
 using tot by (auto simp add: atms-of-uminus-lit-atm-of-lit-of)
 { fix x :: <('v, unit) ann-lit>
 assume
 a3: <lit-of x # I\rangle and
 a1:}\langlex\in\mathrm{ set ?M> and
 a4: <is-decided x\rangle and
 a5: 〈x\not= Decided K>
 then have }\langle\operatorname{Pos}(\mathrm{ atm-of (lit-of x)) GI V Neg (atm-of (lit-of x)) }\inI
 using a5 a4 tot' a1 unfolding total-over-set-def atms-of-s-def by blast
 moreover have f6: <Neg (atm-of (lit-of x)) = - Pos (atm-of (lit-of x))〉
 by simp
 ultimately have <- lit-of x
 using f6 a3 by (metis (no-types) atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
 literal.sel(1))
 } note H=this
 have \langle\negI\modelss ? C'\rangle
 using 〈?N \cup ?C' \modelsps {{#}}> tot cons \langleI\modelss?N>
 unfolding true-clss-clss-def total-over-m-def
 by (simp add: atms-of-uminus-lit-atm-of-lit-of atms-of-ms-single-image-atm-of-lit-of)
 then show <I\models image-mset uminus?C + {#-K#}>
 unfolding true-clss-def true-cls-def Bex-def
 using <(K\inI\wedge-K\not\inI)\vee (-K\inI\wedgeK\not\inI)\rangle
 by (auto dest!: H)
 qed }
 moreover have 〈F\modelsas CNot (image-mset uminus ?C)>
 using nm unfolding true-annots-def CNot-def M-K by (auto simp add: lits-of-def)
 ultimately have False
 using bj-merge-can-jump[of S F' K F C <-K\rangle
 <image-mset uminus (image-mset lit-of {#L:# mset ?M. is-decided L ^L\not= Decided K#})^]
 <C\in?N` n-s <?M \modelsas CNot C> bj-backjump inv sat unfolding M-K
 by (auto simp: cdcl NOT-merged-bj-learn.simps)
 then show ?thesis by fast
 qed auto
 qed
lemma $c d c l_{N O T-m e r g e d-b j-l e a r n-a l l-d e c o m p o s i t i o n-i m p l i e s: ~}^{\text {al }}$

```
assumes \(\left\langle c d c l_{N O T-m e r g e d-b j-l e a r n ~} S T\right\rangle\) and inv：\(\langle i n v S\rangle\)
〈all－decomposition－implies－m（clauses \(\left.{ }_{N O T} S\right)\)（get－all－ann－decomposition（trail S））〉
shows
〈all－decomposition－implies－m（clauses \(\left.{ }_{N O T} T\right)(\) get－all－ann－decomposition \((\) trail \(\left.T))\right\rangle\)
using assms
proof（induction rule：\(c d c l_{N O T-m e r g e d-b j-l e a r n . i n d u c t) ~}^{\text {（ }}\) ）
case \(\left(c d c l_{N O T}\right.\)－merged－bj－learn－backjump－l \(T\) ）note \(b j-l=\) this（1）
obtain \(C^{\prime} L D S^{\prime}\) where
learn：〈learn \(S^{\prime} T\) ）and
\(b j:\left\langle b a c k j u m p ~ S S^{\prime}\right\rangle\) and
atms－C：＜atms－of \(\left(\right.\) add－mset \(\left.L C^{\prime}\right) \subseteq\) atms－of－mm \(\left(\right.\) clauses \(\left._{N O T} S\right) \cup\) atm－of＇\((\) lits－of－l（trail \(S)\) ）\(\rangle\)
and
\(D:\left\langle D=\right.\) add－mset \(\left.L C^{\prime}\right\rangle\) and
\(T:\left\langle T \sim a d d-c l s_{N O T} D S^{\prime}\right\rangle\)
using bj－l inv backjump－l－backjump－learn［of S］by blast
have 〈all－decomposition－implies－m（clauses \(\left.N O T S^{\prime}\right)\left(\right.\) get－all－ann－decomposition（trail \(\left.S^{\prime}\right)\) ）〉
using bj bj－backjump dpll－bj－clauses inv（1）inv（2）
by（fastforce simp：dpll－bj－all－decomposition－implies－inv）
then show？case
using \(T\) by（auto simp：all－decomposition－implies－insert－single）
qed（auto simp：dpll－bj－all－decomposition－implies－inv cdcl \(_{\text {NOT－all－decomposition－implies }}\) dest！：dpll－bj．intros cdcl \({ }_{N O T}\) ．intros）
lemma rtranclp－cdcl \({ }_{N O T-m e r g e d-b j-l e a r n-a l l-d e c o m p o s i t i o n-i m p l i e s: ~}^{\text {O }}\)
assumes \(\left\langle c d c l_{N O T-m e r g e d-b j-l e a r n * * ~}^{*} S\right.\)＞and inv：\(\langle i n v S\rangle\)
〈all－decomposition－implies－m clauses \(\left._{\text {NOT }} S\right)\)（get－all－ann－decomposition（trail S））〉
shows
\(\left\langle\right.\) all－decomposition－implies－m clauses \(\left._{\text {NOT }} T\right)\)（get－all－ann－decomposition（trail T））〉
using assms
apply（induction rule：rtranclp－induct）
apply simp
using \(c d c l_{\text {NOT－merged－bj－learn－all－decomposition－implies }}\)
rtranclp－cdcl \({ }_{\text {NOT－merged－bj－learn－is－rtranclp－cdcl }}^{\text {NOT－and－inv }}\) by blast
lemma full－cdcl \({ }_{N O T}\)－merged－bj－learn－final－state：
fixes \(A::\langle ' v\) clause set \(\rangle\) and \(S T::\langle ' s t\rangle\)
assumes
full：〈full cdcl \({ }_{N O T}\)－merged－bj－learn \(\left.S T\right\rangle\) and
atms－S：\(\left\langle a t m s\right.\)－of－mm \(\left(\right.\) clauses \(\left.\left._{N O T} S\right) \subseteq a t m s-o f-m s A\right\rangle\) and
atms－trail：\(\langle a t m-o f\)＇lits－of－l（trail \(S\) ）\(\subseteq a t m s\)－of－ms \(A\rangle\) and
\(n\)－d：\(\langle n o-d u p\)（trail \(S\) ）\(\rangle\) and
\(\langle\) finite \(A\rangle\) and
inv：〈inv \(S\rangle\) and
decomp：〈all－decomposition－implies－m（clauses \(\left.{ }_{N O T} S\right)\)（get－all－ann－decomposition（trail S））〉
shows «unsatisfiable（set－mset（clauses \(\left.{ }_{N O T} T\right)\) ）
\(\vee\left(\right.\) trail \(T \models\) asm clauses \({ }_{N O T} T \wedge\) satisfiable \(\left(\right.\) set－mset \(\left(\right.\) clauses \(\left.\left._{N O T} T\right)\right)\) ）
proof－
have st：\(\left\langle c d c l_{N O T}\right.\)－merged－bj－learn \(\left.{ }^{* *} S T\right\rangle\) and \(n\)－s：\(\left\langle n o\right.\)－step \(\left.c d c l_{N O T-m e r g e d-b j-l e a r n ~} T\right\rangle\)
using full unfolding full－def by blast＋
then have \(s t^{\prime}:\left\langle c d c l_{N O T}{ }^{* *} S T\right\rangle\)
using inv rtranclp－cdcl \({ }_{N O T}\)－merged－bj－learn－is－rtranclp－cdcl \({ }_{N O T}\)－and－inv n－d by auto
have \(\left\langle a t m s\right.\)－of－mm（clauses \(\left.{ }_{N O T} T\right) \subseteq a t m s\)－of－ms \(\left.A\right\rangle\) and \(\langle a t m\)－of＇lits－of－l（trail \(T) \subseteq a t m s\)－of－ms \(\left.A\right\rangle\) using rtranclp－cdcl \({ }_{\text {NOT－merged－bj－learn－trail－clauses－bound }[O F}\) st inv atms－S atms－trail］by blast＋
moreover have 〈no－dup（trail T）〉
using rtranclp－cdcl \({ }_{N O T}\)－merged－bj－learn－no－dup－inv inv \(n\)－d st by blast
moreover have \(\langle i n v T\rangle\)
using rtranclp－cdcl \({ }_{N O T}\)－merged－bj－learn－inv inv st by blast
moreover have＜all－decomposition－implies－m（clauses \(\left.{ }_{N O T} T\right)(\) get－all－ann－decomposition（trail \(T)\) ）＞ using rtranclp－cdcl \({ }_{N O T}\)－merged－bj－learn－all－decomposition－implies inv st decomp \(n\)－\(d\) by blast
ultimately show ？thesis
using \(\left.c d c l_{\text {NOT－merged－bj－learn－final－state }[o f ~}^{T} A\right]\) ］\(\langle\) inite \(A\rangle n\)－s by fast
qed
end

\section*{2．2．7 Instantiations}

In this section，we instantiate the previous locales to ensure that the assumption are not con－ tradictory．
locale \(c d c l_{N O T-w i t h-b a c k t r a c k-a n d-r e s t a r t s ~}=\)
conflict－driven－clause－learning－learning－before－backjump－only－distinct－learnt
trail clauses \({ }_{N O T}\) prepend－trail tl－trail add－cls \({ }_{N O T}\) remove－cls \({ }_{\text {NOT }}\) inv decide－conds backjump－conds propagate－conds learn－restrictions forget－restrictions
for
trail ：：＜＇st \(\Rightarrow\)（＇v，unit）ann－lits＞and
clauses \(_{N O T}::\left\langle ' s t \Rightarrow{ }^{\prime} v\right.\) clauses \(\rangle\) and
prepend－trail ：：〈（＇v，unit）ann－lit \(\Rightarrow\)＇st \(\Rightarrow\)＇st〉 and
tl－trail ：：〈＇st \(\Rightarrow\)＇st \({ }^{\prime}\) and
add－cls \(s_{N O T}::\left\langle^{\prime} v\right.\) clause \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(\rangle\) and
remove－cls \({ }_{N O T}:: \iota^{\prime} v\) clause \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(\rangle\) and
inv ：：〈＇st \(\Rightarrow\) bool〉 and
decide－conds ：：〈＇st \(\Rightarrow\)＇st \(\Rightarrow\) bool \(>\) and
backjump－conds ：：＜＇v clause \(\Rightarrow{ }^{\prime} v\) clause \(\Rightarrow\)＇v literal \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(\Rightarrow\) bool \(>\) and
propagate－conds ：：〈（＇v，unit）ann－lit \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(\Rightarrow\) bool and
learn－restrictions forget－restrictions ：：〈＇v clause \(\Rightarrow\)＇st \(\Rightarrow\) bool
\(+\)
fixes \(f::\langle n a t \Rightarrow n a t\rangle\)
assumes
unbounded：〈unbounded \(f\rangle\) and \(f-g e-1:\langle\bigwedge n . n \geq 1 \Longrightarrow f n \geq 1\rangle\) and
inv－restart：\(\left\langle\bigwedge S\right.\) ．inv \(S \Longrightarrow T \sim\) reduce－trail－to \({ }_{N O T}\left([]::{ }^{\prime}\right.\) a list）\(S \Longrightarrow\) inv \(\left.T\right\rangle\)
begin
lemma bound－inv－inv：
assumes
\(\langle\) inv \(S\rangle\) and
\(n\)－d：\(\langle\) no－dup（trail \(S\) ）\(\rangle\) and
atms－clss－S－A：〈atms－of－mm \(\left(\right.\) clauses \(\left.\left._{N O T} S\right) \subseteq a t m s-o f-m s A\right\rangle\) and
atms－trail－S－A：\(\langle a t m-o f\)＇lits－of－l（trail \(S\) ）\(\subseteq\) atms－of－ms \(A\rangle\) and
\(\langle\) finite \(A\rangle\) and
\(c d c l_{\text {NOT }}:\left\langle c d c l_{\text {NOT }} S T\right\rangle\)
shows
\(\left\langle a t m s\right.\)－of－mm \(\left(\right.\) clauses \(\left._{N O T} T\right) \subseteq a t m s\)－of－ms \(\left.A\right\rangle\) and
\(\langle a t m-o f\)＇lits－of－l（trail T）\(\subseteq\) atms－of－ms \(A\) 〉 and〈finite \(A\rangle\)
proof－
have \(\left\langle c d c l_{N O T} S T\right\rangle\)
using \(\langle i n v S\rangle c d c l_{N O T}\) by linarith
 using 〈inv \(S\) 〉
by（meson conflict－driven－clause－learning－ops．cdcl \({ }_{N O T}\)－atms－of－ms－clauses－decreasing
conflict－driven－clause－learning－ops－axioms n－d）
```

 then show <atms-of-mm (clauses NOT T)\subseteqatms-of-ms A>
 using atms-clss-S-A atms-trail-S-A by blast
 next
show <atm-of 'lits-of-l (trail T)\subseteqatms-of-ms A>
by (meson <inv S` atms-clss-S-A atms-trail-S-A cdcl NOT cdcl NOT-atms-in-trail-in-set n-d) next show <finite A〉 using 〈finite A〉 by simp qed sublocale cdcl NOT-increasing-restarts-ops <\lambdaS T. T ~ reduce-trail-to NOT ([]::'a list) S` cdcl NOT f
<\lambdaA S.atms-of-mm (clauses }\mp@subsup{~}{NOT}{}S)\subseteqatms-of-ms A ^atm-of'lits-of-l (trail S)\subseteqatms-of-ms A ^
finite A>
\mu}CDCL'
\lambdaS.inv S ^ no-dup (trail S)>
\muCDCL'-bound
apply unfold-locales
apply (simp add: unbounded)
using f-ge-1 apply force
using bound-inv-inv apply meson
apply (rule cdcl NOT-decreasing-measure'; simp)
apply (rule rtranclp-cdcl NOT-}\mp@subsup{|}{CDCL}{\prime}\mp@subsup{}{}{\prime}\mathrm{ -bound; simp)
apply (rule rtranclp- - }CDCL''bound-decreasing; simp
apply auto[]
apply auto[]
using cdcl NOT-inv cdcl NOT-no-dup apply blast
using inv-restart apply auto[]
done
lemma cdcl NOT-with-restart-}\mp@subsup{\mu}{CDCL}{\prime}\mp@subsup{}{}{\prime}-le-\mp@subsup{\mu}{CDCL}{\prime}\mp@subsup{}{}{\prime}\mathrm{ -bound:
assumes
cdcl NOT: <cdcl NOT-restart (T,a) (V,b)\rangle and
cdcl NOT-inv:
<inv T>
\no-dup (trail T)\rangle and
bound-inv:
\atms-of-mm (clauses }\mp@subsup{\mp@code{NOT}}{}{T}T)\subseteqatms-of-ms A
<atm-of 'lits-of-l (trail T)\subseteqatms-of-ms A>
<inite A>
shows \langle }\mp@subsup{\mu}{CDCL}{\prime}\mp@subsup{}{}{\prime}AV\leq\mp@subsup{\mu}{CDCL}{\prime}\mp@subsup{}{}{\prime}\mathrm{ -bound A T>
using cdcl NOT-inv bound-inv
proof (induction rule: cdcl NOT-with-restart-induct[OF cdcl NOT])
case (1 m S T n U) note U = this(3)
show ?case
apply (rule rtranclp-cdcl NOT- }\mp@subsup{\mu}{CDCL'}{\prime
using〈(cdcl NOT ^^ m) ST> apply (fastforce dest!: relpowp-imp-rtranclp)
using 1 by auto
next
case (2 S T n) note full = this(2)
show ?case
apply (rule rtranclp-cdcl NOT- - }\mp@subsup{|}{CDCL}{\prime}\mp@subsup{}{}{\prime}\mathrm{ -bound)
using full 2 unfolding full1-def by force+
qed
lemma cdcl NOT-with-restart-}\mp@subsup{\mu}{CDCL}{\prime}\mp@subsup{}{N}{\prime}\mathrm{ -bound-le- - }\mp@subsup{|}{CDCL}{\prime}\mp@subsup{}{}{\prime}\mathrm{ -bound:
assumes
cdcl NOT: <cdcl NOT-restart (T, a) (V,b)\rangle and

```
```

 cdcl NOT-inv:
 <inv T>
 \no-dup (trail T)\rangle and
 bound-inv:
 <atms-of-mm (clauses NOT T)\subseteqatms-of-ms A>
 <atm-of'lits-of-l (trail T)\subseteqatms-of-ms A>
 <finite A>
 shows < < CDCL'-bound A V \leq \mu
 using cdcl NOT-inv bound-inv
 proof (induction rule: cdcl NOT-with-restart-induct[OF cdcl NOT])
case (1 m S T n U) note U = this(3)
have \langle }\mp@subsup{\mu}{CDCL}{\prime}\mp@subsup{}{}{\prime}\mathrm{ -bound A T}\leq\mp@subsup{\mu}{CDCL}{\prime}\mathrm{ 'bound A S>
apply (rule rtranclp- - }CDCL'-bound-decreasing) (-)
using <(cdcl NOT ^^ m) S T> apply (fastforce dest: relpowp-imp-rtranclp)
using 1 by auto
then show ?case using U unfolding }\mp@subsup{\mu}{CDCL'}{\prime}\mathrm{ -bound-def by auto
next
case (2 S T n) note full = this(2)
show ?case
apply (rule rtranclp- - }\mp@subsup{C}{DCL}{\prime}\mp@subsup{}{}{\prime}\mathrm{ -bound-decreasing)
using full 2 unfolding full1-def by force+
qed
sublocale cdcl NOT-increasing-restarts - . - -
f
<\lambdaS T.T ~ reduce-trail-to NOT ([]::'a list) S>
<\lambdaA S.atms-of-mm (clauses NOT S)\subseteqatms-of-ms A
^atm-of'lits-of-l (trail S)\subseteqatms-of-ms A ^ finite A>
\mu}\mp@subsup{C}{CDCL}{\prime}\mp@subsup{}{}{\prime
<\lambdaS. inv S ^ no-dup (trail S)>
\mu
apply unfold-locales
using cdcl NOT-with-restart- - }\mp@subsup{|}{CDCL}{\prime}-le-\mp@subsup{\mu}{CDCLL}{\prime}-bound apply simp
using cdcl NOT-with-restart-}\mp@subsup{\mu}{CDCL}{\prime}\mp@subsup{}{NO}{\prime}\mathrm{ -bound-le- - }\mp@subsup{C}{CDCL'}{}\mp@subsup{}{}{\prime}\mathrm{ -bound apply simp
done
lemma cdcl NOT-restart-all-decomposition-implies:
assumes }\langlecdcl \mp@subsup{l}{NOT}{}\mathrm{ -restart S T> and
<inv (fst S)> and
<no-dup (trail (fst S))>
<all-decomposition-implies-m (clauses }\mp@subsup{N}{NOT}{(fst S)) (get-all-ann-decomposition (trail (fst S)))>
shows
<all-decomposition-implies-m (clauses NOT (fst T)) (get-all-ann-decomposition (trail (fst T)))〉
using assms apply (induction)
using rtranclp-cdcl NOT-all-decomposition-implies by (auto dest!: tranclp-into-rtranclp
simp: full1-def)
lemma rtranclp-cdcl NOT-restart-all-decomposition-implies:
assumes }\langlecdc\mp@subsup{l}{NOT}{}\mathrm{ -restart** S T> and
inv: <inv (fst S)\rangle and
n-d: <no-dup (trail (fst S))\rangle and
decomp:
<all-decomposition-implies-m (clauses }\mp@subsup{N}{NOT}{}(fst S))(get-all-ann-decomposition (trail (fst S)))
shows
<all-decomposition-implies-m (\mp@subsup{clauses }{NOT}{}(fst T)) (get-all-ann-decomposition (trail (fst T)))\rangle
using assms(1)

```
```

proof (induction rule: rtranclp-induct)
case base
then show ?case using decomp by simp
next
case (step T u) note st = this(1) and r=this(2) and IH = this(3)
have <inv (fst T)>
using rtranclp-cdcl NOT-with-restart-cdcl NOT-inv[OF st] inv n-d by blast
moreover have <no-dup (trail (fst T))>
using rtranclp-cdcl NOT-with-restart-cdcl NOT-inv[OF st] inv n-d by blast
ultimately show ?case
using cdcl NOT-restart-all-decomposition-implies r IH n-d by fast
qed
lemma cdcl NOT-restart-sat-ext-iff:
assumes
st: <cdcl NOT-restart S T\rangle and
n-d:<no-dup (trail (fst S))\rangle and
inv: <inv (fst S)>
shows }\langleI\models\mp@subsup{\operatorname{sextm clauses}}{NOT}{}(fstS)\longleftrightarrowI\models\mp@subsup{\operatorname{sextm clauses}}{NOT}{}(fst T)
using assms
proof (induction)
case (restart-step m STn U)
then show ?case
using rtranclp-cdcl NOT-bj-sat-ext-iff n-d by (fastforce dest!: relpowp-imp-rtranclp)
next
case restart-full
then show ?case using rtranclp-cdcl NOT-bj-sat-ext-iff unfolding full1-def
by (fastforce dest!: tranclp-into-rtranclp)
qed
lemma rtranclp-cdcl NOT-restart-sat-ext-iff:
fixes S T :: <'st \times nat>
assumes
st: <cdcl NOT-restart** S T\rangle and
n-d:<no-dup (trail (fst S))\rangle and
inv:<inv (fst S)>
shows \I\modelssextm clauses NOT}(fst S)\longleftrightarrowI\models\mp@subsup{\operatorname{sextm clauses}}{NOT}{}(fst T)
using st
proof (induction)
case base
then show ?case by simp
next
case (step T U) note st = this(1) and r=this(2) and IH = this(3)
have <inv (fst T)>
using rtranclp-cdcl NOT-with-restart-cdcl NOT-inv[OF st] inv n-d by blast+
moreover have <no-dup (trail (fst T))>
using rtranclp-cdcl NOT-with-restart-cdcl }\mp@subsup{|}{NOT-inv rtranclp-cdcl NOT-no-dup st inv n-d by blast}{N
ultimately show ?case
using cdcl NOT-restart-sat-ext-iff[OF r]IH by blast
qed
theorem full-cdcl NOT-restart-backjump-final-state:
fixes A :: \'v clause set> and S T :: <'st>
assumes
full: <full cdcl NOT-restart (S,n) (T,m)\rangle and
atms-S:<atms-of-mm (clauses

```
atms－trail：〈atm－of＇lits－of－l（trail \(S\) ）\(\subseteq\) atms－of－ms \(A\) 〉 and
\(n\)－d：〈no－dup（trail \(S\) ）\(\rangle\) and
fin－\(A[\) simp］：\(\langle\) finite \(A\rangle\) and
inv：\(\langle i n v S\rangle\) and
decomp：〈all－decomposition－implies－m（clauses \(\left.{ }_{N O T} S\right)\)（get－all－ann－decomposition（trail S））〉
shows＜unsatisfiable（set－mset（clauses \(\left.{ }_{N O T} S\right)\) ）

proof－
have st：\(\left\langle c d c l_{N O T \text {－restart＊＊}}(S, n)(T, m)\right\rangle\) and
\(n\)－s：〈no－step cdcl \({ }_{N O T}\)－restart \(\left.(T, m)\right\rangle\)
using full unfolding full－def by fast＋
have binv－T：\(\left\langle a t m s\right.\)－of－mm（clauses \(\left.{ }_{N O T} T\right) \subseteq\) atms－of－ms A〉
\(\langle a t m-o f\)＇lits－of－l（trail \(T) \subseteq\) atms－of－ms A〉
using rtranclp－cdcl \({ }_{N O T}\)－with－restart－bound－inv［OF st，of A］inv n－d atms－S atms－trail by auto
moreover have inv－T：\(\langle n o-d u p(\) trail \(T)\rangle\langle i n v T\rangle\)
using rtranclp－cdcl \({ }_{N O T}\)－with－restart－cdcl \({ }_{N O T}-i n v[O F\) st \(]\) inv \(n\)－\(d\) by auto
moreover have＜all－decomposition－implies－m（clauses \(\left.{ }_{N O T} T\right)(\) get－all－ann－decomposition \((\) trail \(T)\) ）＞ using rtranclp－cdcl \({ }_{N O T}\)－restart－all－decomposition－implies \([\) OF st］inv \(n\)－d decomp by auto
ultimately have \(T\) ：〈unsatisfiable（set－mset（clauses \(\left.{ }_{N O T} T\right)\) ）
 using no－step－cdcl \({ }_{N O T}\)－restart－no－step－cdcl \({ }_{N O T}[o f\langle(T, m)\rangle A] n\)－s \(c d c l_{N O T}\)－final－state \([\) of \(T A]\) unfolding \(c d c l_{N O T}\)－NOT－all－inv－def by auto
have eq－sat－S－T：〈\I．\(\left.I \models \operatorname{sextm}^{\text {clauses }}{ }_{N O T} S \longleftrightarrow I \models \operatorname{sextm}^{\text {clauses }}{ }_{N O T} T\right\rangle\)
using rtranclp－cdcl \({ }_{\text {NOT }}\)－restart－sat－ext－iff \([O F\) st \(]\) inv n－d atms－S
atms－trail by auto
have cons－T：〈consistent－interp（lits－of－l（trail T））〉 using inv－T（1）distinct－consistent－interp by blast
consider （unsat）〈unsatisfiable（set－mset（clauses \(\left.{ }_{N O T} T\right)\) ）〉 \(\mid(\) sat \()\left\langle\right.\) trail \(T \models\) asm clauses \(\left.{ }_{N O T} T\right\rangle\) and 〈satisfiable（set－mset \(\left(\right.\) clauses \(\left._{N O T} T\right)\) ）〉 using \(T\) by blast
then show ？thesis proof cases
case unsat
then have＜unsatisfiable（set－mset（clauses \({ }_{\text {NOT }} S\) ））＞
using eq－sat－S－T consistent－true－clss－ext－satisfiable true－clss－imp－true－cls－ext
unfolding satisfiable－def by blast
then show ？thesis by fast
next
case sat
then have 〈lits－of－l \((\) trail \(T) \models\) sextm \(\left.^{\text {clauses }}{ }_{N O T} S\right\rangle\)
using rtranclp－cdcl \(l_{N O T \text {－restart－sat－ext－iff }[O F ~ s t] ~ i n v ~ n-d ~ a t m s-S ~}^{\text {n }}\)
atms－trail by（auto simp：true－clss－imp－true－cls－ext true－annots－true－cls）
moreover then have＜satisfiable（set－mset（clauses \({ }_{N O T} S\) ））〉
using cons－\(T\) consistent－true－clss－ext－satisfiable by blast
ultimately show ？thesis by blast

\section*{qed}
qed
end－End of the locale \(c d c l_{N O T-w i t h-b a c k t r a c k-a n d-r e s t a r t s . ~}^{\text {－}}\)
The restart does only reset the trail，contrary to Weidenbach＇s version where forget and restart are always combined．But there is a forget rule．
locale \(c d c l_{\text {NOT－merge－bj－learn－with－backtrack－restarts }}=\)

decide－conds propagate－conds forget－conds
\(\left\langle\lambda C C^{\prime} L^{\prime} S T\right.\) ．distinct－mset \(C^{\prime} \wedge L^{\prime} \notin \# C^{\prime} \wedge\) backjump－l－cond \(\left.C C^{\prime} L^{\prime} S T\right\rangle\) inv for
trail \(::\)＜＇st \(\Rightarrow(' v\) ，unit）ann－lits〉 and
clauses \(_{N O T}::\) 〈＇st \(\Rightarrow{ }^{\prime} v\) clauses \(>\) and
prepend－trail \(::\langle(' v\) ，unit）ann－lit \(\Rightarrow\)＇st \(\Rightarrow\)＇st and
tl－trail ：：〈＇st \(\Rightarrow{ }^{\prime}\) st \(\rangle\) and
\(a d d-c l s_{N O T}::{ }^{\prime} v\) clause \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(>\) and
remove－cls \({ }_{\text {NOT }}::\)＜＇v clause \(\Rightarrow\)＇st \(\Rightarrow\)＇st and
decide－conds ：：〈＇st \(\Rightarrow\)＇st \(\Rightarrow\) bool and
propagate－conds \(::\) 〈（＇v，unit）ann－lit \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(\Rightarrow\) bool and
inv ：：〈＇st \(\Rightarrow\) bool \(\rangle\) and
forget－conds ：：\(\langle\)＇v clause \(\Rightarrow\)＇st \(\Rightarrow\) bool \(\rangle\) and
backjump－l－cond \(::<^{\prime} v\) clause \(\Rightarrow\)＇v clause \(\Rightarrow{ }^{\prime} v\) literal \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(\Rightarrow\) bool \(\rangle\)
\(+\)
fixes \(f::\langle n a t \Rightarrow n a t\rangle\)
assumes
unbounded：〈unbounded \(f\) 〉 and \(f\)－ge－1：〈\} n . n \geq 1 \Longrightarrow f n \geq 1 \rangle \text { and }
inv－restart：\(\left\langle\bigwedge S T\right.\) ．inv \(S \Longrightarrow T \sim\) reduce－trail－to \({ }_{N O T}[] S \Longrightarrow\) inv \(\left.T\right\rangle\)
begin
definition not－simplified－cls ：：〈＇b clause multiset \(\Rightarrow\)＇\(b\) clauses \(\rangle\)
where
\(\langle\) not－simplified－cls \(A \equiv\{\# C \in \# A . C \notin\) simple－clss（atms－of－mm \(A) \#\}\rangle\)
lemma not－simplified－cls－tautology－distinct－mset：
〈not－simplified－cls \(A=\{\# C \in \#\) A．tautology \(C \vee \neg\) distinct－mset \(C \#\}\rangle\)
unfolding not－simplified－cls－def by（rule filter－mset－cong）（auto simp：simple－clss－def）
lemma simple－clss－or－not－simplified－cls：
assumes \(\left\langle a t m s\right.\)－of－mm \(\left(\right.\) clauses \(\left._{N O T} S\right) \subseteq a t m s\)－of－ms \(A\) 〉 and \(\left\langle x \in \#\right.\) clauses \(\left._{\text {NOT }} S\right\rangle\) and \(\langle\) finite \(A\rangle\)
shows \(\langle x \in\) simple－clss（atms－of－ms \(A) \vee x \in \#\) not－simplified－cls \(\left(\right.\) clauses \(\left.\left._{N O T} S\right)\right\rangle\)
proof－
consider
（simpl）〈ᄀtautology \(x\rangle\) and \(\langle\) distinct－mset \(x\rangle\) \(\mid(n\)－simp \()\langle\) tautology \(x \vee \neg\) distinct－mset \(x\rangle\)
by auto
then show ？thesis
proof cases
case simpl
then have \(\langle x \in\) simple－clss（atms－of－ms \(A\) ）\(\rangle\)
by（meson assms atms－of－atms－of－ms－mono atms－of－ms－finite simple－clss－mono distinct－mset－not－tautology－implies－in－simple－clss finite－subset subsetCE）
then show？thesis by blast
next
case \(n\)－simp
then have \(\left\langle x \in \#\right.\) not－simplified－cls \(\left(\right.\) clauses \(\left.\left._{N O T} S\right)\right\rangle\)
using \(\left\langle x \in \#\right.\) clauses \(\left._{N O T} S\right\rangle\) unfolding not－simplified－cls－tautology－distinct－mset by auto then show？？hesis by blast
qed
qed
lemma \(c d c l_{\text {NOT－merged－bj－learn－clauses－bound：}}\) assumes
\(\left\langle c d c l_{N O T}\right.\)－merged－bj－learn \(\left.S T\right\rangle\) and
inv：〈inv \(S\) 〉 and
atms－clss：\(\left\langle a t m s\right.\)－of－mm \(\left(\right.\) clauses \(\left._{N O T} S\right) \subseteq a t m s\)－of－ms \(\left.A\right\rangle\) and
atms－trail：\(\langle a t m-o f\)＇（lits－of－l（trail S））\(\subseteq\) atms－of－ms \(A\) 〉 and
fin－\(A[\) simp］：\(\langle\) finite \(A\rangle\)
shows \(\left\langle\right.\) set－mset \(\left(\right.\) clauses \(\left._{N O T} T\right) \subseteq\) set－mset \(\left(\right.\) not－simplified－cls \(\left(\right.\) clauses \(\left.\left._{N O T} S\right)\right)\)
\(\cup\) simple－clss（atms－of－ms A）＞
using assms（1－4）
proof（induction rule：\(c d c l_{N O T-m e r g e d-b j-l e a r n . i n d u c t) ~}^{\text {（ }}\)
case \(c d c l_{N O T-m e r g e d-b j-l e a r n-d e c i d e ~}^{N O T}\)
then show ？case using dpll－bj－clauses by（force dest！：simple－clss－or－not－simplified－cls）
next
case \(c d c l_{N O T}\)－merged－bj－learn－propagate \(e_{N O T}\)
then show ？case using dpll－bj－clauses by（force dest！：simple－clss－or－not－simplified－cls）
next
case \(c d c l_{N O T-m e r g e d-b j-l e a r n-f o r g e t ~}^{N O T}\)
then show ？case using clauses－remove－cls \({ }_{N O T}\) unfolding state－eq \({ }_{N O T}\)－def by（force elim！：forget \({ }_{N O T} E\) dest：simple－clss－or－not－simplified－cls）
next
case \(\left(c d c l_{\text {NOT－merged－bj－learn－backjump－l }} T\right)\) note \(b j=t h i s(1)\) and \(i n v=t h i s(2)\) and atms－clss \(=\) this（3）and atms－trail \(=\) this（4）
have st：\(\left\langle c d c l_{N O T-m e r g e d-b j-l e a r n * *}^{*} T\right\rangle\)
using bj inv cdcl \({ }_{N O T}\)－merged－bj－learn．simps by blast＋
have \(\left\langle a t m-o f{ }^{\prime}(\right.\) lits－of－l \((\) trail \(T)) \subseteq\) atms－of－ms \(A\) 〉 and \(\left\langle a t m s\right.\)－of－mm（clauses \(\left.{ }_{N O T} T\right) \subseteq\) atms－of－ms A）
using rtranclp－cdcl \({ }_{N O T}\)－merged－bj－learn－trail－clauses－bound \([\) OF st］inv atms－trail atms－clss by auto
obtain \(F^{\prime} K F L l C^{\prime} C D\) where
tr－S：\(\left\langle\right.\) trail \(S=F^{\prime} @\) Decided \(\left.K \# F\right\rangle\) and
\(T:\left\langle T \sim\right.\) prepend－trail（Propagated Ll）\(\left(\right.\) reduce－trail－to \({ }_{N O T} F\left(\right.\) add－cls \(\left.\left.{ }_{N O T} D S\right)\right)\) and \(\left\langle C \in \#\right.\) clauses \(\left._{\text {NOT }} S\right\rangle\) and
〈trail \(S \models\) as \(C N o t C\rangle\) and
undef：〈undefined－lit \(F L\rangle\) and
〈clauses \({ }_{\text {NOT }} S \models p m\) add－mset \(L C^{\prime}\) ）and
\(\left\langle F \models\right.\) as CNot \(\left.C^{\prime}\right\rangle\) and
\(D:\left\langle D=\right.\) add－mset \(\left.L C^{\prime}\right\rangle\) and
dist：〈distinct－mset（add－mset \(L C^{\prime}\) ）〉 and
tauto：\(\left\langle\neg\right.\) tautology（add－mset \(L C^{\prime}\) ）〉 and
〈backjump－l－cond C C \(\left.{ }^{\prime} L S T\right\rangle\)
using 〈backjump－l \(S T\rangle\) apply（elim backjump－lE）by auto
have 〈atms－of \(C^{\prime} \subseteq a t m-o f\)＇（lits－of－l \(F\) ）＞
using \(\left\langle F \models\right.\) as \(\left.C N o t C^{\prime}\right\rangle\) by（simp add：atm－of－in－atm－of－set－iff－in－set－or－uminus－in－set atms－of－def image－subset－iff in－CNot－implies－uminus（2））
then have \(\left\langle a t m s\right.\)－of \(\left(C^{\prime}+\{\# L \#\}\right) \subseteq\) atms－of－ms \(\left.A\right\rangle\)
using \(T\) 〈atm－of＇lits－of－l（trail \(T\) ）\(\subseteq\) atms－of－ms \(A\) ）tr－S undef by auto
then have «simple－clss（atms－of（add－mset \(\left.L C^{\prime}\right)\) ）\(\subseteq\) simple－clss（atms－of－ms A）〉
apply－by（rule simple－clss－mono）（simp－all）
then have \(\left\langle a d d-m s e t L C^{\prime} \in\right.\) simple－clss（atms－of－ms \(A\) ）\(\rangle\)
using distinct－mset－not－tautology－implies－in－simple－clss［OF dist tauto］
by auto
then show？case
using \(T\) inv atms－clss undef tr－S D by（force dest！：simple－clss－or－not－simplified－cls）
qed
```

lemma $c d c l_{\text {NOT-merged-bj-learn-not-simplified-decreasing: }}$
assumes $\left\langle c d c l_{N O T}\right.$-merged-bj-learn $\left.S T\right\rangle$
shows 〈not-simplified-cls $\left(\right.$ clauses $\left._{N O T} T\right) \subseteq \#$ not-simplified-cls $\left(\right.$ clauses $\left._{N O T} S\right)$)
using assms apply induction
prefer 4
unfolding not-simplified-cls-tautology-distinct-mset apply (auto elim!: backjump-lE forget ${ }_{N O T} E$)[3]
by (elim backjump-lE) auto
lemma rtranclp-cdcl ${ }_{N O T-m e r g e d-b j-l e a r n-n o t-s i m p l i f i e d-d e c r e a s i n g: ~}^{\text {- }}$
assumes $\left\langle c d c l_{N O T}\right.$-merged-bj-learn** $\left.S T\right\rangle$
shows 〈not-simplified-cls $\left(\right.$ clauses $\left._{N O T} T\right) \subseteq \#$ not-simplified-cls $\left(\right.$ clauses $\left._{N O T} S\right)$ 〉
using assms apply induction
apply simp
by (drule cdcl $_{\text {NOT-merged-bj-learn-not-simplified-decreasing) }}$ auto
lemma rtranclp-cdcl ${ }_{N O T}$-merged-bj-learn-clauses-bound:
assumes
$\left\langle c d c l_{N O T}\right.$-merged-bj-learn** $\left.S T\right\rangle$ and
<inv S 〉 and
$\left\langle a t m s\right.$-of-mm $\left(\right.$ clauses $\left._{N O T} S\right) \subseteq a t m s$-of-ms $\left.A\right\rangle$ and
$\left\langle a t m-o f{ }^{\prime}(l i t s-o f-l(\right.$ trail $\left.S)) \subseteq a t m s-o f-m s A\right\rangle$ and
finite $[$ simp $]$: 〈finite A〉
shows set-mset $\left(\right.$ clauses $\left._{\text {NOT }} T\right) \subseteq$ set-mset (not-simplified-cls $\left(\right.$ clauses $\left._{\text {NOT }} S\right)$)
\cup simple-clss (atms-of-ms A) >
using $\operatorname{assms}(1-4)$
proof induction
case base
then show ?case by (auto dest!: simple-clss-or-not-simplified-cls)
next
case $($ step $T U)$ note $s t=$ this(1) and $c d c l_{N O T}=$ this(2) and $I H=$ this(3)[OF this(4-6)] and
inv $=$ this(4) and atms-clss-S $=$ this(5) and atms-trail-S $=$ this (6)
have $s t^{\prime}:\left\langle c d c l_{N O T}{ }^{* *} S T\right\rangle$
using inv rtranclp-cdcl ${ }_{N O T}$-merged-bj-learn-is-rtranclp-cdcl ${ }_{N O T}$-and-inv st by blast
have $\langle i n v T\rangle$
using inv rtranclp-cdcl ${ }_{N O T}$-merged-bj-learn-inv st by blast
moreover
have $\left\langle a t m s\right.$-of-mm $\left(\right.$ clauses $\left._{N O T} T\right) \subseteq a t m s$-of-ms $\left.A\right\rangle$ and
\langle atm-of ' lits-of-l (trail $T) \subseteq$ atms-of-ms $A\rangle$
using rtranclp-cdcl ${ }_{N O T}$-merged-bj-learn-trail-clauses-bound $[O F$ st] inv atms-clss-S
atms-trail-S by blast+
ultimately have $\left\langle\right.$ set-mset $\left(\right.$ clauses $_{N O T} U$)
\subseteq set-mset (not-simplified-cls $\left(\right.$ clauses $\left.\left._{N O T} T\right)\right) \cup$ simple-clss $($ atms-of-ms A) $)$
using $c d c l_{N O T}$ finite $c d c l_{N O T-m e r g e d-b j-l e a r n-c l a u s e s-b o u n d ~}$
by (auto intro!: cdcl ${ }_{N O T}$-merged-bj-learn-clauses-bound)
moreover have «set-mset (not-simplified-cls (clauses $\left.{ }_{N O T} T\right)$)
\subseteq set-mset (not-simplified-cls (clauses ${ }_{N O T} S$)) >
using rtranclp-cdcl ${ }_{N O T}$-merged-bj-learn-not-simplified-decreasing $[O F$ st $]$ by auto
ultimately show ?case using $I H$ inv atms-clss- S
by (auto dest!: simple-clss-or-not-simplified-cls)
qed
abbreviation $\mu_{C D C L}{ }^{\prime}$－bound where
$\left\langle\mu_{C D C L}{ }^{\prime}\right.$-bound $A T \equiv((2+$ card $($ atms-of-ms $A)) \wedge(1+$ card $($ atms-of-ms $A))) * 2$
$+\operatorname{card}\left(\right.$ set-mset (not-simplified-cls(clauses $\left.\left.{ }_{N O T} T\right)\right)$)
+3 へard (atms-of-ms A) >

```
lemma rtranclp－cdcl \({ }_{\text {NOT－merged－bj－learn－clauses－bound－card：}}\)
assumes
\(\left\langle c d c l_{N O T-m e r g e d-b j-l e a r n * *} S T\right\rangle\) and
〈inv \(S\rangle\) and
\(\left\langle a t m s\right.\)－of－mm \(\left(\right.\) clauses \(\left._{N O T} S\right) \subseteq a t m s\)－of－ms \(\left.A\right\rangle\) and
\(\langle a t m-o f\)＇（lits－of－l \((\) trail \(S)) \subseteq a t m s-o f-m s A\rangle\) and
finite：\(\langle\) finite \(A\rangle\)
shows \(\left\langle\mu_{C D C L}{ }^{\prime}\right.\)－merged \(A T \leq \mu_{C D C L}{ }^{\prime}\)－bound \(\left.A S\right\rangle\)
proof－
have \(\left\langle\right.\) set－mset \(\left(\right.\) clauses \(\left._{N O T} T\right) \subseteq\) set－mset \(\left(\right.\) not－simplified－cls \(\left(\right.\) clauses \(\left.\left._{N O T} S\right)\right)\)
\(\cup\) simple－clss（atms－of－ms A）＞
using rtranclp－cdcl \({ }_{N O T}\)－merged－bj－learn－clauses－bound \([\) OF assms］．
moreover have＜card（set－mset（not－simplified－cls（clauses \({ }_{\text {NOT }} S\) ））
\(\cup\) simple－clss（atms－of－ms A））
\(\leq \operatorname{card}\left(\right.\) set－mset（not－simplified－cls（clauses \(\left.\left.{ }_{N O T} S\right)\right)\) ） \(3^{\wedge}\) card（atms－of－ms A）＞
by（meson Nat．le－trans atms－of－ms－finite simple－clss－card card－Un－le finite nat－add－left－cancel－le）
ultimately have \(\left\langle\right.\) card（set－mset \(\left(\right.\) clauses \(\left._{\text {NOT }} T\right)\) ）

by（meson Nat．le－trans atms－of－ms－finite simple－clss－finite card－mono
finite－UnI finite－set－mset local．finite）
moreover have \(\left\langle\left((2+\text { card }(\text { atms－of－ms } A))^{\wedge}(1+\operatorname{card}(\right.\right.\) atms－of－ms \(\left.A))-\mu_{C}{ }^{\prime} A T\right) * 2\) \(\leq(2+\operatorname{card}(a t m s-o f-m s A))^{\wedge}(1+\operatorname{card}(a t m s\)－of－ms \(A)) * 2\) 〉 by auto
ultimately show ？thesis unfolding \(\mu_{C D C L}{ }^{\prime}\)－merged－def by auto qed
sublocale cdcl \(_{\text {NOT－increasing－restarts－ops }}\left\langle\lambda S T . T \sim\right.\) reduce－trail－to \({ }_{N O T}\)（［］：：＇a list）\(\left.S\right\rangle\) \(c d c l_{\text {NOT－merged－bj－learn }} f\)
＜\(\lambda\) A S．atms－of－mm（clauses \({ }_{\text {NOt }} S\) ）\(\subseteq\) atms－of－ms \(A\)
\(\wedge\) atm－of＇lits－of－l（trail \(S\) ）\(\subseteq\) atms－of－ms \(A \wedge\) finite \(A>\)
\(\mu_{C D C L}{ }^{\prime}\)－merged
\(\langle\lambda S\) ．inv \(S \wedge\) no－dup（trail \(S\) ）\(\rangle\)
\(\mu_{C D C L}{ }^{\prime}\)－bound
apply unfold－locales
using unbounded apply simp
using \(f\)－ge－1 apply force
using \(c d c l_{\text {NOT－merged－bj－learn－trail－clauses－bound apply meson }}\)
apply（simp add：cdcl \({ }_{N O T}\)－decreasing－measure＇）
using rtranclp－cdcl \({ }_{N O T}\)－merged－bj－learn－clauses－bound－card apply blast
apply（drule rtranclp－cdcl \({ }_{\text {NOT－merged－bj－learn－not－simplified－decreasing）}}\) ）
apply（auto simp：card－mono set－mset－mono）［］
apply simp
apply auto［］
using \(c^{2} c_{\text {NOT－merged－bj－learn－no－dup－inv }}\) cdcl－merged－inv apply blast
apply（auto simp：inv－restart）［］
done
lemma cdcl \(_{N O T \text {－restart－}} \mu_{C D C L}{ }^{\prime}\)－merged－le－\(\mu_{C D C L}{ }^{\prime}\)－bound：
assumes
\(\left\langle c d c l_{N O T}\right.\)－restart \(\left.T V\right\rangle\)
＜inv（fst T）〉 and
〈no－dup（trail（fst T））〉 and
\(\left\langle a t m s\right.\)－of－mm \(\left(\right.\) clauses \(_{\text {NOT }}(\) fst \(\left.T)\right) \subseteq a t m s\)－of－ms \(\left.A\right\rangle\) and
\(\langle a t m-o f\)＇lits－of－l（trail \((\) fst \(T)) \subseteq a t m s-o f-m s A\rangle\) and

〈finite A〉
shows \(\left\langle\mu_{C D C L}{ }^{\prime}\right.\)－merged \(A(f s t V) \leq \mu_{C D C L}{ }^{\prime}\)－bound \(\left.A(f s t T)\right\rangle\)
using assms
proof induction
case（restart－full \(S T n\) ）
show ？case
unfolding fst－conv
apply（rule rtranclp－cdcl \({ }_{N O T}\)－merged－bj－learn－clauses－bound－card）
using restart－full unfolding full1－def by（force dest！：tranclp－into－rtranclp）＋
next
case（restart－step \(m S T n U\) ）note \(s t=\) this（1）and \(U=\) this（3）and \(i n v=\) this（4）and \(n-d=\) this（5）and atms－clss \(=\) this（6）and atms－trail \(=\) this（7）and finite \(=\) this \((8)\)
then have \(s t^{\prime}:\left\langle c d c l_{N O T-m e r g e d-b j-l e a r n * * ~}^{*} S T\right\rangle\)
by（blast dest：relpowp－imp－rtranclp）
then have \(s t^{\prime \prime}:\left\langle c d c l_{N O T^{* *}} S T\right\rangle\)
using inv \(n\)－d apply－by（rule rtranclp－cdcl \(l_{N O T-m e r g e d-b j-l e a r n-i s-r t r a n c l p-c d c l ~}^{N O T}\) ）auto
have \(\langle i n v T\rangle\)
apply（rule rtranclp－cdcl \({ }_{N O T}\)－merged－bj－learn－inv）
using inv st＇\(n-d\) by auto
then have \(\langle i n v U\rangle\)
using \(U\) by（auto simp：inv－restart）
have \(\left\langle a t m s\right.\)－of－mm \(\left(\right.\) clauses \(\left._{N O T} T\right) \subseteq a t m s\)－of－ms \(A\) 〉
using rtranclp－cdcl \({ }_{N O T}\)－merged－bj－learn－trail－clauses－bound［OF st＇］inv atms－clss atms－trail \(n\)－d by \(\operatorname{simp}\)
then have \(\left\langle a t m s\right.\)－of－mm \(\left(\right.\) clauses \(\left._{N O T} U\right) \subseteq\) atms－of－ms \(A\) 〉
using \(U\) by simp
have 〈not－simplified－cls \(\left(\right.\) clauses \(\left._{N O T} U\right) \subseteq \#\) not－simplified－cls \(\left(\right.\) clauses \(\left._{N O T} T\right)\) 〉 using \(\left\langle U \sim\right.\) reduce－trail－to \(\left.{ }_{N O T}[] T\right\rangle\) by auto
moreover have 〈not－simplified－cls \(\left(\right.\) clauses \(\left._{N O T} T\right) \subseteq \#\) not－simplified－cls \(\left(\right.\) clauses \(\left._{N O T} S\right)\) 〉
apply（rule rtranclp－cdcl \({ }_{\text {NOT－merged－bj－learn－not－simplified－decreasing）}}\) ）
using 〈（cdcl \(\left.\left.{ }_{\text {NOT－merged－bj－learn }} \sim m\right) S T\right\rangle\) by（auto dest！：relpowp－imp－rtranclp）
ultimately have \(U\)－S：〈not－simplified－cls \(\left(\right.\) clauses \(\left._{N O T} U\right) \subseteq \#\) not－simplified－cls \(\left(\right.\) clauses \(\left.\left._{N O T} S\right)\right\rangle\) by auto
```

have «(set-mset (clauses}\mp@subsup{\mp@code{NOT}}{}{\prime}U)
\subseteq \mp@code { s e t - m s e t ~ (n o t - s i m p l i f i e d - c l s ~ (c l a u s e s ~ N O T ~ U)) ~ U ~ s i m p l e - c l s s ~ (a t m s - o f - m s ~ A) > }
apply (rule rtranclp-cdcl NOT-merged-bj-learn-clauses-bound)
apply simp
using <inv U apply simp
using <atms-of-mm (clauses NOT U)\subseteqatms-of-ms A> apply simp
using U apply simp
using finite apply simp
done
then have f1: <card (set-mset (\mp@subsup{clauses }{NOT}{*}U))\leq\operatorname{card (set-mset (not-simplified-cls (clauses NOT U))}
U simple-clss (atms-of-ms A))>
by (simp add: simple-clss-finite card-mono local.finite)

```
moreover have \(\left\langle\right.\) set-mset (not-simplified-cls \(\left(\right.\) clauses \(\left.\left._{N O T} U\right)\right) \cup\) simple-clss (atms-of-ms A)
    \(\subseteq\) set-mset (not-simplified-cls \(\left(\right.\) clauses \(\left.\left._{N O T} S\right)\right) \cup\) simple-clss (atms-of-ms A) >
    using \(U-S\) by auto
then have f2:
    <card (set-mset (not-simplified-cls clauses \(\left.\left._{\text {NOT }} U\right)\right) \cup\) simple-clss (atms-of-ms A))
    \(\leq \operatorname{card}\left(\right.\) set-mset (not-simplified-cls \(\left(\right.\) clauses \(\left.\left._{N O T} S\right)\right) \cup\) simple-clss \((\) atms-of-ms \(\left.A)\right)\) )
    by (simp add: simple-clss-finite card-mono local.finite)
moreover have <card (set-mset (not-simplified-cls (clauses \(\left._{N O T} S\right)\) )
```

 U simple-clss (atms-of-ms A))
 \leqcard (set-mset (not-simplified-cls (clauses}\mp@subsup{N}{NOT}{}S)))+\mathrm{ card (simple-clss (atms-of-ms A))>
 using card-Un-le by blast
 moreover have <card (simple-clss (atms-of-ms A)) \leq 3^card (atms-of-ms A)
 using atms-of-ms-finite simple-clss-card local.finite by blast
 ultimately have <card (set-mset (clauses NOT U))
\leq card (set-mset (not-simplified-cls (clauses NOT S))) + 3^ card (atms-of-ms A)>
by linarith
then show ?case unfolding }\mp@subsup{\mu}{CDCL}{\prime}\mp@subsup{}{}{\prime}\mathrm{ -merged-def by auto
qed
lemma cdcl NOT-restart-}\mp@subsup{\mu}{CDCL}{\prime}\mp@subsup{}{}{\prime}\mathrm{ -bound-le- }\mp@subsup{\mu}{CDCL}{\prime}'\mathrm{ -bound:
assumes
<cdcl NOT-restart T V\rangle and
<no-dup (trail (fst T))\rangle and
inv (fst T)> and
fin: <finite A〉
shows < < CDCL'-bound A (fst V) \leq \mu
using assms(1-3)
proof induction
case (restart-full S T n)
have <not-simplified-cls (clauses NOT T)\subseteq\# not-simplified-cls (clauses NOT S)>
apply (rule rtranclp-cdcl NOT-merged-bj-learn-not-simplified-decreasing)
using <full1 cdcl NOT-merged-bj-learn S T〉 unfolding full1-def
by (auto dest: tranclp-into-rtranclp)
then show ?case by (auto simp: card-mono set-mset-mono)
next
case (restart-step m STn U) note st = this(1) and U = this(3) and n-d = this(4) and
inv = this(5)
then have st': \langlecdcl NOT-merged-bj-learn** S T\rangle
by (blast dest: relpowp-imp-rtranclp)
then have st'':}\langlecdc\mp@subsup{l}{NOT}{** S T\rangle
using inv n-d apply - by (rule rtranclp-cdcl NOT-merged-bj-learn-is-rtranclp-cdcl NOT) auto
have <inv T\rangle
apply (rule rtranclp-cdcl NOT-merged-bj-learn-inv)
using inv st' n-d by auto
then have <inv U>
using U by (auto simp: inv-restart)
have <not-simplified-cls (clauses NOT U)\subseteq\# not-simplified-cls (clauses NOT T)>
using <U ~ reduce-trail-to NOT [] T\rangle by auto
moreover have <not-simplified-cls (clauses NOT T)\subseteq\# not-simplified-cls (clauses}\mp@subsup{\mp@code{NOT}}{NO}{S}S)
apply (rule rtranclp-cdcl NOT-merged-bj-learn-not-simplified-decreasing)
using «(cdcl NOT-merged-bj-learn ^ m) S T> by (auto dest!: relpowp-imp-rtranclp)
ultimately have U-S: <not-simplified-cls (clauses NOT U)\subseteq\# not-simplified-cls (clauses NOT S)\
by auto
then show ?case by (auto simp: card-mono set-mset-mono)
qed

```
sublocale \(c d c l_{N O T}\)-increasing-restarts \(-\cdots--f\)
    \(\left\langle\lambda S T . T \sim\right.\) reduce-trail-to \({ }_{\text {NOt }}\) ([]::'a list) \(\left.S\right\rangle\)
    \(\left\langle\lambda A S\right.\).atms-of-mm clauses \(\left._{N O T} S\right) \subseteq a t m s-o f-m s A\)
    \(\wedge\) atm-of' lits-of-l (trail \(S) \subseteq\) atms-of-ms \(A \wedge\) finite \(A\) 〉
    \(\mu_{C D C L}{ }^{\prime}\)-merged \(c d c l_{N O T}\)-merged-bj-learn
        \(\langle\lambda S\). inv \(S \wedge\) no-dup (trail \(S\) ) \(\rangle\)
    \(<\lambda A T .((2+\operatorname{card}(a t m s-o f-m s A)) \wedge(1+\operatorname{card}(a t m s-o f-m s A))) * 2\)
```

 + card (set-mset (not-simplified-cls(clauses NOT T)))
 + 3 ^card (atms-of-ms A)>
 apply unfold-locales
 using cdcl NOT-restart-}\mp@subsup{\mu}{CDCL''-merged-le- - }{CDCL'
 using cdcl NOT-restart-}\mp@subsup{\mu}{CDCL}{\prime}\mp@subsup{}{NO}{\prime}\mathrm{ -bound-le- - }CDDCL'-bound by fastforce
 lemma true-clss-ext-decrease-right-insert: }\I\models\mathrm{ sext insert C (set-mset M) בI sextm M` by (metis Diff-insert-absorb insert-absorb true-clss-ext-decrease-right-remove-r) lemma true-clss-ext-decrease-add-implied: assumes <M\modelspm C`
shows }\langleI\models\mathrm{ sext insert C (set-mset M) «I =sextm M>
proof -
{fix J
assume
<I\models\operatorname{sextm M}>\mathrm{ and}
<I\subseteqJ\rangle and
tot: <total-over-m J (set-mset ({\#C\#} + M))> and
cons:〈consistent-interp J\
then have }\langleJ\modelssm M\rangle\mathrm{ unfolding true-clss-ext-def by auto
moreover
with }\langleM\modelspmC\rangle\mathrm{ have }\langleJ\modelsC
using tot cons unfolding true-clss-cls-def by auto
ultimately have }\langleJ\modelssm{\#C\#}+M\rangle\mathrm{ by auto
}
then have H:\I\modelssextm M\LongrightarrowI\modelssext insert C (set-mset M)>
unfolding true-clss-ext-def by auto
then show ?thesis
by (auto simp: true-clss-ext-decrease-right-insert)
qed
lemma cdcl NOT-merged-bj-learn-bj-sat-ext-iff:
assumes \cdcl NOT-merged-bj-learn ST\rangle and inv: <inv S\rangle
shows <I\modelssextm clauses NOT }S\longleftrightarrowI\models\mathrm{ sextm clauses NOT T〉
using assms
proof (induction rule: cdcl NOT-merged-bj-learn.induct)
case (cdcl NOT-merged-bj-learn-backjump-l T) note bj-l = this(1)
obtain C' L D S' where
learn: <learn S'T\rangle and
bj:〈backjump S S'` and
atms-C:<atms-of (add-mset L C')\subseteqatms-of-mm (clauses NOT S) \cup atm-of '(lits-of-l (trail S))>
and
D:\langleD = add-mset L C \ and
T:}\langleT~add-cl\mp@subsup{s}{NOT}{}D\mp@subsup{S}{}{\prime}\rangle\mathrm{ and
clss-D:<clauses NOT S =pm D>
using bj-l inv backjump-l-backjump-learn [of S] by blast
have [simp]:〈clauses}\mp@subsup{}{NOT}{}\mp@subsup{S}{}{\prime}=\mp@subsup{\mathrm{ clauses }}{\mathrm{ NOT }}{}S
using bj by (auto elim: backjumpE)
have }\langle(I\models\mathrm{ sextm clauses NOT S)}\longleftrightarrow(I\models\mp@subsup{\operatorname{sextm clauses}}{NOT}{}\mp@subsup{S}{}{\prime})
using bj bj-backjump dpll-bj-clauses inv by fastforce
then show ?case
using clss-D T by (auto simp: true-clss-ext-decrease-add-implied)
qed (auto simp: cdcl NOT-bj-sat-ext-iff
dest!: dpll-bj.intros cdcl NOT.intros)

```
```

lemma rtranclp-cdcl ${ }_{\text {NOT-merged-bj-learn-bj-sat-ext-iff: }}$
assumes $\left\langle c d c l_{N O T}\right.$-merged-bj-learn** $S T$ and $\langle i n v S\rangle$
shows $\left\langle I \models\right.$ sextm clauses $_{N O T} S \longleftrightarrow I \models{\left.\text { sextm } \text { clauses }_{N O T} T\right\rangle}^{T}$
using assms apply (induction rule: rtranclp-induct)
apply simp
using $c^{\prime} c^{\prime} l_{\text {NOT-merged-bj-learn-bj-sat-ext-iff }}$
rtranclp-cdcl ${ }_{N O T}$-merged-bj-learn-is-rtranclp-cdcl $l_{N O T}$-and-inv by blast
lemma $c d c l_{N O T}$-restart-eq-sat-iff:
assumes
$\left\langle c d c l_{N O T}\right.$-restart $\left.S T\right\rangle$ and
inv: 〈inv (fst S) 〉
shows $\left\langle I=\right.$ sextm $^{\text {clauses }}{ }_{N O T}($ fst $S) \longleftrightarrow I \models \operatorname{sextm}^{\text {clauses }}{ }_{N O T}($ fst $\left.T)\right\rangle$
using assms
proof (induction rule: cdcl $_{\text {NOT-restart.induct) }}$
case (restart-full $S T n$)
then have $\left\langle c d c l_{N O T-m e r g e d-b j-l e a r n ~}{ }^{* *} S T\right.$ 〉
by (simp add: tranclp-into-rtranclp full1-def)
then show ?case
using rtranclp-cdcl ${ }_{N O T}$-merged-bj-learn-bj-sat-ext-iff restart-full.prems by auto
next
case (restart-step m $S T n U$)
then have $\left\langle c d c l_{N O T-m e r g e d-b j-l e a r n * * ~}^{*} S T\right.$
by (auto simp: tranclp-into-rtranclp full1-def dest!: relpowp-imp-rtranclp)
then have $\left\langle I \models\right.$ sextm clauses $_{N O T} S \longleftrightarrow I \models$ sextm clauses $\left._{N O T} T\right\rangle$
using rtranclp-cdcl ${ }_{\text {NOT-merged-bj-learn-bj-sat-ext-iff restart-step.prems by auto }}$
moreover have $\left\langle I \models{\text { sextm } \text { clauses }_{N O T} T \longleftrightarrow I \models \text { sextm } T \text { clauses }}_{N O T} U\right\rangle$
using restart-step.hyps(3) by auto
ultimately show ?case by auto
qed
lemma rtranclp-cdcl ${ }_{\text {NOT- }}$-restart-eq-sat-iff:
assumes
$\left\langle c d c l_{N O T}\right.$-restart** $\left.S T\right\rangle$ and
inv: 〈inv (fst S) > and n-d: $\langle n o-d u p($ trail $($ fst $S))\rangle$
shows $\left\langle I \models\right.$ sextm $^{\text {clauses }}{ }_{N O T}($ fst $S) \longleftrightarrow I \models \operatorname{sextm}^{\text {clauses }}{ }_{N O T}($ fst $\left.T)\right\rangle$
using assms(1)
proof (induction rule: rtranclp-induct)
case base
then show? case by simp
next
case $($ step $T U)$ note $s t=t h i s(1)$ and $c d c l=t h i s(2)$ and $I H=t h i s(3)$
have <inv (fst T)〉 and 〈no-dup (trail (fst T))〉
using rtranclp-cdcl ${ }_{N O T}$-with-restart-cdcl $l_{N O T-i n v}$ using st inv n-d by blast+

```

```

 using \(c d c l_{\text {NOT-restart-eq-sat-iff }}\) cdcl by blast
 then show ?case using IH by blast
 qed
lemma $c d c l_{\text {NOT-restart-all-decomposition-implies-m: }}$
assumes
$\left\langle c d c l_{N O T}\right.$-restart $\left.S T\right\rangle$ and
inv: 〈inv $(f s t S)\rangle$ and n-d: $\langle n o-d u p($ trail $(f s t S))\rangle$ and
<all-decomposition-implies-m (clauses $\left.{ }_{N O T}(f s t S)\right)$
(get-all-ann-decomposition (trail (fst S))) >
shows <all-decomposition-implies-m (clauses ${ }_{N O T}\left(f_{s t} T\right)$)

```

\section*{（get－all－ann－decomposition \((\) trail \((f s t ~ T))\) ）}
using assms
proof induction
case（restart－full \(S T n\) ）note full \(=\) this（1）and \(i n v=t h i s(2)\) and \(n-d=\) this（3）and decomp \(=\) this（4）
have st：\(\left\langle c d c l_{N O T-m e r g e d-b j-l e a r n * * ~}^{*} S T\right\rangle\) and
\(n\)－s：〈no－step \(\left.c d c l_{N O T-m e r g e d-b j-l e a r n ~} T\right\rangle\)
using full unfolding full1－def by（fast dest：tranclp－into－rtranclp）＋
have \(s t^{\prime}:\left\langle c d c l_{N O T}{ }^{* *} S T\right\rangle\)
using inv rtranclp－cdcl \(l_{N O T-m e r g e d-b j-l e a r n-i s-r t r a n c l p-c d c l ~}^{N O T}\)－and－inv st \(n\)－\(d\) by auto
have \(\langle i n v T\rangle\)
using rtranclp－cdcl \(l_{N O T}-c d c l_{N O T}-i n v[O F\) st \(]\) inv \(n-d\) by auto
then show ？case
using rtranclp－cdcl \({ }_{N O T}\)－merged－bj－learn－all－decomposition－implies \([O F-\)－decomp］st inv by auto
next
case（restart－step \(m S T n U\) ）note \(s t=\) this（1）and \(U=\) this（3）and inv \(=\) this（4）and
\(n-d=\) this（5）and decomp \(=\) this \((6)\)
show ？case using \(U\) by auto
qed
lemma rtranclp－cdcl \({ }_{N O T}\)－restart－all－decomposition－implies－m：
assumes
\(\left\langle c d c l_{N O T}\right.\)－restart \(\left.{ }^{* *} S T\right\rangle\) and
inv：〈inv（fst \(S\) ）〉 and \(n\)－d：\(\langle n o-d u p(\) trail \((f s t S))\rangle\) and
decomp：〈all－decomposition－implies－m（clauses \({ }_{\text {NOT }}(\) fst \(S)\) ） （get－all－ann－decomposition（trail \((\) fst \(S)\) ））＞
shows \(\left\langle\right.\) all－decomposition－implies－m（clauses \({ }_{N O T}(\) fst \(T)\) ） （get－all－ann－decomposition（trail（fst \(T)\) ））＞
using assms
proof induction
case base
then show？case using decomp by simp
next
case \((\) step \(T U)\) note \(s t=t h i s(1)\) and \(c d c l=t h i s(2)\) and \(I H=t h i s(3)[O F\) this（4－）］and \(i n v=\) this（4）and \(n-d=\operatorname{this}(5)\) and decomp \(=\) this \((6)\)
have \(\langle i n v(f s t T)\rangle\) and \(\langle n o-d u p(\) trail \((f s t ~ T))\rangle\)
using rtranclp－cdcl \({ }_{N O T}\)－with－restart－cdcl \(l_{N O T}-i n v\) using st inv \(n\)－d by blast＋
then show ？case
using \(c d c l_{\text {NOT－restart－all－decomposition－implies－m }}\)［OF \(\left.c d c l\right] I H\) by auto
qed
lemma full－cdcl \({ }_{N O T}\)－restart－normal－form：
assumes
full：\(\left\langle\right.\) full \(c d c l_{N O T}\)－restart \(\left.S T\right\rangle\) and
inv：〈inv（fst \(S\) ）〉 and n－d：\(\langle n o-d u p(\) trail \((\) fst \(S))\rangle\) and
decomp：〈all－decomposition－implies－m（clauses \({ }_{N O T}(\) fst \(S)\) ）
（get－all－ann－decomposition（trail \((f s t S)\) ）） ）and
atms－cls：〈atms－of－mm（clauses \(\left.\left.{ }_{N O T}(f s t S)\right) \subseteq a t m s-o f-m s A\right\rangle\) and
atms－trail：\(\langle a t m-o f\)＇lits－of－l（trail（fst \(S)\) ）\(\subseteq\) atms－of－ms \(A\) 〉 and
fin：〈finite \(A\rangle\)
shows＜unsatisfiable（set－mset \(\left(\right.\) clauses \(\left._{N O T}(f s t S)\right)\) ）
\(\vee\) lits－of－l \((\) trail \((f s t ~ T)) \models\) sextm \(^{\text {clauses }}{ }_{N O T}(f s t S) \wedge\) satisfiable（set－mset \(\left(\right.\) clauses \(\left.\left._{\text {NOT }}(f s t S)\right)\right)\) ）

\section*{proof－}
have inv－T：\(\langle\operatorname{inv}(\) fst \(T)\rangle\) and \(n-d-T\) ：〈no－dup（trail（fst \(T)\) ）〉
using rtranclp－cdcl \(l_{N O T}\)－with－restart－\(c d c l_{N O T-i n v}\) using full inv \(n\)－d unfolding full－def by blast＋
```

moreover have
atms-cls-T: <atms-of-mm (clauses NOT (fst T)) \subseteqatms-of-ms A> and
atms-trail-T: \atm-of ' lits-of-l (trail (fst T))\subseteqatms-of-ms A>
using rtranclp-cdcl NOT-with-restart-bound-inv[of S T A] full atms-cls atms-trail fin inv n-d
unfolding full-def by blast+
ultimately have <no-step cdcl NOT-merged-bj-learn (fst T)>
apply -
apply (rule no-step-cdcl NOT-restart-no-step-cdcl NOT [of - A])
using full unfolding full-def apply simp
apply simp
using fin apply simp
done
moreover have <all-decomposition-implies-m (clauses NOT (fst T))
(get-all-ann-decomposition (trail (fst T)))>
using rtranclp-cdcl NOT-restart-all-decomposition-implies-m[of S T] inv n-d decomp
full unfolding full-def by auto
ultimately have <unsatisfiable (set-mset (clauses NOT (fst T)))

```

```

 apply -
 apply (rule cdcl NOT-merged-bj-learn-final-state)
 using atms-cls-T atms-trail-T fin n-d-T fin inv-T by blast+
 then consider
(unsat) <unsatisfiable (set-mset (clauses NOT (fst T)))\rangle
| (sat)<trail (fst T) \modelsasm clauses NOT (fst T)\rangle and <satisfiable (set-mset (clauses NOT (fst T)))\rangle
by auto
then show <unsatisfiable (set-mset (clauses}\mp@subsup{N}{OT}{}(fst S))
\vee lits-of-l (trail (fst T)) \modelssextm clauses NOT (fst S) ^
satisfiable (set-mset (clauses NOT (fst S)))>
proof cases
case unsat
then have <unsatisfiable (set-mset (clauses NOT (fst S)))>
unfolding satisfiable-def apply auto
using rtranclp-cdcl NOT-restart-eq-sat-iff[of S T] full inv n-d
consistent-true-clss-ext-satisfiable true-clss-imp-true-cls-ext
unfolding satisfiable-def full-def by blast
then show ?thesis by blast
next
case sat
then have <lits-of-l (trail (fst T)) \modelssextm clauses
using true-clss-imp-true-cls-ext by (auto simp: true-annots-true-cls)
then have <lits-of-l (trail (fst T)) \modelssextm clauses NOT (fst S)>
using rtranclp-cdcl NOT-restart-eq-sat-iff[of S T] full inv n-d unfolding full-def by blast
moreover then have <satisfiable (set-mset (clauses NOT (fst S)))\rangle
using consistent-true-clss-ext-satisfiable distinct-consistent-interp n-d-T by fast
ultimately show ?thesis by fast
qed
qed
corollary full-cdcl NOT-restart-normal-form-init-state:
assumes
init-state: <trail S=[]>\langle\mp@subsup{clauses}{NOT}{}S=N\rangle\mathrm{ and}
full: <full cdcl NOT-restart (S,0) T〉 and
inv:〈inv S〉
shows <unsatisfiable (set-mset N)
\vee lits-of-l (trail (fst T)) =sextm N ^ satisfiable (set-mset N)>
using full-cdcl NOT-restart-normal-form[of 〈(S,O)`T] assms by auto

```
end - End of locale \(c d c l_{N O T}\)-merge-bj-learn-with-backtrack-restarts.
end
theory \(C D C L-W N O T\)
imports \(C D C L\)-NOT CDCL-W-Merge
begin

\subsection*{2.3 Link between Weidenbach's and NOT's CDCL}

\subsection*{2.3.1 Inclusion of the states}
declare upt.simps(2)[simp del]
fun convert-ann-lit-from- \(W\) where
convert-ann-lit-from-W (Propagated \(L-)=\) Propagated \(L() \mid\) convert-ann-lit-from-W \((\) Decided \(L)=\) Decided \(L\)
abbreviation convert-trail-from- \(W\) ::
('v, 'mark) ann-lits
\(\Rightarrow\) ('v, unit) ann-lits where
convert-trail-from- \(W \equiv\) map convert-ann-lit-from- \(W\)
lemma lits-of-l-convert-trail-from-W[simp]:
lits-of-l (convert-trail-from-W \(M\) ) lits-of-l \(M\)
by (induction rule: ann-lit-list-induct) simp-all
lemma lit-of-convert-trail-from- \(W\) [simp]:
lit-of (convert-ann-lit-from-W L) \(=\) lit-of \(L\)
by (cases L) auto
lemma no-dup-convert-from- \(W\) [simp]:
no-dup (convert-trail-from-W \(M\) ) \(\longleftrightarrow\) no-dup \(M\)
by (auto simp: comp-def no-dup-def)
lemma convert-trail-from-W-true-annots[simp]:
convert-trail-from- \(W M \models\) as \(C \longleftrightarrow M \models\) as \(C\)
by (auto simp: true-annots-true-cls image-image lits-of-def)
lemma defined-lit-convert-trail-from-W[simp]:
defined-lit (convert-trail-from-W \(S\) ) \(=\) defined-lit \(S\)
by (auto simp: defined-lit-map image-comp intro!: ext)
lemma is-decided-convert-trail-from-W[simp]:
\(\langle i s\)-decided (convert-ann-lit-from-W \(L\) ) \(=i s\)-decided \(L\rangle\)
by (cases L) auto
lemma count-decided-conver-Trail-from-W[simp]:
〈count-decided (convert-trail-from-W \(M\) ) \(=\) count-decided \(M\) 〉
unfolding count-decided-def by (auto simp: comp-def)
The values 0 and \(\{\#\}\) are dummy values.
consts dummy-cls :: 'cls
fun convert-ann-lit-from-NOT
\(::\left(' v\right.\), 'mark) ann-lit \(\Rightarrow\left(' v,{ }^{\prime} c l s\right)\) ann-lit where
convert-ann-lit-from-NOT (Propagated L-) \(=\) Propagated L dummy-cls \(\mid\)
convert-ann-lit-from-NOT (Decided L) \(=\) Decided \(L\)
abbreviation convert-trail-from-NOT where
convert-trail-from-NOT \(\equiv\) map convert-ann-lit-from-NOT
lemma undefined-lit-convert-trail-from-NOT[simp]:
undefined-lit (convert-trail-from-NOT F) L \(\longleftrightarrow\) undefined-lit F L
by (induction F rule: ann-lit-list-induct) (auto simp: defined-lit-map)
lemma lits-of-l-convert-trail-from-NOT:
lits-of-l (convert-trail-from-NOT F) \(=\) lits-of-l \(F\)
by (induction \(F\) rule: ann-lit-list-induct) auto
lemma convert-trail-from-W-from-NOT[simp]:
convert-trail-from-W (convert-trail-from-NOT M) \(=M\)
by (induction rule: ann-lit-list-induct) auto
lemma convert-trail-from-W-convert-lit-from-NOT[simp]:
convert-ann-lit-from-W (convert-ann-lit-from-NOT L) \(=L\)
by (cases L) auto
abbreviation trail \(_{N O T}\) where
trail \(_{\text {NOT }} S \equiv\) convert-trail-from- \(W\) (fst \(S\) )
lemma undefined-lit-convert-trail-from-W[iff]: undefined-lit (convert-trail-from-W M) L \(\longleftrightarrow\) undefined-lit \(M L\) by (auto simp: defined-lit-map image-comp)
lemma lit-of-convert-ann-lit-from-NOT[iff]:
lit-of (convert-ann-lit-from-NOT L) \(=\) lit-of \(L\)
by (cases L) auto
sublocale state \(_{W} \subseteq\) dpll-state-ops where
trail \(=\lambda\). convert-trail-from- \(W(\) trail \(S)\) and
clauses \(_{\text {NOT }}=\) clauses and
prepend-trail \(=\lambda L S\). cons-trail (convert-ann-lit-from-NOT L) S and tl-trail \(=\lambda S\). tl-trail \(S\) and
add-cls \({ }_{N O T}=\lambda C S\). add-learned-cls \(C S\) and
remove-cls \({ }_{\text {NOT }}=\lambda C S\). remove-cls \(C S\)
by unfold-locales
sublocale state \(_{W} \subseteq\) dpll-state where
trail \(=\lambda S\). convert-trail-from- \(W(\) trail \(S)\) and
clauses \(_{\text {NOT }}=\) clauses and
prepend-trail \(=\lambda L S\). cons-trail (convert-ann-lit-from-NOT L) \(S\) and
tl-trail \(=\lambda S\). tl-trail \(S\) and
\(a d d-c l s_{N O T}=\lambda C S\). add-learned-cls CS and
remove-cls \({ }_{\text {NOT }}=\lambda C S\). remove-cls \(C S\)
by unfold-locales (auto simp: map-tl o-def)
context state \(_{W}\)
begin
declare state-simp \({ }_{N O T}[\operatorname{simp} d e l]\)
end

\section*{2．3．2 Inclusion of Weidendenbch＇s CDCL without Strategy}
sublocale conflict－driven－clause－learning \({ }_{W} \subseteq \operatorname{cdcl}_{N O T}\)－merge－bj－learn－ops where trail \(=\lambda S\) ．convert－trail－from－\(W(\) trail \(S)\) and
clauses \(_{\text {NOT }}=\) clauses and prepend－trail \(=\lambda L S\) ．cons－trail（convert－ann－lit－from－NOT L）S and tl－trail \(=\lambda S\) ．tl－trail \(S\) and
\(a d d\)－cls \({ }_{N O T}=\lambda C S\) ．add－learned－cls \(C S\) and remove－cls \({ }_{\text {NOT }}=\lambda C S\) ．remove－cls \(C S\) and decide－conds \(=\lambda-\)－．True and propagate－conds \(=\lambda--\) ．True and forget－conds \(=\lambda-S\) ．conflicting \(S=\) None and backjump－l－cond \(=\lambda C C^{\prime} L^{\prime} S T\) ．backjump－l－cond \(C C^{\prime} L^{\prime} S T\)
\(\wedge\) distinct－mset \(C^{\prime} \wedge L^{\prime} \notin \# C^{\prime} \wedge \neg\) tautology（add－mset \(\left.L^{\prime} C^{\prime}\right)\)
by unfold－locales
sublocale conflict－driven－clause－learning \(W_{W} \subseteq c d c l_{N O T-m e r g e-b j-l e a r n-p r o x y ~ w h e r e ~}^{\text {wher }}\)
trail \(=\lambda S\) ．convert－trail－from－\(W\)（trail \(S\) ）and
clauses \(_{\text {NOT }}=\) clauses and
prepend－trail \(=\lambda L S\) ．cons－trail（convert－ann－lit－from－NOT L）S and
tl－trail \(=\lambda S\) ．tl－trail \(S\) and
\(a d d\)－cls \({ }_{N O T}=\lambda C S\) ．add－learned－cls \(C S\) and
remove－cls \({ }_{N O T}=\lambda C S\) ．remove－cls \(C S\) and
decide－conds \(=\lambda-\) ．True and
propagate－conds \(=\lambda\)－－．True and
forget－conds \(=\lambda-S\) ．conflicting \(S=\) None and
backjump－l－cond \(=\) backjump－l－cond and
\(i n v=i n v_{N O T}\)
by unfold－locales
sublocale conflict－driven－clause－learning \({ }_{W} \subseteq \operatorname{cdcl}_{N O T}\)－merge－bj－learn where
trail \(=\lambda S\) ．convert－trail－from－\(W\)（trail \(S\) ）and
clauses \(_{\text {NOT }}=\) clauses and
prepend－trail \(=\lambda L S\) ．cons－trail（convert－ann－lit－from－NOT L）S and
tl－trail \(=\lambda S\) ．tl－trail \(S\) and
\(a d d-\) cls \(_{\text {NOT }}=\lambda C S\) ．add－learned－cls \(C S\) and
remove－cls \({ }_{\text {NOT }}=\lambda C S\) ．remove－cls \(C S\) and
decide－conds \(=\lambda-\)－．True and
propagate－conds \(=\lambda--\) ．True and
forget－conds \(=\lambda-S\) ．conflicting \(S=\) None and
backjump－l－cond \(=\) backjump－l－cond and
\(i n v=i n v_{N O T}\)
proof（unfold－locales，goal－cases）
case 2
then show ？case using \(c d c l_{N O T-m e r g e d-b j-l e a r n-n o-d u p-i n v ~ b y ~(a u t o ~ s i m p: ~ c o m p-d e f) ~}^{\text {（ }}\) ）
next
case（ \(\left.1 C^{\prime} S C F^{\prime} K F L\right)\)
let ？\(C^{\prime}=\) remdups－mset \(C^{\prime}\)
have \(L \notin \# C^{\prime}\)
using \(\left\langle F \models\right.\) as CNot \(C^{\prime}\) 〉〈undefined－lit \(F\) L〉Decided－Propagated－in－iff－in－lits－of－l
in－CNot－implies－uminus（2）by fast
then have dist：distinct－mset ？\(C^{\prime} L \notin \# C^{\prime}\)
by simp－all
have no－dup \(F\)
using \(\left\langle\right.\) inv \(\left._{N O T} S\right\rangle\left\langle\right.\) convert－trail－from－W \((\) trail \(S)=F^{\prime} @\) Decided \(\left.K \# F\right\rangle\)
unfolding inv \(_{\text {NOT }}\)－def by（metis no－dup－appendD no－dup－cons no－dup－convert－from－\(W\) ）
then have consistent－interp（lits－of－l F）
using distinct－consistent－interp by blast
then have \(\neg\) tautology \(C^{\prime}\)
using \(\left\langle F \models\right.\) as CNot \(\left.C^{\prime}\right\rangle\) consistent－CNot－not－tautology true－annots－true－cls by blast
then have taut：ᄀ tautology（add－mset L？\(C^{\prime}\) ）
using \(\left\langle F \models\right.\) as CNot \(\left.C^{\prime}\right\rangle\langle u n d e f i n e d-l i t ~ F L\rangle\) by（metis CNot－remdups－mset
Decided－Propagated－in－iff－in－lits－of－l in－CNot－uminus tautology－add－mset
tautology－remdups－mset true－annot－singleton true－annots－def）
have f2：no－dup（convert－trail－from－W（trail \(S\) ））
using \(\left\langle\right.\) inv \(\left._{N O T} S\right\rangle\) unfolding inv \(_{\text {NOT }}\)－def by（simp add：o－def）
have f3：atm－of \(L \in\) atms－of－mm（clauses \(S\) ）
\(\cup\) atm－of＇lits－of－l（convert－trail－from－W（trail S））
using 〈convert－trail－from－\(W\)（trail \(S)=F^{\prime}\)＠Decided \(\left.K \# F\right\rangle\)
\(\langle\) atm－of \(L \in\) atms－of－mm（clauses \(S) \cup\) atm－of＇lits－of－l \((F\)＇＠Decided \(K \# F)\rangle\) by auto
have \(f_{4}\) ：clauses \(S \models p m\) add－mset \(L\) ？\(C^{\prime}\)
by（metis 1 （7）dist（2）remdups－mset－singleton－sum true－clss－cls－remdups－mset）
have \(F \models\) as CNot ？\(C^{\prime}\)
by（simp add：\(\left\langle F \models\right.\) as CNot \(\left.C^{\prime}\right\rangle\) ）
have Ex（backjump－l S）
apply standard
apply（rule backjump－l．intros［of－－－L add－mset L？\(C^{\prime}-\) ？\(C^{\prime}\) ）
using \(f 4\) f3 f2 〈 \(\neg\) tautology（add－mset \(L\) ？\(C^{\prime}\) ）〉
1 taut dist \(\left\langle F \models\right.\) as \(C N o t\)（remdups－mset \(C^{\prime}\) ）\(\rangle\)
state－eq \({ }_{N O T}\)－ref unfolding backjump－l－cond－def set－mset－remdups－mset by blast＋
then show ？case
by blast
next
case（3 LS）
then show \(\exists T\) ．decide dot \(S T \vee\) propagate \(_{\text {NOt }} S T \vee\) backjump－l \(S T\)
using decide NOt \(^{\text {intros }}[\) of \(S L]\) by auto
qed
context conflict－driven－clause－learning \({ }_{W}\)
begin
Notations are lost while proving locale inclusion：
notation state－eq \({ }_{\text {NOT }}\left(\right.\) infix \(\left.\sim_{N O T} 50\right)\)

\section*{2．3．3 Additional Lemmas between NOT and W states}
lemma trail \(_{W}\)－eq－reduce－trail－to \({ }_{N O T}-e q\) ：
trail \(S=\) trail \(T \Longrightarrow\) trail（reduce－trail－to \(\left.{ }_{\text {NOT }} F S\right)=\) trail（reduce－trail－to \(\left.{ }_{\text {NOT }} F T\right)\)
proof（induction FS arbitrary：T rule：reduce－trail－to \({ }_{N O T}\) ．induct）
case（1FST）note \(I H=\operatorname{this}(1)\) and \(\operatorname{tr}=\operatorname{this}(2)\)
then have［］\(=\) convert－trail－from－\(W\)（trail \(S\) ）
\(\checkmark\) length \(F=\) length（convert－trail－from－W \((\) trail \(S)\) ）
\(\vee\) trail \(\left(\right.\) reduce－trail－to \({ }_{N O T} F(\) tl－trail \(\left.S)\right)=\) trail \(\left(\right.\) reduce－trail－to \(\left.{ }_{N O T} F(t l-t r a i l ~ T)\right)\)
using \(I H\) by（metis（no－types）trail－tl－trail）
then show trail（reduce－trail－to \({ }_{\text {NOT }} F S\) ）\(=\) trail（reduce－trail－to \({ }_{\text {NOT }} F T\) ）
using tr by（metis（no－types）reduce－trail－to \({ }_{\text {NOT }}\). elims）
qed
lemma trail－reduce－trail－to \({ }_{N O T}\)－add－learned－cls：
```

no-dup (trail S) \Longrightarrow
trail (reduce-trail-to NOT M (add-learned-cls D S)) = trail (reduce-trail-tonot M S)
by (rule trailW}\mp@subsup{W}{}{-eq-reduce-trail-to NOT-eq) simp
lemma reduce-trail-tonOt-reduce-trail-convert:
reduce-trail-to NOT C S = reduce-trail-to (convert-trail-from-NOT C) S
apply (induction C S rule: reduce-trail-to NOT.induct)
apply (subst reduce-trail-to NOT.simps, subst reduce-trail-to.simps)
by auto
lemma reduce-trail-to-map[simp]:
reduce-trail-to (map f M)S= reduce-trail-to MS
by (rule reduce-trail-to-length) simp
lemma reduce-trail-to NOT-map[simp]:
reduce-trail-to NOT (map fM)S=reduce-trail-to NOT MS
by (rule reduce-trail-to NOT-length) simp
lemma skip-or-resolve-state-change:
assumes skip-or-resolve** S T
shows
\existsM.trail S = M @ trail T^(\forallm\in set M. \negis-decided m)
clauses S= clauses T
backtrack-lvl S = backtrack-lvl T
init-clss S = init-clss T
learned-clss S = learned-clss T
using assms
proof (induction rule: rtranclp-induct)
case base
case 1 show ?case by simp
case 2 show ?case by simp
case 3 show ?case by simp
case 4 show ?case by simp
case 5 show ?case by simp
next
case (step T U) note st = this(1) and s-o-r = this(2) and IH = this(3) and IH' = this(3-)
case 2 show ?case using IH' s-o-r by (auto elim!: rulesE simp: skip-or-resolve.simps)
case 3 show? ?ase using IH' s-o-r by (cases <trail T\rangle) (auto elim!: rulesE simp: skip-or-resolve.simps)
case 1 show ?case
using s-o-r IH by (cases trail T) (auto elim!: rulesE simp: skip-or-resolve.simps)
case 4 show ?case
using s-o-r IH' by (cases trail T) (auto elim!: rulesE simp: skip-or-resolve.simps)
case 5 show ?case
using s-o-r IH' by (cases trail T) (auto elim!: rulesE simp: skip-or-resolve.simps)
qed

```

\subsection*{2.3.4 Inclusion of Weidenbach's CDCL in NOT's CDCL}

This lemma shows the inclusion of Weidenbach's CDCL \(c d c l_{W}\)-merge (with merging) in NOT's \(c d c l_{N O T-m e r g e d-b j-l e a r n . ~}^{\text {N }}\).
lemma \(c d c l_{W}\)-merge-is-cdcl \({ }_{N O T-m e r g e d-b j-l e a r n: ~}^{\text {- }}\)
assumes
inv: \(c d c l_{W}\)-all-struct-inv \(S\) and \(c d c l_{W}\)-restart: \(c d c l_{W}\)-merge \(S T\)
shows \(c d c l_{\text {NOT-merged-bj-learn }} S T\)
\(\vee\left(\right.\) no-step cdcl \(_{W}\)-merge \(T \wedge\) conflicting \(T \neq\) None \()\)
using \(c d c l_{W}\)-restart inv
proof induction
case (fw-propagate \(S T\) ) note propa \(=\) this(1)
then obtain \(M N U L C\) where
\(H\) : state-butlast \(S=(M, N, U\), None \()\) and
\(C L: C+\{\# L \#\} \in \#\) clauses \(S\) and
\(M-C: M \models\) as CNot \(C\) and
undef: undefined-lit (trail S) \(L\) and
\(T\) : state-butlast \(T=(\) Propagated \(L(C+\{\# L \#\}) \# M, N, U\), None \()\)
by (auto elim: propagate-high-levelE)
have propagate \({ }_{N O T} S T\)
using \(H C L T\) undef \(M\)-C by (auto simp: state-eq \({ }_{N O T}\)-def clauses-def simp del: state-simp)
then show ?case
using \(c d c l_{\text {NOT-merged-bj-learn.intros(2) by blast }}\)
next
case (fw-decide \(S T\) ) note dec \(=\) this(1) and \(i n v=t h i s(2)\)
then obtain \(L\) where
undef-L: undefined-lit (trail S) \(L\) and
atm-L: atm-of \(L \in\) atms-of-mm (init-clss \(S\) ) and
\(T: T \sim\) cons-trail (Decided L) \(S\)
by (auto elim: decideE)
have decide \({ }_{\text {NOT }} S T\)
apply (rule decide \({ }_{N O T}\). decide \(_{N O T}\) )
using undef-L apply (simp; fail)
using atm-L inv apply (auto simp: cdcl \(W_{W}\)-all-struct-inv-def no-strange-atm-def clauses-def; fail)
using \(T\) undef-L unfolding state-eq \(q_{N O T}\)-def by (auto simp: clauses-def)
then show ?case using cdcl \(_{\text {NOT-merged-bj-learn-decide }}^{N O T}\) by blast
next
case \((f w\)-forget \(S T)\) note \(r f=t h i s(1)\) and \(i n v=t h i s(2)\)
then obtain \(C\) where
\(S:\) conflicting \(S=\) None and \(C\)-le: \(C \in \#\) learned-clss \(S\) and
\(\neg(\) trail \(S) \models\) asm clauses \(S\) and
\(C \notin\) set (get-all-mark-of-propagated (trail S)) and
C-init: \(C \notin \#\) init-clss \(S\) and
\(T: T \sim\) remove-cls \(C S\) and
\(S\)-C: 〈removeAll-mset \(C\) (clauses \(S) \models p m C\rangle\)
by (auto elim: forgetE)
have forget \(_{N O T} S T\)
apply (rule forget \({ }_{\text {NOT }} \cdot\) forget \(_{N O T}\) )
using \(S-C\) apply blast
using \(S\) apply simp
using \(C\)-init \(C\)-le apply (simp add: clauses-def)
using \(T C\)-le \(C\)-init by (auto simp: Un-Diff state-eq \(q_{N O T}\)-def clauses-def ac-simps)
then show ?case using \(c d c l_{N O T-m e r g e d-b j-l e a r n-f o r g e t ~}^{N O T}\) by blast
next
case (fw-conflict STU) note confl \(=\) this(1) and \(b j=\) this(2) and \(\operatorname{inv}=\) this(3)
obtain \(C_{S} C T\) where
confl- \(T\) : conflicting \(T=\) Some \(C T\) and
\(C T: C T=C_{S}\) and
\(C_{S}: C_{S} \in \#\) clauses \(S\) and
tr-S-C \(C_{S}\) : trail \(S \models\) as CNot \(C_{S}\)
using confl by (elim conflictE) auto
have inv-T: cdcl \({ }_{W}\)-all-struct-inv \(T\)
using cdcl \(_{W}\)-restart.simps \(c d c l_{W}\)-all-struct-inv-inv confl inv by blast
then have \(c d c l_{W}\)-M-level-inv \(T\)
unfolding \(\mathrm{cdcl}_{W}\)-all-struct-inv-def by auto
then consider
(no-bt) skip-or-resolve** \(T U \mid\)
(bt) \(T^{\prime}\) where skip-or-resolve** \(T T^{\prime}\) and backtrack \(T^{\prime} U\)
using bj rtranclp-cdcl \(W_{W}\)-bj-skip-or-resolve-backtrack unfolding full-def by meson
then show ?case
proof cases
case \(n o-b t\)
then have conflicting \(U \neq\) None
using confl by (induction rule: rtranclp-induct)
(auto simp: skip-or-resolve.simps elim!: rulesE)
moreover then have no-step \(c d c l_{W}\)-merge \(U\)
by (auto simp: \(c d c l_{W}\)-merge.simps elim: rulesE)
ultimately show ?thesis by blast
next
case \(b t\) note \(s-o r-r=t h i s(1)\) and \(b t=t h i s(2)\)
have \(c d c l_{W}\)-restart** \(T T^{\prime}\)
using s-or-r mono-rtranclp[of skip-or-resolve \(c d c l_{W}\)-restart]
rtranclp-skip-or-resolve-rtranclp-cdcl \({ }_{W}\)-restart
by blast
then have \(c d c l_{W}\)-M-level-inv \(T^{\prime}\)
using rtranclp-cdcl \({ }_{W}\)-restart-consistent-inv \(\left\langle c d c l_{W}-M\right.\)-level-inv \(\left.T\right\rangle\) by blast
then obtain M1 M2 i D L K \(D^{\prime}\) where
confl- \(T^{\prime}\) : conflicting \(T^{\prime}=\) Some (add-mset \(L D\) ) and
M1-M2:(Decided K \# M1, M2) \(\in\) set (get-all-ann-decomposition \(\left(\operatorname{trail} T^{\prime}\right)\) ) and
get-level (trail \(T^{\prime}\) ) \(K=i+1\)
get-level (trail \(\left.T^{\prime}\right) L=\) backtrack-lvl \(T^{\prime}\) and
get-level (trail \(\left.T^{\prime}\right) L=\) get-maximum-level (trail \(\left.T^{\prime}\right)\left(\right.\) add-mset \(\left.L D^{\prime}\right)\) and
get-maximum-level (trail \(T^{\prime}\) ) \(D^{\prime}=i\) and
\(U: U \sim\) cons-trail (Propagated \(L\left(\right.\) add-mset \(\left.L D^{\prime}\right)\) )
(reduce-trail-to M1
(add-learned-cls (add-mset L \(D^{\prime}\) )
(update-conflicting None \(T^{\prime}\) )) ) and
\(D-D^{\prime}:\left\langle D^{\prime} \subseteq \# D\right\rangle\) and
\(T^{\prime}-L-D^{\prime}:\left\langle c l a u s e s ~ T^{\prime} \models p m\right.\) add-mset \(\left.L D^{\prime}\right\rangle\)
using bt by (auto elim: backtrackE)
let \(? D^{\prime}=\left\langle\right.\) add-mset \(\left.L D^{\prime}\right\rangle\)
have [simp]: clauses \(S=\) clauses \(T\)
using confl by (auto elim: rulesE)
have \([\) simp \(]\) : clauses \(T=\) clauses \(T^{\prime}\)
using \(s\)-or-r
proof (induction)
case base
then show? case by simp
next
case \((\) step \(U V)\) note \(s t=\) this(1) and \(s-o-r=\) this(2) and \(I H=\) this(3)
have clauses \(U=\) clauses \(V\)
using s-o-r by (auto simp: skip-or-resolve.simps elim: rulesE)
then show ?case using \(I H\) by auto
qed
have \(\operatorname{cdcl}_{W}\)-restart** \(T T^{\prime}\)
using rtranclp-skip-or-resolve-rtranclp-cdcl \(W_{W}\)-restart s-or-r by blast
have inv-T': cdcl \(W_{W}\)-all-struct-inv \(T^{\prime}\)
using \(\left\langle c d c l_{W}\right.\)-restart** \(\left.T T^{\prime}\right\rangle\) inv- \(T\) rtranclp-cdcl \({ }_{W}\)-all-struct-inv-inv by blast
have inv- \(U\) : \(c d c l_{W}\)-all-struct-inv \(U\)
using \(\operatorname{cdcl}_{W}\)-merge-restart-cdcl \(W_{W}\)-restart confl fw-r-conflict inv local.bj
rtranclp-cdcl \({ }_{W}\)-all-struct-inv-inv by blast
have \([\) simp \(]\) : init-clss \(S=\) init-clss \(T^{\prime}\)
using \(\left\langle c d c l_{W}\right.\)-restart** \(\left.T T^{\prime}\right\rangle c d c l_{W}\)-restart-init-clss confl \(c d c l_{W}\)-all-struct-inv-def conflict inv by (metis rtranclp-cdcl \({ }_{W}\)-restart-init-clss)
then have atm-L: atm-of \(L \in\) atms-of-mm (clauses \(S\) )
using inv- \(T^{\prime}\) confl- \(T^{\prime}\) unfolding \(c^{\prime} c l_{W}\)-all-struct-inv-def no-strange-atm-def clauses-def
by ( simp add: atms-of-def image-subset-iff)
obtain \(M\) where \(t r\) - \(T\) : trail \(T=M\) @ trail \(T^{\prime}\)
using s-or-r skip-or-resolve-state-change by meson
obtain \(M^{\prime}\) where
tr- \(T^{\prime}:\) trail \(T^{\prime}=M^{\prime} @\) Decided \(K \# t l(\) trail \(U)\) and
tr- \(U\) : trail \(U=\) Propagated \(L\) ? \(D^{\prime} \# t l(\) trail \(U)\)
using \(U\) M1-M2 inv- \(T^{\prime}\) unfolding \(\operatorname{cdcl}_{W}\)-all-struct-inv-def \(c d c l_{W}\)-M-level-inv-def by fastforce
define \(M^{\prime \prime}\) where \(M^{\prime \prime} \equiv M\) @ \(M^{\prime}\)
have \(\operatorname{tr}-T\) : trail \(S=M^{\prime \prime}\) @ Decided \(K \# t l(t r a i l ~ U)\)
using tr-T tr- \(T^{\prime}\) confl unfolding \(M^{\prime \prime}\)-def by (auto elim: rulesE)
have init-clss \(T^{\prime}+\) learned-clss \(S \models p m ? D^{\prime}\)
using inv- \(T^{\prime}\) confl- \(T^{\prime}\langle\) clauses \(S=\) clauses \(T\rangle\left\langle\right.\) clauses \(T=\) clauses \(\left.T^{\prime}\right\rangle T^{\prime}-L-D^{\prime}\)

have reduce-trail-to (convert-trail-from-NOT (convert-trail-from-W M1)) \(S=\) reduce-trail-to M1 S
by (rule reduce-trail-to-length) simp
moreover have trail (reduce-trail-to M1 S) = M1
apply (rule reduce-trail-to-skip-beginning \([\) of - M @ - @ M2 @ [Decided K]])
using confl M1-M2 <trail \(T=M\) @ trail \(T^{\prime}\) 〉
apply (auto dest!: get-all-ann-decomposition-exists-prepend
elim!: conflictE)
by (rule sym) auto
ultimately have [simp]: trail (reduce-trail-to \({ }_{\text {NOT }}\) M1 S) \(=\) M1
using M1-M2 confl by (subst reduce-trail-to \({ }_{N O T}\)-reduce-trail-convert)
(auto simp: comp-def elim: rulesE)
have every-mark-is-a-conflict \(U\)
using inv- \(U\) unfolding \(c d c l_{W}\)-all-struct-inv-def \(c d c l_{W}\)-conflicting-def by simp
then have \(U-D: t l(\) trail \(U) \models\) as \(C N o t D^{\prime}\) by (subst tr-U, subst (asm) tr-U) fastforce
have undef-L: undefined-lit (tl (trail U)) L
using \(U\) M1-M2 inv- \(U\) unfolding \(c d c l_{W}\)-all-struct-inv-def \(c d c l_{W}\)-M-level-inv-def
by (auto simp: lits-of-def defined-lit-map)
have backjump-l S U
apply (rule backjump-l[of---L? \(\left.\left.D^{\prime}-D^{\prime}\right]\right)\)
using \(t r-T\) apply (simp; fail)
using \(U\) M1-M2 confl M1-M2 inv- \(T^{\prime}\) inv unfolding cdcl \(_{W}\)-all-struct-inv-def
\(c d c l_{W}\)-M-level-inv-def apply (auto simp: state-eq \({ }_{N O T}\)-def
trail-reduce-trail-to \({ }_{\text {NOT-add-learned-cls; fail) [] }}\)
using \(C_{S}\) apply (auto; fail)[]
using \(t r-S-C_{S}\) apply (simp; fail)
using undef-L apply (auto; fail)]
using atm-L apply (simp add: trail-reduce-trail-to \({ }_{\text {NOT-add-learned-cls; fail) }}\) (
using <init-clss \(T^{\prime}+\) learned-clss \(S \models p m\) ? \(D^{\prime}\) 〉 unfolding clauses-def
apply (simp; fail)
```

 apply (simp; fail)
 apply (metis U-D convert-trail-from-W-true-annots)
 using inv-T' inv-U U confl-T' undef-L M1-M2 unfolding cdcl}\mp@subsup{W}{W}{}\mathrm{ -all-struct-inv-def
 distinct-cdcl }\mp@subsup{W}{}{\prime}\mathrm{ -state-def by (auto simp: cdcl W-M-level-inv-decomp backjump-l-cond-def
 dest: multi-member-split)
 then show ?thesis using cdcl NOT-merged-bj-learn-backjump-l by fast
 qed
 qed
abbreviation cdcl NOT-restart where
cdcl NOT-restart }\equiv\mathrm{ restart-ops.cdcl NOT-raw-restart cdcl NOT restart
lemma cdclW-merge-restart-is-cdcl NOT-merged-bj-learn-restart-no-step:
assumes
inv: cdcl W}\mp@subsup{W}{}{-all-struct-inv S and
cdcl W-restart:cdcl W-merge-restart S T
shows cdcl NOT-restart** ST\vee (no-step cdcl}\mp@subsup{W}{W}{*-merge T ^ conflicting T\not=None)
proof -
consider
(fw) cdclw-merge S T |
(fw-r) restart S T
using cdcl}\mp@subsup{W}{W}{-restart by (meson cdcl W-merge-restart.simps cdcl}\mp@subsup{W}{W}{}\mathrm{ -rf.cases fw-conflict fw-decide
fw-forget
fw-propagate)
then show ?thesis
proof cases
case fw
then have IH:cdcl NOT-merged-bj-learn S T \vee (no-step cdcl }\mp@subsup{W}{W}{}\mathrm{ -merge }T\wedge\mathrm{ conflicting T}\not=\mathrm{ None)
using inv cdcl W-merge-is-cdcl NOT-merged-bj-learn by blast
have invS: inv NOT S
using inv unfolding cdcl W-all-struct-inv-def cdcl W-M-level-inv-def by auto
have ff2: cdcl NOT }\mp@subsup{}{NOT}{++}ST\longrightarrowcdcl NOT *** S
by (meson tranclp-into-rtranclp)
have ff3: no-dup (convert-trail-from-W (trail S))
using invS by (simp add: comp-def)
have }cdc\mp@subsup{l}{NOT}{}\leqcdc\mp@subsup{l}{NOT}{}\mathrm{ -restart
by (auto simp: restart-ops.cdcl NOT-raw-restart.simps)
then show ?thesis
using ff3 ff2 IH cdcl NOT-merged-bj-learn-is-tranclp-cdcl NOT
rtranclp-mono[of cdcl NOT cdcl NOT-restart] invS predicate2D by blast
next
case fw-r
then show ?thesis by (blast intro: restart-ops.cdcl NOT-raw-restart.intros)
qed
qed
abbreviation }\mp@subsup{\mu}{FW}{}\mathrm{ :: 'st }=>\mathrm{ nat where
\muFW}S\equiv(\mathrm{ if no-step cdclW-merge S then 0 else 1+ }\mp@subsup{\mu}{CDCL}{\prime
lemma cdcl }\mp@subsup{}{W}{}-merge- - \mp@subsup{\mu}{FW}{}-\mathrm{ -decreasing:
assumes
inv: cdcl W-all-struct-inv S and
fw: cdcl W-merge S T
shows \mp@subsup{\mu}{FW}{}T<\mp@subsup{\mu}{FW}{}S
proof -
let ?A = init-clss S

```
have atm-clauses: atms-of-mm (clauses \(S\) ) \(\subseteq\) atms-of-mm?A
using inv unfolding \(\mathrm{cdcl}_{W}\)-all-struct-inv-def no-strange-atm-def clauses-def by auto have atm-trail: atm-of ' lits-of-l (trail S) \(\subseteq\) atms-of-mm?A using inv unfolding cdcl \(_{W}\)-all-struct-inv-def no-strange-atm-def clauses-def by auto have \(n\)-d: no-dup (trail \(S\) ) using inv unfolding \(c d c l_{W}\)-all-struct-inv-def by (auto simp: \(c d c l_{W}\)-M-level-inv-decomp)
have \([\) simp \(]\) : \(\neg\) no-step cdcl \(_{W}\)-merge \(S\)
using \(f w\) by auto
have \([\) simp \(]\) : init-clss \(S=\) init-clss \(T\)
using cdcl \(_{W}\)-merge-restart-cdcl \(W_{W}\)-restart \([\) of \(S T]\) inv rtranclp-cdcl \({ }_{W}\)-restart-init-clss unfolding \(\mathrm{cdcl}_{W}\)-all-struct-inv-def by (meson \(c d c l_{W}\)-merge.simps \(c d c l_{W}\)-merge-restart.simps \(c d c l_{W}\)-rf.simps \(\left.f w\right)\)
consider
(merged) cdcl \(_{\text {NOT-merged-bj-learn }} S T \mid\)
( \(n\)-s) no-step \(c d c l_{W}\)-merge \(T\)
using cdcl \(_{W}\)-merge-is- \(c d c l_{N O T-m e r g e d-b j-l e a r n ~ i n v ~ f w ~ b y ~ b l a s t ~}^{\text {fon }}\)
then show ?thesis
proof cases
case merged
then show ?thesis
using \(c d c l_{N O T}\)-decreasing-measure' \([O F-\) - atm-clauses, of \(T]\) atm-trail \(n\)-d by (auto split: if-split simp: comp-def image-image lits-of-def)
next
case \(n\) - \(s\)
then show ?thesis by simp
qed
qed
lemma \(w f\)-cdcl \({ }_{W}\)-merge: wf \(\left\{(T, S)\right.\). \(c d c l_{W}\)-all-struct-inv \(S \wedge c d c l_{W}\)-merge \(\left.S T\right\}\)
apply (rule wfP-if-measure[of - \(\mu_{F W}\) ])
using \(c d c l_{W}\)-merge- \(\mu_{F W}\)-decreasing by blast
lemma tranclp-cdcl \({ }_{W}\)-merge- \(c d c l_{W}\)-merge-trancl:
\(\left\{(T, S)\right.\). cdcl \(_{W}\)-all-struct-inv \(S \wedge\) cdcl \(_{W}\)-merge \(\left.^{++} S T\right\}\)
\(\subseteq\left\{(T, S) . c d c l_{W} \text {-all-struct-inv } S \wedge c d c l_{W} \text {-merge } S T\right\}^{+}\)
proof -
have \((T, S) \in\left\{(T, S) . \text { cdcl }_{W} \text {-all-struct-inv } S \wedge \operatorname{cdcl}_{W} \text {-merge } S T\right\}^{+}\)
if inv: \(c d c l_{W}\)-all-struct-inv \(S\) and \(c d c l_{W}\)-merge \({ }^{++} S T\)
for \(S T\) :: 'st
using that(2)
proof (induction rule: tranclp-induct)
case base
then show ?case using inv by auto

\section*{next}
case \((\) step \(T U)\) note \(s t=\operatorname{this}(1)\) and \(s=\operatorname{this(2)}\) and \(I H=t h i s(3)\)
have \(c d c l_{W}\)-all-struct-inv \(T\)
using st by (meson inv rtranclp-cdcl \({ }_{W}\)-all-struct-inv-inv
rtranclp-cdcl \(W_{W}\)-merge-rtranclp-cdcl \(W_{W}\)-restart tranclp-into-rtranclp)
then have \((U, T) \in\left\{(T, S) . \text { cdcl }_{W} \text {-all-struct-inv } S \wedge c d c l_{W} \text {-merge } S T\right\}^{+}\) using \(s\) by auto
then show ?case using \(I H\) by auto
qed
then show? ?thesis by auto
qed
lemma \(w f\)-tranclp-cdcl \({ }_{W}\)-merge: \(w f\left\{(T, S) . \operatorname{cdcl}_{W}\right.\)-all-struct-inv \(S \wedge \operatorname{cdcl}_{W}\)-merge \(\left.{ }^{++} S T\right\}\)
```

 apply (rule wf-subset)
 apply (rule wf-trancl)
 using wf-cdcl}\mp@subsup{W}{W}{-merge apply simp
 using tranclp-cdcl}\mp@subsup{W}{}{\prime-merge-cdcl}\mp@subsup{W}{W}{-merge-trancl by simp
 lemma wf-cdclW-bj-all-struct: wf {(T,S).cdcl W-all-struct-inv S ^cdcl}\mp@subsup{W}{W}{}-bj S T
apply (rule wfP-if-measure[of \lambda-. True
- \lambdaT. length (trail T) +(if conflicting T = None then 0 else 1), simplified])
using cdcl W-bj-measure by (simp add:cdcl W-all-struct-inv-def)
lemma cdcl W-conflicting-true-cdcl}\mp@subsup{W}{W}{-merge-restart:
assumes cdcl}\mp@subsup{W}{V}{SV}\mathrm{ and confl:conflicting S=None
shows (cdcl W-merge S V ^ conflicting V = None) \vee (conflicting V = None ^ conflict S V)
using assms
proof (induction rule: cdcl}\mp@subsup{W}{W}{}\mathrm{ .induct)
case W-propagate
then show ?case by (auto intro: cdclW-merge.intros elim: rulesE)
next
case (W-conflict S')
then show ?case by (auto intro: cdcl W-merge.intros elim: rulesE)
next
case W-other
then show ?case
proof cases
case decide
then show ?thesis
by (auto intro: cdcl W-merge.intros elim: rulesE)
next
case bj
then show ?thesis
using confl by (auto simp: cdclW-bj.simps elim: rulesE)
qed
qed
lemma trancl-cdcl}\mp@subsup{W}{W}{}\mathrm{ -conflicting-true-cdcl W-merge-restart:
assumes cdcl}\mp@subsup{W}{}{++}SV\mathrm{ and inv: cdcl}\mp@subsup{W}{}{-M-level-inv S and conflicting S = None
shows (cdcl W-merge ++ S V ^ conflicting V = None)
\vee ~ (\exists T U . c d c l ~ W - m e r g e * * ~ S ~ T ~ \wedge ~ c o n f l i c t i n g ~ V ~ = ~ N o n e ~ \wedge ~ c o n f l i c t ~ T ~ U ~ \wedge ~ c d c l ~ W - b j * * ~ U ~ V) ~
using assms
proof induction
case base
then show ?case using cdcl}\mp@subsup{W}{}{-conflicting-true-cdcl}\mp@subsup{W}{}{-merge-restart by blast
next
case (step U V) note st = this(1) and cdcl W = this(2) and IH = this(3)[OF this(4-)] and
confl[simp] = this(5) and inv = this(4)
from }cdcl\mp@subsup{l}{W}{
show ?case
proof (cases)
case W-propagate
moreover have conflicting U = None and conflicting V = None
using W-propagate by (auto elim: propagateE)
ultimately show ?thesis using IH cdclW-merge.fw-propagate[of U V] by auto
next
case W-conflict
moreover have confl-U: conflicting U = None and confl-V: conflicting V}\not=Non
using W-conflict by (auto elim!: conflictE)

```
```

moreover have cdclW-merge** SU
using IH confl-U by auto
ultimately show ?thesis using IH by auto
next
case W-other
then show ?thesis
proof cases
case decide
then show ?thesis using IH cdclW-merge.fw-decide[of U V] by (auto elim: decideE)
next
case bj
then consider
(s-or-r) skip-or-resolve U V |
(bt) backtrack U V
by (auto simp:cdcl W-bj.simps)
then show ?thesis
proof cases
case s-or-r
have f1: cdcl W -bj++ U V
by (simp add: local.bj tranclp.r-into-trancl)
obtain T T':: 'st where
f2: cdcl W-merge }\mp@subsup{}{W}{++}S
\vee c d c l _ { W } ^ { - m e r g e * * ~ } S T \wedge ~ c o n f l i c t i n g ~ U \neq ~ N o n e ~
^ conflict T T'^ cdcl }\mp@subsup{W}{W}{-bj** T' U
using IH confl by (meson bj rtranclp.intros(1)
rtranclp-cdcl W-merge-restart-no-step-cdcl W-bj
rtranclp-cdcl}\mp@subsup{W}{W}{}-merge-tranclp-cdcl W-merge-restart)
have conflicting V\not= None ^ conflicting U\not= None
using <skip-or-resolve U V` by (auto simp: skip-or-resolve.simps elim!: skipE resolveE) then show ?thesis by (metis (full-types) IH f1 rtranclp-trans tranclp-into-rtranclp) next case bt then have conflicting U\not=None by (auto elim: backtrackE) then obtain T T' where cdcl W-merge** ST and conflicting U\not= None and conflict T T' and cdcl}\mp@subsup{W}{W}{}-b\mp@subsup{j}{}{**}\mp@subsup{T}{}{\prime} using IH confl by (meson bj rtranclp.intros(1) rtranclp-cdcl W-merge-restart-no-step-cdcl W-bj rtranclp-cdcl W-merge-tranclp-cdcl}\mp@subsup{W}{W}{}-merge-restart) have invU: cdcl W-M-level-inv U using inv rtranclp-cdcl W-restart-consistent-inv step.hyps(1) by (meson <cdcl W}\mp@subsup{W}{-}{-bj** T' U\rangle\langlecdcl W-merge** S T\rangle\langleconflict T T}\mp@subsup{T}{}{\prime} cdcl}\mp@subsup{W}{}{\prime}\mathrm{ -restart-consistent-inv conflict rtranclp-cdcl W-bj-rtranclp-cdcl}\mp@subsup{W}{W}{}-restart rtranclp-cdcl}\mp@subsup{W}{W}{}-merge-rtranclp-cdcl W-restart) then have conflicting V = None using 〈backtrack U V` inv by (auto elim: backtrackE
simp: cdcl}\mp@subsup{W}{W}{}-M\mathrm{ -level-inv-decomp)
have full cdcl W}-bj T'V
apply (rule rtranclp-fullI[of cdcl W-bj T' U V])
using \cdcl W}\mp@subsup{W}{}{-bj** T' U\ apply fast
using 〈backtrack U V b backtrack-is-full1-cdcl}\mp@subsup{W}{}{-bj}\mathrm{ invU unfolding full1-def full-def
by blast

```
```

 then show ?thesis
 using cdcl W-merge.fw-conflict[of T T'V]〈conflict T T'`
 <cdcl W-merge** S T\rangle\langleconflicting V = None\rangle by auto
 qed
 qed
 qed
 qed
lemma wf-cdclw:wf {(T,S).cdcl w-all-struct-inv S ^cdcl}\mp@subsup{W}{W}{}ST
unfolding wf-iff-no-infinite-down-chain
proof clarify
fix f :: nat => 'st
assume }\foralli.(f(Suc i),fi)\in{(T,S).cdcl W-all-struct-inv S ^cdcl W S T
then have f:\bigwedgei.(f(Suc i),fi)\in{(T,S).cdcl}\mp@subsup{W}{}{\prime}\mathrm{ -all-struct-inv S ^cdcl}\mp@subsup{W}{W}{}ST
by blast
{
fix f :: nat => 'st
assume
f:(f (Suc i),fi)\in{(T,S).cdcl}\mp@subsup{W}{W}{-all-struct-inv S ^cdcl}\mp@subsup{W}{}{\prime}ST} and
confl: conflicting (f i)}\not=\mathrm{ None for }
have (f (Suc i),fi)\in{(T,S).cdcl W-all-struct-inv S ^cdcl W-bj S T} for i
using f[of i] confl[of i] by (auto simp: cdcl W.simps cdcl W-o.simps cdcl W-rf.simps
elim!: rulesE)
then have False
using wf-cdcl}\mp@subsup{W}{}{W}-bj-all-struct unfolding wf-iff-no-infinite-down-chain by blas
} note no-infinite-conflict = this
have st: cdclW\mp@subsup{W}{}{++}}(fi)(f(Suc(i+j))) for i j :: nat
proof (induction j)
case 0
then show ?case using f by auto
next
case (Suc j)
then show ?case using f[of i+j+1] by auto
qed
have st: i<j\Longrightarrowcdcl}\mp@subsup{W}{W}{++}(fi)(fj)\mathrm{ for ij :: nat
using st[of ij-i-1] by auto
obtain }\mp@subsup{i}{b}{}\mathrm{ where }\mp@subsup{i}{b}{}\mathrm{ : conflicting (f }\mp@subsup{i}{b}{})=\mathrm{ None
using f no-infinite-conflict by blast
define }\mp@subsup{i}{0}{}\mathrm{ where }\mp@subsup{i}{0}{}:\mp@subsup{i}{0}{}=\operatorname{Max}{\mp@subsup{i}{0}{}.\foralli<\mp@subsup{i}{0}{}.\mathrm{ conflicting (fi) = None}
have finite {io.}\foralli<\mp@subsup{i}{0}{}.\mathrm{ conflicting (fi) \# None}
proof -
have {i, . }\foralli<\mp@subsup{i}{0}{}.\mathrm{ . conflicting (fi)}==\mathrm{ None }}\subseteq{0..i\mp@subsup{i}{b}{}
using ib by (metis (mono-tags, lifting) atLeast0AtMost atMost-iff mem-Collect-eq not-le
subsetI)
then show ?thesis
by (simp add: finite-subset)
qed
moreover have {i, .}\foralli<\mp@subsup{i}{0}{}.\mathrm{ .conflicting (f i)}\not=N\mathrm{ None }}\not={
by auto
ultimately have }\mp@subsup{i}{0}{}\in{\mp@subsup{i}{0}{}.\foralli<\mp@subsup{i}{0}{}..conflicting (fi)\not=None
using Max-in[of {i\mp@subsup{i}{0}{}.\foralli<i0.conflicting (fi)\not=None}] unfolding ion by fast
then have confl-i}\mp@subsup{i}{0}{}\mathrm{ : conflicting (fi}\mp@subsup{i}{0}{})=\mathrm{ None
proof -

```
have \(f 1\) : \(\forall n<i_{0}\). conflicting \((f n) \neq\) None
using \(\left\langle i_{0} \in\left\{i_{0} . \forall i<i_{0}\right.\right.\). conflicting \((f i) \neq\) None \(\left.\}\right\rangle\) by blast
have Suc \(i_{0} \notin\{n . \forall n a<n\). conflicting \((f n a) \neq\) None \(\}\)
by (metis (lifting) Max-ge 〈finite \(\left\{i_{0} . \forall i<i_{0}\right.\). conflicting \((f i) \neq\) None \(\left.\}\right\rangle\) \(i_{0}\) lessI not-le)
then have \(\exists n<\) Suc \(i_{0}\). conflicting \((f n)=\) None by fastforce
then show conflicting \(\left(f i_{0}\right)=\) None using \(f 1\) by (metis le-less less-Suc-eq-le)

\section*{qed}
have \(\forall i<i_{0}\). conflicting \((f i) \neq\) None
using \(\left\langle i_{0} \in\left\{i_{0} . \forall i<i_{0}\right.\right.\). conflicting \((f i) \neq\) None \(\}\) by blast
have not-conflicting-none: False if confl: \(\forall x>i\). conflicting \((f x)=\) None for \(i::\) nat
proof -
let ?f \(=\lambda j . f(i+j+1)\)
have \(c d c l_{W}\)-merge (?f \(j\) ) (?f (Suc \(j\) )) for \(j::\) nat
using \(f[\) of \(i+j+1]\) confl that by (auto dest!: cdcl \({ }_{W}\)-conflicting-true-cdcl \({ }_{W}\)-merge-restart)
then have (?f (Suc j), ?f \(j) \in\left\{(T, S)\right.\). cdcl \(W_{W}\)-all-struct-inv \(S \wedge c d c l_{W}\)-merge \(\left.S T\right\}\)
for \(j::\) nat
using \(f[o f i+j+1]\) by auto
then show False
using \(w f\)-cdcl \(l_{W}\)-merge unfolding wf-iff-no-infinite-down-chain by fast
qed
have not-conflicting: False if confl: \(\forall x>i\). conflicting \((f x) \neq\) None for \(i::\) nat
proof -
let ? \(f=\lambda j . f(S u c(i+j))\)
have confl: conflicting \((f x) \neq\) None if \(x>i\) for \(x::\) nat using confl that by auto
have [iff]: \(\neg\) propagate (?f j) \(S \neg\) decide (?f j) \(S \neg\) conflict (?f j) \(S\)
for \(j::\) nat and \(S::\) 'st
using confl[of \(i+j+1]\) by (auto elim! : rulesE)
have [iff]: \(\neg\) backtrack \((f(S u c(i+j)))(f(S u c(S u c(i+j))))\) for \(j::\) nat using confl[of \(i+j+2]\) by (auto elim!: rulesE)
have \(c d c l_{W}-b j(? f j)(? f(S u c j))\) for \(j\) :: nat
using \(f[\) of \(i+j+1]\) confl that by (auto simp: \(c d c l_{W}\).simps \(c d c l_{W}\)-o.simps elim: rulesE)
then have (?f (Suc j), ?f \(j) \in\left\{(T, S) . c d c l_{W}\right.\)-all-struct-inv \(S \wedge c d c l_{W}\)-bj \(\left.S T\right\}\)
for \(j::\) nat using \(f[\) of \(i+j+1]\) by auto
then show False
using \(w f\)-cdcl \(W_{W}\)-bj-all-struct unfolding wf-iff-no-infinite-down-chain by fast

\section*{qed}
then have [simp]: \(\exists x>i\). conflicting \((f x)=\) None for \(i::\) nat
by meson
have \(\{j . j>i \wedge\) conflicting \((f j) \neq\) None \(\} \neq\{ \}\) for \(i::\) nat
using not-conflicting-none by (rule ccontr) auto
define \(g\) where \(g: g=\) rec-nat \(i_{0}(\lambda-i . L E A S T j . j>i \wedge\) conflicting \((f j)=\) None \()\)
have \(g\) - \(0: g 0=i_{0}\)
unfolding \(g\) by auto
have \(g\)-Suc: \(g(\) Suc \(i)=(\) LEAST \(j . j>g i \wedge\) conflicting \((f j)=\) None \()\) for \(i\)
unfolding \(g\) by auto
have \(g\)-prop: \(g(\) Suc \(i)>g i \wedge\) conflicting \((f(g(\) Suc \(i)))=\) None for \(i\)
```

proof (cases i)
case 0
then show ?thesis
using LeastI-ex[of \lambdaj.j> i0 ^ conflicting (f j) = None]
by (auto simp: g)[]
next
case (Suc i')
then show ?thesis
apply (subst g-Suc, subst g-Suc)
using LeastI-ex[of \lambdaj.j>g(Suc i') ^ conflicting (fj)=None]
by auto
qed
then have g-increasing: g(Suc i)>g i for i :: nat by simp
have confl-f-G[simp]: conflicting (f (gi))=None for i:: nat
by (cases i) (auto simp: g-prop g-0 confl-i}\mp@subsup{)}{0}{}
have [simp]: cdcl W-M-level-inv (f i) cdcl W-all-struct-inv (f i) for i :: nat
using f[of i] by (auto simp:cdclW-all-struct-inv-def)
let ?fg = \lambdai. (f (gi))
have }\foralli<Suc j.(f(g(Suc i)),f(gi))\in{(T,S).cdcl W-all-struct-inv S ^ cdcl W-merge '+ S T
for j :: nat
proof (induction j)
case 0
have }cdc\mp@subsup{l}{W}{++}(?fg 0) (?fg 1) (%
using g-increasing[of 0] by (simp add: st)
then show ?case by (auto dest!: trancl-cdcl}\mp@subsup{W}{}{-}\mathrm{ -conflicting-true-cdcl}\mp@subsup{W}{W}{}-merge-restart)
next
case (Suc j) note IH = this(1)
let ?i = g(Suc j)
let ?j = g(Suc (Suc j))
have conflicting (f?i)=None
by auto
moreover have cdcl W-all-struct-inv (f ?i)
by auto
ultimately have }cdc\mp@subsup{l}{W}{++}(f?i)(f?j
using g-increasing by (simp add: st)
then have cdcl W-merge++ (f ?i) (f ?j)
by (auto dest!: trancl-cdclW-conflicting-true-cdclW-merge-restart)
then show ?case using IH not-less-less-Suc-eq by auto
qed
then have }\foralli.(f(g(Suc i)),f(gi))\in{(T,S).cdcl W-all-struct-inv S ^ cdcl W-merge '+ ST
by blast
then show False
using wf-tranclp-cdcl w-merge unfolding wf-iff-no-infinite-down-chain by fast
qed
lemma wf-cdcl W
<wf {(T,S).cdclW-all-struct-inv S ^ cdcl W-stgy S T}>
by (rule wf-subset[OF wf-cdcl W]) (auto dest: cdclW-stgy-cdcl}\mp@subsup{W}{W}{}

```
end

\subsection*{2.3.5 Inclusion of Weidendenbch's CDCL with Strategy}
context conflict-driven-clause-learning \({ }_{W}\)
begin
abbreviation propagate-conds where
abbreviation (input) decide-conds where
decide-conds \(S T \equiv\) decide \(S T \wedge\) no-step conflict \(S \wedge\) no-step propagate \(S\)
abbreviation backjump-l-conds-stgy :: 'v clause \(\Rightarrow\) 'v clause \(\Rightarrow\) 'v literal \(\Rightarrow\) 'st \(\Rightarrow\) 'st \(\Rightarrow\) bool where backjump-l-conds-stgy \(C C^{\prime} L S V \equiv\)
( \(\exists\) T \(U\). conflict \(S T \wedge\) full skip-or-resolve \(T U \wedge\) conflicting \(T=\) Some \(C \wedge\) mark-of \((h d\)-trail \(V)=\) add-mset \(L C^{\prime} \wedge\) backtrack \(\left.U V\right)\)
abbreviation inv \(\mathrm{NOT}_{\text {-stgy }}\) where
inv \(_{N O T}\)-stgy \(S \equiv\) conflicting \(S=\) None \(\wedge\) cdcl \(_{W}\)-all-struct-inv \(S \wedge\) no-smaller-propa \(S \wedge\)
cdcl \(_{W}\)-stgy-invariant \(S \wedge\) propagated-clauses-clauses \(S\)
interpretation \(c d c l_{W}\)-with-strategy: \(c d c l_{N O T}\)-merge-bj-learn-ops where
trail \(=\lambda S\). convert-trail-from- \(W\) (trail \(S\) ) and
clauses \(_{\text {NOT }}=\) clauses and
prepend-trail \(=\lambda L S\). cons-trail (convert-ann-lit-from-NOT L) S and
tl-trail \(=\lambda S\). tl-trail \(S\) and
\(a d d-c l s_{N O T}=\lambda C S\). add-learned-cls \(C S\) and
remove-cls \({ }_{\text {NOT }}=\lambda C S\). remove-cls \(C S\) and
decide-conds \(=\) decide-conds and
propagate-conds \(=\) propagate-conds and
forget-conds \(=\lambda-\). False and
backjump-l-cond \(=\lambda C C^{\prime} L^{\prime} S T\). backjump-l-conds-stgy \(C C^{\prime} L^{\prime} S T\)
\(\wedge\) distinct-mset \(C^{\prime} \wedge L^{\prime} \notin \# C^{\prime} \wedge \neg\) tautology (add-mset \(\left.L^{\prime} C^{\prime}\right)\)
by unfold-locales
interpretation \(c d c l_{W}\)-with-strategy: \(c d c l_{N O T-m e r g e-b j-l e a r n-p r o x y ~ w h e r e ~}^{\text {when }}\)
trail \(=\lambda S\). convert-trail-from- \(W\) (trail \(S\) ) and
clauses \(_{\text {NOT }}=\) clauses and
prepend-trail \(=\lambda L S\). cons-trail (convert-ann-lit-from-NOT L) S and
tl-trail \(=\lambda S\). tl-trail \(S\) and
\(a d d-c l s_{N O T}=\lambda C S\). add-learned-cls \(C S\) and
remove-cls \({ }_{N O T}=\lambda C S\). remove-cls \(C S\) and
decide-conds \(=\) decide-conds and
propagate-conds \(=\) propagate-conds and
forget-conds \(=\lambda-\). False and
backjump-l-cond \(=\) backjump-l-conds-stgy and
\(i n v=i n v_{N O T}-s t g y\)
by unfold-locales
lemma \(c d c l_{W}\)-with-strategy-cdcl \({ }_{N O T-m e r g e d-b j-l e a r n-c o n f l i c t: ~}^{\text {N }}\)

\section*{assumes}
cdcl \(_{W}\)-with-strategy.cdcl \({ }_{N O T}\)-merged-bj-learn \(S T\)
conflicting \(S=\) None
shows
conflicting \(T=\) None
using assms
apply (cases rule: \(c d c l_{W}\)-with-strategy.cdcl \({ }_{N O T}\)-merged-bj-learn.cases; elim \(c d c l_{W}\)-with-strategy.forget \({ }_{N O T} E\) cdcl \(_{W}\)-with-strategy.propagate \({ }_{N O T} E\) \(c d^{\prime}{ }_{W}\)-with-strategy.decide \({ }_{N O T} E\) rulesE cdcl \(_{W}\)-with-strategy.backjump-lE backjumpE)
apply (auto elim! : rulesE simp: comp-def)
done
lemma cdcl \(_{W}\)-with-strategy-no-forget \({ }_{N O T}[i f f]:\) cdcl \(_{W}\)-with-strategy.forget \({ }_{N O T} S T \longleftrightarrow\) False by (auto elim: cdcl \(_{W}\)-with-strategy.forget \({ }_{N O T} E\) )
lemma \(c d c l_{W}\)-with-strategy-cdcl \({ }_{N O T}\)-merged-bj-learn-cdcl \({ }_{W}\)-stgy: assumes \(c d c l_{W}\)-with-strategy.cdcl \(l_{N O T-m e r g e d-b j-l e a r n ~} S V\)
shows
\[
c d c l_{W}-s t g y^{* *} S V
\]
using assms
proof (cases rule: \(c d c l_{W}\)-with-strategy.cdcl \({ }_{N O T}\)-merged-bj-learn.cases)
case \(c d c l_{N O T}\)-merged-bj-learn-decide \({ }_{N O T}\)
then show?thesis apply ( elim \(^{\text {cidcl }}{ }_{W}\)-with-strategy.decide \({ }_{N O T} E\) ) using cdcl \(_{W}\)-stgy.other'[of \(\left.S \mathrm{~V}\right] \mathrm{cdcl}_{W}\)-o.decide[of \(\left.S \mathrm{~V}\right]\) by blast
next
case \(c d c l_{N O T-m e r g e d-b j-l e a r n-p r o p a g a t e ~}^{N O T}\)
then show ?thesis using \(\mathrm{cdcl}_{W}\)-stgy.propagate \({ }^{\prime}\) by (blast elim: \(\operatorname{cdcl}_{W}\)-with-strategy.propagate \({ }_{N O T} E\) )
next
case \(c d c l_{N O T-m e r g e d-b j-l e a r n-f o r g e t ~}^{N O T}\)
then show? thesis by blast
next
case \(c d c l_{N O T-m e r g e d-b j-l e a r n-b a c k j u m p-l ~}^{l}\)
then obtain \(T U\) where confl: conflict \(S T\) and full: full skip-or-resolve \(T U\) and bt: backtrack \(U V\) by (elim \(c d c l_{W}\)-with-strategy.backjump-lE) blast
have \(c d c l_{W}-b j^{* *} T U\) using full mono-rtranclp[of skip-or-resolve \(\left.c d c l_{W}-b j\right]\) unfolding full-def by (blast elim: skip-or-resolve.cases)
moreover have \(c d c l_{W}-b j U V\) and no-step \(c d c l_{W}-b j V\) using bt by (auto dest: backtrack-no-cdcl \(W_{W}\)-bj)
ultimately have full1 \(c d c l_{W}-b j T V\) unfolding full1-def by auto
then have \(c d c l_{W}\)-stgy** \(T V\) using \(c d c l_{W^{-}} s^{\prime} . b j^{\prime}[\) of \(T V] c d c l_{W^{-}} s^{\prime}-i s-r t r a n c l p-c d c l_{W}-s t g y[o f ~ T V]\) by blast
then show ?thesis using confl \(c d c l_{W}\)-stgy.conflict' \([\) of \(S T]\) by auto
qed
lemma rtranclp-transition-function:
```

 <R** ab\Longrightarrow\existsfj.(\foralli<j.R (fi) (f (Suc i))) ^f0=a^fj=b>
    ```
proof (induction rule: rtranclp-induct)
case base
then show? case by auto
next
case \((\) step \(b c)\) note \(s t=\) this(1) and \(R=\) this(2) and \(I H=\) this(3)
from \(I H\) obtain \(f j\) where
\(i\) : 〈 \(\forall i<j . R(f i)(f(\) Suc \(i))\rangle\) and
\(a:\langle f 0=a\rangle\) and
\(b:\langle f j=b\rangle\)
by auto
let ?f \(=\langle f(\) Suc \(j:=c)\rangle\)
```

 have
 i: <\forall i<Suc j. R (?f i) (?f (Suc i))〉 and
 a: <?f 0 = a) and
 b:〈?f (Suc j) = c`
 using i a b R by auto
 then show ?case by blast
 qed

```
lemma \(c d c l_{W}-b j-c d c l_{W}-s t g y:\left\langle c d c l_{W}-b j S T \Longrightarrow c d c l_{W}-s t g y ~ S T\right\rangle\)
    by (rule cdcl \(_{W}\)-stgy.other') ( auto simp: cdcl \(_{W}\)-bj.simps \(c d c l_{W}\)-o.simps elim!: rulesE)
lemma cdcl \(_{W}\)-restart-propagated-clauses-clauses:
    \(\left\langle c d c l_{W}\right.\)-restart \(S T \Longrightarrow\) propagated-clauses-clauses \(S \Longrightarrow\) propagated-clauses-clauses \(\left.T\right\rangle\)
    by (induction rule: \(\mathrm{cdcl}_{W}\)-restart-all-induct) (auto simp: propagated-clauses-clauses-def
        in-get-all-mark-of-propagated-in-trail simp: state-prop)
lemma rtranclp-cdcl \({ }_{W}\)-restart-propagated-clauses-clauses:
    \(\left\langle c d c l_{W}\right.\)-restart** \(S T \Longrightarrow\) propagated-clauses-clauses \(S \Longrightarrow\) propagated-clauses-clauses \(\left.T\right\rangle\)
    by (induction rule: rtranclp-induct) (auto simp: cdcl \({ }_{W}\)-restart-propagated-clauses-clauses)
lemma rtranclp－cdcl \(W_{W}\)－stgy－propagated－clauses－clauses：
    \(\left\langle c d c l_{W}\right.\)-stgy \({ }^{* *} S T \Longrightarrow\) propagated-clauses-clauses \(S \Longrightarrow\) propagated-clauses-clauses \(\left.T\right\rangle\)
    using rtranclp-cdcl \(W_{W}\)-restart-propagated-clauses-clauses[of S T]
    rtranclp-cdcl \({ }_{W}\)-stgy-rtranclp-cdcl \(W_{W}\)-restart by blast
lemma conflicting－clause－bt－lvl－gt－0－backjump：
assumes
inv：\(\left\langle i n v_{N O T}-s t g y S\right\rangle\) and
\(C:\langle C \in \#\) clauses \(S\rangle\) and
tr－C：\(\langle\) trail \(S \models\) as CNot \(C\rangle\) and
bt：〈backtrack－lvl \(S>0\) 〉
shows \(« \exists T U V\) ．conflict \(S T \wedge\) full skip－or－resolve \(T U \wedge\) backtrack \(U V\rangle\)
proof－
let ？\(T=\) update－conflicting \((\) Some \(C) S\)
have confl－S－T：conflict \(S\) ？T
using \(C\) tr－C inv by（auto intro！：conflict－rule）
have count：count－decided（trail \(S\) ）\(>0\)
using inv bt unfolding \(\mathrm{cdcl}_{W}\)－stgy－invariant－def \(c d c l_{W}\)－all－struct－inv－def \(c d c l_{W}\)－M－level－inv－def
by auto
have \(\left\langle\left(\exists K M^{\prime}\right.\right.\) ．trail \(S=M^{\prime} @\) Decided \(\left.K \# M\right) \Longrightarrow D \in \#\) clauses \(S \Longrightarrow \neg M \models\) as CNot \(\left.D\right\rangle\) for \(M\) D
using inv \(C\) tr－C unfolding \(c d c l_{W}\)－stgy－invariant－def no－smaller－confl－def
by auto
from this \([O F-C]\) have \(C-n e:\langle C \neq\{\#\}\rangle\)
using \(t r\)－\(C\) bt count by（fastforce simp：filter－empty－conv in－set－conv－decomp count－decided－def elim！：is－decided－ex－Decided）

\section*{obtain \(U\) where}

U：〈full skip－or－resolve？T U〉
by（meson wf－exists－normal－form－full wf－skip－or－resolve）
then have s－o－r：skip－or－resolve＊＊？T \(U\)
unfolding full－def by blast
then obtain \(C^{\prime}\) where \(C^{\prime}\) ：〈conflicting \(U=\) Some \(C^{\prime}\) 〉
by（induction rule：rtranclp－induct）（auto simp：skip－or－resolve．simps elim：rulesE）
have \(\left\langle c d c l_{W}\right.\)－stgy＊＊？T \(\left.U\right\rangle\)
using \(s-o-r\) by induction

then have \(\left\langle c d c l_{W}-\right.\) stgy \(\left.^{* *} S U\right\rangle\)
using confl－S－T by（auto dest！： cdcl \(_{W}\)－stgy．intros）
then have
inv－\(U:\left\langle c d c l_{W}\right.\)－all－struct－inv \(\left.U\right\rangle\) and
no－smaller－\(U\) ：\(\langle\) no－smaller－propa \(U\rangle\) and
inv－stgy－\(U:\left\langle c d c l_{W}\right.\)－stgy－invariant \(\left.U\right\rangle\)
using inv rtranclp－cdcl \(W_{W}\)－stgy－cdcl \(W_{W}\)－all－struct－inv rtranclp－cdcl \({ }_{W}\)－stgy－no－smaller－propa
rtranclp－cdcl \(W_{W}-s t g y-c d c l_{W}\)－stgy－invariant by blast＋
show ？thesis
proof（cases \(C^{\prime}\) ）
case（add L D）
then obtain \(V\) where \(\left\langle c d c l_{W}\right.\)－stgy \(\left.U V\right\rangle\)
using conflicting－no－false－can－do－step［of \(U C\) 〕 \(C^{\prime}\) inv－\(U\) inv－stgy－\(U\)
unfolding \(c d c l_{W}\)－all－struct－inv－def \(c d c l_{W}\)－stgy－invariant－def
by（auto simp del：conflict－is－false－with－level－def）
then have 〈backtrack \(U V\) 〉
using \(C^{\prime} U\) unfolding full－def
by（auto simp：\(c d c l_{W}\)－stgy．simps \(c d c l_{W}\)－o．simps \(c d c l_{W}\)－bj．simps elim：rulesE）
then show ？thesis
using \(U\) confl－\(S-T\) by blast
next
case［simp］：empty
obtain \(f j\) where
\(f\)－s－o－r：\(\langle i<j \Longrightarrow\) skip－or－resolve \((f i)(f(\) Suc \(i))\rangle\) and
\(f-0:\langle f 0=? T\rangle\) and
\(f-j:\langle f j=U\rangle\) for \(i\)
using rtranclp－transition－function［OF s－o－r］by blast
have \(j\)－ \(0:\langle j \neq 0\rangle\)
using \(C^{\prime} f\)－j \(C\)－ne \(f-0\) by（cases \(j\) ）auto
have bt－lvl－f－l：〈backtrack－lvl \((f k)=b a c k t r a c k-l v l(f 0)\rangle\) if \(\langle k \leq j\rangle\) for \(k\)
using that
proof（induction \(k\) ）
case 0
then show？case by（simp add：f－0）
next
case（Suc k）
then have 〈backtrack－lvl \((f(S u c k))=\) backtrack－lvl \((f k)\rangle\)
apply（cases \(\langle k<j\rangle\) ；cases \(\langle\) trail \((f k)\rangle)\)
using \(f\)－s－o－r［of \(k\) ］apply（auto simp：skip－or－resolve．simps elim！：rulesE）［2］
by（auto simp：skip－or－resolve．simps elim！：rulesE simp del：local．state－simp）
then show？case
using \(f\)－s－o－r \([\) of \(k]\) Suc by simp
qed
have \(s t-f:\left\langle c d c l_{W}\right.\)－stgy＊＊\(\left.? T(f k)\right\rangle\) if \(\langle k<j\rangle\) for \(k\)
using that
proof（induction \(k\) ）
case 0
then show ？case by（simp add：f－0）
next
case（Suc k）
then show？case apply（cases \(\langle k<j\rangle\) ）
using \(f\)－s－o－r \([\) of \(k]\) apply（auto simp：skip－or－resolve．simps
```

 dest!: \(c d c l_{W}\)-bj.intros \(\left.c d c l_{W}-b j-c d c l_{W}-s t g y\right)[]\)
 using \(f\)-s-o-r[of \(j-1] j\)-0 by (simp del: local.state-simp)
 qed note $s t-f-T=$ this(1)
have $s t-f-s-k$: $\left\langle c d c l_{W}-s t g y^{* *} S(f k)\right\rangle$ if $\langle k<j\rangle$ for k
using confl-S-T that st-f-T[of $k]$ by (auto dest!: cdcl W_{W}-stgy.intros)
have f-confl: conflicting $(f k) \neq$ None if $\langle k \leq j\rangle$ for k
using that f-s-o-r $[$ of $k] f-j C^{\prime}$
by (auto simp: skip-or-resolve.simps le-eq-less-or-eq elim!: rulesE)
have \langle size (the (conflicting $(f j)))=0$ 〉
using $f-j C^{\prime}$ by simp
moreover have <size (the (conflicting $(f 0))$) >0 〉
using C-ne $f-0$ by (cases C) auto
then have $\langle\exists x \in$ set $[0 . .<$ Suc $j] .0<$ size (the (conflicting $(f x))$)〉
by force
ultimately obtain ys $l z s$ where
$\langle[0 . .<$ Suc $j]=y s @ l \# z s\rangle$ and
$\langle 0<$ size $($ the $($ conflicting $(f l)))\rangle$ and
$\langle\forall z \in$ set zs. $\neg 0<$ size (the (conflicting $(f z))$)〉
using split-list-last-prop $[$ of $[0 . .<$ Suc $j]$ id. size (the $($ conflicting $(f i)))>0]$
by blast
moreover have $\langle l<j\rangle$
by (metis C^{\prime} Suc-le-lessD $\left\langle C^{\prime}=\{\#\}\right\rangle$ append1-eq-conv append-cons-eq-upt-length-i-end
calculation(1) calculation(2) f-j le-eq-less-or-eq neq0-conv option.sel
size-eq-0-iff-empty upt-Suc)
ultimately have ssize (the (conflicting $(f($ Suc $l))))=0$ 〉
by (metis (no-types, hide-lams) 〈size (the (conflicting $(f j)))=0\rangle$ append1-eq-conv
append-cons-eq-upt-length-i-end less-eq-nat.simps(1) list.exhaust list.set-intros(1)
neq0-conv upt-Suc upt-eq-Cons-conv)
then have confl-Suc-l: 〈conflicting $(f($ Suc $l))=$ Some $\{\#\}\rangle$
using f-confl[of Suc $l]\langle l\langle j\rangle$ by (cases \langle conflicting $(f$ (Suc l)))) auto
let ? $T^{\prime}=\langle f l\rangle$
let ? $T^{\prime \prime}=\langle f($ Suc $l)\rangle$
have res: 〈resolve ? $\left.T^{\prime} ? T^{\prime \prime}\right\rangle$
using confl-Suc-l $\langle 0<$ size (the (conflicting $(f l)$)) \rangle f-s-o-r $[$ of $l]\langle l<j\rangle$
by (auto simp: skip-or-resolve.simps elim: rulesE)
then have confl- $T^{\prime}:\langle$ size (the (conflicting $(f l))$) $=1$ 〉
using confl-Suc-l by (auto elim!: rulesE
simp: Diff-eq-empty-iff-mset subset-eq-mset-single-iff)
then have size $\left(\right.$ mark-of $\left(h d\left(\right.\right.$ trail ? $\left.\left.\left.T^{\prime}\right)\right)\right)=1$ and $h d-t^{\prime}$-dec: $\neg i s$-decided $\left(h d\left(\right.\right.$ trail ? $\left.\left.T^{\prime}\right)\right)$
and tr-T'-ne: 〈trail ? $\left.T^{\prime} \neq[]\right\rangle$
using res C^{\prime} confl-Suc-l
by (auto elim!: resolveE simp: Diff-eq-empty-iff-mset subset-eq-mset-single-iff)
then obtain L where L : mark-of $\left(h d\left(\right.\right.$ trail ? $\left.\left.T^{\prime}\right)\right)=\{\# L \#\}$
by (cases hd (trail ? T^{\prime}); cases mark-of (hd (trail ? $\left.T^{\prime}\right)$) auto
have
inv-f-l: $\left\langle c d c l_{W}\right.$-all-struct-inv $\left.(f l)\right\rangle$ and
no-smaller-f-l: 〈no-smaller-propa $(f l)\rangle$ and
inv-stgy-f-l: $\left\langle c d c l_{W}\right.$-stgy-invariant $\left.(f l)\right\rangle$ and
propa-cls-f-l: 〈propagated-clauses-clauses $(f l)\rangle$
using inv st-f-s-k[OF $\langle l<j\rangle]$ rtranclp-cdcl W_{W}-stgy-cdcl W_{W}-all-struct-inv[of S f $\left.l\right]$
rtranclp-cdcl W_{W}-stgy-no-smaller-propa[of S f l]
rtranclp-cdcl ${ }_{W}$-stgy-cdcl ${ }_{W}$-stgy-invariant[of $\left.S f l\right]$
rtranclp-cdcl ${ }_{W}$-stgy-propagated-clauses-clauses
by blast+

```
have \(h d-T^{\prime}:\left\langle h d\left(\right.\right.\) trail ？\(\left.T^{\prime}\right)=\) Propagated \(\left.L\{\# L \#\}\right\rangle\)
using inv－f－l \(L\) tr－T＇－ne \(h d\)－\(t^{\prime}\)－dec unfolding \(\operatorname{cdcl}_{W}\)－all－struct－inv－def \(c d c l_{W}\)－conflicting－def
by（cases trail ？\(T^{\prime}\) ；cases \(\left(h d\left(\right.\right.\) trail ？\(\left.\left.T^{\prime}\right)\right)\) ）force＋
let ？\(D=\) mark－of \(\left(h d\left(\right.\right.\) trail ？\(\left.\left.T^{\prime}\right)\right)\)
have＜get－level（trail（ \(f l\) ））\(L=0\) 〉
using propagate－single－literal－clause－get－level－is－O［of fll］ propa－cls－f－l no－smaller－f－l hd－T＇inv－f－l
unfolding \(c d c l_{W}\)－all－struct－inv－def \(c d c l_{W}\)－M－level－inv－def
by（cases 〈trail（ \(f l\) l）〉）auto
then have 〈count－decided（trail ？\(T^{\prime}\) ）\(=0\) 〉
using \(h d-T^{\prime}\) by（cases 〈trail \(\left.(f l)\right\rangle\) ）auto
then have \(\left\langle\right.\) backtrack－lvl ？\(\left.T^{\prime}=0\right\rangle\)
using inv－f－l unfolding \(c d c l_{W}\)－all－struct－inv－def \(c d c l_{W}\)－M－level－inv－def by auto
then show ？thesis using bt bt－lvl－f－l［of \(l]\langle l<j\rangle\) confl－S－T by（auto simp：\(f\)－0 elim：rulesE）
qed
qed
lemma conflict－full－skip－or－resolve－backtrack－backjump－l：
assumes
conf：〈conflict \(S T\rangle\) and
full：〈full skip－or－resolve \(T U\) and
bt：〈backtrack \(U V\rangle\) and
inv：〈cdcl \({ }_{W}\)－all－struct－inv \(\left.S\right\rangle\)
shows \(\left\langle c d c l_{W}\right.\)－with－strategy．backjump－l \(\left.S \quad V\right\rangle\)
proof－
have inv－U：\(\left\langle c d c l_{W}\right.\)－all－struct－inv \(\left.U\right\rangle\)
by（metis cdcl \(W_{W}\)－stgy．conflict \({ }^{\prime} \operatorname{cdcl}_{W}\)－stgy－cdcl \(W_{W}\)－all－struct－inv conf full full－def inv rtranclp－cdcl \(W_{W}\)－all－struct－inv－inv rtranclp－skip－or－resolve－rtranclp－cdcl \({ }_{W}\)－restart）
then have \(i n v\)－\(V\) ：\(\left\langle c d c l_{W}\right.\)－all－struct－inv \(\left.V\right\rangle\)
by（metis backtrack bt \(c d c l_{W}-b j-c d c l_{W}-s t g y ~ c d c l_{W}-s t g y-c d c l_{W}\)－all－struct－inv）
obtain \(C\) where
\(C\)－S：\(\langle C \in \#\) clauses \(S\rangle\) and
\(S\)－Not－C：〈trail \(S \models\) as CNot \(C\rangle\) and
tr－T－S：\(\langle\) trail \(T=\) trail \(S\rangle\) and
\(T:\langle T \sim\) update－conflicting（Some \(C\) ）\(S\rangle\) and
clss－T－S：〈clauses \(T=\) clauses \(S\rangle\)
using conf by（auto elim：rulesE）
have s－o－r：〈skip－or－resolve＊＊\(T\) U〉
using full unfolding full－def by blast
then have
\(\exists M\). trail \(T=M @\) trail \(U\rangle\) and
bt－T－U：〈backtrack－lvl \(T=\) backtrack－lvl \(U\rangle\) and
bt－lvl－T－U：〈backtrack－lvl \(T=\) backtrack－lvl \(U\rangle\) and
clss－T－U：〈clauses \(T=\) clauses \(U\rangle\) and
init－T－U：\(\langle\) init－clss \(T=\) init－clss \(U\rangle\) and
learned－T－U：〈learned－clss \(T=\) learned－clss \(U\rangle\)
using skip－or－resolve－state－change［of T U］by blast＋
then obtain \(M\) where \(M\) ：\(\langle\) trail \(T=M @\) trail \(U\rangle\)
by blast
obtain \(D D^{\prime}::{ }^{\prime} v\) clause and \(K L:: ' v\) literal and
M1 M2 ：：（＇v，＇v clause）ann－lit list and \(i::\) nat where
confl－D：conflicting \(U=\) Some（add－mset \(L D\) ）and
decomp：（Decided \(K \#\) M1，M2）\(\in \operatorname{set}(\) get－all－ann－decomposition \((\) trail \(U))\) and
```

 lev-L-U: get-level (trail U) L = backtrack-lvl U and
 max-D-L-U: get-level (trail U) L = get-maximum-level (trail U) (add-mset L D') and
 i: get-maximum-level (trail U) D'\equivi and
 lev-K-U:get-level (trail U) K=i+1 and
 V:V~ cons-trail (Propagated L (add-mset L D'))
 (reduce-trail-to M1
 (add-learned-cls (add-mset L D')
 (update-conflicting None U))) and
 U-L-D': <clauses U }=pm\mathrm{ add-mset L D ' } \mathrm{ and
 D-D': <D'\subseteq# D>
 using bt by (auto elim!: rulesE)
 let ?D' = <add-mset L D'
obtain M' where M': <trail U = M'@ M2 @ Decided K \# M1>
using decomp by auto
have <clauses V = {\#?D'\#} + clauses U\rangle
using V by auto
moreover have <trail V = (Propagated L ?D') \# trail (reduce-trail-to M1 U)>
using V T M tr-T-S[symmetric] M' clss-T-U[symmetric] unfolding state-eqNOT-def
by (auto simp del: state-simp dest!: state-simp(1))
ultimately have }\mp@subsup{V}{}{\prime}:\langleV \mp@subsup{~}{NOT}{
cons-trail (Propagated L dummy-cls) (reduce-trail-to NOT M1 (add-learned-cls ?D'S))>
using V T M tr-T-S[symmetric] M' clss-T-U[symmetric] unfolding state-eqNOT-def
by (auto simp del: state-simp
simp: trail-reduce-trail-tonOT-drop drop-map drop-tl clss-T-S)
have <no-dup (trail V)\rangle
using inv-V V unfolding cdcl W-all-struct-inv-def cdcl }\mp@subsup{W}{W}{}-M\mathrm{ -level-inv-def by blast
then have undef-L: <undefined-lit M1 L>
using V decomp by (auto simp: defined-lit-map)
have <atm-of L Gatms-of-mm (init-clss V)\rangle
using inv-V V decomp unfolding cdcl W-all-struct-inv-def no-strange-atm-def by auto
moreover have init-clss-VU-S: <init-clss V = init-clss S\rangle
<init-clss U = init-clss S`\learned-clss U = learned-clss S〉
using T V init-T-U learned-T-U by auto
ultimately have atm-L: <atm-of L\in atms-of-mm (clauses S)>
by (auto simp: clauses-def)

```
have 〈distinct-mset ? \(\left.D^{\prime}\right\rangle\) and \(\left\{\neg\right.\) tautology ? \(\left.D^{\prime}\right\rangle\)
    using inv- \(U\) confl- \(D\) decomp \(D\) - \(D^{\prime}\) unfolding \(c d c l_{W}\)-all-struct-inv-def distinct-cdcl \({ }_{W}\)-state-def
    apply simp-all
    using inv-V V not-tautology-mono[OF D-D ] distinct-mset-mono[OF D-D']
    unfolding \(c d c l_{W}\)-all-struct-inv-def
    apply (auto simp add: tautology-add-mset)
    done
have \(\left\langle L \notin \# D^{\prime}\right\rangle\)
    using 〈distinct-mset ? \(D^{\prime}\) 〉 by (auto simp: not-in-iff)
have bj: 〈backjump-l-conds-stgy \(\left.C D^{\prime} L S V\right\rangle\)
    apply (rule exI[of - \(T]\), rule exI \([o f-U]\) )
    using 〈distinct-mset ? \(\left.D^{\prime}\right\rangle\left\langle\neg\right.\) tautology ? \(\left.D^{\prime}\right\rangle\) conf full bt confl- \(D\)
        \(\left\langle L \notin \# D^{\prime}\right\rangle V T\)
    by (auto)
have M1-D': M1 \(\models\) as CNot \(D^{\prime}\)
    using backtrack-M1-CNot- \(D^{\prime}\left[\right.\) of \(U D^{\prime}\langle i\rangle K M 1\) M2 \(L\langle a d d-m s e t L D\rangle V\langle\) Propagated \(L\) (add-mset \(L\)
```

D')\]

 inv-U confl-D decomp lev-L-U max-D-L-U i lev-K-U V U-L-D' D-D'
 unfolding cdcl W-all-struct-inv-def cdcl W-conflicting-def cdcl }\mp@subsup{W}{W}{}-M\mathrm{ -level-inv-def
 by (auto simp: subset-mset-trans-add-mset)
 show ?thesis
 apply (rule cdcl}\mp@subsup{W}{}{\prime}\mathrm{ -with-strategy.backjump-l.intros[of S - K
 convert-trail-from-W M1 - L - C D'])
 apply (simp add: tr-T-S[symmetric] M' M; fail)
 using V' apply (simp; fail)
 using C-S apply (simp; fail)
 using S-Not-C apply (simp; fail)
 using undef-L apply (simp; fail)
 using atm-L apply (simp; fail)
 using U-L-D' init-clss-VU-S apply (simp add: clauses-def; fail)
 apply (simp; fail)
 using M1-D' apply (simp; fail)
 using bj {distinct-mset ? D'`{\neg tautology ? D`` by auto
 qed
lemma is-decided-o-convert-ann-lit-from-W[simp]:
<s-decided o convert-ann-lit-from-W = is-decided}
apply (rule ext)
apply (rename-tac x, case-tac x)
apply (auto simp: comp-def)
done
lemma cdcl w-with-strategy-propagate NOT-propagate-iff[iff]:
<cdcl }\mp@subsup{W}{W}{}\mathrm{ -with-strategy.propagate }\mp@subsup{N}{NOT}{}ST\longleftrightarrow\mathrm{ propagate S T> (is ?NOT }\longleftrightarrow\mathrm{ ?W)
proof (rule iffI)
assume ?NOT
then show ?W by auto
next
assume ?W
then obtain E L where
<conflicting S = None〉 and
E:\langleE\in\# clauses S\rangle and
LE:}\langleL\in\#E\rangle\mathrm{ and
tr-E: <trail S =as CNot (remove1-mset L E)> and
undef:<undefined-lit (trail S) L> and
T: <T ~ cons-trail (Propagated L E)S\rangle
by (auto elim!: propagateE)
show ?NOT
apply (rule cdcl W-with-strategy.propagate NOT [of L<remove1-mset L E\])

 using LE E apply (simp; fail)
 using tr-E apply (simp; fail)
 using undef apply (simp; fail)
 using <?W` apply (simp; fail)
 using T by (simp add: state-eqNOT-def clauses-def)
 qed
interpretation cdcl}\mp@subsup{W}{}{\prime}\mathrm{ -with-strategy: cdcl NOT-merge-bj-learn where
trail = \lambdaS.convert-trail-from-W (trail S) and
clauses
prepend-trail = \lambdaLS.cons-trail (convert-ann-lit-from-NOT L)S and
tl-trail = \lambdaS. tl-trail S and

```
\(a d d\)－cls \({ }_{N O T}=\lambda C S\). add－learned－cls \(C S\) and remove－cls \({ }_{\text {NOT }}=\lambda C S\) ．remove－cls \(C S\) and decide－conds \(=\) decide－conds and propagate－conds \(=\) propagate－conds and forget－conds \(=\lambda-\) ．False and backjump－l－cond \(=\) backjump－l－conds－stgy and \(i n v=i n v_{N O T}-\) stgy
proof (unfold-locales, goal-cases)
    case (2 \(S T\) )
    then show? case
        using \({c d c l_{W} \text {-with-strategy-cdcl } l_{N O T-m e r g e d-b j-l e a r n-c d c l ~}^{W}}^{-}\)-stgy \([\)of \(S T]\)
        \(c d c l_{W}\)-with-strategy-cdcl \({ }_{N O T}\)-merged-bj-learn-conflict[of ST]
        rtranclp-cdcl \({ }_{W}\)-stgy-cdcl \({ }_{W}\)-all-struct-inv rtranclp-cdcl \(W_{W}\)-stgy-no-smaller-propa
        rtranclp-cdcl \(W_{W}\)-stgy-cdcl \(W_{W}\)-stgy-invariant rtranclp-cdcl \({ }_{W}\)-stgy-propagated-clauses-clauses
        by blast
next
    case ( \(1 C^{\prime} S C F^{\prime} K F L\) )
    have \(\langle\) count-decided (convert-trail-from- \(W(\) trail \(S))>0\rangle\)
    unfolding \(\langle\) convert-trail-from- \(W\) (trail \(S)=F^{\prime} @\) Decided \(\left.K \# F\right\rangle\) by simp
    then have <count-decided (trail \(S\) ) > 0>
    by \(\operatorname{simp}\)
    then have 〈backtrack-lvl \(S>0\) 〉
    using 〈inv \({ }_{N O T}\)-stgy \(\left.S\right\rangle\) unfolding \(c d c l_{W}\)-all-struct-inv-def \(c d c l_{W}\)-M-level-inv-def by auto
    have \(\exists T U V\). conflict \(S T \wedge\) full skip-or-resolve \(T U \wedge\) backtrack \(U V\)
        apply (rule conflicting-clause-bt-lvl-gt-0-backjump)
            using \(\left\langle\right.\) inv \(\left._{N O T}{ }^{-s t g y} S\right\rangle\) apply (auto; fail) []
            using 〈 \(C \in \#\) clauses \(S\rangle\) apply (simp; fail)
        using 〈convert-trail-from-W (trail \(S\) ) \(\models\) as \(C N o t C\) apply (simp; fail)
    using 〈backtrack-lvl \(S>0\rangle\) by (simp; fail)
    then show ?case
    using conflict-full-skip-or-resolve-backtrack-backjump-l 〈inv \({ }_{N O T}\)-stgy \(\left.S\right\rangle\) by blast
next
    case \((3 L S)\) note atm \(=\) this(1,2) and inv \(=\) this(3) and sat \(=\) this(4)
    moreover have \(\left\langle E x\left(c d c l_{W}\right.\right.\)-with-strategy.backjump-l \(\left.\left.S\right)\right\rangle\) if \(\langle\) conflict \(S T\rangle\) for \(T\)
    proof -
    have \(\langle\exists C . C \in \#\) clauses \(S \wedge\) trail \(S \models\) as \(C N o t C\rangle\)
        using that by (auto elim: rulesE)
    then obtain \(C\) where \(\langle C \in \#\) clauses \(S\rangle\) and \(\langle\) trail \(S \models\) as \(C N o t C\rangle\) by blast
    have 〈backtrack-lvl \(S>0\) 〉
    proof (rule ccontr)
        assume 〈 \(\neg\) ?thesis〉
        then have 〈backtrack-lvl \(S=0\) 〉
                by \(\operatorname{simp}\)
            then have \(\langle\) count-decided (trail \(S\) ) \(=0\rangle\)
                using inv unfolding \(\operatorname{cdcl}_{W}\)-all-struct-inv-def \(c d c l_{W}-M\)-level-inv-def by simp
            then have 〈get-all-ann-decomposition (trail \(S)=[([]\), trail \(S)]\) >
                by (auto simp: filter-empty-conv no-decision-get-all-ann-decomposition count-decided-0-iff)
            then have 〈set-mset (clauses \(S) \models\) ps unmark-l (trail S) >
                using 3(3) unfolding \(\mathrm{cdcl}_{W}\)-all-struct-inv-def by auto
            obtain \(I\) where
                consistent: 〈consistent-interp \(I\) 〉 and
                \(I-S:\langle I \models m\) clauses \(S\rangle\) and
                tot: 〈total-over-m I (set-mset (clauses S)) 〉
                using sat by (auto simp: satisfiable-def)
            have stotal-over-m I (set-mset (clauses \(S)\) ) \(\wedge\) total-over-m I (unmark-l (trail S)) >
                using tot inv unfolding \(c d c l_{W}\)-all-struct-inv-def no-strange-atm-def
```

 by (auto simp: clauses-def total-over-set-def total-over-m-def)
 then have <I =s unmark-l (trail S)>
 using <set-mset (clauses S) \modelsps unmark-l (trail S)> consistent I-S
 unfolding true-clss-clss-def clauses-def
 by auto
 have <I\modelss CNot C>
 by (meson <trail S =as CNot C>\langleI =s unmark-l (trail S)> set-mp true-annots-true-cls
 true-cls-def true-clss-def true-clss-singleton-lit-of-implies-incl true-lit-def)
 moreover have <I}\modelsC
 using 〈C \in# clauses S` and \I =m clauses S` unfolding true-cls-mset-def by auto
 ultimately show False
 using consistent consistent-CNot-not by blast
 qed
 then show ?thesis
 using conflicting-clause-bt-lvl-gt-0-backjump[of S C]
 conflict-full-skip-or-resolve-backtrack-backjump-l[of S]
 <C\in# clauses S\rangle\langletrail S as CNot C> inv by fast
 qed
 moreover {
 have atm: <atms-of-mm (clauses S) = atms-of-mm (init-clss S)>
 using 3(3) unfolding cdclW-all-struct-inv-def no-strange-atm-def
 by (auto simp: clauses-def)
 have <decide S (cons-trail (Decided L) S)>
 apply (rule decide-rule)
 using 3 by (auto simp: atm) }
 moreover have <cons-trail (Decided L) S ~NOT cons-trail (Decided L) S>
 by (simp add: state-eqNOT-def del: state-simp)
 ultimately show }\existsT.cdc\mp@subsup{l}{W}{}\mathrm{ -with-strategy.decide NOT STV
cdcl W-with-strategy.propagate }\mp@subsup{N}{NOT}{}ST
cdcl W-with-strategy.backjump-l ST
using cdclW-with-strategy.decide }\mp@subsup{N}{NOT}{
by auto
qed
thm cdcl}\mp@subsup{W}{}{-}\mathrm{ -with-strategy.full-cdcl NOT-merged-bj-learn-final-state
end
end
theory CDCL-W-Full
imports CDCL-W-Termination CDCL-WNOT
begin
context conflict-driven-clause-learning}\mp@subsup{W}{}{\prime
begin
lemma rtranclp-cdclW-merge-stgy-distinct-mset-clauses:
assumes
invR: cdcl W-all-struct-inv R and
st: cdcl W -s }\mp@subsup{}{}{***}RS\mathrm{ and
smaller: <no-smaller-propa R\rangle and
dist:distinct-mset (clauses R)
shows distinct-mset (clauses S)
using rtranclp-cdclW-stgy-distinct-mset-clauses[OF - invR dist smaller]
invR st rtranclp-mono[of cdcl W-s' cdcl W-stgy**] cdcl W-s'-is-rtranclp-cdcl W
by (auto dest!: cdcl W-s'-is-rtranclp-cdcl W-stgy)

```
end
end
theory \(C D C L\)-W-Restart
imports \(C D C L-W\)-Full
begin

\section*{Chapter 3}

\section*{Extensions on Weidenbach's CDCL}

We here extend our calculus.

\subsection*{3.1 Restarts}
```

context conflict-driven-clause-learning}\mp@subsup{W}{}{\prime
begin

```

This is an unrestricted version.
inductive \(c d c l_{W}\)-restart-stgy for \(S T::\langle ' s t \times\) nat \(\rangle\) where
\[
\left\langle c d c l_{W} \text {-stgy }(f s t S)(f s t T) \Longrightarrow \text { snd } S=\text { snd } T \Longrightarrow c d c l_{W} \text {-restart-stgy } S T\right\rangle \mid
\]
\(\left\langle r e s t a r t(f s t S)(f s t T) \Longrightarrow\right.\) snd \(T=S u c(\) snd \(S) \Longrightarrow c d c l_{W}\)-restart-stgy \(\left.S T\right\rangle\)
lemma \(c d c l_{W}\)-stgy-cdcl \({ }_{W}\)-restart: \(\left\langle c d c l_{W}\right.\)-stgy \(S S^{\prime} \Longrightarrow c d c l_{W}\)-restart \(\left.S S^{\prime}\right\rangle\)
by (induction rule: cdcl \(_{W}\)-stgy.induct) auto
lemma \(c d c l_{W}\)-restart-stgy-cdcl \(W_{W}\)-restart:
\(\left\langle c d c l_{W}\right.\)-restart-stgy \(S T \Longrightarrow c d c l_{W}\)-restart \(\left.(f s t S)(f s t T)\right\rangle\)
by (induction rule: \(c d c l_{W}\)-restart-stgy.induct)
(auto dest: \(c d c l_{W}-s t g y\) - \(c d c l_{W}\)-restart simp: \(c d c l_{W}\)-restart.simps \(c d c l_{W}\)-rf.restart)
lemma rtranclp-cdcl \(W_{W}\)-restart-stgy-cdcl \(W_{W}\)-restart:
\(\left\langle c d c l_{W}\right.\)-restart-stgy** \(S T \Longrightarrow c d c l_{W}\)-restart** \(\left.(f s t S)(f s t T)\right\rangle\)
by (induction rule: rtranclp-induct)
(auto dest: \(c d c l_{W}\)-restart-stgy-cdcl \({ }_{W}\)-restart)
lemma \(c d c l_{W}\)-stgy-cdcl \(W_{W}\)-restart-stgy:
\(\left\langle c d c l_{W}\right.\)-stgy \(S T \Longrightarrow c d c l_{W}\)-restart-stgy \(\left.(S, n)(T, n)\right\rangle\)
using \(c d c l_{W}\)-restart-stgy.intros \([\) of \(\langle(S, n)\rangle\langle(T, n)\rangle]\)
by auto
lemma rtranclp-cdcl \({ }_{W}-s t g y-c d c l_{W}\)-restart-stgy:
\(\left\langle c d c l_{W}\right.\)-stgy \({ }^{* *} S T \Longrightarrow c d c l_{W}\)-restart-stgy** \(\left.(S, n)(T, n)\right\rangle\)
apply (induction rule: rtranclp-induct)
subgoal by auto
subgoal for \(T U\)
by (auto dest!: \(\left.\operatorname{cdcl}_{W}-s t g y-c d c l_{W}-r e s t a r t-s t g y[o f--n]\right)\)
done
lemma cdcl \(_{W}\)-restart-dcl \(W_{W}\)-all-struct-inv:
\(\left\langle c d c l_{W}\right.\)-restart-stgy \(S T \Longrightarrow c d c l_{W}\)-all-struct-inv \((f s t S) \Longrightarrow c d c l_{W}\)-all-struct-inv \(\left.\left(f_{s t} T\right)\right\rangle\)
using \(c d c l_{W}\)－all－struct－inv－inv［OF \(c d c l_{W}\)－restart－stgy－\(c d c l_{W}\)－restart \(]\).
lemma rtranclp－cdcl \({ }_{W}\)－restart－dcl \({ }_{W}\)－all－struct－inv：
\(\left\langle c d c l_{W}\right.\)－restart－stgy＊＊\(S T \Longrightarrow c d c l_{W}\)－all－struct－inv \((f s t S) \Longrightarrow c^{*} S l_{W}\)－all－struct－inv \(\left.\left(f_{s t} T\right)\right\rangle\)
by（induction rule：rtranclp－induct）
（auto intro： cdcl \(_{W}\)－restart－dcl \({ }_{W}\)－all－struct－inv）
lemma restart－cdcl \(W_{W}\)－stgy－invariant：
\(\left\langle\right.\) restart \(S T \Longrightarrow c^{2} c l_{W}\)－stgy－invariant \(\left.T\right\rangle\)
by（auto simp：restart．simps \(c d c l_{W}\)－stgy－invariant－def state－prop no－smaller－confl－def）
lemma \(c d c l_{W}\)－restart－\(d c l_{W}\)－stgy－invariant：
\(\left\langle c d c l_{W}\right.\)－restart－stgy \(S T \Longrightarrow \operatorname{cdcl}_{W}\)－all－struct－inv \((f s t S) \Longrightarrow c d c l_{W}\)－stgy－invariant \((f s t S) \Longrightarrow\) \(c d c l_{W}\)－stgy－invariant（fst \(T\) ）＞
apply（induction rule：\(c d c l_{W}\)－restart－stgy．induct）
subgoal using \(c d c l_{W}\)－stgy－cdcl \(W_{W}\)－stgy－invariant ．
subgoal by（auto dest！：\(c d c l_{W}-r f\) ．intros \(c d c l_{W}\)－restart．intros simp：restart－cdcl \({ }_{W}\)－stgy－invariant）
done
lemma rtranclp－cdcl \(W_{W}\)－restart－dcl \(W_{W}\)－stgy－invariant：
\(\left\langle c d c l_{W}\right.\)－restart－stgy＊＊\(S T \Longrightarrow c d c l_{W}\)－all－struct－inv \((\) fst \(S) \Longrightarrow c d c l_{W}\)－stgy－invariant \((f s t S) \Longrightarrow\) \(c d c l_{W}\)－stgy－invariant \(\left.(f s t T)\right\rangle\)
apply（induction rule：rtranclp－induct）
subgoal by auto
subgoal by（auto simp：rtranclp－cdcl \(W_{W}\)－restart－dcl \(W_{W}\)－all－struct－inv \(c d c l_{W}\)－restart－dcl \({ }_{W}\)－stgy－invariant）
done
end
locale \(_{\text {d }} c_{W}\)－restart－restart－ops \(=\)
conflict－driven－clause－learning \(W_{W}\)
state－eq
state
－functions for the state：
－access functions：
trail init－clss learned－clss conflicting
－changing state： cons－trail tl－trail add－learned－cls remove－cls update－conflicting －get state：
init－state
for
state－eq ：：\(\langle\)＇st \(\Rightarrow\)＇st \(\Rightarrow\) bool（infix \(\sim 50\) ）and
state \(::\)＜＇st \(\Rightarrow(' v, ' v\) clause \()\) ann－lits \(\times\)＇v clauses \(\times\)＇v clauses \(\times\)＇v clause option \(\times\)
＇b＞and
trail ：：＜＇st \(\Rightarrow\)（＇v，＇v clause）ann－lits〉 and
init－clss ：：«＇st \(\Rightarrow\)＇v clauses and
learned－clss ：：〈＇st \(\Rightarrow\)＇v clauses \(>\) and
conflicting \(::\langle ' s t \Rightarrow\)＇v clause option \(>\) and
cons－trail ：：〈（＇v，＇v clause）ann－lit \(\Rightarrow\)＇st \(\Rightarrow\)＇st〉 and
tl－trail ：：＜＇st \(\Rightarrow\)＇st＞and
add－learned－cls ：：〈＇v clause \(\Rightarrow\)＇st \(\Rightarrow\)＇st〉 and
remove－cls ：：〈＇v clause \(\Rightarrow\)＇st \(\Rightarrow\)＇st \(\rangle\) and
update－conflicting \(:: \iota^{\prime} v\) clause option \(\Rightarrow{ }^{\prime}\) st \(\Rightarrow\)＇st \(\rangle\) and
```

 init-state :: <'v clauses \(\Rightarrow\) 'st \(\rangle+\)
    ```
fixes
    \(f::\langle n a t \Rightarrow\) nat \(\rangle\)
locale \(c d c l_{W}\)-restart-restart \(=\)
    \({ }^{c} d c l_{W}\)-restart-restart-ops +
    assumes
    \(f:\langle u n b o u n d e d f\rangle\)

The condition of the differences of cardinality has to be strict. Otherwise, you could be in a strange state, where nothing remains to do, but a restart is done. See the proof of wellfoundedness. The same applies for the \(c d c l_{W}-\operatorname{stg} y^{+\downarrow} S T\) : With a \(c d c l_{W}-s t g y^{\downarrow} S T\), this rules could be applied one after the other, doing nothing each time.
```

context cdcl}\mp@subsup{W}{}{\prime}\mathrm{ -restart-restart-ops
begin
inductive cdcl}\mp@subsup{W}{}{\prime}\mathrm{ -merge-with-restart where
restart-step:
<(cdcl W-stgy^^ (card (set-mset (learned-clss T)) - card (set-mset (learned-clss S)))) ST
card (set-mset (learned-clss T)) - card (set-mset (learned-clss S)) >fn
\Longrightarrow ~ r e s t a r t ~ T ~ U ~ \Longrightarrow c d c l W - m e r g e - w i t h - r e s t a r t ~ (S , n) ~ (U , S u c ~ n) > ~ \| ~
restart-full: <full1 cdclW-stgy S T \Longrightarrow cdcl}\mp@subsup{W}{W}{-merge-with-restart (S, n) (T, Suc n)\rangle
lemma cdcl}\mp@subsup{W}{W}{-merge-with-restart-rtranclp-cdcl}\mp@subsup{W}{W}{-restart:
cdcl}\mp@subsup{W}{}{-}\mathrm{ -merge-with-restart S T > cdcl W}\mp@subsup{W}{W}{-restart** (fst S) (fst T)\rangle
by (induction rule: cdcl}\mp@subsup{W}{W}{}\mathrm{ -merge-with-restart.induct)
(auto dest!: relpowp-imp-rtranclp rtranclp-cdcl W-stgy-rtranclp-cdcl W-restart cdcl }\mp@subsup{W}{W}{}\mathrm{ -restart.rf
cdclW-rf.restart tranclp-into-rtranclp simp: full1-def)
lemma cdclW-merge-with-restart-increasing-number:
<cdcl}\mp@subsup{W}{}{\prime}\mathrm{ -merge-with-restart S T > snd T=1 + snd S〉
by (induction rule: cdcl}\mp@subsup{W}{W}{-merge-with-restart.induct) auto
lemma <full1 cdcl}\mp@subsup{W}{}{\prime}\mathrm{ -stgy S T בcdcl}\mp@subsup{W}{}{W}\mathrm{ -merge-with-restart (S, n) (T, Suc n)>
using restart-full by blast
lemma cdclW-all-struct-inv-learned-clss-bound:
assumes inv: <cdclW-all-struct-inv S\rangle
shows <set-mset (learned-clss S)\subseteq simple-clss (atms-of-mm (init-clss S))>
proof
fix C
assume C: <C \in set-mset (learned-clss S)\rangle
have \distinct-mset C>
using C inv unfolding cdclW-all-struct-inv-def distinct-cdcl}\mp@subsup{W}{W}{}\mathrm{ -state-def distinct-mset-set-def
by auto
moreover have <\negtautology C>
using C inv unfolding cdclW-all-struct-inv-def cdcl}\mp@subsup{W}{W}{}\mathrm{ -learned-clause-alt-def by auto
moreover
have <atms-of C\subseteqatms-of-mm (learned-clss S)>
using C by auto
then have <atms-of C\subseteqatms-of-mm (init-clss S)>
using inv unfolding cdcl W-all-struct-inv-def no-strange-atm-def by force
moreover have <finite (atms-of-mm (init-clss S))\rangle
using inv unfolding cdcl W-all-struct-inv-def by auto
ultimately show <C E simple-clss (atms-of-mm (init-clss S))\rangle

```
using distinct－mset－not－tautology－implies－in－simple－clss simple－clss－mono by blast
qed
lemma cdcl \(_{W}\)－merge－with－restart－init－clss：
\(\left\langle c d c l_{W}\right.\)－merge－with－restart \(S T \Longrightarrow \operatorname{cdcl}_{W}\)－M－level－inv \((\) fst \(S) \Longrightarrow\)
init－clss \((\) fst \(S)=\) init－clss \((\) fst \(T)\) ）
using \(c d c l_{W}\)－merge－with－restart－rtranclp－cdcl \({ }_{W}\)－restart rtranclp－cdcl \({ }_{W}\)－restart－init－clss by blast
lemma（in \(c d c l_{W}\)－restart－restart）
\(\left\langle w f\left\{(T, S) . c d c l_{W}\right.\right.\)－all－struct－inv \((f s t S) \wedge \operatorname{cdcl}_{W}\)－merge－with－restart \(\left.\left.S T\right\}\right\rangle\)
proof（rule ccontr）
assume \(\neg\) ？thesis
then obtain \(g\) where
\(g:\left\langle\bigwedge i . c d c l_{W}\right.\)－merge－with－restart \(\left.(g i)(g(S u c i))\right\rangle\) and
inv：〈 \(\backslash i . c d c l_{W}\)－all－struct－inv（fst（ \(\left.g i\right)\) ）〉
unfolding wf－iff－no－infinite－down－chain by fast
\(\{\) fix \(i\)
have \(\left\langle\right.\) init－clss \((f s t(g i))=\) init－clss \(\left(f s t\left(\begin{array}{ll}g & 0))\rangle\end{array}\right.\right.\)
apply（induction \(i\) ）
apply \(\operatorname{simp}\)
using \(g\) inv unfolding cdcl \(_{W}\)－all－struct－inv－def by（metis \(c d c l_{W}\)－merge－with－restart－init－clss）
\} note init-g = this
let ？\(S=\langle g 0\rangle\)
have 〈finite（atms－of－mm（init－clss（fst ？S）））〉
using inv unfolding cdcl \(_{W}\)－all－struct－inv－def by auto
have snd－g：〈 \(\backslash i\) ．snd \((g i)=i+\operatorname{snd}\left(\begin{array}{ll}g & 0)\rangle \\ \hline\end{array}\right.\)
apply（induct－tac i）
apply \(\operatorname{simp}\)
by（metis Suc－eq－plus1－left add－Suc cdcl \(W_{W}\)－merge－with－restart－increasing－number g）
then have snd－g－0：〈\i．\(i>0 \Longrightarrow\) snd \((g i)=i+\operatorname{snd}\left(\begin{array}{ll}g & 0)\rangle \\ \hline\end{array}\right.\)
by blast
have unbounded－f－g：〈unbounded（ \(\lambda i . f(\operatorname{snd}(g i)))\rangle\)
using \(f\) unfolding bounded－def by（metis add．commute fless－or－eq－imp－le snd－g not－bounded－nat－exists－larger not－le le－iff－add）

\section*{obtain \(k\) where}
\(f-g-k:\langle f(\) snd \((g k))>\) card（simple－clss（atms－of－mm（init－clss \((f s t ? S))))\rangle\) and \(\langle k>\) card（simple－clss（atms－of－mm（init－clss（fst ？S））））〉
using not－bounded－nat－exists－larger［OF unbounded－f－g］by blast
The following does not hold anymore with the non－strict version of cardinality in the definition．
```

\{ fix i
assume 〈no-step cdcl $_{W}$-stgy $\left.(f s t(g i))\right\rangle$
with $g[o f i]$
have False
proof (induction rule: $c d c l_{W}$-merge-with-restart.induct)
case (restart-step $T S n$) note $H=$ this(1) and $c=$ this(2) and n-s $=$ this(4)
obtain S^{\prime} where $\left\langle c d c l_{W}\right.$-stgy $\left.S S^{\prime}\right\rangle$
using H c by (metis gr-implies-not0 relpowp-E2)
then show False using n-s by auto
next
case (restart-full $S T$)
then show False unfolding full1-def by (auto dest: tranclpD)
qed
\} note $H=$ this

```
```

 obtain \(m T\) where
 \(m:\langle m=\) card \((\) set-mset \((\) learned-clss \(T))-\) card \((\) set-mset (learned-clss \((f s t(g k))))\rangle\) and
 \(\langle m>f(\operatorname{snd}(g k))\rangle\) and
 <restart \(T(f s t(g(k+1)))\rangle\) and
 \(c d c l_{W}\)-stgy: \(\left\langle\left(c d c l_{W}-\right.\right.\) stgy \(\left.\left.{ }^{\wedge} m\right)(f s t(g k)) T\right\rangle\)
 using \(g[\) of \(k] H\left[\right.\) of \(\langle S u c k\rangle\) by (force simp: cdcl \({ }_{W}\)-merge-with-restart.simps full1-def)
 have \(\left\langle c d c l_{W}-s t g y^{* *}(f s t(g k)) T\right\rangle\)
 using cdcl \(_{W}\)-stgy relpowp-imp-rtranclp by metis
 then have \(\left\langle c d c l_{W}\right.\)-all-struct-inv \(\left.T\right\rangle\)
 using inv \([o f k]\) rtranclp-cdcl \(W_{W}\)-all-struct-inv-inv rtranclp-cdcl \(W_{W}\)-stgy-rtranclp-cdcl \(W_{W}\)-restart
 by blast
 moreover have \(\langle\) card (set-mset (learned-clss \(T)\)) - card (set-mset (learned-clss \((f s t(g k)))\))
 \(>\operatorname{card}(\) simple-clss (atms-of-mm (init-clss (fst ?S))))
 unfolding \(m[\) symmetric] using \(\langle m>f(s n d(g k))\rangle f-g\) - \(k\) by linarith
 then have <card (set-mset (learned-clss T))
 \(>\) card (simple-clss (atms-of-mm (init-clss (fst ?S)))))
 by linarith
 moreover
 have \(\langle\) init-clss \((f s t(g k))=\) init-clss \(T\rangle\)
 using \(\left\langle c d c l_{W}\right.\)-stgy** \(\left.(f s t(g k)) T\right\rangle\) rtranclp-cdcl \(W_{W}\)-stgy-rtranclp-cdcl \({ }_{W}\)-restart
 rtranclp-cdcl \(W_{W}\)-restart-init-clss inv unfolding cdcl \(_{W}\)-all-struct-inv-def by blast
 then have \(\left\langle\right.\) init-clss \(\left(f_{s t} ? S\right)=\) init-clss \(T\)
 using init-g[of \(k]\) by auto
 ultimately show False
 using cdcl \(_{W}\)-all-struct-inv-learned-clss-bound
 by (simp add: 〈finite (atms-of-mm (init-clss (fst (g 0))))〉 simple-clss-finite
 card-mono leD)
 qed
lemma $c d c l_{W}$-merge-with-restart-distinct-mset-clauses:
assumes invR: $\left\langle c d c l_{W}\right.$-all-struct-inv $\left.\left(f_{s t} R\right)\right\rangle$ and
st: $\left\langle c d c l_{W}\right.$-merge-with-restart $\left.R S\right\rangle$ and
dist: 〈distinct-mset (clauses (fst R)) 〉 and
R : «no-smaller-propa (fst R) 〉
shows 〈distinct-mset (clauses (fst S))〉
using $\operatorname{assms}(2,1,3,4)$
proof induction
case (restart-full S T)
then show ?case using rtranclp-cdcl ${ }_{W}$-stgy-distinct-mset-clauses $[$ of $S T$] unfolding full1-def
by (auto dest: tranclp-into-rtranclp)
next
case (restart-step $T S n U$)
then have 〈distinct-mset (clauses T) 〉
using rtranclp-cdcl W_{W}-stgy-distinct-mset-clauses $[o f ~ S T]$ unfolding full1-def
by (auto dest: relpowp-imp-rtranclp)
then show ?case using 〈restart $T U$ unfolding clauses-def
by (metis distinct-mset-union fstI restartE subset-mset.le-iff-add union-assoc)
qed
inductive $c d c l_{W}$-restart-with-restart where
restart-step:
$\left\langle\right.$ cdcl $_{W}{ }^{-}$stgy $^{* *} S T \Longrightarrow$
card (set-mset (learned-clss $T))$ - card (set-mset (learned-clss S)) $>f n \Longrightarrow$
restart T U \Longrightarrow
$c d c l_{W}$-restart-with-restart $\left.(S, n)(U, S u c n)\right\rangle \mid$
restart-full: 〈full1 cdcl W_{W}-stgy $S T \Longrightarrow$ cdcl $_{W}$-restart-with-restart $\left.(S, n)(T, S u c n)\right\rangle$

```
lemma \(c d c l_{W}\)－restart－with－restart－rtranclp－cdcl \({ }_{W}\)－restart：
\(\left\langle c d c l_{W}\right.\)－restart－with－restart \(S T \Longrightarrow c d c l_{W}\)－restart＊＊\((\) fst \(\left.S)(f s t ~ T)\right\rangle\)
apply（induction rule：\(c d c l_{W}\)－restart－with－restart．induct）
by（auto dest！：relpowp－imp－rtranclp tranclp－into－rtranclp \(c^{2} d_{W}{ }_{W}\)－restart．rf \(c d c l_{W}-r f\) ．restart rtranclp－\(c d c l_{W}\)－stgy－rtranclp－cdcl \({ }_{W}\)－restart simp：full1－def）
lemma \(c d c l_{W}\)－restart－with－restart－increasing－number：
\(\left\langle c d c l_{W}\right.\)－restart－with－restart \(S T \Longrightarrow\) snd \(T=1+\) snd \(\left.S\right\rangle\)
by（induction rule：\(c d c l_{W}\)－restart－with－restart．induct）auto
lemma 〈full1 \(c d c l_{W}\)－stgy \(S T \Longrightarrow c d c l_{W}\)－restart－with－restart \((S, n)(T\), Suc \(\left.n)\right\rangle\)
using restart－full by blast
lemma \(\mathrm{cdcl}_{W}\)－restart－with－restart－init－clss：
\(\left\langle c d c l_{W}\right.\)－restart－with－restart \(S T \Longrightarrow c d c l_{W}\)－M－level－inv \(\left(f_{s t} S\right) \Longrightarrow\) init－clss \((\) fst \(S)=\) init－clss \((\) fst \(T)\) ）
using \(\operatorname{cdcl}_{W}\)－restart－with－restart－rtranclp－cdcl \(W_{W}\)－restart rtranclp－cdcl \(W_{W}\)－restart－init－clss by blast
theorem（in \(c d c l_{W}\)－restart－restart）
\(\left\langle w f\left\{(T, S) . c d c l_{W}\right.\right.\)－all－struct－inv \((\) fst \(S) \wedge c d c l_{W}\)－restart－with－restart \(\left.\left.S T\right\}\right\rangle\)
proof（rule ccontr）
assume \(\langle\neg\) ？thesis〉
then obtain \(g\) where
\(g:\left\langle\bigwedge i . c d c l_{W}\right.\)－restart－with－restart（gi）（g（Suc i））＞and
inv：〈 \(\backslash i\). cdcl \(_{W}\)－all－struct－inv \(\left.\left(f_{s t}(g i)\right)\right\rangle\)
unfolding wf－iff－no－infinite－down－chain by fast
\(\{\mathrm{fix} i\)
have \(\left\langle\right.\) init－clss \((f s t(g i))=\) init－clss \(\left(f s t\left(\begin{array}{ll}g & 0))\rangle\end{array}\right.\right.\)
apply（induction i）
apply simp
using \(g\) inv unfolding cdcl \(_{W}\)－all－struct－inv－def by（metis \(c d c l_{W}\)－restart－with－restart－init－clss）
\} note init- \(g=\) this
let ？\(S=\langle g 0\rangle\)
have 〈finite（atms－of－mm（init－clss（fst ？S）））＞
using inv unfolding \(c d c l_{W}\)－all－struct－inv－def by auto
have snd－g：〈 \(\bigwedge i\) ．snd \((g i)=i+\operatorname{snd}(g 0)\rangle\)
apply（induct－tac i）
apply \(\operatorname{simp}\)
by（metis Suc－eq－plus1－left add－Suc cdcl \({ }_{W}\)－restart－with－restart－increasing－number g）
then have snd－g－0：〈\i．\(i>0 \Longrightarrow\) snd \((g i)=i+\operatorname{snd}\left(\begin{array}{ll}g & 0)\rangle \\ \hline\end{array}\right.\)
by blast
have unbounded－f－g：〈unbounded（ \(\lambda i . f(\operatorname{snd}(g i)))\rangle\)
using \(f\) unfolding bounded－def by（metis add．commute fless－or－eq－imp－le snd－g not－bounded－nat－exists－larger not－le le－iff－add）

\section*{obtain \(k\) where}
\(f-g-k:\langle f(\) snd \((g k))>\) card（simple－clss（atms－of－mm（init－clss（fst ？S））））\(\rangle\) and \(\langle k>\) card（simple－clss（atms－of－mm（init－clss（fst ？S））））〉
using not－bounded－nat－exists－larger［OF unbounded－f－g］by blast
The following does not hold anymore with the non－strict version of cardinality in the definition．
```

have H: False if <no-step cdcl W-stgy (fst (g i))` for i
using g[of i] that
proof (induction rule: cdclW-restart-with-restart.induct)

```
```

 case (restart-step S T n) note H=this(1) and c=this(2) and n-s=this(4)
 obtain S' where <cdcl W-stgy S S'\rangle
 using H c by (subst (asm) rtranclp-unfold) (auto dest!: tranclpD)
 then show False using n-s by auto
 next
case (restart-full S T)
then show False unfolding full1-def by (auto dest: tranclpD)
qed
obtain m T where
m:<m= card (set-mset (learned-clss T)) - card (set-mset (learned-clss (fst (g k))))\rangle and
<m>f(snd (gk))\rangle and
<restart T (fst (g (k+1)))\rangle and
cdcl}\mp@subsup{W}{}{-stgy:}\langlecdc\mp@subsup{l}{W}{}-stgy** (fst (g k)) T
using g[of k] H[of \langleSuc k\rangle] by (force simp: cdcl W-restart-with-restart.simps full1-def)
have <cdcl W-all-struct-inv T\rangle
using inv[of k] rtranclp-cdcl W-all-struct-inv-inv rtranclp-cdcl W-stgy-rtranclp-cdcl}\mp@subsup{W}{W}{}\mathrm{ -restart
cdcl W
moreover {
have <card (set-mset (learned-clss T)) - card (set-mset (learned-clss (fst (g k))))
> card (simple-clss (atms-of-mm (init-clss (fst ?S))))>
unfolding m[symmetric] using <m>f(snd (g k))> f-g-k by linarith
then have <card (set-mset (learned-clss T))
> card (simple-clss (atms-of-mm (init-clss (fst ?S))))>
by linarith
}
moreover {
have <init-clss (fst (g k)) = init-clss T>
using <cdcl lW-stgy** (fst (gk))T\rangle rtranclp-cdcl W}\mp@subsup{W}{W}{}-stgy-rtranclp-cdcl W-restart rtranclp-cdcl W -restart-init-clss
inv unfolding cdcl W-all-struct-inv-def
by blast
then have <init-clss (fst ?S) = init-clss T>
using init-g[of k] by auto
}
ultimately show False
using cdcl W-all-struct-inv-learned-clss-bound
by (simp add: <finite (atms-of-mm (init-clss (fst (g 0))))〉 simple-clss-finite
card-mono leD)
qed
lemma }cdc\mp@subsup{l}{W}{}\mathrm{ -restart-with-restart-distinct-mset-clauses:
assumes invR: <cdcl WW-all-struct-inv (fst R)\rangle and
st: <cdcl }\mp@subsup{W}{W}{}\mathrm{ -restart-with-restart R S \ and
dist: <distinct-mset (clauses (fst R))\rangle and
R:`no-smaller-propa (fst R)`
shows <distinct-mset (clauses (fst S))>
using assms(2,1,3,4)
proof (induction)
case (restart-full S T)
then show ?case using rtranclp-cdcl W-stgy-distinct-mset-clauses[of S T] unfolding full1-def
by (auto dest: tranclp-into-rtranclp)
next
case (restart-step S T n U)
then have <distinct-mset (clauses T)\rangle using rtranclp-cdcl}\mp@subsup{W}{W}{}\mathrm{ -stgy-distinct-mset-clauses[of S T]
unfolding full1-def by (auto dest: relpowp-imp-rtranclp)
then show ?case using <restart T U unfolding clauses-def
by (metis distinct-mset-union fstI restartE subset-mset.le-iff-add union-assoc)

```

\section*{qed}
end
locale luby－sequence \(=\)
fixes ur ：：nat
assumes \(\langle u r>0\) 〉

\section*{begin}
lemma exists－luby－decomp：

\section*{fixes \(i\) ：：nat}
shows \(\left\langle\exists k\right.\) ：：nat．\(\left.\left(2^{\wedge}(k-1) \leq i \wedge i<\mathcal{Z}^{\wedge} k-1\right) \vee i=\mathcal{Z}^{\wedge} k-1\right\rangle\)
proof（induction \(i\) ）
case 0
then show ？case by（rule exI［of－0］，simp）

\section*{next}
case（Suc n）
then obtain \(k\) where 2 \(^{\wedge}(k-1) \leq n \wedge n<2 へ k-1 \vee n=2 へ k-1\) 〉
by blast
then consider
（st－interv）〈2 \(\left.{ }^{\wedge}(k-1) \leq n\right\rangle\) and \(\langle n \leq 2 \wedge k-2\rangle\)
｜（end－interv）〈2 へ \((k-1) \leq n\rangle\) and \(\langle n=2 \wedge k-2\rangle\)
｜（pow2）〈n＝2＾k－1〉
by linarith
then show ？case
proof cases
case st－interv
then show ？thesis apply－apply（rule exI［of－k］）
by（metis（no－types，lifting）One－nat－def Suc－diff－Suc Suc－lessI
〈2 \(\left.{ }^{\wedge}(k-1) \leq n \wedge n<2^{\wedge} k-1 \vee n=2 へ k-1\right\rangle\) diff－self－eq－0
dual－order．trans le－SucI le－imp－less－Suc numeral－2－eq－2 one－le－numeral
one－le－power zero－less－numeral zero－less－power）
next
case end－interv
then show ？thesis apply－apply（rule exI \([o f-k]\) ）by auto
next
case pow2
then show ？thesis apply－apply（rule exI \([\) of \(-\langle k+1\rangle]\) ）by auto
qed
qed
Luby sequences are defined by：
－ \(2^{k}-1\) ，if \(i=\left(2::^{\prime} a\right)^{k}-\left(1::^{\prime} a\right)\)
－luby－sequence－core \(\left(i-2^{k-1}+1\right)\) ，if \(\left(2::^{\prime} a\right)^{k-1} \leq i\) and \(i \leq\left(2::^{\prime} a\right)^{k}-\left(1::^{\prime} a\right)\)

Then the sequence is then scaled by a constant unit run（called ur here），strictly positive．
```

function luby-sequence-core :: 〈nat \Rightarrow nat〉 where
〈luby-sequence-core $i=$
(if $\exists k . i=2 \wedge k-1$
then $2^{\wedge}((S O M E$ k. $i=2 \wedge k-1)-1)$
else luby-sequence-core $\left.\left(i-\mathcal{Z}^{\wedge}\left(\left(\operatorname{SOME} k \cdot \mathscr{2}^{\wedge}(k-1) \leq i \wedge i<2 \wedge k-1\right)-1\right)+1\right)\right)$)
by auto

```
```

termination
proof (relation 〈less-than〉, goal-cases)
case 1
then show ?case by auto
next
case (2 i)
let $? k=\left\langle\operatorname{SOME} k .2^{\wedge}(k-1) \leq i \wedge i<2^{\wedge} k-1\right\rangle$
have 2 $^{\wedge}(? k-1) \leq i \wedge i<2 へ ? k-1$)
by (rule someI-ex) (use 2 exists-luby-decomp in blast)
then show?case
proof -
have $\left\langle\forall n n a . \neg(1:: n a t) \leq n \vee 1 \leq n^{\wedge} n a\right\rangle$
by (meson one-le-power)
then have $f 1:\left\langle(1:: n a t) \leq 2^{\wedge}(? k-1)\right\rangle$
using one-le-numeral by blast
have f2: $\left\langle i-2^{\wedge}(? k-1)+2^{\wedge}(? k-1)=i\right\rangle$
using 2 $^{\wedge}(? k-1) \leq i \wedge i<2 へ$? $\left.k-1\right\rangle$ le-add-diff-inverse2 by blast
have f3: 〈2 へ ? $k-1 \neq$ Suc 0〉
using $\left.f 1<\mathcal{R}^{\wedge}(? k-1) \leq i \wedge i<2^{\wedge} ? k-1\right\rangle$ by linarith
have 〈2 ${ }^{\wedge}$? $k-(1::$ nat $\left.) \neq 0\right\rangle$
using $\prec^{\wedge}(? k-1) \leq i \wedge i<2^{\wedge} ? k-1$) gr-implies-not0 by blast
then have $f_{4}:\left\langle\mathcal{D}^{\wedge} ? k \neq(1:: n a t)\right\rangle$
by linarith
have f5: 〈 \forall n na. if $n a=0$ then ($n:: n a t)^{\wedge} n a=1$ else $n \wedge n a=n * n \wedge(n a-1)$ 〉
by (simp add: power-eq-if)
then have $\langle ? k \neq 0$ 〉
using f_{4} by meson
then have $\left\langle{ }^{\wedge}(? k-1) \neq\right.$ Suc 0\rangle
using f5 f3 by presburger
then have 〈Suc $\left.0<2^{\wedge}(? k-1)\right\rangle$
using $f 1$ by linarith
then show ?thesis
using f2 less-than-iff by presburger
qed
qed
declare luby-sequence-core.simps[simp del]
lemma two-pover-n-eq-two-power-n'-eq:
assumes $\left.H: 〈(2:: n a t) ~ へ(k:: n a t)-1=2 へ k^{\prime}-1\right\rangle$
shows $\left\langle k^{\prime}=k\right\rangle$
proof -
have 〈(2::nat) ^ $\left.(k:: n a t)=2^{\wedge} k^{\prime}\right\rangle$
using H by (metis One-nat-def Suc-pred zero-less-numeral zero-less-power)
then show? ?thesis by simp
qed
lemma luby-sequence-core-two-power-minus-one:
〈luby-sequence-core $\left.\left(2^{\wedge} k-1\right)=2^{\wedge}(k-1)\right\rangle($ is $\langle ? L=? K\rangle)$
proof -
have decomp: $\left\langle\exists k a\right.$. $\left.2^{\wedge} k-1=2{ }^{\wedge} k a-1\right\rangle$
by auto
have $\left\langle ? L=2^{\wedge}\left(\left(\right.\right.\right.$ SOME $k^{\prime} .(2::$ nat $\left.\left.\left.) \wedge k-1=2 \wedge k^{\prime}-1\right)-1\right)\right\rangle$
apply (subst luby-sequence-core.simps, subst decomp)
by simp

```
```

 moreover have \(\left\langle\left(S O M E k^{\prime} .(2:: n a t) \wedge k-1=2 \wedge k^{\prime}-1\right)=k\right\rangle\)
 apply (rule some-equality)
 apply simp
 using two-pover-n-eq-two-power-n'-eq by blast
 ultimately show ?thesis by presburger
 qed
lemma different-luby-decomposition-false:
assumes
$\left.H:<2^{\wedge}(k-S u c 0) \leq i\right\rangle$ and
$k^{\prime}:\left\langle i<2^{\wedge} k^{\prime}-S u c 0\right\rangle$ and
$k-k^{\prime}:\left\langle k>k^{\prime}\right\rangle$
shows 〈False〉
proof -
have ${ }^{2}{ }^{\wedge} k^{\prime}-$ Suc $\left.0<2 \wedge(k-S u c 0)\right\rangle$
using k-k' less-eq-Suc-le by auto
then show ?thesis
using $H k^{\prime}$ by linarith
qed
lemma luby-sequence-core-not-two-power-minus-one:
assumes
$k-i:\left\langle\mathcal{R}^{\wedge}(k-1) \leq i\right\rangle$ and
$i-k:\left\langle i<2^{\wedge} k-1\right\rangle$
shows 〈luby-sequence-core $i=$ luby-sequence-core $\left.\left(i-\boldsymbol{2}^{\wedge}(k-1)+1\right)\right\rangle$
proof -
have $H:\left\langle\neg\left(\exists k a . i=2^{\wedge} k a-1\right)\right\rangle$
proof (rule ccontr)
assume 〈 \neg ?thesis〉
then obtain $k^{\prime}::$ nat where $k^{\prime}:\left\langle i=2^{\wedge} k^{\prime}-1\right\rangle$ by blast
have 〈(2::nat) ^$\left.k^{\prime}-1<2^{\wedge} k-1\right\rangle$
using i - k unfolding k^{\prime}.
then have 〈(2::nat) $\left.{ }^{\wedge} k^{\prime}<2^{\wedge} k\right\rangle$
by linarith
then have $\left\langle k^{\prime}<k\right\rangle$
by simp
have 〈2ヘ $(k-1) \leq 2^{\wedge} k^{\prime}-(1::$ nat $\left.)\right\rangle$
using $k-i$ unfolding k^{\prime}.
then have 〈(2::nat) $\left.{ }^{\wedge}(k-1)<2^{\wedge} k^{\prime}\right\rangle$
by (metis Suc-diff-1 not-le not-less-eq zero-less-numeral zero-less-power)
then have $\left\langle k-1<k^{\prime}\right.$ ’
by simp
show False using $\left\langle k^{\prime}<k\right\rangle\left\langle k-1<k^{\prime}\right\rangle$ by linarith
qed
have 〈\k k^{\prime}. 2 ^ $(k-$ Suc 0$) \leq i \Longrightarrow i<2^{\wedge} k-\operatorname{Suc} 0 \Longrightarrow 2^{\wedge}\left(k^{\prime}-\right.$ Suc 0$) \leq i \Longrightarrow$
$i<2^{\wedge} k^{\prime}-$ Suc $0 \Longrightarrow k=k^{\prime}$ ’
by (meson different-luby-decomposition-false linorder-neqE-nat)
then have $k:\left\langle\left(S O M E k\right.\right.$. $\left.\left.2^{\wedge}(k-S u c 0) \leq i \wedge i<2^{\wedge} k-S u c 0\right)=k\right\rangle$
using k-i $i-k$ by auto
show ?thesis
apply (subst luby-sequence-core.simps[of $i]$, subst H)
by (simp add: k)
qed
lemma unbounded－luby－sequence－core：〈unbounded luby－sequence－core〉

```
```

 unfolding bounded-def
 proof
assume <\existsb.\foralln.luby-sequence-core n \leq b>
then obtain b}\mathrm{ where b:<\nn.luby-sequence-core n s b>
by metis
have <luby-sequence-core (2^(b+1) - 1) = 2^b>
using luby-sequence-core-two-power-minus-one[of \langleb+1\rangle] by simp
moreover have <(2::nat)^b > b>
by (induction b) auto
ultimately show False using b[of <2` (b+1) - 1\] by linarith

qed
abbreviation luby-sequence :: <nat => nat> where
<luby-sequence n \equiv ur * luby-sequence-core n>
lemma bounded-luby-sequence:<unbounded luby-sequence〉
using bounded-const-product[of ur] luby-sequence-axioms
luby-sequence-def unbounded-luby-sequence-core by blast
lemma luby-sequence-core-0:\luby-sequence-core 0=1` proof - have 0:<(0::nat)= 2`0-1>
by auto
show ?thesis
by (subst 0, subst luby-sequence-core-two-power-minus-one) simp
qed
lemma\luby-sequence-core n \geq1>
proof (induction n rule: nat-less-induct-case)
case 0
then show ?case by (simp add: luby-sequence-core-0)
next
case (Suc n) note IH = this
consider
(interv) k where <2 ^ (k-1) \leqSuc n> and \Suc n< 2^ k-1>|
(pow2) k where 〈Suc n=2 ^k-Suc 0`
using exists-luby-decomp[of \langleSuc n\] by auto

 then show ?case
 proof cases
 case pow2
 show ?thesis
 using luby-sequence-core-two-power-minus-one pow2 by auto
 next
 case interv
 have n:\langleSuc n-2 ^ (k-1) + 1 < Suc n\rangle
 by (metis Suc-1 Suc-eq-plus1 add.commute add-diff-cancel-left' add-less-mono1 gr0I
 interv(1) interv(2) le-add-diff-inverse2 less-Suc-eq not-le power-0 power-one-right
 power-strict-increasing-iff)
 show ?thesis
 apply (subst luby-sequence-core-not-two-power-minus-one[OF interv])
 using IH n by auto
 qed
 qed
end

```
```

locale luby-sequence-restart =
luby-sequence ur +
conflict-driven-clause-learning}\mp@subsup{W}{}{\prime
- functions for the state:
state-eq state
- access functions:
trail init-clss learned-clss conflicting
- changing state:
cons-trail tl-trail add-learned-cls remove-cls
update-conflicting
- get state:
init-state
for
ur :: nat and
state-eq :: <'st }=>\mathrm{ 'st }=>\mathrm{ bool> (infix ~ 50) and
state :: <'st => ('v, 'v clause) ann-lits }\times\mathrm{ 'v clauses }\times\mp@subsup{}{}{\prime}v\mathrm{ clauses }\times\mathrm{ 'v clause option }
'b> and
trail :: <'st }=>\mathrm{ ('v,'v clause) ann-lits> and
hd-trail :: <'st => ('v,'v clause) ann-lit> and
init-clss :: <'st => 'v clauses> and
learned-clss :: <'st \# 'v clauses> and
conflicting :: <'st > 'v clause option> and
cons-trail :: <('v, 'v clause) ann-lit => 'st => 'st> and
tl-trail :: <'st => 'st\rangle and
add-learned-cls :: \'v clause => 'st }=>\mathrm{ 'st> and
remove-cls :: <'v clause \# 'st => 'st> and
update-conflicting :: <'v clause option = 'st => 'st> and
init-state :: <'v clauses = 'st>
begin
sublocale }cdc\mp@subsup{l}{W}{W}\mathrm{ -restart-restart where
f = luby-sequence
by unfold-locales (use bounded-luby-sequence in blast)
end
end
theory CDCL-W-Incremental
imports CDCL-W-Full
begin

```

\subsection*{3.2 Incremental SAT solving}
```

locale state $_{W}$-adding-init-clause-no-state $=$
state $_{W}$-no-state
state-eq
state
- functions about the state:
- getter:
trail init-clss learned-clss conflicting
- setter:

```
cons-trail tl-trail add-learned-cls remove-cls
update-conflicting
- Some specific states:
init-state
for
state-eq :: 'st \(\Rightarrow\) 'st \(\Rightarrow\) bool (infix \(\sim 50\) ) and
state \(::\) 'st \(\Rightarrow(' v, ' v\) clause \()\) ann-lits \(\times\) 'v clauses \(\times\) 'v clauses \(\times\) 'v clause option \(\times\)
' \(b\) and
trail \(::\) 'st \(\Rightarrow\) ('v, 'v clause) ann-lits and
init-clss :: 'st \(\Rightarrow\) 'v clauses and
learned-clss :: 'st \(\Rightarrow\) 'v clauses and
conflicting \(::\) 'st \(\Rightarrow\) 'v clause option and
cons-trail \(::\left({ }^{\prime} v,{ }^{\prime} v\right.\) clause) ann-lit \(\Rightarrow\) 'st \(\Rightarrow\) 'st and
tl-trail :: 'st \(\Rightarrow\) 'st and
add-learned-cls \(::\) 'v clause \(\Rightarrow\) 'st \(\Rightarrow\) 'st and
remove-cls :: 'v clause \(\Rightarrow\) 'st \(\Rightarrow\) 'st and
update-conflicting :: 'v clause option \(\Rightarrow\) 'st \(\Rightarrow\) 'st and
init-state :: 'v clauses \(\Rightarrow\) 'st +

\section*{fixes}
add-init-cls :: 'v clause \(\Rightarrow\) 'st \(\Rightarrow\) 'st

\section*{assumes}
add-init-cls:
state st \(=\left(M, N, U, S^{\prime}\right) \Longrightarrow\) state \((\) add-init-cls \(C\) st \()=\left(M,\{\# C \#\}+N, U, S^{\prime}\right)\)
locale state \(_{W}\)-adding-init-clause-ops \(=\)
state \(_{W}\)-adding-init-clause-no-state
state-eq
state
- functions about the state:
- getter:
trail init-clss learned-clss conflicting
- setter:
cons-trail tl-trail add-learned-cls remove-cls update-conflicting
- Some specific states:
init-state
add-init-cls
for
state-eq :: 'st \(\Rightarrow\) 'st \(\Rightarrow\) bool (infix \(\sim 50\) ) and
state \(::\) 'st \(\Rightarrow(' v, ' v\) clause \()\) ann-lits \(\times\) 'v clauses \(\times\) 'v clauses \(\times\) 'v clause option \(\times\) 'b and
trail \(::\) 'st \(\Rightarrow\) ('v, 'v clause) ann-lits and
init-clss :: 'st \(\Rightarrow\) 'v clauses and
learned-clss :: 'st \(\Rightarrow\) 'v clauses and
conflicting \(::\) 'st \(\Rightarrow\) 'v clause option and
cons-trail \(::\left({ }^{\prime} v\right.\), 'v clause) ann-lit \(\Rightarrow\) 'st \(\Rightarrow\) 'st and
tl-trail :: 'st \(\Rightarrow\) 'st and
add-learned-cls \(::\) 'v clause \(\Rightarrow\) 'st \(\Rightarrow\) 'st and
remove-cls :: 'v clause \(\Rightarrow\) 'st \(\Rightarrow\) 'st and
update-conflicting \(::\) 'v clause option \(\Rightarrow\) 'st \(\Rightarrow\) 'st and
```

init-state :: 'v clauses }=>\mathrm{ 'st and
add-init-cls :: 'v clause }=>\mathrm{ 'st }=>\mathrm{ 'st +
assumes
state-prop[simp]:
<state S = (trail S, init-clss S, learned-clss S, conflicting S, additional-info S)>

```
locale state \(_{W}\)-adding-init-clause \(=\)
    state \(_{W}\)-adding-init-clause-ops
        state-eq
        state
    - functions about the state:
        getter:
    trail init-clss learned-clss conflicting
        - setter:
        cons-trail tl-trail add-learned-cls remove-cls update-conflicting
        - Some specific states:
        init-state add-init-cls
    for
    state-eq :: 'st \(\Rightarrow\) 'st \(\Rightarrow\) bool (infix ~50) and
    state \(::\) 'st \(\Rightarrow\) ('v, 'v clause) ann-lits \(\times\) 'v clauses \(\times\) ' \(v\) clauses \(\times\) 'v clause option \(\times\)
        ' \(b\) and
    trail \(::\) 'st \(\Rightarrow\left(' v,{ }^{\prime} v\right.\) clause \()\) ann-lits and
    init-clss \(::\) 'st \(\Rightarrow\) 'v clauses and
    learned-clss :: 'st \(\Rightarrow\) 'v clauses and
    conflicting \(::\) 'st \(\Rightarrow\) 'v clause option and
    cons-trail :: ('v, 'v clause) ann-lit \(\Rightarrow\) 'st \(\Rightarrow\) 'st and
    tl-trail :: 'st \(\Rightarrow\) 'st and
    add-learned-cls :: 'v clause \(\Rightarrow\) 'st \(\Rightarrow\) 'st and
    remove-cls \(::\) 'v clause \(\Rightarrow\) 'st \(\Rightarrow\) 'st and
    update-conflicting \(::\) ' \(v\) clause option \(\Rightarrow\) 'st \(\Rightarrow\) 'st and
    init-state \(:: ~ ' v\) clauses \(\Rightarrow\) 'st and
    add-init-cls :: 'v clause \(\Rightarrow\) 'st \(\Rightarrow\) 'st
begin
sublocale state \(_{W}\)
    by unfold-locales auto

\section*{lemma}
trail-add-init-cls[simp]: trail \((\) add-init-cls C st) \(=\) trail st and
init-clss-add-init-cls[simp]:
init-clss (add-init-cls \(C\) st \()=\{\# C \#\}+\) init-clss st and
learned-clss-add-init-cls[simp]: learned-clss (add-init-cls C st) \(=\) learned-clss st and
conflicting-add-init-cls[simp]:
conflicting (add-init-cls C st) \(=\) conflicting st
using add-init-cls[of st ---C] by (cases state st; auto; fail)+
lemma clauses-add-init-cls[simp]:
clauses (add-init-cls \(N S)=\{\# N \#\}+\) init-clss \(S+\) learned-clss \(S\)
unfolding clauses-def by auto
```

lemma reduce-trail-to-add-init-cls[simp]:
trail (reduce-trail-to F (add-init-cls C S)) = trail (reduce-trail-to F S)
by (rule trail-eq-reduce-trail-to-eq) auto
lemma conflicting-add-init-cls-iff-conflicting[simp]:
conflicting (add-init-cls C S)=None \longleftrightarrow conflicting S= None
by fastforce+
end
locale conflict-driven-clause-learning-with-adding-init-clause}\mp@subsup{W}{W}{}
stateW-adding-init-clause
state-eq
state
- functions for the state:
- access functions:
trail init-clss learned-clss conflicting
- changing state:
cons-trail tl-trail add-learned-cls remove-cls update-conflicting
- get state:
init-state
- Adding a clause:
add-init-cls
for
state-eq :: 'st => 'st => bool (infix ~ 50) and
state ::'st }=>('v,'v clause) ann-lits ×'v clauses ×'v clauses ×'v clause option ×
'b and
trail :: 'st => ('v,'v clause) ann-lits and
init-clss :: 'st }=>\mathrm{ 'v clauses and
learned-clss :: 'st }=>\mathrm{ 'v clauses and
conflicting :: 'st => 'v clause option and
cons-trail :: ('v, 'v clause) ann-lit => 'st }=>\mathrm{ 'st and
tl-trail :: 'st }=>\mathrm{ 'st and
add-learned-cls :: 'v clause }=>\mathrm{ 'st }=>\mathrm{ 'st and
remove-cls :: 'v clause = 'st => 'st and
update-conflicting :: 'v clause option }=>\mathrm{ 'st }=>\mathrm{ 'st and
init-state :: 'v clauses }=>\mathrm{ 'st and
add-init-cls :: 'v clause = 'st => 'st
begin
sublocale conflict-driven-clause-learning}\mp@subsup{W}{}{
by unfold-locales

```

This invariant holds all the invariant related to the strategy. See the structural invariant in \(c^{c} l_{W}\)-all-struct-inv

When we add a new clause, we reduce the trail until we get to tho first literal included in C.
Then we can mark the conflict.
```

fun cut-trail-wrt-clause where
cut-trail-wrt-clause C [] S=S |
cut-trail-wrt-clause C (Decided L \# M) S=
(if -L\in\# C then S
else cut-trail-wrt-clause C M (tl-trail S))|
cut-trail-wrt-clause C (Propagated L - \# M)S=

```
```

(if -L\in\#C then S
else cut-trail-wrt-clause C M (tl-trail S))

```
definition add-new-clause-and-update :: 'v clause \(\Rightarrow\) 'st \(\Rightarrow\) 'st where
add-new-clause-and-update C \(S=\)
    (if trail \(S \models\) as CNot C
    then update-conflicting (Some \(C\) ) (add-init-cls \(C\)
    (cut-trail-wrt-clause \(C\) (trail \(S\) ) \(S\) ))
    else add-init-cls C S)
lemma init-clss-cut-trail-wrt-clause[simp]:
    init-clss (cut-trail-wrt-clause C M S \()=\) init-clss \(S\)
    by (induction rule: cut-trail-wrt-clause.induct) auto
lemma learned-clss-cut-trail-wrt-clause[simp]:
    learned-clss (cut-trail-wrt-clause C M S ) = learned-clss \(S\)
    by (induction rule: cut-trail-wrt-clause.induct) auto
lemma conflicting-clss-cut-trail-wrt-clause[simp]:
    conflicting (cut-trail-wrt-clause C M S ) = conflicting S
    by (induction rule: cut-trail-wrt-clause.induct) auto
lemma trail-cut-trail-wrt-clause:
    \(\exists M . \operatorname{trail} S=M\) @ trail (cut-trail-wrt-clause \(C(\) trail \(S) S)\)
proof (induction trail \(S\) arbitrary: \(S\) rule: ann-lit-list-induct)
    case Nil
    then show? case by simp
next
    case \((\) Decided \(L M)\) note \(I H=\) this(1)[of tl-trail \(S]\) and \(M=\) this(2)[symmetric]
    then show ?case using Cons-eq-appendI by fastforce+
next
    case (Propagated LlM) note \(I H=\) this(1)[of tl-trail \(S]\) and \(M=\) this(2)[symmetric]
    then show ?case using Cons-eq-appendI by fastforce+
qed
lemma \(n\)-dup-no-dup-trail-cut-trail-wrt-clause[simp]:
    assumes \(n\)-d: no-dup (trail T)
    shows no-dup (trail (cut-trail-wrt-clause \(C(\) trail \(T) T)\) )
proof -
    obtain \(M\) where
        \(M:\) trail \(T=M\) @ trail (cut-trail-wrt-clause \(C(\) trail \(T) T)\)
        using trail-cut-trail-wrt-clause[of \(T C]\) by auto
    show ?thesis
        using \(n\)-d unfolding arg-cong \([O F M\), of no-dup] by (auto simp: no-dup-def)
qed
lemma cut-trail-wrt-clause-backtrack-lvl-length-decided:
    assumes
        backtrack-lvl \(T=\) count-decided \((\) trail \(T)\)
    shows
        backtrack-lvl (cut-trail-wrt-clause C (trail T) T) =
        count-decided (trail (cut-trail-wrt-clause C (trail T) T))
    using assms
proof (induction trail \(T\) arbitrary: \(T\) rule: ann-lit-list-induct)
    case Nil
    then show? case by simp
```

next
case (Decided L M) note IH = this(1)[of tl-trail T] and M = this(2)[symmetric]
and bt = this(3)
then show ?case by auto
next
case (Propagated LlM) note IH = this(1)[of tl-trail T] and M = this(2)[symmetric] and
bt = this(3)
then show ?case by auto
qed
lemma cut-trail-wrt-clause-CNot-trail:
assumes trail T\modelsas CNot C
shows
(trail ((cut-trail-wrt-clause C (trail T) T))) \modelsas CNot C
using assms
proof (induction trail T arbitrary: T rule: ann-lit-list-induct)
case Nil
then show ?case by simp
next
case (Decided L M) note IH = this(1)[of tl-trail T] and M = this(2)[symmetric]
and bt = this(3)
show ?case
proof (cases count C (-L)=0)
case False
then show ?thesis
using IH M bt by (auto simp: true-annots-true-cls)
next
case True
obtain mma :: 'v clause where
f6:(mma \in{{\#-l\#} |l. l\in\#C} \longrightarrowM\modelsamma)\longrightarrowM\modelsas {{\#-l\#} |l.l\in\#C}
using true-annots-def by blast
have mma }{{{\#-l\#}|l.l\in\#C}\longrightarrow\mathrm{ trail T =a mma
using CNot-def M bt by (metis (no-types) true-annots-def)
then have M\modelsas {{\#-l\#} |l.l\in\#C}
using f6 True M bt by (force simp:count-eq-zero-iff)
then show ?thesis
using IH true-annots-true-cls M by (auto simp: CNot-def)
qed
next
case (Propagated L l M) note IH = this(1)[of tl-trail T] and M = this(2)[symmetric] and bt =
this(3)
show ?case
proof (cases count C (-L)=0)
case False
then show ?thesis
using IH M bt by (auto simp: true-annots-true-cls)
next
case True
obtain mma :: 'v clause where
f6:(mma }{{{\#-l\#}|l.l\in\#C}\longrightarrowM\modelsamma)\longrightarrowM\modelsas {{\#-l\#} |l. l\in\#C
using true-annots-def by blast
have mma }{{{\#-l\#}|l.l\in\#C}\longrightarrow trail T\modelsa mma
using CNot-def M bt by (metis (no-types) true-annots-def)
then have M\modelsas {{\#-l\#} |l.l\in\#C}
using f6 True M bt by (force simp:count-eq-zero-iff)
then show ?thesis

```
    qed
qed
lemma cut-trail-wrt-clause-hd-trail-in-or-empty-trail:
\(((\forall L \in \# C .-L \notin\) lits-of-l \((\) trail \(T)) \wedge\) trail \((\) cut-trail-wrt-clause \(C(\) trail \(T) T)=[])\) \(\vee(-\) lit-of \((h d(\) trail (cut-trail-wrt-clause \(C(\) trail \(T) T))) \in \# C\)
\(\wedge\) length \((\) trail \((\) cut-trail-wrt-clause \(C(\) trail \(T) T)) \geq 1)\)
proof (induction trail \(T\) arbitrary:T rule: ann-lit-list-induct)
case Nil
then show? case by simp
next
case (Decided \(L M\) ) note \(I H=\) this(1)[of tl-trail \(T]\) and \(M=\) this(2)[symmetric]
then show? case by simp force
next
case (Propagated LlM) note \(I H=\) this(1)[of tl-trail \(T]\) and \(M=\) this(2)[symmetric]
then show? case by simp force
qed
We can fully run \(c d c l_{W}\)-restart-s or add a clause. Remark that we use \(c d c l_{W}\)-restart- \(s\) to avoid an explicit skip, resolve, and backtrack normalisation to get rid of the conflict \(C\) if possible.
inductive incremental-cdcl \({ }_{W}\) :: 'st \(\Rightarrow\) 'st \(\Rightarrow\) bool for \(S\) where
add-confl:
trail \(S \models\) asm init-clss \(S \Longrightarrow\) distinct-mset \(C \Longrightarrow\) conflicting \(S=\) None \(\Longrightarrow\)
trail \(S \models\) as \(C N o t C \Longrightarrow\)
full cdcl \(_{W}\)-stgy
(update-conflicting (Some C)
(add-init-cls \(C\) (cut-trail-wrt-clause \(C(\) trail \(S) S))) T \Longrightarrow\)
incremental-cdcl \(_{W} S T\)
add-no-confl:
trail \(S \models\) asm init-clss \(S \Longrightarrow\) distinct-mset \(C \Longrightarrow\) conflicting \(S=\) None \(\Longrightarrow\)
\(\neg\) trail \(S \models\) as CNot \(C \Longrightarrow\)
full cdcl \({ }_{W}\)-stgy (add-init-cls \(C\) S) \(T \Longrightarrow\)
incremental-cdcl \(_{W} S T\)
lemma \(\operatorname{cdcl}_{W}\)-all-struct-inv-add-new-clause-and-update-cdcl \(W_{W}\)-all-struct-inv:
assumes
inv-T: cdcl \(_{W}\)-all-struct-inv \(T\) and
tr- \(T-N[\) simp \(]\) : trail \(T \models \operatorname{asm} N\) and
tr- \(C\) [simp]: trail \(T \models\) as CNot \(C\) and
[simp]: distinct-mset \(C\)
shows \(c d c l_{W}\)-all-struct-inv (add-new-clause-and-update \(C T\) ) (is \(c d c l_{W}\)-all-struct-inv ?T')
proof -
let ?T \(=\) update-conflicting (Some C)
(add-init-cls \(C\) (cut-trail-wrt-clause \(C(\) trail \(T) T))\)
obtain \(M\) where
\(M:\) trail \(T=M @\) trail (cut-trail-wrt-clause \(C(\) trail \(T) T)\)
using trail-cut-trail-wrt-clause[of T C] by blast
have \(H[\) dest \(]: \bigwedge x . x \in\) lits-of-l (trail (cut-trail-wrt-clause \(C(\) trail \(T) T)) \Longrightarrow\) \(x \in\) lits-of-l (trail \(T\) )
using inv-T arg-cong[OF M, of lits-of-l] by auto
have \(H^{\prime}[\) dest \(]: \bigwedge x . x \in \operatorname{set}(\) trail \((\) cut-trail-wrt-clause \(C(\) trail \(T) T)) \Longrightarrow\) \(x \in\) set (trail \(T\) )
using inv-T arg-cong[OF M, of set] by auto
have H-proped: \(\backslash x . x \in\) set (get-all-mark-of-propagated (trail (cut-trail-wrt-clause \(C\)
\((\) trail \(T) T)) \Longrightarrow x \in\) set \((\) get-all-mark-of-propagated \((\) trail \(T))\)
using inv-T arg-cong[OF M, of get-all-mark-of-propagated \(]\) by auto
have [simp]: no-strange-atm ?T
using inv-T unfolding cdcl \(_{W}\)-all-struct-inv-def no-strange-atm-def add-new-clause-and-update-def \(c d c l_{W}\)-M-level-inv-def by (auto 20 1)
have \(M\)-lev: \(c d c l_{W}\)-M-level-inv \(T\)
using inv- \(T\) unfolding cdcl \(_{W}\)-all-struct-inv-def by blast
then have no-dup (M @ trail (cut-trail-wrt-clause C (trail T) T))
unfolding \(\mathrm{cdcl}_{W}-M\)-level-inv-def unfolding \(M[\) symmetric \(]\) by auto
then have \([\) simp \(]\) : no-dup (trail (cut-trail-wrt-clause \(C\) (trail T) T))
by (auto simp: no-dup-def)
have consistent-interp (lits-of-l (M @ trail (cut-trail-wrt-clause C (trail T) T)) )
using \(M\)-lev unfolding \(\operatorname{cdcl}_{W}\)-M-level-inv-def unfolding \(M[\) symmetric] by auto
then have [simp]: consistent-interp (lits-of-l (trail (cut-trail-wrt-clause C
( \(\operatorname{trail} T) T)\) )
unfolding consistent-interp-def by auto
have \(\left[\right.\) simp]: \(c d c l_{W}\)-M-level-inv ?T
using \(M\)-lev unfolding \(c d c l_{W}\)-M-level-inv-def
by (auto simp: \(M\)-lev \(\operatorname{cdcl}_{W}\)-M-level-inv-def cut-trail-wrt-clause-backtrack-lvl-length-decided)
have \([\) simp \(]: \bigwedge s . s \in \#\) learned-clss \(T \Longrightarrow\) \(\boldsymbol{\text { tautology } s}\)
using inv- \(T\) unfolding cdcl \(_{W}\)-all-struct-inv-def by auto
have distinct-cdcl \({ }_{W}\)-state \(T\)
using inv- \(T\) unfolding cdcl \(_{W}\)-all-struct-inv-def by auto
then have \([\) simp \(]\) : distinct-cdcl \({ }_{W}\)-state? \(T\)
unfolding distinct-cdcl \(W_{W}\)-state-def by auto
have \(\operatorname{cdcl}_{W}\)-conflicting \(T\)
using inv- \(T\) unfolding cdcl \(_{W}\)-all-struct-inv-def by auto
have trail ? \(T \models\) as \(C N o t C\)
by (simp add: cut-trail-wrt-clause-CNot-trail)
then have \([s i m p]: c d c l_{W}\)-conflicting ?T
unfolding \(c d c l_{W}\)-conflicting-def apply simp
by (metis \(M\left\langle c d c l_{W}\right.\)-conflicting \(\left.T\right\rangle\) append-assoc cdcl \(_{W}\)-conflicting-decomp(2))
have
decomp-T: all-decomposition-implies-m (clauses \(T\) ) (get-all-ann-decomposition (trail \(T\) ))
using inv- \(T\) unfolding \(c d c l_{W}\)-all-struct-inv-def by auto
have all-decomposition-implies-m (clauses ?T) (get-all-ann-decomposition (trail ?T))
unfolding all-decomposition-implies-def
proof clarify
fix \(a b\)
assume \((a, b) \in \operatorname{set}(\) get-all-ann-decomposition (trail ?T))
from in-get-all-ann-decomposition-in-get-all-ann-decomposition-prepend[OF this, of M]
obtain \(b^{\prime}\) where
\(\left(a, b^{\prime} @ b\right) \in \operatorname{set}(\) get-all-ann-decomposition \((\) trail \(T))\) using \(M\) by auto
then have unmark-l \(a \cup\) set-mset (clauses \(T) \models p s\) unmark-l ( \(b^{\prime} @ b\) )
using decomp-T unfolding all-decomposition-implies-def by fastforce
then have unmark-l \(a \cup\) set-mset (clauses ? \(T\) ) \(\models p s\) unmark-l ( \(b^{\prime} @ b\) )
by (simp add: clauses-def)
then show unmark-l \(a \cup\) set-mset (clauses ? \(T\) ) \(\models p s\) unmark-l \(b\)
\[
\begin{aligned}
& \text { by (auto simp: image-Un) } \\
& \text { qed }
\end{aligned}
\]
have \([\) simp \(]: c d c l_{W}\)-learned-clause ?T
using inv- \(T\) unfolding \(\operatorname{cdcl}_{W}\)-all-struct-inv-def \(c d c l_{W}\)-learned-clause-alt-def
by (auto dest!: H-proped simp: clauses-def)
show ?thesis
using 〈all-decomposition-implies-m (clauses ?T) (get-all-ann-decomposition (trail ?T)) >
unfolding \(\mathrm{cdcl}_{W}\)-all-struct-inv-def by (auto simp: add-new-clause-and-update-def)
qed
lemma cdcl \(_{W}\)-all-struct-inv-add-new-clause-and-update-cdcl \({ }_{W}\)-stgy-inv:
assumes
inv-s: \(c d c l_{W}\)-stgy-invariant \(T\) and
inv: \(c d c l_{W}\)-all-struct-inv \(T\) and
tr-T- \(N[\) simp \(]\) : trail \(T \models\) asm \(N\) and
\(\operatorname{tr}-C[\) simp \(]\) : trail \(T \models\) as CNot \(C\) and
[simp]: distinct-mset \(C\)
shows cdcl \(_{W}\)-stgy-invariant (add-new-clause-and-update \(C T\) )
(is \(c d c l_{W}\)-stgy-invariant ? \(T^{\prime}\) )
proof -
have \(c d c l_{W}\)-all-struct-inv? \(T^{\prime}\)
using cdcl \(_{W}\)-all-struct-inv-add-new-clause-and-update-cdcl \(l_{W}\)-all-struct-inv assms by blast
then have
no-dup-cut-T[simp]: no-dup (trail (cut-trail-wrt-clause \(C\) (trail \(T\) ) \(T\) )) and
n-d \(d\) simp]: no-dup (trail T)
using \(\operatorname{cdcl}_{W}\)-M-level-inv-decomp(2) \(c d c l_{W}\)-all-struct-inv-def inv
n-dup-no-dup-trail-cut-trail-wrt-clause by blast+
then have trail (add-new-clause-and-update C \(T\) ) \(\models\) as CNot \(C\)
by (simp add: add-new-clause-and-update-def cut-trail-wrt-clause-CNot-trail \(c d c l_{W}\)-M-level-inv-def \(c d c l_{W}\)-all-struct-inv-def)
obtain \(M T\) where
MT: trail \(T=M T @\) trail (cut-trail-wrt-clause \(C(\) trail \(T) T)\)
using trail-cut-trail-wrt-clause by blast
consider
(false) \(\forall L \in \# C .-L \notin\) lits-of-l (trail \(T)\) and trail (cut-trail-wrt-clause \(C(\) trail \(T) T)=[] \mid\) (not-false)
- lit-of \((h d\) (trail (cut-trail-wrt-clause \(C(\) trail \(T) T))) \in \# C\) and \(1 \leq\) length (trail (cut-trail-wrt-clause C (trail T) T) )
using cut-trail-wrt-clause-hd-trail-in-or-empty-trail[of \(C T]\) by auto
then show?thesis
proof cases
case false note \(C=\) this(1) and empty-tr \(=\) this(2)
then have \([\operatorname{simp}]: C=\{\#\}\)
by (simp add: in-CNot-implies-uminus(2) multiset-eqI)
show ?thesis
using empty-tr unfolding \(\operatorname{cdcl}_{W}\)-stgy-invariant-def no-smaller-confl-def
cdcl \(_{W}\)-all-struct-inv-def by (auto simp: add-new-clause-and-update-def)
next
case not-false note \(C=\) this(1) and \(l=\) this(2)
let ? \(L=-\) lit-of \((h d(\) trail (cut-trail-wrt-clause \(C(\) trail \(T) T)))\)
have L: get-level (trail (cut-trail-wrt-clause C (trail T) T)) (-?L)
\(=\) count-decided \((\) trail \((\) cut-trail-wrt-clause \(C(\) trail \(T) T))\)
apply (cases trail (add-init-cls C
(cut-trail-wrt-clause \(C(\) trail \(T) T)\) );
```

 cases hd (trail (cut-trail-wrt-clause C (trail T)T)))
 using l by (auto split: if-split-asm
 simp:rev-swap[symmetric] add-new-clause-and-update-def)
 have L': count-decided(trail (cut-trail-wrt-clause C
 (trail T) T))
 = backtrack-lvl (cut-trail-wrt-clause C (trail T) T)
 using <cdcl W}\mp@subsup{W}{}{-all-struct-inv ?T'` unfolding cdcl W-all-struct-inv-def cdclW}\mp@subsup{W}{W}{}-M\mathrm{ -level-inv-def
 by (auto simp:add-new-clause-and-update-def)
 have [simp]: no-smaller-confl (update-conflicting (Some C)
 (add-init-cls C (cut-trail-wrt-clause C (trail T) T)))
 unfolding no-smaller-confl-def
 proof (clarify, goal-cases)
 case (1 M K M' D)
 then consider
 (DC) D=C
 | (D-T) D \in# clauses T
 by (auto simp: clauses-def split: if-split-asm)
 then show False
 proof cases
 case D-T
 have no-smaller-confl T
 using inv-s unfolding cdcl}\mp@subsup{W}{}{\prime}\mathrm{ -stgy-invariant-def by auto
 have trail T=(MT @ M) @ Decided K # M
 using MT 1(1) by auto
 then show False
 using D-T〈no-smaller-confl T〉1 (3) unfolding no-smaller-confl-def by blast
 next
 case DC note -[simp] = this
 then have atm-of (-?L) \in atm-of '(lits-of-l M)
 using 1(3) C in-CNot-implies-uminus(2) by blast
 moreover
 have lit-of (hd (M'@ Decided K # [])) = - ?L
 using l 1(1)[symmetric] inv
 by (cases M', cases trail (add-init-cls C
 (cut-trail-wrt-clause C (trail T) T)))
 (auto dest!: arg-cong[of - # - hd] simp: hd-append cdcl W-all-struct-inv-def
 cdcl W-M-level-inv-def)
 from arg-cong[OF this, of atm-of]
 have atm-of (-?L) \in atm-of ' (lits-of-l (M' @ Decided K # []))
 by (cases (M'@ Decided K # [])) auto
 moreover have no-dup (trail (cut-trail-wrt-clause C (trail T) T))
 using \cdclW}\mp@subsup{W}{}{-all-struct-inv ?T'` unfolding cdcl}\mp@subsup{W}{W}{}\mathrm{ -all-struct-inv-def
 cdcl W-M-level-inv-def by (auto simp: add-new-clause-and-update-def)
 ultimately show False
 unfolding 1(1)[simplified] by (auto simp: lits-of-def no-dup-def)
 qed
 qed
 show ?thesis using L L' C
 unfolding cdcl}\mp@subsup{W}{}{-stgy-invariant-def cdclW}\mp@subsup{W}{}{-all-struct-inv-def
 by (auto simp: add-new-clause-and-update-def get-level-def count-decided-def intro: rev-bexI)
 qed
 qed
lemma incremental-cdcl ${ }_{W}$-inv:

```
inc：incremental－cdcl \({ }_{W} S T\) and
inv：\(c d c l_{W}\)－all－struct－inv \(S\) and
s－inv：\(c d c l_{W}\)－stgy－invariant \(S\) and
learned－entailed：\(\left\langle c d c l_{W}\right.\)－learned－clauses－entailed－by－init \(\left.S\right\rangle\)

\section*{shows}
\({ }^{c} d c l_{W}\)－all－struct－inv \(T\) and
\(\operatorname{cdcl}_{W}\)－stgy－invariant \(T\) and
learned－entailed：\(\left\langle c d c l_{W}\right.\)－learned－clauses－entailed－by－init \(\left.T\right\rangle\)
using inc
proof induction
case（add－confl C T）
let ？\(T=(\) update－conflicting \((\) Some \(C)(\) add－init－cls \(C\) （cut－trail－wrt－clause C（trail S）S）））
have \(i n v\) ：\(c d c l_{W}\)－all－struct－inv ？T and inv－s－T：\(c d c l_{W}\)－stgy－invariant？T
using add－confl．hyps（1，2，4）add－new－clause－and－update－def
\(\operatorname{cdcl}_{W}\)－all－struct－inv－add－new－clause－and－update－cdcl \({ }_{W}\)－all－struct－inv inv apply auto［1］
using add－confl．hyps \((1,2,4)\) add－new－clause－and－update－def
cdcl \(_{W}\)－all－struct－inv－add－new－clause－and－update－cdcl \(W_{W}\)－stgy－inv inv s－inv by auto
case 1 show ？case
by（metis add－confl．hyps \((1,2,4,5)\) add－new－clause－and－update－def
\({ }^{c} d c l_{W}\)－all－struct－inv－add－new－clause－and－update－cdcl \(W_{W}\)－all－struct－inv rtranclp－cdcl \({ }_{W}\)－all－struct－inv－inv rtranclp－cdcl \({ }_{W}\)－stgy－rtranclp－cdcl \({ }_{W}\)－restart full－def inv）
case 2 show ？case
by（metis inv－s－T add－confl．hyps \((1,2,4,5)\) add－new－clause－and－update－def \(\operatorname{cdcl}_{W}\)－all－struct－inv－add－new－clause－and－update－cdcl \(W_{W}\)－all－struct－inv full－def inv rtranclp－cdcl \({ }_{W}-s t g y-c d c l_{W}-\) stgy－invariant）
case 3 show ？case
using learned－entailed rtranclp－cdcl \(W_{W}\)－learned－clauses－entailed［of ？T T］add－confl inv＇
unfolding cdcl \(_{W}\)－all－struct－inv－def full－def
by（auto simp： cdcl \(_{W}\)－learned－clauses－entailed－by－init－def dest！：rtranclp－cdcl \(W_{W}\)－stgy－rtranclp－cdcl \({ }_{W}\)－restart）
next
case（add－no－confl C T）
have inv＇：cdcl \({ }_{W}\)－all－struct－inv（add－init－cls C S）
using inv 〈distinct－mset \(C\) 〉 unfolding \(\operatorname{cdcl}_{W}\)－all－struct－inv－def no－strange－atm－def \(\operatorname{cdcl}_{W}\)－M－level－inv－def distinct－cdcl \({ }_{W}\)－state－def \(\operatorname{cdcl}_{W}\)－conflicting－def \(c d c l_{W}\)－learned－clause－alt－def
by（auto 91 simp：all－decomposition－implies－insert－single clauses－def）
case 1
show ？case
using inv＇add－no－confl（5）unfolding full－def by（auto intro：rtranclp－cdcl \({ }_{W}\)－stgy－cdcl \({ }_{W}\)－all－struct－inv）
case 2
have \(n c: \forall M .\left(\exists K i M^{\prime}\right.\) ．trail \(S=M^{\prime} @\) Decided \(\left.K \# M\right) \longrightarrow \neg M \models\) as CNot \(C\)
using \(\langle\neg\) trail \(S \models\) as CNot \(C\rangle\)
by（auto simp：true－annots－true－cls－def－iff－negation－in－model）
have \(c d c l_{W}\)－stgy－invariant（add－init－cls \(C S\) ）
using s－inv \(\left\langle\neg\right.\) trail \(S \models\) as \(C N o t C 〉\) inv unfolding cdcl \(_{W}\)－stgy－invariant－def
no－smaller－confl－def eq－commute［of－trail－］\(c d c l_{W}\)－M－level－inv－def \(c d c l_{W}\)－all－struct－inv－def
by（auto simp：clauses－def nc）
then show ？case
by（metis \(\left\langle c d c l_{W}\right.\)－all－struct－inv（add－init－cls \(C\) S）〉 add－no－confl．hyps（5）full－def
rtranclp-cdcl \(\left.{ }_{W}-s t g y-c d c l_{W}-s t g y-i n v a r i a n t\right)\)
case 3
have \(\left\langle c d c l_{W}\right.\)-learned-clauses-entailed-by-init (add-init-cls C S) >
    using learned-entailed by (auto simp: cdcl \({ }_{W}\)-learned-clauses-entailed-by-init-def)
then show? case
    using add-no-confl(5) learned-entailed rtranclp-cdcl \({ }_{W}\)-learned-clauses-entailed \([\) of - \(T]\) add-confl inv'
    unfolding cdcl \(_{W}\)-all-struct-inv-def full-def
    by (auto simp: cdcl \(W_{W}\)-learned-clauses-entailed-by-init-def
        dest!: rtranclp-cdcl \({ }_{W}\)-stgy-rtranclp-cdcl \(W_{W}\)-restart)
qed
lemma rtranclp-incremental-cdcl \({ }_{W}\)-inv:
    assumes
    inc: incremental-cdcl \(W_{W}^{* *} S T\) and
    inv: \(c d c l_{W}\)-all-struct-inv \(S\) and
    s-inv: \(c d c l_{W}\)-stgy-invariant \(S\) and
    learned-entailed: \(\left\langle c d c l_{W}\right.\)-learned-clauses-entailed-by-init \(\left.S\right\rangle\)
    shows
    \(c d c l_{W}\)-all-struct-inv \(T\) and
    \(c d c l_{W}\)-stgy-invariant \(T\) and
    \(\left\langle c d c l_{W}\right.\)-learned-clauses-entailed-by-init \(\left.T\right\rangle\)
    using inc apply induction
    using inv apply simp
    using \(s\)-inv apply simp
    using learned-entailed apply simp
    using incremental-cdcl \({ }_{W}-i n v\) by blast +
lemma incremental-conclusive-state:
    assumes
    inc: incremental-cdcl \({ }_{W} S T\) and
    inv: \(c d c l_{W}\)-all-struct-inv \(S\) and
    s-inv: \(c d c l_{W}\)-stgy-invariant \(S\) and
    learned-entailed: 〈cdcl \({ }_{W}\)-learned-clauses-entailed-by-init \(\left.S\right\rangle\)
    shows conflicting \(T=\) Some \(\{\#\} \wedge\) unsatisfiable (set-mset (init-clss \(T)\) )
    \(\vee\) conflicting \(T=\) None \(\wedge\) trail \(T \models\) asm init-clss \(T \wedge\) satisfiable (set-mset (init-clss \(T)\) )
    using inc
proof induction
    case (add-confl C T) note \(t r=\) this(1) and dist \(=\) this(2) and \(\operatorname{conf}=t h i s(3)\) and \(C=t h i s(4)\) and
    full \(=\) this(5)
    have full cdcl \(_{W}\)-stgy \(T T\)
        using full unfolding full-def by auto
    then show ?case
        using \(C\) conf dist full incremental-cdcl \({ }_{W}\).add-confl incremental-cdcl \({ }_{W}\)-inv
            incremental-cdcl \({ }_{W}\)-inv inv learned-entailed
                \(\left\langle f u l l ~ c d c l_{W}\right.\)-stgy \(T\) T〉 full-cdcl \(_{W}\)-stgy-inv-normal-form
        s-inv tr by blast
next
    case (add-no-confl \(C\) ) note \(t r=\) this(1) and dist \(=\) this(2) and \(\operatorname{conf}=\) this(3) and \(C=t h i s(4)\)
        and full \(=\) this(5)
    have full cdcl \(_{W}\)-stgy \(T T\)
        using full unfolding full-def by auto
    then show?case
        using \(\left\langle f u l l ~ c d c l_{W}\right.\)-stgy \(\left.T T\right\rangle\) full-cdcl \(_{W}\)-stgy-inv-normal-form \(C\) conf dist full
incremental-cdcl \({ }_{W}\).add-no-confl incremental-cdcl \({ }_{W}\)-inv inv learned-entailed \(s\)-inv tr by blast
qed
lemma tranclp-incremental-correct:

\section*{assumes}
inc: incremental-cdcl \({ }_{W}{ }^{++} S T\) and
inv: \(c d c l_{W}\)-all-struct-inv \(S\) and
s-inv: \(c d c l_{W}\)-stgy-invariant \(S\) and
learned-entailed: \(\left\langle c d c l_{W}\right.\)-learned-clauses-entailed-by-init \(\left.S\right\rangle\)
shows conflicting \(T=\) Some \(\{\#\} \wedge\) unsatisfiable (set-mset (init-clss \(T)\) )
\(\vee\) conflicting \(T=\) None \(\wedge\) trail \(T \models\) asm init-clss \(T \wedge\) satisfiable (set-mset (init-clss \(T)\) )
using inc apply induction
using assms incremental-conclusive-state apply blast
by (meson incremental-conclusive-state inv rtranclp-incremental-cdcl \({ }_{W}\)-inv s-inv tranclp-into-rtranclp learned-entailed)
end
end
theory DPLL-CDCL-W-Implementation imports
Entailment-Definition.Partial-Annotated-Herbrand-Interpretation
CDCL-W-Level
begin

\section*{Chapter 4}

\section*{List-based Implementation of DPLL and CDCL}

We can now reuse all the theorems to go towards an implementation using 2-watched literals:
- CDCL_W_Abstract_State.thy defines a better-suited state: the operation operating on it are more constrained, allowing simpler proofs and less edge cases later.

\subsection*{4.1 Simple List-Based Implementation of the DPLL and CDCL}

The idea of the list-based implementation is to test the stack: the theories about the calculi, adapting the theorems to a simple implementation and the code exportation. The implementation are very simple ans simply iterate over-and-over on lists.

\subsection*{4.1.1 Common Rules}

\section*{Propagation}

The following theorem holds:
```

lemma lits-of-l-unfold:
(\forallc\in set C. -c\in lits-of-l Ms)\longleftrightarrowMs\modelsas CNot (mset C)
unfolding true-annots-def Ball-def true-annot-def CNot-def by auto

```

The right-hand version is written at a high-level, but only the left-hand side is executable.
definition is-unit-clause :: 'a literal list \(\Rightarrow\left({ }^{\prime} a, ~ ' b\right)\) ann-lits \(\Rightarrow\) 'a literal option
where
is-unit-clause \(l M=\)
(case List.filter ( \(\lambda\) a. atm-of \(a \notin\) atm-of ' lits-of-l M) l of
\(a \#[] \Rightarrow\) if \(M \models\) as CNot (mset \(l-\{\# a \#\}\) ) then Some a else None
|- \(\Rightarrow\) None)
```

definition is-unit-clause-code $::$ 'a literal list $\Rightarrow\left({ }^{\prime} a, ' b\right)$ ann-lits
$\Rightarrow{ }^{\prime} a$ literal option where
is-unit-clause-code l $M=$
(case List.filter (λ a. atm-of $a \notin$ atm-of ' lits-of-l M) l of
$a \#[] \Rightarrow$ if $(\forall c \in \operatorname{set}(r e m o v e 1 ~ a ~ l) . ~-c \in$ lits-of-l $M)$ then Some a else None
|- \Rightarrow None)

```
```

lemma is-unit-clause-is-unit-clause-code[code]:
is-unit-clause l M = is-unit-clause-code l M
proof -
have 1: \bigwedgea.(\forallc\inset (remove1 a l). - c\in lits-of-l M)\longleftrightarrow \longleftrightarrowM\modelsas CNot (mset l - {\#a\#})
using lits-of-l-unfold[of remove1 - l, of - M] by simp
then show ?thesis
unfolding is-unit-clause-code-def is-unit-clause-def 1 by blast
qed
lemma is-unit-clause-some-undef:
assumes is-unit-clause l M = Some a
shows undefined-lit M a
proof -
have (case [a\leftarrowl.atm-of a \not\inatm-of`lits-of-l M] of [] => None | [a] => if M =as CNot (mset l - {#a#}) then Some a else None | a # ab # xa => Map.empty xa)=Some a using assms unfolding is-unit-clause-def . then have }a\in\mathrm{ set [}a\leftarrowl\mathrm{ . atm-of }a\not\in\mathrm{ atm-of 'lits-of-l M] apply (cases [a\leftarrowl. atm-of a & atm-of 'lits-of-l M]) apply simp apply (rename-tac aa list; case-tac list) by (auto split: if-split-asm) then have atm-of a # atm-of ' lits-of-l M by auto then show ?thesis by (simp add: Decided-Propagated-in-iff-in-lits-of-l atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set) qed lemma is-unit-clause-some-CNot: is-unit-clause l M = Some a \LongrightarrowM Nas CNot (mset l - {#a#}) unfolding is-unit-clause-def proof - assume (case [a\leftarrowl. atm-of a & atm-of 'lits-of-l M] of [] => None | [a] => if M =as CNot (mset l - {#a#}) then Some a else None | a # ab# xa m Map.empty xa)=Some a then show ?thesis apply (cases [a\leftarrowl.atm-of a \not\in atm-of `lits-of-l M], simp)
apply simp
apply (rename-tac aa list, case-tac list) by (auto split: if-split-asm)
qed
lemma is-unit-clause-some-in: is-unit-clause l M Some a \Longrightarrowa set l
unfolding is-unit-clause-def
proof -
assume (case [a\leftarrowl.atm-of a \&atm-of'lits-of-l M] of [] => None
| [a] => if M\modelsas CNot (mset l - {\#a\#}) then Some a else None
| a \# ab \# xa => Map.empty xa)=Some a
then show }a\in\mathrm{ set l
by (cases [}a\leftarrowl\mathrm{ l. atm-of a \& atm-of ' lits-of-l M])
(fastforce dest: filter-eq-ConsD split: if-split-asm split:list.splits)+
qed
lemma is-unit-clause-Nil[simp]: is-unit-clause [] M = None
unfolding is-unit-clause-def by auto

```

\section*{Unit propagation for all clauses}

Finding the first clause to propagate
fun find-first-unit-clause :: 'a literal list list \(\Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)\) ann-lits
\(\Rightarrow\) ('a literal \(\times\) 'a literal list) option where
find-first-unit-clause ( \(a \# l\) ) M \(=\)
(case is-unit-clause a \(M\) of
None \(\Rightarrow\) find-first-unit-clause l M
\(\mid\) Some \(L \Rightarrow\) Some \((L, a)) \mid\)
find-first-unit-clause []-= None
lemma find-first-unit-clause-some:
find-first-unit-clause l \(M=\) Some \((a, c)\)
\(\Longrightarrow c \in \operatorname{set} l \wedge M \models\) as \(\operatorname{CNot}(\) mset \(c-\{\# a \#\}) \wedge\) undefined-lit \(M a \wedge a \in \operatorname{set} c\)
apply (induction \(l\) )
apply simp
by (auto split: option.splits dest: is-unit-clause-some-in is-unit-clause-some-CNot is-unit-clause-some-undef)
lemma propagate-is-unit-clause-not-None:
assumes
\(M: M \models\) as CNot (mset \(c-\{\# a \#\}\) ) and
undef: undefined-lit M a and
ac: \(a \in \operatorname{set} c\)
shows is-unit-clause c \(M \neq\) None
proof -
have \([a \leftarrow c\). atm-of \(a \notin\) atm-of' lits-of-l \(M]=[a]\)
using assms
proof (induction c)
case Nil then show ?case by simp
next
case (Cons ac c)
show ?case
proof (cases \(a=a c\) )
case True
then show ?thesis using Cons
by (auto simp del: lits-of-l-unfold
simp add: lits-of-l-unfold[symmetric] Decided-Propagated-in-iff-in-lits-of-l atm-of-eq-atm-of atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)
next
case False
then have \(T:\) mset \(c+\{\# a c \#\}-\{\# a \#\}=m s e t c-\{\# a \#\}+\{\# a c \#\}\) by (auto simp add: multiset-eq-iff)
show ?thesis using False Cons
by (auto simp add: T atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set) qed qed
then show ?thesis using \(M\) unfolding is-unit-clause-def by auto
qed
lemma find-first-unit-clause-none:
\(c \in\) set \(l \Longrightarrow M \models a s \operatorname{CNot}(m s e t c-\{\# a \#\}) \Longrightarrow\) undefined-lit \(M a \Longrightarrow a \in\) set \(c\)
\(\Longrightarrow\) find-first-unit-clause l \(M \neq\) None
by (induction \(l\) )
(auto split: option.split simp add: propagate-is-unit-clause-not-None)

\section*{Decide}
fun find-first-unused-var :: 'a literal list list \(\Rightarrow\) 'a literal set \(\Rightarrow\) 'a literal option where
find-first-unused-var ( \(a \# l\) ) M \(=\)
(case List.find ( \(\lambda\) lit. lit \(\notin M \wedge-\) lit \(\notin M)\) a of None \(\Rightarrow\) find-first-unused-var \(l\) M
\(\mid\) Some \(a \Rightarrow\) Some a) |
find-first-unused-var [] - = None
lemma find-none[iff]:
List.find ( llit. lit \(\notin M \wedge\)-lit \(\notin M) a=N o n e \longleftrightarrow\) atm-of'set \(a \subseteq\) atm-of ' \(M\)
apply (induct a)
using atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
by (force simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set) +
lemma find-some: List.find ( llit. lit \(\notin M \wedge\)-lit \(\notin M) a=\) Some \(b \Longrightarrow b \in\) set \(a \wedge b \notin M \wedge-b \notin M\) unfolding find-Some-iff by (metis nth-mem)
lemma find-first-unused-var-None[iff]:
find-first-unused-var l \(M=\) None \(\longleftrightarrow(\forall a \in\) set l. atm-of'set \(a \subseteq\) atm-of ' \(M)\)
by (induct \(l\) )
(auto split: option.splits dest!: find-some simp add: image-subset-iff atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)
lemma find-first-unused-var-Some-not-all-incl:
assumes find-first-unused-var l \(M=\) Some c
shows \(\neg(\forall a \in\) set \(l\). atm-of' set \(a \subseteq\) atm-of ' \(M)\)
proof -
have find-first-unused-var \(l M \neq\) None
using assms by (cases find-first-unused-var l M) auto
then show \(\neg(\forall a \in\) set l. atm-of ' set \(a \subseteq\) atm-of ' \(M)\) by auto
qed
lemma find-first-unused-var-Some:
find-first-unused-var \(l M=\) Some \(a \Longrightarrow(\exists m \in\) set \(l . a \in\) set \(m \wedge a \notin M \wedge-a \notin M)\)
by (induct l) (auto split: option.splits dest: find-some)
lemma find-first-unused-var-undefined:
find-first-unused-var l (lits-of-l Ms) \(=\) Some \(a \Longrightarrow\) undefined-lit Ms a
using find-first-unused-var-Some[of l lits-of-l Ms a] Decided-Propagated-in-iff-in-lits-of-l by blast

\subsection*{4.1.2 CDCL specific functions}

\section*{Level}
fun maximum-level-code:: 'a literal list \(\Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)\) ann-lits \(\Rightarrow\) nat where
maximum-level-code [] - = 0
maximum-level-code \((L \# L s) M=\max (\) get-level \(M L)\) (maximum-level-code Ls \(M\) )
lemma maximum-level-code-eq-get-maximum-level[simp]:
maximum-level-code \(D M=\) get-maximum-level \(M\) (mset \(D\) )
by (induction \(D\) ) (auto simp add: get-maximum-level-add-mset)
lemma [code]:
    fixes \(M\) :: ('a, 'b) ann-lits
    shows get-maximum-level \(M(\) mset \(D)=\) maximum-level-code \(D M\)
    by \(\operatorname{simp}\)

\section*{Backjumping}
```

fun find-level-decomp where
find-level-decomp M [] D $k=$ None \mid
find-level-decomp $M(L \# L s) D k=$
(case (get-level M L, maximum-level-code (D @ Ls) M) of
$(i, j) \Rightarrow$ if $i=k \wedge j<i$ then Some (L, j) else find-level-decomp $M L s(L \# D) k$
)

```
lemma find-level-decomp-some:
assumes find-level-decomp M Ls Dk=Some ( \(L, j\) )
shows \(L \in\) set \(L s \wedge\) get-maximum-level \(M(\operatorname{mset}(\) remove1 \(L(L s @ D)))=j \wedge\) get-level \(M L=k\) using assms
proof (induction Ls arbitrary: D)
case Nil
then show? case by simp
next
case (Cons \(\left.L^{\prime} L s\right)\) note \(I H=\) this(1) and \(H=\) this(2)
define find where find \(\equiv\left(\right.\) if get-level \(M L^{\prime} \neq k \vee \neg\) get-maximum-level \(M(\) mset \(D+\) mset \(L s)<\) get-level M \(L^{\prime}\) then find-level-decomp \(M L s\left(L^{\prime} \# D\right) k\) else Some \(\left(L^{\prime}\right.\), get-maximum-level \(M(\) mset \(D+\) mset Ls \(\left.)\right)\) )
have a1: \(\bigwedge D\). find-level-decomp \(M L s D k=\operatorname{Some}(L, j) \Longrightarrow\) \(L \in\) set Ls \(\wedge\) get-maximum-level \(M(\) mset Ls + mset \(D-\{\# L \#\})=j \wedge\) get-level \(M L=k\) using \(I H\) by simp
have a2: find = Some \((L, j)\) using \(H\) unfolding find-def by (auto split: if-split-asm)
\(\left\{\right.\) assume Some \(\left(L^{\prime}\right.\), get-maximum-level \(M(\) mset \(D+\) mset \(\left.L s)\right) \neq\) find then have f3: \(L \in\) set \(L s\) and get-maximum-level \(M\left(\right.\) mset \(\left.L s+\operatorname{mset}\left(L^{\prime} \# D\right)-\{\# L \#\}\right)=j\) using a1 IH a2 unfolding find-def by meson+ moreover then have mset \(L s+m s e t D-\{\# L \#\}+\left\{\# L^{\prime} \#\right\}=\left\{\# L^{\prime} \#\right\}+\) mset \(D+(\) mset \(L s\) \(-\{\# L \#\})\) by (auto simp: ac-simps multiset-eq-iff Suc-leI)
ultimately have \(f_{4}\) : get-maximum-level \(M\) (mset \(L s+\) mset \(\left.D-\{\# L \#\}+\left\{\# L^{\prime} \#\right\}\right)=j\) by auto
\} note \(f_{4}=\) this
have \(\left\{\# L^{\prime} \#\right\}+(m s e t L s+m s e t D)=m s e t L s+\left(m s e t D+\left\{\# L^{\prime} \#\right\}\right)\) by (auto simp: ac-simps)
then have
\(L=L^{\prime} \longrightarrow\) get-maximum-level \(M(\) mset \(L s+\) mset \(D)=j \wedge\) get-level \(M L^{\prime}=k\) and
\(L \neq L^{\prime} \longrightarrow L \in\) set \(L s \wedge\) get-maximum-level \(M\left(\right.\) mset \(L s+\) mset \(\left.D-\{\# L \#\}+\left\{\# L^{\prime} \#\right\}\right)=j \wedge\) get-level \(M L=k\)
using a2 a1 [of \(\left.L^{\prime} \# D\right]\) unfolding find-def
apply (metis add.commute add-diff-cancel-left' add-mset-add-single mset.simps(2) option.inject prod.inject)
using \(f_{4}\) a2 a1 [of \(\left.L^{\prime} \# D\right]\) unfolding find-def by (metis option.inject prod.inject)
then show? case by simp
qed
lemma find-level-decomp-none:
assumes find-level-decomp M Ls E \(k=\) None and \(\operatorname{mset}(L \# D)=\operatorname{mset}(L s @ E)\)
shows \(\neg(L \in\) set \(L s \wedge\) get-maximum-level \(M(\) mset \(D)<k \wedge k=\) get-level \(M L)\)
using assms
proof (induction Ls arbitrary: E L D)
case Nil
then show? case by simp
next
case (Cons \(L^{\prime} L s\) ) note \(I H=\) this(1) and find-none \(=\) this(2) and \(L D=\) this(3)
have mset \(D+\left\{\# L^{\prime} \#\right\}=\) mset \(E+\left(\right.\) mset \(\left.L s+\left\{\# L^{\prime} \#\right\}\right) \Longrightarrow\) mset \(D=\) mset \(E+m\) set Ls by (metis add-right-imp-eq union-assoc)
then show? case
using find-none \(I H\left[\right.\) of \(\left.L^{\prime} \# E L D\right] L D\) by (auto simp add: ac-simps split: if-split-asm)
qed
fun bt-cut where
bt-cut \(i(\) Propagated \(-\# L s)=b t\)-cut \(i L s\)
bt-cut \(i(\) Decided \(K \# L s)=(\) if count-decided Ls \(=i\) then Some (Decided K \# Ls) else bt-cut iLs) |
bt-cut \(i[]=\) None
lemma bt-cut-some-decomp:
assumes no-dup \(M\) and bt-cut \(i M=\) Some \(M^{\prime}\)
shows \(\exists K\) 22 \(M 1 . M=M 2 @ M^{\prime} \wedge M^{\prime}=\) Decided \(K \# M 1 \wedge\) get-level \(M K=(i+1)\)
using assms by (induction \(i\) M rule: bt-cut.induct) (auto simp: no-dup-def split: if-split-asm)
lemma bt-cut-not-none:
assumes no-dup \(M\) and \(M=M 2\) @ Decided \(K \# M^{\prime}\) and get-level \(M K=(i+1)\)
shows bt-cut \(i M \neq\) None
using assms by (induction M2 arbitrary: M rule: ann-lit-list-induct)
(auto simp: no-dup-def atm-lit-of-set-lits-of-l)
lemma get-all-ann-decomposition-ex:
\(\exists N\). (Decided \(\left.K \# M^{\prime}, N\right) \in \operatorname{set}\left(\right.\) get-all-ann-decomposition (M2@Decided \(\left.K \# M^{\prime}\right)\) )
apply (induction M2 rule: ann-lit-list-induct) apply auto[2]
by (rename-tac L m xs, case-tac get-all-ann-decomposition (xs @ Decided K \# M \({ }^{\prime}\) )
auto
lemma bt-cut-in-get-all-ann-decomposition:
assumes no-dup \(M\) and bt-cut \(i M=\) Some \(M^{\prime}\)
shows \(\exists\) M2. \(\left(M^{\prime}, M 2\right) \in\) set (get-all-ann-decomposition \(\left.M\right)\)
using bt-cut-some-decomp[OF assms] by (auto simp add: get-all-ann-decomposition-ex)
fun do-backtrack-step where
do-backtrack-step \((M, N, U\), Some \(D)=\)
(case find-level-decomp M D [] (count-decided M) of None \(\Rightarrow(M, N, U\), Some \(D)\)
| Some \((L, j) \Rightarrow\) (case bt-cut j M of
Some (Decided - \# Ls \() \Rightarrow(\) Propagated \(L D \# L s, N, D \# U, N o n e)\) \(\mid-\Rightarrow(M, N, U\), Some \(D))\)
)|
do-backtrack-step \(S=S\)
end
theory DPLL-W-Implementation
imports DPLL-CDCL-W-Implementation DPLL-W HOL-Library.Code-Target-Numeral begin

\subsection*{4.1.3 Simple Implementation of DPLL}

\section*{Combining the propagate and decide: a DPLL step}
definition \(D P L L\)-step :: int dpll \(_{W}\)-ann-lits \(\times\) int literal list list \(\Rightarrow\) int dpll \(_{W}\)-ann-lits \(\times\) int literal list list where
DPLL-step \(=(\lambda(M s, N)\).
(case find-first-unit-clause \(N\) Ms of Some \((L,-) \Rightarrow(\) Propagated \(L() \# M s, N)\)
|- \(\Rightarrow\) if \(\exists C \in \operatorname{set} N .(\forall c \in\) set \(C .-c \in\) lits-of-l \(M s)\)
then
(case backtrack-split Ms of \((-, L \# M) \Rightarrow(\) Propagated \((-(\) lit-of \(L))() \# M, N)\)
\(\mid(-,-) \Rightarrow(M s, N)\)
)
else
(case find-first-unused-var \(N\) (lits-of-l Ms) of
Some \(a \Rightarrow(\) Decided \(a \# M s, N)\)
| None \(\Rightarrow(M s, N)))\) )
Example of propagation:
value DPLL-step ([Decided (Neg 1)], [[Pos (1::int), Neg 2]])
We define the conversion function between the states as defined in Prop-DPLL (with multisets) and here (with lists).
abbreviation \(t o S \equiv \lambda(M s::(\) int, unit \()\) ann-lits \()\)
( \(N\) :: int literal list list). (Ms, mset (map mset \(N\) ))
abbreviation \(t o S^{\prime} \equiv \lambda(M s::(\) int , unit \()\) ann-lits,
\(N::\) int literal list list). (Ms, mset (map mset \(N)\) )
Proof of correctness of DPLL-step
lemma DPLL-step-is-a-dpll \({ }_{W}\)-step:
assumes step: \(\left(M s^{\prime}, N^{\prime}\right)=\) DPLL-step \((M s, N)\)
and neq: \((M s, N) \neq\left(M s^{\prime}, N^{\prime}\right)\)
shows \(d p l l_{W}(t o S M s N)\left(t o S M s^{\prime} N^{\prime}\right)\)
proof -
let \(? S=(M s\), mset \((\) map mset \(N))\)
\{ fix \(L E\)
assume unit: find-first-unit-clause \(N M s=\operatorname{Some}(L, E)\)
then have \(M s^{\prime} N:\left(M s^{\prime}, N^{\prime}\right)=(\) Propagated \(L() \# M s, N)\)
using step unfolding DPLL-step-def by auto
obtain \(C\) where
\(C: C \in \operatorname{set} N\) and
Ms: Ms \(\models a s C N o t(m s e t ~ C-\{\# L \#\})\) and
undef: undefined-lit Ms \(L\) and
\(L \in\) set \(C\) using find-first-unit-clause-some[OF unit \(]\) by metis
have \({d p l l_{W}}(M s\), mset (map mset \(N)\) )
(Propagated L () \# fst (Ms, mset (map mset \(N)\) ), snd (Ms, mset (map mset \(N)\) ))
apply (rule dpll \({ }_{W}\).propagate)
using Ms undef \(C\langle L \in\) set \(C\rangle\) by (auto simp add: \(C\) )
then have ?thesis using \(M s^{\prime} N\) by auto
```

}
moreover
{ assume unit: find-first-unit-clause N Ms = None
assume exC: \existsC\in set N.Ms \modelsas CNot (mset C)
then obtain C where C:C\in set N and Ms:Ms \modelsas CNot (mset C) by auto
then obtain LM M' where bt: backtrack-split Ms = (M',L\# M)
using step exC neq unfolding DPLL-step-def prod.case unit
by (cases backtrack-split Ms, rename-tac b, case-tac b) (auto simp: lits-of-l-unfold)
then have is-decided L using backtrack-split-snd-hd-decided[of Ms] by auto
have 1: dpll}\mp@subsup{W}{}{(Ms,mset (map mset N))
(Propagated (- lit-of L) () \# M, snd (Ms, mset (map mset N)))
apply (rule dpllW.backtrack[OF - <is-decided L , of])
using C Ms bt by auto
moreover have (Ms', N')=(Propagated (- (lit-of L)) ()\# M,N)
using step exC unfolding DPLL-step-def bt prod.case unit by (auto simp: lits-of-l-unfold)
ultimately have ?thesis by auto
}
moreover
{ assume unit: find-first-unit-clause N Ms = None
assume exC:\neg(\existsC\in set N.Ms\modelsas CNot (mset C))
obtain L where unused: find-first-unused-var N (lits-of-l Ms) = Some L
using step exC neq unfolding DPLL-step-def prod.case unit
by (cases find-first-unused-var N (lits-of-l Ms)) (auto simp: lits-of-l-unfold)
have dpll}\mp@subsup{W}{}{\prime}(Ms,mset (map mset N)
(Decided L \# fst (Ms, mset (map mset N)), snd (Ms,mset (map mset N)))
apply (rule dpll}\mp@subsup{W}{}{\prime}.\mathrm{ decided[of ?S L])
using find-first-unused-var-Some[OF unused]
by (auto simp add: Decided-Propagated-in-iff-in-lits-of-l atms-of-ms-def)
moreover have (Ms', N') = (Decided L \# Ms,N)
using step exC unfolding DPLL-step-def unused prod.case unit by (auto simp: lits-of-l-unfold)
ultimately have ?thesis by auto
}
ultimately show ?thesis by (cases find-first-unit-clause N Ms) auto
qed
lemma DPLL-step-stuck-final-state:
assumes step: (Ms,N) = DPLL-step (Ms,N)
shows conclusive-dpll }\mp@subsup{W}{}{-state (toS Ms N)
proof -
have unit: find-first-unit-clause N Ms = None
using step unfolding DPLL-step-def by (auto split:option.splits)
{ assume n: \existsC\in set N.Ms =as CNot (mset C)
then have Ms: (Ms,N)=(case backtrack-split Ms of (x,[])=>(Ms,N)
| (x,L\# M) \# (Propagated (- lit-of L) () \# M,N))
using step unfolding DPLL-step-def by (simp add: unit lits-of-l-unfold)
have snd (backtrack-split Ms) = []
proof (cases backtrack-split Ms, cases snd (backtrack-split Ms))
fix ab
assume backtrack-split Ms = (a,b) and snd (backtrack-split Ms) = []
then show snd (backtrack-split Ms) = [] by blast
next
fix a b aa list
assume
bt: backtrack-split Ms = (a,b) and

```
```

 bt': snd (backtrack-split Ms) = aa # list
 then have Ms:Ms = Propagated (- lit-of aa) () # list using Ms by auto
 have is-decided aa using backtrack-split-snd-hd-decided[of Ms] bt bt' by auto
 moreover have fst (backtrack-split Ms)@ aa # list = Ms
 using backtrack-split-list-eq[of Ms] bt' by auto
 ultimately have False unfolding Ms by auto
 then show snd (backtrack-split Ms)=[] by blast
 qed
 then have ?thesis
 using n backtrack-snd-empty-not-decided[of Ms] unfolding conclusive-dpll w-state-def
 by (cases backtrack-split Ms) auto
 }
moreover {
assume n:\neg(\existsC\in set N.Ms \modelsas CNot (mset C))
then have find-first-unused-var N (lits-of-l Ms) = None
using step unfolding DPLL-step-def by (simp add: unit lits-of-l-unfold split:option.splits)
then have a: }\foralla\in\operatorname{set N.atm-of'set a\subseteqatm-of '(lits-of-l Ms) by auto
have fst (toS Ms N)\modelsasm snd (toS Ms N) unfolding true-annots-def CNot-def Ball-def
proof clarify
fix }
assume x: x f set-mset (clauses (toS Ms N))
then have }\negMs\modelsas CNot x using n unfolding true-annots-def CNot-def Ball-def by aut
moreover have total-over-m (lits-of-l Ms) {x}
using a x image-iff in-mono atms-of-s-def
unfolding total-over-m-def total-over-set-def lits-of-def by fastforce
ultimately show fst (toS Ms N) \modelsax
using total-not-CNot[of lits-of-l Ms x] by (simp add: true-annot-def true-annots-true-cls)
qed
then have ?thesis unfolding conclusive-dpll W-state-def by blast
}
ultimately show ?thesis by blast
qed

```

\section*{Adding invariants}

Invariant tested in the function function \(D P L L\)-ci :: int \(d p l l_{W}\)-ann-lits \(\Rightarrow\) int literal list list
\(\Rightarrow\) int dpll \(_{W}\)-ann-lits \(\times\) int literal list list where
DPLL-ci Ms \(N=\)
(if \(\neg\) dpll \(_{W}\)-all-inv \((M s\), mset (map mset \(N)\) )
then \((M s, N)\)
else
let \(\left(M s^{\prime}, N^{\prime}\right)=\) DPLL-step \((M s, N)\) in
if \(\left(M s^{\prime}, N^{\prime}\right)=(M s, N)\) then \((M s, N)\) else DPLL-ci \(\left.M s^{\prime} N\right)\)
by fast+

\section*{termination}
proof (relation \(\left\{\left(S^{\prime}, S\right) .\left(t o S^{\prime} S^{\prime}\right.\right.\), to \(\left.S^{\prime} S\right) \in\left\{\left(S^{\prime}, S\right) . d p l l_{W}\right.\)-all-inv \(\left.\left.\left.S \wedge d p l l_{W} S S^{\prime}\right\}\right\}\right)\)
show \(w f\left\{\left(S^{\prime}, S\right) .\left(t o S^{\prime} S^{\prime}\right.\right.\), to \(\left.S^{\prime} S\right) \in\left\{\left(S^{\prime}, S\right)\right.\). dpll \(W_{W}\)-all-inv \(\left.\left.S \wedge d p l l_{W} S S^{\prime}\right\}\right\}\)
using wf-if-measure- \(f\left[O F w f-d p l l_{W}\right.\), of toS \(]\) by auto
next
fix \(M s\) :: int \(d p l l_{W}\)-ann-lits and \(N x\) xa y
assume \(\neg \neg d_{p l l}^{W}\)-all-inv \((t o S M s N)\)
and step: \(x=\) DPLL-step \((M s, N)\)
and \(x:(x a, y)=x\)
and \((x a, y) \neq(M s, N)\)
then show \(((x a, N), M s, N) \in\left\{\left(S^{\prime}, S\right) .\left(t o S^{\prime} S^{\prime}, t o S^{\prime} S\right) \in\left\{\left(S^{\prime}, S\right) . d p l l_{W}\right.\right.\)-all-inv \(\left.\left.S \wedge d p l l_{W} S S^{\prime}\right\}\right\}\)
using \(D P L L\)-step-is-a-dpll \(W^{-s t e p ~}\) dpll \(_{W}\)-same-clauses split-conv by fastforce qed

No invariant tested function (domintros) DPLL-part:: int dpll \(_{W}\)-ann-lits \(\Rightarrow\) int literal list list \(\Rightarrow\) int dpll \(W_{W}\)-ann-lits \(\times\) int literal list list where
DPLL-part Ms \(N=\)
\(\left(\right.\) let \(\left(M s^{\prime}, N^{\prime}\right)=D P L L\)-step \((M s, N)\) in if \(\left(M s^{\prime}, N^{\prime}\right)=(M s, N)\) then \((M s, N)\) else DPLL-part \(\left.M s^{\prime} N\right)\)
by fast+
lemma snd-DPLL-step \([\) simp \(]\) :
snd \((D P L L\)-step \((M s, N))=N\)
unfolding DPLL-step-def by (auto split: if-split option.splits prod.splits list.splits)
lemma dpll \(_{W}\)-all-inv-implieS-2-eq3-and-dom:
assumes dpll \(_{W}\)-all-inv (Ms, mset (map mset \(N\) ))
shows DPLL-ci Ms \(N=\) DPLL-part Ms \(N \wedge \operatorname{DPLL-part-dom~}(M s, N)\)
using assms
proof (induct rule: DPLL-ci.induct)
case (1 Ms N)
have snd \((D P L L\)-step \((M s, N))=N\) by auto
then obtain \(M s^{\prime}\) where \(M s^{\prime}:\) DPLL-step \((M s, N)=\left(M s^{\prime}, N\right)\) by (cases DPLL-step \((M s, N)\) ) auto
have inv': dpll \(W_{W}\)-all-inv (toS Ms' N) by (metis (mono-tags) 1.prems DPLL-step-is-a-dpll \({ }_{W}\)-step \(M s^{\prime}{ }^{\prime}\) dpll \(_{W}\)-all-inv old.prod.inject)
\(\left\{\right.\) assume \(\left(M s^{\prime}, N\right) \neq(M s, N)\)
then have \(D P L L\)-ci \(M s^{\prime} N=D P L L\)-part \(M s^{\prime} N \wedge D P L L\)-part-dom \(\left(M s^{\prime}, N\right)\) using \(1(1)\left[o f-M s^{\prime}\right.\)
\(N] M s^{\prime}\)
1(2) inv' by auto
then have DPLL-part-dom ( \(M s, N\) ) using DPLL-part.domintros \(M s^{\prime}\) by fastforce
moreover have \(D P L L\)-ci \(M s N=D P L L\)-part \(M s N\) using 1.prems DPLL-part.psimps \(M s^{\prime}\)
\(\left\langle D P L L\right.\)-ci \(M s^{\prime} N=D P L L\)-part \(M s^{\prime} N \wedge D P L L\)-part-dom \(\left.\left(M s^{\prime}, N\right)\right\rangle\langle D P L L\)-part-dom \((M s, N)\rangle\) by
auto
ultimately have ?case by blast
\}
moreover \{
assume \(\left(M s^{\prime}, N\right)=(M s, N)\)
then have ?case using DPLL-part.domintros DPLL-part.psimps Ms' by fastforce
\}
ultimately show ?case by blast

\section*{qed}
lemma \(D P L L\)-ci-dpll \({ }_{W}\)-rtranclp:
assumes DPLL-ci Ms \(N=\left(M s^{\prime}, N^{\prime}\right)\)
shows \(d p l l_{W}{ }^{* *}(t o S M s N)\left(t o S M s^{\prime} N\right)\)
using assms
proof (induct \(M s N\) arbitrary: \(M s^{\prime} N^{\prime}\) rule: DPLL-ci.induct)
case ( \(1 \mathrm{Ms} N M s^{\prime} N^{\prime}\) ) note \(I H=\) this(1) and step \(=\) this(2)
obtain \(S_{1} S_{2}\) where \(S:\left(S_{1}, S_{2}\right)=\) DPLL-step \((M s, N)\) by (cases DPLL-step \(\left.(M s, N)\right)\) auto
\(\left\{\right.\) assume \(\neg d p l l_{W}\)-all-inv \((t o S M s N)\)
then have \((M s, N)=\left(M s^{\prime}, N\right)\) using step by auto
then have? case by auto
\}
moreover
\{ assume dpll \(_{W}\)-all-inv (toS Ms \(N\) )
and \(\left(S_{1}, S_{2}\right)=(M s, N)\)
```

 then have ?case using S step by auto
 }
moreover
{ assume dpll}\mp@subsup{W}{-}{-all-inv (toS Ms N)
and (S
moreover obtain }\mp@subsup{S}{1}{\prime}\mp@subsup{S}{2}{\prime}\mathrm{ ' where DPLL-ci S S N = (S S
moreover have DPLL-ci Ms N=DPLL-ci S S N using DPLL-ci.simps[of Ms N] calculation
proof -
have (case (}\mp@subsup{S}{1}{},\mp@subsup{S}{2}{})\mathrm{ of (ms,lss) }
if (ms,lss) = (Ms,N) then (Ms,N) else DPLL-ci ms N) = DPLL-ci Ms N
using S DPLL-ci.simps[of Ms N] calculation by presburger
then have (if (S
by fastforce
then show ?thesis
using calculation(2) by presburger
qed
ultimately have dpll W** (toS S S' N) (toS Ms''N) using IH[of (S S, S S) S S S S | S step by simp
moreover have dpll}\mp@subsup{W}{}{\prime}(toS Ms N) (toS S S N
by (metis DPLL-step-is-a-dpll W-step S<(S1, S S) = (Ms,N)`prod.sel(2) snd-DPLL-step) ultimately have ?case by (metis (mono-tags, hide-lams) IH S <(S S, S S) = (Ms,N)`
\DPLL-ci Ms N = DPLL-ci S S N
langledpllW-all-inv (toS Ms N)\rangle converse-rtranclp-into-rtranclp
local.step)
}
ultimately show ?case by blast
qed
lemma dpll}\mp@subsup{W}{}{\prime}\mathrm{ -all-inv-dpll}\mp@subsup{W}{W}{-tranclp-irrefl:
assumes dpll}\mp@subsup{W}{}{-all-inv (Ms,N)
and dpllWW
shows False
proof -
have 1:wf {(S',S).dpll}\mp@subsup{W}{}{-}\mathrm{ -all-inv S ^dpll}\mp@subsup{W}{}{++}S S S'} using wf-dpll W-tranclp by auto
have ((Ms,N),(Ms,N))\in{(S',S).dpll W-all-inv S ^dpll W ++ S S'} using assms by auto
then show False using wf-not-refl[OF 1] by blast
qed
lemma DPLL-ci-final-state:
assumes step: DPLL-ci Ms N=(Ms,N)
and inv: dpll}\mp@subsup{W}{}{-all-inv (toS Ms N)
shows conclusive-dpllW-state (toS Ms N)
proof -
have st:dpll}\mp@subsup{W}{}{**}(toS Ms N) (toS Ms N) using DPLL-ci-dpllW -rtranclp[OF step] .
have DPLL-step (Ms,N)=(Ms,N)
proof (rule ccontr)
obtain Ms' N' where Ms'N:(M\mp@subsup{s}{}{\prime},N}\mp@subsup{N}{}{\prime})=\operatorname{DPLL-step (Ms,N)
by (cases DPLL-step (Ms,N)) auto
assume \neg? ?thesis
then have DPLL-ci Ms'N=(Ms,N) using step inv st Ms'N[symmetric] by fastforce
then have dpll W++ (toS Ms N) (toS Ms N)
by (metis DPLL-ci-dpll}\mp@subsup{W}{-}{-rtranclp DPLL-step-is-a-dpll W-step Ms'N <DPLL-step (Ms,N)\not=(Ms,
N)>
prod.sel(2) rtranclp-into-tranclp2 snd-DPLL-step)
then show False using dpll}\mp@subsup{W}{}{\prime}\mathrm{ -all-inv-dpll}\mp@subsup{W}{W}{-tranclp-irrefl inv by auto
qed
then show ?thesis using DPLL-step-stuck-final-state[of Ms N] by simp

```
qed
```

lemma DPLL-step-obtains:
obtains $M s^{\prime}$ where $\left(M s^{\prime}, N\right)=D P L L$-step $(M s, N)$
unfolding DPLL-step-def by (metis (no-types, lifting) DPLL-step-def prod.collapse snd-DPLL-step)
lemma DPLL-ci-obtains:
obtains $M s^{\prime}$ where $\left(M s^{\prime}, N\right)=D P L L-c i M s N$
proof (induct rule: DPLL-ci.induct)
case $(1 \mathrm{Ms} \mathrm{N})$ note $I H=$ this(1) and that $=$ this(2)
obtain S where $S N:(S, N)=D P L L$-step $(M s, N)$ using DPLL-step-obtains by metis
\{ assume $\neg d p l l_{W}$-all-inv (toS Ms N)
then have ?case using that by auto
\}
moreover \{
assume $n:(S, N) \neq(M s, N)$
and inv: dpll ${ }_{W}$-all-inv (toS Ms N)
have $\exists m s$. DPLL-step $(M s, N)=(m s, N)$
by (metis 〈 \backslash thesisa. $(\bigwedge S .(S, N)=$ DPLL-step $(M s, N) \Longrightarrow$ thesisa $) \Longrightarrow$ thesisa〉)
then have?thesis
using IH that by fastforce
\}
moreover \{
assume $n:(S, N)=(M s, N)$
then have ?case using $S N$ that by fastforce
\}
ultimately show ?case by blast
qed
lemma DPLL-ci-no-more-step:
assumes step: DPLL-ci Ms $N=\left(M s^{\prime}, N^{\prime}\right)$
shows $D P L L$-ci $M s^{\prime} N^{\prime}=\left(M s^{\prime}, N^{\prime}\right)$
using assms
proof (induct arbitrary: $M s^{\prime} N^{\prime}$ rule: DPLL-ci.induct)
case (1 Ms N Ms ${ }^{\prime} N^{\prime}$) note $I H=$ this(1) and step $=$ this(2)
obtain S_{1} where $S:\left(S_{1}, N\right)=$ DPLL-step $(M s, N)$ using DPLL-step-obtains by auto
\{ assume \neg dpll $_{W^{-}}$all-inv (toS Ms N)
then have ? case using step by auto
\}
moreover \{
assume dpll $_{W}$-all-inv (toS Ms N)
and $\left(S_{1}, N\right)=(M s, N)$
then have? case using S step by auto
\}
moreover
\{ assume inv: dpll ${ }_{W}$-all-inv (toS Ms N)
assume $n:\left(S_{1}, N\right) \neq(M s, N)$
obtain S_{1}^{\prime} where $S S:\left(S_{1}^{\prime}, N\right)=D P L L$-ci $S_{1} N$ using DPLL-ci-obtains by blast
moreover have $D P L L$-ci $M s N=D P L L$-ci $S_{1} N$
proof -
have $\left(\right.$ case $\left(S_{1}, N\right)$ of $(m s, l s s) \Rightarrow$ if $(m s, l s s)=(M s, N)$ then $(M s, N)$ else DPLL-ci ms $\left.N\right)$
$=D P L L-c i M s N$
using S DPLL-ci.simps[of Ms N] calculation inv by presburger
then have (if $\left(S_{1}, N\right)=(M s, N)$ then $(M s, N)$ else DPLL-ci $\left.S_{1} N\right)=$ DPLL-ci Ms N
by fastforce

```
```

 then show ?thesis
 using calculation n by presburger
 qed
 moreover
 have DPLL-ci S1 ' N = (S ' ',N) using step IH[OF - - S n SS[symmetric]] inv by blast
 ultimately have ?case using step by fastforce
 }
 ultimately show ?case by blast
 qed

```
lemma \(D P L L\)-part-dpll \(W_{W}\)-all-inv-final:
    fixes \(M M s^{\prime}::\) (int, unit) ann-lits and
        \(N\) :: int literal list list
    assumes inv: dpll \(W_{W}\)-all-inv ( \(M s\), mset (map mset \(N\) ))
    and \(M s N\) : DPLL-part \(M s N=\left(M s^{\prime}, N\right)\)
    shows conclusive-dpll \(W_{W}\)-state \(\left(t o S M s^{\prime} N\right) \wedge d p l l_{W}^{* *}(t o S M s N)\left(t o S M s^{\prime} N\right)\)
proof -
    have 2: \(D P L L\)-ci \(M s N=\) DPLL-part \(M s N\) using inv dpll \(W_{W}\)-all-inv-implieS-2-eq3-and-dom by blast
    then have star: \(d p l l_{W}^{* *}(t o S M s N)\left(t o S M s^{\prime} N\right)\) unfolding \(M s N\) using DPLL-ci-dpll \(W_{W}\)-rtranclp
by blast
    then have \(i n v^{\prime}: d p l l_{W}\)-all-inv \(\left(t o S M s^{\prime} N\right)\) using inv rtranclp-dpll \(W_{W}\)-all-inv by blast
    show ?thesis using star DPLL-ci-final-state[OF DPLL-ci-no-more-step inv'] 2 unfolding \(M s N\) by
blast
qed

\section*{Embedding the invariant into the type}

Defining the type typedef \(\mathrm{dpll}_{W}\)-state \(=\) \(\{(M::(\) int , unit \()\) ann-lits, \(N::\) int literal list list \()\). \(\left.d_{p l l_{W}-a l l-i n v}(t o S M N)\right\}\)
morphisms rough-state-of state-of
proof
show \(([],[]) \in\left\{(M, N)\right.\). dpll \(_{W}\)-all-inv \((\) toS \(\left.M N)\right\}\) by (auto simp add: dpll \(W_{W}\)-all-inv-def)
qed
lemma
DPLL-part-dom ([], N)
using dpll \(_{W}\)-all-inv-implieS-2-eq3-and-dom[of [] N] by (simp add: dpll \(W_{W}\)-all-inv-def)
```

Some type classes instantiation $_{\text {pll }}^{W}$-state :: equal
begin
definition equal-dpll ${ }_{W}$-state $::$ dpll $_{W}$-state $\Rightarrow d p l l_{W}$-state \Rightarrow bool where
equal-dpll W_{W}-state $S S^{\prime}=\left(\right.$ rough-state-of $S=$ rough-state-of $\left.S^{\prime}\right)$
instance
by standard (simp add: rough-state-of-inject equal-dpll W_{W}-state-def)
end

```
DPLL definition \(D P L L\)-step \({ }^{\prime}::{d p l l_{W}}^{\text {-state }} \Rightarrow d p l l_{W}\)-state where
    DPLL-step \({ }^{\prime} S=\) state-of \((D P L L\)-step \((\) rough-state-of \(S))\)
declare rough-state-of-inverse[simp]
lemma \(D P L L\)-step- \(d p l l_{W}\)-conc-inv:
    DPLL-step (rough-state-of \(S) \in\left\{(M, N) . d p l l_{W}\right.\)-all-inv \(\left.(t o S M N)\right\}\)
```

proof -
obtain M N where
S:〈rough-state-of S = (M,N)\rangle
by (cases <rough-state-of S`)
obtain M' N' where
S': \DPLL-step (rough-state-of S)=(}\mp@subsup{M}{}{\prime},\mp@subsup{N}{}{\prime})
by (cases \DPLL-step (rough-state-of S)〉)
have <dpll W\mp@subsup{W}{}{**}}(toSMN)(toS M' N')>
by (metis DPLL-step-is-a-dpll W-step S S' fst-conv r-into-rtranclp rtranclp.rtrancl-refl snd-conv)
then show ?thesis
using rough-state-of[of S] unfolding S' unfolding S by (auto intro: rtranclp-dpll W-all-inv)
qed
lemma rough-state-of-DPLL-step'-DPLL-step[simp]:
rough-state-of (DPLL-step'S) = DPLL-step (rough-state-of S)
using DPLL-step-dpll}\mp@subsup{W}{}{-conc-inv DPLL-step'-def state-of-inverse by auto
function DPLL-tot:: dpll}\mp@subsup{W}{}{-state }=>\mp@subsup{dpll}{W}{}\mathrm{ -state where
DPLL-tot S =
(let S' = DPLL-step' S in
if S'}=S\mathrm{ then S else DPLL-tot S')
by fast+
termination
proof (relation {(T',T).
(rough-state-of T', rough-state-of T)
\in{(S',S).(toS' S',toS'S)
\in{(\mp@subsup{S}{}{\prime},S).dpll}\mp@subsup{W}{}{-}\mathrm{ -all-inv S ^dpll}\mp@subsup{W}{}{S}S\mp@subsup{S}{}{\prime}}}}
show wf {(b,a).
(rough-state-of b, rough-state-of a)
\in{(b,a). (to\mp@subsup{S}{}{\prime}b,to\mp@subsup{S}{}{\prime}a)
\in{(b,a).dpll}\mp@subsup{W}{}{-all-inv a ^dpll}\mp@subsup{W}{}{\prime}ab}}
using wf-if-measure-f[OF wf-if-measure-f[OF wf-dpll l
next
fix Sx
assume x: x = DPLL-step' S
and }x\not=
have dpllW-all-inv (case rough-state-of S of (Ms,N)=>(Ms, mset (map mset N)))
by (metis (no-types, lifting) case-prodE mem-Collect-eq old.prod.case rough-state-of)
moreover have dpll W (case rough-state-of S of (Ms,N)=>(Ms,mset (map mset N)))
(case rough-state-of (DPLL-step' S) of (Ms,N) =>(Ms, mset (map mset N)))
proof -
obtain Ms N where Ms: (Ms,N) = rough-state-of S by (cases rough-state-of S) auto
have dpll W-all-inv (toS'(Ms,N)) using calculation unfolding Ms by blast
moreover obtain Ms' N' where Ms':(Ms', N')=rough-state-of (DPLL-step' S)
by (cases rough-state-of (DPLL-step'}\mp@subsup{}{}{\prime}S)\mathrm{) auto
ultimately have dpll}\mp@subsup{W}{}{\prime}\mathrm{ -all-inv (toS' (Ms', N')) unfolding Ms'
by (metis (no-types, lifting) case-prod-unfold mem-Collect-eq rough-state-of)
have dpll}\mp@subsup{W}{}{\prime}(toS Ms N) (toS Ms'N'
apply (rule DPLL-step-is-a-dpll W-step[of Ms' N'Ms N])
unfolding Ms Ms' using \langlex }\not=S\mathrm{ \ rough-state-of-inject }x\mathrm{ by fastforce+
then show ?thesis unfolding Ms[symmetric] Ms'[symmetric] by auto
qed
ultimately show (x,S) \in{(T',T). (rough-state-of T', rough-state-of T)
\in{(S',S).(toS'}\mp@subsup{S}{}{\prime},to\mp@subsup{S}{}{\prime}S)\in{(\mp@subsup{S}{}{\prime},S).dpl\mp@subsup{l}{W}{}-all-inv S\wedgedpll W S S'} }
by (auto simp add: x)

```

\section*{qed}
```

lemma [code]:
DPLL-tot S =
(let S' = DPLL-step' }S\mathrm{ in
if }\mp@subsup{S}{}{\prime}=S\mathrm{ then S else DPLL-tot }\mp@subsup{S}{}{\prime}\mathrm{) by auto
lemma DPLL-tot-DPLL-step-DPLL-tot[simp]: DPLL-tot (DPLL-step'S) = DPLL-tot S
apply (cases DPLL-step'}S=S\mathrm{)
apply simp
unfolding DPLL-tot.simps[of S] by (simp del: DPLL-tot.simps)
lemma DOPLL-step'-DPLL-tot[simp]:
DPLL-step'}(DPLL-tot S)= DPLL-tot S
by (rule DPLL-tot.induct[of \lambdaS. DPLL-step'}(DPLL-tot S)= DPLL-tot S S]
(metis (full-types) DPLL-tot.simps)

```
lemma DPLL-tot-final-state:
    assumes \(D P L L\)-tot \(S=S\)
    shows conclusive-dpll \({ }_{W}\)-state ( \(t o S^{\prime}(\) rough-state-of \(S)\) )
proof -
    have \(D P L L\)-step \({ }^{\prime} S=S\) using assms[symmetric] DOPLL-step \({ }^{\prime}\)-DPLL-tot by metis
    then have DPLL-step (rough-state-of \(S)=(\) rough-state-of \(S)\)
        unfolding DPLL-step'-def using DPLL-step-dpll \({ }_{W}\)-conc-inv rough-state-of-inverse
        by (metis rough-state-of-DPLL-step'-DPLL-step)
    then show ?thesis
        by (metis (mono-tags, lifting) DPLL-step-stuck-final-state old.prod.exhaust split-conv)
qed
lemma DPLL-tot-star:
    assumes rough-state-of \((D P L L\)-tot \(S)=S^{\prime}\)
    shows \(d p l l_{W}{ }^{* *}\left(t o S^{\prime}(\right.\) rough-state-of \(\left.S)\right)\left(t o S^{\prime} S^{\prime}\right)\)
    using assms
proof (induction arbitrary: \(S^{\prime}\) rule: DPLL-tot.induct)
    case ( \(1 S S^{\prime}\) )
    let ? \(x=D P L L\)-step \({ }^{\prime} S\)
    \{ assume \(? x=S\)
        then have ? case using 1(2) by simp
    \}
    moreover \{
        assume \(S: ? x \neq S\)
        have ?case
            apply (cases DPLL-step' \(S=S\) )
                using \(S\) apply blast
            by (smt 1.IH 1.prems DPLL-step-is-a-dpll \(W_{W}\)-step DPLL-tot.simps case-prodE2
                    rough-state-of-DPLL-step'-DPLL-step rtranclp.rtrancl-into-rtrancl rtranclp.rtrancl-refl
            rtranclp-idemp split-conv)
    \}
    ultimately show ?case by auto
qed
lemma rough-state-of-rough-state-of-Nil[simp]:
    rough-state-of (state-of \(([], N))=([], N)\)
    apply (rule DPLL-W-Implementation.dpll \(W_{W}\)-state.state-of-inverse)

\section*{unfolding dpll \(_{W}\)-all-inv-def by auto}

Theorem of correctness
```

lemma DPLL-tot-correct:
assumes rough-state-of $($ DPLL-tot $($ state-of $(([], N))))=\left(M, N^{\prime}\right)$
and $\left(M^{\prime}, N^{\prime \prime}\right)=t o S^{\prime}\left(M, N^{\prime}\right)$
shows $M^{\prime} \models$ asm $N^{\prime \prime} \longleftrightarrow$ satisfiable (set-mset $N^{\prime \prime}$)
proof -
have $\operatorname{dpll}_{W^{* *}}\left(\right.$ to $\left.^{\prime}([], N)\right)\left(\right.$ toS $\left.S^{\prime}\left(M, N^{\prime}\right)\right)$ using DPLL-tot-star[OF assms(1)] by auto
moreover have conclusive-dpll W_{W}-state $\left(t o S^{\prime}\left(M, N^{\prime}\right)\right)$
using DPLL-tot-final-state by (metis (mono-tags, lifting) DOPLL-step'-DPLL-tot DPLL-tot.simps
$\operatorname{assms}(1))$
ultimately show ?thesis using dpll $_{W}$-conclusive-state-correct by (smt DPLL-ci.simps
DPLL-ci-dpll ${ }_{W}$-rtranclp assms(2) dpll W_{W}-all-inv-def prod.case prod.sel(1) prod.sel(2)
rtranclp-dpll $W_{W}-i n v(3)$ rtranclp-dpll ${ }_{W}$-inv-starting-from-0)
qed

```

\section*{Code export}

A conversion to \(D P L L\) - \(W\)-Implementation.dpll \({ }_{W}\)-state definition Con :: (int, unit) ann-lits \(\times\) int literal list list
\[
\Rightarrow d p l l_{W} \text {-state where }
\]

Con \(x s=\) state-of (if dpll \(W_{W}\)-all-inv (toS (fst xs) (snd xs)) then xs else ([], []))
lemma [code abstype]:
Con \((\) rough-state-of \(S)=S\)
using rough-state-of [of \(S\) ] unfolding Con-def by auto
declare rough-state-of-DPLL-step'-DPLL-step[code abstract]
lemma Con-DPLL-step-rough-state-of-state-of[simp]:
Con (DPLL-step (rough-state-of \(s)\) ) state-of (DPLL-step (rough-state-of s))
unfolding Con-def by (metis (mono-tags, lifting) DPLL-step-dpll \({ }_{W}\)-conc-inv mem-Collect-eq prod.case-eq-if)

A slightly different version of \(D P L L\)-tot where the returned boolean indicates the result.
definition DPLL-tot-rep where
DPLL-tot-rep \(S=\)
\((\) let \((M, N)=(\) rough-state-of \((D P L L-t o t S))\) in \((\forall A \in \operatorname{set} N .(\exists a \in\) set \(A . a \in\) lits-of-l \(M), M))\)
One version of the generated SML code is here, but not included in the generated document. The only differences are:
- export 'a literal from the SML Module Clausal-Logic;
- export the constructor Con from DPLL-W-Implementation;
- export the int constructor from Arith.

All these allows to test on the code on some examples.

\section*{end}
theory CDCL-W-Implementation
imports DPLL-CDCL-W-Implementation CDCL-W-Termination HOL-Library.Code-Target-Numeral
begin

\subsection*{4.1.4 List-based CDCL Implementation}

We here have a very simple implementation of Weidenbach's CDCL, based on the same principle as the implementation of DPLL: iterating over-and-over on lists. We do not use any fancy datastructure (see the two-watched literals for a better suited data-structure).
The goal was (as for DPLL) to test the infrastructure and see if an important lemma was missing to prove the correctness and the termination of a simple implementation.

\section*{Types and Instantiation}
```

notation image-mset (infixr `\# 90)

```
type-synonym 'a \(c d c l_{W}\)-restart-mark \(=\) ' \(a\) clause
type-synonym 'v \(c d c l_{W}\)-restart-ann-lit \(=\left(' v,{ }^{\prime} v c d c l_{W}\right.\)-restart-mark) ann-lit
type-synonym 'v cdcl \({ }_{W}\)-restart-ann-lits \(=\left(' v, ' v c d c l_{W}\right.\)-restart-mark) ann-lits
type-synonym 'v \(\mathrm{cdcl}_{W}\)-restart-state \(=\)
    'v cdcl \(W_{W}\)-restart-ann-lits \(\times\) 'v clauses \(\times\) ' \(v\) clauses \(\times\) 'v clause option
abbreviation raw-trail :: ' \(a \times 1 b \times{ }^{\prime} c \times{ }^{\prime} d \Rightarrow{ }^{\prime} a\) where
raw-trail \(\equiv(\lambda(M,-) . M)\)
abbreviation raw-cons-trail :: ' \(a \Rightarrow{ }^{\prime}\) 'a list \(\times{ }^{\prime} b \times{ }^{\prime} c \times{ }^{\prime} d \Rightarrow{ }^{\prime} a\) list \(\times{ }^{\prime} b \times{ }^{\prime} c \times{ }^{\prime} d\)
    where
raw-cons-trail \(\equiv(\lambda L(M, S) .(L \# M, S))\)
abbreviation raw-tl-trail :: 'a list \(\times{ }^{\prime} b \times{ }^{\prime} c \times{ }^{\prime} d \Rightarrow{ }^{\prime} a\) list \(\times{ }^{\prime} b \times{ }^{\prime} c \times{ }^{\prime} d\) where
raw-tl-trail \(\equiv(\lambda(M, S) .(t l M, S))\)
abbreviation raw-init-clss :: ' \(a \times{ }^{\prime} b \times{ }^{\prime} c \times{ }^{\prime} d \Rightarrow{ }^{\prime} b\) where
raw-init-clss \(\equiv \lambda(M, N,-) . N\)
abbreviation raw-learned-clss :: ' \(a \times 1 b \times{ }^{\prime} c \times{ }^{\prime} d \Rightarrow{ }^{\prime} c\) where
raw-learned-clss \(\equiv \lambda(M, N, U,-) . U\)
abbreviation raw-conflicting :: ' \(a \times{ }^{\prime} b \times{ }^{\prime} c \times{ }^{\prime} d \Rightarrow{ }^{\prime} d\) where
raw-conflicting \(\equiv \lambda(M, N, U, D) . D\)
abbreviation raw-update-conflicting :: ' \(d \Rightarrow{ }^{\prime} a \times{ }^{\prime} b \times{ }^{\prime} c \times{ }^{\prime} d \Rightarrow{ }^{\prime} a \times{ }^{\prime} b \times{ }^{\prime} c \times{ }^{\prime} d\)
    where
raw-update-conflicting \(\equiv \lambda S(M, N, U,-) .(M, N, U, S)\)
abbreviation \(S 0-c d c l_{W}\)-restart \(N \equiv\left(([], N,\{\#\}\right.\), None \()::{ }^{\prime} v c^{\prime} d^{\prime} l_{W}\)-restart-state \()\)
abbreviation raw-add-learned-clss where
raw-add-learned-clss \(\equiv \lambda C(M, N, U, S) .(M, N,\{\# C \#\}+U, S)\)
abbreviation raw-remove-cls where
raw-remove-cls \(\equiv \lambda C(M, N, U, S) .(M\), removeAll-mset \(C N\), removeAll-mset \(C U, S)\)
lemma raw-trail-conv: raw-trail \((M, N, U, D)=M\) and
clauses-conv: raw-init-clss \((M, N, U, D)=N\) and
raw-learned-clss-conv: raw-learned-clss \((M, N, U, D)=U\) and
raw-conflicting-conv: raw-conflicting \((M, N, U, D)=D\)
by auto
lemma state-conv:
\(S=(\) raw-trail \(S\), raw-init-clss \(S\), raw-learned-clss \(S\), raw-conflicting \(S)\)
by (cases \(S\) ) auto

\section*{definition state where}
\(\langle\) state \(S=(\) raw-trail \(S\), raw-init-clss \(S\), raw-learned-clss \(S\), raw-conflicting \(S\), ())〉
```

interpretation state}\mp@subsup{W}{}{\prime
(=)
state
raw-trail raw-init-clss raw-learned-clss raw-conflicting
\lambdaL(M,S).(L\# M,S)
\lambda(M,S).(tl M,S)
\lambdaC (M,N,U,S).(M,N, add-mset C U,S)
\lambdaC (M,N,U,S).(M, removeAll-mset C N, removeAll-mset C U,S)
\lambdaD (M,N,U,-). (M,N,U,D)
\lambdaN.([],N,{\#}, None)
by unfold-locales (auto simp: state-def)
declare state-simp[simp del]
interpretation conflict-driven-clause-learning}\mp@subsup{W}{}{\prime
(=) state
raw-trail raw-init-clss raw-learned-clss
raw-conflicting
\lambdaL (M,S). (L\# M,S)
\lambda(M,S).(tl M,S)
\lambdaC (M,N,U,S).(M,N, add-mset C U,S)
\lambdaC (M,N,U,S).(M, removeAll-mset C N, removeAll-mset C U,S)
\lambdaD (M,N,U,-). (M,N,U,D)
\lambdaN.([],N,{\#},None)
by unfold-locales auto
declare clauses-def[simp]
lemma reduce-trail-to-empty-trail[simp]
reduce-trail-to F ([],aa,ab,b)=([],aa,ab,b)
using reduce-trail-to.simps by auto
lemma reduce-trail-to':
reduce-trail-to F S=
((if length (raw-trail S) \geq length F
then drop (length (raw-trail S) - length F) (raw-trail S)
else []), raw-init-clss S, raw-learned-clss S, raw-conflicting S)
(is ?S = -)
proof (induction F S rule: reduce-trail-to.induct)
case (1FS) note IH = this
show ?case
proof (cases raw-trail S)
case Nil
then show ?thesis using IH by (cases S) auto
next
case (Cons L M)
then show ?thesis
apply (cases Suc (length M) > length F)

```
prefer 2 using \(I H\) reduce-trail-to-length-ne[of S F] apply (cases S) apply auto[]
apply (subgoal-tac Suc (length \(M\) ) - length \(F=\) Suc (length \(M\) - length \(F\) ))
using reduce-trail-to-length-ne \([o f ~ S F] I H\) by (cases \(S\) ) auto
qed
qed

\section*{Definition of the rules}

Types lemma true-raw-init-clss-remdups[simp]:
\(I \models s(\) mset \(\circ\) remdups )' \(N \longleftrightarrow I \models s\) mset' \(N\)
by (simp add: true-clss-def)
lemma true-clss-raw-remdups-mset-mset[simp]:
\(\left\langle I \models s(\lambda L\right.\). remdups-mset \((\) mset \(L))\) ' \(N^{\prime} \longleftrightarrow I \models s\) mset ' \(N\) ' \(\longleftrightarrow\)
by (simp add: true-clss-def)
declare satisfiable-carac[iff del]
lemma satisfiable-mset-remdups[simp]:
satisfiable \(\left((\text { mset } \circ \text { remdups })^{‘} N\right) \longleftrightarrow\) satisfiable (mset ‘ \(N\) )
satisfiable \(\left((\lambda L \text {. remdups-mset }(\text { mset } L))^{\prime} N^{\prime}\right) \longleftrightarrow\) satisfiable \((\) mset ' \(N\) ')
unfolding satisfiable-carac[symmetric] by simp-all
type-synonym 'v cdcl \(W_{W}\)-restart-state-inv-st \(=\left({ }^{\prime} v,{ }^{\prime} v\right.\) literal list \()\) ann-lit list \(\times\)
'v literal list list \(\times\) 'v literal list list \(\times\) 'v literal list option
We need some functions to convert between our abstract state 'v \(c d c l_{W}\)-restart-state and the concrete state 'v cdcl \(W_{W}\)-restart-state-inv-st.
fun convert \(::\left({ }^{\prime} a,{ }^{\prime} c\right.\) list \()\) ann-lit \(\Rightarrow\left({ }^{\prime} a,^{\prime} c\right.\) multiset \()\) ann-lit where
convert (Propagated LC) \(=\) Propagated \(L(\) mset \(C) \mid\)
convert \((\) Decided \(K)=\) Decided \(K\)
abbreviation convert \(C::\) 'a list option \(\Rightarrow\) ' \(a\) multiset option where
convert \(C\) map-option mset
lemma convert-Propagated[elim!]:
convert \(z=\) Propagated \(L C \Longrightarrow\left(\exists C^{\prime} . z=\right.\) Propagated \(L C^{\prime} \wedge C=\) mset \(\left.C^{\prime}\right)\)
by (cases \(z\) ) auto
lemma is-decided-convert[simp]: is-decided (convert \(x)=\) is-decided \(x\) by (cases \(x\) ) auto
lemma is-decided-convert-is-decided \([\) simp \(]: «(i s\)-decided \(\circ\) convert \()=(\) is-decided \()\rangle\)
by auto
lemma get-level-map-convert[simp]:
get-level (map convert \(M\) ) \(x=\) get-level \(M x\)
by (induction \(M\) rule: ann-lit-list-induct) (auto simp: comp-def get-level-def)
lemma get-maximum-level-map-convert \([\) simp \(]\) :
get-maximum-level (map convert \(M\) ) \(D=\) get-maximum-level \(M D\)
by (induction D) (auto simp add: get-maximum-level-add-mset)
lemma count-decided-convert[simp]:
〈count-decided (map convert M) = count-decided M〉
by (auto simp: count-decided-def)
lemma atm-lit-of-convert[simp]:
lit-of \((\) convert \(x)=\) lit-of \(x\)
by (cases \(x\) ) auto
lemma no-dup-convert[simp]:
〈no-dup (map convert \(M\) ) \(=\) no-dup \(M\) 〉
by (auto simp: no-dup-def image-image comp-def)
Conversion function
fun \(t o S::\) 'v cdcl \(W_{W}\)-restart-state-inv-st \(\Rightarrow{ }^{\prime} v \operatorname{cdcl}_{W}\)-restart-state where
toS \((M, N, U, C)=(\) map convert \(M\), mset \((\) map mset \(N)\), mset (map mset \(U)\), convert \(C\) \(C)\)
Definition an abstract type
typedef \({ }^{\prime} v c d c l_{W}\)-restart-state-inv \(=\left\{S::^{\prime} v c d c l_{W}\right.\)-restart-state-inv-st. \(c d c l_{W}\)-all-struct-inv \(\left.(t o S S)\right\}\)
morphisms rough-state-of state-of
proof
show ([],[], [], None) \(\in\left\{S\right.\). cdcl \(_{W}\)-all-struct-inv \((\) toS \(\left.S)\right\}\)
by (auto simp add: cdcl \(_{W}\)-all-struct-inv-def)
qed
instantiation \(c d c l_{W}\)-restart-state-inv :: (type) equal
begin
definition equal-cdcl \({ }_{W}\)-restart-state-inv :: 'v \(c d c l_{W}\)-restart-state-inv \(\Rightarrow\) \({ }^{\prime} v \mathrm{cdcl}_{W}\)-restart-state-inv \(\Rightarrow\) bool where equal-cdcl \({ }_{W}\)-restart-state-inv \(S S^{\prime}=\left(\right.\) rough-state-of \(S=\) rough-state-of \(\left.S^{\prime}\right)\)
instance
by standard ( \(\operatorname{simp}\) add: rough-state-of-inject equal-cdcl \(W_{W}\)-restart-state-inv-def)
end
lemma lits-of-map-convert[simp]: lits-of-l (map convert \(M\) ) \(=\) lits-of-l \(M\) by (induction \(M\) rule: ann-lit-list-induct) simp-all
lemma undefined-lit-map-convert[iff]:
undefined-lit (map convert \(M\) ) \(L \longleftrightarrow\) undefined-lit \(M L\)
by (auto simp add: defined-lit-map image-image)
lemma true-annot-map-convert[simp]: map convert \(M \models a N \longleftrightarrow M \models a N\)
by (simp-all add: true-annot-def image-image lits-of-def)
lemma true-annots-map-convert[simp]: map convert \(M \models\) as \(N \longleftrightarrow M \models\) as \(N\)
unfolding true-annots-def by auto
lemmas propagateE
lemma find-first-unit-clause-some-is-propagate:
assumes \(H\) : find-first-unit-clause ( \(N\) @ U) \(M=\) Some (L, C)
shows propagate (toS \((M, N, U, N o n e))(t o S\) (Propagated L \(C \# M, N, U, N o n e))\)
using assms
by (auto dest!: find-first-unit-clause-some simp add: propagate.simps intro!: exI[of - mset \(C-\{\# L \#\}])\)

\section*{The Transitions}

Propagate definition do-propagate-step :: \(\left\langle^{\prime} v c d c l_{W}\right.\)-restart-state-inv-st \(\Rightarrow{ }^{\prime} v c d c l_{W}\)-restart-state-inv-st \(\rangle\) where
do-propagate-step \(S=\)
```

(case S of
(M,N,U,None) }
(case find-first-unit-clause (N @ U) M of
Some (L,C) => (Propagated L C \# M,N,U,None)
None }=>(M,N,U,None)
| S=>S)
lemma do-propagate-step:
do-propagate-step S\not=S\Longrightarrow propagate (toS S) (toS (do-propagate-step S))
apply (cases S, cases raw-conflicting S)
using find-first-unit-clause-some-is-propagate[of raw-init-clss S raw-learned-clss S raw-trail S]
by (auto simp add: do-propagate-step-def split: option.splits)
lemma do-propagate-step-option[simp]:
raw-conflicting S}=\mathrm{ None }\Longrightarrow\mathrm{ do-propagate-step S =S
unfolding do-propagate-step-def by (cases S, cases raw-conflicting S) auto
lemma do-propagate-step-no-step:
assumes prop-step: do-propagate-step S =S
shows no-step propagate (toS S)
proof (standard, standard)
fix }
assume propagate (toS S) T
then obtain MNUCLE where
toSS: toS S = (M,N,U,None) and
LE:L\in\#E and
T:T=(Propagated L E \# M,N,U,None) and
MC:M\modelsas CNot C and
undef: undefined-lit M L and
CL:C + {\#L\#}\in\#N+U
apply - by (cases toS S) (auto elim!: propagateE)
let ?M = raw-trail S
let ?N = raw-init-clss S
let ?U = raw-learned-clss S
let ?D = None
have S:S=(?M,?N,?U,?D)
using toSS by (cases S, cases raw-conflicting S) simp-all
have S:toS S=toS(?M, ?N,?U,?D)
unfolding S[symmetric] by simp
have
M:M = map convert ?M and
N:N=mset (map mset ?N) and
U:U = mset (map mset ?U)
using toSS[unfolded S] by auto
obtain D where
DCL: mset D = C + {\#L\#} and
D:D\inset (?N @ ?U)
using CL unfolding N U by auto
obtain C'}\mp@subsup{L}{}{\prime}\mathrm{ where
setD: set D = set (}\mp@subsup{L}{}{\prime}\#\mp@subsup{C}{}{\prime})\mathrm{ and
C': mset C' = C and
L:L=L'
using DCL by (metis add-mset-add-single ex-mset list.simps(15) set-mset-add-mset-insert
set-mset-mset)

```
have find-first-unit-clause (?N @ ?U) ?M \(\mathrm{M}=\) None
apply (rule find-first-unit-clause-none[of D ?N @ ?U ?M L, OF D])
using \(M C\) set \(D D C L M M C\) unfolding \(C^{\prime}[\) symmetric \(]\) apply auto[1]
using \(M\) undef apply auto[1]
unfolding setD \(L\) by auto
then show False using prop-step \(S\) unfolding do-propagate-step-def by (cases \(S\) ) auto qed

Conflict fun find-conflict where
find-conflict M [] = None |
find-conflict \(M(N \# N s)=(i f(\forall c \in\) set \(N .-c \in\) lits-of-l \(M)\) then Some \(N\) else find-conflict \(M N s)\)
lemma find-conflict-Some:
find-conflict \(M\) Ns \(=\) Some \(N \Longrightarrow N \in\) set \(N s \wedge M \models\) as CNot (mset \(N\) )
by (induction Ns rule: find-conflict.induct)
(auto split: if-split-asm simp: lits-of-l-unfold)
lemma find-conflict-None:
find-conflict \(M N s=\) None \(\longleftrightarrow(\forall N \in\) set \(N s . \neg M \models\) as \(C N o t(\) mset \(N))\)
by (induction Ns) (auto simp: lits-of-l-unfold)
lemma find-conflict-None-no-conf:
find-conflict \(M(N @ U)=\) None \(\longleftrightarrow\) no-step conflict \((\) toS \((M, N, U, N o n e))\)
by (auto simp add: find-conflict-None conflict.simps)
```

definition do-conflict-step :: $\iota^{\prime} v v^{\prime} d c l_{W}$-restart-state-inv-st $\Rightarrow{ }^{\prime} v c d c l_{W}$-restart-state-inv-st \rangle where
do-conflict-step $S=$
(case S of
$(M, N, U$, None $) \Rightarrow$
(case find-conflict $M(N @ U)$ of
Some $a \Rightarrow(M, N, U$, Some a)
\mid None $\Rightarrow(M, N, U$, None $))$
| $S \Rightarrow S$)

```
lemma do-conflict-step:
do-conflict-step \(S \neq S \Longrightarrow\) conflict (toS \(S\) ) (toS (do-conflict-step \(S\) ))
apply (cases \(S\), cases raw-conflicting \(S\) )
unfolding conflict.simps do-conflict-step-def
by (auto dest!:find-conflict-Some split: option.splits)
lemma do-conflict-step-no-step:
do-conflict-step \(S=S \Longrightarrow\) no-step conflict (toS \(S\) )
apply (cases \(S\), cases raw-conflicting \(S\) )
unfolding do-conflict-step-def
using find-conflict-None-no-confl[of raw-trail \(S\) raw-init-clss \(S\) raw-learned-clss \(S\) ]
by (auto split: option.splits elim!: conflictE)
lemma do-conflict-step-option[simp]:
raw-conflicting \(S \neq\) None \(\Longrightarrow\) do-conflict-step \(S=S\)
unfolding do-conflict-step-def by (cases \(S\), cases raw-conflicting \(S\) ) auto
lemma do-conflict-step-raw-conflicting[dest]:
do-conflict-step \(S \neq S \Longrightarrow\) raw-conflicting (do-conflict-step \(S\) ) \(\neq\) None
unfolding do-conflict-step-def by (cases \(S\), cases raw-conflicting \(S\) ) (auto split: option.splits)
definition do-cp-step where
```

do-cp-step S =
(do-propagate-step o do-conflict-step) S

```
lemma cdcl \(_{W}\)-all-struct-inv-rough-state[simp]: cdcl \(W_{W}\)-all-struct-inv (toS (rough-state-of \(S\) )) using rough-state-of by auto
lemma [simp]: \(c d c l_{W}\)-all-struct-inv \((t o S S) \Longrightarrow\) rough-state-of \((\) state-of \(S)=S\)
by (simp add: state-of-inverse)

Skip fun do-skip-step :: 'v cdcl \(W_{W}\)-restart-state-inv-st \(\Rightarrow{ }^{\prime} v{ }^{\prime} c^{\prime} d_{W}\)-restart-state-inv-st where do-skip-step (Propagated L \(C \# L s, N, U\), Some \(D)=\) (if \(-L \notin\) set \(D \wedge D \neq[]\) then (Ls, \(N, U\), Some \(D\) ) else (Propagated LC \#Ls, N, U, Some D)) |
do-skip-step \(S=S\)
lemma do-skip-step:
do-skip-step \(S \neq S \Longrightarrow\) skip (toS \(S\) ) (toS (do-skip-step \(S)\) )
apply (induction \(S\) rule: do-skip-step.induct)
by (auto simp add: skip.simps)
lemma do-skip-step-no:
do-skip-step \(S=S \Longrightarrow\) no-step skip (toS \(S\) )
by (induction \(S\) rule: do-skip-step.induct)
(auto simp add: other split: if-split-asm elim: skipE)
lemma do-skip-step-raw-trail-is-None[iff]:
do-skip-step \(S=(a, b, c\), None \() \longleftrightarrow S=(a, b, c\), None \()\)
by (cases \(S\) rule: do-skip-step.cases) auto

Resolve fun maximum-level-code:: 'a literal list \(\Rightarrow\) ('a, 'a literal list) ann-lit list \(\Rightarrow\) nat where
maximum-level-code [] - = \(0 \mid\)
maximum-level-code \((L \# L s) M=\max (\) get-level \(M L)\) (maximum-level-code Ls \(M\) )
lemma maximum-level-code-eq-get-maximum-level[code, simp]:
maximum-level-code \(D M=\) get-maximum-level \(M\) (mset \(D\) )
by (induction D) (auto simp add: get-maximum-level-add-mset)
fun do-resolve-step :: 'v cdcl \({ }_{W}\)-restart-state-inv-st \(\Rightarrow{ }^{\prime} v{ }^{\prime} c d c l_{W}\)-restart-state-inv-st where
do-resolve-step (Propagated L C \(\mathrm{C} s, N, U\), Some \(D\) ) \(=\)
```

 (if -L set D ^ maximum-level-code (remove1 (-L) D) (Propagated L C # Ls) = count-decided Ls
 then (Ls,N,U,Some (remdups (remove1 L C @ remove1 (-L)D)))
 else (Propagated L C # Ls,N,U,Some D))
 do-resolve-step S=S
lemma do-resolve-step:
cdcl}\mp@subsup{W}{}{\prime}\mathrm{ -all-struct-inv (toS S) व do-resolve-step S \# S
\Longrightarrow ~ r e s o l v e ~ (t o S ~ S) ~ (t o S ~ (d o - r e s o l v e - s t e p ~ S)) ~
proof (induction S rule: do-resolve-step.induct)
case (1LCMNUD)
then have
-L \in set D and
M: maximum-level-code (remove1 (-L) D) (Propagated L C \# M) = count-decided M
by (cases mset D - {\#-L\#}={\#},

```
auto dest!: get-maximum-level-exists-lit-of-max-level[of-Propagated L C \# M] split: if-split-asm)+
have every-mark-is-a-conflict (toS (Propagated LC \# M, N, U, Some D))
using 1 (1) unfolding \(c d c l_{W}\)-all-struct-inv-def \(c d c l_{W}\)-conflicting-def by fast
then have \(L \in \operatorname{set} C\) by fastforce
then obtain \(C^{\prime}\) where \(C\) : mset \(C=\) add-mset \(L C^{\prime}\)
by (metis in-multiset-in-set insert-DiffM)
obtain \(D^{\prime}\) where \(D:\) mset \(D=\) add-mset \((-L) D^{\prime}\)
using \(\langle-L \in\) set \(D\rangle\) by (metis in-multiset-in-set insert-DiffM)
have \(D^{\prime} L: D^{\prime}+\{\#-L \#\}-\{\#-L \#\}=D^{\prime}\) by (auto simp add: multiset-eq-iff)
have \(C L\) : mset \(C-\{\# L \#\}+\{\# L \#\}=\) mset \(C\) using \(\langle L \in\) set \(C\rangle\) by (auto simp add: multiset-eq-iff)
have get-maximum-level (Propagated \(L\left(C^{\prime}+\{\# L \#\}\right) \#\) map convert \(\left.M\right) D^{\prime}=\) count-decided \(M\)
using \(M[\) simplified \(]\) unfolding maximum-level-code-eq-get-maximum-level C[symmetric] CL
by (metis \(D D^{\prime} L\left\langle a d d-m s e t L C^{\prime}=m s e t C 〕 a d d-m s e t-a d d\right.\)-single convert.simps \((1)\) get-maximum-level-map-convert list.simps(9))
then have
resolve
(map convert (Propagated LC \# M), mset '\# mset \(N\), mset '\# mset \(U\), Some (mset D)) ( map convert \(M\), mset ' \# mset \(N\), mset ‘ \# mset \(U\),
Some \((((\) mset \(D-\{\#-L \#\}) \cup \#(m s e t C-\{\# L \#\}))))\)
unfolding resolve.simps by (simp add: \(C\) D)
moreover have
(map convert (Propagated LC\#M), mset '\# mset \(N\), mset '\# mset \(U\), Some (mset D))
\(=\) toS (Propagated LC\#M,N,U, Some D)
by auto
moreover
have distinct-mset (mset \(C\) ) and distinct-mset (mset D)
using \(\left\langle c d c l_{W}\right.\)-all-struct-inv (toS (Propagated LC \(C M, N, U\), Some D)) >
unfolding \(\operatorname{cdcl}_{W}\)-all-struct-inv-def distinct-cdcl \(W_{W}\)-state-def by auto
then have \((\) mset \(C-\{\# L \#\}) \cup \#(\) mset \(D-\{\#-L \#\})=\) remdups-mset (mset \(C-\{\# L \#\}+(\) mset \(D-\{\#-L \#\}))\) by (auto simp: distinct-mset-rempdups-union-mset)
then have (map convert \(M\), mset ' \(\#\) mset \(N\), mset ' \(\#\) mset \(U\),
Some \(((\) mset \(D-\{\#-L \#\}) \cup \#(\) mset \(C-\{\# L \#\})))\)
\(=\) toS \((\) do-resolve-step (Propagated \(L C \# M, N, U\), Some D))
using \(\langle-L \in\) set \(D\rangle M\) by (auto simp: ac-simps)
ultimately show ?case
by \(\operatorname{simp}\)
qed auto
lemma do-resolve-step-no:
do-resolve-step \(S=S \Longrightarrow\) no-step resolve (toS \(S\) )
apply (cases \(S\); cases hd (raw-trail \(S\) );cases raw-trail \(S\); cases raw-conflicting \(S\) )
by (auto
elim!: resolveE split: if-split-asm
dest!: union-single-eq-member
simp del: in-multiset-in-set get-maximum-level-map-convert
simp: get-maximum-level-map-convert[symmetric] count-decided-def)
lemma rough-state-of-state-of-resolve \([\) simp \(]\) :
\(c d c l_{W}\)-all-struct-inv \((t o S S) \Longrightarrow\)
rough-state-of (state-of \((\) do-resolve-step \(S))=\) do-resolve-step \(S\)
apply (rule state-of-inverse)
apply (cases do-resolve-step \(S=S\) )
apply ( simp; fail)
by (metis (mono-tags, lifting) bj cdcl \({ }_{W}\)-all-struct-inv-inv do-resolve-step mem-Collect-eq other resolve)
lemma do-resolve-step-raw-trail-is-None[iff]:
do-resolve-step \(S=(a, b, c\), None \() \longleftrightarrow S=(a, b, c\), None \()\)
by (cases \(S\) rule: do-resolve-step.cases) auto

Backjumping lemma get-all-ann-decomposition-map-convert:
(get-all-ann-decomposition (map convert \(M\) )) = map \((\lambda(a, b)\). (map convert \(a\), map convert b)) (get-all-ann-decomposition \(M)\)
apply (induction \(M\) rule: ann-lit-list-induct)
apply simp
by (rename-tac L xs, case-tac get-all-ann-decomposition xs; auto)+
lemma do-backtrack-step:

\section*{assumes}
\(d b:\) do-backtrack-step \(S \neq S\) and
inv: cdcl \(_{W}\)-all-struct-inv (toS S)
shows backtrack (toS \(S\) ) (toS (do-backtrack-step \(S\) ))
proof (cases \(S\), cases raw-conflicting \(S\), goal-cases)
case ( \(1 M N U E\) )
then show ?case using \(d b\) by auto
next
case (2 MNUEC) note \(S=\) this(1) and confl \(=\) this(2)
have \(E: E=\) Some \(C\) using \(S\) confl by auto
obtain \(L j\) where fd: find-level-decomp MC[] (count-decided M) \(=\operatorname{Some}(L, j)\)
using \(d b\) unfolding \(S E\) by (cases \(C\) ) (auto split: if-split-asm option.splits list.splits annotated-lit.splits)
have
\(L \in\) set \(C\) and
\(j\) : get-maximum-level \(M(\) mset \((\) remove1 \(L C))=j\) and
levL: get-level \(M L=\) count-decided \(M\)
using find-level-decomp-some[OF fd] by auto
obtain \(C^{\prime}\) where \(C\) : mset \(C=\) add-mset \(L\) (mset \(C^{\prime}\) ) using \(\langle L \in\) set \(C\rangle\) by (metis ex-mset in-multiset-in-set insert-DiffM)
obtain M2 where M2: bt-cut j \(M=\) Some M2 using \(d b f d\) unfolding \(S E\) by (auto split: option.splits)
have no-dup \(M\) using inv unfolding \(\operatorname{cdcl}_{W}\)-all-struct-inv-def \(c d c l_{W}\)-M-level-inv-def \(S\) by (auto simp: comp-def)
then obtain M1 K c where
M1: M2 \(=\) Decided \(K \# M 1\) and lev-K: get-level \(M K=j+1\) and \(c: M=c @ M 2\)
using bt-cut-some-decomp[OF - M2] by (cases M2) auto
have \(j \leq\) count-decided \(M\) unfolding \(c j\) [symmetric]
by (metis (mono-tags, lifting) count-decided-ge-get-maximum-level)
have max-l-j: maximum-level-code \(C^{\prime} M=j\)
using \(d b f d\) M2 \(C\) unfolding \(S E\) by (auto
split: option.splits list.splits annotated-lit.splits
dest!: find-level-decomp-some)[1]
have get-maximum-level \(M\) (mset \(C) \geq\) count-decided \(M\)
using \(\langle L \in\) set \(C\rangle\) levL get-maximum-level-ge-get-level by (metis set-mset-mset)
moreover have get-maximum-level \(M(\) mset \(C) \leq\) count-decided \(M\)
using count-decided-ge-get-maximum-level by blast
ultimately have max-lev-count-dec: get-maximum-level \(M\) (mset \(C)=\) count-decided \(M\) by auto
```

have clss-C: <clauses (toS S)\modelspm mset C> and
M-C: <M =as CNot (mset C)\rangle and
lev-inv: cdcl}\mp@subsup{W}{}{-M-level-inv (toS S)
using inv unfolding cdcl W-all-struct-inv-def cdcl}\mp@subsup{W}{W}{}\mathrm{ -learned-clause-alt-def S E
cdclW-conflicting-def
by auto
obtain M2' where M2': (M2, M2') \in set (get-all-ann-decomposition M)
using bt-cut-in-get-all-ann-decomposition[OF <no-dup M` M2] by metis have decomp: (Decided K # (map convert M1), (map convert M2')) \in set (get-all-ann-decomposition (map convert M)) using imageI[of - - \lambda(a,b). (map convert a, map convert b),OF M2\ j unfolding S E M1 by (simp add: get-all-ann-decomposition-map-convert) have decomp': (Decided K # (map convert M1), (map convert M2')) \in set (get-all-ann-decomposition (raw-trail (toS S))) using imageI[of - - \lambda(a,b). (map convert a, map convert b), OF M2] j unfolding S E M1 by (simp add: get-all-ann-decomposition-map-convert) show ?case apply (rule backtrack}\mp@subsup{W}{W}{-rule[of \langletoS S\rangleL\remove1-mset L (mset C)\rangleK〈map convert M1\rangle\langlemap convert M2'> j]) subgoal using }\langleL\in\mathrm{ set C` unfolding S E M1 by auto
subgoal using M2' decomp unfolding S by auto
subgoal using levL unfolding S E M1 by auto
subgoal using <L \& set C` levL <get-maximum-level M (mset C) = count-decided M`
unfolding SE M1 by auto
subgoal using j unfolding S E M1 by auto
subgoal using <L \in set C> lev-K unfolding S E M1 by auto
subgoal using S confl fd M2 M1 decomp <L \in set C` by (auto simp: reduce-trail-to' M2 c)
subgoal using inv unfolding cdcl W-all-struct-inv-def S by fast
subgoal using inv unfolding cdcl W-all-struct-inv-def S by fast
subgoal using inv unfolding cdclW-all-struct-inv-def S by fast
done
qed

```
lemma map-eq-list-length:
    map \(f L=L^{\prime} \Longrightarrow\) length \(L=\) length \(L^{\prime}\)
    by auto
lemma map-mmset-of-mlit-eq-cons:
    assumes map convert \(M=a @ c\)
    obtains \(a^{\prime} c^{\prime}\) where
        \(M=a^{\prime} @ c^{\prime}\) and
        \(a=\) map convert \(a^{\prime}\) and
    \(c=\) map convert \(c^{\prime}\)
using that[of take (length a) M drop (length a) M]
assms by (metis append-eq-conv-conj append-take-drop-id drop-map take-map)
lemma Decided-convert-iff:

Decided \(K=\) convert \(z a \longleftrightarrow z a=\) Decided \(K\)
by（cases za）auto
declare conflict－is－false－with－level－def［simp del］
lemma do－backtrack－step－no：
assumes
\(d b:\) do－backtrack－step \(S=S\) and
inv：\(c d c l_{W}\)－all－struct－inv \((t o S S)\) and
\(n s:\langle n o-s t e p\) skip \((\) to \(S\) S \()\rangle\langle n o-s t e p ~ r e s o l v e ~(t o S ~ S)\rangle\)
shows no－step backtrack（toS S）
proof（rule ccontr，cases \(S\) ，cases raw－conflicting \(S\) ，goal－cases）
case 1
then show ？case using \(d b\) by（auto split：option．splits elim：backtrackE）
next
case（2 \(M N U E C\) ）note \(b t=\) this（1）and \(S=\) this（2）and confl \(=\) this（3）
have \(E: E=\) Some \(C\) using \(S\) confl by auto
obtain \(T^{\prime}\) where \(\left\langle\right.\) simple－backtrack（toS \(S\) ）\(T^{\prime}\) ’
using no－analyse－backtrack－Ex－simple－backtrack［of 〈toS S〉］
bt inv ns unfolding \(\operatorname{cdcl}_{W}\)－all－struct－inv－def by meson
then obtain \(K j\) M1 M2 \(L D\) where
CE：map－option mset（raw－conflicting \(S\) ）\(=\) Some（add－mset \(L D\) ）and
decomp：（Decided K \＃M1，M2）\(\in\) set（get－all－ann－decomposition（raw－trail \(S\) ））and
levL：get－level（raw－trail S）\(L=\) count－decided（raw－trail（toS S））and
\(k\) ：get－level（raw－trail \(S\) ）\(L=\) get－maximum－level（raw－trail \(S\) ）（add－mset L D）and
\(j\) ：get－maximum－level（raw－trail \(S\) ）\(D \equiv j\) and
lev－K：get－level（raw－trail S）\(K=S u c j\)
apply clarsimp
apply（elim simple－backtrackE）
apply（cases \(S\) ）
by（auto simp add：get－all－ann－decomposition－map－convert reduce－trail－to
Decided－convert－iff）
obtain \(c\) where \(c\) ：raw－trail \(S=c\)＠M2＠Decided \(K \#\) M1
using decomp by blast
have \(n\)－d：no－dup \(M\)
using inv \(S\) unfolding \(c d c l_{W}\)－all－struct－inv－def \(c d c l_{W}\)－M－level－inv－def
by（auto simp：comp－def）
then have count－decided（raw－trail \((\) toS \(S\) ））\(>j\)
using \(j\) count－decided－ge－get－maximum－level［of raw－trail \(S D\) ］
count－decided－ge－get－level［of raw－trail S K］decomp lev－K
unfolding \(k S\) by（auto simp：get－all－ann－decomposition－map－convert）
have \(C D\) ：mset \(C=\) add－mset \(L D\)
using CE confl by auto
then have \(L-C:\langle L \in\) set \(C\rangle\)
using set－mset－mset by fastforce
have find－level－decomp MC［］（count－decided（raw－trail \((\) toS \(S))) \neq\) None
apply rule
apply（drule find－level－decomp－none［of \(\left.\left.--L_{\text {〈remove1 }}^{L} C\right\rangle\right]\) ）
using \(L\)－C CD count－decided（raw－trail \((\) toS \(S))>j\) mset－eq－setD \(S\) levL unfolding \(k\)［symmetric］
\(j\)［symmetric］
by（auto simp：ac－simps）
then obtain \(L^{\prime} j^{\prime}\) where \(f d\)－some：find－level－decomp MC［（count－decided \((\) raw－trail \((\) toS \(\left.S))\right)=\) Some（ \(L^{\prime}, j^{\prime}\) ）
by（cases find－level－decomp MC［］（count－decided（raw－trail（toS S））））auto
have \(L^{\prime}: L^{\prime}=L\)
```

proof (rule ccontr)
assume \neg ?thesis
then have L' }\mp@subsup{L}{}{\prime}\#
using fd-some find-level-decomp-some set-mset-mset
by (metis CD insert-iff set-mset-add-mset-insert)
then have get-level M L'\leqget-maximum-level M D
using get-maximum-level-ge-get-level by blast
then show False
using <count-decided (raw-trail (toS S)) > j> j
find-level-decomp-some[OF fd-some] S by auto
qed
then have j': j'=j using find-level-decomp-some[OF fd-some] jS CD by auto
obtain c' M1' where cM: M = c' @ Decided K \# M1'
apply (rule map-mmset-of-mlit-eq-cons[of M map convert (c @ M2)
map convert (Decided K \# M1)])
using c S apply simp
apply (rule map-mmset-of-mlit-eq-cons[of - map convert [Decided K] map convert M1])
apply auto[]
apply (rename-tac a b' aa b, case-tac aa)
apply auto[]
apply (rename-tac a b' aa b, case-tac aa)
by auto
have btc-none: bt-cut j M}\not=\mathrm{ None
apply (rule bt-cut-not-none[of M])
using n-d cM S lev-K S apply blast+
using lev-K S by auto
show ?case using db n-d fd-some L' j' btc-none unfolding SE
by (auto dest: bt-cut-some-decomp)
qed
lemma rough-state-of-state-of-backtrack[simp]:
assumes inv: cdcl}\mp@subsup{W}{W}{-all-struct-inv (toS S)
shows rough-state-of (state-of (do-backtrack-step S)) = do-backtrack-step S
proof (rule state-of-inverse)
consider
(step) backtrack (toS S) (toS (do-backtrack-step S))|
(0) do-backtrack-step S=S
using do-backtrack-step inv by blast
then show do-backtrack-step S \in{S.cdcl W-all-struct-inv (toS S)}
proof cases
case 0
thus ?thesis using inv by simp
next
case step
then show ?thesis
using inv

```

```

 qed
 qed

```

Decide fun do-decide-step where
do-decide-step \((M, N, U, N o n e)=\)
    (case find-first-unused-var \(N\) (lits-of-l M) of
    None \(\Rightarrow(M, N, U, N o n e)\)
    \(\mid\) Some \(L \Rightarrow(\) Decided \(L \# M, N, U\), None \()) \mid\)
```

do-decide-step S=S
lemma do-decide-step:
do-decide-step S\not=S\Longrightarrow decide (toS S) (toS (do-decide-step S))
apply (cases S, cases raw-conflicting S)
defer
apply (auto split: option.splits simp add: decide.simps
dest: find-first-unused-var-undefined find-first-unused-var-Some
intro: atms-of-atms-of-ms-mono)[1]
proof -
fix a :: ('a, 'a literal list) ann-lit list and
b :: 'a literal list list and c:: 'a literal list list and
e :: 'a literal list option
{
fix a :: ('a, 'a literal list) ann-lit list and
b :: 'a literal list list and c:: 'a literal list list and
x2 :: 'a literal and m :: 'a literal list
assume a1:m}\in\mathrm{ set b
assume x2 \in set m
then have f2: atm-of x2 \in atms-of (mset m)
by simp
have }\Lambdaf.(fm::'a literal multiset) \inf' set b
using a1 by blast
then have \f. (atms-of (f m)::'a set)\subseteqatms-of-ms (f set b)
using atms-of-atms-of-ms-mono by blast
then have \nnf.(n::'a) \inatms-of-ms (f'set b) \vee n\&atms-of (fm)
by (meson contra-subsetD)
then have atm-of x2 \in atms-of-ms (mset'set b)
using f2 by blast
} note H= this
{
fix m :: 'a literal list and x2
have m}\in\mathrm{ set }b\Longrightarrowx2 \in set m\Longrightarrowx2 \# lits-of-l a \Longrightarrow - x2 \# lits-of-l a \Longrightarrow
\existsaa\inset b. ᄀatm-of'set aa \subseteqatm-of 'lits-of-l a
by (meson atm-of-in-atm-of-set-in-uminus contra-subsetD rev-image-eqI)
} note H'}=\mathrm{ this
assume do-decide-step S}=S\mathrm{ and
S = (a,b,c,e) and
raw-conflicting S=None
then show decide (toSS) (toS (do-decide-step S))
using H H' by (auto split:option.splits simp: decide.simps defined-lit-map lits-of-def
image-image atm-of-eq-atm-of dest!: find-first-unused-var-Some)
qed
lemma do-decide-step-no:
do-decide-step S=S\Longrightarrow no-step decide (toS S)
apply (cases S, cases raw-conflicting S)
apply (auto simp: atms-of-ms-mset-unfold Decided-Propagated-in-iff-in-lits-of-l lits-of-def
dest!: atm-of-in-atm-of-set-in-uminus
elim!: decideE
split: option.splits)+
using atm-of-eq-atm-of by blast+

```
lemma rough-state-of-state-of-do-decide-step[simp]:
```

 cdcl W-all-struct-inv (toS S)\Longrightarrow rough-state-of (state-of (do-decide-step S)) = do-decide-step S
 proof (subst state-of-inverse, goal-cases)
case 1
then show ?case
by (cases do-decide-step S=S)
(auto dest: do-decide-step decide other intro: cdclW-all-struct-inv-inv)
qed simp
lemma rough-state-of-state-of-do-skip-step[simp]:
cdcl W-all-struct-inv (toS S)\Longrightarrow rough-state-of (state-of (do-skip-step S)) = do-skip-step S
apply (subst state-of-inverse, cases do-skip-step S=S)
apply simp
by (blast dest: other skip bj do-skip-step cdcl W-all-struct-inv-inv)+

```

\section*{Code generation}

Type definition There are two invariants: one while applying conflict and propagate and one for the other rules
```

declare rough-state-of-inverse[simp add]
definition Con where
Con xs = state-of (if cdcl W-all-struct-inv (toS (fst xs, snd xs)) then xs
else ([], [], [], None))
lemma [code abstype]:
Con (rough-state-of S)}=
using rough-state-of[of S] unfolding Con-def by simp
definition do-cp-step' where
do-cp-step'}S=\mathrm{ state-of (do-cp-step(rough-state-of S))
typedef 'v cdcl W-restart-state-inv-from-init-state =
{S:: 'v cdcl W-restart-state-inv-st. cdcl W-all-struct-inv (toS S)
\wedge cdcl W-stgy** (S0-cdcl W-restart (raw-init-clss (toS S))) (toS S)}
morphisms rough-state-from-init-state-of state-from-init-state-of
proof
show ([],[], [], None) \in {S.cdclW-all-struct-inv (toS S)
\wedge cdcl W-stgy** (S0-cdcl W-restart (raw-init-clss (toS S))) (toS S)}
by (auto simp add: cdclW-all-struct-inv-def)
qed
instantiation cdclW-restart-state-inv-from-init-state :: (type) equal
begin
definition equal-cdclW-restart-state-inv-from-init-state :: 'v cdclW-restart-state-inv-from-init-state }
'v cdclW-restart-state-inv-from-init-state }=>\mathrm{ bool where
equal-cdcl W-restart-state-inv-from-init-state S S'`}
(rough-state-from-init-state-of S= rough-state-from-init-state-of S')
instance
by standard (simp add: rough-state-from-init-state-of-inject
equal-cdcl W-restart-state-inv-from-init-state-def)
end
definition ConI where
ConI S = state-from-init-state-of (if cdcl W-all-struct-inv (toS (fst S, snd S))
\wedge cdcl W-stgy** (SO-cdcl W-restart (raw-init-clss (toS S))) (toS S) then S else ([], [], [],None))

```
lemma [code abstype]:
ConI (rough-state-from-init-state-of \(S\) ) \(=S\)
using rough-state-from-init-state-of \([\) of \(S\) ] unfolding ConI-def
by (simp add: rough-state-from-init-state-of-inverse)
definition \(i d\)-of-I-to:: 'v cdcl \(_{W}\)-restart-state-inv-from-init-state \(\Rightarrow{ }^{\prime} v c d c l_{W}\)-restart-state-inv where id-of-I-to \(S=\) state-of (rough-state-from-init-state-of \(S\) )
lemma [code abstract]:
rough-state-of (id-of-I-to \(S\) ) = rough-state-from-init-state-of \(S\)
unfolding id-of-I-to-def using rough-state-from-init-state-of \([\) of \(S]\) by auto
lemma in-clauses-rough-state-of-is-distinct:
\(c \in\) set (raw-init-clss (rough-state-of \(S\) ) @ raw-learned-clss (rough-state-of \(S\) )) \(\Longrightarrow\) distinct c
apply (cases rough-state-of \(S\) )
using rough-state-of \([\) of \(S]\) by (auto simp add: distinct-mset-set-distinct \(c d c l_{W}\)-all-struct-inv-def distinct-cdcl \({ }_{W}\)-state-def)

The other rules fun do-if-not-equal where
do-if-not-equal [] \(S=S\) |
do-if-not-equal \((f \# f s) S=\)
(let \(T=f S\) in
if \(T \neq S\) then \(T\) else do-if-not-equal fs \(S\) )
fun do-cdcl-step where
do-cdcl-step \(S=\)
do-if-not-equal [do-conflict-step, do-propagate-step, do-skip-step, do-resolve-step,
do-backtrack-step, do-decide-step] \(S\)
lemma do-cdcl-step:
assumes inv: \(c d c l_{W}\)-all-struct-inv \((t o S S\) ) and
st: do-cdcl-step \(S \neq S\)
shows \(c d c l_{W}\)-stgy (toS \(S\) ) ( toS (do-cdcl-step \(\left.S\right)\) )
using st by (auto simp add: do-skip-step do-resolve-step do-backtrack-step do-decide-step
do-conflict-step
do-propagate-step do-conflict-step-no-step do-propagate-step-no-step \(c d c l_{W}\)-stgy.intros \(c d c l_{W}\)-bj.intros \(c d c l_{W}\)-o.intros inv Let-def)
lemma do-cdcl-step-no:
assumes inv: \(c d c l_{W}\)-all-struct-inv (toS \(S\) ) and
st: do-cdcl-step \(S=S\)
shows no-step cdcl \(_{W}(t o S S)\)
using st inv by (auto split: if-split-asm elim: cdcl \(_{W}\)-bjE
simp add: Let-def \(c d c l_{W}\)-bj.simps \(c d c l_{W} . \operatorname{simps}\) do-conflict-step do-propagate-step do-conflict-step-no-step do-propagate-step-no-step elim!: cdcl \(_{W}\)-o.cases dest!: do-skip-step-no do-resolve-step-no do-backtrack-step-no do-decide-step-no)
lemma rough-state-of-state-of-do-cdcl-step[simp]:
rough-state-of (state-of (do-cdcl-step (rough-state-of \(S)\) )) do-cdcl-step (rough-state-of \(S\) )
proof (cases do-cdcl-step (rough-state-of \(S\) ) \(=\) rough-state-of \(S\) )
case True
then show ?thesis by simp
next
case False
have \(c d c l_{W}(t o S(\) rough-state-of \(S))(\) toS \((\) do-cdcl-step \((r o u g h-s t a t e-o f ~ S)))\)
using False \(c d c l_{W}\)-all-struct-inv-rough-state \(c d c l_{W}\)-stgy-cdcl \({ }_{W}\) do-cdcl-step by blast
then have \(c d c l_{W}\)-all-struct-inv (toS (do-cdcl-step (rough-state-of \(S\) )) )
using \(c d c l_{W}\)-all-struct-inv-inv \(c d c l_{W}\)-all-struct-inv-rough-state \(c d c l_{W}\)-cdcl \(W_{W}\)-restart by blast
then show?thesis
by (simp add: CollectI state-of-inverse)
qed
definition do-cdcl \({ }_{W}\)-stgy-step :: 'v \(c d c l_{W}\)-restart-state-inv \(\Rightarrow{ }^{\prime} v \quad c d c l_{W}\)-restart-state-inv where do-cdcl \({ }_{W}\)-stgy-step \(S=\)
state-of (do-cdcl-step (rough-state-of \(S\) ))
lemma rough-state-of-do-cdcl \({ }_{W}\)-stgy-step [code abstract]:
rough-state-of \(\left(\right.\) do-cdcl \(_{W}\)-stgy-step \(\left.S\right)=\) do-cdcl-step (rough-state-of \(S\) )
apply (cases do-cdcl-step (rough-state-of \(S\) ) = rough-state-of \(S\) )
unfolding \(d o-c d c l_{W}\)-stgy-step-def apply simp
using do-cdcl-step[of rough-state-of \(S\) ] rough-state-of-state-of-do-cdcl-step by blast
definition do-cdcl \(_{W}\)-stgy-step \({ }^{\prime}\) where
do-cdcl \(W_{W}\)-stgy-step \({ }^{\prime} S=\) state-from-init-state-of (rough-state-of (do-cdcl \({ }_{W}\)-stgy-step (id-of-I-to \(S\) )) )
Correction of the transformation lemma \(d o-c d c l_{W}\)-stgy-step:
assumes \(d o\)-cdcl \(W_{W}\)-stgy-step \(S \neq S\)
shows \(c d c l_{W}\)-stgy \((\) toS \((\) rough-state-of \(S))\left(t o S\left(\right.\right.\) rough-state-of \(\left(d o-c d c l_{W}\right.\)-stgy-step \(\left.\left.\left.S\right)\right)\right)\)
proof -
have do-cdcl-step (rough-state-of \(S\) ) \(\neq\) rough-state-of \(S\)
by (metis (no-types) assms do-cdcl \(W_{W}\)-stgy-step-def rough-state-of-inject
rough-state-of-state-of-do-cdcl-step)
then have \(c d c l_{W}\)-stgy ( \(t o S\) (rough-state-of \(\left.S\right)\) ) (toS (do-cdcl-step (rough-state-of \(S\) ))) using cdcl \(_{W}\)-all-struct-inv-rough-state do-cdcl-step by blast
then show? thesis by (metis (no-types) do-cdcl \(W_{W}\)-stgy-step-def rough-state-of-state-of-do-cdcl-step)
qed
lemma length-raw-trail-toS[simp]:
length \((\) raw-trail \((\) toS \(S))=\) length \((\) raw-trail \(S)\)
by (cases \(S\) ) auto
lemma raw-conflicting-noTrue-iff-toS[simp]:
raw-conflicting \((\) to \(S S) \neq\) None \(\longleftrightarrow\) raw-conflicting \(S \neq\) None
by (cases \(S\) ) auto
lemma raw-trail-toS-neq-imp-raw-trail-neq:
raw-trail \((\) toS \(S) \neq\) raw-trail \(\left(\right.\) to \(\left.S S^{\prime}\right) \Longrightarrow\) raw-trail \(S \neq\) raw-trail \(S^{\prime}\)
by (cases \(S\), cases \(S^{\prime}\) ) auto
lemma do-cp-step-neq-raw-trail-increase:
\(\exists\) c. raw-trail \((\) do-cp-step \(S)=c\) @ raw-trail \(S \wedge(\forall m \in\) set \(c . \neg\) is-decided \(m)\)
by (cases \(S\), cases raw-conflicting \(S\) )
(auto simp add: do-cp-step-def do-conflict-step-def do-propagate-step-def split: option.splits)
lemma do-cp-step-raw-conflicting:
raw-conflicting (rough-state-of \(S\) ) \(\neq\) None \(\Longrightarrow\) do-cp-step \({ }^{\prime} S=S\)
unfolding do-cp-step'-def do-cp-step-def by simp
lemma do-decide-step-not-raw-conflicting-one-more-decide:
assumes
raw-conflicting \(S=\) None and
do-decide-step \(S \neq S\)
shows Suc (length (filter is-decided (raw-trail S)))
\(=\) length \((\) filter is-decided (raw-trail (do-decide-step \(S)\) ))
using assms by (cases \(S\) ) (auto simp: Let-def split: if-split-asm option.splits
dest!: find-first-unused-var-Some-not-all-incl)
lemma do-decide-step-not-raw-conflicting-one-more-decide-bt:
assumes raw-conflicting \(S \neq\) None and
do-decide-step \(S \neq S\)
shows length (filter is-decided (raw-trail S)) < length (filter is-decided (raw-trail (do-decide-step \(S\) )) )
using assms by (cases \(S\), cases raw-conflicting \(S\) )
(auto simp add: Let-def split: if-split-asm option.splits)
lemma count-decided-raw-trail-toS:
count-decided (raw-trail \((\) toS \(S))=\) count-decided \((\) raw-trail \(S)\)
by (cases \(S\) ) (auto simp: comp-def)
lemma rough-state-of-state-of-do-skip-step-rough-state-of [simp]:
rough-state-of (state-of (do-skip-step (rough-state-of \(S)\) ) \(=\) do-skip-step (rough-state-of \(S\) )

lemma raw-conflicting-do-resolve-step-iff[iff]:
raw-conflicting (do-resolve-step \(S\) ) \(=\) None \(\longleftrightarrow\) raw-conflicting \(S=\) None
by (cases \(S\) rule: do-resolve-step.cases)
(auto simp add: Let-def split: option.splits)
lemma raw-conflicting-do-skip-step-iff \([\) iff]:
raw-conflicting (do-skip-step \(S\) ) =None \(\longleftrightarrow\) raw-conflicting \(S=\) None
by (cases \(S\) rule: do-skip-step.cases)
(auto simp add: Let-def split: option.splits)
lemma raw-conflicting-do-decide-step-iff[iff]:
raw-conflicting \((\) do-decide-step \(S)=\) None \(\longleftrightarrow\) raw-conflicting \(S=\) None
by (cases \(S\) rule: do-decide-step.cases)
(auto simp add: Let-def split: option.splits)
lemma raw-conflicting-do-backtrack-step-imp[simp]:
do-backtrack-step \(S \neq S \Longrightarrow\) raw-conflicting (do-backtrack-step \(S\) ) \(=\) None
apply (cases \(S\) rule: do-backtrack-step.cases)
apply (auto simp add: Let-def split: option.splits list.splits
) - TODO splitting should solve the goal
apply (rename-tac dec tr)
by (case-tac dec) auto
lemma do-skip-step-eq-iff-raw-trail-eq:
do-skip-step \(S=S \longleftrightarrow\) raw-trail (do-skip-step \(S\) ) \(=\) raw-trail \(S\)
by (cases \(S\) rule: do-skip-step.cases) auto
lemma do-decide-step-eq-iff-raw-trail-eq:
do-decide-step \(S=S \longleftrightarrow\) raw-trail (do-decide-step \(S\) ) raw-trail \(S\)
by (cases \(S\) rule: do-decide-step.cases) (auto split: option.split)
lemma do-backtrack-step-eq-iff-raw-trail-eq:
assumes no-dup (raw-trail \(S\) )
shows do-backtrack-step \(S=S \longleftrightarrow\) raw-trail (do-backtrack-step \(S\) ) \(=\) raw-trail \(S\)
using assms apply (cases \(S\) rule: do-backtrack-step.cases)
apply (auto split: option.split list.splits
simp: comp-def
dest!: bt-cut-in-get-all-ann-decomposition) - TODO splitting should solve the goal apply (rename-tac dec tr tra)
by (case-tac dec) auto
lemma do-resolve-step-eq-iff-raw-trail-eq:
do-resolve-step \(S=S \longleftrightarrow\) raw-trail (do-resolve-step \(S\) ) \(=\) raw-trail \(S\)
by (cases \(S\) rule: do-resolve-step.cases) auto
lemma \(d o-c d c l_{W}\)-stgy-step-no:
assumes \(S\) : do-cdcl \(_{W}\)-stgy-step \(S=S\)
shows no-step cdcl \({ }_{W}\)-stgy (toS (rough-state-of \(S\) ))
proof -
have do-cdcl-step (rough-state-of \(S\) ) \(=\) rough-state-of \(S\)
by (metis assms rough-state-of-do-cdcl \(W_{W}\)-stgy-step)
then show ?thesis
using \(c d c l_{W}\)-all-struct-inv-rough-state \(c d c l_{W}\)-stgy-cdcl \(W_{W}\) do-cdcl-step-no by blast
qed
lemma toS-rough-state-of-state-of-rough-state-from-init-state-of [simp]:
toS (rough-state-of (state-of (rough-state-from-init-state-of \(S\) )) )
\(=t o S\) (rough-state-from-init-state-of \(S\) )
using rough-state-from-init-state-of [of \(S\) ] by (auto simp add: state-of-inverse)
lemma \(c d c l_{W}\)-stgy-is-rtranclp-cdcl \({ }_{W}\)-restart:
\(c d c l_{W}\)-stgy \(S T \Longrightarrow\) cdcl \(_{W}\)-restart \({ }^{* *} S T\)
by (simp add: \(c d c l_{W}\)-stgy-tranclp-cdcl \(W_{W}\)-restart rtranclp-unfold)
lemma \(c d c l_{W}\)-stgy-init-raw-init-clss:
\(c d c l_{W}\)-stgy \(S T \Longrightarrow \operatorname{cdcl}_{W}\)-M-level-inv \(S \Longrightarrow\) raw-init-clss \(S=\) raw-init-clss \(T\)
using \(\mathrm{cdcl}_{W}\)-stgy-no-more-init-clss by blast
lemma clauses-toS-rough-state-of-do-cdcl \(W_{W}\)-stgy-step[simp]:
raw-init-clss (toS (rough-state-of (do-cdcl \(W_{W}\)-stgy-step (state-of (rough-state-from-init-state-of \(\left.S\right)\) ))))

apply (cases do-cdcl \({ }_{W}\)-stgy-step (state-of ?S) \(=\) state-of ?S)
apply simp
by (metis cdcl \({ }_{W}\)-stgy-no-more-init-clss do-cdcl \({ }_{W}\)-stgy-step
toS-rough-state-of-state-of-rough-state-from-init-state-of)
lemma rough-state-from-init-state-of-do-cdcl \({ }_{W}\)-stgy-step \({ }^{[ }\)[code abstract]:
rough-state-from-init-state-of (do-cdcl \({ }_{W}\)-stgy-step \(\left.{ }^{\prime} S\right)=\) rough-state-of \(\left(\right.\) do-cdcl \(_{W}\)-stgy-step (id-of-I-to S))
proof -
let \(? S=(\) rough-state-from-init-state-of \(S)\)
have \(c d c l_{W}\)-stgy** \(\left(S 0\right.\)-cdcl \(W_{W}\)-restart (raw-init-clss (toS (rough-state-from-init-state-of \(S\) )))) (toS (rough-state-from-init-state-of \(S\) ))
using rough-state-from-init-state-of \([\) of \(S]\) by auto
moreover have \(c d c l_{W}\)-stgy**
(toS (rough-state-from-init-state-of \(S\) ))
(toS (rough-state-of ( \(d o\) - \(c d c l_{W}\)-stgy-step
(state-of (rough-state-from-init-state-of \(S))\) )))
using \(d o-c d c l_{W}\)-stgy-step[of state-of ?S]
by (cases do-cdcl \({ }_{W}\)-stgy-step (state-of ?S) \(=\) state-of ?S) auto
ultimately show ?thesis
unfolding do-cdcl \(_{W}\)-stgy-step'-def id-of-I-to-def
by (auto intro!: state-from-init-state-of-inverse)
qed
All rules together function do-all-cdcl \(_{W}-s t g y\) where do-all-cdcl \({ }_{W}\)-stgy \(S=\)
(let \(T=\) do-cdcl \(_{W}\)-stgy-step \({ }^{\prime} S\) in
if \(T=S\) then \(S\) else do-all-cdcl \({ }_{W}\)-stgy \(T\) )
by fast+
termination
proof (relation \(\{(T, S)\).
\(\left(c d c l_{W}\right.\)-restart-measure (toS (rough-state-from-init-state-of \(\left.T\right)\) ),
\(c d c l_{W}\)-restart-measure (toS (rough-state-from-init-state-of \(\left.S\right)\) ))
\(\in\) lexn less-than 3\}, goal-cases)
case 1
show ?case by (rule wf-if-measure-f) (auto intro!: wf-lexn wf-less)
next
case (2 \(S T\) ) note \(T=\) this(1) and \(S T=\) this(2)
let ? \(S=\) rough-state-from-init-state-of \(S\)
have \(S: c d c l_{W}\)-stgy** \(\left(S 0\right.\)-cdcl \(W_{W}\)-restart (raw-init-clss (toS ?S))) (toS ?S)
using rough-state-from-init-state-of \([\) of \(S]\) by auto
moreover have \(\operatorname{cdcl}_{W}\)-stgy (toS (rough-state-from-init-state-of \(S\) ))
(toS (rough-state-from-init-state-of \(T\) ))
proof -
have \(\bigwedge c\). rough-state-of \((\) state-of \((\) rough-state-from-init-state-of \(c))=\)
rough-state-from-init-state-of c
using rough-state-from-init-state-of state-of-inverse by fastforce
then have diff: do-cdcl \({ }_{W}\)-stgy-step (state-of (rough-state-from-init-state-of \(S\) )) \(\neq\) state-of (rough-state-from-init-state-of \(S\) )
using \(S T T\) by (metis (no-types) id-of-I-to-def rough-state-from-init-state-of-inject rough-state-from-init-state-of-do-cdcl \({ }_{W}\)-stgy-step \({ }^{\prime}\) )
have rough-state-of \(\left(\right.\) do-cdcl \(_{W}\)-stgy-step (state-of (rough-state-from-init-state-of \(\left.S\right)\) )) \(=\) rough-state-from-init-state-of \(\left(d o-c d c l_{W}\right.\)-stgy-step \(\left.{ }^{\prime} S\right)\)
by (simp add: id-of-I-to-def rough-state-from-init-state-of-do-cdcl \({ }_{W}\)-stgy-step \({ }^{\prime}\) )
then show ?thesis
using \(d o\) - \(c d c l_{W}\)-stgy-step \(T\) diff unfolding \(i d\)-of-I-to-def do-cdcl \(W_{W}\)-stgy-step by fastforce

\section*{qed}
moreover have invs: \(c d c l_{W}\)-all-struct-inv (toS (rough-state-from-init-state-of \(S\) ))
using rough-state-from-init-state-of \([\) of \(S]\) by auto
moreover \{
have \(c d c l_{W}\)-all-struct-inv (S0-cdcl \({ }_{W}\)-restart (raw-init-clss (toS (rough-state-from-init-state-of \(\left.S\right)\) )) )
using invs by (cases rough-state-from-init-state-of \(S\) )
(auto simp add: \(c d c l_{W}\)-all-struct-inv-def distinct-cdcl \(W_{W}\)-state-def)
then have <no-smaller-propa (toS (rough-state-from-init-state-of \(S\) )) >
using rtranclp-cdcl \({ }_{W}\)-stgy-no-smaller-propa[OF S]
by (auto simp: empty-trail-no-smaller-propa) \}
ultimately show ?case
using tranclp-cdcl \({ }_{W}\)-stgy-S0-decreasing
by (auto intro!: cdcl \({ }_{W}\)-stgy-step-decreasing[of ]
simp del: cdcl \(_{W}\)-restart-measure.simps)
qed
thm do-all-cdcl \({ }_{W}\)-stgy.induct
lemma do-all-cdcl \({ }_{W}\)-stgy-induct:
```

 (\bigwedgeS. (do-cdcl W-stgy-step }\mp@subsup{}{}{\prime}S\not=S\LongrightarrowP(do-cdc\mp@subsup{l}{W}{}-\mp@subsup{\mathrm{ stgy-step }}{}{\prime}S))\LongrightarrowPS)\LongrightarrowPa
 using do-all-cdcl W-stgy.induct by metis
 lemma no-step-cdcl}\mp@subsup{W}{}{-stgy-cdcl}\mp@subsup{W}{W}{}-restart-all:
fixes S :: 'a cdcl W-restart-state-inv-from-init-state
shows no-step cdcl W-stgy (toS (rough-state-from-init-state-of (do-all-cdcl W-stgy S)))
apply (induction S rule: do-all-cdcl W-stgy-induct)
apply (rename-tac S, case-tac do-cdclW-stgy-step' S = S)
proof -
fix Sa :: 'a cdcl W-restart-state-inv-from-init-state
assume a1: \neg do-cdclW-stgy-step'}Sa\not=S
{fix pp
have (if True then Sa else do-all-cdcl}\mp@subsup{W}{W}{}-stgy Sa)= do-all-cdclW-stgy Sa
using a1 by auto
then have }\neg\mp@subsup{cdcl}{W}{}\mathrm{ -stgy (toS (rough-state-from-init-state-of (do-all-cdclW-stgy Sa))) pp
using a1 by (metis (no-types) do-cdcl W-stgy-step-no id-of-I-to-def
rough-state-from-init-state-of-do-cdcl W-stgy-step' rough-state-of-inverse) }
then show no-step cdcl W-stgy (toS (rough-state-from-init-state-of (do-all-cdcl W}\mp@subsup{W}{W}{}\mathrm{ -stgy Sa)))
by fastforce
next
fix Sa :: 'a cdcl W-restart-state-inv-from-init-state
assume a1: do-cdcl W-stgy-step' Sa\not=Sa
\Longrightarrow ~ n o - s t e p ~ c d c l ~ W - s t g y ~ (t o S ~ (r o u g h - s t a t e - f r o m - i n i t - s t a t e - o f ~
(do-all-cdcl W-stgy (do-cdcl }\mp@subsup{W}{W}{}\mathrm{ -stgy-step'}\mp@subsup{}{}{\prime}Sa)))
assume a2: do-cdcl W-stgy-step}\mp@subsup{}{}{\prime}Sa\not=S
have do-all-cdcl W-stgy Sa = do-all-cdcl W-stgy (do-cdcl }\mp@subsup{W}{W}{}-\mp@subsup{\mathrm{ stgy-step' }}{}{\prime}Sa
by (metis (full-types) do-all-cdcl W-stgy.simps)
then show no-step cdcl W-stgy (toS (rough-state-from-init-state-of (do-all-cdcl W-stgy Sa)))
using a2 a1 by presburger
qed
lemma do-all-cdcl W-stgy-is-rtranclp-cdcl W-stgy:
cdcl}\mp@subsup{W}{W}{-stgy** (toS (rough-state-from-init-state-of S))
(toS (rough-state-from-init-state-of (do-all-cdcl W-stgy S)))
proof (induction S rule:do-all-cdcl W-stgy-induct)
case (1 S) note IH = this(1)
show ?case
proof (cases do-cdcl W}\mp@subsup{W}{}{-stgy-step}\mp@subsup{}{}{\prime}S=S
case True
then show ?thesis by simp
next
case False
have f2: do-cdcl W-stgy-step (id-of-I-to S) = id-of-I-to S }
rough-state-from-init-state-of (do-cdcl W-stgy-step' S)
= rough-state-of (state-of (rough-state-from-init-state-of S))
using rough-state-from-init-state-of-do-cdcl W-stgy-step'
by (simp add: id-of-I-to-def rough-state-from-init-state-of-do-cdcl W-stgy-step')
have f3: do-all-cdcl W-stgy S = do-all-cdcl W-stgy (do-cdcl }\mp@subsup{W}{W}{-stgy-step'}S
by (metis (full-types) do-all-cdcl W}\mp@subsup{W}{}{-stgy.simps)
have cdcl}\mp@subsup{W}{W}{-stgy (toS (rough-state-from-init-state-of S))
(toS (rough-state-from-init-state-of (do-cdclW}\mp@subsup{W}{W}{-stgy-step'}\mp@subsup{}{}{\prime}S))
= cdcl W-stgy (toS (rough-state-of (id-of-I-to S)))
(toS (rough-state-of (do-cdclW-stgy-step (id-of-I-to S))))
using rough-state-from-init-state-of-do-cdcl W-stgy-step'
toS-rough-state-of-state-of-rough-state-from-init-state-of
by (simp add: id-of-I-to-def rough-state-from-init-state-of-do-cdcl W-stgy-step')

```
```

 then show ?thesis
 using f3 f2 IH do-cdclW-stgy-step by fastforce
 qed
 qed

```

\section*{Final theorem:}
lemma DPLL-tot-correct:
    assumes
        \(r\) : rough-state-from-init-state-of (do-all-cdcl \({ }_{W}\)-stgy (state-from-init-state-of
        \((([]\), map remdups \(N,[]\), None \())))=S\) and
    \(S:\left(M^{\prime}, N^{\prime}, U^{\prime}, E\right)=t o S S\)
    shows \((E \neq\) Some \(\{\#\} \wedge\) satisfiable \((\) set \((\) map mset \(N)))\)
    \(\vee(E=\) Some \(\{\#\} \wedge\) unsatisfiable \((\) set \((\) map mset \(N)))\)
proof -
    let ? \(N=\) map remdups \(N\)
    have inv: \(c d c l_{W}\)-all-struct-inv (toS ([], map remdups \(N\), [], None))
    unfolding \(\operatorname{cdcl}_{W}\)-all-struct-inv-def distinct-cdcl \(W_{W}\)-state-def distinct-mset-set-def by auto
    then have S0: rough-state-of (state-of ([], map remdups N, [], None))
    \(=([]\), map remdups \(N\), [], None) by simp
    have 1: full cdcl \({ }_{W}\)-stgy \((\) toS ([], ?N, [], None)) (toS S)
    unfolding full-def apply rule
            using do-all-cdcl \(W_{W}\)-stgy-is-rtranclp-cdcl \({ }_{W}\)-stgy[of
                state-from-init-state-of ([], map remdups \(N\), [], None)] inv
                no-step-cdcl \(W_{W}\)-stgy-cdcl \(W_{W}\)-restart-all
                apply (auto simp del: do-all-cdcl \({ }_{W}\)-stgy.simps simp: state-from-init-state-of-inverse
                    \(r\) [symmetric] comp-def)[]
            using do-all-cdcl \({ }_{W}\)-stgy-is-rtranclp-cdcl \({ }_{W}\)-stgy[of
            state-from-init-state-of ([], map remdups \(N\), [], None)] inv
            no-step-cdcl \({ }_{W}\)-stgy-cdcl \({ }_{W}\)-restart-all
            by (force simp: state-from-init-state-of-inverse r[symmetric] comp-def)
    moreover have 2: finite (set (map mset ?N)) by auto
    moreover have 3: distinct-mset-set (set (map mset ?N))
        unfolding distinct-mset-set-def by auto
    moreover
        have \(c d c l_{W}\)-all-struct-inv ( \(t o S S\) )
            by (metis (no-types) cdcl \({ }_{W}\)-all-struct-inv-rough-state \(r\)
                toS-rough-state-of-state-of-rough-state-from-init-state-of)
    then have cons: consistent-interp (lits-of-l \(M^{\prime}\) )
                unfolding \(\operatorname{cdcl}_{W}\)-all-struct-inv-def \(c d c l_{W}-M\)-level-inv-def \(S[\) symmetric \(]\) by auto
    moreover
    have raw-init-clss (toS ([], ?N, [], None)) = raw-init-clss \((t o S S)\)
            apply (rule rtranclp-cdcl \({ }_{W}\)-stgy-no-more-init-clss)
                using 1 unfolding full-def by (auto simp add: rtranclp-cdcl \(W_{W}\)-stgy-rtranclp-cdcl \(W_{W}\)-restart)
    then have \(N^{\prime}\) : mset (map mset ? \(N\) ) \(=N^{\prime}\)
                using \(S[\) symmetric] by auto
    have \((E \neq\) Some \(\{\#\} \wedge\) satisfiable (set (map mset ?N)))
        \(\vee(E=\) Some \(\{\#\} \wedge\) unsatisfiable (set (map mset ? \(N\) ) ) )
        using full-cdcl \({ }_{W}\)-stgy-final-state-conclusive unfolding \(N^{\prime}\) apply rule
                using 1 apply (simp; fail)
                using 3 apply (simp add: comp-def; fail)
            using \(S[\) symmetric \(] N^{\prime}\) apply (auto; fail)[1]
    using \(S[\) symmetric \(] N^{\prime}\) cons by (fastforce simp: true-annots-true-cls)
    then show? ?thesis by auto
qed

The Code The SML code is skipped in the documentation, but stays to ensure that some version of the exported code is working. The only difference between the generated code and the one used here is the export of the constructor ConI.
```

theory CDCL-Abstract-Clause-Representation
imports Entailment-Definition.Partial-Herbrand-Interpretation
begin
type-synonym 'v clause $=$ ' v literal multiset
type-synonym 'v clauses $=$ ' v clause multiset

```

\subsection*{4.1.5 Abstract Clause Representation}

We will abstract the representation of clause and clauses via two locales. We expect our representation to behave like multiset, but the internal representation can be done using list or whatever other representation.
We assume the following:
- there is an equivalent to adding and removing a literal and to taking the union of clauses.
```

locale raw-cls $=$
fixes
mset-cls :: 'cls \Rightarrow 'v clause
begin
end

```

The two following locales are the exact same locale, but we need two different locales. Otherwise, instantiating raw-clss would lead to duplicate constants.
```

locale abstract-with-index $=$
fixes
get-lit : : ' $a \Rightarrow$ 'it \Rightarrow 'conc option and
convert-to-mset :: ' $a \Rightarrow$ 'conc multiset
assumes
in-clss-mset-cls[dest]:
get-lit Cs $a=$ Some $e \Longrightarrow e \in \#$ convert-to-mset Cs and
in-mset-cls-exists-preimage:
$b \in \#$ convert-to-mset $C s \Longrightarrow \exists b^{\prime}$. get-lit Cs $b^{\prime}=$ Some b
locale abstract-with-index2 $=$
fixes
get-lit : : ' $a \Rightarrow$ 'it \Rightarrow 'conc option and
convert-to-mset :: ' $a \Rightarrow$ 'conc multiset
assumes
in-clss-mset-clss[dest]:
get-lit Cs $a=$ Some $e \Longrightarrow e \in \#$ convert-to-mset Cs and
in-mset-clss-exists-preimage:
$b \in \#$ convert-to-mset $C s \Longrightarrow \exists b^{\prime}$. get-lit Cs $b^{\prime}=$ Some b
locale raw-clss $=$
abstract-with-index get-lit mset-cls +
abstract-with-index2 get-cls mset-clss
for
get-lit :: 'cls \Rightarrow 'lit \Rightarrow 'v literal option and
mset-cls :: 'cls \Rightarrow 'v clause and

```
get-cls :: 'clss \(\Rightarrow\) 'cls-it \(\Rightarrow\) 'cls option and
mset-clss:: 'clss \(\Rightarrow\) 'cls multiset
begin
definition cls-lit :: 'cls \(\Rightarrow\) ' lit \(\Rightarrow\) 'v literal (infix \(\downarrow\) 49) where \(C \downarrow a \equiv\) the (get-lit \(C a)\)
definition clss-cls :: 'clss \(\Rightarrow\) 'cls-it \(\Rightarrow\) 'cls (infix \(\Downarrow 49)\) where \(C \Downarrow a \equiv\) the ( get-cls Ca)
definition in-cls :: 'lit \(\Rightarrow{ }^{\prime}\) 'cls \(\Rightarrow\) bool (infix \(\in \downarrow 49\) ) where
\(a \in \downarrow C s \equiv\) get-lit Cs \(a \neq\) None
definition in-clss :: 'cls-it \(\Rightarrow\) 'clss \(\Rightarrow\) bool (infix \(\in \Downarrow 49\) ) where
\(a \in \Downarrow C s \equiv\) get-cls Cs \(a \neq\) None
definition raw-clss where
raw-clss \(S \equiv\) image-mset mset-cls (mset-clss \(S\) )
end
experiment
begin
fun safe-nth where
safe-nth (x \# -) \(0=\) Some \(x \mid\)
safe-nth \((-\#\) xs \()(S u c ~ n)=\) safe-nth xs \(n \mid\)
safe-nth [] - = None
lemma safe-nth-nth: \(n<\) length \(l \Longrightarrow\) safe-nth ln \(n=\) Some (nth ln)
by (induction l \(n\) rule: safe-nth.induct) auto
lemma safe-nth-None: \(n \geq\) length \(l \Longrightarrow\) safe-nth \(l n=\) None
by (induction \(l n\) rule: safe-nth.induct) auto
lemma safe-nth-Some-iff: safe-nth \(l n=\) Some \(m \longleftrightarrow n<\) length \(l \wedge m=n\)th \(l n\) apply (rule iffI)
defer apply (auto simp: safe-nth-nth)[]
by (induction l \(n\) rule: safe-nth.induct) auto
lemma safe-nth-None-iff: safe-nth l \(n=\) None \(\longleftrightarrow n \geq\) length \(l\)
apply (rule iffI)
defer apply (auto simp: safe-nth-None)[]
by (induction \(l n\) rule: safe-nth.induct) auto
interpretation abstract-with-index
safe-nth
mset
apply unfold-locales
apply (simp add: safe-nth-Some-iff)
by (metis in-set-conv-nth safe-nth-nth set-mset-mset)
interpretation abstract-with-index2
safe-nth
mset
apply unfold-locales
```

 apply (simp add: safe-nth-Some-iff)
 by (metis in-set-conv-nth safe-nth-nth set-mset-mset)
 interpretation list-cls: raw-clss
 safe-nth mset
 safe-nth mset
 by unfold-locales
 end
end
theory CDCL-W-Abstract-State
imports CDCL-W-Full CDCL-W-Restart
begin

```

\subsection*{4.2 Instantiation of Weidenbach's CDCL by Multisets}

We first instantiate the locale of Weidenbach's locale. Then we refine it to a 2-WL program.
```

type-synonym 'v cdclW-restart-mset = ('v,'v clause) ann-lit list }
'v clauses }
'v clauses }
'v clause option

```

We use definition, otherwise we could not use the simplification theorems we have already shown.
fun trail \(::\) ' \(v c^{\prime} d l_{W}\)-restart-mset \(\Rightarrow(' v, ' v\) clause) ann-lit list where
\(\operatorname{trail}(M,-)=M\)
fun init-clss :: 'v cdcl \({ }_{W}\)-restart-mset \(\Rightarrow\) 'v clauses where
init-clss \((-, N,-)=N\)
fun learned-clss :: 'v cdcl \(W_{W}\)-restart-mset \(\Rightarrow\) 'v clauses where
learned-clss \((-,-, U,-)=U\)
fun conflicting :: 'v cdcl \(W_{W}\)-restart-mset \(\Rightarrow\) ' \(v\) clause option where
conflicting \((-,-,-, C)=C\)
fun cons-trail :: ('v, 'v clause) ann-lit \(\Rightarrow{ }^{\prime} v\) cdcl \(W_{W}\)-restart-mset \(\Rightarrow{ }^{\prime} v c d c l_{W}\)-restart-mset where cons-trail \(L(M, R)=(L \# M, R)\)
fun \(t l\)-trail where
tl-trail \((M, R)=(t l M, R)\)
fun add-learned-cls where
add-learned-cls \(C(M, N, U, R)=(M, N,\{\# C \#\}+U, R)\)
fun remove-cls where
remove-cls \(C(M, N, U, R)=(M\), removeAll-mset \(C\), removeAll-mset \(C U, R)\)
fun update-conflicting where
update-conflicting \(D(M, N, U,-)=(M, N, U, D)\)
fun init-state where
init-state \(N=([], N,\{\#\}\), None \()\)
declare trail.simps \([\operatorname{simp}\) del] cons-trail.simps[simp del] tl-trail.simps[simp del] add-learned-cls.simps[simp del] remove-cls.simps[simp del]
update-conflicting.simps[simp del] init-clss.simps[simp del] learned-clss.simps[simp del]
conflicting.simps[simp del] init-state.simps[simp del]
lemmas \(c d c l_{W}\)-restart-mset-state \(=\) trail.simps cons-trail.simps tl-trail.simps add-learned-cls.simps remove-cls.simps update-conflicting.simps init-clss.simps learned-clss.simps conflicting.simps init-state.simps

\section*{definition state where}
\(\langle\) state \(S=(\) trail \(S\), init-clss \(S\), learned-clss \(S\), conflicting \(S\), ()) 〉
interpretation \(c d c l_{W}\)-restart-mset: state \(W_{W}\)-ops where
state \(=\) state and
trail \(=\) trail and
init-clss \(=\) init-clss and
learned-clss \(=\) learned-clss and
conflicting \(=\) conflicting and
cons-trail \(=\) cons-trail and
tl-trail \(=\) tl-trail and
add-learned-cls \(=a d d\)-learned-cls and
remove-cls \(=\) remove-cls and
update-conflicting \(=\) update-conflicting and
init-state \(=\) init-state
definition state-eq :: 'v cdcl \(W_{W}\)-restart-mset \(\Rightarrow{ }^{\prime} v \operatorname{cdcl}_{W}\)-restart-mset \(\Rightarrow\) bool (infix \(\sim m 50\) ) where \(\langle S \sim m T \longleftrightarrow\) state \(S=\) state \(T\rangle\)
interpretation \(c d c l_{W}\)-restart-mset: state \(_{W}\) where
state \(=\) state and
trail \(=\) trail and
init-clss \(=\) init-clss and
learned-clss \(=\) learned-clss and
conflicting \(=\) conflicting and
state-eq \(=\) state-eq and
cons-trail \(=\) cons-trail and
tl-trail \(=\) tl-trail and
add-learned-cls \(=\) add-learned-cls and
remove-cls \(=\) remove-cls and
update-conflicting \(=\) update-conflicting and
init-state \(=\) init-state
by unfold-locales (auto simp: cdcl \(W_{W}\)-restart-mset-state state-eq-def state-def)
abbreviation backtrack-lvl :: 'v cdcl \(W_{W}\)-restart-mset \(\Rightarrow\) nat where
backtrack-lvl \(\equiv c d c l_{W}\)-restart-mset.backtrack-lvl
interpretation \(\operatorname{cdcl}_{W}\)-restart-mset: conflict-driven-clause-learning \(W_{W}\) where
state \(=\) state and
trail \(=\) trail and
init-clss \(=\) init-clss and
learned-clss \(=\) learned-clss and
conflicting \(=\) conflicting and
```

state-eq = state-eq and
cons-trail = cons-trail and
tl-trail = tl-trail and
add-learned-cls = add-learned-cls and
remove-cls = remove-cls and
update-conflicting = update-conflicting and
init-state = init-state
by unfold-locales
lemma cdcl}\mp@subsup{W}{W}{}\mathrm{ -restart-mset-state-eq-eq: state-eq = (=)
apply (intro ext)
unfolding state-eq-def
by (auto simp: cdcl W-restart-mset-state state-def)
lemma clauses-def: <cdclW-restart-mset.clauses (M,N,U,C)=N+U\rangle
by (subst cdcl W-restart-mset.clauses-def) (simp add: cdcl W-restart-mset-state)
lemma cdcl W-restart-mset-reduce-trail-to:
cdcl}\mp@subsup{W}{}{\prime}\mathrm{ -restart-mset.reduce-trail-to F S=
((if length (trail S) \geq length F
then drop (length (trail S) - length F) (trail S)
else []), init-clss S, learned-clss S, conflicting S)
(is?S= -)
proof (induction F S rule: cdcl W-restart-mset.reduce-trail-to.induct)
case (1FS) note IH = this
show ?case
proof (cases trail S)
case Nil
then show ?thesis using IH by (cases S) (auto simp: cdcl W-restart-mset-state)
next
case (Cons L M)
then show ?thesis
apply (cases Suc (length M) > length F)
subgoal
apply (subgoal-tac Suc (length M) - length F = Suc (length M - length F))
using cdcl W-restart-mset.reduce-trail-to-length-ne[of S F] IH by auto
subgoal
using IH cdcl W-restart-mset.reduce-trail-to-length-ne[of S F]
apply (cases S)
by (simp add: cdcl}\mp@subsup{W}{W}{}\mathrm{ -restart-mset.trail-reduce-trail-to-drop cdcl}\mp@subsup{W}{W}{}\mathrm{ -restart-mset-state)
done
qed
qed
lemma full-cdcl}\mp@subsup{W}{W}{}\mathrm{ -init-state:
〈full cdcl}\mp@subsup{W}{}{\prime}\mathrm{ -restart-mset.cdcl W-stgy (init-state {\#})S S S = init-state {\#}>
unfolding full-def rtranclp-unfold
by (subst tranclp-unfold-begin)
(auto simp: cdclW-restart-mset.cdcl W-stgy.simps
cdcl W-restart-mset.conflict.simps cdcl W-restart-mset.cdcl }\mp@subsup{W}{W}{}-o.simp
cdclW-restart-mset.propagate.simps cdcl W-restart-mset.decide.simps
cdcl}\mp@subsup{W}{}{-restart-mset.cdcl W-bj.simps cdcl W-restart-mset.backtrack.simps
cdcl}\mp@subsup{W}{W}{}\mathrm{ -restart-mset.skip.simps cdcl W}\mp@subsup{W}{}{-restart-mset.resolve.simps
cdcl}\mp@subsup{W}{W}{}\mathrm{ -restart-mset-state clauses-def)

```
```

locale twl-restart-ops =
fixes
f :: \nat => nat>
begin
interpretation cdclW-restart-mset: cdcl W-restart-restart-ops where
state = state and
trail = trail and
init-clss = init-clss and
learned-clss = learned-clss and
conflicting = conflicting and
state-eq = state-eq and
cons-trail = cons-trail and
tl-trail = tl-trail and
add-learned-cls = add-learned-cls and
remove-cls = remove-cls and
update-conflicting = update-conflicting and
init-state = init-state and
f=f
by unfold-locales
end
locale twl-restart =
twl-restart-ops f for f :: \nat => nat\rangle}
assumes
f:\unbounded f>
begin
interpretation cdcl}\mp@subsup{W}{W}{}\mathrm{ -restart-mset: cdcl W-restart-restart where
state = state and
trail = trail and
init-clss = init-clss and
learned-clss = learned-clss and
conflicting = conflicting and
state-eq = state-eq and
cons-trail = cons-trail and
tl-trail = tl-trail and
add-learned-cls = add-learned-cls and
remove-cls = remove-cls and
update-conflicting = update-conflicting and
init-state = init-state and
f=f
by unfold-locales (rule f)
end
context conflict-driven-clause-learning}\mp@subsup{W}{}{\prime
begin
lemma distinct-cdcl }\mp@subsup{W}{W}{}\mathrm{ -state-alt-def:
<distinct-cdcl }\mp@subsup{}{W}{}\mathrm{ -state }S
((\forallT. conflicting S = Some T\longrightarrow distinct-mset T)^

```
```

 distinct-mset-mset (clauses S) ^
 (\forall L mark. Propagated L mark \in set (trail S) \longrightarrow distinct-mset mark))>
 unfolding distinct-cdcl W
 by auto
 end
lemma }cdc\mp@subsup{l}{W}{}\mathrm{ -stgy-cdcl W-init-state-empty-no-step:
<cdclWW-restart-mset.cdcl}\mp@subsup{W}{W}{}\mathrm{ -stgy (init-state {\#})S S False〉
unfolding rtranclp-unfold
by (auto simp: cdcl W-restart-mset.cdcl W-stgy.simps
cdcl}\mp@subsup{W}{}{-restart-mset.conflict.simps cdcl W}\mp@subsup{W}{}{-restart-mset.cdcl}\mp@subsup{W}{W}{}-o.simps
cdcl W-restart-mset.propagate.simps cdcl W}\mp@subsup{W}{}{-restart-mset.decide.simps
cdcl}\mp@subsup{W}{}{-restart-mset.cdcl W-bj.simps cdcl W-restart-mset.backtrack.simps
cdclW-restart-mset.skip.simps cdcl W-restart-mset.resolve.simps
cdclW}\mp@subsup{W}{}{-restart-mset-state clauses-def)
lemma cdcl W-stgy-cdcl}\mp@subsup{W}{W}{-init-state:
<cdcl W
unfolding rtranclp-unfold
by (subst tranclp-unfold-begin)
(auto simp: cdclW-stgy-cdcl W-init-state-empty-no-step simp del: init-state.simps)
end

```
```

