
Formalisation of Ground Resolution and CDCL in Isabelle/HOL

Mathias Fleury and Jasmin Blanchette

January 20, 2020

2

Contents

0.1 Weidenbach’s DPLL . 4
0.1.1 Rules . 4
0.1.2 Invariants . 4
0.1.3 Termination . 12
0.1.4 Final States . 15

1 Weidenbach’s CDCL 27
1.1 Weidenbach’s CDCL with Multisets . 27

1.1.1 The State . 27
1.1.2 CDCL Rules . 37
1.1.3 Structural Invariants . 45
1.1.4 CDCL Strong Completeness . 73
1.1.5 Higher level strategy . 74
1.1.6 Structural Invariant . 102
1.1.7 Strategy-Specific Invariant . 104
1.1.8 Additional Invariant: No Smaller Propagation 105
1.1.9 More Invariants: Conflict is False if no decision 110
1.1.10 Some higher level use on the invariants . 115
1.1.11 Termination . 120

1.2 Merging backjump rules . 143
1.2.1 Inclusion of the States . 143
1.2.2 More lemmas about Conflict, Propagate and Backjumping 145
1.2.3 CDCL with Merging . 151
1.2.4 CDCL with Merge and Strategy . 156

2 NOT’s CDCL and DPLL 161
2.1 Measure . 161
2.2 NOT’s CDCL . 165

2.2.1 Auxiliary Lemmas and Measure . 165
2.2.2 Initial Definitions . 166
2.2.3 DPLL with Backjumping . 170
2.2.4 CDCL . 188
2.2.5 CDCL with Restarts . 210
2.2.6 Merging backjump and learning . 218
2.2.7 Instantiations . 233

2.3 Link between Weidenbach’s and NOT’s CDCL 248
2.3.1 Inclusion of the states . 248
2.3.2 Inclusion of Weidendenbch’s CDCL without Strategy 250
2.3.3 Additional Lemmas between NOT and W states 251
2.3.4 Inclusion of Weidenbach’s CDCL in NOT’s CDCL 252

3

2.3.5 Inclusion of Weidendenbch’s CDCL with Strategy 262

3 Extensions on Weidenbach’s CDCL 275
3.1 Restarts . 275
3.2 Incremental SAT solving . 286

4 List-based Implementation of DPLL and CDCL 299
4.1 Simple List-Based Implementation of the DPLL and CDCL 299

4.1.1 Common Rules . 299
4.1.2 CDCL specific functions . 302
4.1.3 Simple Implementation of DPLL . 305
4.1.4 List-based CDCL Implementation . 315
4.1.5 Abstract Clause Representation . 336

4.2 Instantiation of Weidenbach’s CDCL by Multisets 338
theory DPLL-W
imports
Entailment-Definition.Partial-Herbrand-Interpretation
Entailment-Definition.Partial-Annotated-Herbrand-Interpretation
Weidenbach-Book-Base.Wellfounded-More

begin

0.1 Weidenbach’s DPLL
0.1.1 Rules
type-synonym ′a dpllW -ann-lit = (′a, unit) ann-lit
type-synonym ′a dpllW -ann-lits = (′a, unit) ann-lits
type-synonym ′v dpllW -state = ′v dpllW -ann-lits × ′v clauses

abbreviation trail :: ′v dpllW -state ⇒ ′v dpllW -ann-lits where
trail ≡ fst
abbreviation clauses :: ′v dpllW -state ⇒ ′v clauses where
clauses ≡ snd

inductive dpllW :: ′v dpllW -state ⇒ ′v dpllW -state ⇒ bool where
propagate: add-mset L C ∈# clauses S =⇒ trail S |=as CNot C =⇒ undefined-lit (trail S) L

=⇒ dpllW S (Propagated L () # trail S , clauses S) |
decided: undefined-lit (trail S) L =⇒ atm-of L ∈ atms-of-mm (clauses S)

=⇒ dpllW S (Decided L # trail S , clauses S) |
backtrack: backtrack-split (trail S) = (M ′, L # M) =⇒ is-decided L =⇒ D ∈# clauses S

=⇒ trail S |=as CNot D =⇒ dpllW S (Propagated (− (lit-of L)) () # M , clauses S)

0.1.2 Invariants
lemma dpllW -distinct-inv:
assumes dpllW S S ′
and no-dup (trail S)
shows no-dup (trail S ′)
using assms

proof (induct rule: dpllW .induct)
case (decided L S)
then show ?case using defined-lit-map by force

next
case (propagate C L S)

4

then show ?case using defined-lit-map by force
next
case (backtrack S M ′ L M D) note extracted = this(1) and no-dup = this(5)
show ?case
using no-dup backtrack-split-list-eq[of trail S , symmetric] unfolding extracted
by (auto dest: no-dup-appendD)

qed

lemma dpllW -consistent-interp-inv:
assumes dpllW S S ′
and consistent-interp (lits-of-l (trail S))
and no-dup (trail S)
shows consistent-interp (lits-of-l (trail S ′))
using assms

proof (induct rule: dpllW .induct)
case (backtrack S M ′ L M D) note extracted = this(1) and decided = this(2) and D = this(4) and
cons = this(5) and no-dup = this(6)

have no-dup ′: no-dup M
by (metis (no-types) backtrack-split-list-eq distinct.simps(2) distinct-append extracted
list.simps(9) map-append no-dup snd-conv no-dup-def)

then have insert (lit-of L) (lits-of-l M) ⊆ lits-of-l (trail S)
using backtrack-split-list-eq[of trail S , symmetric] unfolding extracted by auto

then have cons: consistent-interp (insert (lit-of L) (lits-of-l M))
using consistent-interp-subset cons by blast

moreover have undef : undefined-lit M (lit-of L)
using no-dup backtrack-split-list-eq[of trail S , symmetric] unfolding extracted by force

moreover have lit-of L /∈ lits-of-l M
using undef by (auto simp: Decided-Propagated-in-iff-in-lits-of-l)

ultimately show ?case by simp
qed (auto intro: consistent-add-undefined-lit-consistent)

lemma dpllW -vars-in-snd-inv:
assumes dpllW S S ′
and atm-of ‘ (lits-of-l (trail S)) ⊆ atms-of-mm (clauses S)
shows atm-of ‘ (lits-of-l (trail S ′)) ⊆ atms-of-mm (clauses S ′)
using assms

proof (induct rule: dpllW .induct)
case (backtrack S M ′ L M D)
then have atm-of (lit-of L) ∈ atms-of-mm (clauses S)
using backtrack-split-list-eq[of trail S , symmetric] by auto

moreover
have atm-of ‘ lits-of-l (trail S) ⊆ atms-of-mm (clauses S)
using backtrack(5) by simp

then have
∧
xb. xb ∈ set M =⇒ atm-of (lit-of xb) ∈ atms-of-mm (clauses S)

using backtrack-split-list-eq[symmetric, of trail S] backtrack.hyps(1)
unfolding lits-of-def by auto

ultimately show ?case by (auto simp : lits-of-def)
qed (auto simp: in-plus-implies-atm-of-on-atms-of-ms)

lemma atms-of-ms-lit-of-atms-of : atms-of-ms (unmark ‘ c) = atm-of ‘ lit-of ‘ c
unfolding atms-of-ms-def using image-iff by force

theorem 2.8.3 page 86 of Weidenbach’s book
lemma dpllW -propagate-is-conclusion:
assumes dpllW S S ′
and all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))

5

and atm-of ‘ lits-of-l (trail S) ⊆ atms-of-mm (clauses S)
shows all-decomposition-implies-m (clauses S ′) (get-all-ann-decomposition (trail S ′))
using assms

proof (induct rule: dpllW .induct)
case (decided L S)
then show ?case unfolding all-decomposition-implies-def by simp

next
case (propagate L C S) note inS = this(1) and cnot = this(2) and IH = this(4) and undef =

this(3) and atms-incl = this(5)
let ?I = set (map unmark (trail S)) ∪ set-mset (clauses S)
have ?I |=p add-mset L C by (auto simp add: inS)
moreover have ?I |=ps CNot C using true-annots-true-clss-cls cnot by fastforce
ultimately have ?I |=p {#L#} using true-clss-cls-plus-CNot[of ?I L C] inS by blast
{
assume get-all-ann-decomposition (trail S) = []
then have ?case by blast

}
moreover {
assume n: get-all-ann-decomposition (trail S) 6= []
have 1 :

∧
a b. (a, b) ∈ set (tl (get-all-ann-decomposition (trail S)))

=⇒ (unmark-l a ∪ set-mset (clauses S)) |=ps unmark-l b
using IH unfolding all-decomposition-implies-def by (fastforce simp add: list.set-sel(2) n)

moreover have 2 :
∧
a c. hd (get-all-ann-decomposition (trail S)) = (a, c)

=⇒ (unmark-l a ∪ set-mset (clauses S)) |=ps (unmark-l c)
by (metis IH all-decomposition-implies-cons-pair all-decomposition-implies-single
list.collapse n)

moreover have 3 :
∧
a c. hd (get-all-ann-decomposition (trail S)) = (a, c)

=⇒ (unmark-l a ∪ set-mset (clauses S)) |=p {#L#}
proof −
fix a c
assume h: hd (get-all-ann-decomposition (trail S)) = (a, c)
have h ′: trail S = c @ a using get-all-ann-decomposition-decomp h by blast
have I : set (map unmark a) ∪ set-mset (clauses S)
∪ unmark-l c |=ps CNot C
using 〈?I |=ps CNot C 〉 unfolding h ′ by (simp add: Un-commute Un-left-commute)

have
atms-of-ms (CNot C) ⊆ atms-of-ms (set (map unmark a) ∪ set-mset (clauses S))
and

atms-of-ms (unmark-l c) ⊆ atms-of-ms (set (map unmark a)
∪ set-mset (clauses S))
using atms-incl cnot
apply (auto simp: atms-of-def dest!: true-annots-CNot-all-atms-defined; fail)[]
using inS atms-of-atms-of-ms-mono atms-incl by (fastforce simp: h ′)

then have unmark-l a ∪ set-mset (clauses S) |=ps CNot C
using true-clss-clss-left-right[OF - I] h 2 by auto

then show unmark-l a ∪ set-mset (clauses S) |=p {#L#}
using inS true-clss-cls-plus-CNot true-clss-clss-in-imp-true-clss-cls union-trus-clss-clss
by blast

qed
ultimately have ?case
by (cases hd (get-all-ann-decomposition (trail S)))

(auto simp: all-decomposition-implies-def)
}
ultimately show ?case by auto

next

6

case (backtrack S M ′ L M D) note extracted = this(1) and decided = this(2) and D = this(3) and
cnot = this(4) and cons = this(4) and IH = this(5) and atms-incl = this(6)

have S : trail S = M ′ @ L # M
using backtrack-split-list-eq[of trail S] unfolding extracted by auto

have M ′: ∀ l ∈ set M ′. ¬is-decided l
using extracted backtrack-split-fst-not-decided[of - trail S] by simp

have n: get-all-ann-decomposition (trail S) 6= [] by auto
then have all-decomposition-implies-m (clauses S) ((L # M , M ′)

tl (get-all-ann-decomposition (trail S)))
by (metis (no-types) IH extracted get-all-ann-decomposition-backtrack-split list.exhaust-sel)

then have 1 : unmark-l (L # M) ∪ set-mset (clauses S) |=ps(λa.{#lit-of a#}) ‘ set M ′

by simp
moreover
have unmark-l (L # M) ∪ unmark-l M ′ |=ps CNot D
by (metis (mono-tags, lifting) S Un-commute cons image-Un set-append
true-annots-true-clss-clss)

then have 2 : unmark-l (L # M) ∪ set-mset (clauses S) ∪ unmark-l M ′

|=ps CNot D
by (metis (no-types, lifting) Un-assoc Un-left-commute true-clss-clss-union-l-r)

ultimately
have set (map unmark (L # M)) ∪ set-mset (clauses S) |=ps CNot D
using true-clss-clss-left-right by fastforce

then have set (map unmark (L # M)) ∪ set-mset (clauses S) |=p {#}
by (metis (mono-tags, lifting) D Un-def mem-Collect-eq
true-clss-clss-contradiction-true-clss-cls-false)

then have IL: unmark-l M ∪ set-mset (clauses S) |=p {#−lit-of L#}
using true-clss-clss-false-left-right by auto

show ?case unfolding S all-decomposition-implies-def
proof
fix x P level
assume x: x ∈ set (get-all-ann-decomposition

(fst (Propagated (− lit-of L) P # M , clauses S)))
let ?M ′ = Propagated (− lit-of L) P # M
let ?hd = hd (get-all-ann-decomposition ?M ′)
let ?tl = tl (get-all-ann-decomposition ?M ′)
have x = ?hd ∨ x ∈ set ?tl
using x
by (cases get-all-ann-decomposition ?M ′)

auto
moreover {
assume x ′: x ∈ set ?tl
have L ′: Decided (lit-of L) = L using decided by (cases L, auto)
have x ∈ set (get-all-ann-decomposition (M ′ @ L # M))
using x ′ get-all-ann-decomposition-except-last-choice-equal[of M ′ lit-of L P M]
L ′ by (metis (no-types) M ′ list.set-sel(2) tl-Nil)

then have case x of (Ls, seen) ⇒ unmark-l Ls ∪ set-mset (clauses S)
|=ps unmark-l seen
using decided IH by (cases L) (auto simp add: S all-decomposition-implies-def)

}
moreover {
assume x ′: x = ?hd
have tl: tl (get-all-ann-decomposition (M ′ @ L # M)) 6= []
proof −
have f1 :

∧
ms. length (get-all-ann-decomposition (M ′ @ ms))

= length (get-all-ann-decomposition ms)
by (simp add: M ′ get-all-ann-decomposition-remove-undecided-length)

7

have Suc (length (get-all-ann-decomposition M)) 6= Suc 0
by blast

then show ?thesis
using f1 [of 〈L # M 〉] decided by (cases 〈get-all-ann-decomposition

(M ′ @ L # M)〉; cases L) auto
qed
obtain M0 ′ M0 where
L0 : hd (tl (get-all-ann-decomposition (M ′ @ L # M))) = (M0 , M0 ′)
by (cases hd (tl (get-all-ann-decomposition (M ′ @ L # M))))

have x ′′: x = (M0 , Propagated (−lit-of L) P # M0 ′)
unfolding x ′ using get-all-ann-decomposition-last-choice tl M ′ L0
by (smt is-decided-ex-Decided lit-of .simps(1) local.decided old.unit.exhaust)

obtain l-get-all-ann-decomposition where
get-all-ann-decomposition (trail S) = (L # M , M ′) # (M0 , M0 ′) #
l-get-all-ann-decomposition

using get-all-ann-decomposition-backtrack-split extracted by (metis (no-types) L0 S
hd-Cons-tl n tl)

then have M = M0 ′ @ M0 using get-all-ann-decomposition-hd-hd by fastforce
then have IL ′: unmark-l M0 ∪ set-mset (clauses S)
∪ unmark-l M0 ′ |=ps {{#− lit-of L#}}
using IL by (simp add: Un-commute Un-left-commute image-Un)

moreover have H : unmark-l M0 ∪ set-mset (clauses S)
|=ps unmark-l M0 ′
using IH x ′′ unfolding all-decomposition-implies-def by (metis (no-types, lifting) L0 S
list.set-sel(1) list.set-sel(2) old.prod.case tl tl-Nil)

ultimately have case x of (Ls, seen) ⇒ unmark-l Ls ∪ set-mset (clauses S)
|=ps unmark-l seen
using true-clss-clss-left-right unfolding x ′′ by auto

}
ultimately show case x of (Ls, seen) ⇒
unmark-l Ls ∪ set-mset (snd (?M ′, clauses S))
|=ps unmark-l seen

unfolding snd-conv by blast
qed

qed

theorem 2.8.4 page 86 of Weidenbach’s book
theorem dpllW -propagate-is-conclusion-of-decided:
assumes dpllW S S ′
and all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
and atm-of ‘ lits-of-l (trail S) ⊆ atms-of-mm (clauses S)
shows set-mset (clauses S ′) ∪ {{#lit-of L#} |L. is-decided L ∧ L ∈ set (trail S ′)}
|=ps unmark ‘

⋃
(set ‘ snd ‘ set (get-all-ann-decomposition (trail S ′)))

using all-decomposition-implies-trail-is-implied[OF dpllW -propagate-is-conclusion[OF assms]] .

theorem 2.8.5 page 86 of Weidenbach’s book
lemma only-propagated-vars-unsat:
assumes decided: ∀ x ∈ set M . ¬ is-decided x
and DN : D ∈ N and D: M |=as CNot D
and inv: all-decomposition-implies N (get-all-ann-decomposition M)
and atm-incl: atm-of ‘ lits-of-l M ⊆ atms-of-ms N
shows unsatisfiable N

proof (rule ccontr)
assume ¬ unsatisfiable N
then obtain I where
I : I |=s N and

8

cons: consistent-interp I and
tot: total-over-m I N
unfolding satisfiable-def by auto

then have I-D: I |= D
using DN unfolding true-clss-def by auto

have l0 : {{#lit-of L#} |L. is-decided L ∧ L ∈ set M} = {} using decided by auto
have atms-of-ms (N ∪ unmark-l M) = atms-of-ms N
using atm-incl unfolding atms-of-ms-def lits-of-def by auto

then have total-over-m I (N ∪ unmark ‘ (set M))
using tot unfolding total-over-m-def by auto

then have I |=s unmark ‘ (set M)
using all-decomposition-implies-propagated-lits-are-implied[OF inv] cons I
unfolding true-clss-clss-def l0 by auto

then have IM : I |=s unmark-l M by auto
{
fix K
assume K ∈# D
then have −K ∈ lits-of-l M
by (auto split: if-split-asm
intro: allE [OF D[unfolded true-annots-def Ball-def], of {#−K#}])

then have −K ∈ I using IM true-clss-singleton-lit-of-implies-incl by fastforce
}
then have ¬ I |= D using cons unfolding true-cls-def consistent-interp-def by auto
then show False using I-D by blast

qed

lemma dpllW -same-clauses:
assumes dpllW S S ′
shows clauses S = clauses S ′
using assms by (induct rule: dpllW .induct, auto)

lemma rtranclp-dpllW -inv:
assumes rtranclp dpllW S S ′
and inv: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
and atm-incl: atm-of ‘ lits-of-l (trail S) ⊆ atms-of-mm (clauses S)
and consistent-interp (lits-of-l (trail S))
and no-dup (trail S)
shows all-decomposition-implies-m (clauses S ′) (get-all-ann-decomposition (trail S ′))
and atm-of ‘ lits-of-l (trail S ′) ⊆ atms-of-mm (clauses S ′)
and clauses S = clauses S ′
and consistent-interp (lits-of-l (trail S ′))
and no-dup (trail S ′)
using assms

proof (induct rule: rtranclp-induct)
case base
show
all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
atm-of ‘ lits-of-l (trail S) ⊆ atms-of-mm (clauses S) and
clauses S = clauses S and
consistent-interp (lits-of-l (trail S)) and
no-dup (trail S) using assms by auto

next
case (step S ′ S ′′) note dpllWStar = this(1) and IH = this(3 ,4 ,5 ,6 ,7) and
dpllW = this(2)

9

moreover
assume
inv: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
atm-incl: atm-of ‘ lits-of-l (trail S) ⊆ atms-of-mm (clauses S) and
cons: consistent-interp (lits-of-l (trail S)) and
no-dup (trail S)

ultimately have decomp: all-decomposition-implies-m (clauses S ′)
(get-all-ann-decomposition (trail S ′)) and
atm-incl ′: atm-of ‘ lits-of-l (trail S ′) ⊆ atms-of-mm (clauses S ′) and
snd: clauses S = clauses S ′ and
cons ′: consistent-interp (lits-of-l (trail S ′)) and
no-dup ′: no-dup (trail S ′) by blast+

show clauses S = clauses S ′′ using dpllW -same-clauses[OF dpllW] snd by metis

show all-decomposition-implies-m (clauses S ′′) (get-all-ann-decomposition (trail S ′′))
using dpllW -propagate-is-conclusion[OF dpllW] decomp atm-incl ′ by auto

show atm-of ‘ lits-of-l (trail S ′′) ⊆ atms-of-mm (clauses S ′′)
using dpllW -vars-in-snd-inv[OF dpllW] atm-incl atm-incl ′ by auto

show no-dup (trail S ′′) using dpllW -distinct-inv[OF dpllW] no-dup ′ dpllW by auto
show consistent-interp (lits-of-l (trail S ′′))
using cons ′ no-dup ′ dpllW -consistent-interp-inv[OF dpllW] by auto

qed

definition dpllW -all-inv S ≡
(all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
∧ atm-of ‘ lits-of-l (trail S) ⊆ atms-of-mm (clauses S)
∧ consistent-interp (lits-of-l (trail S))
∧ no-dup (trail S))

lemma dpllW -all-inv-dest[dest]:
assumes dpllW -all-inv S
shows all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
and atm-of ‘ lits-of-l (trail S) ⊆ atms-of-mm (clauses S)
and consistent-interp (lits-of-l (trail S)) ∧ no-dup (trail S)
using assms unfolding dpllW -all-inv-def lits-of-def by auto

lemma rtranclp-dpllW -all-inv:
assumes rtranclp dpllW S S ′
and dpllW -all-inv S
shows dpllW -all-inv S ′
using assms rtranclp-dpllW -inv[OF assms(1)] unfolding dpllW -all-inv-def lits-of-def by blast

lemma dpllW -all-inv:
assumes dpllW S S ′
and dpllW -all-inv S
shows dpllW -all-inv S ′
using assms rtranclp-dpllW -all-inv by blast

lemma rtranclp-dpllW -inv-starting-from-0 :
assumes rtranclp dpllW S S ′
and inv: trail S = []
shows dpllW -all-inv S ′

proof −
have dpllW -all-inv S
using assms unfolding all-decomposition-implies-def dpllW -all-inv-def by auto

then show ?thesis using rtranclp-dpllW -all-inv[OF assms(1)] by blast

10

qed

lemma dpllW -can-do-step:
assumes consistent-interp (set M)
and distinct M
and atm-of ‘ (set M) ⊆ atms-of-mm N
shows rtranclp dpllW ([], N) (map Decided M , N)
using assms

proof (induct M)
case Nil
then show ?case by auto

next
case (Cons L M)
then have undefined-lit (map Decided M) L
unfolding defined-lit-def consistent-interp-def by auto

moreover have atm-of L ∈ atms-of-mm N using Cons.prems(3) by auto
ultimately have dpllW (map Decided M , N) (map Decided (L # M), N)
using dpllW .decided by auto

moreover have consistent-interp (set M) and distinct M and atm-of ‘ set M ⊆ atms-of-mm N
using Cons.prems unfolding consistent-interp-def by auto

ultimately show ?case using Cons.hyps by auto
qed

definition conclusive-dpllW -state (S :: ′v dpllW -state) ←→
(trail S |=asm clauses S ∨ ((∀L ∈ set (trail S). ¬is-decided L)
∧ (∃C ∈# clauses S . trail S |=as CNot C)))

theorem 2.8.7 page 87 of Weidenbach’s book
lemma dpllW -strong-completeness:
assumes set M |=sm N
and consistent-interp (set M)
and distinct M
and atm-of ‘ (set M) ⊆ atms-of-mm N
shows dpllW ∗∗ ([], N) (map Decided M , N)
and conclusive-dpllW -state (map Decided M , N)

proof −
show rtranclp dpllW ([], N) (map Decided M , N) using dpllW -can-do-step assms by auto
have map Decided M |=asm N using assms(1) true-annots-decided-true-cls by auto
then show conclusive-dpllW -state (map Decided M , N)
unfolding conclusive-dpllW -state-def by auto

qed

theorem 2.8.6 page 86 of Weidenbach’s book
lemma dpllW -sound:
assumes
rtranclp dpllW ([], N) (M , N) and
∀S . ¬dpllW (M , N) S

shows M |=asm N ←→ satisfiable (set-mset N) (is ?A ←→ ?B)
proof
let ?M ′= lits-of-l M
assume ?A
then have ?M ′ |=sm N by (simp add: true-annots-true-cls)
moreover have consistent-interp ?M ′

using rtranclp-dpllW -inv-starting-from-0 [OF assms(1)] by auto
ultimately show ?B by auto

next

11

assume ?B
show ?A
proof (rule ccontr)
assume n: ¬ ?A
have (∃L. undefined-lit M L ∧ atm-of L ∈ atms-of-mm N) ∨ (∃D∈#N . M |=as CNot D)
proof −
obtain D :: ′a clause where D: D ∈# N and ¬ M |=a D
using n unfolding true-annots-def Ball-def by auto

then have (∃L. undefined-lit M L ∧ atm-of L ∈ atms-of D) ∨ M |=as CNot D
unfolding true-annots-def Ball-def CNot-def true-annot-def
using atm-of-lit-in-atms-of true-annot-iff-decided-or-true-lit true-cls-def
by (smt mem-Collect-eq union-single-eq-member)

then show ?thesis
by (metis Bex-def D atms-of-atms-of-ms-mono rev-subsetD)

qed
moreover {
assume ∃L. undefined-lit M L ∧ atm-of L ∈ atms-of-mm N
then have False using assms(2) decided by fastforce

}
moreover {
assume ∃D∈#N . M |=as CNot D
then obtain D where DN : D ∈# N and MD: M |=as CNot D by auto
{
assume ∀ l ∈ set M . ¬ is-decided l
moreover have dpllW -all-inv ([], N)
using assms unfolding all-decomposition-implies-def dpllW -all-inv-def by auto

ultimately have unsatisfiable (set-mset N)
using only-propagated-vars-unsat[of M D set-mset N] DN MD
rtranclp-dpllW -all-inv[OF assms(1)] by force

then have False using 〈?B〉 by blast
}
moreover {
assume l: ∃ l ∈ set M . is-decided l
then have False
using backtrack[of (M , N) - - - D] DN MD assms(2)
backtrack-split-some-is-decided-then-snd-has-hd[OF l]

by (metis backtrack-split-snd-hd-decided fst-conv list.distinct(1) list.sel(1) snd-conv)
}
ultimately have False by blast

}
ultimately show False by blast
qed

qed

0.1.3 Termination
definition dpllW -mes M n =
map (λl. if is-decided l then 2 else (1 ::nat)) (rev M) @ replicate (n − length M) 3

lemma length-dpllW -mes:
assumes length M ≤ n
shows length (dpllW -mes M n) = n
using assms unfolding dpllW -mes-def by auto

lemma distinctcard-atm-of-lit-of-eq-length:
assumes no-dup S

12

shows card (atm-of ‘ lits-of-l S) = length S
using assms by (induct S) (auto simp add: image-image lits-of-def no-dup-def)

lemma Cons-lexn-iff :
shows 〈(x # xs, y # ys) ∈ lexn R n ←→ (length (x # xs) = n ∧ length (y # ys) = n ∧

((x,y) ∈ R ∨ (x = y ∧ (xs, ys) ∈ lexn R (n − 1))))〉

unfolding lexn-conv apply (rule iffI ; clarify)
subgoal for xys xa ya xs ′ ys ′
by (cases xys) (auto simp: lexn-conv)

subgoal by (auto 5 5 simp: lexn-conv simp del: append-Cons simp: append-Cons[symmetric])
done

declare append-same-lexn[simp] prepend-same-lexn[simp] Cons-lexn-iff [simp]
declare lexn.simps(2)[simp del]

lemma dpllW -card-decrease:
assumes
dpll: dpllW S S ′ and
[simp]: length (trail S ′) ≤ card vars and
length (trail S) ≤ card vars

shows
(dpllW -mes (trail S ′) (card vars), dpllW -mes (trail S) (card vars)) ∈ lexn less-than (card vars)

using assms
proof (induct rule: dpllW .induct)
case (propagate C L S)
then have m: card vars − length (trail S) = Suc (card vars − Suc (length (trail S)))
by fastforce

then show 〈(dpllW -mes (trail (Propagated C () # trail S , clauses S)) (card vars),
dpllW -mes (trail S) (card vars)) ∈ lexn less-than (card vars)〉

unfolding dpllW -mes-def by auto
next
case (decided S L)
have m: card vars − length (trail S) = Suc (card vars − Suc (length (trail S)))
using decided.prems[simplified] using Suc-diff-le by fastforce

then show 〈(dpllW -mes (trail (Decided L # trail S , clauses S)) (card vars),
dpllW -mes (trail S) (card vars)) ∈ lexn less-than (card vars)〉

unfolding dpllW -mes-def by auto
next
case (backtrack S M ′ L M D)
moreover have S : trail S = M ′ @ L # M
using backtrack.hyps(1) backtrack-split-list-eq[of trail S] by auto

ultimately show 〈(dpllW -mes (trail (Propagated (− lit-of L) () # M , clauses S)) (card vars),
dpllW -mes (trail S) (card vars)) ∈ lexn less-than (card vars)〉

using backtrack-split-list-eq[of trail S] unfolding dpllW -mes-def by fastforce
qed

theorem 2.8.8 page 87 of Weidenbach’s book
lemma dpllW -card-decrease ′:
assumes dpll: dpllW S S ′
and atm-incl: atm-of ‘ lits-of-l (trail S) ⊆ atms-of-mm (clauses S)
and no-dup: no-dup (trail S)
shows (dpllW -mes (trail S ′) (card (atms-of-mm (clauses S ′))),

dpllW -mes (trail S) (card (atms-of-mm (clauses S)))) ∈ lex less-than
proof −
have finite (atms-of-mm (clauses S)) unfolding atms-of-ms-def by auto
then have 1 : length (trail S) ≤ card (atms-of-mm (clauses S))
using distinctcard-atm-of-lit-of-eq-length[OF no-dup] atm-incl card-mono by metis

13

moreover {
have no-dup ′: no-dup (trail S ′) using dpll dpllW -distinct-inv no-dup by blast
have SS ′: clauses S ′ = clauses S using dpll by (auto dest!: dpllW -same-clauses)
have atm-incl ′: atm-of ‘ lits-of-l (trail S ′) ⊆ atms-of-mm (clauses S ′)
using atm-incl dpll dpllW -vars-in-snd-inv[OF dpll] by force

have finite (atms-of-mm (clauses S ′))
unfolding atms-of-ms-def by auto

then have 2 : length (trail S ′) ≤ card (atms-of-mm (clauses S))
using distinctcard-atm-of-lit-of-eq-length[OF no-dup ′] atm-incl ′ card-mono SS ′ by metis }

ultimately have (dpllW -mes (trail S ′) (card (atms-of-mm (clauses S))),
dpllW -mes (trail S) (card (atms-of-mm (clauses S))))
∈ lexn less-than (card (atms-of-mm (clauses S)))
using dpllW -card-decrease[OF assms(1), of atms-of-mm (clauses S)] by blast

then have (dpllW -mes (trail S ′) (card (atms-of-mm (clauses S))),
dpllW -mes (trail S) (card (atms-of-mm (clauses S)))) ∈ lex less-than

unfolding lex-def by auto
then show (dpllW -mes (trail S ′) (card (atms-of-mm (clauses S ′))),

dpllW -mes (trail S) (card (atms-of-mm (clauses S)))) ∈ lex less-than
using dpllW -same-clauses[OF assms(1)] by auto

qed

lemma wf-lexn: wf (lexn {(a, b). (a::nat) < b} (card (atms-of-mm (clauses S))))
proof −
have m: {(a, b). a < b} = measure id by auto
show ?thesis apply (rule wf-lexn) unfolding m by auto

qed

lemma wf-dpllW :
wf {(S ′, S). dpllW -all-inv S ∧ dpllW S S ′}
apply (rule wf-wf-if-measure ′[OF wf-lex-less, of - -

λS . dpllW -mes (trail S) (card (atms-of-mm (clauses S)))])
using dpllW -card-decrease ′ by fast

lemma dpllW -tranclp-star-commute:
{(S ′, S). dpllW -all-inv S ∧ dpllW S S ′}+ = {(S ′, S). dpllW -all-inv S ∧ tranclp dpllW S S ′}
(is ?A = ?B)

proof
{ fix S S ′
assume (S , S ′) ∈ ?A
then have (S , S ′) ∈ ?B
by (induct rule: trancl.induct, auto)

}
then show ?A ⊆ ?B by blast
{ fix S S ′
assume (S , S ′) ∈ ?B
then have dpllW ++ S ′ S and dpllW -all-inv S ′ by auto
then have (S , S ′) ∈ ?A
proof (induct rule: tranclp.induct)
case r-into-trancl
then show ?case by (simp-all add: r-into-trancl ′)

next
case (trancl-into-trancl S S ′ S ′′)
then have (S ′, S) ∈ {a. case a of (S ′, S) ⇒ dpllW -all-inv S ∧ dpllW S S ′}+ by blast

14

moreover have dpllW -all-inv S ′
using rtranclp-dpllW -all-inv[OF tranclp-into-rtranclp[OF trancl-into-trancl.hyps(1)]]
trancl-into-trancl.prems by auto

ultimately have (S ′′, S ′) ∈ {(pa, p). dpllW -all-inv p ∧ dpllW p pa}+

using 〈dpllW -all-inv S ′〉 trancl-into-trancl.hyps(3) by blast
then show ?case
using 〈(S ′, S) ∈ {a. case a of (S ′, S) ⇒ dpllW -all-inv S ∧ dpllW S S ′}+〉 by auto

qed
}
then show ?B ⊆ ?A by blast

qed

lemma wf-dpllW -tranclp: wf {(S ′, S). dpllW -all-inv S ∧ dpllW ++ S S ′}
unfolding dpllW -tranclp-star-commute[symmetric] by (simp add: wf-dpllW wf-trancl)

lemma wf-dpllW -plus:
wf {(S ′, ([], N))| S ′. dpllW ++ ([], N) S ′} (is wf ?P)
apply (rule wf-subset[OF wf-dpllW -tranclp, of ?P])
unfolding dpllW -all-inv-def by auto

0.1.4 Final States

Proposition 2.8.1: final states are the normal forms of dpllW
lemma dpllW -no-more-step-is-a-conclusive-state:
assumes ∀S ′. ¬dpllW S S ′
shows conclusive-dpllW -state S

proof −
have vars: ∀ s ∈ atms-of-mm (clauses S). s ∈ atm-of ‘ lits-of-l (trail S)
proof (rule ccontr)
assume ¬ (∀ s∈atms-of-mm (clauses S). s ∈ atm-of ‘ lits-of-l (trail S))
then obtain L where
L-in-atms: L ∈ atms-of-mm (clauses S) and
L-notin-trail: L /∈ atm-of ‘ lits-of-l (trail S) by metis

obtain L ′ where L ′: atm-of L ′ = L by (meson literal.sel(2))
then have undefined-lit (trail S) L ′
unfolding Decided-Propagated-in-iff-in-lits-of-l by (metis L-notin-trail atm-of-uminus imageI)

then show False using dpllW .decided assms(1) L-in-atms L ′ by blast
qed

show ?thesis
proof (rule ccontr)
assume not-final: ¬ ?thesis
then have
¬ trail S |=asm clauses S and
(∃L∈set (trail S). is-decided L) ∨ (∀C∈#clauses S . ¬trail S |=as CNot C)
unfolding conclusive-dpllW -state-def by auto

moreover {
assume ∃L∈set (trail S). is-decided L
then obtain L M ′ M where L: backtrack-split (trail S) = (M ′, L # M)
using backtrack-split-some-is-decided-then-snd-has-hd by blast

obtain D where D ∈# clauses S and ¬ trail S |=a D
using 〈¬ trail S |=asm clauses S 〉 unfolding true-annots-def by auto

then have ∀ s∈atms-of-ms {D}. s ∈ atm-of ‘ lits-of-l (trail S)
using vars unfolding atms-of-ms-def by auto

then have trail S |=as CNot D
using all-variables-defined-not-imply-cnot[of D] 〈¬ trail S |=a D〉 by auto

15

moreover have is-decided L
using L by (metis backtrack-split-snd-hd-decided list.distinct(1) list.sel(1) snd-conv)

ultimately have False
using assms(1) dpllW .backtrack L 〈D ∈# clauses S 〉 〈trail S |=as CNot D〉 by blast

}
moreover {
assume tr : ∀C∈#clauses S . ¬trail S |=as CNot C
obtain C where C-in-cls: C ∈# clauses S and trC : ¬ trail S |=a C
using 〈¬ trail S |=asm clauses S 〉 unfolding true-annots-def by auto

have ∀ s∈atms-of-ms {C}. s ∈ atm-of ‘ lits-of-l (trail S)
using vars 〈C ∈# clauses S 〉 unfolding atms-of-ms-def by auto

then have trail S |=as CNot C
by (meson C-in-cls tr trC all-variables-defined-not-imply-cnot)

then have False using tr C-in-cls by auto
}
ultimately show False by blast

qed
qed

lemma dpllW -conclusive-state-correct:
assumes dpllW ∗∗ ([], N) (M , N) and conclusive-dpllW -state (M , N)
shows M |=asm N ←→ satisfiable (set-mset N) (is ?A ←→ ?B)

proof
let ?M ′= lits-of-l M
assume ?A
then have ?M ′ |=sm N by (simp add: true-annots-true-cls)
moreover have consistent-interp ?M ′

using rtranclp-dpllW -inv-starting-from-0 [OF assms(1)] by auto
ultimately show ?B by auto

next
assume ?B
show ?A
proof (rule ccontr)
assume n: ¬ ?A
have no-mark: ∀L∈set M . ¬ is-decided L ∃C ∈# N . M |=as CNot C
using n assms(2) unfolding conclusive-dpllW -state-def by auto

moreover obtain D where DN : D ∈# N and MD: M |=as CNot D using no-mark by auto
ultimately have unsatisfiable (set-mset N)
using only-propagated-vars-unsat rtranclp-dpllW -all-inv[OF assms(1)]
unfolding dpllW -all-inv-def by force

then show False using 〈?B〉 by blast
qed

qed

lemma dpllW -trail-after-step1 :
assumes 〈dpllW S T 〉

shows
〈∃K ′ M1 M2 ′ M2 ′′.

(rev (trail T) = rev (trail S) @ M2 ′ ∧ M2 ′ 6= []) ∨
(rev (trail S) = M1 @ Decided (−K ′) # M2 ′ ∧
rev (trail T) = M1 @ Propagated K ′ () # M2 ′′ ∧
Suc (length M1) ≤ length (trail S))〉

using assms
apply (induction S T rule: dpllW .induct)
subgoal for L C T

16

by auto
subgoal
by auto

subgoal for S M ′ L M D
using backtrack-split-snd-hd-decided[of 〈trail S 〉]
backtrack-split-list-eq[of 〈trail S 〉, symmetric]

apply − apply (rule exI [of - 〈−lit-of L〉], rule exI [of - 〈rev M 〉], rule exI [of - 〈rev M ′〉], rule exI [of -
〈[]〉])

by (cases L)
auto

done

lemma tranclp-dpllW -trail-after-step:
assumes 〈dpllW ++ S T 〉

shows
〈∃K ′ M1 M2 ′ M2 ′′.

(rev (trail T) = rev (trail S) @ M2 ′ ∧ M2 ′ 6= []) ∨
(rev (trail S) = M1 @ Decided (−K ′) # M2 ′ ∧
rev (trail T) = M1 @ Propagated K ′ () # M2 ′′ ∧ Suc (length M1) ≤ length (trail S))〉

using assms(1)
proof (induction rule: tranclp-induct)
case (base y)
then show ?case by (auto dest!: dpllW -trail-after-step1)

next
case (step y z)
then consider

(1) M2 ′ where
〈rev (DPLL-W .trail y) = rev (DPLL-W .trail S) @ M2 ′〉 〈M2 ′ 6= []〉 |

(2) K ′ M1 M2 ′ M2 ′′ where 〈rev (DPLL-W .trail S) = M1 @ Decided (− K ′) # M2 ′〉
〈rev (DPLL-W .trail y) = M1 @ Propagated K ′ () # M2 ′′〉 and 〈Suc (length M1) ≤ length (trail

S)〉

by blast
then show ?case
proof cases
case (1 M2 ′)
consider

(a) M2 ′ where
〈rev (DPLL-W .trail z) = rev (DPLL-W .trail y) @ M2 ′〉 〈M2 ′ 6= []〉 |

(b) K ′′ M1 ′ M2 ′′ M2 ′′′ where 〈rev (DPLL-W .trail y) = M1 ′ @ Decided (− K ′′) # M2 ′′〉
〈rev (DPLL-W .trail z) = M1 ′ @ Propagated K ′′ () # M2 ′′′〉 and

〈Suc (length M1 ′) ≤ length (trail y)〉

using dpllW -trail-after-step1 [OF step(2)]
by blast

then show ?thesis
proof cases
case a
then show ?thesis using 1 by auto

next
case b
have H : 〈rev (DPLL-W .trail S) @ M2 ′ = M1 ′ @ Decided (− K ′′) # M2 ′′ =⇒

length M1 ′ 6= length (DPLL-W .trail S) =⇒
length M1 ′ < Suc (length (DPLL-W .trail S)) =⇒ rev (DPLL-W .trail S) =
M1 ′ @ Decided (− K ′′) # drop (Suc (length M1 ′)) (rev (DPLL-W .trail S))〉

apply (drule arg-cong[of - - 〈take (length (trail S))〉])
by (auto simp: take-Cons ′)

show ?thesis using b 1 apply −

17

apply (rule exI [of - 〈K ′′〉])
apply (rule exI [of - 〈M1 ′〉])
apply (rule exI [of - 〈if length (trail S) ≤ length M1 ′ then drop (length (DPLL-W .trail S)) (rev

(DPLL-W .trail z)) else
drop (Suc (length M1 ′)) (rev (DPLL-W .trail S))〉])

apply (cases 〈length (trail S) < length M1 ′〉)
subgoal
apply auto
by (simp add: append-eq-append-conv-if)

apply (cases 〈length M1 ′ = length (trail S)〉)
subgoal by auto
subgoal
using H
apply (clarsimp simp:)
done

done
qed

next
case (2 K ′′ M1 ′ M2 ′′ M2 ′′′)
consider

(a) M2 ′ where
〈rev (DPLL-W .trail z) = rev (DPLL-W .trail y) @ M2 ′〉 〈M2 ′ 6= []〉 |

(b) K ′′ M1 ′ M2 ′′ M2 ′′′ where 〈rev (DPLL-W .trail y) = M1 ′ @ Decided (− K ′′) # M2 ′′〉
〈rev (DPLL-W .trail z) = M1 ′ @ Propagated K ′′ () # M2 ′′′〉 and

〈Suc (length M1 ′) ≤ length (trail y)〉

using dpllW -trail-after-step1 [OF step(2)]
by blast

then show ?thesis
proof cases
case a
then show ?thesis using 2 by auto

next
case (b K ′′′ M1 ′′ M2 ′′′′ M2 ′′′′′)
have [iff]: 〈M1 ′ @ Propagated K ′′ () # M2 ′′′ = M1 ′′ @ Decided (− K ′′′) # M2 ′′′′←→
(∃N1 ′′. M1 ′′ = M1 ′ @ Propagated K ′′ () # N1 ′′ ∧ M2 ′′′ = N1 ′′ @ Decided (− K ′′′) # M2 ′′′′)〉

if 〈length M1 ′ < length M1 ′′〉
using that apply (auto simp: append-eq-append-conv-if)
by (metis (no-types, lifting) Cons-eq-append-conv append-take-drop-id drop-eq-Nil leD)

have [iff]: 〈M1 ′ @ Propagated K ′′ () # M2 ′′′ = M1 ′′ @ Decided (− K ′′′) # M2 ′′′′←→
(∃N1 ′′. M1 ′ = M1 ′′ @ Decided (− K ′′′) # N1 ′′ ∧ M2 ′′′′ = N1 ′′ @ Propagated K ′′ () # M2 ′′′)〉

if 〈¬length M1 ′ < length M1 ′′〉
using that apply (auto simp: append-eq-append-conv-if)

by (metis (no-types, lifting) Cons-eq-append-conv append-take-drop-id drop-eq-Nil le-eq-less-or-eq)

show ?thesis using b 2 apply −
apply (rule exI [of - 〈if length M1 ′ < length M1 ′′ then K ′′ else K ′′′〉])
apply (rule exI [of - 〈if length M1 ′ < length M1 ′′ then M1 ′ else M1 ′′〉])
apply (cases 〈length (trail S) < min (length M1 ′) (length M1 ′′)〉)
subgoal
by auto

apply (cases 〈min (length M1 ′) (length M1 ′′) = length (trail S)〉)
subgoal by auto
subgoal
by (auto simp:)

done
qed

18

qed
qed

This theorem is an important (although rather obvious) property: the model induced by trails
are not repeated.
lemma tranclp-dpllW -no-dup-trail:
assumes 〈dpllW ++ S T 〉 and 〈dpllW -all-inv S 〉

shows 〈set (trail S) 6= set (trail T)〉

proof −
have [simp]: 〈A = B ∪ A ←→ B ⊆ A〉 for A B
by auto

have [simp]: 〈rev (trail U) = xs ←→trail U = rev xs〉 for xs U
by auto

have 〈dpllW -all-inv T 〉

by (metis assms(1) assms(2) reflclp-tranclp rtranclp-dpllW -all-inv sup2CI)
then have n-d: 〈no-dup (trail S)〉 〈no-dup (trail T)〉

using assms unfolding dpllW -all-inv-def by (auto dest: no-dup-imp-distinct)
have [simp]: 〈no-dup (rev M2 ′ @ DPLL-W .trail S) =⇒

dpllW -all-inv S =⇒
set M2 ′ ⊆ set (DPLL-W .trail S) ←→ M2 ′ = []〉 for M2 ′

by (cases M2 ′ rule: rev-cases)
(auto simp: undefined-notin)

show ?thesis
using n-d tranclp-dpllW -trail-after-step[OF assms(1)] assms(2) apply auto
by (metis (no-types, lifting) Un-insert-right insertI1 list.simps(15) lit-of .simps(1 ,2)
n-d(1) no-dup-cannot-not-lit-and-uminus set-append set-rev)

qed

end
theory CDCL-W-Level
imports
Entailment-Definition.Partial-Annotated-Herbrand-Interpretation

begin

Level of literals and clauses

Getting the level of a variable, implies that the list has to be reversed. Here is the function
after reversing.
definition count-decided :: (′v, ′b, ′m) annotated-lit list ⇒ nat where
count-decided l = length (filter is-decided l)

definition get-level :: (′v, ′m) ann-lits ⇒ ′v literal ⇒ nat where
get-level S L = length (filter is-decided (dropWhile (λS . atm-of (lit-of S) 6= atm-of L) S))

lemma get-level-uminus[simp]: 〈get-level M (−L) = get-level M L〉

by (auto simp: get-level-def)

lemma get-level-Neg-Pos: 〈get-level M (Neg L) = get-level M (Pos L)〉

unfolding get-level-def by auto

lemma count-decided-0-iff :
〈count-decided M = 0 ←→ (∀L ∈ set M . ¬is-decided L)〉

by (auto simp: count-decided-def filter-empty-conv)

19

lemma
shows
count-decided-nil[simp]: 〈count-decided [] = 0 〉 and
count-decided-cons[simp]:

〈count-decided (a # M) = (if is-decided a then Suc (count-decided M) else count-decided M)〉 and
count-decided-append[simp]:

〈count-decided (M @ M ′) = count-decided M + count-decided M ′〉

by (auto simp: count-decided-def)

lemma atm-of-notin-get-level-eq-0 [simp]:
assumes undefined-lit M L
shows get-level M L = 0
using assms by (induct M rule: ann-lit-list-induct) (auto simp: get-level-def defined-lit-map)

lemma get-level-ge-0-atm-of-in:
assumes get-level M L > n
shows atm-of L ∈ atm-of ‘ lits-of-l M
using atm-of-notin-get-level-eq-0 [of M L] assms unfolding defined-lit-map
by (auto simp: lits-of-def simp del: atm-of-notin-get-level-eq-0)

In get-level (resp. get-level), the beginning (resp. the end) can be skipped if the literal is not
in the beginning (resp. the end).

lemma get-level-skip[simp]:
assumes undefined-lit M L
shows get-level (M @ M ′) L = get-level M ′ L
using assms by (induct M rule: ann-lit-list-induct) (auto simp: get-level-def defined-lit-map)

If the literal is at the beginning, then the end can be skipped

lemma get-level-skip-end[simp]:
assumes defined-lit M L
shows get-level (M @ M ′) L = get-level M L + count-decided M ′

using assms by (induct M ′ rule: ann-lit-list-induct)
(auto simp: lits-of-def get-level-def count-decided-def defined-lit-map)

lemma get-level-skip-beginning[simp]:
assumes atm-of L ′ 6= atm-of (lit-of K)
shows get-level (K # M) L ′ = get-level M L ′
using assms by (auto simp: get-level-def)

lemma get-level-take-beginning[simp]:
assumes atm-of L ′ = atm-of (lit-of K)
shows get-level (K # M) L ′ = count-decided (K # M)
using assms by (auto simp: get-level-def count-decided-def)

lemma get-level-cons-if :
〈get-level (K # M) L ′ =

(if atm-of L ′ = atm-of (lit-of K) then count-decided (K # M) else get-level M L ′)〉

by auto

lemma get-level-skip-beginning-not-decided[simp]:
assumes undefined-lit S L
and ∀ s∈set S . ¬is-decided s
shows get-level (M @ S) L = get-level M L
using assms apply (induction S rule: ann-lit-list-induct)
apply auto[2]

20

apply (case-tac atm-of L ∈ atm-of ‘ lits-of-l M)
apply (auto simp: image-iff lits-of-def filter-empty-conv count-decided-def defined-lit-map

dest: set-dropWhileD)
done

lemma get-level-skip-all-not-decided[simp]:
fixes M
assumes ∀m∈set M . ¬ is-decided m
shows get-level M L = 0
using assms by (auto simp: filter-empty-conv get-level-def dest: set-dropWhileD)

the {#0 :: ′a#} is there to ensures that the set is not empty.
definition get-maximum-level :: (′a, ′b) ann-lits ⇒ ′a clause ⇒ nat
where

get-maximum-level M D = Max-mset ({#0#} + image-mset (get-level M) D)

lemma get-maximum-level-ge-get-level:
L ∈# D =⇒ get-maximum-level M D ≥ get-level M L
unfolding get-maximum-level-def by auto

lemma get-maximum-level-empty[simp]:
get-maximum-level M {#} = 0
unfolding get-maximum-level-def by auto

lemma get-maximum-level-exists-lit-of-max-level:
D 6= {#} =⇒ ∃L∈# D. get-level M L = get-maximum-level M D
unfolding get-maximum-level-def
apply (induct D)
apply simp
by (rename-tac x D, case-tac D = {#}) (auto simp add: max-def)

lemma get-maximum-level-empty-list[simp]:
get-maximum-level [] D = 0
unfolding get-maximum-level-def by (simp add: image-constant-conv)

lemma get-maximum-level-add-mset:
get-maximum-level M (add-mset L D) = max (get-level M L) (get-maximum-level M D)
unfolding get-maximum-level-def by simp

lemma get-level-append-if :
〈get-level (M @ M ′) L = (if defined-lit M L then get-level M L + count-decided M ′

else get-level M ′ L)〉

by (auto)

Do mot activate as [simp] rules. It breaks everything.
lemma get-maximum-level-single:

〈get-maximum-level M {#x#} = get-level M x〉

by (auto simp: get-maximum-level-add-mset)

lemma get-maximum-level-plus:
get-maximum-level M (D + D ′) = max (get-maximum-level M D) (get-maximum-level M D ′)
by (induction D) (simp-all add: get-maximum-level-add-mset)

lemma get-maximum-level-cong:
assumes 〈∀L ∈# D. get-level M L = get-level M ′ L〉

shows 〈get-maximum-level M D = get-maximum-level M ′ D〉

21

using assms by (induction D) (auto simp: get-maximum-level-add-mset)

lemma get-maximum-level-exists-lit:
assumes n: n > 0
and max: get-maximum-level M D = n
shows ∃L ∈#D. get-level M L = n

proof −
have f : finite (insert 0 ((λL. get-level M L) ‘ set-mset D)) by auto
then have n ∈ ((λL. get-level M L) ‘ set-mset D)
using n max Max-in[OF f] unfolding get-maximum-level-def by simp

then show ∃L ∈# D. get-level M L = n by auto
qed

lemma get-maximum-level-skip-first[simp]:
assumes atm-of (lit-of K) /∈ atms-of D
shows get-maximum-level (K # M) D = get-maximum-level M D
using assms unfolding get-maximum-level-def atms-of-def
atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set

by (smt atm-of-in-atm-of-set-in-uminus get-level-skip-beginning image-iff lit-of .simps(2)
multiset.map-cong0)

lemma get-maximum-level-skip-beginning:
assumes DH : ∀ x ∈# D. undefined-lit c x
shows get-maximum-level (c @ H) D = get-maximum-level H D

proof −
have (get-level (c @ H)) ‘ set-mset D = (get-level H) ‘ set-mset D
apply (rule image-cong)
apply (simp; fail)
using DH unfolding atms-of-def by auto

then show ?thesis using DH unfolding get-maximum-level-def by auto
qed

lemma get-maximum-level-D-single-propagated:
get-maximum-level [Propagated x21 x22] D = 0
unfolding get-maximum-level-def by (simp add: image-constant-conv)

lemma get-maximum-level-union-mset:
get-maximum-level M (A ∪# B) = get-maximum-level M (A + B)
unfolding get-maximum-level-def by (auto simp: image-Un)

lemma count-decided-rev[simp]:
count-decided (rev M) = count-decided M
by (auto simp: count-decided-def rev-filter [symmetric])

lemma count-decided-ge-get-level:
count-decided M ≥ get-level M L
by (induct M rule: ann-lit-list-induct)

(auto simp add: count-decided-def le-max-iff-disj get-level-def)

lemma count-decided-ge-get-maximum-level:
count-decided M ≥ get-maximum-level M D
using get-maximum-level-exists-lit-of-max-level unfolding Bex-def
by (metis get-maximum-level-empty count-decided-ge-get-level le0)

lemma get-level-last-decided-ge:
〈defined-lit (c @ [Decided K]) L ′ =⇒ 0 < get-level (c @ [Decided K]) L ′〉

22

by (induction c) (auto simp: defined-lit-cons get-level-cons-if)

lemma get-maximum-level-mono:
〈D ⊆# D ′ =⇒ get-maximum-level M D ≤ get-maximum-level M D ′〉
unfolding get-maximum-level-def by auto

fun get-all-mark-of-propagated where
get-all-mark-of-propagated [] = [] |
get-all-mark-of-propagated (Decided - # L) = get-all-mark-of-propagated L |
get-all-mark-of-propagated (Propagated - mark # L) = mark # get-all-mark-of-propagated L

lemma get-all-mark-of-propagated-append[simp]:
get-all-mark-of-propagated (A @ B) = get-all-mark-of-propagated A @ get-all-mark-of-propagated B
by (induct A rule: ann-lit-list-induct) auto

lemma get-all-mark-of-propagated-tl-proped:
〈M 6= [] =⇒ is-proped (hd M) =⇒ get-all-mark-of-propagated (tl M) = tl (get-all-mark-of-propagated

M)〉

by (induction M rule: ann-lit-list-induct) auto

Properties about the levels

lemma atm-lit-of-set-lits-of-l:
(λl. atm-of (lit-of l)) ‘ set xs = atm-of ‘ lits-of-l xs
unfolding lits-of-def by auto

Before I try yet another time to prove that I can remove the assumption no-dup M : It does not
work. The problem is that get-level M K = Suc i peaks the first occurrence of the literal K.
This is for example an issue for the trail replicate n (Decided K). An explicit counter-example
is below.

lemma le-count-decided-decomp:
assumes 〈no-dup M 〉

shows 〈i < count-decided M ←→ (∃ c K c ′. M = c @ Decided K # c ′ ∧ get-level M K = Suc i)〉

(is ?A ←→ ?B)
proof
assume ?B
then obtain c K c ′ where
M = c @ Decided K # c ′ and get-level M K = Suc i
by blast

then show ?A using count-decided-ge-get-level[of M K] by auto
next
assume ?A
then show ?B
using 〈no-dup M 〉

proof (induction M rule: ann-lit-list-induct)
case Nil
then show ?case by simp

next
case (Decided L M) note IH = this(1) and i = this(2) and n-d = this(3)
then have n-d-M : no-dup M by simp
show ?case
proof (cases i < count-decided M)
case True
then obtain c K c ′ where

M : M = c @ Decided K # c ′ and lev-K : get-level M K = Suc i

23

using IH n-d-M by blast
show ?thesis

apply (rule exI [of - Decided L # c])
apply (rule exI [of - K])
apply (rule exI [of - c ′])
using lev-K n-d unfolding M by (auto simp: get-level-def defined-lit-map)
next
case False
show ?thesis

apply (rule exI [of - []])
apply (rule exI [of - L])
apply (rule exI [of - M])
using False i by (auto simp: get-level-def count-decided-def)
qed
next
case (Propagated L mark ′ M) note i = this(2) and IH = this(1) and n-d = this(3)
then obtain c K c ′ where

M : M = c @ Decided K # c ′ and lev-K : get-level M K = Suc i
by (auto simp: count-decided-def)

show ?case
apply (rule exI [of - Propagated L mark ′ # c])
apply (rule exI [of - K])
apply (rule exI [of - c ′])
using lev-K n-d unfolding M by (auto simp: atm-lit-of-set-lits-of-l get-level-def
defined-lit-map)
qed

qed

The counter-example if the assumption no-dup M.
lemma
fixes K
defines 〈M ≡ replicate 3 (Decided K)〉

defines 〈i ≡ 1 〉

assumes 〈i < count-decided M ←→ (∃ c K c ′. M = c @ Decided K # c ′ ∧ get-level M K = Suc i)〉

shows False
using assms(3−) unfolding M-def i-def numeral-3-eq-3
by (auto simp: Cons-eq-append-conv)

lemma Suc-count-decided-gt-get-level:
〈get-level M L < Suc (count-decided M)〉

by (induction M rule: ann-lit-list-induct) (auto simp: get-level-cons-if)

lemma get-level-neq-Suc-count-decided[simp]:
〈get-level M L 6= Suc (count-decided M)〉

using Suc-count-decided-gt-get-level[of M L] by auto

lemma length-get-all-ann-decomposition: 〈length (get-all-ann-decomposition M) = 1+count-decided M 〉

by (induction M rule: ann-lit-list-induct) auto

lemma get-maximum-level-remove-non-max-lvl:
〈get-level M a < get-maximum-level M D =⇒
get-maximum-level M (remove1-mset a D) = get-maximum-level M D〉

by (cases 〈a ∈# D〉)
(auto dest!: multi-member-split simp: get-maximum-level-add-mset)

lemma exists-lit-max-level-in-negate-ann-lits:

24

〈negate-ann-lits M 6= {#} =⇒ ∃L∈#negate-ann-lits M . get-level M L = count-decided M 〉

by (cases 〈M 〉) (auto simp: negate-ann-lits-def)

end
theory CDCL-W
imports CDCL-W-Level Weidenbach-Book-Base.Wellfounded-More

begin

25

26

Chapter 1

Weidenbach’s CDCL

The organisation of the development is the following:

• CDCL_W.thy contains the specification of the rules: the rules and the strategy are defined,
and we proof the correctness of CDCL.

• CDCL_W_Termination.thy contains the proof of termination, based on the book.

• CDCL_W_Merge.thy contains a variant of the calculus: some rules of the raw calculus are
always applied together (like the rules analysing the conflict and then backtracking). This
is useful for the refinement from NOT.

• CDCL_WNOT.thy proves the inclusion of Weidenbach’s version of CDCL in NOT’s version.
We use here the version defined in CDCL_W_Merge.thy. We need this, because NOT’s
backjump corresponds to multiple applications of three rules in Weidenbach’s calculus.
We show also the termination of the calculus without strategy. There are two differ-
ent refinement: on from NOT’s to Weidenbach’s CDCL and another to W’s CDCL with
strategy.

We have some variants build on the top of Weidenbach’s CDCL calculus:

• CDCL_W_Incremental.thy adds incrementality on the top of CDCL_W.thy. The way we
are doing it is not compatible with CDCL_W_Merge.thy, because we add conflicts and
the CDCL_W_Merge.thy cannot analyse conflicts added externally, since the conflict and
analyse are merged.

• CDCL_W_Restart.thy adds restart and forget while restarting. It is built on the top of
CDCL_W_Merge.thy.

1.1 Weidenbach’s CDCL with Multisets
declare upt.simps(2)[simp del]

1.1.1 The State

We will abstract the representation of clause and clauses via two locales. We here use multisets,
contrary to CDCL_W_Abstract_State.thy where we assume only the existence of a conversion
to the state.

27

locale stateW -ops =
fixes
state :: ′st ⇒ (′v, ′v clause) ann-lits × ′v clauses × ′v clauses × ′v clause option ×
′b and

trail :: ′st ⇒ (′v, ′v clause) ann-lits and
init-clss :: ′st ⇒ ′v clauses and
learned-clss :: ′st ⇒ ′v clauses and
conflicting :: ′st ⇒ ′v clause option and

cons-trail :: (′v, ′v clause) ann-lit ⇒ ′st ⇒ ′st and
tl-trail :: ′st ⇒ ′st and

add-learned-cls :: ′v clause ⇒ ′st ⇒ ′st and
remove-cls :: ′v clause ⇒ ′st ⇒ ′st and
update-conflicting :: ′v clause option ⇒ ′st ⇒ ′st and

init-state :: ′v clauses ⇒ ′st
begin

abbreviation hd-trail :: ′st ⇒ (′v, ′v clause) ann-lit where
hd-trail S ≡ hd (trail S)

definition clauses :: ′st ⇒ ′v clauses where
clauses S = init-clss S + learned-clss S

abbreviation resolve-cls :: 〈 ′a literal ⇒ ′a clause ⇒ ′a clause ⇒ ′a clause〉 where
resolve-cls L D ′ E ≡ remove1-mset (−L) D ′ ∪# remove1-mset L E

abbreviation state-butlast :: ′st ⇒ (′v, ′v clause) ann-lits × ′v clauses × ′v clauses
× ′v clause option where

state-butlast S ≡ (trail S , init-clss S , learned-clss S , conflicting S)

definition additional-info :: ′st ⇒ ′b where
additional-info S = (λ(-, -, -, -, D). D) (state S)

end

We are using an abstract state to abstract away the detail of the implementation: we do not
need to know how the clauses are represented internally, we just need to know that they can be
converted to multisets.

Weidenbach state is a five-tuple composed of:

1. the trail is a list of decided literals;

2. the initial set of clauses (that is not changed during the whole calculus);

3. the learned clauses (clauses can be added or remove);

4. the conflicting clause (if any has been found so far).

Contrary to the original version, we have removed the maximum level of the trail, since the
information is redundant and required an additional invariant.
There are two different clause representation: one for the conflicting clause (′v clause, standing
for conflicting clause) and one for the initial and learned clauses (′v clause, standing for clause).

28

The representation of the clauses annotating literals in the trail is slightly different: being able
to convert it to ′v clause is enough (needed for function hd-trail below).
There are several axioms to state the independance of the different fields of the state: for
example, adding a clause to the learned clauses does not change the trail.

locale stateW -no-state =
stateW -ops
state
— functions about the state:
— getter:

trail init-clss learned-clss conflicting
— setter:

cons-trail tl-trail add-learned-cls remove-cls
update-conflicting

— Some specific states:
init-state

for
state-eq :: ′st ⇒ ′st ⇒ bool (infix ∼ 50) and
state :: ′st ⇒ (′v, ′v clause) ann-lits × ′v clauses × ′v clauses × ′v clause option ×
′b and

trail :: ′st ⇒ (′v, ′v clause) ann-lits and
init-clss :: ′st ⇒ ′v clauses and
learned-clss :: ′st ⇒ ′v clauses and
conflicting :: ′st ⇒ ′v clause option and

cons-trail :: (′v, ′v clause) ann-lit ⇒ ′st ⇒ ′st and
tl-trail :: ′st ⇒ ′st and
add-learned-cls :: ′v clause ⇒ ′st ⇒ ′st and
remove-cls :: ′v clause ⇒ ′st ⇒ ′st and
update-conflicting :: ′v clause option ⇒ ′st ⇒ ′st and

init-state :: ′v clauses ⇒ ′st +
assumes
state-eq-ref [simp, intro]: 〈S ∼ S 〉 and
state-eq-sym: 〈S ∼ T ←→ T ∼ S 〉 and
state-eq-trans: 〈S ∼ T =⇒ T ∼ U ′ =⇒ S ∼ U ′〉 and
state-eq-state: 〈S ∼ T =⇒ state S = state T 〉 and

cons-trail:∧
S ′. state st = (M , S ′) =⇒
state (cons-trail L st) = (L # M , S ′) and

tl-trail:∧
S ′. state st = (M , S ′) =⇒ state (tl-trail st) = (tl M , S ′) and

remove-cls:∧
S ′. state st = (M , N , U , S ′) =⇒
state (remove-cls C st) =

(M , removeAll-mset C N , removeAll-mset C U , S ′) and

add-learned-cls:∧
S ′. state st = (M , N , U , S ′) =⇒
state (add-learned-cls C st) = (M , N , {#C#} + U , S ′) and

update-conflicting:

29

∧
S ′. state st = (M , N , U , D, S ′) =⇒
state (update-conflicting E st) = (M , N , U , E , S ′) and

init-state:
state-butlast (init-state N) = ([], N , {#}, None) and

cons-trail-state-eq:
〈S ∼ S ′ =⇒ cons-trail L S ∼ cons-trail L S ′〉 and

tl-trail-state-eq:
〈S ∼ S ′ =⇒ tl-trail S ∼ tl-trail S ′〉 and

add-learned-cls-state-eq:
〈S ∼ S ′ =⇒ add-learned-cls C S ∼ add-learned-cls C S ′〉 and

remove-cls-state-eq:
〈S ∼ S ′ =⇒ remove-cls C S ∼ remove-cls C S ′〉 and

update-conflicting-state-eq:
〈S ∼ S ′ =⇒ update-conflicting D S ∼ update-conflicting D S ′〉 and

tl-trail-add-learned-cls-commute:
〈tl-trail (add-learned-cls C T) ∼ add-learned-cls C (tl-trail T)〉 and

tl-trail-update-conflicting:
〈tl-trail (update-conflicting D T) ∼ update-conflicting D (tl-trail T)〉 and

update-conflicting-update-conflicting:
〈
∧
D D ′ S S ′. S ∼ S ′ =⇒
update-conflicting D (update-conflicting D ′ S) ∼ update-conflicting D S ′〉 and

update-conflicting-itself :
〈
∧
D S ′. conflicting S ′ = D =⇒ update-conflicting D S ′ ∼ S ′〉

locale stateW =
stateW -no-state
state-eq state
— functions about the state:
— getter:

trail init-clss learned-clss conflicting
— setter:

cons-trail tl-trail add-learned-cls remove-cls
update-conflicting

— Some specific states:
init-state

for
state-eq :: ′st ⇒ ′st ⇒ bool (infix ∼ 50) and
state :: ′st ⇒ (′v, ′v clause) ann-lits × ′v clauses × ′v clauses × ′v clause option ×
′b and

trail :: ′st ⇒ (′v, ′v clause) ann-lits and
init-clss :: ′st ⇒ ′v clauses and
learned-clss :: ′st ⇒ ′v clauses and
conflicting :: ′st ⇒ ′v clause option and

cons-trail :: (′v, ′v clause) ann-lit ⇒ ′st ⇒ ′st and
tl-trail :: ′st ⇒ ′st and
add-learned-cls :: ′v clause ⇒ ′st ⇒ ′st and

30

remove-cls :: ′v clause ⇒ ′st ⇒ ′st and
update-conflicting :: ′v clause option ⇒ ′st ⇒ ′st and

init-state :: ′v clauses ⇒ ′st +
assumes
state-prop[simp]:

〈state S = (trail S , init-clss S , learned-clss S , conflicting S , additional-info S)〉

begin

lemma
trail-cons-trail[simp]:
trail (cons-trail L st) = L # trail st and

trail-tl-trail[simp]: trail (tl-trail st) = tl (trail st) and
trail-add-learned-cls[simp]:
trail (add-learned-cls C st) = trail st and

trail-remove-cls[simp]:
trail (remove-cls C st) = trail st and

trail-update-conflicting[simp]: trail (update-conflicting E st) = trail st and

init-clss-cons-trail[simp]:
init-clss (cons-trail M st) = init-clss st
and

init-clss-tl-trail[simp]:
init-clss (tl-trail st) = init-clss st and

init-clss-add-learned-cls[simp]:
init-clss (add-learned-cls C st) = init-clss st and

init-clss-remove-cls[simp]:
init-clss (remove-cls C st) = removeAll-mset C (init-clss st) and

init-clss-update-conflicting[simp]:
init-clss (update-conflicting E st) = init-clss st and

learned-clss-cons-trail[simp]:
learned-clss (cons-trail M st) = learned-clss st and

learned-clss-tl-trail[simp]:
learned-clss (tl-trail st) = learned-clss st and

learned-clss-add-learned-cls[simp]:
learned-clss (add-learned-cls C st) = {#C#} + learned-clss st and

learned-clss-remove-cls[simp]:
learned-clss (remove-cls C st) = removeAll-mset C (learned-clss st) and

learned-clss-update-conflicting[simp]:
learned-clss (update-conflicting E st) = learned-clss st and

conflicting-cons-trail[simp]:
conflicting (cons-trail M st) = conflicting st and

conflicting-tl-trail[simp]:
conflicting (tl-trail st) = conflicting st and

conflicting-add-learned-cls[simp]:
conflicting (add-learned-cls C st) = conflicting st
and

conflicting-remove-cls[simp]:
conflicting (remove-cls C st) = conflicting st and

conflicting-update-conflicting[simp]:
conflicting (update-conflicting E st) = E and

init-state-trail[simp]: trail (init-state N) = [] and
init-state-clss[simp]: init-clss (init-state N) = N and

31

init-state-learned-clss[simp]: learned-clss (init-state N) = {#} and
init-state-conflicting[simp]: conflicting (init-state N) = None
using cons-trail[of st] tl-trail[of st] add-learned-cls[of st - - - - C]
update-conflicting[of st - - - - - -]
remove-cls[of st - - - - C]
init-state[of N]

by auto

lemma
shows
clauses-cons-trail[simp]:
clauses (cons-trail M S) = clauses S and

clss-tl-trail[simp]: clauses (tl-trail S) = clauses S and
clauses-add-learned-cls-unfolded:
clauses (add-learned-cls U S) = {#U#} + learned-clss S + init-clss S
and

clauses-update-conflicting[simp]: clauses (update-conflicting D S) = clauses S and
clauses-remove-cls[simp]:
clauses (remove-cls C S) = removeAll-mset C (clauses S) and

clauses-add-learned-cls[simp]:
clauses (add-learned-cls C S) = {#C#} + clauses S and

clauses-init-state[simp]: clauses (init-state N) = N
by (auto simp: ac-simps replicate-mset-plus clauses-def intro: multiset-eqI)

lemma state-eq-trans ′: 〈S ∼ S ′ =⇒ T ∼ S ′ =⇒ T ∼ S 〉

by (meson state-eq-trans state-eq-sym)

abbreviation backtrack-lvl :: ′st ⇒ nat where
〈backtrack-lvl S ≡ count-decided (trail S)〉

named-theorems state-simp 〈contains all theorems of the form @{term 〈S ∼ T =⇒ P S = P T 〉}.
These theorems can cause a signefecant blow−up of the simp−space〉

lemma
shows
state-eq-trail[state-simp]: S ∼ T =⇒ trail S = trail T and
state-eq-init-clss[state-simp]: S ∼ T =⇒ init-clss S = init-clss T and
state-eq-learned-clss[state-simp]: S ∼ T =⇒ learned-clss S = learned-clss T and
state-eq-conflicting[state-simp]: S ∼ T =⇒ conflicting S = conflicting T and
state-eq-clauses[state-simp]: S ∼ T =⇒ clauses S = clauses T and
state-eq-undefined-lit[state-simp]: S ∼ T =⇒ undefined-lit (trail S) L = undefined-lit (trail T) L and
state-eq-backtrack-lvl[state-simp]: S ∼ T =⇒ backtrack-lvl S = backtrack-lvl T

using state-eq-state unfolding clauses-def by auto

lemma state-eq-conflicting-None:
S ∼ T =⇒ conflicting T = None =⇒ conflicting S = None
using state-eq-state unfolding clauses-def by auto

We combine all simplification rules about (∼) in a single list of theorems. While they are handy
as simplification rule as long as we are working on the state, they also cause a huge slow-down
in all other cases.

declare state-simp[simp]

function reduce-trail-to :: ′a list ⇒ ′st ⇒ ′st where

32

reduce-trail-to F S =
(if length (trail S) = length F ∨ trail S = [] then S else reduce-trail-to F (tl-trail S))

by fast+
termination
by (relation measure (λ(-, S). length (trail S))) simp-all

declare reduce-trail-to.simps[simp del]

lemma reduce-trail-to-induct:
assumes

〈
∧
F S . length (trail S) = length F =⇒ P F S 〉 and

〈
∧
F S . trail S = [] =⇒ P F S 〉 and

〈
∧
F S . length (trail S) 6= length F =⇒ trail S 6= [] =⇒ P F (tl-trail S) =⇒ P F S 〉

shows
〈P F S 〉

apply (induction rule: reduce-trail-to.induct)
subgoal for F S using assms
by (cases 〈length (trail S) = length F 〉; cases 〈trail S = []〉) auto

done

lemma
shows
reduce-trail-to-Nil[simp]: trail S = [] =⇒ reduce-trail-to F S = S and
reduce-trail-to-eq-length[simp]: length (trail S) = length F =⇒ reduce-trail-to F S = S

by (auto simp: reduce-trail-to.simps)

lemma reduce-trail-to-length-ne:
length (trail S) 6= length F =⇒ trail S 6= [] =⇒
reduce-trail-to F S = reduce-trail-to F (tl-trail S)

by (auto simp: reduce-trail-to.simps)

lemma trail-reduce-trail-to-length-le:
assumes length F > length (trail S)
shows trail (reduce-trail-to F S) = []
using assms apply (induction F S rule: reduce-trail-to.induct)
by (metis (no-types, hide-lams) length-tl less-imp-diff-less less-irrefl trail-tl-trail
reduce-trail-to.simps)

lemma trail-reduce-trail-to-Nil[simp]:
trail (reduce-trail-to [] S) = []
apply (induction []::(′v, ′v clause) ann-lits S rule: reduce-trail-to.induct)
by (metis length-0-conv reduce-trail-to-length-ne reduce-trail-to-Nil)

lemma clauses-reduce-trail-to-Nil:
clauses (reduce-trail-to [] S) = clauses S

proof (induction [] S rule: reduce-trail-to.induct)
case (1 Sa)
then have clauses (reduce-trail-to ([]:: ′a list) (tl-trail Sa)) = clauses (tl-trail Sa)
∨ trail Sa = []
by fastforce

then show clauses (reduce-trail-to ([]:: ′a list) Sa) = clauses Sa
by (metis (no-types) length-0-conv reduce-trail-to-eq-length clss-tl-trail
reduce-trail-to-length-ne)

qed

lemma reduce-trail-to-skip-beginning:

33

assumes trail S = F ′ @ F
shows trail (reduce-trail-to F S) = F
using assms by (induction F ′ arbitrary: S) (auto simp: reduce-trail-to-length-ne)

lemma clauses-reduce-trail-to[simp]:
clauses (reduce-trail-to F S) = clauses S
apply (induction F S rule: reduce-trail-to.induct)
by (metis clss-tl-trail reduce-trail-to.simps)

lemma conflicting-update-trail[simp]:
conflicting (reduce-trail-to F S) = conflicting S
apply (induction F S rule: reduce-trail-to.induct)
by (metis conflicting-tl-trail reduce-trail-to.simps)

lemma init-clss-update-trail[simp]:
init-clss (reduce-trail-to F S) = init-clss S
apply (induction F S rule: reduce-trail-to.induct)
by (metis init-clss-tl-trail reduce-trail-to.simps)

lemma learned-clss-update-trail[simp]:
learned-clss (reduce-trail-to F S) = learned-clss S
apply (induction F S rule: reduce-trail-to.induct)
by (metis learned-clss-tl-trail reduce-trail-to.simps)

lemma conflicting-reduce-trail-to[simp]:
conflicting (reduce-trail-to F S) = None ←→ conflicting S = None
apply (induction F S rule: reduce-trail-to.induct)
by (metis conflicting-update-trail)

lemma trail-eq-reduce-trail-to-eq:
trail S = trail T =⇒ trail (reduce-trail-to F S) = trail (reduce-trail-to F T)
apply (induction F S arbitrary: T rule: reduce-trail-to.induct)
by (metis trail-tl-trail reduce-trail-to.simps)

lemma reduce-trail-to-trail-tl-trail-decomp[simp]:
trail S = F ′ @ Decided K # F =⇒ trail (reduce-trail-to F S) = F
apply (rule reduce-trail-to-skip-beginning[of - F ′ @ Decided K # []])
by (cases F ′) (auto simp add: tl-append reduce-trail-to-skip-beginning)

lemma reduce-trail-to-add-learned-cls[simp]:
trail (reduce-trail-to F (add-learned-cls C S)) = trail (reduce-trail-to F S)
by (rule trail-eq-reduce-trail-to-eq) auto

lemma reduce-trail-to-remove-learned-cls[simp]:
trail (reduce-trail-to F (remove-cls C S)) = trail (reduce-trail-to F S)
by (rule trail-eq-reduce-trail-to-eq) auto

lemma reduce-trail-to-update-conflicting[simp]:
trail (reduce-trail-to F (update-conflicting C S)) = trail (reduce-trail-to F S)
by (rule trail-eq-reduce-trail-to-eq) auto

lemma reduce-trail-to-length:
length M = length M ′ =⇒ reduce-trail-to M S = reduce-trail-to M ′ S
apply (induction M S rule: reduce-trail-to.induct)
by (simp add: reduce-trail-to.simps)

34

lemma trail-reduce-trail-to-drop:
trail (reduce-trail-to F S) =

(if length (trail S) ≥ length F
then drop (length (trail S) − length F) (trail S)
else [])

apply (induction F S rule: reduce-trail-to.induct)
apply (rename-tac F S , case-tac trail S)
apply (auto; fail)
apply (rename-tac list, case-tac Suc (length list) > length F)
prefer 2 apply (metis diff-is-0-eq drop-Cons ′ length-Cons nat-le-linear nat-less-le
reduce-trail-to-eq-length trail-reduce-trail-to-length-le)

apply (subgoal-tac Suc (length list) − length F = Suc (length list − length F))
by (auto simp add: reduce-trail-to-length-ne)

lemma in-get-all-ann-decomposition-trail-update-trail[simp]:
assumes H : (L # M1 , M2) ∈ set (get-all-ann-decomposition (trail S))
shows trail (reduce-trail-to M1 S) = M1

proof −
obtain K where
L: L = Decided K
using H by (cases L) (auto dest!: in-get-all-ann-decomposition-decided-or-empty)

obtain c where
tr-S : trail S = c @ M2 @ L # M1
using H by auto

show ?thesis
by (rule reduce-trail-to-trail-tl-trail-decomp[of - c @ M2 K])
(auto simp: tr-S L)

qed

lemma reduce-trail-to-state-eq:
〈S ∼ S ′ =⇒ length M = length M ′ =⇒ reduce-trail-to M S ∼ reduce-trail-to M ′ S ′〉
apply (induction M S arbitrary: M ′ S ′ rule: reduce-trail-to-induct)
apply ((auto;fail)+)[2]
by (simp add: reduce-trail-to-length-ne tl-trail-state-eq)

lemma conflicting-cons-trail-conflicting[iff]:
conflicting (cons-trail L S) = None ←→ conflicting S = None
using conflicting-cons-trail[of L S] map-option-is-None by fastforce+

lemma conflicting-add-learned-cls-conflicting[iff]:
conflicting (add-learned-cls C S) = None ←→ conflicting S = None
by fastforce+

lemma reduce-trail-to-compow-tl-trail-le:
assumes 〈length M < length (trail M ′)〉

shows 〈reduce-trail-to M M ′ = (tl-trail^^ (length (trail M ′) − length M)) M ′〉

proof −
have [simp]: 〈(∀ ka. k 6= Suc ka) ←→ k = 0 〉 for k
by (cases k) auto

show ?thesis
using assms
apply (induction M≡M S≡M ′ arbitrary: M M ′ rule: reduce-trail-to.induct)
subgoal for F S
by (subst reduce-trail-to.simps; cases 〈length F < length (trail S) − Suc 0 〉)

(auto simp: less-iff-Suc-add funpow-swap1)
done

35

qed

lemma reduce-trail-to-compow-tl-trail-eq:
〈length M = length (trail M ′) =⇒ reduce-trail-to M M ′ = (tl-trail^^ (length (trail M ′) − length M))

M ′〉

by auto

lemma reduce-trail-to-compow-tl-trail:
〈length M ≤ length (trail M ′) =⇒ reduce-trail-to M M ′ = (tl-trail^^ (length (trail M ′) − length M))

M ′〉

using reduce-trail-to-compow-tl-trail-eq[of M M ′]
reduce-trail-to-compow-tl-trail-le[of M M ′]

by (cases 〈length M < length (trail M ′)〉) auto

lemma tl-trail-reduce-trail-to-cons:
〈length (L # M) < length (trail M ′) =⇒ tl-trail (reduce-trail-to (L # M) M ′) = reduce-trail-to M M ′〉

by (auto simp: reduce-trail-to-compow-tl-trail-le funpow-swap1
reduce-trail-to-compow-tl-trail-eq less-iff-Suc-add)

lemma compow-tl-trail-add-learned-cls-swap:
〈(tl-trail ^^ n) (add-learned-cls D S) ∼ add-learned-cls D ((tl-trail ^^ n) S)〉

by (induction n)
(auto intro: tl-trail-add-learned-cls-commute state-eq-trans

tl-trail-state-eq)

lemma reduce-trail-to-add-learned-cls-state-eq:
〈length M ≤ length (trail S) =⇒
reduce-trail-to M (add-learned-cls D S) ∼ add-learned-cls D (reduce-trail-to M S)〉

by (cases 〈length M < length (trail S)〉)
(auto simp: compow-tl-trail-add-learned-cls-swap reduce-trail-to-compow-tl-trail-le
reduce-trail-to-compow-tl-trail-eq)

lemma compow-tl-trail-update-conflicting-swap:
〈(tl-trail ^^ n) (update-conflicting D S) ∼ update-conflicting D ((tl-trail ^^ n) S)〉

by (induction n)
(auto intro: tl-trail-add-learned-cls-commute state-eq-trans

tl-trail-state-eq tl-trail-update-conflicting)

lemma reduce-trail-to-update-conflicting-state-eq:
〈length M ≤ length (trail S) =⇒
reduce-trail-to M (update-conflicting D S) ∼ update-conflicting D (reduce-trail-to M S)〉

by (cases 〈length M < length (trail S)〉)
(auto simp: compow-tl-trail-add-learned-cls-swap reduce-trail-to-compow-tl-trail-le
reduce-trail-to-compow-tl-trail-eq compow-tl-trail-update-conflicting-swap)

lemma
additional-info-cons-trail[simp]:

〈additional-info (cons-trail L S) = additional-info S 〉 and
additional-info-tl-trail[simp]:
additional-info (tl-trail S) = additional-info S and

additional-info-add-learned-cls-unfolded:
additional-info (add-learned-cls U S) = additional-info S and

additional-info-update-conflicting[simp]:
additional-info (update-conflicting D S) = additional-info S and

additional-info-remove-cls[simp]:
additional-info (remove-cls C S) = additional-info S and

36

additional-info-add-learned-cls[simp]:
additional-info (add-learned-cls C S) = additional-info S

unfolding additional-info-def
using tl-trail[of S] cons-trail[of S] add-learned-cls[of S]
update-conflicting[of S] remove-cls[of S]

by (cases 〈state S 〉; auto; fail)+

lemma additional-info-reduce-trail-to[simp]:
〈additional-info (reduce-trail-to F S) = additional-info S 〉

by (induction F S rule: reduce-trail-to.induct)
(metis additional-info-tl-trail reduce-trail-to.simps)

lemma reduce-trail-to:
state (reduce-trail-to F S) =

((if length (trail S) ≥ length F
then drop (length (trail S) − length F) (trail S)
else []), init-clss S , learned-clss S , conflicting S , additional-info S)

proof (induction F S rule: reduce-trail-to.induct)
case (1 F S) note IH = this
show ?case
proof (cases trail S)
case Nil
then show ?thesis using IH by (subst state-prop) auto

next
case (Cons L M)
show ?thesis
proof (cases Suc (length M) > length F)
case True
then have Suc (length M) − length F = Suc (length M − length F)
by auto

then show ?thesis
using Cons True reduce-trail-to-length-ne[of S F] IH by (auto simp del: state-prop)

next
case False
then show ?thesis
using IH reduce-trail-to-length-ne[of S F] apply (subst state-prop)
by (simp add: trail-reduce-trail-to-drop)

qed
qed

qed

end — end of stateW locale

1.1.2 CDCL Rules

Because of the strategy we will later use, we distinguish propagate, conflict from the other rules

locale conflict-driven-clause-learningW =
stateW

state-eq
state
— functions for the state:
— access functions:

trail init-clss learned-clss conflicting
— changing state:

cons-trail tl-trail add-learned-cls remove-cls

37

update-conflicting

— get state:
init-state

for
state-eq :: ′st ⇒ ′st ⇒ bool (infix ∼ 50) and
state :: ′st ⇒ (′v, ′v clause) ann-lits × ′v clauses × ′v clauses × ′v clause option ×
′b and

trail :: ′st ⇒ (′v, ′v clause) ann-lits and
init-clss :: ′st ⇒ ′v clauses and
learned-clss :: ′st ⇒ ′v clauses and
conflicting :: ′st ⇒ ′v clause option and

cons-trail :: (′v, ′v clause) ann-lit ⇒ ′st ⇒ ′st and
tl-trail :: ′st ⇒ ′st and
add-learned-cls :: ′v clause ⇒ ′st ⇒ ′st and
remove-cls :: ′v clause ⇒ ′st ⇒ ′st and
update-conflicting :: ′v clause option ⇒ ′st ⇒ ′st and

init-state :: ′v clauses ⇒ ′st
begin

inductive propagate :: ′st ⇒ ′st ⇒ bool for S :: ′st where
propagate-rule: conflicting S = None =⇒
E ∈# clauses S =⇒
L ∈# E =⇒
trail S |=as CNot (E − {#L#}) =⇒
undefined-lit (trail S) L =⇒
T ∼ cons-trail (Propagated L E) S =⇒
propagate S T

inductive-cases propagateE : propagate S T

inductive conflict :: ′st ⇒ ′st ⇒ bool for S :: ′st where
conflict-rule:
conflicting S = None =⇒
D ∈# clauses S =⇒
trail S |=as CNot D =⇒
T ∼ update-conflicting (Some D) S =⇒
conflict S T

inductive-cases conflictE : conflict S T

inductive backtrack :: ′st ⇒ ′st ⇒ bool for S :: ′st where
backtrack-rule:
conflicting S = Some (add-mset L D) =⇒
(Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail S)) =⇒
get-level (trail S) L = backtrack-lvl S =⇒
get-level (trail S) L = get-maximum-level (trail S) (add-mset L D ′) =⇒
get-maximum-level (trail S) D ′ ≡ i =⇒
get-level (trail S) K = i + 1 =⇒
D ′ ⊆# D =⇒
clauses S |=pm add-mset L D ′ =⇒
T ∼ cons-trail (Propagated L (add-mset L D ′))

(reduce-trail-to M1
(add-learned-cls (add-mset L D ′)

38

(update-conflicting None S))) =⇒
backtrack S T

inductive-cases backtrackE : backtrack S T

Here is the normal backtrack rule from Weidenbach’s book:
inductive simple-backtrack :: ′st ⇒ ′st ⇒ bool for S :: ′st where
simple-backtrack-rule:
conflicting S = Some (add-mset L D) =⇒
(Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail S)) =⇒
get-level (trail S) L = backtrack-lvl S =⇒
get-level (trail S) L = get-maximum-level (trail S) (add-mset L D) =⇒
get-maximum-level (trail S) D ≡ i =⇒
get-level (trail S) K = i + 1 =⇒
T ∼ cons-trail (Propagated L (add-mset L D))

(reduce-trail-to M1
(add-learned-cls (add-mset L D)

(update-conflicting None S))) =⇒
simple-backtrack S T

inductive-cases simple-backtrackE : simple-backtrack S T

This is a generalised version of backtrack: It is general enough te also include OCDCL’s version.
inductive backtrackg :: ′st ⇒ ′st ⇒ bool for S :: ′st where
backtrackg-rule:
conflicting S = Some (add-mset L D) =⇒
(Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail S)) =⇒
get-level (trail S) L = backtrack-lvl S =⇒
get-level (trail S) L = get-maximum-level (trail S) (add-mset L D ′) =⇒
get-maximum-level (trail S) D ′ ≡ i =⇒
get-level (trail S) K = i + 1 =⇒
D ′ ⊆# D =⇒
T ∼ cons-trail (Propagated L (add-mset L D ′))

(reduce-trail-to M1
(add-learned-cls (add-mset L D ′)

(update-conflicting None S))) =⇒
backtrackg S T

inductive-cases backtrackgE : backtrackg S T

inductive decide :: ′st ⇒ ′st ⇒ bool for S :: ′st where
decide-rule:
conflicting S = None =⇒
undefined-lit (trail S) L =⇒
atm-of L ∈ atms-of-mm (init-clss S) =⇒
T ∼ cons-trail (Decided L) S =⇒
decide S T

inductive-cases decideE : decide S T

inductive skip :: ′st ⇒ ′st ⇒ bool for S :: ′st where
skip-rule:
trail S = Propagated L C ′ # M =⇒
conflicting S = Some E =⇒
−L /∈# E =⇒
E 6= {#} =⇒

39

T ∼ tl-trail S =⇒
skip S T

inductive-cases skipE : skip S T

get-maximum-level (Propagated L (C + {#L#}) # M) D = k ∨ k = 0 (that was in a previous
version of the book) is equivalent to get-maximum-level (Propagated L (C + {#L#}) # M) D
= k, when the structural invariants holds.
inductive resolve :: ′st ⇒ ′st ⇒ bool for S :: ′st where
resolve-rule: trail S 6= [] =⇒
hd-trail S = Propagated L E =⇒
L ∈# E =⇒
conflicting S = Some D ′ =⇒
−L ∈# D ′ =⇒
get-maximum-level (trail S) ((remove1-mset (−L) D ′)) = backtrack-lvl S =⇒
T ∼ update-conflicting (Some (resolve-cls L D ′ E))

(tl-trail S) =⇒
resolve S T

inductive-cases resolveE : resolve S T

Christoph’s version restricts restarts to the the case where ¬M |= N+U. While it is possible to
implement this (by watching a clause), This is an unnecessary restriction.
inductive restart :: ′st ⇒ ′st ⇒ bool for S :: ′st where
restart: state S = (M , N , U , None, S ′) =⇒
U ′ ⊆# U =⇒
state T = ([], N , U ′, None, S ′) =⇒
restart S T

inductive-cases restartE : restart S T

We add the condition C /∈# init-clss S, to maintain consistency even without the strategy.
inductive forget :: ′st ⇒ ′st ⇒ bool where
forget-rule:
conflicting S = None =⇒
C ∈# learned-clss S =⇒
¬(trail S) |=asm clauses S =⇒
C /∈ set (get-all-mark-of-propagated (trail S)) =⇒
C /∈# init-clss S =⇒
removeAll-mset C (clauses S) |=pm C =⇒
T ∼ remove-cls C S =⇒
forget S T

inductive-cases forgetE : forget S T

inductive cdclW -rf :: ′st ⇒ ′st ⇒ bool for S :: ′st where
restart: restart S T =⇒ cdclW -rf S T |
forget: forget S T =⇒ cdclW -rf S T

inductive cdclW -bj :: ′st ⇒ ′st ⇒ bool where
skip: skip S S ′ =⇒ cdclW -bj S S ′ |
resolve: resolve S S ′ =⇒ cdclW -bj S S ′ |
backtrack: backtrack S S ′ =⇒ cdclW -bj S S ′

inductive-cases cdclW -bjE : cdclW -bj S T

40

inductive cdclW -o :: ′st ⇒ ′st ⇒ bool for S :: ′st where
decide: decide S S ′ =⇒ cdclW -o S S ′ |
bj: cdclW -bj S S ′ =⇒ cdclW -o S S ′

inductive cdclW -restart :: ′st ⇒ ′st ⇒ bool for S :: ′st where
propagate: propagate S S ′ =⇒ cdclW -restart S S ′ |
conflict: conflict S S ′ =⇒ cdclW -restart S S ′ |
other : cdclW -o S S ′ =⇒ cdclW -restart S S ′|
rf : cdclW -rf S S ′ =⇒ cdclW -restart S S ′

lemma rtranclp-propagate-is-rtranclp-cdclW -restart:
propagate∗∗ S S ′ =⇒ cdclW -restart∗∗ S S ′
apply (induction rule: rtranclp-induct)
apply (simp; fail)

apply (frule propagate)
using rtranclp-trans[of cdclW -restart] by blast

inductive cdclW :: ′st ⇒ ′st ⇒ bool for S :: ′st where
W-propagate: propagate S S ′ =⇒ cdclW S S ′ |
W-conflict: conflict S S ′ =⇒ cdclW S S ′ |
W-other : cdclW -o S S ′ =⇒ cdclW S S ′

lemma cdclW -cdclW -restart:
cdclW S T =⇒ cdclW -restart S T
by (induction rule: cdclW .induct) (auto intro: cdclW -restart.intros simp del: state-prop)

lemma rtranclp-cdclW -cdclW -restart:
〈cdclW ∗∗ S T =⇒ cdclW -restart∗∗ S T 〉

apply (induction rule: rtranclp-induct)
apply (auto; fail)[]
by (meson cdclW -cdclW -restart rtranclp.rtrancl-into-rtrancl)

lemma cdclW -restart-all-rules-induct[consumes 1 , case-names propagate conflict forget restart decide
skip resolve backtrack]:

fixes S :: ′st
assumes
cdclW -restart: cdclW -restart S S ′ and
propagate:

∧
T . propagate S T =⇒ P S T and

conflict:
∧
T . conflict S T =⇒ P S T and

forget:
∧
T . forget S T =⇒ P S T and

restart:
∧
T . restart S T =⇒ P S T and

decide:
∧
T . decide S T =⇒ P S T and

skip:
∧
T . skip S T =⇒ P S T and

resolve:
∧
T . resolve S T =⇒ P S T and

backtrack:
∧
T . backtrack S T =⇒ P S T

shows P S S ′
using assms(1)

proof (induct S ′ rule: cdclW -restart.induct)
case (propagate S ′) note propagate = this(1)
then show ?case using assms(2) by auto

next
case (conflict S ′)
then show ?case using assms(3) by auto

next
case (other S ′)

41

then show ?case
proof (induct rule: cdclW -o.induct)
case (decide U)
then show ?case using assms(6) by auto

next
case (bj S ′)
then show ?case using assms(7−9) by (induction rule: cdclW -bj.induct) auto

qed
next
case (rf S ′)
then show ?case
by (induct rule: cdclW -rf .induct) (fast dest: forget restart)+

qed

lemma cdclW -restart-all-induct[consumes 1 , case-names propagate conflict forget restart decide skip
resolve backtrack]:

fixes S :: ′st
assumes
cdclW -restart: cdclW -restart S S ′ and
propagateH :

∧
C L T . conflicting S = None =⇒

C ∈# clauses S =⇒
L ∈# C =⇒
trail S |=as CNot (remove1-mset L C) =⇒
undefined-lit (trail S) L =⇒
T ∼ cons-trail (Propagated L C) S =⇒
P S T and

conflictH :
∧
D T . conflicting S = None =⇒

D ∈# clauses S =⇒
trail S |=as CNot D =⇒
T ∼ update-conflicting (Some D) S =⇒
P S T and

forgetH :
∧
C T . conflicting S = None =⇒

C ∈# learned-clss S =⇒
¬(trail S) |=asm clauses S =⇒
C /∈ set (get-all-mark-of-propagated (trail S)) =⇒
C /∈# init-clss S =⇒
removeAll-mset C (clauses S) |=pm C =⇒
T ∼ remove-cls C S =⇒
P S T and

restartH :
∧
T U . conflicting S = None =⇒

state T = ([], init-clss S , U , None, additional-info S) =⇒
U ⊆# learned-clss S =⇒
P S T and

decideH :
∧
L T . conflicting S = None =⇒

undefined-lit (trail S) L =⇒
atm-of L ∈ atms-of-mm (init-clss S) =⇒
T ∼ cons-trail (Decided L) S =⇒
P S T and

skipH :
∧
L C ′ M E T .

trail S = Propagated L C ′ # M =⇒
conflicting S = Some E =⇒
−L /∈# E =⇒ E 6= {#} =⇒
T ∼ tl-trail S =⇒
P S T and

resolveH :
∧
L E M D T .

trail S = Propagated L E # M =⇒

42

L ∈# E =⇒
hd-trail S = Propagated L E =⇒
conflicting S = Some D =⇒
−L ∈# D =⇒
get-maximum-level (trail S) ((remove1-mset (−L) D)) = backtrack-lvl S =⇒
T ∼ update-conflicting

(Some (resolve-cls L D E)) (tl-trail S) =⇒
P S T and

backtrackH :
∧
L D K i M1 M2 T D ′.

conflicting S = Some (add-mset L D) =⇒
(Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail S)) =⇒
get-level (trail S) L = backtrack-lvl S =⇒
get-level (trail S) L = get-maximum-level (trail S) (add-mset L D ′) =⇒
get-maximum-level (trail S) D ′ ≡ i =⇒
get-level (trail S) K = i+1 =⇒
D ′ ⊆# D =⇒
clauses S |=pm add-mset L D ′ =⇒
T ∼ cons-trail (Propagated L (add-mset L D ′))

(reduce-trail-to M1
(add-learned-cls (add-mset L D ′)

(update-conflicting None S))) =⇒
P S T

shows P S S ′
using cdclW -restart

proof (induct S S ′ rule: cdclW -restart-all-rules-induct)
case (propagate S ′)
then show ?case
by (auto elim!: propagateE intro!: propagateH)

next
case (conflict S ′)
then show ?case
by (auto elim!: conflictE intro!: conflictH)

next
case (restart S ′)
then show ?case
by (auto elim!: restartE intro!: restartH)

next
case (decide T)
then show ?case
by (auto elim!: decideE intro!: decideH)

next
case (backtrack S ′)
then show ?case by (auto elim!: backtrackE intro!: backtrackH simp del: state-simp)

next
case (forget S ′)
then show ?case by (auto elim!: forgetE intro!: forgetH)

next
case (skip S ′)
then show ?case by (auto elim!: skipE intro!: skipH)

next
case (resolve S ′)
then show ?case
by (cases trail S) (auto elim!: resolveE intro!: resolveH)

qed

lemma cdclW -o-induct[consumes 1 , case-names decide skip resolve backtrack]:

43

fixes S :: ′st
assumes cdclW -restart: cdclW -o S T and
decideH :

∧
L T . conflicting S = None =⇒ undefined-lit (trail S) L

=⇒ atm-of L ∈ atms-of-mm (init-clss S)
=⇒ T ∼ cons-trail (Decided L) S
=⇒ P S T and

skipH :
∧
L C ′ M E T .

trail S = Propagated L C ′ # M =⇒
conflicting S = Some E =⇒
−L /∈# E =⇒ E 6= {#} =⇒
T ∼ tl-trail S =⇒
P S T and

resolveH :
∧
L E M D T .

trail S = Propagated L E # M =⇒
L ∈# E =⇒
hd-trail S = Propagated L E =⇒
conflicting S = Some D =⇒
−L ∈# D =⇒
get-maximum-level (trail S) ((remove1-mset (−L) D)) = backtrack-lvl S =⇒
T ∼ update-conflicting

(Some (resolve-cls L D E)) (tl-trail S) =⇒
P S T and

backtrackH :
∧
L D K i M1 M2 T D ′.

conflicting S = Some (add-mset L D) =⇒
(Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail S)) =⇒
get-level (trail S) L = backtrack-lvl S =⇒
get-level (trail S) L = get-maximum-level (trail S) (add-mset L D ′) =⇒
get-maximum-level (trail S) D ′ ≡ i =⇒
get-level (trail S) K = i+1 =⇒
D ′ ⊆# D =⇒
clauses S |=pm add-mset L D ′ =⇒
T ∼ cons-trail (Propagated L (add-mset L D ′))

(reduce-trail-to M1
(add-learned-cls (add-mset L D ′)

(update-conflicting None S))) =⇒
P S T

shows P S T
using cdclW -restart apply (induct T rule: cdclW -o.induct)
subgoal using assms(2) by (auto elim: decideE ; fail)
subgoal apply (elim cdclW -bjE skipE resolveE backtrackE)
apply (frule skipH ; simp; fail)
apply (cases trail S ; auto elim!: resolveE intro!: resolveH ; fail)
apply (frule backtrackH ; simp; fail)
done

done

lemma cdclW -o-all-rules-induct[consumes 1 , case-names decide backtrack skip resolve]:
fixes S T :: ′st
assumes
cdclW -o S T and∧
T . decide S T =⇒ P S T and∧
T . backtrack S T =⇒ P S T and∧
T . skip S T =⇒ P S T and∧
T . resolve S T =⇒ P S T

shows P S T
using assms by (induct T rule: cdclW -o.induct) (auto simp: cdclW -bj.simps)

44

lemma cdclW -o-rule-cases[consumes 1 , case-names decide backtrack skip resolve]:
fixes S T :: ′st
assumes
cdclW -o S T and
decide S T =⇒ P and
backtrack S T =⇒ P and
skip S T =⇒ P and
resolve S T =⇒ P

shows P
using assms by (auto simp: cdclW -o.simps cdclW -bj.simps)

lemma backtrack-backtrackg:
〈backtrack S T =⇒ backtrackg S T 〉

unfolding backtrack.simps backtrackg.simps
by blast

lemma simple-backtrack-backtrackg:
〈simple-backtrack S T =⇒ backtrackg S T 〉

unfolding simple-backtrack.simps backtrackg.simps
by blast

1.1.3 Structural Invariants
Properties of the trail

We here establish that:

• the consistency of the trail;

• the fact that there is no duplicate in the trail.

Nitpicking 0.1. As one can see in the following proof, the properties of the levels are re-
quired to prove Item 1 page 94 of Weidenbach’s book. However, this point is only mentioned
later, and only in the proof of Item 7 page 95 of Weidenbach’s book.

lemma backtrack-lit-skiped:
assumes
L: get-level (trail S) L = backtrack-lvl S and
M1 : (Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail S)) and
no-dup: no-dup (trail S) and
lev-K : get-level (trail S) K = i + 1

shows undefined-lit M1 L
proof (rule ccontr)
let ?M = trail S
assume L-in-M1 : ¬ ?thesis
obtain M2 ′ where
Mc: trail S = M2 ′ @ M2 @ Decided K # M1
using M1 by blast

have Kc: 〈undefined-lit M2 ′ K 〉 and KM2 : 〈undefined-lit M2 K 〉 〈atm-of L 6= atm-of K 〉 and
〈undefined-lit M2 ′ L〉 〈undefined-lit M2 L〉

using L-in-M1 no-dup unfolding Mc by (auto simp: atm-of-eq-atm-of dest: defined-lit-no-dupD)
then have g-M-eq-g-M1 : get-level ?M L = get-level M1 L

45

using L-in-M1 unfolding Mc by auto
then have get-level M1 L < Suc i
using count-decided-ge-get-level[of M1 L] KM2 lev-K Kc unfolding Mc by auto

moreover have Suc i ≤ backtrack-lvl S using KM2 lev-K Kc unfolding Mc by (simp add: Mc)
ultimately show False using L g-M-eq-g-M1 by auto

qed

lemma cdclW -restart-distinctinv-1 :
assumes
cdclW -restart S S ′ and
n-d: no-dup (trail S)

shows no-dup (trail S ′)
using assms(1)

proof (induct rule: cdclW -restart-all-induct)
case (backtrack L D K i M1 M2 T D ′) note decomp = this(2) and L = this(3) and lev-K = this(6)

and
T = this(9)

obtain c where Mc: trail S = c @ M2 @ Decided K # M1
using decomp by auto

have no-dup (M2 @ Decided K # M1)
using Mc n-d by (auto dest: no-dup-appendD simp: defined-lit-map image-Un)

moreover have L-M1 : undefined-lit M1 L
using backtrack-lit-skiped[of S L K M1 M2 i] L decomp lev-K n-d
unfolding defined-lit-map lits-of-def by fast

ultimately show ?case using decomp T n-d by (auto dest: no-dup-appendD)
qed (use n-d in auto)

Item 1 page 94 of Weidenbach’s book
lemma cdclW -restart-consistent-inv-2 :
assumes
cdclW -restart S S ′ and
no-dup (trail S)

shows consistent-interp (lits-of-l (trail S ′))
using cdclW -restart-distinctinv-1 [OF assms] distinct-consistent-interp by fast

definition cdclW -M-level-inv :: ′st ⇒ bool where
cdclW -M-level-inv S ←→
consistent-interp (lits-of-l (trail S))
∧ no-dup (trail S)

lemma cdclW -M-level-inv-decomp:
assumes cdclW -M-level-inv S
shows
consistent-interp (lits-of-l (trail S)) and
no-dup (trail S)

using assms unfolding cdclW -M-level-inv-def by fastforce+

lemma cdclW -restart-consistent-inv:
fixes S S ′ :: ′st
assumes
cdclW -restart S S ′ and
cdclW -M-level-inv S

shows cdclW -M-level-inv S ′
using assms cdclW -restart-consistent-inv-2 cdclW -restart-distinctinv-1
unfolding cdclW -M-level-inv-def by meson+

46

lemma rtranclp-cdclW -restart-consistent-inv:
assumes
cdclW -restart∗∗ S S ′ and
cdclW -M-level-inv S

shows cdclW -M-level-inv S ′
using assms by (induct rule: rtranclp-induct) (auto intro: cdclW -restart-consistent-inv)

lemma tranclp-cdclW -restart-consistent-inv:
assumes
cdclW -restart++ S S ′ and
cdclW -M-level-inv S

shows cdclW -M-level-inv S ′
using assms by (induct rule: tranclp-induct) (auto intro: cdclW -restart-consistent-inv)

lemma cdclW -M-level-inv-S0-cdclW -restart[simp]:
cdclW -M-level-inv (init-state N)
unfolding cdclW -M-level-inv-def by auto

lemma backtrack-ex-decomp:
assumes
M-l: no-dup (trail S) and
i-S : i < backtrack-lvl S

shows ∃K M1 M2 . (Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail S)) ∧
get-level (trail S) K = Suc i

proof −
let ?M = trail S
have i < count-decided (trail S)
using i-S by auto

then obtain c K c ′ where tr-S : trail S = c @ Decided K # c ′ and
lev-K : get-level (trail S) K = Suc i
using le-count-decided-decomp[of trail S i] M-l by auto

obtain M1 M2 where (Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail S))
using Decided-cons-in-get-all-ann-decomposition-append-Decided-cons unfolding tr-S by fast

then show ?thesis using lev-K by blast
qed

lemma backtrack-lvl-backtrack-decrease:
assumes inv: cdclW -M-level-inv S and bt: backtrack S T
shows backtrack-lvl T < backtrack-lvl S
using inv bt le-count-decided-decomp[of trail S backtrack-lvl T]
unfolding cdclW -M-level-inv-def
by (fastforce elim!: backtrackE simp: append-assoc[of - - -# -, symmetric]
simp del: append-assoc)

Compatibility with (∼)

declare state-eq-trans[trans]

lemma propagate-state-eq-compatible:
assumes
propa: propagate S T and
SS ′: S ∼ S ′ and
TT ′: T ∼ T ′

shows propagate S ′ T ′
proof −
obtain C L where

47

conf : conflicting S = None and
C : C ∈# clauses S and
L: L ∈# C and
tr : trail S |=as CNot (remove1-mset L C) and
undef : undefined-lit (trail S) L and
T : T ∼ cons-trail (Propagated L C) S

using propa by (elim propagateE) auto

have C ′: C ∈# clauses S ′
using SS ′ C
by (auto simp: clauses-def)

have T ′: 〈T ′ ∼ cons-trail (Propagated L C) S ′〉
using state-eq-trans[of T ′ T] SS ′ TT ′
by (meson T cons-trail-state-eq state-eq-sym state-eq-trans)

show ?thesis
apply (rule propagate-rule[of - C])
using SS ′ conf C ′ L tr undef TT ′ T T ′ by auto

qed

lemma conflict-state-eq-compatible:
assumes
confl: conflict S T and
TT ′: T ∼ T ′ and
SS ′: S ∼ S ′

shows conflict S ′ T ′
proof −
obtain D where
conf : conflicting S = None and
D: D ∈# clauses S and
tr : trail S |=as CNot D and
T : T ∼ update-conflicting (Some D) S

using confl by (elim conflictE) auto

have D ′: D ∈# clauses S ′
using D SS ′ by fastforce

have T ′: 〈T ′ ∼ update-conflicting (Some D) S ′〉
using state-eq-trans[of T ′ T] SS ′ TT ′
by (meson T update-conflicting-state-eq state-eq-sym state-eq-trans)

show ?thesis
apply (rule conflict-rule[of - D])
using SS ′ conf D ′ tr TT ′ T T ′ by auto

qed

lemma backtrack-state-eq-compatible:
assumes
bt: backtrack S T and
SS ′: S ∼ S ′ and
TT ′: T ∼ T ′

shows backtrack S ′ T ′
proof −
obtain D L K i M1 M2 D ′ where
conf : conflicting S = Some (add-mset L D) and
decomp: (Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail S)) and
lev: get-level (trail S) L = backtrack-lvl S and
max: get-level (trail S) L = get-maximum-level (trail S) (add-mset L D ′) and

48

max-D: get-maximum-level (trail S) D ′ ≡ i and
lev-K : get-level (trail S) K = Suc i and
D ′-D: 〈D ′ ⊆# D〉 and
NU-DL: 〈clauses S |=pm add-mset L D ′〉 and
T : T ∼ cons-trail (Propagated L (add-mset L D ′))

(reduce-trail-to M1
(add-learned-cls (add-mset L D ′)

(update-conflicting None S)))
using bt by (elim backtrackE) metis

let ?D = 〈add-mset L D〉

let ?D ′ = 〈add-mset L D ′〉
have D ′: conflicting S ′ = Some ?D
using SS ′ conf by (cases conflicting S ′) auto

have T ′-S : T ′ ∼ cons-trail (Propagated L ?D ′)
(reduce-trail-to M1 (add-learned-cls ?D ′
(update-conflicting None S)))
using T TT ′ state-eq-sym state-eq-trans by blast

have T ′: T ′ ∼ cons-trail (Propagated L ?D ′)
(reduce-trail-to M1 (add-learned-cls ?D ′
(update-conflicting None S ′)))
apply (rule state-eq-trans[OF T ′-S])
by (auto simp: cons-trail-state-eq reduce-trail-to-state-eq add-learned-cls-state-eq

update-conflicting-state-eq SS ′)
show ?thesis
apply (rule backtrack-rule[of - L D K M1 M2 D ′ i])
subgoal by (rule D ′)
subgoal using TT ′ decomp SS ′ by auto
subgoal using lev TT ′ SS ′ by auto
subgoal using max TT ′ SS ′ by auto
subgoal using max-D TT ′ SS ′ by auto
subgoal using lev-K TT ′ SS ′ by auto
subgoal by (rule D ′-D)
subgoal using NU-DL TT ′ SS ′ by auto
subgoal by (rule T ′)
done

qed

lemma decide-state-eq-compatible:
assumes
dec: decide S T and
SS ′: S ∼ S ′ and
TT ′: T ∼ T ′

shows decide S ′ T ′
using assms

proof −
obtain L :: ′v literal where
f4 : undefined-lit (trail S) L
atm-of L ∈ atms-of-mm (init-clss S)
T ∼ cons-trail (Decided L) S

using dec decide.simps by blast
have cons-trail (Decided L) S ′ ∼ T ′
using f4 SS ′ TT ′ by (metis (no-types) cons-trail-state-eq state-eq-sym

state-eq-trans)
then show ?thesis
using f4 SS ′ TT ′ dec by (auto simp: decide.simps state-eq-sym)

49

qed

lemma skip-state-eq-compatible:
assumes
skip: skip S T and
SS ′: S ∼ S ′ and
TT ′: T ∼ T ′

shows skip S ′ T ′
proof −
obtain L C ′ M E where
tr : trail S = Propagated L C ′ # M and
raw: conflicting S = Some E and
L: −L /∈# E and
E : E 6= {#} and
T : T ∼ tl-trail S

using skip by (elim skipE) simp
obtain E ′ where E ′: conflicting S ′ = Some E ′
using SS ′ raw by (cases conflicting S ′) auto

have T ′: 〈T ′ ∼ tl-trail S ′〉
by (meson SS ′ T TT ′ state-eq-sym state-eq-trans tl-trail-state-eq)

show ?thesis
apply (rule skip-rule)
using tr raw L E T SS ′ apply (auto; fail)[]
using E ′ apply (simp; fail)
using E ′ SS ′ L raw E apply ((auto; fail)+)[2]
using T ′ by auto

qed

lemma resolve-state-eq-compatible:
assumes
res: resolve S T and
TT ′: T ∼ T ′ and
SS ′: S ∼ S ′

shows resolve S ′ T ′
proof −
obtain E D L where
tr : trail S 6= [] and
hd: hd-trail S = Propagated L E and
L: L ∈# E and
raw: conflicting S = Some D and
LD: −L ∈# D and
i: get-maximum-level (trail S) ((remove1-mset (−L) D)) = backtrack-lvl S and
T : T ∼ update-conflicting (Some (resolve-cls L D E)) (tl-trail S)

using assms by (elim resolveE) simp

obtain D ′ where
D ′: conflicting S ′ = Some D ′
using SS ′ raw by fastforce

have [simp]: D = D ′
using D ′ SS ′ raw state-simp(5) by fastforce

have T ′T : T ′ ∼ T
using TT ′ state-eq-sym by auto

have T ′: 〈T ′ ∼ update-conflicting (Some (remove1-mset (− L) D ′ ∪# remove1-mset L E))
(tl-trail S ′)〉

proof −
have tl-trail S ∼ tl-trail S ′

50

using SS ′ by (auto simp: tl-trail-state-eq)
then show ?thesis
using T T ′T 〈D = D ′〉 state-eq-trans update-conflicting-state-eq by blast

qed
show ?thesis
apply (rule resolve-rule)

using tr SS ′ apply (simp; fail)
using hd SS ′ apply (simp; fail)
using L apply (simp; fail)
using D ′ apply (simp; fail)
using D ′ SS ′ raw LD apply (auto; fail)[]
using D ′ SS ′ raw LD i apply (auto; fail)[]
using T ′ by auto

qed

lemma forget-state-eq-compatible:
assumes
forget: forget S T and
SS ′: S ∼ S ′ and
TT ′: T ∼ T ′

shows forget S ′ T ′
proof −
obtain C where
conf : conflicting S = None and
C : C ∈# learned-clss S and
tr : ¬(trail S) |=asm clauses S and
C1 : C /∈ set (get-all-mark-of-propagated (trail S)) and
C2 : C /∈# init-clss S and
ent: 〈removeAll-mset C (clauses S) |=pm C 〉 and
T : T ∼ remove-cls C S
using forget by (elim forgetE) simp

have T ′: 〈T ′ ∼ remove-cls C S ′〉
by (meson SS ′ T TT ′ remove-cls-state-eq state-eq-sym state-eq-trans)

show ?thesis
apply (rule forget-rule)

using SS ′ conf apply (simp; fail)
using C SS ′ apply (simp; fail)
using SS ′ tr apply (simp; fail)
using SS ′ C1 apply (simp; fail)
using SS ′ C2 apply (simp; fail)
using ent SS ′ apply (simp; fail)
using T ′ by auto

qed

lemma cdclW -restart-state-eq-compatible:
assumes
cdclW -restart S T and ¬restart S T and
S ∼ S ′
T ∼ T ′

shows cdclW -restart S ′ T ′
using assms by (meson backtrack backtrack-state-eq-compatible bj cdclW -restart.simps
cdclW -o-rule-cases cdclW -rf .cases conflict-state-eq-compatible decide decide-state-eq-compatible
forget forget-state-eq-compatible propagate-state-eq-compatible
resolve resolve-state-eq-compatible skip skip-state-eq-compatible state-eq-ref)

lemma cdclW -bj-state-eq-compatible:

51

assumes
cdclW -bj S T
T ∼ T ′

shows cdclW -bj S T ′
using assms by (meson backtrack backtrack-state-eq-compatible cdclW -bjE resolve
resolve-state-eq-compatible skip skip-state-eq-compatible state-eq-ref)

lemma tranclp-cdclW -bj-state-eq-compatible:
assumes
cdclW -bj++ S T
S ∼ S ′ and
T ∼ T ′

shows cdclW -bj++ S ′ T ′
using assms

proof (induction arbitrary: S ′ T ′)
case base
then show ?case
unfolding tranclp-unfold-end by (meson backtrack-state-eq-compatible cdclW -bj.simps
resolve-state-eq-compatible rtranclp-unfold skip-state-eq-compatible)

next
case (step T U) note IH = this(3)[OF this(4)]
have cdclW -restart++ S T
using tranclp-mono[of cdclW -bj cdclW -restart] step.hyps(1) cdclW -restart.other cdclW -o.bj by blast

then have cdclW -bj++ T T ′
using 〈U ∼ T ′〉 cdclW -bj-state-eq-compatible[of T U] 〈cdclW -bj T U 〉 by auto

then show ?case
using IH [of T] by auto

qed

lemma skip-unique:
skip S T =⇒ skip S T ′ =⇒ T ∼ T ′
by (auto elim!: skipE intro: state-eq-trans ′)

lemma resolve-unique:
resolve S T =⇒ resolve S T ′ =⇒ T ∼ T ′
by (fastforce intro: state-eq-trans ′ elim: resolveE)

The same holds for backtrack, but more invariants are needed.

Conservation of some Properties
lemma cdclW -o-no-more-init-clss:
assumes
cdclW -o S S ′ and
inv: cdclW -M-level-inv S

shows init-clss S = init-clss S ′
using assms by (induct rule: cdclW -o-induct) (auto simp: inv cdclW -M-level-inv-decomp)

lemma tranclp-cdclW -o-no-more-init-clss:
assumes
cdclW -o++ S S ′ and
inv: cdclW -M-level-inv S

shows init-clss S = init-clss S ′
using assms apply (induct rule: tranclp.induct)
by (auto
dest!: tranclp-cdclW -restart-consistent-inv

52

dest: tranclp-mono-explicit[of cdclW -o - - cdclW -restart] cdclW -o-no-more-init-clss
simp: other)

lemma rtranclp-cdclW -o-no-more-init-clss:
assumes
cdclW -o∗∗ S S ′ and
inv: cdclW -M-level-inv S

shows init-clss S = init-clss S ′
using assms unfolding rtranclp-unfold by (auto intro: tranclp-cdclW -o-no-more-init-clss)

lemma cdclW -restart-init-clss:
assumes
cdclW -restart S T

shows init-clss S = init-clss T
using assms by (induction rule: cdclW -restart-all-induct)
(auto simp: not-in-iff)

lemma rtranclp-cdclW -restart-init-clss:
cdclW -restart∗∗ S T =⇒ init-clss S = init-clss T
by (induct rule: rtranclp-induct) (auto dest: cdclW -restart-init-clss rtranclp-cdclW -restart-consistent-inv)

lemma tranclp-cdclW -restart-init-clss:
cdclW -restart++ S T =⇒ init-clss S = init-clss T
using rtranclp-cdclW -restart-init-clss[of S T] unfolding rtranclp-unfold by auto

Learned Clause

This invariant shows that:

• the learned clauses are entailed by the initial set of clauses.

• the conflicting clause is entailed by the initial set of clauses.

• the marks belong to the clauses. We could also restrict it to entailment by the clauses, to
allow forgetting this clauses.

definition (in stateW -ops) reasons-in-clauses :: 〈 ′st ⇒ bool〉 where
〈reasons-in-clauses (S :: ′st) ←→

(set (get-all-mark-of-propagated (trail S)) ⊆ set-mset (clauses S))〉

definition (in stateW -ops) cdclW -learned-clause :: 〈 ′st ⇒ bool〉 where
cdclW -learned-clause (S :: ′st) ←→

((∀T . conflicting S = Some T −→ clauses S |=pm T)
∧ reasons-in-clauses S)

lemma cdclW -learned-clause-alt-def :
〈cdclW -learned-clause (S :: ′st) ←→

((∀T . conflicting S = Some T −→ clauses S |=pm T)
∧ set (get-all-mark-of-propagated (trail S)) ⊆ set-mset (clauses S))〉

by (auto simp: cdclW -learned-clause-def reasons-in-clauses-def)

lemma reasons-in-clauses-init-state[simp]: 〈reasons-in-clauses (init-state N)〉

by (auto simp: reasons-in-clauses-def)

Item 3 page 95 of Weidenbach’s book for the inital state and some additional structural prop-
erties about the trail.

53

lemma cdclW -learned-clause-S0-cdclW -restart[simp]:
cdclW -learned-clause (init-state N)
unfolding cdclW -learned-clause-alt-def by auto

Item 4 page 95 of Weidenbach’s book
lemma cdclW -restart-learned-clss:
assumes
cdclW -restart S S ′ and
learned: cdclW -learned-clause S and
lev-inv: cdclW -M-level-inv S

shows cdclW -learned-clause S ′
using assms(1)

proof (induct rule: cdclW -restart-all-induct)
case (backtrack L D K i M1 M2 T D ′) note decomp = this(2) and confl = this(1) and lev-K = this

(6)
and T = this(9)

show ?case
using decomp learned confl T unfolding cdclW -learned-clause-alt-def reasons-in-clauses-def
by (auto dest!: get-all-ann-decomposition-exists-prepend)

next
case (resolve L C M D) note trail = this(1) and CL = this(2) and confl = this(4) and DL = this(5)
and lvl = this(6) and T = this(7)

moreover
have clauses S |=pm add-mset L C
using trail learned unfolding cdclW -learned-clause-alt-def clauses-def reasons-in-clauses-def
by (auto dest: true-clss-clss-in-imp-true-clss-cls)

moreover have remove1-mset (− L) D + {#− L#} = D
using DL by (auto simp: multiset-eq-iff)

moreover have remove1-mset L C + {#L#} = C
using CL by (auto simp: multiset-eq-iff)

ultimately show ?case
using learned T
by (auto dest: mk-disjoint-insert
simp add: cdclW -learned-clause-alt-def clauses-def reasons-in-clauses-def
intro!: true-clss-cls-union-mset-true-clss-cls-or-not-true-clss-cls-or [of - L])

next
case (restart T)
then show ?case
using learned
by (auto
simp: clauses-def cdclW -learned-clause-alt-def reasons-in-clauses-def
dest: true-clss-clssm-subsetE)

next
case propagate
then show ?case using learned by (auto simp: cdclW -learned-clause-alt-def reasons-in-clauses-def)

next
case conflict
then show ?case using learned
by (fastforce simp: cdclW -learned-clause-alt-def clauses-def
true-clss-clss-in-imp-true-clss-cls reasons-in-clauses-def)

next
case (forget U)
then show ?case using learned
by (auto simp: cdclW -learned-clause-alt-def clauses-def reasons-in-clauses-def
split: if-split-asm)

qed (use learned in 〈auto simp: cdclW -learned-clause-alt-def clauses-def reasons-in-clauses-def 〉)

54

lemma rtranclp-cdclW -restart-learned-clss:
assumes
cdclW -restart∗∗ S S ′ and
cdclW -M-level-inv S
cdclW -learned-clause S

shows cdclW -learned-clause S ′
using assms
by induction (auto dest: cdclW -restart-learned-clss intro: rtranclp-cdclW -restart-consistent-inv)

lemma cdclW -restart-reasons-in-clauses:
assumes
cdclW -restart S S ′ and
learned: reasons-in-clauses S

shows reasons-in-clauses S ′
using assms(1) learned
by (induct rule: cdclW -restart-all-induct)

(auto simp: reasons-in-clauses-def dest!: get-all-ann-decomposition-exists-prepend)

lemma rtranclp-cdclW -restart-reasons-in-clauses:
assumes
cdclW -restart∗∗ S S ′ and
learned: reasons-in-clauses S

shows reasons-in-clauses S ′
using assms(1) learned
by (induct rule: rtranclp-induct)

(auto simp: cdclW -restart-reasons-in-clauses)

No alien atom in the state

This invariant means that all the literals are in the set of clauses. These properties are implicit
in Weidenbach’s book.

definition no-strange-atm S ′←→
(∀T . conflicting S ′ = Some T −→ atms-of T ⊆ atms-of-mm (init-clss S ′))
∧ (∀L mark. Propagated L mark ∈ set (trail S ′) −→ atms-of mark ⊆ atms-of-mm (init-clss S ′))
∧ atms-of-mm (learned-clss S ′) ⊆ atms-of-mm (init-clss S ′)
∧ atm-of ‘ (lits-of-l (trail S ′)) ⊆ atms-of-mm (init-clss S ′)

lemma no-strange-atm-decomp:
assumes no-strange-atm S
shows conflicting S = Some T =⇒ atms-of T ⊆ atms-of-mm (init-clss S)
and (∀L mark. Propagated L mark ∈ set (trail S) −→ atms-of mark ⊆ atms-of-mm (init-clss S))
and atms-of-mm (learned-clss S) ⊆ atms-of-mm (init-clss S)
and atm-of ‘ (lits-of-l (trail S)) ⊆ atms-of-mm (init-clss S)
using assms unfolding no-strange-atm-def by blast+

lemma no-strange-atm-S0 [simp]: no-strange-atm (init-state N)
unfolding no-strange-atm-def by auto

lemma propagate-no-strange-atm-inv:
assumes
propagate S T and
alien: no-strange-atm S

shows no-strange-atm T
using assms(1)

55

proof (induction rule: propagate.induct)
case (propagate-rule C L T) note confl = this(1) and C = this(2) and C-L = this(3) and
tr = this(4) and undef = this(5) and T = this(6)

have atm-CL: atms-of C ⊆ atms-of-mm (init-clss S)
using C alien unfolding no-strange-atm-def
by (auto simp: clauses-def dest!: multi-member-split)

show ?case
unfolding no-strange-atm-def

proof (intro conjI allI impI , goal-cases)
case (1 C)
then show ?case
using confl T undef by auto

next
case (2 L ′ mark ′)
then show ?case
using C-L T alien undef atm-CL unfolding no-strange-atm-def clauses-def by (auto 5 5)

next
case 3
show ?case using T alien undef unfolding no-strange-atm-def by auto

next
case 4
show ?case
using T alien undef C-L atm-CL unfolding no-strange-atm-def by (auto simp: atms-of-def)

qed
qed

lemma atms-of-ms-learned-clss-restart-state-in-atms-of-ms-learned-clssI :
atms-of-mm (learned-clss S) ⊆ atms-of-mm (init-clss S) =⇒
x ∈ atms-of-mm (learned-clss T) =⇒
learned-clss T ⊆# learned-clss S =⇒
x ∈ atms-of-mm (init-clss S)
by (meson atms-of-ms-mono contra-subsetD set-mset-mono)

lemma (in −) atms-of-subset-mset-mono: 〈D ′ ⊆# D =⇒ atms-of D ′ ⊆ atms-of D〉

by (auto simp: atms-of-def)

lemma cdclW -restart-no-strange-atm-explicit:
assumes
cdclW -restart S S ′ and
lev: cdclW -M-level-inv S and
conf : ∀T . conflicting S = Some T −→ atms-of T ⊆ atms-of-mm (init-clss S) and
decided: ∀L mark. Propagated L mark ∈ set (trail S)
−→ atms-of mark ⊆ atms-of-mm (init-clss S) and

learned: atms-of-mm (learned-clss S) ⊆ atms-of-mm (init-clss S) and
trail: atm-of ‘ (lits-of-l (trail S)) ⊆ atms-of-mm (init-clss S)

shows
(∀T . conflicting S ′ = Some T −→ atms-of T ⊆ atms-of-mm (init-clss S ′)) ∧
(∀L mark. Propagated L mark ∈ set (trail S ′) −→ atms-of mark ⊆ atms-of-mm (init-clss S ′)) ∧
atms-of-mm (learned-clss S ′) ⊆ atms-of-mm (init-clss S ′) ∧
atm-of ‘ (lits-of-l (trail S ′)) ⊆ atms-of-mm (init-clss S ′)
(is ?C S ′ ∧ ?M S ′ ∧ ?U S ′ ∧ ?V S ′)

using assms(1)
proof (induct rule: cdclW -restart-all-induct)
case (propagate C L T) note confl = this(1) and C-L = this(2) and tr = this(3) and undef =

this(4)
and T = this(5)

56

show ?case
using propagate-rule[OF propagate.hyps(1−3) - propagate.hyps(5 ,6), simplified]
propagate.hyps(4) propagate-no-strange-atm-inv[of S T]
conf decided learned trail unfolding no-strange-atm-def by presburger

next
case (decide L)
then show ?case using learned decided conf trail unfolding clauses-def by auto

next
case (skip L C M D)
then show ?case using learned decided conf trail by auto

next
case (conflict D T) note D-S = this(2) and T = this(4)
have D: atm-of ‘ set-mset D ⊆

⋃
(atms-of ‘ (set-mset (clauses S)))

using D-S by (auto simp add: atms-of-def atms-of-ms-def)
moreover {
fix xa :: ′v literal
assume a1 : atm-of ‘ set-mset D ⊆ (

⋃
x∈set-mset (init-clss S). atms-of x)

∪ (
⋃
x∈set-mset (learned-clss S). atms-of x)

assume a2 :
(
⋃
x∈set-mset (learned-clss S). atms-of x) ⊆ (

⋃
x∈set-mset (init-clss S). atms-of x)

assume xa ∈# D
then have atm-of xa ∈ UNION (set-mset (init-clss S)) atms-of
using a2 a1 by (metis (no-types) Un-iff atm-of-lit-in-atms-of atms-of-def subset-Un-eq)

then have ∃m∈set-mset (init-clss S). atm-of xa ∈ atms-of m
by blast

} note H = this
ultimately show ?case using conflict.prems T learned decided conf trail
unfolding atms-of-def atms-of-ms-def clauses-def
by (auto simp add: H)

next
case (restart T)
then show ?case using learned decided conf trail
by (auto intro: atms-of-ms-learned-clss-restart-state-in-atms-of-ms-learned-clssI)

next
case (forget C T) note confl = this(1) and C = this(4) and C-le = this(5) and
T = this(7)

have H :
∧
L mark. Propagated L mark ∈ set (trail S) =⇒ atms-of mark ⊆ atms-of-mm (init-clss S)

using decided by simp
show ?case unfolding clauses-def apply (intro conjI)

using conf confl T trail C unfolding clauses-def apply (auto dest!: H)[]
using T trail C C-le apply (auto dest!: H)[]
using T learned C-le atms-of-ms-remove-subset[of set-mset (learned-clss S)] apply auto[]

using T trail C-le apply (auto simp: clauses-def lits-of-def)[]
done

next
case (backtrack L D K i M1 M2 T D ′) note confl = this(1) and decomp = this(2) and
lev-K = this(6) and D-D ′ = this(7) and M1-D ′ = this(8) and T = this(9)

have ?C T
using conf T decomp lev lev-K by (auto simp: cdclW -M-level-inv-decomp)

moreover have set M1 ⊆ set (trail S)
using decomp by auto

then have M : ?M T
using decided conf confl T decomp lev lev-K D-D ′
by (auto simp: image-subset-iff clauses-def cdclW -M-level-inv-decomp

dest!: atms-of-subset-mset-mono)
moreover have ?U T

57

using learned decomp conf confl T lev lev-K D-D ′ unfolding clauses-def
by (auto simp: cdclW -M-level-inv-decomp dest: atms-of-subset-mset-mono)

moreover have ?V T
using M conf confl trail T decomp lev lev-K
by (auto simp: cdclW -M-level-inv-decomp atms-of-def
dest!: get-all-ann-decomposition-exists-prepend)

ultimately show ?case by blast
next
case (resolve L C M D T) note trail-S = this(1) and confl = this(4) and T = this(7)
let ?T = update-conflicting (Some (resolve-cls L D C)) (tl-trail S)
have ?C ?T
using confl trail-S conf decided by (auto dest!: in-atms-of-minusD)

moreover have ?M ?T
using confl trail-S conf decided by auto

moreover have ?U ?T
using trail learned by auto

moreover have ?V ?T
using confl trail-S trail by auto

ultimately show ?case using T by simp
qed

lemma cdclW -restart-no-strange-atm-inv:
assumes cdclW -restart S S ′ and no-strange-atm S and cdclW -M-level-inv S
shows no-strange-atm S ′
using cdclW -restart-no-strange-atm-explicit[OF assms(1)] assms(2 ,3) unfolding no-strange-atm-def
by fast

lemma rtranclp-cdclW -restart-no-strange-atm-inv:
assumes cdclW -restart∗∗ S S ′ and no-strange-atm S and cdclW -M-level-inv S
shows no-strange-atm S ′
using assms by (induction rule: rtranclp-induct)
(auto intro: cdclW -restart-no-strange-atm-inv rtranclp-cdclW -restart-consistent-inv)

No Duplicates all Around

This invariant shows that there is no duplicate (no literal appearing twice in the formula). The
last part could be proven using the previous invariant also. Remark that we will show later
that there cannot be duplicate clause.
definition distinct-cdclW -state (S :: ′st)
←→ ((∀T . conflicting S = Some T −→ distinct-mset T)
∧ distinct-mset-mset (learned-clss S)
∧ distinct-mset-mset (init-clss S)
∧ (∀L mark. (Propagated L mark ∈ set (trail S) −→ distinct-mset mark)))

lemma distinct-cdclW -state-decomp:
assumes distinct-cdclW -state S
shows
∀T . conflicting S = Some T −→ distinct-mset T and
distinct-mset-mset (learned-clss S) and
distinct-mset-mset (init-clss S) and
∀L mark. (Propagated L mark ∈ set (trail S) −→ distinct-mset mark)

using assms unfolding distinct-cdclW -state-def by blast+

lemma distinct-cdclW -state-decomp-2 :
assumes distinct-cdclW -state S and conflicting S = Some T

58

shows distinct-mset T
using assms unfolding distinct-cdclW -state-def by auto

lemma distinct-cdclW -state-S0-cdclW -restart[simp]:
distinct-mset-mset N =⇒ distinct-cdclW -state (init-state N)
unfolding distinct-cdclW -state-def by auto

lemma distinct-cdclW -state-inv:
assumes
cdclW -restart S S ′ and
lev-inv: cdclW -M-level-inv S and
distinct-cdclW -state S

shows distinct-cdclW -state S ′
using assms(1 ,2 ,2 ,3)

proof (induct rule: cdclW -restart-all-induct)
case (backtrack L D K i M1 M2 D ′)
then show ?case
using lev-inv unfolding distinct-cdclW -state-def
by (auto dest: get-all-ann-decomposition-incl distinct-mset-mono simp: cdclW -M-level-inv-decomp)

next
case restart
then show ?case
unfolding distinct-cdclW -state-def distinct-mset-set-def clauses-def by auto

next
case resolve
then show ?case
by (auto simp add: distinct-cdclW -state-def distinct-mset-set-def clauses-def)

qed (auto simp: distinct-cdclW -state-def distinct-mset-set-def clauses-def
dest!: in-diffD)

lemma rtanclp-distinct-cdclW -state-inv:
assumes
cdclW -restart∗∗ S S ′ and
cdclW -M-level-inv S and
distinct-cdclW -state S

shows distinct-cdclW -state S ′
using assms apply (induct rule: rtranclp-induct)
using distinct-cdclW -state-inv rtranclp-cdclW -restart-consistent-inv by blast+

Conflicts and Annotations

This invariant shows that each mark contains a contradiction only related to the previously
defined variable.

abbreviation every-mark-is-a-conflict :: ′st ⇒ bool where
every-mark-is-a-conflict S ≡
∀L mark a b. a @ Propagated L mark # b = (trail S)
−→ (b |=as CNot (mark − {#L#}) ∧ L ∈# mark)

definition cdclW -conflicting :: ′st ⇒ bool where
cdclW -conflicting S ←→

(∀T . conflicting S = Some T −→ trail S |=as CNot T) ∧ every-mark-is-a-conflict S

lemma backtrack-atms-of-D-in-M1 :
fixes S T :: ′st and D D ′ :: 〈 ′v clause〉 and K L :: 〈 ′v literal〉 and i :: nat and
M1 M2 :: 〈(′v, ′v clause) ann-lits〉

59

assumes
inv: no-dup (trail S) and
i: get-maximum-level (trail S) D ′ ≡ i and
decomp: (Decided K # M1 , M2)
∈ set (get-all-ann-decomposition (trail S)) and

S-lvl: backtrack-lvl S = get-maximum-level (trail S) (add-mset L D ′) and
S-confl: conflicting S = Some D and
lev-K : get-level (trail S) K = Suc i and
T : T ∼ cons-trail K ′′

(reduce-trail-to M1
(add-learned-cls (add-mset L D ′)

(update-conflicting None S))) and
confl: ∀T . conflicting S = Some T −→ trail S |=as CNot T and
D-D ′: 〈D ′ ⊆# D〉

shows atms-of D ′ ⊆ atm-of ‘ lits-of-l (tl (trail T))
proof (rule ccontr)
let ?k = get-maximum-level (trail S) (add-mset L D ′)

have trail S |=as CNot D using confl S-confl by auto
then have trail S |=as CNot D ′
using D-D ′ by (auto simp: true-annots-true-cls-def-iff-negation-in-model)

then have vars-of-D: atms-of D ′ ⊆ atm-of ‘ lits-of-l (trail S) unfolding atms-of-def
by (meson image-subsetI true-annots-CNot-all-atms-defined)

obtain M0 where M : trail S = M0 @ M2 @ Decided K # M1
using decomp by auto

have max: ?k = count-decided (M0 @ M2 @ Decided K # M1)
using S-lvl unfolding M by simp

assume a: ¬ ?thesis
then obtain L ′ where
L ′: L ′ ∈ atms-of D ′ and
L ′-notin-M1 : L ′ /∈ atm-of ‘ lits-of-l M1
using T decomp inv by (auto simp: cdclW -M-level-inv-decomp)

obtain L ′′ where
L ′′ ∈# D ′ and
L ′′: L ′ = atm-of L ′′
using L ′ L ′-notin-M1 unfolding atms-of-def by auto

then have L ′-in: defined-lit (M0 @ M2 @ Decided K # []) L ′′
using vars-of-D L ′-notin-M1 L ′ unfolding M
by (auto dest: in-atms-of-minusD

simp: defined-lit-append defined-lit-map lits-of-def image-Un)
have L ′′-M1 : 〈undefined-lit M1 L ′′〉
using L ′-notin-M1 L ′′ by (auto simp: defined-lit-map lits-of-def)

have 〈undefined-lit (M0 @ M2) K 〉

using inv by (auto simp: cdclW -M-level-inv-def M)
then have count-decided M1 = i
using lev-K unfolding M by (auto simp: image-Un)

then have lev-L ′′:
get-level (trail S) L ′′ = get-level (M0 @ M2 @ Decided K # []) L ′′ + i
using L ′-notin-M1 L ′′-M1 L ′′ get-level-skip-end[OF L ′-in[unfolded L ′′], of M1] M by auto

moreover {
consider

(M0) defined-lit M0 L ′′ |
(M2) defined-lit M2 L ′′ |

60

(K) L ′ = atm-of K
using inv L ′-in unfolding L ′′
by (auto simp: cdclW -M-level-inv-def defined-lit-append)

then have get-level (M0 @ M2 @ Decided K # []) L ′′ ≥ Suc 0
proof cases
case M0
then have L ′ 6= atm-of K
using 〈undefined-lit (M0 @ M2) K 〉 unfolding L ′′ by (auto simp: atm-of-eq-atm-of)

then show ?thesis using M0 unfolding L ′′ by auto
next
case M2
then have undefined-lit (M0 @ Decided K # []) L ′′
by (rule defined-lit-no-dupD(1))

(use inv in 〈auto simp: M L ′′ cdclW -M-level-inv-def no-dup-def 〉)
then show ?thesis using M2 unfolding L ′′ by (auto simp: image-Un)

next
case K
have undefined-lit (M0 @ M2) L ′′
by (rule defined-lit-no-dupD(3)[of 〈[Decided K]〉 - M1])

(use inv K in 〈auto simp: M L ′′ cdclW -M-level-inv-def no-dup-def 〉)
then show ?thesis using K unfolding L ′′ by (auto simp: image-Un)

qed }
ultimately have get-level (trail S) L ′′ ≥ i + 1
using lev-L ′′ unfolding M by simp

then have get-maximum-level (trail S) D ′ ≥ i + 1
using get-maximum-level-ge-get-level[OF 〈L ′′ ∈# D ′〉, of trail S] by auto

then show False using i by auto
qed

lemma distinct-atms-of-incl-not-in-other :
assumes
a1 : no-dup (M @ M ′) and
a2 : atms-of D ⊆ atm-of ‘ lits-of-l M ′ and
a3 : x ∈ atms-of D

shows x /∈ atm-of ‘ lits-of-l M
using assms by (auto simp: atms-of-def no-dup-def atm-of-eq-atm-of lits-of-def)

lemma backtrack-M1-CNot-D ′:
fixes S T :: ′st and D D ′ :: 〈 ′v clause〉 and K L :: 〈 ′v literal〉 and i :: nat and
M1 M2 :: 〈(′v, ′v clause) ann-lits〉

assumes
inv: no-dup (trail S) and
i: get-maximum-level (trail S) D ′ ≡ i and
decomp: (Decided K # M1 , M2)
∈ set (get-all-ann-decomposition (trail S)) and

S-lvl: backtrack-lvl S = get-maximum-level (trail S) (add-mset L D ′) and
S-confl: conflicting S = Some D and
lev-K : get-level (trail S) K = Suc i and
T : T ∼ cons-trail K ′′

(reduce-trail-to M1
(add-learned-cls (add-mset L D ′)

(update-conflicting None S))) and
confl: ∀T . conflicting S = Some T −→ trail S |=as CNot T and
D-D ′: 〈D ′ ⊆# D〉

shows M1 |=as CNot D ′ and
〈atm-of (lit-of K ′′) = atm-of L =⇒ no-dup (trail T)〉

61

proof −
obtain M0 where M : trail S = M0 @ M2 @ Decided K # M1
using decomp by auto

have vars-of-D: atms-of D ′ ⊆ atm-of ‘ lits-of-l M1
using backtrack-atms-of-D-in-M1 [OF assms] decomp T by auto

have no-dup (trail S) using inv by (auto simp: cdclW -M-level-inv-decomp)
then have vars-in-M1 : ∀ x ∈ atms-of D ′. x /∈ atm-of ‘ lits-of-l (M0 @ M2 @ Decided K # [])
using vars-of-D distinct-atms-of-incl-not-in-other [of M0 @M2 @ Decided K # [] M1]
unfolding M by auto

have trail S |=as CNot D
using S-confl confl unfolding M true-annots-true-cls-def-iff-negation-in-model
by (auto dest!: in-diffD)

then have trail S |=as CNot D ′
using D-D ′ unfolding true-annots-true-cls-def-iff-negation-in-model by auto

then show M1-D ′: M1 |=as CNot D ′
using true-annots-remove-if-notin-vars[of M0 @ M2 @ Decided K # [] M1 CNot D ′]
vars-in-M1 S-confl confl unfolding M lits-of-def by simp

have M1 : 〈count-decided M1 = i〉

using lev-K inv i vars-in-M1 unfolding M
by simp

have lev-L: 〈get-level (trail S) L = backtrack-lvl S 〉 and 〈i < backtrack-lvl S 〉

using S-lvl i lev-K
by (auto simp: max-def get-maximum-level-add-mset)

have 〈no-dup M1 〉

using T decomp inv by (auto simp: M dest: no-dup-appendD)
moreover have 〈undefined-lit M1 L〉

using backtrack-lit-skiped[of S L, OF - decomp]
using lev-L inv i M1 〈i < backtrack-lvl S 〉 unfolding M
by (auto simp: split: if-splits)

moreover have 〈atm-of (lit-of K ′′) = atm-of L =⇒
undefined-lit M1 L ←→ undefined-lit M1 (lit-of K ′′)〉

by (simp add: defined-lit-map)
ultimately show 〈atm-of (lit-of K ′′) = atm-of L =⇒ no-dup (trail T)〉

using T decomp inv by auto
qed

Item 5 page 95 of Weidenbach’s book
lemma cdclW -restart-propagate-is-conclusion:
assumes
cdclW -restart S S ′ and
inv: cdclW -M-level-inv S and
decomp: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
learned: cdclW -learned-clause S and
confl: ∀T . conflicting S = Some T −→ trail S |=as CNot T and
alien: no-strange-atm S

shows all-decomposition-implies-m (clauses S ′) (get-all-ann-decomposition (trail S ′))
using assms(1)

proof (induct rule: cdclW -restart-all-induct)
case restart
then show ?case by auto

next
case (forget C T) note C = this(2) and cls-C = this(6) and T = this(7)
show ?case
unfolding all-decomposition-implies-def Ball-def

proof (intro allI , clarify)
fix a b

62

assume (a, b) ∈ set (get-all-ann-decomposition (trail T))
then have unmark-l a ∪ set-mset (clauses S) |=ps unmark-l b
using decomp T by (auto simp add: all-decomposition-implies-def)

moreover {
have a1 :C ∈# clauses S
using C by (auto simp: clauses-def)

have clauses T = clauses (remove-cls C S)
using T by auto

then have clauses T |=psm clauses S
using a1 by (metis (no-types) clauses-remove-cls cls-C insert-Diff order-refl

set-mset-minus-replicate-mset(1) true-clss-clss-def true-clss-clss-insert) }
ultimately show unmark-l a ∪ set-mset (clauses T) |=ps unmark-l b
using true-clss-clss-generalise-true-clss-clss by blast

qed
next
case conflict
then show ?case using decomp by auto

next
case (resolve L C M D) note tr = this(1) and T = this(7)
let ?decomp = get-all-ann-decomposition M
have M : set ?decomp = insert (hd ?decomp) (set (tl ?decomp))
by (cases ?decomp) auto

show ?case
using decomp tr T unfolding all-decomposition-implies-def
by (cases hd (get-all-ann-decomposition M))

(auto simp: M)
next
case (skip L C ′ M D) note tr = this(1) and T = this(5)
have M : set (get-all-ann-decomposition M)

= insert (hd (get-all-ann-decomposition M)) (set (tl (get-all-ann-decomposition M)))
by (cases get-all-ann-decomposition M) auto

show ?case
using decomp tr T unfolding all-decomposition-implies-def
by (cases hd (get-all-ann-decomposition M))

(auto simp add: M)
next
case decide note S = this(1) and undef = this(2) and T = this(4)
show ?case using decomp T undef unfolding S all-decomposition-implies-def by auto

next
case (propagate C L T) note propa = this(2) and L = this(3) and S-CNot-C = this(4) and
undef = this(5) and T = this(6)
obtain a y where ay: hd (get-all-ann-decomposition (trail S)) = (a, y)
by (cases hd (get-all-ann-decomposition (trail S)))

then have M : trail S = y @ a using get-all-ann-decomposition-decomp by blast
have M ′: set (get-all-ann-decomposition (trail S))

= insert (a, y) (set (tl (get-all-ann-decomposition (trail S))))
using ay by (cases get-all-ann-decomposition (trail S)) auto

have unm-ay: unmark-l a ∪ set-mset (clauses S) |=ps unmark-l y
using decomp ay unfolding all-decomposition-implies-def
by (cases get-all-ann-decomposition (trail S)) fastforce+

then have a-Un-N-M : unmark-l a ∪ set-mset (clauses S) |=ps unmark-l (trail S)
unfolding M by (auto simp add: all-in-true-clss-clss image-Un)

have unmark-l a ∪ set-mset (clauses S) |=p {#L#} (is ?I |=p -)
proof (rule true-clss-cls-plus-CNot)
show ?I |=p add-mset L (remove1-mset L C)

63

apply (rule true-clss-clss-in-imp-true-clss-cls[of - set-mset (clauses S)])
using learned propa L by (auto simp: cdclW -learned-clause-alt-def true-annot-CNot-diff)

next
have unmark-l (trail S) |=ps CNot (remove1-mset L C)
using S-CNot-C by (blast dest: true-annots-true-clss-clss)

then show ?I |=ps CNot (remove1-mset L C)
using a-Un-N-M true-clss-clss-left-right true-clss-clss-union-l-r by blast

qed
moreover have

∧
aa b.

∀ (Ls, seen)∈set (get-all-ann-decomposition (y @ a)).
unmark-l Ls ∪ set-mset (clauses S) |=ps unmark-l seen =⇒
(aa, b) ∈ set (tl (get-all-ann-decomposition (y @ a))) =⇒
unmark-l aa ∪ set-mset (clauses S) |=ps unmark-l b

by (metis (no-types, lifting) case-prod-conv get-all-ann-decomposition-never-empty-sym
list.collapse list.set-intros(2))

ultimately show ?case
using decomp T undef unfolding ay all-decomposition-implies-def
using M unm-ay ay by auto

next
case (backtrack L D K i M1 M2 T D ′) note conf = this(1) and decomp ′ = this(2) and
lev-L = this(3) and lev-K = this(6) and D-D ′ = this(7) and NU-LD ′ = this(8)
and T = this(9)

let ?D ′ = remove1-mset L D
have ∀ l ∈ set M2 . ¬is-decided l
using get-all-ann-decomposition-snd-not-decided decomp ′ by blast

obtain M0 where M : trail S = M0 @ M2 @ Decided K # M1
using decomp ′ by auto

let ?D = 〈add-mset L D〉

let ?D ′ = 〈add-mset L D ′〉
show ?case unfolding all-decomposition-implies-def
proof
fix x
assume x ∈ set (get-all-ann-decomposition (trail T))
then have x: x ∈ set (get-all-ann-decomposition (Propagated L ?D ′ # M1))
using T decomp ′ inv by (simp add: cdclW -M-level-inv-decomp)

let ?m = get-all-ann-decomposition (Propagated L ?D ′ # M1)
let ?hd = hd ?m
let ?tl = tl ?m
consider

(hd) x = ?hd |
(tl) x ∈ set ?tl
using x by (cases ?m) auto

then show case x of (Ls, seen) ⇒ unmark-l Ls ∪ set-mset (clauses T) |=ps unmark-l seen
proof cases
case tl
then have x ∈ set (get-all-ann-decomposition (trail S))
using tl-get-all-ann-decomposition-skip-some[of x] by (simp add: list.set-sel(2) M)

then show ?thesis
using decomp learned decomp confl alien inv T M
unfolding all-decomposition-implies-def cdclW -M-level-inv-def
by auto

next
case hd
obtain M1 ′ M1 ′′ where M1 : hd (get-all-ann-decomposition M1) = (M1 ′, M1 ′′)
by (cases hd (get-all-ann-decomposition M1))

64

then have x ′: x = (M1 ′, Propagated L ?D ′ # M1 ′′)
using 〈x = ?hd〉 by auto

have (M1 ′, M1 ′′) ∈ set (get-all-ann-decomposition (trail S))
using M1 [symmetric] hd-get-all-ann-decomposition-skip-some[OF M1 [symmetric],

of M0 @ M2] unfolding M by fastforce
then have 1 : unmark-l M1 ′ ∪ set-mset (clauses S) |=ps unmark-l M1 ′′
using decomp unfolding all-decomposition-implies-def by auto

have 〈no-dup (trail S)〉

using inv unfolding cdclW -M-level-inv-def
by blast

then have M1-D ′: M1 |=as CNot D ′ and 〈no-dup (trail T)〉

using backtrack-M1-CNot-D ′[of S D ′ 〈i〉 K M1 M2 L 〈add-mset L D〉 T 〈Propagated L (add-mset
L D ′)〉]

confl inv backtrack by (auto simp: subset-mset-trans-add-mset)
have M1 = M1 ′′ @ M1 ′ by (simp add: M1 get-all-ann-decomposition-decomp)
have TT : unmark-l M1 ′ ∪ set-mset (clauses S) |=ps CNot D ′
using true-annots-true-clss-cls[OF 〈M1 |=as CNot D ′〉] true-clss-clss-left-right[OF 1]
unfolding 〈M1 = M1 ′′ @ M1 ′〉 by (auto simp add: inf-sup-aci(5 ,7))

have T ′: unmark-l M1 ′ ∪ set-mset (clauses S) |=p ?D ′ using NU-LD ′ by auto
moreover have unmark-l M1 ′ ∪ set-mset (clauses S) |=p {#L#}

using true-clss-cls-plus-CNot[OF T ′ TT] by auto
ultimately show ?thesis
using T ′ T decomp ′ inv 1 unfolding x ′ by (simp add: cdclW -M-level-inv-decomp)

qed
qed

qed

lemma cdclW -restart-propagate-is-false:
assumes
cdclW -restart S S ′ and
lev: cdclW -M-level-inv S and
learned: cdclW -learned-clause S and
decomp: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
confl: ∀T . conflicting S = Some T −→ trail S |=as CNot T and
alien: no-strange-atm S and
mark-confl: every-mark-is-a-conflict S

shows every-mark-is-a-conflict S ′
using assms(1)

proof (induct rule: cdclW -restart-all-induct)
case (propagate C L T) note LC = this(3) and confl = this(4) and undef = this(5) and T =

this(6)
show ?case
proof (intro allI impI)
fix L ′ mark a b
assume a @ Propagated L ′ mark # b = trail T
then consider

(hd) a = [] and L = L ′ and mark = C and b = trail S |
(tl) tl a @ Propagated L ′ mark # b = trail S
using T undef by (cases a) fastforce+

then show b |=as CNot (mark − {#L ′#}) ∧ L ′ ∈# mark
using mark-confl confl LC by cases auto

qed
next
case (decide L) note undef [simp] = this(2) and T = this(4)
have 〈tl a @ Propagated La mark # b = trail S 〉

65

if 〈a @ Propagated La mark # b = Decided L # trail S 〉 for a La mark b
using that by (cases a) auto

then show ?case using mark-confl T unfolding decide.hyps(1) by fastforce
next
case (skip L C ′ M D T) note tr = this(1) and T = this(5)
show ?case
proof (intro allI impI)
fix L ′ mark a b
assume a @ Propagated L ′ mark # b = trail T
then have a @ Propagated L ′ mark # b = M using tr T by simp
then have (Propagated L C ′ # a) @ Propagated L ′ mark # b = Propagated L C ′ # M by auto
moreover have 〈b |=as CNot (mark − {#La#}) ∧ La ∈# mark〉

if a @ Propagated La mark # b = Propagated L C ′ # M for La mark a b
using mark-confl that unfolding skip.hyps(1) by simp

ultimately show b |=as CNot (mark − {#L ′#}) ∧ L ′ ∈# mark by blast
qed

next
case (conflict D)
then show ?case using mark-confl by simp

next
case (resolve L C M D T) note tr-S = this(1) and T = this(7)
show ?case unfolding resolve.hyps(1)
proof (intro allI impI)
fix L ′ mark a b
assume a @ Propagated L ′ mark # b = trail T
then have (Propagated L (C + {#L#}) # a) @ Propagated L ′ mark # b

= Propagated L (C + {#L#}) # M
using T tr-S by auto

then show b |=as CNot (mark − {#L ′#}) ∧ L ′ ∈# mark
using mark-confl unfolding tr-S by (metis Cons-eq-appendI list.sel(3))

qed
next
case restart
then show ?case by auto

next
case forget
then show ?case using mark-confl by auto

next
case (backtrack L D K i M1 M2 T D ′) note conf = this(1) and decomp = this(2) and
lev-K = this(6) and D-D ′ = this(7) and M1-D ′ = this(8) and T = this(9)

have ∀ l ∈ set M2 . ¬is-decided l
using get-all-ann-decomposition-snd-not-decided decomp by blast

obtain M0 where M : trail S = M0 @ M2 @ Decided K # M1
using decomp by auto

have [simp]: trail (reduce-trail-to M1 (add-learned-cls D (update-conflicting None S))) = M1
using decomp lev by (auto simp: cdclW -M-level-inv-decomp)

let ?D = add-mset L D
let ?D ′ = add-mset L D ′
have M1-D ′: M1 |=as CNot D ′
using backtrack-M1-CNot-D ′[of S D ′ 〈i〉 K M1 M2 L 〈add-mset L D〉 T 〈Propagated L (add-mset L

D ′)〉]
confl lev backtrack by (auto simp: subset-mset-trans-add-mset cdclW -M-level-inv-def)

show ?case
proof (intro allI impI)
fix La :: ′v literal and mark :: ′v clause and a b :: (′v, ′v clause) ann-lits

66

assume a @ Propagated La mark # b = trail T
then consider

(hd-tr) a = [] and
(Propagated La mark :: (′v, ′v clause) ann-lit) = Propagated L ?D ′ and
b = M1 |

(tl-tr) tl a @ Propagated La mark # b = M1
using M T decomp lev by (cases a) (auto simp: cdclW -M-level-inv-def)

then show b |=as CNot (mark − {#La#}) ∧ La ∈# mark
proof cases
case hd-tr note A = this(1) and P = this(2) and b = this(3)
show b |=as CNot (mark − {#La#}) ∧ La ∈# mark
using P M1-D ′ b by auto

next
case tl-tr
then obtain c ′ where c ′ @ Propagated La mark # b = trail S
unfolding M by auto

then show b |=as CNot (mark − {#La#}) ∧ La ∈# mark
using mark-confl by auto

qed
qed

qed

lemma cdclW -conflicting-is-false:
assumes
cdclW -restart S S ′ and
M-lev: cdclW -M-level-inv S and
confl-inv: ∀T . conflicting S = Some T −→ trail S |=as CNot T and
decided-confl: ∀L mark a b. a @ Propagated L mark # b = (trail S)
−→ (b |=as CNot (mark − {#L#}) ∧ L ∈# mark) and

dist: distinct-cdclW -state S
shows ∀T . conflicting S ′ = Some T −→ trail S ′ |=as CNot T
using assms(1 ,2)

proof (induct rule: cdclW -restart-all-induct)
case (skip L C ′ M D T) note tr-S = this(1) and confl = this(2) and L-D = this(3) and T =

this(5)
have D: Propagated L C ′ # M |=as CNot D using assms skip by auto
moreover have L /∈# D
proof (rule ccontr)
assume ¬ ?thesis
then have − L ∈ lits-of-l M
using in-CNot-implies-uminus(2)[of L D Propagated L C ′ # M]

〈Propagated L C ′ # M |=as CNot D〉 by simp
then show False
using M-lev tr-S by (fastforce dest: cdclW -M-level-inv-decomp(2)

simp: Decided-Propagated-in-iff-in-lits-of-l)
qed
ultimately show ?case
using tr-S confl L-D T unfolding cdclW -M-level-inv-def
by (auto intro: true-annots-CNot-lit-of-notin-skip)

next
case (resolve L C M D T) note tr = this(1) and LC = this(2) and confl = this(4) and LD =

this(5)
and T = this(7)
let ?C = remove1-mset L C
let ?D = remove1-mset (−L) D
show ?case

67

proof (intro allI impI)
fix T ′
have tl (trail S) |=as CNot ?C using tr decided-confl by fastforce
moreover
have distinct-mset (?D + {#− L#}) using confl dist LD
unfolding distinct-cdclW -state-def by auto

then have −L /∈# ?D using 〈distinct-mset (?D + {#− L#})〉 by auto
have Propagated L (?C + {#L#}) # M |=as CNot ?D ∪ CNot {#− L#}
using confl tr confl-inv LC by (metis CNot-plus LD insert-DiffM2)

then have M |=as CNot ?D
using M-lev 〈− L /∈# ?D〉 tr
unfolding cdclW -M-level-inv-def by (force intro: true-annots-lit-of-notin-skip)

moreover assume conflicting T = Some T ′
ultimately show trail T |=as CNot T ′
using tr T by auto

qed
qed (auto simp: M-lev cdclW -M-level-inv-decomp)

lemma cdclW -conflicting-decomp:
assumes cdclW -conflicting S
shows
∀T . conflicting S = Some T −→ trail S |=as CNot T and
∀L mark a b. a @ Propagated L mark # b = (trail S) −→

(b |=as CNot (mark − {#L#}) ∧ L ∈# mark)
using assms unfolding cdclW -conflicting-def by blast+

lemma cdclW -conflicting-decomp2 :
assumes cdclW -conflicting S and conflicting S = Some T
shows trail S |=as CNot T
using assms unfolding cdclW -conflicting-def by blast+

lemma cdclW -conflicting-S0-cdclW -restart[simp]:
cdclW -conflicting (init-state N)
unfolding cdclW -conflicting-def by auto

definition cdclW -learned-clauses-entailed-by-init where
〈cdclW -learned-clauses-entailed-by-init S ←→ init-clss S |=psm learned-clss S 〉

lemma cdclW -learned-clauses-entailed-init[simp]:
〈cdclW -learned-clauses-entailed-by-init (init-state N)〉

by (auto simp: cdclW -learned-clauses-entailed-by-init-def)

lemma cdclW -learned-clauses-entailed:
assumes
cdclW -restart: cdclW -restart S S ′ and
2 : cdclW -learned-clause S and
9 : 〈cdclW -learned-clauses-entailed-by-init S 〉

shows 〈cdclW -learned-clauses-entailed-by-init S ′〉
using cdclW -restart 9

proof (induction rule: cdclW -restart-all-induct)
case backtrack
then show ?case
using assms unfolding cdclW -learned-clause-alt-def cdclW -learned-clauses-entailed-by-init-def
by (auto dest!: get-all-ann-decomposition-exists-prepend
simp: clauses-def cdclW -M-level-inv-decomp dest: true-clss-clss-left-right)

qed (auto simp: cdclW -learned-clauses-entailed-by-init-def elim: true-clss-clssm-subsetE)

68

lemma rtranclp-cdclW -learned-clauses-entailed:
assumes
cdclW -restart: cdclW -restart∗∗ S S ′ and
2 : cdclW -learned-clause S and
4 : cdclW -M-level-inv S and
9 : 〈cdclW -learned-clauses-entailed-by-init S 〉

shows 〈cdclW -learned-clauses-entailed-by-init S ′〉
using assms apply (induction rule: rtranclp-induct)
apply (simp; fail)
using cdclW -learned-clauses-entailed rtranclp-cdclW -restart-learned-clss by blast

Putting all the Invariants Together
lemma cdclW -restart-all-inv:
assumes
cdclW -restart: cdclW -restart S S ′ and
1 : all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
2 : cdclW -learned-clause S and
4 : cdclW -M-level-inv S and
5 : no-strange-atm S and
7 : distinct-cdclW -state S and
8 : cdclW -conflicting S

shows
all-decomposition-implies-m (clauses S ′) (get-all-ann-decomposition (trail S ′)) and
cdclW -learned-clause S ′ and
cdclW -M-level-inv S ′ and
no-strange-atm S ′ and
distinct-cdclW -state S ′ and
cdclW -conflicting S ′

proof −
show S1 : all-decomposition-implies-m (clauses S ′) (get-all-ann-decomposition (trail S ′))
using cdclW -restart-propagate-is-conclusion[OF cdclW -restart 4 1 2 - 5] 8
unfolding cdclW -conflicting-def by blast

show S2 : cdclW -learned-clause S ′ using cdclW -restart-learned-clss[OF cdclW -restart 2 4] .
show S4 : cdclW -M-level-inv S ′ using cdclW -restart-consistent-inv[OF cdclW -restart 4] .
show S5 : no-strange-atm S ′ using cdclW -restart-no-strange-atm-inv[OF cdclW -restart 5 4] .
show S7 : distinct-cdclW -state S ′ using distinct-cdclW -state-inv[OF cdclW -restart 4 7] .
show S8 : cdclW -conflicting S ′
using cdclW -conflicting-is-false[OF cdclW -restart 4 - - 7] 8
cdclW -restart-propagate-is-false[OF cdclW -restart 4 2 1 - 5] unfolding cdclW -conflicting-def
by fast

qed

lemma rtranclp-cdclW -restart-all-inv:
assumes
cdclW -restart: rtranclp cdclW -restart S S ′ and
1 : all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
2 : cdclW -learned-clause S and
4 : cdclW -M-level-inv S and
5 : no-strange-atm S and
7 : distinct-cdclW -state S and
8 : cdclW -conflicting S

shows
all-decomposition-implies-m (clauses S ′) (get-all-ann-decomposition (trail S ′)) and
cdclW -learned-clause S ′ and

69

cdclW -M-level-inv S ′ and
no-strange-atm S ′ and
distinct-cdclW -state S ′ and
cdclW -conflicting S ′
using assms

proof (induct rule: rtranclp-induct)
case base
case 1 then show ?case by blast
case 2 then show ?case by blast
case 3 then show ?case by blast
case 4 then show ?case by blast
case 5 then show ?case by blast
case 6 then show ?case by blast

next
case (step S ′ S ′′) note H = this
case 1 with H (3−7)[OF this(1−6)] show ?case using cdclW -restart-all-inv[OF H (2)]

H by presburger
case 2 with H (3−7)[OF this(1−6)] show ?case using cdclW -restart-all-inv[OF H (2)]

H by presburger
case 3 with H (3−7)[OF this(1−6)] show ?case using cdclW -restart-all-inv[OF H (2)]

H by presburger
case 4 with H (3−7)[OF this(1−6)] show ?case using cdclW -restart-all-inv[OF H (2)]

H by presburger
case 5 with H (3−7)[OF this(1−6)] show ?case using cdclW -restart-all-inv[OF H (2)]

H by presburger
case 6 with H (3−7)[OF this(1−6)] show ?case using cdclW -restart-all-inv[OF H (2)]

H by presburger
qed

lemma all-invariant-S0-cdclW -restart:
assumes distinct-mset-mset N
shows
all-decomposition-implies-m (init-clss (init-state N))

(get-all-ann-decomposition (trail (init-state N))) and
cdclW -learned-clause (init-state N) and
∀T . conflicting (init-state N) = Some T −→ (trail (init-state N))|=as CNot T and
no-strange-atm (init-state N) and
consistent-interp (lits-of-l (trail (init-state N))) and
∀L mark a b. a @ Propagated L mark # b = trail (init-state N) −→
(b |=as CNot (mark − {#L#}) ∧ L ∈# mark) and
distinct-cdclW -state (init-state N)

using assms by auto

Item 6 page 95 of Weidenbach’s book
lemma cdclW -only-propagated-vars-unsat:
assumes
decided: ∀ x ∈ set M . ¬ is-decided x and
DN : D ∈# clauses S and
D: M |=as CNot D and
inv: all-decomposition-implies-m (N + U) (get-all-ann-decomposition M) and
state: state S = (M , N , U , k, C) and
learned-cl: cdclW -learned-clause S and
atm-incl: no-strange-atm S

shows unsatisfiable (set-mset (N + U))
proof (rule ccontr)
assume ¬ unsatisfiable (set-mset (N + U))

70

then obtain I where
I : I |=s set-mset N I |=s set-mset U and
cons: consistent-interp I and
tot: total-over-m I (set-mset N)
unfolding satisfiable-def by auto

have atms-of-mm N ∪ atms-of-mm U = atms-of-mm N
using atm-incl state unfolding total-over-m-def no-strange-atm-def
by (auto simp add: clauses-def)

then have tot-N : total-over-m I (set-mset N) using tot unfolding total-over-m-def by auto
moreover have total-over-m I (set-mset (learned-clss S))
using atm-incl state tot-N unfolding no-strange-atm-def total-over-m-def total-over-set-def
by auto

ultimately have I-D: I |= D
using I DN cons state unfolding true-clss-clss-def true-clss-def Ball-def
by (auto simp add: clauses-def)

have l0 : {unmark L |L. is-decided L ∧ L ∈ set M} = {} using decided by auto
have atms-of-ms (set-mset (N+U) ∪ unmark-l M) = atms-of-mm N
using atm-incl state unfolding no-strange-atm-def by auto

then have total-over-m I (set-mset (N+U) ∪ unmark-l M)
using tot unfolding total-over-m-def by auto

then have IM : I |=s unmark-l M
using all-decomposition-implies-propagated-lits-are-implied[OF inv] cons I
unfolding true-clss-clss-def l0 by auto

have −K ∈ I if K ∈# D for K
proof −
have −K ∈ lits-of-l M
using D that unfolding true-annots-def by force

then show −K ∈ I using IM true-clss-singleton-lit-of-implies-incl by fastforce
qed

then have ¬ I |= D using cons unfolding true-cls-def true-lit-def consistent-interp-def by auto
then show False using I-D by blast

qed

Item 5 page 95 of Weidenbach’s book

We have actually a much stronger theorem, namely all-decomposition-implies-propagated-lits-are-implied,
that show that the only choices we made are decided in the formula
lemma
assumes all-decomposition-implies-m N (get-all-ann-decomposition M)
and ∀m ∈ set M . ¬is-decided m
shows set-mset N |=ps unmark-l M

proof −
have T : {unmark L |L. is-decided L ∧ L ∈ set M} = {} using assms(2) by auto
then show ?thesis
using all-decomposition-implies-propagated-lits-are-implied[OF assms(1)] unfolding T by simp

qed

Item 7 page 95 of Weidenbach’s book (part 1)
lemma conflict-with-false-implies-unsat:
assumes
cdclW -restart: cdclW -restart S S ′ and
lev: cdclW -M-level-inv S and
[simp]: conflicting S ′ = Some {#} and
learned: cdclW -learned-clause S and
learned-entailed: 〈cdclW -learned-clauses-entailed-by-init S 〉

71

shows unsatisfiable (set-mset (clauses S))
using assms

proof −
have cdclW -learned-clause S ′ using cdclW -restart-learned-clss cdclW -restart learned lev by auto
then have entail-false: clauses S ′ |=pm {#} using assms(3) unfolding cdclW -learned-clause-alt-def

by auto
moreover have entailed: 〈cdclW -learned-clauses-entailed-by-init S ′〉
using cdclW -learned-clauses-entailed[OF cdclW -restart learned learned-entailed] .

ultimately have set-mset (init-clss S ′) |=ps {{#}}
unfolding cdclW -learned-clauses-entailed-by-init-def
by (auto simp: clauses-def dest: true-clss-clss-left-right)

then have clauses S |=pm {#}
by (simp add: cdclW -restart-init-clss[OF assms(1)] clauses-def)

then show ?thesis unfolding satisfiable-def true-clss-cls-def by auto
qed

Item 7 page 95 of Weidenbach’s book (part 2)
lemma conflict-with-false-implies-terminated:
assumes cdclW -restart S S ′ and conflicting S = Some {#}
shows False
using assms by (induct rule: cdclW -restart-all-induct) auto

No tautology is learned

This is a simple consequence of all we have shown previously. It is not strictly necessary, but
helps finding a better bound on the number of learned clauses.
lemma learned-clss-are-not-tautologies:
assumes
cdclW -restart S S ′ and
lev: cdclW -M-level-inv S and
conflicting: cdclW -conflicting S and
no-tauto: ∀ s ∈# learned-clss S . ¬tautology s

shows ∀ s ∈# learned-clss S ′. ¬tautology s
using assms

proof (induct rule: cdclW -restart-all-induct)
case (backtrack L D K i M1 M2 T D ′) note confl = this(1) and D-D ′ = this(7) and M1-D ′ = this(8)

and
NU-LD ′ = this(9)

let ?D = 〈add-mset L D〉

let ?D ′ = 〈add-mset L D ′〉
have consistent-interp (lits-of-l (trail S)) using lev by (auto simp: cdclW -M-level-inv-decomp)
moreover {
have trail S |=as CNot ?D
using conflicting confl unfolding cdclW -conflicting-def by auto

then have lits-of-l (trail S) |=s CNot ?D
using true-annots-true-cls by blast }

ultimately have ¬tautology ?D using consistent-CNot-not-tautology by blast
then have ¬tautology ?D ′
using D-D ′ not-tautology-mono[of ?D ′ ?D] by auto

then show ?case using backtrack no-tauto lev
by (auto simp: cdclW -M-level-inv-decomp split: if-split-asm)

next
case restart
then show ?case using state-eq-learned-clss no-tauto
by (auto intro: atms-of-ms-learned-clss-restart-state-in-atms-of-ms-learned-clssI)

72

qed (auto dest!: in-diffD)

definition final-cdclW -restart-state (S :: ′st)
←→ (trail S |=asm init-clss S
∨ ((∀L ∈ set (trail S). ¬is-decided L) ∧

(∃C ∈# init-clss S . trail S |=as CNot C)))

definition termination-cdclW -restart-state (S :: ′st)
←→ (trail S |=asm init-clss S
∨ ((∀L ∈ atms-of-mm (init-clss S). L ∈ atm-of ‘ lits-of-l (trail S))
∧ (∃C ∈# init-clss S . trail S |=as CNot C)))

1.1.4 CDCL Strong Completeness
lemma cdclW -restart-can-do-step:
assumes
consistent-interp (set M) and
distinct M and
atm-of ‘ (set M) ⊆ atms-of-mm N

shows ∃S . rtranclp cdclW -restart (init-state N) S
∧ state-butlast S = (map (λL. Decided L) M , N , {#}, None)

using assms
proof (induct M)
case Nil
then show ?case apply − by (auto intro!: exI [of - init-state N])

next
case (Cons L M) note IH = this(1) and dist = this(2)
have consistent-interp (set M) and distinct M and atm-of ‘ set M ⊆ atms-of-mm N
using Cons.prems(1−3) unfolding consistent-interp-def by auto

then obtain S where
st: cdclW -restart∗∗ (init-state N) S and
S : state-butlast S = (map (λL. Decided L) M , N , {#}, None)
using IH by blast

let ?S0 = cons-trail (Decided L) S
have undef : undefined-lit (map (λL. Decided L) M) L
using Cons.prems(1 ,2) unfolding defined-lit-def consistent-interp-def by fastforce

moreover have init-clss S = N
using S by blast

moreover have atm-of L ∈ atms-of-mm N using Cons.prems(3) by auto
moreover have undef : undefined-lit (trail S) L
using S dist undef by (auto simp: defined-lit-map)

ultimately have cdclW -restart S ?S0
using cdclW -restart.other [OF cdclW -o.decide[OF decide-rule[of S L ?S0]]] S
by auto

then have cdclW -restart∗∗ (init-state N) ?S0
using st by auto

then show ?case
using S undef by (auto intro!: exI [of - ?S0] simp del: state-prop)

qed

theorem 2.9.11 page 98 of Weidenbach’s book
lemma cdclW -restart-strong-completeness:
assumes
MN : set M |=sm N and
cons: consistent-interp (set M) and
dist: distinct M and

73

atm: atm-of ‘ (set M) ⊆ atms-of-mm N
obtains S where
state-butlast S = (map (λL. Decided L) M , N , {#}, None) and
rtranclp cdclW -restart (init-state N) S and
final-cdclW -restart-state S

proof −
obtain S where
st: rtranclp cdclW -restart (init-state N) S and
S : state-butlast S = (map (λL. Decided L) M , N , {#}, None)
using cdclW -restart-can-do-step[OF cons dist atm] by auto

have lits-of-l (map (λL. Decided L) M) = set M
by (induct M , auto)

then have map (λL. Decided L) M |=asm N using MN true-annots-true-cls by metis
then have final-cdclW -restart-state S
using S unfolding final-cdclW -restart-state-def by auto

then show ?thesis using that st S by blast
qed

1.1.5 Higher level strategy

The rules described previously do not necessary lead to a conclusive state. We have to add a
strategy:

• do propagate and conflict when possible;

• otherwise, do another rule (except forget and restart).

Definition
lemma tranclp-conflict:
tranclp conflict S S ′ =⇒ conflict S S ′
by (induct rule: tranclp.induct) (auto elim!: conflictE)

lemma no-chained-conflict:
assumes conflict S S ′ and conflict S ′ S ′′
shows False
using assms unfolding conflict.simps
by (metis conflicting-update-conflicting option.distinct(1) state-eq-conflicting)

lemma tranclp-conflict-iff :
full1 conflict S S ′←→ conflict S S ′
by (auto simp: full1-def dest: tranclp-conflict no-chained-conflict)

lemma no-conflict-after-conflict:
conflict S T =⇒ ¬conflict T U
by (auto elim!: conflictE simp: conflict.simps)

lemma no-propagate-after-conflict:
conflict S T =⇒ ¬propagate T U
by (metis conflictE conflicting-update-conflicting option.distinct(1) propagate.cases
state-eq-conflicting)

inductive cdclW -stgy :: ′st ⇒ ′st ⇒ bool for S :: ′st where
conflict ′: conflict S S ′ =⇒ cdclW -stgy S S ′ |

74

propagate ′: propagate S S ′ =⇒ cdclW -stgy S S ′ |
other ′: no-step conflict S =⇒ no-step propagate S =⇒ cdclW -o S S ′ =⇒ cdclW -stgy S S ′

lemma cdclW -stgy-cdclW : cdclW -stgy S T =⇒ cdclW S T
by (induction rule: cdclW -stgy.induct) (auto intro: cdclW .intros)

lemma cdclW -stgy-induct[consumes 1 , case-names conflict propagate decide skip resolve backtrack]:
assumes

〈cdclW -stgy S T 〉 and
〈
∧
T . conflict S T =⇒ P T 〉 and

〈
∧
T . propagate S T =⇒ P T 〉 and

〈
∧
T . no-step conflict S =⇒ no-step propagate S =⇒ decide S T =⇒ P T 〉 and

〈
∧
T . no-step conflict S =⇒ no-step propagate S =⇒ skip S T =⇒ P T 〉 and

〈
∧
T . no-step conflict S =⇒ no-step propagate S =⇒ resolve S T =⇒ P T 〉 and

〈
∧
T . no-step conflict S =⇒ no-step propagate S =⇒ backtrack S T =⇒ P T 〉

shows
〈P T 〉

using assms(1) by (induction rule: cdclW -stgy.induct)
(auto simp: assms(2−) cdclW -o.simps cdclW -bj.simps)

lemma cdclW -stgy-cases[consumes 1 , case-names conflict propagate decide skip resolve backtrack]:
assumes

〈cdclW -stgy S T 〉 and
〈conflict S T =⇒ P〉 and
〈propagate S T =⇒ P〉 and
〈no-step conflict S =⇒ no-step propagate S =⇒ decide S T =⇒ P〉 and
〈no-step conflict S =⇒ no-step propagate S =⇒ skip S T =⇒ P〉 and
〈no-step conflict S =⇒ no-step propagate S =⇒ resolve S T =⇒ P〉 and
〈no-step conflict S =⇒ no-step propagate S =⇒ backtrack S T =⇒ P〉

shows
〈P〉

using assms(1) by (cases rule: cdclW -stgy.cases)
(auto simp: assms(2−) cdclW -o.simps cdclW -bj.simps)

Invariants
lemma cdclW -stgy-consistent-inv:
assumes cdclW -stgy S S ′ and cdclW -M-level-inv S
shows cdclW -M-level-inv S ′
using assms by (induct rule: cdclW -stgy.induct) (blast intro: cdclW -restart-consistent-inv
cdclW -restart.intros)+

lemma rtranclp-cdclW -stgy-consistent-inv:
assumes cdclW -stgy∗∗ S S ′ and cdclW -M-level-inv S
shows cdclW -M-level-inv S ′
using assms by induction (auto dest!: cdclW -stgy-consistent-inv)

lemma cdclW -stgy-no-more-init-clss:
assumes cdclW -stgy S S ′
shows init-clss S = init-clss S ′
using assms cdclW -cdclW -restart cdclW -restart-init-clss cdclW -stgy-cdclW by blast

lemma rtranclp-cdclW -stgy-no-more-init-clss:
assumes cdclW -stgy∗∗ S S ′
shows init-clss S = init-clss S ′
using assms

75

apply (induct rule: rtranclp-induct, simp)
using cdclW -stgy-no-more-init-clss by (simp add: rtranclp-cdclW -stgy-consistent-inv)

Literal of highest level in conflicting clauses

One important property of the cdclW -restart with strategy is that, whenever a conflict takes
place, there is at least a literal of level k involved (except if we have derived the false clause).
The reason is that we apply conflicts before a decision is taken.
definition conflict-is-false-with-level :: ′st ⇒ bool where
conflict-is-false-with-level S ≡ ∀D. conflicting S = Some D −→ D 6= {#}
−→ (∃L ∈# D. get-level (trail S) L = backtrack-lvl S)

declare conflict-is-false-with-level-def [simp]

Literal of highest level in decided literals
definition mark-is-false-with-level :: ′st ⇒ bool where
mark-is-false-with-level S ′ ≡
∀D M1 M2 L. M1 @ Propagated L D # M2 = trail S ′ −→ D − {#L#} 6= {#}
−→ (∃L. L ∈# D ∧ get-level (trail S ′) L = count-decided M1)

lemma backtrackW -rule:
assumes
confl: 〈conflicting S = Some (add-mset L D)〉 and
decomp: 〈(Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail S))〉 and
lev-L: 〈get-level (trail S) L = backtrack-lvl S 〉 and
max-lev: 〈get-level (trail S) L = get-maximum-level (trail S) (add-mset L D)〉 and
max-D: 〈get-maximum-level (trail S) D ≡ i〉 and
lev-K : 〈get-level (trail S) K = i + 1 〉 and
T : 〈T ∼ cons-trail (Propagated L (add-mset L D))

(reduce-trail-to M1
(add-learned-cls (add-mset L D)

(update-conflicting None S)))〉 and
lev-inv: cdclW -M-level-inv S and
conf : 〈cdclW -conflicting S 〉 and
learned: 〈cdclW -learned-clause S 〉

shows 〈backtrack S T 〉

using confl decomp lev-L max-lev max-D lev-K
proof (rule backtrack-rule)
let ?i = get-maximum-level (trail S) D
let ?D = 〈add-mset L D〉

show 〈D ⊆# D〉

by simp
obtain M3 where
M3 : 〈trail S = M3 @ M2 @ Decided K # M1 〉

using decomp by auto
have trail-S-D: 〈trail S |=as CNot ?D〉

using conf confl unfolding cdclW -conflicting-def by auto
then have atms-E-M1 : 〈atms-of D ⊆ atm-of ‘ lits-of-l M1 〉

using backtrack-atms-of-D-in-M1 [OF - - decomp, of D ?i L ?D
〈cons-trail (Propagated L ?D) (reduce-trail-to M1 (add-learned-cls ?D (update-conflicting None S)))〉

〈Propagated L (add-mset L D)〉]
conf lev-K decomp max-lev lev-L confl T max-D lev-inv unfolding cdclW -M-level-inv-def
by auto

have n-d: 〈no-dup (M3 @ M2 @ Decided K # M1)〉

76

using lev-inv no-dup-rev[of 〈rev M1 @ rev M2 @ rev M3 〉, unfolded rev-append]
by (auto simp: cdclW -M-level-inv-def M3)

then have n-d ′: 〈no-dup (M3 @ M2 @ M1)〉

by auto
have atm-L-M1 : 〈atm-of L /∈ atm-of ‘ lits-of-l M1 〉

using lev-L n-d defined-lit-no-dupD(2−3)[of M1 L M3 M2] count-decided-ge-get-level[of 〈Decided K
M1 〉 L]

unfolding M3
by (auto simp: atm-of-eq-atm-of Decided-Propagated-in-iff-in-lits-of-l get-level-cons-if split: if-splits)

have 〈La 6= L〉〈− La /∈ lits-of-l M3 〉 〈− La /∈ lits-of-l M2 〉 〈−La 6=K 〉 if 〈La∈#D〉 for La
proof −
have 〈−La ∈ lits-of-l (trail S)〉

using trail-S-D that by (auto simp: true-annots-true-cls-def-iff-negation-in-model
dest!: get-all-ann-decomposition-exists-prepend)

moreover have 〈defined-lit M1 La〉

using atms-E-M1 that by (auto simp: Decided-Propagated-in-iff-in-lits-of-l atms-of-def
dest!: atm-of-in-atm-of-set-in-uminus)

moreover have n-d ′: 〈no-dup (rev M1 @ rev M2 @ rev M3)〉

by (rule same-mset-no-dup-iff [THEN iffD1 , OF - n-d ′]) auto
moreover have 〈no-dup (rev M3 @ rev M2 @ rev M1)〉

by (rule same-mset-no-dup-iff [THEN iffD1 , OF - n-d ′]) auto
ultimately show 〈La 6= L〉〈− La /∈ lits-of-l M3 〉 〈− La /∈ lits-of-l M2 〉 〈−La 6= K 〉

using defined-lit-no-dupD(2−3)[of 〈rev M1 〉 La 〈rev M3 〉 〈rev M2 〉]
defined-lit-no-dupD(1)[of 〈rev M1 〉 La 〈rev M3 @ rev M2 〉] atm-L-M1 n-d

by (auto simp: M3 Decided-Propagated-in-iff-in-lits-of-l atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)
qed

show 〈clauses S |=pm add-mset L D〉

using cdclW -learned-clause-alt-def confl learned by blast

show 〈T ∼ cons-trail (Propagated L (add-mset L D)) (reduce-trail-to M1 (add-learned-cls (add-mset
L D) (update-conflicting None S)))〉

using T by blast
qed

lemma backtrack-no-decomp:
assumes
S : conflicting S = Some (add-mset L E) and
L: get-level (trail S) L = backtrack-lvl S and
D: get-maximum-level (trail S) E < backtrack-lvl S and
bt: backtrack-lvl S = get-maximum-level (trail S) (add-mset L E) and
lev-inv: cdclW -M-level-inv S and
conf : 〈cdclW -conflicting S 〉 and
learned: 〈cdclW -learned-clause S 〉

shows ∃S ′. cdclW -o S S ′ ∃S ′. backtrack S S ′
proof −
have L-D: get-level (trail S) L = get-maximum-level (trail S) (add-mset L E)
using L D bt by (simp add: get-maximum-level-plus)

let ?i = get-maximum-level (trail S) E
let ?D = 〈add-mset L E 〉

obtain K M1 M2 where
K : (Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail S)) and
lev-K : get-level (trail S) K = ?i + 1
using backtrack-ex-decomp[of S ?i] D S lev-inv
unfolding cdclW -M-level-inv-def by auto

77

show 〈Ex (backtrack S)〉

using backtrackW -rule[OF S K L L-D - lev-K] lev-inv conf learned by auto
then show 〈Ex (cdclW -o S)〉

using bj by (auto simp: cdclW -bj.simps)
qed

lemma no-analyse-backtrack-Ex-simple-backtrack:
assumes
bt: 〈backtrack S T 〉 and
lev-inv: cdclW -M-level-inv S and
conf : 〈cdclW -conflicting S 〉 and
learned: 〈cdclW -learned-clause S 〉 and
no-dup: 〈distinct-cdclW -state S 〉 and
ns-s: 〈no-step skip S 〉 and
ns-r : 〈no-step resolve S 〉

shows 〈Ex(simple-backtrack S)〉

proof −
obtain D L K i M1 M2 D ′ where
confl: conflicting S = Some (add-mset L D) and
decomp: (Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail S)) and
lev: get-level (trail S) L = backtrack-lvl S and
max: get-level (trail S) L = get-maximum-level (trail S) (add-mset L D ′) and
max-D: get-maximum-level (trail S) D ′ ≡ i and
lev-K : get-level (trail S) K = Suc i and
D ′-D: 〈D ′ ⊆# D〉 and
NU-DL: 〈clauses S |=pm add-mset L D ′〉 and
T : T ∼ cons-trail (Propagated L (add-mset L D ′))

(reduce-trail-to M1
(add-learned-cls (add-mset L D ′)

(update-conflicting None S)))
using bt by (elim backtrackE) metis

have n-d: 〈no-dup (trail S)〉

using lev-inv unfolding cdclW -M-level-inv-def by auto
have trail-S-Nil: 〈trail S 6= []〉

using decomp by auto
then have hd-in-annot: 〈lit-of (hd-trail S) ∈# mark-of (hd-trail S)〉 if 〈is-proped (hd-trail S)〉

using conf that unfolding cdclW -conflicting-def
by (cases 〈trail S 〉; cases 〈hd (trail S)〉) fastforce+

have max-D-L-hd: 〈get-maximum-level (trail S) D < get-level (trail S) L ∧ L = −lit-of (hd-trail S)〉

proof cases
assume is-p: 〈is-proped (hd (trail S))〉

then have 〈−lit-of (hd (trail S)) ∈# add-mset L D〉

using ns-s trail-S-Nil confl skip-rule[of S 〈lit-of (hd (trail S))〉 - - 〈add-mset L D〉]
by (cases 〈trail S 〉; cases 〈hd (trail S)〉) auto
then have 〈get-maximum-level (trail S) (remove1-mset (− lit-of (hd-trail S)) (add-mset L D)) 6=

backtrack-lvl S 〉

using ns-r trail-S-Nil confl resolve-rule[of S 〈lit-of (hd (trail S))〉 〈mark-of (hd-trail S)〉 〈add-mset
L D〉] is-p

hd-in-annot
by (cases 〈trail S 〉; cases 〈hd (trail S)〉) auto

then have lev-L-D: 〈get-maximum-level (trail S) (remove1-mset (− lit-of (hd-trail S)) (add-mset L
D)) <

backtrack-lvl S 〉

using count-decided-ge-get-maximum-level[of 〈trail S 〉 〈remove1-mset (− lit-of (hd-trail S)) (add-mset
L D)〉]

by auto

78

then have 〈L = −lit-of (hd-trail S)〉

using get-maximum-level-ge-get-level[of L 〈remove1-mset (− lit-of (hd-trail S)) (add-mset L D)〉

〈trail S 〉] lev apply −
by (rule ccontr) auto

then show ?thesis
using lev-L-D lev by auto

next
assume is-p: 〈¬ is-proped (hd (trail S))〉

obtain L ′ where
L ′: 〈L ′ ∈# add-mset L D〉 and
lev-L ′: 〈get-level (trail S) L ′ = backtrack-lvl S 〉

using lev by auto
moreover have uL ′-trail: 〈−L ′ ∈ lits-of-l (trail S)〉

using conf confl L ′ unfolding cdclW -conflicting-def true-annots-true-cls-def-iff-negation-in-model
by auto

moreover have 〈L ′ /∈ lits-of-l (trail S)〉

using n-d uL ′-trail by (blast dest: no-dup-consistentD)
ultimately have L ′-hd: 〈L ′ = −lit-of (hd-trail S)〉

using is-p trail-S-Nil by (cases 〈trail S 〉; cases 〈hd (trail S)〉)
(auto simp: get-level-cons-if atm-of-eq-atm-of
split: if-splits)

have 〈distinct-mset (add-mset L D)〉

using no-dup confl unfolding distinct-cdclW -state-def by auto
then have 〈L ′ /∈# remove1-mset L ′ (add-mset L D)〉

using L ′ by (meson distinct-mem-diff-mset multi-member-last)
moreover have 〈−L ′ /∈# add-mset L D〉

proof (rule ccontr)
assume 〈¬ ?thesis〉

then have 〈L ′ ∈ lits-of-l (trail S)〉

using conf confl trail-S-Nil unfolding cdclW -conflicting-def true-annots-true-cls-def-iff-negation-in-model
by auto

then show False
using n-d L ′-hd by (cases 〈trail S 〉; cases 〈hd (trail S)〉)

(auto simp: Decided-Propagated-in-iff-in-lits-of-l)
qed
ultimately have 〈atm-of (lit-of (Decided (− L ′))) /∈ atms-of (remove1-mset L ′ (add-mset L D))〉

using 〈− L ′ /∈# add-mset L D〉 by (auto simp: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
atms-of-def dest: in-diffD)

then have 〈get-maximum-level (Decided (−L ′) # tl (trail S)) (remove1-mset L ′ (add-mset L D)) =
get-maximum-level (tl (trail S)) (remove1-mset L ′ (add-mset L D))〉

by (rule get-maximum-level-skip-first)
also have 〈get-maximum-level (tl (trail S)) (remove1-mset L ′ (add-mset L D)) < backtrack-lvl S 〉

using count-decided-ge-get-maximum-level[of 〈tl (trail S)〉 〈remove1-mset L ′ (add-mset L D)〉]
trail-S-Nil is-p by (cases 〈trail S 〉; cases 〈hd (trail S)〉) auto

finally have lev-L ′-L: 〈get-maximum-level (trail S) (remove1-mset L ′ (add-mset L D)) < backtrack-lvl
S 〉

using trail-S-Nil is-p L ′-hd by (cases 〈trail S 〉; cases 〈hd (trail S)〉) auto
then have 〈L = L ′〉
using get-maximum-level-ge-get-level[of L 〈remove1-mset L ′ (add-mset L D)〉

〈trail S 〉] L ′ lev-L ′ lev by auto
then show ?thesis
using lev-L ′-L lev L ′-hd by auto

qed
let ?i = 〈get-maximum-level (trail S) D〉

obtain K ′ M1 ′ M2 ′ where
decomp ′: 〈(Decided K ′ # M1 ′, M2 ′) ∈ set (get-all-ann-decomposition (trail S))〉 and

79

lev-K ′: 〈get-level (trail S) K ′ = Suc ?i〉

using backtrack-ex-decomp[of S ?i] lev-inv max-D-L-hd
unfolding lev cdclW -M-level-inv-def by blast

show ?thesis
apply standard
apply (rule simple-backtrack-rule[of S L D K ′ M1 ′ M2 ′ 〈get-maximum-level (trail S) D〉

〈cons-trail (Propagated L (add-mset L D)) (reduce-trail-to M1 ′ (add-learned-cls (add-mset L D)
(update-conflicting None S)))〉])

subgoal using confl by auto
subgoal using decomp ′ by auto
subgoal using lev .
subgoal using count-decided-ge-get-maximum-level[of 〈trail S 〉 D] lev

by (auto simp: get-maximum-level-add-mset)
subgoal .
subgoal using lev-K ′ by simp
subgoal by simp
done

qed

lemma trail-begins-with-decided-conflicting-exists-backtrack:
assumes
confl-k: 〈conflict-is-false-with-level S 〉 and
conf : 〈cdclW -conflicting S 〉 and
level-inv: 〈cdclW -M-level-inv S 〉 and
no-dup: 〈distinct-cdclW -state S 〉 and
learned: 〈cdclW -learned-clause S 〉 and
alien: 〈no-strange-atm S 〉 and
tr-ne: 〈trail S 6= []〉 and
L ′: 〈hd-trail S = Decided L ′〉 and
nempty: 〈C 6= {#}〉 and
confl: 〈conflicting S = Some C 〉

shows 〈Ex (backtrack S)〉 and 〈no-step skip S 〉 and 〈no-step resolve S 〉

proof −
let ?M = trail S
let ?N = init-clss S
let ?k = backtrack-lvl S
let ?U = learned-clss S
obtain L D where
E ′[simp]: C = D + {#L#} and
lev-L: get-level ?M L = ?k
using nempty confl by (metis (mono-tags) confl-k insert-DiffM2 conflict-is-false-with-level-def)

let ?D = D + {#L#}
have ?D 6= {#} by auto
have ?M |=as CNot ?D using confl conf unfolding cdclW -conflicting-def by auto
then have ?M 6= [] unfolding true-annots-def Ball-def true-annot-def true-cls-def by force
define M ′ where M ′: 〈M ′ = tl ?M 〉

have M : ?M = hd ?M # M ′ using 〈?M 6= []〉 list.collapse M ′ by fastforce

obtain k ′ where k ′: k ′ + 1 = ?k
using level-inv tr-ne L ′ unfolding cdclW -M-level-inv-def by (cases trail S) auto

have n-s: no-step conflict S no-step propagate S
using confl by (auto elim!: conflictE propagateE)

80

have g-k: get-maximum-level (trail S) D ≤ ?k
using count-decided-ge-get-maximum-level[of ?M] level-inv unfolding cdclW -M-level-inv-def
by auto

have L ′-L: L ′ = −L
proof (rule ccontr)
assume ¬ ?thesis
moreover {
have −L ∈ lits-of-l ?M
using confl conf unfolding cdclW -conflicting-def by auto

then have 〈atm-of L 6= atm-of L ′〉
using cdclW -M-level-inv-decomp(2)[OF level-inv] M calculation L ′
by (auto simp: atm-of-eq-atm-of all-conj-distrib uminus-lit-swap lits-of-def no-dup-def) }

ultimately have get-level (hd (trail S) # M ′) L = get-level (tl ?M) L
using cdclW -M-level-inv-decomp(1)[OF level-inv] M unfolding consistent-interp-def
by (simp add: atm-of-eq-atm-of L ′ M ′[symmetric])

moreover {
have count-decided (trail S) = ?k
using level-inv unfolding cdclW -M-level-inv-def by auto

then have count: count-decided M ′ = ?k − 1
using level-inv M by (auto simp add: L ′ M ′[symmetric])

then have get-level (tl ?M) L < ?k
using count-decided-ge-get-level[of M ′ L] unfolding k ′[symmetric] M ′ by auto }

finally show False using lev-L M unfolding M ′ by auto
qed
then have L: hd ?M = Decided (−L) using L ′ by auto
have H : get-maximum-level (trail S) D < ?k
proof (rule ccontr)
assume ¬ ?thesis
then have get-maximum-level (trail S) D = ?k using M g-k unfolding L by auto
then obtain L ′′ where L ′′ ∈# D and L-k: get-level ?M L ′′ = ?k
using get-maximum-level-exists-lit[of ?k ?M D] unfolding k ′[symmetric] by auto

have L 6= L ′′ using no-dup 〈L ′′ ∈# D〉

unfolding distinct-cdclW -state-def confl
by (metis E ′ add-diff-cancel-right ′ distinct-mem-diff-mset union-commute union-single-eq-member)
have L ′′ = −L
proof (rule ccontr)
assume ¬ ?thesis
then have get-level ?M L ′′ = get-level (tl ?M) L ′′
using M 〈L 6= L ′′〉 get-level-skip-beginning[of L ′′ hd ?M tl ?M] unfolding L
by (auto simp: atm-of-eq-atm-of)

moreover have get-level (tl (trail S)) L = 0
using level-inv L ′ M unfolding cdclW -M-level-inv-def
by (auto simp: image-iff L ′ L ′-L)

moreover {
have 〈backtrack-lvl S = count-decided (hd ?M # tl ?M)〉

unfolding M [symmetric] M ′[symmetric] ..
then have get-level (tl (trail S)) L ′′ < backtrack-lvl S
using count-decided-ge-get-level[of 〈tl (trail S)〉 L ′′]
by (auto simp: image-iff L ′ L ′-L) }

ultimately show False
using M [unfolded L ′ M ′[symmetric]] L-k by (auto simp: L ′ L ′-L)

qed
then have taut: tautology (D + {#L#})
using 〈L ′′ ∈# D〉 by (metis add.commute mset-subset-eqD mset-subset-eq-add-left

multi-member-this tautology-minus)
moreover have consistent-interp (lits-of-l ?M)

81

using level-inv unfolding cdclW -M-level-inv-def by auto
ultimately have ¬?M |=as CNot ?D
by (metis 〈L ′′ = − L〉 〈L ′′ ∈# D〉 add.commute consistent-interp-def

diff-union-cancelR in-CNot-implies-uminus(2) in-diffD multi-member-this)
moreover have ?M |=as CNot ?D
using confl no-dup conf unfolding cdclW -conflicting-def by auto

ultimately show False by blast
qed
have confl-D: 〈conflicting S = Some (add-mset L D)〉

using confl[unfolded E ′] by simp
have get-maximum-level (trail S) D < get-maximum-level (trail S) (add-mset L D)
using H by (auto simp: get-maximum-level-plus lev-L max-def get-maximum-level-add-mset)

moreover have backtrack-lvl S = get-maximum-level (trail S) (add-mset L D)
using H by (auto simp: get-maximum-level-plus lev-L max-def get-maximum-level-add-mset)

ultimately show 〈Ex (backtrack S)〉

using backtrack-no-decomp[OF confl-D -] level-inv alien conf learned
by (auto simp add: lev-L max-def n-s)

show 〈no-step resolve S 〉

using L by (auto elim!: resolveE)
show 〈no-step skip S 〉

using L by (auto elim!: skipE)
qed

lemma conflicting-no-false-can-do-step:
assumes
confl: 〈conflicting S = Some C 〉 and
nempty: 〈C 6= {#}〉 and
confl-k: 〈conflict-is-false-with-level S 〉 and
conf : 〈cdclW -conflicting S 〉 and
level-inv: 〈cdclW -M-level-inv S 〉 and
no-dup: 〈distinct-cdclW -state S 〉 and
learned: 〈cdclW -learned-clause S 〉 and
alien: 〈no-strange-atm S 〉 and
termi: 〈no-step cdclW -stgy S 〉

shows False
proof −
let ?M = trail S
let ?N = init-clss S
let ?k = backtrack-lvl S
let ?U = learned-clss S
define M ′ where 〈M ′ = tl ?M 〉

obtain L D where
E ′[simp]: C = D + {#L#} and
lev-L: get-level ?M L = ?k
using nempty confl by (metis (mono-tags) confl-k insert-DiffM2 conflict-is-false-with-level-def)

let ?D = D + {#L#}
have ?D 6= {#} by auto
have ?M |=as CNot ?D using confl conf unfolding cdclW -conflicting-def by auto
then have ?M 6= [] unfolding true-annots-def Ball-def true-annot-def true-cls-def by force
have M ′: ?M = hd ?M # tl ?M using 〈?M 6= []〉 by fastforce
then have M : ?M = hd ?M # M ′ unfolding M ′-def .

have n-s: no-step conflict S no-step propagate S
using termi by (blast intro: cdclW -stgy.intros)+

have 〈no-step backtrack S 〉

82

using termi by (blast intro: cdclW -stgy.intros cdclW -o.intros cdclW -bj.intros)
then have not-is-decided: ¬ is-decided (hd ?M)
using trail-begins-with-decided-conflicting-exists-backtrack(1)[OF confl-k conf level-inv no-dup
learned alien 〈?M 6= []〉 - nempty confl] by (cases 〈hd-trail S 〉) (auto)
have g-k: get-maximum-level (trail S) D ≤ ?k
using count-decided-ge-get-maximum-level[of ?M] level-inv unfolding cdclW -M-level-inv-def
by auto

let ?D = add-mset L D
have ?D 6= {#} by auto
have ?M |=as CNot ?D using confl conf unfolding cdclW -conflicting-def by auto
then have ?M 6= [] unfolding true-annots-def Ball-def true-annot-def true-cls-def by force
then obtain L ′ C where L ′C : hd-trail S = Propagated L ′ C
using not-is-decided by (cases hd-trail S) auto

then have hd ?M = Propagated L ′ C
using 〈?M 6= []〉 by fastforce

then have M : ?M = Propagated L ′ C # M ′ using M by simp
then have M ′: ?M = Propagated L ′ C # tl ?M using M by simp
then obtain C ′ where C ′: C = add-mset L ′ C ′
using conf M unfolding cdclW -conflicting-def by (metis append-Nil diff-single-eq-union)

have L ′D: −L ′ ∈# ?D
using n-s alien level-inv termi skip-rule[OF M ′ confl]
by (auto dest: other ′ cdclW -o.intros cdclW -bj.intros)

obtain D ′ where D ′: ?D = add-mset (−L ′) D ′ using L ′D by (metis insert-DiffM)
then have get-maximum-level (trail S) D ′ ≤ ?k
using count-decided-ge-get-maximum-level[of Propagated L ′ C # tl ?M] M
level-inv unfolding cdclW -M-level-inv-def by auto

then consider
(D ′-max-lvl) get-maximum-level (trail S) D ′ = ?k |
(D ′-le-max-lvl) get-maximum-level (trail S) D ′ < ?k
using le-neq-implies-less by blast

then show False
proof cases
case g-D ′-k: D ′-max-lvl
then have f1 : get-maximum-level (trail S) D ′ = backtrack-lvl S
using M by auto

then have Ex (cdclW -o S)
using resolve-rule[of S L ′ C , OF 〈trail S 6= []〉 - - confl] conf
L ′C L ′D D ′ C ′ by (auto dest: cdclW -o.intros cdclW -bj.intros)

then show False
using n-s termi by (auto dest: other ′ cdclW -o.intros cdclW -bj.intros)

next
case a1 : D ′-le-max-lvl
then have f3 : get-maximum-level (trail S) D ′ < get-level (trail S) (−L ′)
using a1 lev-L D ′ by (metis D ′ get-maximum-level-ge-get-level insert-noteq-member

not-less)
moreover have get-level (trail S) L ′ = get-maximum-level (trail S) (D ′ + {#− L ′#})
using a1 by (auto simp add: get-maximum-level-add-mset max-def M)

ultimately show False
using M backtrack-no-decomp[of S −L ′ D ′] confl level-inv n-s termi E ′ learned conf
by (auto simp: D ′ dest: other ′ cdclW -o.intros cdclW -bj.intros)

qed
qed

lemma cdclW -stgy-final-state-conclusive2 :

83

assumes
termi: no-step cdclW -stgy S and
decomp: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
learned: cdclW -learned-clause S and
level-inv: cdclW -M-level-inv S and
alien: no-strange-atm S and
no-dup: distinct-cdclW -state S and
confl: cdclW -conflicting S and
confl-k: conflict-is-false-with-level S

shows (conflicting S = Some {#} ∧ unsatisfiable (set-mset (clauses S)))
∨ (conflicting S = None ∧ trail S |=as set-mset (clauses S))

proof −
let ?M = trail S
let ?N = clauses S
let ?k = backtrack-lvl S
let ?U = learned-clss S
consider

(None) conflicting S = None
| (Some-Empty) E where conflicting S = Some E and E = {#}
using conflicting-no-false-can-do-step[of S , OF - - confl-k confl level-inv no-dup learned alien] termi
by (cases conflicting S , simp) auto

then show ?thesis
proof cases
case (Some-Empty E)
then have conflicting S = Some {#} by auto
then have unsat-clss-S : unsatisfiable (set-mset (clauses S))
using learned unfolding cdclW -learned-clause-alt-def true-clss-cls-def
conflict-is-false-with-level-def

by (metis (no-types, lifting) Un-insert-right atms-of-empty satisfiable-def
sup-bot.right-neutral total-over-m-insert total-over-set-empty true-cls-empty)

then show ?thesis using Some-Empty by (auto simp: clauses-def)
next
case None
have ?M |=asm ?N
proof (rule ccontr)
assume MN : ¬ ?thesis
have all-defined: atm-of ‘ (lits-of-l ?M) = atms-of-mm ?N (is ?A = ?B)
proof
show ?A ⊆ ?B using alien unfolding no-strange-atm-def clauses-def by auto
show ?B ⊆ ?A
proof (rule ccontr)
assume ¬?B ⊆ ?A
then obtain l where l ∈ ?B and l /∈ ?A by auto
then have undefined-lit ?M (Pos l)
using 〈l /∈ ?A〉 unfolding lits-of-def by (auto simp add: defined-lit-map)

then have ∃S ′. cdclW -o S S ′
using cdclW -o.decide[of S] decide-rule[of S 〈Pos l〉 〈cons-trail (Decided (Pos l)) S 〉]

〈l ∈ ?B〉 None alien unfolding clauses-def no-strange-atm-def by fastforce
then show False
using termi by (blast intro: cdclW -stgy.intros)

qed
qed
obtain D where ¬ ?M |=a D and D ∈# ?N
using MN unfolding lits-of-def true-annots-def Ball-def by auto

have atms-of D ⊆ atm-of ‘ (lits-of-l ?M)
using 〈D ∈# ?N 〉 unfolding all-defined atms-of-ms-def by auto

84

then have total-over-m (lits-of-l ?M) {D}
using atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
by (fastforce simp: total-over-set-def)

then have ?M |=as CNot D
using 〈¬ trail S |=a D〉 unfolding true-annot-def true-annots-true-cls
by (fastforce simp: total-not-true-cls-true-clss-CNot)

then have ∃S ′. conflict S S ′
using 〈trail S |=as CNot D〉 〈D ∈# clauses S 〉

None unfolding clauses-def by (auto simp: conflict.simps clauses-def)
then show False
using termi by (blast intro: cdclW -stgy.intros)

qed
then show ?thesis
using None by auto

qed
qed

lemma cdclW -stgy-final-state-conclusive:
assumes
termi: no-step cdclW -stgy S and
decomp: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
learned: cdclW -learned-clause S and
level-inv: cdclW -M-level-inv S and
alien: no-strange-atm S and
no-dup: distinct-cdclW -state S and
confl: cdclW -conflicting S and
confl-k: conflict-is-false-with-level S and
learned-entailed: 〈cdclW -learned-clauses-entailed-by-init S 〉

shows (conflicting S = Some {#} ∧ unsatisfiable (set-mset (init-clss S)))
∨ (conflicting S = None ∧ trail S |=as set-mset (init-clss S))

proof −
let ?M = trail S
let ?N = init-clss S
let ?k = backtrack-lvl S
let ?U = learned-clss S
consider

(None) conflicting S = None |
(Some-Empty) E where conflicting S = Some E and E = {#}
using conflicting-no-false-can-do-step[of S , OF - - confl-k confl level-inv no-dup learned alien] termi
by (cases conflicting S , simp) auto

then show ?thesis
proof cases
case (Some-Empty E)
then have conflicting S = Some {#} by auto
then have unsat-clss-S : unsatisfiable (set-mset (clauses S))
using learned learned-entailed unfolding cdclW -learned-clause-alt-def true-clss-cls-def
conflict-is-false-with-level-def

by (metis (no-types, lifting) Un-insert-right atms-of-empty satisfiable-def
sup-bot.right-neutral total-over-m-insert total-over-set-empty true-cls-empty)

then have unsatisfiable (set-mset (init-clss S))
proof −
have atms-of-mm (learned-clss S) ⊆ atms-of-mm (init-clss S)
using alien no-strange-atm-decomp(3) by blast

then have f3 : atms-of-ms (set-mset (init-clss S) ∪ set-mset (learned-clss S)) =
atms-of-mm (init-clss S)

by auto

85

have init-clss S |=psm learned-clss S
using learned-entailed
unfolding cdclW -learned-clause-alt-def cdclW -learned-clauses-entailed-by-init-def by blast

then show ?thesis
using f3 unsat-clss-S
unfolding true-clss-clss-def total-over-m-def clauses-def satisfiable-def
by (metis (no-types) set-mset-union true-clss-union)

qed
then show ?thesis using Some-Empty by auto

next
case None
have ?M |=asm ?N
proof (rule ccontr)
assume MN : ¬ ?thesis
have all-defined: atm-of ‘ (lits-of-l ?M) = atms-of-mm ?N (is ?A = ?B)
proof
show ?A ⊆ ?B using alien unfolding no-strange-atm-def by auto
show ?B ⊆ ?A
proof (rule ccontr)
assume ¬?B ⊆ ?A
then obtain l where l ∈ ?B and l /∈ ?A by auto
then have undefined-lit ?M (Pos l)
using 〈l /∈ ?A〉 unfolding lits-of-def by (auto simp add: defined-lit-map)

then have ∃S ′. cdclW -o S S ′
using cdclW -o.decide decide-rule 〈l ∈ ?B〉 no-strange-atm-def None
by (metis literal.sel(1) state-eq-ref)

then show False
using termi by (blast intro: cdclW -stgy.intros)

qed
qed
obtain D where ¬ ?M |=a D and D ∈# ?N
using MN unfolding lits-of-def true-annots-def Ball-def by auto

have atms-of D ⊆ atm-of ‘ (lits-of-l ?M)
using 〈D ∈# ?N 〉 unfolding all-defined atms-of-ms-def by auto

then have total-over-m (lits-of-l ?M) {D}
using atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
by (fastforce simp: total-over-set-def)

then have M-CNot-D: ?M |=as CNot D
using 〈¬ trail S |=a D〉 unfolding true-annot-def true-annots-true-cls
by (fastforce simp: total-not-true-cls-true-clss-CNot)

then have ∃S ′. conflict S S ′
using M-CNot-D 〈D ∈# init-clss S 〉

None unfolding clauses-def by (auto simp: conflict.simps clauses-def)
then show False
using termi by (blast intro: cdclW -stgy.intros)

qed
then show ?thesis
using None by auto

qed
qed

lemma cdclW -stgy-tranclp-cdclW -restart:
cdclW -stgy S S ′ =⇒ cdclW -restart++ S S ′
by (simp add: cdclW -cdclW -restart cdclW -stgy-cdclW tranclp.r-into-trancl)

86

lemma tranclp-cdclW -stgy-tranclp-cdclW -restart:
cdclW -stgy++ S S ′ =⇒ cdclW -restart++ S S ′
apply (induct rule: tranclp.induct)
using cdclW -stgy-tranclp-cdclW -restart apply blast
by (meson cdclW -stgy-tranclp-cdclW -restart tranclp-trans)

lemma rtranclp-cdclW -stgy-rtranclp-cdclW -restart:
cdclW -stgy∗∗ S S ′ =⇒ cdclW -restart∗∗ S S ′
using rtranclp-unfold[of cdclW -stgy S S ′] tranclp-cdclW -stgy-tranclp-cdclW -restart[of S S ′] by auto

lemma cdclW -o-conflict-is-false-with-level-inv:
assumes
cdclW -o S S ′ and
lev: cdclW -M-level-inv S and
confl-inv: conflict-is-false-with-level S and
n-d: distinct-cdclW -state S and
conflicting: cdclW -conflicting S

shows conflict-is-false-with-level S ′
using assms(1 ,2)

proof (induct rule: cdclW -o-induct)
case (resolve L C M D T) note tr-S = this(1) and confl = this(4) and LD = this(5) and T =

this(7)
have uL-not-D: −L /∈# remove1-mset (−L) D
using n-d confl unfolding distinct-cdclW -state-def distinct-mset-def
by (metis distinct-cdclW -state-def distinct-mem-diff-mset multi-member-last n-d)

moreover {
have L-not-D: L /∈# remove1-mset (−L) D
proof (rule ccontr)
assume ¬ ?thesis
then have L ∈# D
by (auto simp: in-remove1-mset-neq)

moreover have Propagated L C # M |=as CNot D
using conflicting confl tr-S unfolding cdclW -conflicting-def by auto

ultimately have −L ∈ lits-of-l (Propagated L C # M)
using in-CNot-implies-uminus(2) by blast

moreover have no-dup (Propagated L C # M)
using lev tr-S unfolding cdclW -M-level-inv-def by auto

ultimately show False unfolding lits-of-def
by (metis imageI insertCI list.simps(15) lit-of .simps(2) lits-of-def no-dup-consistentD)

qed
}
ultimately have g-D: get-maximum-level (Propagated L C # M) (remove1-mset (−L) D)

= get-maximum-level M (remove1-mset (−L) D)
by (simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set atms-of-def)

have lev-L[simp]: get-level M L = 0
using lev unfolding cdclW -M-level-inv-def tr-S by (auto simp: lits-of-def)

have D: get-maximum-level M (remove1-mset (−L) D) = backtrack-lvl S
using resolve.hyps(6) LD unfolding tr-S by (auto simp: get-maximum-level-plus max-def g-D)

have get-maximum-level M (remove1-mset L C) ≤ backtrack-lvl S
using count-decided-ge-get-maximum-level[of M] lev unfolding tr-S cdclW -M-level-inv-def by auto

then have
get-maximum-level M (remove1-mset (− L) D ∪# remove1-mset L C) = backtrack-lvl S
by (auto simp: get-maximum-level-union-mset get-maximum-level-plus max-def D)

then show ?case
using tr-S get-maximum-level-exists-lit-of-max-level[of

87

remove1-mset (− L) D ∪# remove1-mset L C M] T
by auto

next
case (skip L C ′ M D T) note tr-S = this(1) and D = this(2) and T = this(5)
then obtain La where
La ∈# D and
get-level (Propagated L C ′ # M) La = backtrack-lvl S
using skip confl-inv by auto

moreover {
have atm-of La 6= atm-of L
proof (rule ccontr)
assume ¬ ?thesis
then have La: La = L using 〈La ∈# D〉 〈− L /∈# D〉

by (auto simp add: atm-of-eq-atm-of)
have Propagated L C ′ # M |=as CNot D
using conflicting tr-S D unfolding cdclW -conflicting-def by auto

then have −L ∈ lits-of-l M
using 〈La ∈# D〉 in-CNot-implies-uminus(2)[of L D Propagated L C ′ # M] unfolding La
by auto

then show False using lev tr-S unfolding cdclW -M-level-inv-def consistent-interp-def by auto
qed
then have get-level (Propagated L C ′ # M) La = get-level M La by auto

}
ultimately show ?case using D tr-S T by auto

next
case backtrack
then show ?case
by (auto split: if-split-asm simp: cdclW -M-level-inv-decomp lev)

qed auto

Strong completeness
lemma propagate-high-levelE :
assumes propagate S T
obtains M ′ N ′ U L C where
state-butlast S = (M ′, N ′, U , None) and
state-butlast T = (Propagated L (C + {#L#}) # M ′, N ′, U , None) and
C + {#L#} ∈# local.clauses S and
M ′ |=as CNot C and
undefined-lit (trail S) L

proof −
obtain E L where
conf : conflicting S = None and
E : E ∈# clauses S and
LE : L ∈# E and
tr : trail S |=as CNot (E − {#L#}) and
undef : undefined-lit (trail S) L and
T : T ∼ cons-trail (Propagated L E) S
using assms by (elim propagateE) simp

obtain M N U where
S : state-butlast S = (M , N , U , None)
using conf by auto

show thesis
using that[of M N U L remove1-mset L E] S T LE E tr undef
by auto

qed

88

lemma cdclW -propagate-conflict-completeness:
assumes
MN : set M |=s set-mset N and
cons: consistent-interp (set M) and
tot: total-over-m (set M) (set-mset N) and
lits-of-l (trail S) ⊆ set M and
init-clss S = N and
propagate∗∗ S S ′ and
learned-clss S = {#}

shows length (trail S) ≤ length (trail S ′) ∧ lits-of-l (trail S ′) ⊆ set M
using assms(6 ,4 ,5 ,7)

proof (induction rule: rtranclp-induct)
case base
then show ?case by auto

next
case (step Y Z)
note st = this(1) and propa = this(2) and IH = this(3) and lits ′ = this(4) and NS = this(5) and
learned = this(6)

then have len: length (trail S) ≤ length (trail Y) and LM : lits-of-l (trail Y) ⊆ set M
by blast+

obtain M ′ N ′ U C L where
Y : state-butlast Y = (M ′, N ′, U , None) and
Z : state-butlast Z = (Propagated L (C + {#L#}) # M ′, N ′, U , None) and
C : C + {#L#} ∈# clauses Y and
M ′-C : M ′ |=as CNot C and
undefined-lit (trail Y) L
using propa by (auto elim: propagate-high-levelE)

have init-clss S = init-clss Y
using st by induction (auto elim: propagateE)

then have [simp]: N ′ = N using NS Y Z by simp
have learned-clss Y = {#}
using st learned by induction (auto elim: propagateE)

then have [simp]: U = {#} using Y by auto
have set M |=s CNot C
using M ′-C LM Y unfolding true-annots-def Ball-def true-annot-def true-clss-def true-cls-def
by force

moreover
have set M |= C + {#L#}
using MN C learned Y NS 〈init-clss S = init-clss Y 〉 〈learned-clss Y = {#}〉

unfolding true-clss-def clauses-def by fastforce
ultimately have L ∈ set M by (simp add: cons consistent-CNot-not)
then show ?case using LM len Y Z by auto

qed

lemma
assumes propagate∗∗ S X
shows
rtranclp-propagate-init-clss: init-clss X = init-clss S and
rtranclp-propagate-learned-clss: learned-clss X = learned-clss S

using assms by (induction rule: rtranclp-induct) (auto elim: propagateE)

lemma cdclW -stgy-strong-completeness-n:
assumes
MN : set M |=s set-mset N and

89

cons: consistent-interp (set M) and
tot: total-over-m (set M) (set-mset N) and
atm-incl: atm-of ‘ (set M) ⊆ atms-of-mm N and
distM : distinct M and
length: n ≤ length M

shows
∃M ′ S . length M ′ ≥ n ∧
lits-of-l M ′ ⊆ set M ∧
no-dup M ′ ∧
state-butlast S = (M ′, N , {#}, None) ∧
cdclW -stgy∗∗ (init-state N) S

using length
proof (induction n)
case 0
have state-butlast (init-state N) = ([], N , {#}, None)
by auto

moreover have
0 ≤ length [] and
lits-of-l [] ⊆ set M and
cdclW -stgy∗∗ (init-state N) (init-state N)
and no-dup []
by auto

ultimately show ?case by blast
next
case (Suc n) note IH = this(1) and n = this(2)
then obtain M ′ S where
l-M ′: length M ′ ≥ n and
M ′: lits-of-l M ′ ⊆ set M and
n-d[simp]: no-dup M ′ and
S : state-butlast S = (M ′, N , {#}, None) and
st: cdclW -stgy∗∗ (init-state N) S
by auto

have
M : cdclW -M-level-inv S and
alien: no-strange-atm S
using cdclW -M-level-inv-S0-cdclW -restart rtranclp-cdclW -stgy-consistent-inv st apply blast

using cdclW -M-level-inv-S0-cdclW -restart no-strange-atm-S0 rtranclp-cdclW -restart-no-strange-atm-inv
rtranclp-cdclW -stgy-rtranclp-cdclW -restart st by blast

{ assume no-step: ¬no-step propagate S
then obtain S ′ where S ′: propagate S S ′
by auto

have lev: cdclW -M-level-inv S ′
using M S ′ rtranclp-cdclW -restart-consistent-inv rtranclp-propagate-is-rtranclp-cdclW -restart by

blast
then have n-d ′[simp]: no-dup (trail S ′)
unfolding cdclW -M-level-inv-def by auto

have length (trail S) ≤ length (trail S ′) ∧ lits-of-l (trail S ′) ⊆ set M
using S ′ cdclW -propagate-conflict-completeness[OF assms(1−3), of S] M ′ S
by (auto simp: comp-def)

moreover have cdclW -stgy S S ′ using S ′ by (simp add: cdclW -stgy.propagate ′)
moreover {
have trail S = M ′

using S by (auto simp: comp-def rev-map)
then have length (trail S ′) > n
using S ′ l-M ′ by (auto elim: propagateE) }

90

moreover {
have stS ′: cdclW -stgy∗∗ (init-state N) S ′
using st cdclW -stgy.propagate ′[OF S ′] by (auto simp: r-into-rtranclp)

then have init-clss S ′ = N
using rtranclp-cdclW -stgy-no-more-init-clss by fastforce}

moreover {
have

[simp]:learned-clss S ′ = {#} and
[simp]: init-clss S ′ = init-clss S and
[simp]: conflicting S ′ = None
using S S ′ by (auto elim: propagateE)

have state-butlast S ′ = (trail S ′, N , {#}, None)
using S by auto }

moreover
have cdclW -stgy∗∗ (init-state N) S ′
apply (rule rtranclp.rtrancl-into-rtrancl)
using st apply simp
using 〈cdclW -stgy S S ′〉 by simp

ultimately have ?case
apply −
apply (rule exI [of - trail S ′], rule exI [of - S ′])
by auto

}
moreover {
assume no-step: no-step propagate S
have ?case
proof (cases length M ′ ≥ Suc n)
case True
then show ?thesis using l-M ′ M ′ st M alien S n-d by blast

next
case False
then have n ′: length M ′ = n using l-M ′ by auto
have no-confl: no-step conflict S
proof −
{ fix D
assume D ∈# N and M ′ |=as CNot D
then have set M |= D using MN unfolding true-clss-def by auto
moreover have set M |=s CNot D
using 〈M ′ |=as CNot D〉 M ′

by (metis le-iff-sup true-annots-true-cls true-clss-union-increase)
ultimately have False using cons consistent-CNot-not by blast

}
then show ?thesis
using S by (auto simp: true-clss-def comp-def rev-map

clauses-def elim!: conflictE)
qed
have lenM : length M = card (set M) using distM by (induction M) auto
have no-dup M ′ using S M unfolding cdclW -M-level-inv-def by auto
then have card (lits-of-l M ′) = length M ′

by (induction M ′) (auto simp add: lits-of-def card-insert-if defined-lit-map)
then have lits-of-l M ′ ⊂ set M
using n M ′ n ′ lenM by auto

then obtain L where L: L ∈ set M and undef-m: L /∈ lits-of-l M ′ by auto
moreover have undef : undefined-lit M ′ L
using M ′ Decided-Propagated-in-iff-in-lits-of-l calculation(1 ,2) cons
consistent-interp-def by (metis (no-types, lifting) subset-eq)

91

moreover have atm-of L ∈ atms-of-mm (init-clss S)
using atm-incl calculation S by auto

ultimately have dec: decide S (cons-trail (Decided L) S)
using decide-rule[of S - cons-trail (Decided L) S] S by auto

let ?S ′ = cons-trail (Decided L) S
have lits-of-l (trail ?S ′) ⊆ set M using L M ′ S undef by auto
moreover have no-strange-atm ?S ′
using alien dec M by (meson cdclW -restart-no-strange-atm-inv decide other)

have cdclW -M-level-inv ?S ′
using M dec rtranclp-mono[of decide cdclW -restart] by (meson cdclW -restart-consistent-inv

decide other)
then have lev ′′: cdclW -M-level-inv ?S ′
using S rtranclp-cdclW -restart-consistent-inv rtranclp-propagate-is-rtranclp-cdclW -restart
by blast

then have n-d ′′: no-dup (trail ?S ′)
unfolding cdclW -M-level-inv-def by auto

have length (trail S) ≤ length (trail ?S ′) ∧ lits-of-l (trail ?S ′) ⊆ set M
using S L M ′ S undef by simp

then have Suc n ≤ length (trail ?S ′) ∧ lits-of-l (trail ?S ′) ⊆ set M
using l-M ′ S undef by auto

moreover have S ′′: state-butlast ?S ′ = (trail ?S ′, N , {#}, None)
using S undef n-d ′′ lev ′′ by auto

moreover have cdclW -stgy∗∗ (init-state N) ?S ′
using S ′′ no-step no-confl st dec by (auto dest: decide cdclW -stgy.intros)

ultimately show ?thesis using n-d ′′ by blast
qed

}
ultimately show ?case by blast

qed

lemma cdclW -stgy-strong-completeness ′:
assumes
MN : set M |=s set-mset N and
cons: consistent-interp (set M) and
tot: total-over-m (set M) (set-mset N) and
atm-incl: atm-of ‘ (set M) ⊆ atms-of-mm N and
distM : distinct M

shows
∃M ′ S . lits-of-l M ′ = set M ∧
state-butlast S = (M ′, N , {#}, None) ∧
cdclW -stgy∗∗ (init-state N) S

proof −
have 〈∃M ′ S . lits-of-l M ′ ⊆ set M ∧

no-dup M ′ ∧ length M ′ = n ∧
state-butlast S = (M ′, N , {#}, None) ∧
cdclW -stgy∗∗ (init-state N) S 〉

if 〈n ≤ length M 〉 for n :: nat
using that

proof (induction n)
case 0
then show ?case by (auto intro!: exI [of - 〈init-state N 〉])

next
case (Suc n) note IH = this(1) and n-le-M = this(2)
then obtain M ′ S where
M ′: lits-of-l M ′ ⊆ set M and
n-d[simp]: no-dup M ′ and

92

S : state-butlast S = (M ′, N , {#}, None) and
st: cdclW -stgy∗∗ (init-state N) S and
l-M ′: 〈length M ′ = n〉

by auto
have
M : cdclW -M-level-inv S and
alien: no-strange-atm S
using cdclW -M-level-inv-S0-cdclW -restart rtranclp-cdclW -stgy-consistent-inv st apply blast

using cdclW -M-level-inv-S0-cdclW -restart no-strange-atm-S0 rtranclp-cdclW -restart-no-strange-atm-inv
rtranclp-cdclW -stgy-rtranclp-cdclW -restart st by blast

{ assume no-step: ¬no-step propagate S
then obtain S ′ where S ′: propagate S S ′
by auto

have lev: cdclW -M-level-inv S ′
using M S ′ rtranclp-cdclW -restart-consistent-inv rtranclp-propagate-is-rtranclp-cdclW -restart by

blast
then have n-d ′[simp]: no-dup (trail S ′)
unfolding cdclW -M-level-inv-def by auto

have length (trail S) ≤ length (trail S ′) ∧ lits-of-l (trail S ′) ⊆ set M
using S ′ cdclW -propagate-conflict-completeness[OF assms(1−3), of S] M ′ S
by (auto simp: comp-def)

moreover have cdclW -stgy S S ′ using S ′ by (simp add: cdclW -stgy.propagate ′)
moreover {
have trail S = M ′

using S by (auto simp: comp-def rev-map)
then have length (trail S ′) = Suc n
using S ′ l-M ′ by (auto elim: propagateE) }

moreover {
have stS ′: cdclW -stgy∗∗ (init-state N) S ′
using st cdclW -stgy.propagate ′[OF S ′] by (auto simp: r-into-rtranclp)

then have init-clss S ′ = N
using rtranclp-cdclW -stgy-no-more-init-clss by fastforce}

moreover {
have

[simp]:learned-clss S ′ = {#} and
[simp]: init-clss S ′ = init-clss S and
[simp]: conflicting S ′ = None
using S S ′ by (auto elim: propagateE)

have state-butlast S ′ = (trail S ′, N , {#}, None)
using S by auto }

moreover
have cdclW -stgy∗∗ (init-state N) S ′
apply (rule rtranclp.rtrancl-into-rtrancl)
using st apply simp
using 〈cdclW -stgy S S ′〉 by simp

ultimately have ?case
apply −
apply (rule exI [of - trail S ′], rule exI [of - S ′])
by auto

}
moreover { assume no-step: no-step propagate S
have no-confl: no-step conflict S
proof −
{ fix D
assume D ∈# N and M ′ |=as CNot D

93

then have set M |= D using MN unfolding true-clss-def by auto
moreover have set M |=s CNot D
using 〈M ′ |=as CNot D〉 M ′

by (metis le-iff-sup true-annots-true-cls true-clss-union-increase)
ultimately have False using cons consistent-CNot-not by blast

}
then show ?thesis
using S by (auto simp: true-clss-def comp-def rev-map

clauses-def elim!: conflictE)
qed
have lenM : length M = card (set M) using distM by (induction M) auto
have no-dup M ′ using S M unfolding cdclW -M-level-inv-def by auto
then have card (lits-of-l M ′) = length M ′

by (induction M ′) (auto simp add: lits-of-def card-insert-if defined-lit-map)
then have lits-of-l M ′ ⊂ set M
using M ′ l-M ′ lenM n-le-M by auto

then obtain L where L: L ∈ set M and undef-m: L /∈ lits-of-l M ′ by auto
moreover have undef : undefined-lit M ′ L
using M ′ Decided-Propagated-in-iff-in-lits-of-l calculation(1 ,2) cons
consistent-interp-def by (metis (no-types, lifting) subset-eq)

moreover have atm-of L ∈ atms-of-mm (init-clss S)
using atm-incl calculation S by auto

ultimately have dec: decide S (cons-trail (Decided L) S)
using decide-rule[of S - cons-trail (Decided L) S] S by auto

let ?S ′ = cons-trail (Decided L) S
have lits-of-l (trail ?S ′) ⊆ set M using L M ′ S undef by auto
moreover have no-strange-atm ?S ′
using alien dec M by (meson cdclW -restart-no-strange-atm-inv decide other)

have cdclW -M-level-inv ?S ′
using M dec rtranclp-mono[of decide cdclW -restart] by (meson cdclW -restart-consistent-inv

decide other)
then have lev ′′: cdclW -M-level-inv ?S ′
using S rtranclp-cdclW -restart-consistent-inv rtranclp-propagate-is-rtranclp-cdclW -restart
by blast

then have n-d ′′: no-dup (trail ?S ′)
unfolding cdclW -M-level-inv-def by auto

have Suc (length (trail S)) = length (trail ?S ′) ∧ lits-of-l (trail ?S ′) ⊆ set M
using S L M ′ S undef by simp

then have Suc n = length (trail ?S ′) ∧ lits-of-l (trail ?S ′) ⊆ set M
using l-M ′ S undef by auto

moreover have S ′′: state-butlast ?S ′ = (trail ?S ′, N , {#}, None)
using S undef n-d ′′ lev ′′ by auto

moreover have cdclW -stgy∗∗ (init-state N) ?S ′
using S ′′ no-step no-confl st dec by (auto dest: decide cdclW -stgy.intros)

ultimately have ?case using n-d ′′ L M ′ by (auto intro!: exI [of - 〈Decided L # trail S 〉] exI [of -
〈?S ′〉])

}
ultimately show ?case by blast

qed
from this[of 〈length M 〉] obtain M ′ S where
M ′-M : 〈lits-of-l M ′ ⊆ set M 〉 and
n-d: 〈no-dup M ′〉 and
〈length M ′ = length M 〉 and
〈state-butlast S = (M ′, N , {#}, None) ∧ cdclW -stgy∗∗ (init-state N) S 〉

by auto
moreover have 〈lits-of-l M ′ = set M 〉

94

apply (rule card-subset-eq)
subgoal by auto
subgoal using M ′-M .
subgoal using M ′-M n-d no-dup-length-eq-card-atm-of-lits-of-l[OF n-d] M ′-M 〈finite (set M)〉

distinct-card[OF distM] calculation(3)
card-image-le[of 〈 lits-of-l M ′〉 atm-of] card-seteq[OF 〈finite (set M)〉, of 〈lits-of-l M ′〉]

by auto
done

ultimately show ?thesis
by (auto intro!: exI [of - S])

qed

theorem 2.9.11 page 98 of Weidenbach’s book (with strategy)

lemma cdclW -stgy-strong-completeness:
assumes
MN : set M |=s set-mset N and
cons: consistent-interp (set M) and
tot: total-over-m (set M) (set-mset N) and
atm-incl: atm-of ‘ (set M) ⊆ atms-of-mm N and
distM : distinct M

shows
∃M ′ k S .
lits-of-l M ′ = set M ∧
state-butlast S = (M ′, N , {#}, None) ∧
cdclW -stgy∗∗ (init-state N) S ∧
final-cdclW -restart-state S

proof −
from cdclW -stgy-strong-completeness-n[OF assms, of length M]
obtain M ′ T where
l: length M ≤ length M ′ and
M ′-M : lits-of-l M ′ ⊆ set M and
no-dup: no-dup M ′ and
T : state-butlast T = (M ′, N , {#}, None) and
st: cdclW -stgy∗∗ (init-state N) T
by auto

have card (set M) = length M using distM by (simp add: distinct-card)
moreover {
have cdclW -M-level-inv T
using rtranclp-cdclW -stgy-consistent-inv[OF st] T by auto

then have card (set ((map (λl. atm-of (lit-of l)) M ′))) = length M ′

using distinct-card no-dup by (fastforce simp: lits-of-def image-image no-dup-def) }
moreover have card (lits-of-l M ′) = card (set ((map (λl. atm-of (lit-of l)) M ′)))
using no-dup by (induction M ′) (auto simp add: defined-lit-map card-insert-if lits-of-def)

ultimately have card (set M) ≤ card (lits-of-l M ′) using l unfolding lits-of-def by auto
then have s: set M = lits-of-l M ′

using M ′-M card-seteq by blast
moreover {
have M ′ |=asm N
using MN s unfolding true-annots-def Ball-def true-annot-def true-clss-def by auto

then have final-cdclW -restart-state T
using T no-dup unfolding final-cdclW -restart-state-def by auto }

ultimately show ?thesis using st T by blast
qed

95

No conflict with only variables of level less than backtrack level

This invariant is stronger than the previous argument in the sense that it is a property about
all possible conflicts.

definition no-smaller-confl (S :: ′st) ≡
(∀M K M ′ D. trail S = M ′ @ Decided K # M −→ D ∈# clauses S −→ ¬M |=as CNot D)

lemma no-smaller-confl-init-sate[simp]:
no-smaller-confl (init-state N) unfolding no-smaller-confl-def by auto

lemma cdclW -o-no-smaller-confl-inv:
fixes S S ′ :: ′st
assumes
cdclW -o S S ′ and
n-s: no-step conflict S and
lev: cdclW -M-level-inv S and
max-lev: conflict-is-false-with-level S and
smaller : no-smaller-confl S

shows no-smaller-confl S ′
using assms(1 ,2) unfolding no-smaller-confl-def

proof (induct rule: cdclW -o-induct)
case (decide L T) note confl = this(1) and undef = this(2) and T = this(4)
have [simp]: clauses T = clauses S
using T undef by auto

show ?case
proof (intro allI impI)
fix M ′′ K M ′ Da
assume trail T = M ′′ @ Decided K # M ′ and D: Da ∈# local.clauses T
then have trail S = tl M ′′ @ Decided K # M ′

∨ (M ′′ = [] ∧ Decided K # M ′ = Decided L # trail S)
using T undef by (cases M ′′) auto

moreover {
assume trail S = tl M ′′ @ Decided K # M ′

then have ¬M ′ |=as CNot Da
using D T undef confl smaller unfolding no-smaller-confl-def smaller by fastforce

}
moreover {
assume Decided K # M ′ = Decided L # trail S
then have ¬M ′ |=as CNot Da using smaller D confl T n-s by (auto simp: conflict.simps)

}
ultimately show ¬M ′ |=as CNot Da by fast

qed
next
case resolve
then show ?case using smaller max-lev unfolding no-smaller-confl-def by auto

next
case skip
then show ?case using smaller max-lev unfolding no-smaller-confl-def by auto

next
case (backtrack L D K i M1 M2 T D ′) note confl = this(1) and decomp = this(2) and
T = this(9)

obtain c where M : trail S = c @ M2 @ Decided K # M1
using decomp by auto

show ?case

96

proof (intro allI impI)
fix M ia K ′ M ′ Da
assume trail T = M ′ @ Decided K ′ # M
then have M1 = tl M ′ @ Decided K ′ # M
using T decomp lev by (cases M ′) (auto simp: cdclW -M-level-inv-decomp)

let ?D ′ = 〈add-mset L D ′〉
let ?S ′ = (cons-trail (Propagated L ?D ′)

(reduce-trail-to M1 (add-learned-cls ?D ′ (update-conflicting None S))))
assume D: Da ∈# clauses T
moreover{
assume Da ∈# clauses S
then have ¬M |=as CNot Da using 〈M1 = tl M ′ @ Decided K ′ # M 〉 M confl smaller
unfolding no-smaller-confl-def by auto

}
moreover {
assume Da: Da = add-mset L D ′
have ¬M |=as CNot Da
proof (rule ccontr)
assume ¬ ?thesis
then have −L ∈ lits-of-l M
unfolding Da by (simp add: in-CNot-implies-uminus(2))

then have −L ∈ lits-of-l (Propagated L D # M1)
using UnI2 〈M1 = tl M ′ @ Decided K ′ # M 〉

by auto
moreover
have backtrack S ?S ′
using backtrack-rule[OF backtrack.hyps(1−8) T] backtrack-state-eq-compatible[of S T S] T
by force

then have cdclW -M-level-inv ?S ′
using cdclW -restart-consistent-inv[OF - lev] other [OF bj]
by (auto intro: cdclW -bj.intros)

then have no-dup (Propagated L D # M1)
using decomp lev unfolding cdclW -M-level-inv-def by auto

ultimately show False
using Decided-Propagated-in-iff-in-lits-of-l defined-lit-map
by (auto simp: no-dup-def)

qed
}
ultimately show ¬M |=as CNot Da
using T decomp lev unfolding cdclW -M-level-inv-def by fastforce

qed
qed

lemma conflict-no-smaller-confl-inv:
assumes conflict S S ′
and no-smaller-confl S
shows no-smaller-confl S ′
using assms unfolding no-smaller-confl-def by (fastforce elim: conflictE)

lemma propagate-no-smaller-confl-inv:
assumes propagate: propagate S S ′
and n-l: no-smaller-confl S
shows no-smaller-confl S ′
unfolding no-smaller-confl-def

proof (intro allI impI)
fix M ′ K M ′′ D

97

assume M ′: trail S ′ = M ′′ @ Decided K # M ′

and D ∈# clauses S ′
obtain M N U C L where
S : state-butlast S = (M , N , U , None) and
S ′: state-butlast S ′ = (Propagated L (C + {#L#}) # M , N , U , None) and
C + {#L#} ∈# clauses S and
M |=as CNot C and
undefined-lit M L
using propagate by (auto elim: propagate-high-levelE)

have tl M ′′ @ Decided K # M ′ = trail S using M ′ S S ′
by (metis Pair-inject list.inject list.sel(3) annotated-lit.distinct(1) self-append-conv2
tl-append2)

then have ¬M ′ |=as CNot D
using 〈D ∈# clauses S ′〉 n-l S S ′ clauses-def unfolding no-smaller-confl-def by auto

then show ¬M ′ |=as CNot D by auto
qed

lemma cdclW -stgy-no-smaller-confl:
assumes cdclW -stgy S S ′
and n-l: no-smaller-confl S
and conflict-is-false-with-level S
and cdclW -M-level-inv S
shows no-smaller-confl S ′
using assms

proof (induct rule: cdclW -stgy.induct)
case (conflict ′ S ′)
then show ?case using conflict-no-smaller-confl-inv[of S S ′] by blast

next
case (propagate ′ S ′)
then show ?case using propagate-no-smaller-confl-inv[of S S ′] by blast

next
case (other ′ S ′)
then show ?case
using cdclW -o-no-smaller-confl-inv[of S] by auto

qed

lemma conflict-conflict-is-false-with-level:
assumes
conflict: conflict S T and
smaller : no-smaller-confl S and
M-lev: cdclW -M-level-inv S

shows conflict-is-false-with-level T
using conflict

proof (cases rule: conflict.cases)
case (conflict-rule D) note confl = this(1) and D = this(2) and not-D = this(3) and T = this(4)
then have [simp]: conflicting T = Some D
by auto

have M-lev-T : cdclW -M-level-inv T
using conflict M-lev by (auto simp: cdclW -restart-consistent-inv
dest: cdclW -restart.intros)

then have bt: backtrack-lvl T = count-decided (trail T)
unfolding cdclW -M-level-inv-def by auto

have n-d: no-dup (trail T)
using M-lev-T unfolding cdclW -M-level-inv-def by auto

show ?thesis
proof (rule ccontr , clarsimp)

98

assume
empty: D 6= {#} and
lev: ∀L∈#D. get-level (trail T) L 6= backtrack-lvl T

moreover {
have get-level (trail T) L ≤ backtrack-lvl T if L∈#D for L
using that count-decided-ge-get-level[of trail T L] M-lev-T
unfolding cdclW -M-level-inv-def by auto

then have get-level (trail T) L < backtrack-lvl T if L∈#D for L
using lev that by fastforce } note lev ′ = this

ultimately have count-decided (trail T) > 0
using M-lev-T unfolding cdclW -M-level-inv-def by (cases D) fastforce+

then have ex: 〈∃ x∈set (trail T). is-decided x〉

unfolding no-dup-def count-decided-def by cases auto
have 〈∃M2 L M1 . trail T = M2 @ Decided L # M1 ∧ (∀m∈set M2 . ¬ is-decided m)〉

by (rule split-list-first-propE [of trail T is-decided, OF ex])
(force elim!: is-decided-ex-Decided)

then obtain M2 L M1 where
tr-T : trail T = M2 @ Decided L # M1 and nm: ∀m ∈ set M2 . ¬ is-decided m
by blast

moreover {
have get-level (trail T) La = backtrack-lvl T if − La ∈ lits-of-l M2 for La
unfolding tr-T bt
apply (subst get-level-skip-end)
using that apply (simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set

Decided-Propagated-in-iff-in-lits-of-l; fail)
using nm bt tr-T by (simp add: count-decided-0-iff) }

moreover {
have tr : M2 @ Decided L # M1 = (M2 @ [Decided L]) @ M1
by auto

have get-level (trail T) L = backtrack-lvl T
using n-d nm unfolding tr-T tr bt
by (auto simp: image-image atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set

atm-lit-of-set-lits-of-l count-decided-0-iff [symmetric]) }
moreover have trail S = trail T
using T by auto

ultimately have M1 |=as CNot D
using lev ′ not-D unfolding true-annots-true-cls-def-iff-negation-in-model
by (force simp: count-decided-0-iff [symmetric] get-level-def)

then show False
using smaller T tr-T D by (auto simp: no-smaller-confl-def)

qed
qed

lemma cdclW -stgy-ex-lit-of-max-level:
assumes
cdclW -stgy S S ′ and
n-l: no-smaller-confl S and
conflict-is-false-with-level S and
cdclW -M-level-inv S and
distinct-cdclW -state S and
cdclW -conflicting S

shows conflict-is-false-with-level S ′
using assms

proof (induct rule: cdclW -stgy.induct)
case (conflict ′ S ′)
then have no-smaller-confl S ′

99

using conflict ′.hyps conflict-no-smaller-confl-inv n-l by blast
moreover have conflict-is-false-with-level S ′
using conflict-conflict-is-false-with-level assms(4) conflict ′.hyps n-l by blast

then show ?case by blast
next
case (propagate ′ S ′)
then show ?case by (auto elim: propagateE)

next
case (other ′ S ′) note n-s = this(1 ,2) and o = this(3) and lev = this(6)
show ?case
using cdclW -o-conflict-is-false-with-level-inv[OF o] other ′.prems by blast

qed

lemma rtranclp-cdclW -stgy-no-smaller-confl-inv:
assumes
cdclW -stgy∗∗ S S ′ and
n-l: no-smaller-confl S and
cls-false: conflict-is-false-with-level S and
lev: cdclW -M-level-inv S and
dist: distinct-cdclW -state S and
conflicting: cdclW -conflicting S and
decomp: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
learned: cdclW -learned-clause S and
alien: no-strange-atm S

shows no-smaller-confl S ′ ∧ conflict-is-false-with-level S ′
using assms(1)

proof (induct rule: rtranclp-induct)
case base
then show ?case using n-l cls-false by auto

next
case (step S ′ S ′′) note st = this(1) and cdcl = this(2) and IH = this(3)
have no-smaller-confl S ′ and conflict-is-false-with-level S ′
using IH by blast+

moreover have cdclW -M-level-inv S ′
using st lev rtranclp-cdclW -stgy-rtranclp-cdclW -restart
by (blast intro: rtranclp-cdclW -restart-consistent-inv)+

moreover have distinct-cdclW -state S ′
using rtanclp-distinct-cdclW -state-inv[of S S ′] lev rtranclp-cdclW -stgy-rtranclp-cdclW -restart[OF st]
dist by auto

moreover have cdclW -conflicting S ′
using rtranclp-cdclW -restart-all-inv(6)[of S S ′] st alien conflicting decomp dist learned lev
rtranclp-cdclW -stgy-rtranclp-cdclW -restart by blast

ultimately show ?case
using cdclW -stgy-no-smaller-confl[OF cdcl] cdclW -stgy-ex-lit-of-max-level[OF cdcl] cdcl
by (auto simp del: simp add: cdclW -stgy.simps elim!: propagateE)

qed

Final States are Conclusive

theorem 2.9.9 page 97 of Weidenbach’s book

lemma full-cdclW -stgy-final-state-conclusive:
fixes S ′ :: ′st
assumes full: full cdclW -stgy (init-state N) S ′
and no-d: distinct-mset-mset N
shows (conflicting S ′ = Some {#} ∧ unsatisfiable (set-mset (init-clss S ′)))

100

∨ (conflicting S ′ = None ∧ trail S ′ |=asm init-clss S ′)
proof −
let ?S = init-state N
have
termi: ∀S ′′. ¬cdclW -stgy S ′ S ′′ and
step: cdclW -stgy∗∗ ?S S ′ using full unfolding full-def by auto

have
learned: cdclW -learned-clause S ′ and
level-inv: cdclW -M-level-inv S ′ and
alien: no-strange-atm S ′ and
no-dup: distinct-cdclW -state S ′ and
confl: cdclW -conflicting S ′ and
decomp: all-decomposition-implies-m (clauses S ′) (get-all-ann-decomposition (trail S ′))
using no-d tranclp-cdclW -stgy-tranclp-cdclW -restart[of ?S S ′] step
rtranclp-cdclW -restart-all-inv(1−6)[of ?S S ′]
unfolding rtranclp-unfold by auto

have confl-k: conflict-is-false-with-level S ′
using rtranclp-cdclW -stgy-no-smaller-confl-inv[OF step] no-d by auto

have learned-entailed: 〈cdclW -learned-clauses-entailed-by-init S ′〉
using rtranclp-cdclW -learned-clauses-entailed[of 〈?S 〉 〈S ′〉] step
by (simp add: rtranclp-cdclW -stgy-rtranclp-cdclW -restart)

show ?thesis
using cdclW -stgy-final-state-conclusive[OF termi decomp learned level-inv alien no-dup confl
confl-k learned-entailed] .

qed

lemma cdclW -o-fst-empty-conflicting-false:
assumes
cdclW -o S S ′ and
trail S = [] and
conflicting S 6= None

shows False
using assms by (induct rule: cdclW -o-induct) auto

lemma cdclW -stgy-fst-empty-conflicting-false:
assumes
cdclW -stgy S S ′ and
trail S = [] and
conflicting S 6= None

shows False
using assms apply (induct rule: cdclW -stgy.induct)
apply (auto elim: conflictE ; fail)[]
apply (auto elim: propagateE ; fail)[]
using cdclW -o-fst-empty-conflicting-false by blast

lemma cdclW -o-conflicting-is-false:
cdclW -o S S ′ =⇒ conflicting S = Some {#} =⇒ False
by (induction rule: cdclW -o-induct) auto

lemma cdclW -stgy-conflicting-is-false:
cdclW -stgy S S ′ =⇒ conflicting S = Some {#} =⇒ False
apply (induction rule: cdclW -stgy.induct)
apply (auto elim: conflictE ; fail)[]
apply (auto elim: propagateE ; fail)[]
by (metis conflict-with-false-implies-terminated other)

101

lemma rtranclp-cdclW -stgy-conflicting-is-false:
cdclW -stgy∗∗ S S ′ =⇒ conflicting S = Some {#} =⇒ S ′ = S
apply (induction rule: rtranclp-induct)
apply simp

using cdclW -stgy-conflicting-is-false by blast

definition conflict-or-propagate :: ′st ⇒ ′st ⇒ bool where
conflict-or-propagate S T ←→ conflict S T ∨ propagate S T

declare conflict-or-propagate-def [simp]

lemma conflict-or-propagate-intros:
conflict S T =⇒ conflict-or-propagate S T
propagate S T =⇒ conflict-or-propagate S T
by auto

theorem 2.9.9 page 97 of Weidenbach’s book
lemma full-cdclW -stgy-final-state-conclusive-from-init-state:
fixes S ′ :: ′st
assumes full: full cdclW -stgy (init-state N) S ′
and no-d: distinct-mset-mset N
shows (conflicting S ′ = Some {#} ∧ unsatisfiable (set-mset N))
∨ (conflicting S ′ = None ∧ trail S ′ |=asm N ∧ satisfiable (set-mset N))

proof −
have N : init-clss S ′ = N
using full unfolding full-def by (auto dest: rtranclp-cdclW -stgy-no-more-init-clss)

consider
(confl) conflicting S ′ = Some {#} and unsatisfiable (set-mset (init-clss S ′))
| (sat) conflicting S ′ = None and trail S ′ |=asm init-clss S ′
using full-cdclW -stgy-final-state-conclusive[OF assms] by auto

then show ?thesis
proof cases
case confl
then show ?thesis by (auto simp: N)

next
case sat
have cdclW -M-level-inv (init-state N) by auto
then have cdclW -M-level-inv S ′
using full rtranclp-cdclW -stgy-consistent-inv unfolding full-def by blast

then have consistent-interp (lits-of-l (trail S ′))
unfolding cdclW -M-level-inv-def by blast

moreover have lits-of-l (trail S ′) |=s set-mset (init-clss S ′)
using sat(2) by (auto simp add: true-annots-def true-annot-def true-clss-def)

ultimately have satisfiable (set-mset (init-clss S ′)) by simp
then show ?thesis using sat unfolding N by blast

qed
qed

1.1.6 Structural Invariant

The condition that no learned clause is a tautology is overkill for the termination (in the sense
that the no-duplicate condition is enough), but it allows to reuse simple-clss.
The invariant contains all the structural invariants that holds,
definition cdclW -all-struct-inv where

102

cdclW -all-struct-inv S ←→
no-strange-atm S ∧
cdclW -M-level-inv S ∧
(∀ s ∈# learned-clss S . ¬tautology s) ∧
distinct-cdclW -state S ∧
cdclW -conflicting S ∧
all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) ∧
cdclW -learned-clause S

lemma cdclW -all-struct-inv-inv:
assumes cdclW -restart S S ′ and cdclW -all-struct-inv S
shows cdclW -all-struct-inv S ′
unfolding cdclW -all-struct-inv-def

proof (intro HOL.conjI)
show no-strange-atm S ′
using cdclW -restart-all-inv[OF assms(1)] assms(2) unfolding cdclW -all-struct-inv-def by auto

show cdclW -M-level-inv S ′
using cdclW -restart-all-inv[OF assms(1)] assms(2) unfolding cdclW -all-struct-inv-def by fast

show distinct-cdclW -state S ′
using cdclW -restart-all-inv[OF assms(1)] assms(2) unfolding cdclW -all-struct-inv-def by fast

show cdclW -conflicting S ′
using cdclW -restart-all-inv[OF assms(1)] assms(2) unfolding cdclW -all-struct-inv-def by fast

show all-decomposition-implies-m (clauses S ′) (get-all-ann-decomposition (trail S ′))
using cdclW -restart-all-inv[OF assms(1)] assms(2) unfolding cdclW -all-struct-inv-def by fast

show cdclW -learned-clause S ′
using cdclW -restart-all-inv[OF assms(1)] assms(2) unfolding cdclW -all-struct-inv-def by fast

show ∀ s∈#learned-clss S ′. ¬ tautology s
using assms(1)[THEN learned-clss-are-not-tautologies] assms(2)
unfolding cdclW -all-struct-inv-def by fast

qed

lemma rtranclp-cdclW -all-struct-inv-inv:
assumes cdclW -restart∗∗ S S ′ and cdclW -all-struct-inv S
shows cdclW -all-struct-inv S ′
using assms by induction (auto intro: cdclW -all-struct-inv-inv)

lemma cdclW -stgy-cdclW -all-struct-inv:
cdclW -stgy S T =⇒ cdclW -all-struct-inv S =⇒ cdclW -all-struct-inv T
by (meson cdclW -stgy-tranclp-cdclW -restart rtranclp-cdclW -all-struct-inv-inv rtranclp-unfold)

lemma rtranclp-cdclW -stgy-cdclW -all-struct-inv:
cdclW -stgy∗∗ S T =⇒ cdclW -all-struct-inv S =⇒ cdclW -all-struct-inv T
by (induction rule: rtranclp-induct) (auto intro: cdclW -stgy-cdclW -all-struct-inv)

lemma beginning-not-decided-invert:
assumes A: M @ A = M ′ @ Decided K # H and
nm: ∀m∈set M . ¬is-decided m
shows ∃M . A = M @ Decided K # H

proof −
have A = drop (length M) (M ′ @ Decided K # H)
using arg-cong[OF A, of drop (length M)] by auto

moreover have drop (length M) (M ′ @ Decided K # H) = drop (length M) M ′ @ Decided K # H
using nm by (metis (no-types, lifting) A drop-Cons ′ drop-append annotated-lit.disc(1) not-gr0
nth-append nth-append-length nth-mem zero-less-diff)

finally show ?thesis by fast

103

qed

1.1.7 Strategy-Specific Invariant
definition cdclW -stgy-invariant where
cdclW -stgy-invariant S ←→
conflict-is-false-with-level S
∧ no-smaller-confl S

lemma cdclW -stgy-cdclW -stgy-invariant:
assumes
cdclW -restart: cdclW -stgy S T and
inv-s: cdclW -stgy-invariant S and
inv: cdclW -all-struct-inv S
shows
cdclW -stgy-invariant T

unfolding cdclW -stgy-invariant-def cdclW -all-struct-inv-def apply (intro conjI)
apply (rule cdclW -stgy-ex-lit-of-max-level[of S])
using assms unfolding cdclW -stgy-invariant-def cdclW -all-struct-inv-def apply auto[7]

using cdclW -stgy-invariant-def cdclW -stgy-no-smaller-confl inv-s by blast

lemma rtranclp-cdclW -stgy-cdclW -stgy-invariant:
assumes
cdclW -restart: cdclW -stgy∗∗ S T and
inv-s: cdclW -stgy-invariant S and
inv: cdclW -all-struct-inv S
shows
cdclW -stgy-invariant T

using assms apply induction
apply (simp; fail)

using cdclW -stgy-cdclW -stgy-invariant rtranclp-cdclW -all-struct-inv-inv
rtranclp-cdclW -stgy-rtranclp-cdclW -restart by blast

lemma full-cdclW -stgy-inv-normal-form:
assumes
full: full cdclW -stgy S T and
inv-s: cdclW -stgy-invariant S and
inv: cdclW -all-struct-inv S and
learned-entailed: 〈cdclW -learned-clauses-entailed-by-init S 〉

shows conflicting T = Some {#} ∧ unsatisfiable (set-mset (init-clss S))
∨ conflicting T = None ∧ trail T |=asm init-clss S ∧ satisfiable (set-mset (init-clss S))

proof −
have no-step cdclW -stgy T and st: cdclW -stgy∗∗ S T
using full unfolding full-def by blast+

moreover have cdclW -all-struct-inv T and inv-s: cdclW -stgy-invariant T
apply (metis rtranclp-cdclW -stgy-rtranclp-cdclW -restart full full-def inv
rtranclp-cdclW -all-struct-inv-inv)

by (metis full full-def inv inv-s rtranclp-cdclW -stgy-cdclW -stgy-invariant)
moreover have 〈cdclW -learned-clauses-entailed-by-init T 〉

using inv learned-entailed unfolding cdclW -all-struct-inv-def
using rtranclp-cdclW -learned-clauses-entailed rtranclp-cdclW -stgy-rtranclp-cdclW -restart[OF st]
by blast

ultimately have conflicting T = Some {#} ∧ unsatisfiable (set-mset (init-clss T))
∨ conflicting T = None ∧ trail T |=asm init-clss T
using cdclW -stgy-final-state-conclusive[of T] full
unfolding cdclW -all-struct-inv-def cdclW -stgy-invariant-def full-def by fast

104

moreover have consistent-interp (lits-of-l (trail T))
using 〈cdclW -all-struct-inv T 〉 unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def
by auto

moreover have init-clss S = init-clss T
using inv unfolding cdclW -all-struct-inv-def
by (metis rtranclp-cdclW -stgy-no-more-init-clss full full-def)

ultimately show ?thesis
by (metis satisfiable-carac ′ true-annot-def true-annots-def true-clss-def)

qed

lemma full-cdclW -stgy-inv-normal-form2 :
assumes
full: full cdclW -stgy S T and
inv-s: cdclW -stgy-invariant S and
inv: cdclW -all-struct-inv S

shows conflicting T = Some {#} ∧ unsatisfiable (set-mset (clauses T))
∨ conflicting T = None ∧ satisfiable (set-mset (clauses T))

proof −
have no-step cdclW -stgy T and st: cdclW -stgy∗∗ S T
using full unfolding full-def by blast+

moreover have cdclW -all-struct-inv T and inv-s: cdclW -stgy-invariant T
apply (metis rtranclp-cdclW -stgy-rtranclp-cdclW -restart full full-def inv
rtranclp-cdclW -all-struct-inv-inv)

by (metis full full-def inv inv-s rtranclp-cdclW -stgy-cdclW -stgy-invariant)
ultimately have conflicting T = Some {#} ∧ unsatisfiable (set-mset (clauses T))
∨ conflicting T = None ∧ trail T |=asm clauses T
using cdclW -stgy-final-state-conclusive2 [of T] full
unfolding cdclW -all-struct-inv-def cdclW -stgy-invariant-def full-def by fast

moreover have consistent-interp (lits-of-l (trail T))
using 〈cdclW -all-struct-inv T 〉 unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def
by auto

ultimately show ?thesis
by (metis satisfiable-carac ′ true-annot-def true-annots-def true-clss-def)

qed

1.1.8 Additional Invariant: No Smaller Propagation
definition no-smaller-propa :: 〈 ′st ⇒ bool〉 where
no-smaller-propa (S :: ′st) ≡

(∀M K M ′ D L. trail S = M ′ @ Decided K # M −→ D + {#L#} ∈# clauses S −→ undefined-lit M
L
−→ ¬M |=as CNot D)

lemma propagated-cons-eq-append-decide-cons:
Propagated L E # Ms = M ′ @ Decided K # M ←→
M ′ 6= [] ∧ Ms = tl M ′ @ Decided K # M ∧ hd M ′ = Propagated L E

by (metis (no-types, lifting) annotated-lit.disc(1) annotated-lit.disc(2) append-is-Nil-conv hd-append
list.exhaust-sel list.sel(1) list.sel(3) tl-append2)

lemma in-get-all-mark-of-propagated-in-trail:
〈C ∈ set (get-all-mark-of-propagated M) ←→ (∃L. Propagated L C ∈ set M)〉

by (induction M rule: ann-lit-list-induct) auto

lemma no-smaller-propa-tl:
assumes

105

〈no-smaller-propa S 〉 and
〈trail S 6= []〉 and
〈¬is-decided(hd-trail S)〉 and
〈trail U = tl (trail S)〉 and
〈clauses U = clauses S 〉

shows
〈no-smaller-propa U 〉

using assms by (cases 〈trail S 〉) (auto simp: no-smaller-propa-def)

lemmas rulesE =
skipE resolveE backtrackE propagateE conflictE decideE restartE forgetE backtrackgE

lemma decide-no-smaller-step:
assumes dec: 〈decide S T 〉 and smaller-propa: 〈no-smaller-propa S 〉 and
n-s: 〈no-step propagate S 〉

shows 〈no-smaller-propa T 〉

unfolding no-smaller-propa-def
proof clarify
fix M K M ′ D L
assume
tr : 〈trail T = M ′ @ Decided K # M 〉 and
D: 〈D+{#L#} ∈# clauses T 〉 and
undef : 〈undefined-lit M L〉 and
M : 〈M |=as CNot D〉

then have Ex (propagate S)
apply (cases M ′)
using propagate-rule[of S D+{#L#} L cons-trail (Propagated L (D + {#L#})) S] dec
smaller-propa

by (auto simp: no-smaller-propa-def elim!: rulesE)
then show False
using n-s by blast

qed

lemma no-smaller-propa-reduce-trail-to:
〈no-smaller-propa S =⇒ no-smaller-propa (reduce-trail-to M1 S)〉

unfolding no-smaller-propa-def
by (subst (asm) append-take-drop-id[symmetric, of - 〈length (trail S) − length M1 〉])

(auto simp: trail-reduce-trail-to-drop
simp del: append-take-drop-id)

lemma backtrackg-no-smaller-propa:
assumes o: 〈backtrackg S T 〉 and smaller-propa: 〈no-smaller-propa S 〉 and
n-d: 〈no-dup (trail S)〉 and
n-s: 〈no-step propagate S 〉 and
tr-CNot: 〈trail S |=as CNot (the (conflicting S))〉

shows 〈no-smaller-propa T 〉

proof −
obtain D D ′ :: ′v clause and K L :: ′v literal and
M1 M2 :: (′v, ′v clause) ann-lit list and i :: nat where
confl: conflicting S = Some (add-mset L D) and
decomp: (Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail S)) and
bt: get-level (trail S) L = backtrack-lvl S and
lev-L: get-level (trail S) L = get-maximum-level (trail S) (add-mset L D ′) and
i: get-maximum-level (trail S) D ′ ≡ i and
lev-K : get-level (trail S) K = i + 1 and
D-D ′: 〈D ′ ⊆# D〉 and

106

T : T ∼ cons-trail (Propagated L (add-mset L D ′))
(reduce-trail-to M1

(add-learned-cls (add-mset L D ′)
(update-conflicting None S)))

using o by (auto elim!: rulesE)
let ?D ′ = 〈add-mset L D ′〉
have [simp]: trail (reduce-trail-to M1 S) = M1
using decomp by auto

obtain M ′′ c where M ′′: trail S = M ′′ @ tl (trail T) and c: 〈M ′′ = c @ M2 @ [Decided K]〉

using decomp T by auto
have M1 : M1 = tl (trail T) and tr-T : trail T = Propagated L ?D ′ # M1
using decomp T by auto

have i-lvl: 〈i = backtrack-lvl T 〉

using no-dup-append-in-atm-notin[of 〈c @ M2 〉 〈Decided K # tl (trail T)〉 K]
n-d lev-K unfolding c M ′′ by (auto simp: image-Un tr-T)

from o show ?thesis
unfolding no-smaller-propa-def

proof clarify
fix M K ′ M ′ E ′ L ′
assume
tr : 〈trail T = M ′ @ Decided K ′ # M 〉 and
E : 〈E ′+{#L ′#} ∈# clauses T 〉 and
undef : 〈undefined-lit M L ′〉 and
M : 〈M |=as CNot E ′〉

have n-d-T : 〈no-dup (trail T)〉 and M1-D ′: M1 |=as CNot D ′
using backtrack-M1-CNot-D ′[OF n-d i decomp - confl - T] lev-K bt lev-L tr-CNot

confl D-D ′
by (auto dest: subset-mset-trans-add-mset)

have False if D: 〈add-mset L D ′ = add-mset L ′ E ′〉 and M-D: 〈M |=as CNot E ′〉
proof −
have 〈i 6= 0 〉

using i-lvl tr T by auto
moreover
have get-maximum-level M1 D ′ = i
using T i n-d D-D ′ M1-D ′ unfolding M ′′ tr-T
by (subst (asm) get-maximum-level-skip-beginning)

(auto dest: defined-lit-no-dupD dest!: true-annots-CNot-definedD)
ultimately obtain L-max where
L-max-in: L-max ∈# D ′ and
lev-L-max: get-level M1 L-max = i
using i get-maximum-level-exists-lit-of-max-level[of D ′ M1]
by (cases D ′) auto

have count-dec-M : count-decided M < i
using T i-lvl unfolding tr by auto

have − L-max /∈ lits-of-l M
proof (rule ccontr)
assume 〈¬ ?thesis〉

then have 〈undefined-lit (M ′ @ [Decided K ′]) L-max〉

using n-d-T unfolding tr
by (auto dest: in-lits-of-l-defined-litD dest: defined-lit-no-dupD simp: atm-of-eq-atm-of)

then have get-level (tl M ′ @ Decided K ′ # M) L-max < i
apply (subst get-level-skip)
apply (cases M ′; auto simp add: atm-of-eq-atm-of lits-of-def ; fail)
using count-dec-M count-decided-ge-get-level[of M L-max] by auto

107

then show False
using lev-L-max tr unfolding tr-T by (auto simp: propagated-cons-eq-append-decide-cons)

qed
moreover have − L /∈ lits-of-l M
proof (rule ccontr)
define MM where 〈MM = tl M ′〉

assume 〈¬ ?thesis〉

then have 〈− L /∈ lits-of-l (M ′ @ [Decided K ′])〉

using n-d-T unfolding tr by (auto simp: lits-of-def no-dup-def)
have 〈undefined-lit (M ′ @ [Decided K ′]) L〉

apply (rule no-dup-uminus-append-in-atm-notin)
using n-d-T 〈¬ − L /∈ lits-of-l M 〉 unfolding tr by auto

moreover have M ′ = Propagated L ?D ′ # MM
using tr-T MM-def by (metis hd-Cons-tl propagated-cons-eq-append-decide-cons tr)

ultimately show False
by simp

qed
moreover have L-max ∈# D ′ ∨ L ∈# D ′
using D L-max-in by (auto split: if-splits)

ultimately show False
using M-D D by (auto simp: true-annots-true-cls true-clss-def add-mset-eq-add-mset)

qed
then show False
using M ′′ smaller-propa tr undef M T E
by (cases M ′) (auto simp: no-smaller-propa-def trivial-add-mset-remove-iff elim!: rulesE)

qed
qed

lemmas backtrack-no-smaller-propa = backtrackg-no-smaller-propa[OF backtrack-backtrackg]

lemma cdclW -stgy-no-smaller-propa:
assumes
cdcl: 〈cdclW -stgy S T 〉 and
smaller-propa: 〈no-smaller-propa S 〉 and
inv: 〈cdclW -all-struct-inv S 〉

shows 〈no-smaller-propa T 〉

using cdcl
proof (cases rule: cdclW -stgy-cases)
case conflict
then show ?thesis
using smaller-propa by (auto simp: no-smaller-propa-def elim!: rulesE)

next
case propagate
then show ?thesis
using smaller-propa by (auto simp: no-smaller-propa-def propagated-cons-eq-append-decide-cons
elim!: rulesE)

next
case skip
then show ?thesis
using smaller-propa by (auto intro: no-smaller-propa-tl elim!: rulesE)

next
case resolve
then show ?thesis
using smaller-propa by (auto intro: no-smaller-propa-tl elim!: rulesE)

next
case decide note n-s = this(1 ,2) and dec = this(3)

108

show ?thesis
using n-s dec decide-no-smaller-step[of S T] smaller-propa
by auto

next
case backtrack note n-s = this(1 ,2) and o = this(3)
have inv-T : cdclW -all-struct-inv T
using cdcl cdclW -stgy-cdclW -all-struct-inv inv by blast

have 〈trail S |=as CNot (the (conflicting S))〉 and 〈no-dup (trail S)〉

using inv o unfolding cdclW -all-struct-inv-def
by (auto simp: cdclW -M-level-inv-def cdclW -conflicting-def
elim: rulesE)

then show ?thesis
using backtrack-no-smaller-propa[of S T] n-s o smaller-propa
by auto

qed

lemma rtranclp-cdclW -stgy-no-smaller-propa:
assumes
cdcl: 〈cdclW -stgy∗∗ S T 〉 and
smaller-propa: 〈no-smaller-propa S 〉 and
inv: 〈cdclW -all-struct-inv S 〉

shows 〈no-smaller-propa T 〉

using cdcl apply (induction rule: rtranclp-induct)
subgoal using smaller-propa by simp
subgoal using inv by (auto intro: rtranclp-cdclW -stgy-cdclW -all-struct-inv

cdclW -stgy-no-smaller-propa)
done

lemma hd-trail-level-ge-1-length-gt-1 :
fixes S :: ′st
defines M [symmetric, simp]: 〈M ≡ trail S 〉

defines L[symmetric, simp]: 〈L ≡ hd M 〉

assumes
smaller : 〈no-smaller-propa S 〉 and
struct: 〈cdclW -all-struct-inv S 〉 and
dec: 〈count-decided M ≥ 1 〉 and
proped: 〈is-proped L〉

shows 〈size (mark-of L) > 1 〉

proof (rule ccontr)
assume size-C : 〈¬ ?thesis〉

have nd: 〈no-dup M 〉

using struct unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def M [symmetric]
by blast

obtain M ′ where M ′: 〈M = L # M ′〉

using dec L by (cases M) (auto simp del: L)
obtain K C where K : 〈L = Propagated K C 〉

using proped by (cases L) auto

obtain K ′ M1 M2 where decomp: 〈M = M2 @ Decided K ′ # M1 〉

using dec le-count-decided-decomp[of M 0] nd by auto
then have decomp ′: 〈M ′ = tl M2 @ Decided K ′ # M1 〉

unfolding M ′ K by (cases M2) auto

have 〈K ∈# C 〉

using struct unfolding cdclW -all-struct-inv-def cdclW -conflicting-def

109

M M ′ K by blast
then have C : 〈C = {#} + {#K#}〉

using size-C K by (cases C) auto
have 〈undefined-lit M1 K 〉

using nd unfolding M ′ K decomp ′ by simp
moreover have 〈{#} + {#K#} ∈# clauses S 〉

using struct unfolding cdclW -all-struct-inv-def cdclW -learned-clause-alt-def M M ′ K C
reasons-in-clauses-def

by auto
moreover have 〈M1 |=as CNot {#}〉

by auto
ultimately show False
using smaller unfolding no-smaller-propa-def M decomp
by blast

qed

1.1.9 More Invariants: Conflict is False if no decision

If the level is higher than 0, then the conflict is not empty.
definition conflict-non-zero-unless-level-0 :: 〈 ′st ⇒ bool〉 where

〈conflict-non-zero-unless-level-0 S ←→
(conflicting S = Some {#} −→ count-decided (trail S) = 0)〉

definition no-false-clause:: 〈 ′st ⇒ bool〉 where
〈no-false-clause S ←→ (∀C ∈# clauses S . C 6= {#})〉

lemma cdclW -restart-no-false-clause:
assumes

〈cdclW -restart S T 〉

〈no-false-clause S 〉

shows 〈no-false-clause T 〉

using assms unfolding no-false-clause-def
by (induction rule: cdclW -restart-all-induct) (auto simp add: clauses-def)

The proofs work smoothly thanks to the side-conditions about levels of the rule resolve.
lemma cdclW -restart-conflict-non-zero-unless-level-0 :
assumes

〈cdclW -restart S T 〉

〈no-false-clause S 〉 and
〈conflict-non-zero-unless-level-0 S 〉

shows 〈conflict-non-zero-unless-level-0 T 〉

using assms by (induction rule: cdclW -restart-all-induct)
(auto simp add: conflict-non-zero-unless-level-0-def no-false-clause-def)

lemma rtranclp-cdclW -restart-no-false-clause:
assumes

〈cdclW -restart∗∗ S T 〉

〈no-false-clause S 〉

shows 〈no-false-clause T 〉

using assms by (induction rule: rtranclp-induct) (auto intro: cdclW -restart-no-false-clause)

lemma rtranclp-cdclW -restart-conflict-non-zero-unless-level-0 :
assumes

〈cdclW -restart∗∗ S T 〉

110

〈no-false-clause S 〉 and
〈conflict-non-zero-unless-level-0 S 〉

shows 〈conflict-non-zero-unless-level-0 T 〉

using assms by (induction rule: rtranclp-induct)
(auto intro: rtranclp-cdclW -restart-no-false-clause cdclW -restart-conflict-non-zero-unless-level-0)

definition propagated-clauses-clauses :: ′st ⇒ bool where
〈propagated-clauses-clauses S ≡ ∀L K . Propagated L K ∈ set (trail S) −→ K ∈# clauses S 〉

lemma propagate-single-literal-clause-get-level-is-0 :
assumes
smaller : 〈no-smaller-propa S 〉 and
propa-tr : 〈Propagated L {#L#} ∈ set (trail S)〉 and
n-d: 〈no-dup (trail S)〉 and
propa: 〈propagated-clauses-clauses S 〉

shows 〈get-level (trail S) L = 0 〉

proof (rule ccontr)
assume H : 〈¬ ?thesis〉

then obtain M M ′ K where
tr : 〈trail S = M ′ @ Decided K # M 〉 and
nm: 〈∀m ∈ set M . ¬is-decided m〉

using split-list-last-prop[of trail S is-decided]
by (auto simp: filter-empty-conv is-decided-def get-level-def dest!: List.set-dropWhileD)

have uL: 〈−L /∈ lits-of-l (trail S)〉

using n-d propa-tr unfolding lits-of-def by (fastforce simp: no-dup-cannot-not-lit-and-uminus)
then have [iff]: 〈defined-lit M ′ L ←→ L ∈ lits-of-l M ′〉

by (auto simp add: tr Decided-Propagated-in-iff-in-lits-of-l)
have 〈get-level M L = 0 〉 for L
using nm by auto

have [simp]: 〈L 6= −K 〉

using tr propa-tr n-d unfolding lits-of-def by (fastforce simp: no-dup-cannot-not-lit-and-uminus
in-set-conv-decomp)

have 〈L ∈ lits-of-l (M ′ @ [Decided K])〉

apply (rule ccontr)
using H unfolding tr
apply (subst (asm) get-level-skip)
using uL tr apply (auto simp: atm-of-eq-atm-of Decided-Propagated-in-iff-in-lits-of-l; fail)[]
apply (subst (asm) get-level-skip-beginning)
using 〈get-level M L = 0 〉 by (auto simp: atm-of-eq-atm-of uminus-lit-swap lits-of-def)

then have 〈undefined-lit M L〉

using n-d unfolding tr by (auto simp: defined-lit-map lits-of-def image-Un no-dup-def)
moreover have {#} + {#L#} ∈# clauses S
using propa propa-tr unfolding propagated-clauses-clauses-def by auto

moreover have M |=as CNot {#}
by auto

ultimately show False
using smaller tr unfolding no-smaller-propa-def by blast

qed

Conflict Minimisation
Remove Literals of Level 0 lemma conflict-minimisation-level-0 :
fixes S :: ′st
defines D[simp]: 〈D ≡ the (conflicting S)〉

defines [simp]: 〈M ≡ trail S 〉

defines 〈D ′ ≡ filter-mset (λL. get-level M L > 0) D〉

111

assumes
ns-s: 〈no-step skip S 〉 and
ns-r : 〈no-step resolve S 〉 and
inv-s: cdclW -stgy-invariant S and
inv: cdclW -all-struct-inv S and
conf : 〈conflicting S 6= None〉 〈conflicting S 6= Some {#}〉 and
M-nempty: 〈M ∼= []〉

shows
clauses S |=pm D ′ and
〈− lit-of (hd M) ∈# D ′〉

proof −
define D0 where D0 : 〈D0 = filter-mset (λL. get-level M L = 0) D〉

have D-D0-D ′: 〈D = D0 + D ′〉
using multiset-partition[of D 〈(λL. get-level M L = 0)〉]
unfolding D0 D ′-def by auto

have
confl: 〈cdclW -conflicting S 〉 and
decomp: 〈all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))〉 and
learned: 〈cdclW -learned-clause S 〉 and
M-lev: 〈cdclW -M-level-inv S 〉 and
alien: 〈no-strange-atm S 〉

using inv unfolding cdclW -all-struct-inv-def by fast+
have clss-D: 〈clauses S |=pm D〉

using learned conf unfolding cdclW -learned-clause-alt-def by auto
have M-CNot-D: 〈trail S |=as CNot D〉 and m-confl: 〈every-mark-is-a-conflict S 〉

using conf confl unfolding cdclW -conflicting-def by auto
have n-d: 〈no-dup M 〉

using M-lev unfolding cdclW -M-level-inv-def by auto
have uhd-D: 〈− lit-of (hd M) ∈# D〉

using ns-s ns-r conf M-nempty inv-s M-CNot-D n-d
unfolding cdclW -stgy-invariant-def conflict-is-false-with-level-def
by (cases 〈trail S 〉; cases 〈hd (trail S)〉) (auto simp: skip.simps resolve.simps
get-level-cons-if atm-of-eq-atm-of true-annots-true-cls-def-iff-negation-in-model
uminus-lit-swap Decided-Propagated-in-iff-in-lits-of-l split: if-splits)

have count-dec-ge-0 : 〈count-decided M > 0 〉

proof (rule ccontr)
assume H : 〈∼ ?thesis〉

then have 〈get-maximum-level M D = 0 〉 for D
by (metis (full-types) count-decided-ge-get-maximum-level gr0I le-0-eq)

then show False
using ns-s ns-r conf M-nempty m-confl uhd-D H
by (cases 〈trail S 〉; cases 〈hd (trail S)〉)

(auto 5 5 simp: skip.simps resolve.simps intro!: state-eq-ref)
qed
then obtain M0 K M1 where
M : 〈M = M1 @ Decided K # M0 〉 and
lev-K : 〈get-level (trail S) K = Suc 0 〉

using backtrack-ex-decomp[of S 0 , OF] M-lev
by (auto dest!: get-all-ann-decomposition-exists-prepend
simp: cdclW -M-level-inv-def simp flip: append.assoc
simp del: append-assoc)

have count-M0 : 〈count-decided M0 = 0 〉

using n-d lev-K unfolding M-def [symmetric] M by auto
have [simp]: 〈get-all-ann-decomposition M0 = [([], M0)]〉

112

using count-M0 by (induction M0 rule: ann-lit-list-induct) auto
have [simp]: 〈get-all-ann-decomposition (M1 @ Decided K # M0) 6= [([], M0)]〉 for M1 K M0
using length-get-all-ann-decomposition[of 〈M1 @ Decided K # M0 〉]
unfolding M by auto

have 〈last (get-all-ann-decomposition (M1 @ Decided K # M0)) = ([], M0)〉

apply (induction M1 rule: ann-lit-list-induct)
subgoal by auto
subgoal by auto
subgoal for L m M1
by (cases 〈get-all-ann-decomposition (M1 @ Decided K # M0)〉) auto

done
then have clss-S-M0 : 〈set-mset (clauses S) |=ps unmark-l M0 〉

using decomp unfolding M-def [symmetric] M
by (cases 〈get-all-ann-decomposition (M1 @ Decided K # M0)〉 rule: rev-cases)

(auto simp: all-decomposition-implies-def)
have H : 〈total-over-m I (set-mset (clauses S) ∪ unmark-l M0) = total-over-m I (set-mset (clauses

S))〉

for I
using alien unfolding no-strange-atm-def total-over-m-def total-over-set-def
M-def [symmetric] M
by (auto simp: clauses-def)

have uL-M0-D0 : 〈−L ∈ lits-of-l M0 〉 if 〈L ∈# D0 〉 for L
proof (rule ccontr)
assume L-M0 : 〈∼ ?thesis〉

have 〈L ∈# D〉 and lev-L: 〈get-level M L = 0 〉

using that unfolding D-D0-D ′ unfolding D0 by auto
then have 〈−L ∈ lits-of-l M 〉

using M-CNot-D that by (auto simp: true-annots-true-cls-def-iff-negation-in-model)
then have 〈−L ∈ lits-of-l (M1 @ [Decided K])〉

using L-M0 unfolding M by auto
then have 〈0 < get-level (M1 @ [Decided K]) L〉 and 〈defined-lit (M1 @ [Decided K]) L〉

using get-level-last-decided-ge[of M1 K L] unfolding Decided-Propagated-in-iff-in-lits-of-l
by fast+

then show False
using n-d lev-L get-level-skip-end[of 〈M1 @ [Decided K]〉 L M0]
unfolding M by auto

qed
have clss-D0 : 〈clauses S |=pm {#− L#}〉 if 〈L ∈# D0 〉 for L
using that clss-S-M0 uL-M0-D0 [of L] unfolding true-clss-clss-def H true-clss-cls-def
true-clss-def lits-of-def

by auto
have lD0D ′: 〈l ∈ atms-of D0 =⇒ l ∈ atms-of D〉 〈l ∈ atms-of D ′ =⇒ l ∈ atms-of D〉 for l
unfolding D-D0-D ′ by auto

have
H1 : 〈total-over-m I (set-mset (clauses S) ∪ {{#−L#}}) = total-over-m I (set-mset (clauses S))〉

if 〈L ∈# D0 〉 for L
using alien conf atm-of-lit-in-atms-of [OF that]
unfolding no-strange-atm-def total-over-m-def total-over-set-def
M-def [symmetric] M that by (auto 5 5 simp: clauses-def dest!: lD0D ′)

then have I-D0 : 〈total-over-m I (set-mset (clauses S)) −→
consistent-interp I −→
Multiset.Ball (clauses S) ((|=) I) −→ ∼I |= D0 〉 for I

using clss-D0 unfolding true-clss-cls-def true-cls-def consistent-interp-def
true-cls-def true-cls-mset-def — TODO tune proof
apply auto
by (metis atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set literal.sel(1)

113

true-cls-def true-cls-mset-def true-lit-def uminus-Pos)

have
H1 : 〈total-over-m I (set-mset (clauses S) ∪ {D0 + D ′}) = total-over-m I (set-mset (clauses S))〉

and
H2 : 〈total-over-m I (set-mset (clauses S) ∪ {D ′}) = total-over-m I (set-mset (clauses S))〉 for I
using alien conf unfolding no-strange-atm-def total-over-m-def total-over-set-def
M-def [symmetric] M by (auto 5 5 simp: clauses-def dest!: lD0D ′)

show 〈clauses S |=pm D ′〉
using clss-D clss-D0 I-D0 unfolding D-D0-D ′ true-clss-cls-def true-clss-def H1 H2
by auto

have 〈0 < get-level (trail S) (lit-of (hd-trail S))〉

apply (cases 〈trail S 〉)
using M-nempty count-dec-ge-0 by auto

then show 〈− lit-of (hd M) ∈# D ′〉
using uhd-D unfolding D ′-def by auto

qed

lemma literals-of-level0-entailed:
assumes
struct-invs: 〈cdclW -all-struct-inv S 〉 and
in-trail: 〈L ∈ lits-of-l (trail S)〉 and
lev: 〈get-level (trail S) L = 0 〉

shows
〈clauses S |=pm {#L#}〉

proof −
have decomp: 〈all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))〉

using struct-invs unfolding cdclW -all-struct-inv-def
by fast

have L-trail: 〈{#L#} ∈ unmark-l (trail S)〉

using in-trail by (auto simp: in-unmark-l-in-lits-of-l-iff)
have n-d: 〈no-dup (trail S)〉

using struct-invs unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def
by fast

show ?thesis
proof (cases 〈count-decided (trail S) = 0 〉)
case True
have 〈get-all-ann-decomposition (trail S) = [([], trail S)]〉

apply (rule no-decision-get-all-ann-decomposition)
using True by (auto simp: count-decided-0-iff)

then show ?thesis
using decomp L-trail
unfolding all-decomposition-implies-def
by (auto intro: true-clss-clss-in-imp-true-clss-cls)

next
case False
then obtain K M1 M2 M3 where
decomp ′: 〈(Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail S))〉 and
lev-K : 〈get-level (trail S) K = Suc 0 〉 and
M3 : 〈trail S = M3 @ M2 @ Decided K # M1 〉

using struct-invs backtrack-ex-decomp[of S 0] n-d unfolding cdclW -all-struct-inv-def by blast
then have dec-M1 : 〈count-decided M1 = 0 〉

using n-d by auto
define M2 ′ where 〈M2 ′ = M3 @ M2 〉

then have M3 : 〈trail S = M2 ′ @ Decided K # M1 〉 using M3 by auto

114

have 〈get-all-ann-decomposition M1 = [([], M1)]〉

apply (rule no-decision-get-all-ann-decomposition)
using dec-M1 by (auto simp: count-decided-0-iff)

then have 〈([], M1) ∈ set (get-all-ann-decomposition (trail S))〉

using hd-get-all-ann-decomposition-skip-some[of Nil M1 M1 〈- @ -〉] decomp ′
by auto

then have 〈set-mset (clauses S) |=ps unmark-l M1 〉

using decomp
unfolding all-decomposition-implies-def by auto

moreover {
have 〈L ∈ lits-of-l M1 〉

using n-d lev M3 in-trail
by (cases 〈undefined-lit (M2 ′ @ Decided K # []) L〉) (auto dest: in-lits-of-l-defined-litD)

then have 〈{#L#} ∈ unmark-l M1 〉

using in-trail by (auto simp: in-unmark-l-in-lits-of-l-iff)
}
ultimately show ?thesis
unfolding all-decomposition-implies-def
by (auto intro: true-clss-clss-in-imp-true-clss-cls)

qed
qed

1.1.10 Some higher level use on the invariants

In later refinement we mostly us the group invariants and don’t try to be as specific as above.
The corresponding theorems are collected here.

lemma conflict-conflict-is-false-with-level-all-inv:
〈conflict S T =⇒
no-smaller-confl S =⇒
cdclW -all-struct-inv S =⇒
conflict-is-false-with-level T 〉

by (rule conflict-conflict-is-false-with-level) (auto simp: cdclW -all-struct-inv-def)

lemma cdclW -stgy-ex-lit-of-max-level-all-inv:
assumes
cdclW -stgy S S ′ and
n-l: no-smaller-confl S and
conflict-is-false-with-level S and
cdclW -all-struct-inv S

shows conflict-is-false-with-level S ′
by (rule cdclW -stgy-ex-lit-of-max-level) (use assms in 〈auto simp: cdclW -all-struct-inv-def 〉)

lemma cdclW -o-conflict-is-false-with-level-inv-all-inv:
assumes

〈cdclW -o S T 〉

〈cdclW -all-struct-inv S 〉

〈conflict-is-false-with-level S 〉

shows 〈conflict-is-false-with-level T 〉

by (rule cdclW -o-conflict-is-false-with-level-inv)
(use assms in 〈auto simp: cdclW -all-struct-inv-def 〉)

lemma no-step-cdclW -total:
assumes

115

〈no-step cdclW S 〉

〈conflicting S = None〉

〈no-strange-atm S 〉

shows 〈total-over-m (lits-of-l (trail S)) (set-mset (clauses S))〉

proof (rule ccontr)
assume 〈¬ ?thesis〉

then obtain L where 〈L ∈ atms-of-mm (clauses S)〉 and 〈undefined-lit (trail S) (Pos L)〉

by (auto simp: total-over-m-def total-over-set-def
Decided-Propagated-in-iff-in-lits-of-l)

then have 〈Ex (decide S)〉

using decide-rule[of S 〈Pos L〉 〈cons-trail (Decided (Pos L)) S 〉] assms
unfolding no-strange-atm-def clauses-def
by force

then show False
using assms by (auto simp: cdclW .simps cdclW -o.simps)

qed

lemma cdclW -Ex-cdclW -stgy:
assumes

〈cdclW S T 〉

shows 〈Ex(cdclW -stgy S)〉

using assms by (meson assms cdclW .simps cdclW -stgy.simps)

lemma no-step-skip-hd-in-conflicting:
assumes
inv-s: 〈cdclW -stgy-invariant S 〉 and
inv: 〈cdclW -all-struct-inv S 〉 and
ns: 〈no-step skip S 〉 and
confl: 〈conflicting S 6= None〉 〈conflicting S 6= Some {#}〉

shows 〈−lit-of (hd (trail S)) ∈# the (conflicting S)〉

proof −
let
?M = 〈trail S 〉 and
?N = 〈init-clss S 〉 and
?U = 〈learned-clss S 〉 and
?k = 〈backtrack-lvl S 〉 and
?D = 〈conflicting S 〉

obtain D where D: 〈?D = Some D〉

using confl by (cases ?D) auto
have M-D: 〈?M |=as CNot D〉

using inv D unfolding cdclW -all-struct-inv-def cdclW -conflicting-def by auto
then have tr : 〈trail S 6= []〉

using confl D by auto
obtain L M where M : 〈?M = L # M 〉

using tr by (cases 〈?M 〉) auto
have conlf-k: 〈conflict-is-false-with-level S 〉

using inv-s unfolding cdclW -stgy-invariant-def by simp
then obtain L-k where
L-k: 〈L-k ∈# D〉 and lev-L-k: 〈get-level ?M L-k = ?k〉

using confl D by auto
have dec: 〈?k = count-decided ?M 〉

using inv unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def by auto
moreover {
have 〈no-dup ?M 〉

using inv unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def by auto

116

then have 〈−lit-of L /∈ lits-of-l M 〉

unfolding M by (auto simp: defined-lit-map lits-of-def uminus-lit-swap)
}

ultimately have L-D: 〈lit-of L /∈# D〉

using M-D unfolding M by (auto simp add: true-annots-true-cls-def-iff-negation-in-model
uminus-lit-swap)

show ?thesis
proof (cases L)
case (Decided L ′) note L ′ = this(1)
moreover have 〈atm-of L ′ = atm-of L-k〉

using lev-L-k count-decided-ge-get-level[of M L-k] unfolding M dec L ′
by (auto simp: get-level-cons-if split: if-splits)

then have 〈L ′ = −L-k〉

using L-k L-D L ′ by (auto simp: atm-of-eq-atm-of)
then show ?thesis using L-k unfolding D M L ′ by simp

next
case (Propagated L ′ C)
then show ?thesis
using ns confl by (auto simp: skip.simps M D)

qed
qed

lemma
fixes S
assumes

nss: 〈no-step skip S 〉 and
nsr : 〈no-step resolve S 〉 and
invs: 〈cdclW -all-struct-inv S 〉 and
stgy: 〈cdclW -stgy-invariant S 〉 and
confl: 〈conflicting S 6= None〉 and
confl ′: 〈conflicting S 6= Some {#}〉

shows no-skip-no-resolve-single-highest-level:
〈the (conflicting S) =

add-mset (−(lit-of (hd (trail S)))) {#L ∈# the (conflicting S).
get-level (trail S) L < local.backtrack-lvl S#}〉 (is ?A) and

no-skip-no-resolve-level-lvl-nonzero:
〈0 < backtrack-lvl S 〉 (is ?B) and
no-skip-no-resolve-level-get-maximum-lvl-le:

〈get-maximum-level (trail S) (remove1-mset (−(lit-of (hd (trail S)))) (the (conflicting S)))
< backtrack-lvl S 〉 (is ?C)

proof −
define K where 〈K ≡ lit-of (hd (trail S))〉

have K : 〈−K ∈# the (conflicting S)〉

using no-step-skip-hd-in-conflicting[OF stgy invs nss confl confl ′]
unfolding K-def .

have
〈no-strange-atm S 〉 and
lev: 〈cdclW -M-level-inv S 〉 and
〈∀ s∈#learned-clss S . ¬ tautology s〉 and
dist: 〈distinct-cdclW -state S 〉 and
conf : 〈cdclW -conflicting S 〉 and
〈all-decomposition-implies-m (local.clauses S)

(get-all-ann-decomposition (trail S))〉 and
learned: 〈cdclW -learned-clause S 〉

using invs unfolding cdclW -all-struct-inv-def
by auto

117

obtain D where
D[simp]: 〈conflicting S = Some (add-mset (−K) D)〉

using confl K by (auto dest: multi-member-split)

have dist: 〈distinct-mset (the (conflicting S))〉

using dist confl unfolding distinct-cdclW -state-def by auto
then have [iff]: 〈L /∈# remove1-mset L (the (conflicting S))〉 for L
by (meson distinct-mem-diff-mset union-single-eq-member)

from this[of K] have [simp]: 〈−K /∈# D〉 using dist by auto

have nd: 〈no-dup (trail S)〉

using lev unfolding cdclW -M-level-inv-def by auto
have CNot: 〈trail S |=as CNot (add-mset (−K) D)〉

using conf unfolding cdclW -conflicting-def
by fastforce

then have tr : 〈trail S 6= []〉

by auto
have [simp]: 〈K /∈# D〉

using nd K-def tr CNot unfolding true-annots-true-cls-def-iff-negation-in-model
by (cases 〈trail S 〉)

(auto simp: uminus-lit-swap Decided-Propagated-in-iff-in-lits-of-l dest!: multi-member-split)
have H1 :

〈0 < backtrack-lvl S 〉

proof (cases 〈is-proped (hd (trail S))〉)
case proped: True
obtain C M where

[simp]: 〈trail S = Propagated K C # M 〉

using tr proped K-def
by (cases 〈trail S 〉; cases 〈hd (trail S)〉)

(auto simp: K-def)
have 〈a @ Propagated L mark # b = Propagated K C # M −→

b |=as CNot (remove1-mset L mark) ∧ L ∈# mark〉 for L mark a b
using conf unfolding cdclW -conflicting-def
by fastforce

from this[of 〈[]〉] have [simp]: 〈K ∈# C 〉 〈M |=as CNot (remove1-mset K C)〉

by auto
have [simp]: 〈get-maximum-level (Propagated K C # M) D = get-maximum-level M D〉

by (rule get-maximum-level-skip-first)
(auto simp: atms-of-def atm-of-eq-atm-of uminus-lit-swap[symmetric])

have 〈get-maximum-level M D < count-decided M 〉

using nsr tr confl K proped count-decided-ge-get-maximum-level[of M D]
by (auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)

then show ?thesis by simp
next
case proped: False
have 〈get-maximum-level (tl (trail S)) D < count-decided (trail S)〉

using tr confl K proped count-decided-ge-get-maximum-level[of 〈tl (trail S)〉 D]
by (cases 〈trail S 〉; cases 〈hd (trail S)〉)

(auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
then show ?thesis
by simp

qed
show H2 : ?C
proof (cases 〈is-proped (hd (trail S))〉)

118

case proped: True
obtain C M where

[simp]: 〈trail S = Propagated K C # M 〉

using tr proped K-def
by (cases 〈trail S 〉; cases 〈hd (trail S)〉)

(auto simp: K-def)
have 〈a @ Propagated L mark # b = Propagated K C # M −→

b |=as CNot (remove1-mset L mark) ∧ L ∈# mark〉 for L mark a b
using conf unfolding cdclW -conflicting-def
by fastforce

from this[of 〈[]〉] have [simp]: 〈K ∈# C 〉 〈M |=as CNot (remove1-mset K C)〉

by auto
have [simp]: 〈get-maximum-level (Propagated K C # M) D = get-maximum-level M D〉

by (rule get-maximum-level-skip-first)
(auto simp: atms-of-def atm-of-eq-atm-of uminus-lit-swap[symmetric])

have 〈get-maximum-level M D < count-decided M 〉

using nsr tr confl K proped count-decided-ge-get-maximum-level[of M D]
by (auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)

then show ?thesis by simp
next
case proped: False
have 〈get-maximum-level (tl (trail S)) D = get-maximum-level (trail S) D〉

apply (rule get-maximum-level-cong)
using K-def 〈− K /∈# D〉 〈K /∈# D〉

apply (cases 〈trail S 〉)
by (auto simp: get-level-cons-if atm-of-eq-atm-of)

moreover have 〈get-maximum-level (tl (trail S)) D < count-decided (trail S)〉

using tr confl K proped count-decided-ge-get-maximum-level[of 〈tl (trail S)〉 D]
by (cases 〈trail S 〉; cases 〈hd (trail S)〉)

(auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
ultimately show ?thesis
by (simp add: K-def)

qed

have H :
〈get-level (trail S) L < local.backtrack-lvl S 〉

if 〈L ∈# remove1-mset (−K) (the (conflicting S))〉

for L
proof (cases 〈is-proped (hd (trail S))〉)
case proped: True
obtain C M where

[simp]: 〈trail S = Propagated K C # M 〉

using tr proped K-def
by (cases 〈trail S 〉; cases 〈hd (trail S)〉)

(auto simp: K-def)
have 〈a @ Propagated L mark # b = Propagated K C # M −→

b |=as CNot (remove1-mset L mark) ∧ L ∈# mark〉 for L mark a b
using conf unfolding cdclW -conflicting-def
by fastforce

from this[of 〈[]〉] have [simp]: 〈K ∈# C 〉 〈M |=as CNot (remove1-mset K C)〉

by auto
have [simp]: 〈get-maximum-level (Propagated K C # M) D = get-maximum-level M D〉

by (rule get-maximum-level-skip-first)
(auto simp: atms-of-def atm-of-eq-atm-of uminus-lit-swap[symmetric])

119

have 〈get-maximum-level M D < count-decided M 〉

using nsr tr confl K that proped count-decided-ge-get-maximum-level[of M D]
by (auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)

then show ?thesis
using get-maximum-level-ge-get-level[of L D M] that
by (auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)

next
case proped: False
have L-K : 〈L 6= − K 〉 〈−L 6= K 〉 〈L 6= −lit-of (hd (trail S))〉

using that by (auto simp: uminus-lit-swap K-def [symmetric])
have 〈L 6= lit-of (hd (trail S))〉

using tr that K-def 〈K /∈# D〉

by (cases 〈trail S 〉; cases 〈hd (trail S)〉)
(auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)

have 〈get-maximum-level (tl (trail S)) D < count-decided (trail S)〉

using tr confl K that proped count-decided-ge-get-maximum-level[of 〈tl (trail S)〉 D]
by (cases 〈trail S 〉; cases 〈hd (trail S)〉)

(auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
then show ?thesis
using get-maximum-level-ge-get-level[of L D 〈(trail S)〉] that tr L-K 〈L 6= lit-of (hd (trail S))〉

count-decided-ge-get-level[of 〈tl (trail S)〉 L] proped
by (cases 〈trail S 〉; cases 〈hd (trail S)〉)

(auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
qed
have [simp]: 〈get-level (trail S) K = local.backtrack-lvl S 〉

using tr K-def
by (cases 〈trail S 〉; cases 〈hd (trail S)〉)

(auto simp: resolve.simps get-level-cons-if atm-of-eq-atm-of)
show ?A
apply (rule distinct-set-mset-eq)
subgoal using dist by auto
subgoal using dist by (auto simp: distinct-mset-filter K-def [symmetric])
subgoal using H by (auto simp: K-def [symmetric])
done

show ?B
using H1 .

qed

end

end
theory CDCL-W-Termination
imports CDCL-W
begin

context conflict-driven-clause-learningW

begin

1.1.11 Termination
No Relearning of a clause

Because of the conflict minimisation, this version is less clear than the version without: instead
of extracting the clause from the conflicting clause, we must take it from the clause used to
backjump; i.e., the annotation of the first literal of the trail.

120

We also prove below that no learned clause is subsumed by a (smaller) clause in the clause set.

lemma cdclW -stgy-no-relearned-clause:
assumes
cdcl: 〈backtrack S T 〉 and
inv: 〈cdclW -all-struct-inv S 〉 and
smaller : 〈no-smaller-propa S 〉

shows
〈mark-of (hd-trail T) /∈# clauses S 〉

proof (rule ccontr)
assume n-dist: 〈¬ ?thesis〉

obtain K L :: ′v literal and
M1 M2 :: (′v, ′v clause) ann-lit list and i :: nat and D D ′ where
confl-S : conflicting S = Some (add-mset L D) and
decomp: (Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail S)) and
lev-L: get-level (trail S) L = backtrack-lvl S and
max-D-L: get-level (trail S) L = get-maximum-level (trail S) (add-mset L D ′) and
i: get-maximum-level (trail S) D ′ ≡ i and
lev-K : get-level (trail S) K = i + 1 and
T : T ∼ cons-trail (Propagated L (add-mset L D ′))

(reduce-trail-to M1
(add-learned-cls (add-mset L D ′)

(update-conflicting None S))) and
D-D ′: 〈D ′ ⊆# D〉 and
〈clauses S |=pm add-mset L D ′〉
using cdcl by (auto elim!: rulesE)

obtain M2 ′ where M2 ′: 〈trail S = (M2 ′ @ M2) @ Decided K # M1 〉

using decomp by auto
have inv-T : 〈cdclW -all-struct-inv T 〉

using cdcl cdclW -stgy-cdclW -all-struct-inv inv W-other backtrack bj
cdclW -all-struct-inv-inv cdclW -cdclW -restart by blast

have M1-D ′: 〈M1 |=as CNot D ′〉
using backtrack-M1-CNot-D ′[of S D ′ 〈i〉 K M1 M2 L 〈add-mset L D〉 T

〈Propagated L (add-mset L D ′)〉] inv confl-S decomp i T D-D ′ lev-K lev-L max-D-L
unfolding cdclW -all-struct-inv-def cdclW -conflicting-def cdclW -M-level-inv-def
by (auto simp: subset-mset-trans-add-mset)

have 〈undefined-lit M1 L〉

using inv-T T decomp unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def
by (auto simp: defined-lit-map)

moreover have 〈D ′ + {#L#} ∈# clauses S 〉

using n-dist T by (auto simp: clauses-def)
ultimately show False
using smaller M1-D ′ unfolding no-smaller-propa-def M2 ′ by blast

qed

lemma cdclW -stgy-no-relearned-larger-clause:
assumes
cdcl: 〈backtrack S T 〉 and
inv: 〈cdclW -all-struct-inv S 〉 and
smaller : 〈no-smaller-propa S 〉 and
smaller-conf : 〈no-smaller-confl S 〉 and
E-subset: 〈E ⊂# mark-of (hd-trail T)〉

shows 〈E /∈# clauses S 〉

proof (rule ccontr)

121

assume n-dist: 〈¬ ?thesis〉

obtain K L :: ′v literal and
M1 M2 :: (′v, ′v clause) ann-lit list and i :: nat and D D ′ where
confl-S : conflicting S = Some (add-mset L D) and
decomp: (Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail S)) and
lev-L: get-level (trail S) L = backtrack-lvl S and
max-D-L: get-level (trail S) L = get-maximum-level (trail S) (add-mset L D ′) and
i: get-maximum-level (trail S) D ′ ≡ i and
lev-K : get-level (trail S) K = i + 1 and
T : T ∼ cons-trail (Propagated L (add-mset L D ′))

(reduce-trail-to M1
(add-learned-cls (add-mset L D ′)

(update-conflicting None S))) and
D-D ′: 〈D ′ ⊆# D〉 and
〈clauses S |=pm add-mset L D ′〉
using cdcl by (auto elim!: rulesE)

obtain M2 ′ where M2 ′: 〈trail S = (M2 ′ @ M2) @ Decided K # M1 〉

using decomp by auto
have inv-T : 〈cdclW -all-struct-inv T 〉

using cdcl cdclW -stgy-cdclW -all-struct-inv inv W-other backtrack bj
cdclW -all-struct-inv-inv cdclW -cdclW -restart by blast

have 〈distinct-mset (add-mset L D ′)〉

using inv-T T unfolding cdclW -all-struct-inv-def distinct-cdclW -state-def
by auto

then have dist-E : 〈distinct-mset E 〉

using distinct-mset-mono-strict[OF E-subset] T by auto

have M1-D ′: 〈M1 |=as CNot D ′〉
using backtrack-M1-CNot-D ′[of S D ′ 〈i〉 K M1 M2 L 〈add-mset L D〉 T

〈Propagated L (add-mset L D ′)〉] inv confl-S decomp i T D-D ′ lev-K lev-L max-D-L
unfolding cdclW -all-struct-inv-def cdclW -conflicting-def cdclW -M-level-inv-def
by (auto simp: subset-mset-trans-add-mset)

have undef-L: 〈undefined-lit M1 L〉

using inv-T T decomp unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def
by (auto simp: defined-lit-map)

show False
proof (cases 〈L ∈# E 〉)
case True
then obtain E ′ where
E : 〈E = add-mset L E ′〉
by (auto dest: multi-member-split)

then have 〈distinct-mset E ′〉 and 〈L /∈# E ′〉 and E ′-E ′: 〈E ′ ⊆# D ′〉
using dist-E T E-subset by auto

then have M1-E ′: 〈M1 |=as CNot E ′〉
using M1-D ′ T unfolding true-annots-true-cls-def-iff-negation-in-model
by (auto dest: multi-member-split[of - E] mset-subset-eq-insertD)

have propa: 〈
∧
M ′ K M L D. trail S = M ′ @ Decided K # M =⇒

D + {#L#} ∈# clauses S =⇒ undefined-lit M L =⇒ ¬ M |=as CNot D〉

using smaller unfolding no-smaller-propa-def by blast
show False
using M1-E ′ propa[of 〈M2 ′ @ M2 〉 K M1 E ′, OF M2 ′ - undef-L] n-dist unfolding E
by auto

next
case False

122

then have 〈E ⊆# D ′〉
using E-subset T by (auto simp: subset-add-mset-notin-subset)

then have M1-E : 〈M1 |=as CNot E 〉

using M1-D ′ T dist-E E-subset unfolding true-annots-true-cls-def-iff-negation-in-model
by (auto dest: multi-member-split[of - E] mset-subset-eq-insertD)

have confl: 〈
∧
M ′ K M L D. trail S = M ′ @ Decided K # M =⇒

D ∈# clauses S =⇒ ¬ M |=as CNot D〉

using smaller-conf unfolding no-smaller-confl-def by blast
show False
using confl[of 〈M2 ′ @ M2 〉 K M1 E , OF M2 ′] n-dist M1-E
by auto

qed
qed

lemma cdclW -stgy-no-relearned-highest-subres-clause:
assumes
cdcl: 〈backtrack S T 〉 and
inv: 〈cdclW -all-struct-inv S 〉 and
smaller : 〈no-smaller-propa S 〉 and
smaller-conf : 〈no-smaller-confl S 〉 and
E-subset: 〈mark-of (hd-trail T) = add-mset (lit-of (hd-trail T)) E 〉

shows 〈add-mset (− lit-of (hd-trail T)) E /∈# clauses S 〉

proof (rule ccontr)
assume n-dist: 〈¬ ?thesis〉

obtain K L :: ′v literal and
M1 M2 :: (′v, ′v clause) ann-lit list and i :: nat and D D ′ where
confl-S : conflicting S = Some (add-mset L D) and
decomp: (Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail S)) and
lev-L: get-level (trail S) L = backtrack-lvl S and
max-D-L: get-level (trail S) L = get-maximum-level (trail S) (add-mset L D ′) and
i: get-maximum-level (trail S) D ′ ≡ i and
lev-K : get-level (trail S) K = i + 1 and
T : T ∼ cons-trail (Propagated L (add-mset L D ′))

(reduce-trail-to M1
(add-learned-cls (add-mset L D ′)

(update-conflicting None S))) and
D-D ′: 〈D ′ ⊆# D〉 and
〈clauses S |=pm add-mset L D ′〉
using cdcl by (auto elim!: rulesE)

obtain M2 ′ where M2 ′: 〈trail S = (M2 ′ @ M2) @ Decided K # M1 〉

using decomp by auto
have inv-T : 〈cdclW -all-struct-inv T 〉

using cdcl cdclW -stgy-cdclW -all-struct-inv inv W-other backtrack bj
cdclW -all-struct-inv-inv cdclW -cdclW -restart by blast

have 〈distinct-mset (add-mset L D ′)〉

using inv-T T unfolding cdclW -all-struct-inv-def distinct-cdclW -state-def
by auto

have M1-D ′: 〈M1 |=as CNot D ′〉
using backtrack-M1-CNot-D ′[of S D ′ 〈i〉 K M1 M2 L 〈add-mset L D〉 T

〈Propagated L (add-mset L D ′)〉] inv confl-S decomp i T D-D ′ lev-K lev-L max-D-L
unfolding cdclW -all-struct-inv-def cdclW -conflicting-def cdclW -M-level-inv-def
by (auto simp: subset-mset-trans-add-mset)

have undef-L: 〈undefined-lit M1 L〉

using inv-T T decomp unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def

123

by (auto simp: defined-lit-map)
then have undef-uL: 〈undefined-lit M1 (−L)〉

by auto
have propa: 〈

∧
M ′ K M L D. trail S = M ′ @ Decided K # M =⇒

D + {#L#} ∈# clauses S =⇒ undefined-lit M L =⇒ ¬ M |=as CNot D〉

using smaller unfolding no-smaller-propa-def by blast
have E [simp]: 〈E = D ′〉
using E-subset T by (auto dest: multi-member-split)

have propa: 〈
∧
M ′ K M L D. trail S = M ′ @ Decided K # M =⇒

D + {#L#} ∈# clauses S =⇒ undefined-lit M L =⇒ ¬ M |=as CNot D〉

using smaller unfolding no-smaller-propa-def by blast
show False
using T M1-D ′ propa[of 〈M2 ′ @ M2 〉 K M1 D ′, OF M2 ′ - undef-uL] n-dist unfolding E
by auto

qed

lemma cdclW -stgy-distinct-mset:
assumes
cdcl: 〈cdclW -stgy S T 〉 and
inv: cdclW -all-struct-inv S and
smaller : 〈no-smaller-propa S 〉 and
dist: 〈distinct-mset (clauses S)〉

shows
〈distinct-mset (clauses T)〉

proof (rule ccontr)
assume n-dist: 〈¬ distinct-mset (clauses T)〉

then have 〈backtrack S T 〉

using cdcl dist by (auto simp: cdclW -stgy.simps cdclW -o.simps cdclW -bj.simps
elim: propagateE conflictE decideE skipE resolveE)

then show False
using n-dist cdclW -stgy-no-relearned-clause[of S T] dist
by (auto simp: inv smaller elim!: rulesE)

qed

This is a more restrictive version of the previous theorem, but is a better bound for an imple-
mentation that does not do duplication removal (esp. as part of preprocessing).
lemma cdclW -stgy-learned-distinct-mset:
assumes
cdcl: 〈cdclW -stgy S T 〉 and
inv: cdclW -all-struct-inv S and
smaller : 〈no-smaller-propa S 〉 and
dist: 〈distinct-mset (learned-clss S + remdups-mset (init-clss S))〉

shows
〈distinct-mset (learned-clss T + remdups-mset (init-clss T))〉

proof (rule ccontr)
assume n-dist: 〈¬ ?thesis〉

then have 〈backtrack S T 〉

using cdcl dist by (auto simp: cdclW -stgy.simps cdclW -o.simps cdclW -bj.simps
elim: propagateE conflictE decideE skipE resolveE)

then show False
using n-dist cdclW -stgy-no-relearned-clause[of S T] dist
by (auto simp: inv smaller clauses-def elim!: rulesE)

qed

lemma rtranclp-cdclW -stgy-distinct-mset-clauses:

124

assumes
st: cdclW -stgy∗∗ R S and
invR: cdclW -all-struct-inv R and
dist: distinct-mset (clauses R) and
no-smaller : 〈no-smaller-propa R〉

shows distinct-mset (clauses S)
using assms by (induction rule: rtranclp-induct)

(auto simp: cdclW -stgy-distinct-mset rtranclp-cdclW -stgy-no-smaller-propa
rtranclp-cdclW -stgy-cdclW -all-struct-inv)

lemma rtranclp-cdclW -stgy-distinct-mset-learned-clauses:
assumes
st: cdclW -stgy∗∗ R S and
invR: cdclW -all-struct-inv R and
dist: distinct-mset (learned-clss R + remdups-mset (init-clss R)) and
no-smaller : 〈no-smaller-propa R〉

shows distinct-mset (learned-clss S + remdups-mset (init-clss S))
using assms by (induction rule: rtranclp-induct)

(auto simp: cdclW -stgy-learned-distinct-mset rtranclp-cdclW -stgy-no-smaller-propa
rtranclp-cdclW -stgy-cdclW -all-struct-inv)

lemma cdclW -stgy-distinct-mset-clauses:
assumes
st: cdclW -stgy∗∗ (init-state N) S and
no-duplicate-clause: distinct-mset N and
no-duplicate-in-clause: distinct-mset-mset N

shows distinct-mset (clauses S)
using rtranclp-cdclW -stgy-distinct-mset-clauses[OF st] assms
by (auto simp: cdclW -all-struct-inv-def distinct-cdclW -state-def no-smaller-propa-def)

lemma cdclW -stgy-learned-distinct-mset-new:
assumes
cdcl: 〈cdclW -stgy S T 〉 and
inv: cdclW -all-struct-inv S and
smaller : 〈no-smaller-propa S 〉 and
dist: 〈distinct-mset (learned-clss S − A)〉

shows 〈distinct-mset (learned-clss T − A)〉

proof (rule ccontr)
have [iff]: 〈distinct-mset (add-mset C (learned-clss S) − A) ←→

C /∈# (learned-clss S) − A〉 for C
using dist distinct-mset-add-mset[of C 〈learned-clss S − A〉]

proof −
have f1 : learned-clss S − A = remove1-mset C (add-mset C (learned-clss S) − A)
by (metis Multiset.diff-right-commute add-mset-remove-trivial)

have remove1-mset C (add-mset C (learned-clss S) − A) = add-mset C (learned-clss S) − A −→
distinct-mset (add-mset C (learned-clss S) − A)

by (metis (no-types) Multiset.diff-right-commute add-mset-remove-trivial dist)
then have ¬ distinct-mset (add-mset C (learned-clss S − A)) ∨

distinct-mset (add-mset C (learned-clss S) − A) 6= (C ∈# learned-clss S − A)
by (metis (full-types) Multiset.diff-right-commute

distinct-mset-add-mset[of C 〈learned-clss S − A〉] add-mset-remove-trivial
diff-single-trivial insert-DiffM)

then show ?thesis
using f1 by (metis (full-types) distinct-mset-add-mset[of C 〈learned-clss S − A〉]

diff-single-trivial dist insert-DiffM)

125

qed

assume n-dist: 〈¬ ?thesis〉

then have 〈backtrack S T 〉

using cdcl dist by (auto simp: cdclW -stgy.simps cdclW -o.simps cdclW -bj.simps
elim: propagateE conflictE decideE skipE resolveE)

then show False
using n-dist cdclW -stgy-no-relearned-clause[of S T]
by (auto simp: inv smaller clauses-def elim!: rulesE

dest!: in-diffD)
qed

lemma rtranclp-cdclW -stgy-distinct-mset-clauses-new-abs:
assumes
st: cdclW -stgy∗∗ R S and
invR: cdclW -all-struct-inv R and
no-smaller : 〈no-smaller-propa R〉 and
〈distinct-mset (learned-clss R − A)〉

shows distinct-mset (learned-clss S − A)
using assms by (induction rule: rtranclp-induct)

(auto simp: cdclW -stgy-distinct-mset rtranclp-cdclW -stgy-no-smaller-propa
rtranclp-cdclW -stgy-cdclW -all-struct-inv
cdclW -stgy-learned-distinct-mset-new)

lemma rtranclp-cdclW -stgy-distinct-mset-clauses-new:
assumes
st: cdclW -stgy∗∗ R S and
invR: cdclW -all-struct-inv R and
no-smaller : 〈no-smaller-propa R〉

shows distinct-mset (learned-clss S − learned-clss R)
using assms by (rule rtranclp-cdclW -stgy-distinct-mset-clauses-new-abs) auto

Decrease of a Measure
fun cdclW -restart-measure where
cdclW -restart-measure S =

[(3 ::nat) ^ (card (atms-of-mm (init-clss S))) − card (set-mset (learned-clss S)),
if conflicting S = None then 1 else 0 ,
if conflicting S = None then card (atms-of-mm (init-clss S)) − length (trail S)
else length (trail S)
]

lemma length-model-le-vars:
assumes
no-strange-atm S and
no-d: no-dup (trail S) and
finite (atms-of-mm (init-clss S))

shows length (trail S) ≤ card (atms-of-mm (init-clss S))
proof −
obtain M N U k D where S : state S = (M , N , U , k, D) by (cases state S , auto)
have finite (atm-of ‘ lits-of-l (trail S))
using assms(1 ,3) unfolding S by (auto simp add: finite-subset)

have length (trail S) = card (atm-of ‘ lits-of-l (trail S))
using no-dup-length-eq-card-atm-of-lits-of-l no-d by blast

then show ?thesis using assms(1) unfolding no-strange-atm-def
by (auto simp add: assms(3) card-mono)

126

qed

lemma length-model-le-vars-all-inv:
assumes cdclW -all-struct-inv S
shows length (trail S) ≤ card (atms-of-mm (init-clss S))
using assms length-model-le-vars[of S] unfolding cdclW -all-struct-inv-def
by (auto simp: cdclW -M-level-inv-decomp)

lemma learned-clss-less-upper-bound:
fixes S :: ′st
assumes
distinct-cdclW -state S and
∀ s ∈# learned-clss S . ¬tautology s

shows card(set-mset (learned-clss S)) ≤ 3 ^ card (atms-of-mm (learned-clss S))
proof −
have set-mset (learned-clss S) ⊆ simple-clss (atms-of-mm (learned-clss S))
apply (rule simplified-in-simple-clss)
using assms unfolding distinct-cdclW -state-def by auto

then have card(set-mset (learned-clss S))
≤ card (simple-clss (atms-of-mm (learned-clss S)))
by (simp add: simple-clss-finite card-mono)

then show ?thesis
by (meson atms-of-ms-finite simple-clss-card finite-set-mset order-trans)

qed

lemma cdclW -restart-measure-decreasing:
fixes S :: ′st
assumes
cdclW -restart S S ′ and
no-restart:
¬(learned-clss S ⊆# learned-clss S ′ ∧ [] = trail S ′ ∧ conflicting S ′ = None)
and
no-forget: learned-clss S ⊆# learned-clss S ′ and
no-relearn:

∧
S ′. backtrack S S ′ =⇒ mark-of (hd-trail S ′) /∈# learned-clss S

and
alien: no-strange-atm S and
M-level: cdclW -M-level-inv S and
no-taut: ∀ s ∈# learned-clss S . ¬tautology s and
no-dup: distinct-cdclW -state S and
confl: cdclW -conflicting S

shows (cdclW -restart-measure S ′, cdclW -restart-measure S) ∈ lexn less-than 3
using assms(1) assms(2 ,3)

proof (induct rule: cdclW -restart-all-induct)
case (propagate C L) note conf = this(1) and undef = this(5) and T = this(6)
have propa: propagate S (cons-trail (Propagated L C) S)
using propagate-rule[OF propagate.hyps(1 ,2)] propagate.hyps by auto

then have no-dup ′: no-dup (Propagated L C # trail S)
using M-level cdclW -M-level-inv-decomp(2) undef defined-lit-map by auto

let ?N = init-clss S
have no-strange-atm (cons-trail (Propagated L C) S)
using alien cdclW -restart.propagate cdclW -restart-no-strange-atm-inv propa M-level by blast

then have atm-of ‘ lits-of-l (Propagated L C # trail S)
⊆ atms-of-mm (init-clss S)
using undef unfolding no-strange-atm-def by auto

127

then have card (atm-of ‘ lits-of-l (Propagated L C # trail S))
≤ card (atms-of-mm (init-clss S))
by (meson atms-of-ms-finite card-mono finite-set-mset)

then have length (Propagated L C # trail S) ≤ card (atms-of-mm ?N)
using no-dup-length-eq-card-atm-of-lits-of-l no-dup ′ by fastforce

then have H : card (atms-of-mm (init-clss S)) − length (trail S)
= Suc (card (atms-of-mm (init-clss S)) − Suc (length (trail S)))
by simp

show ?case using conf T undef by (auto simp: H lexn3-conv)
next
case (decide L) note conf = this(1) and undef = this(2) and T = this(4)
moreover {
have dec: decide S (cons-trail (Decided L) S)
using decide-rule decide.hyps by force

then have cdclW -restart S (cons-trail (Decided L) S)
using cdclW -restart.simps cdclW -o.intros by blast } note cdclW -restart = this

moreover {
have lev: cdclW -M-level-inv (cons-trail (Decided L) S)
using cdclW -restart M-level cdclW -restart-consistent-inv[OF cdclW -restart] by auto

then have no-dup: no-dup (Decided L # trail S)
using undef unfolding cdclW -M-level-inv-def by auto

have no-strange-atm (cons-trail (Decided L) S)
using M-level alien calculation(4) cdclW -restart-no-strange-atm-inv by blast

then have length (Decided L # (trail S))
≤ card (atms-of-mm (init-clss S))
using no-dup undef
length-model-le-vars[of cons-trail (Decided L) S]
by fastforce }

ultimately show ?case using conf by (simp add: lexn3-conv)
next
case (skip L C ′ M D) note tr = this(1) and conf = this(2) and T = this(5)
show ?case using conf T by (simp add: tr lexn3-conv)

next
case conflict
then show ?case by (simp add: lexn3-conv)

next
case resolve
then show ?case using finite by (simp add: lexn3-conv)

next
case (backtrack L D K i M1 M2 T D ′) note conf = this(1) and decomp = this(3) and D-D ′ =

this(7)
and T = this(9)

let ?D ′ = 〈add-mset L D ′〉
have bt: backtrack S T
using backtrack-rule[OF backtrack.hyps] by auto

have ?D ′ /∈# learned-clss S
using no-relearn[OF bt] conf T by auto

then have card-T :
card (set-mset ({#?D ′#} + learned-clss S)) = Suc (card (set-mset (learned-clss S)))
by simp

have distinct-cdclW -state T
using bt M-level distinct-cdclW -state-inv no-dup other cdclW -o.intros cdclW -bj.intros by blast

moreover have ∀ s∈#learned-clss T . ¬ tautology s
using learned-clss-are-not-tautologies[OF cdclW -restart.other [OF cdclW -o.bj[OF
cdclW -bj.backtrack[OF bt]]]] M-level no-taut confl by auto

ultimately have card (set-mset (learned-clss T)) ≤ 3 ^ card (atms-of-mm (learned-clss T))

128

by (auto simp: learned-clss-less-upper-bound)
then have H : card (set-mset ({#?D ′#} + learned-clss S))
≤ 3 ^ card (atms-of-mm ({#?D ′#} + learned-clss S))
using T decomp M-level by (simp add: cdclW -M-level-inv-decomp)

moreover
have atms-of-mm ({#?D ′#} + learned-clss S) ⊆ atms-of-mm (init-clss S)
using alien conf atms-of-subset-mset-mono[OF D-D ′] unfolding no-strange-atm-def
by auto

then have card-f : card (atms-of-mm ({#?D ′#} + learned-clss S))
≤ card (atms-of-mm (init-clss S))
by (meson atms-of-ms-finite card-mono finite-set-mset)

then have (3 ::nat) ^ card (atms-of-mm ({#?D ′#} + learned-clss S))
≤ 3 ^ card (atms-of-mm (init-clss S)) by simp

ultimately have (3 ::nat) ^ card (atms-of-mm (init-clss S))
≥ card (set-mset ({#?D ′#} + learned-clss S))
using le-trans by blast

then show ?case using decomp diff-less-mono2 card-T T M-level
by (auto simp: cdclW -M-level-inv-decomp lexn3-conv)

next
case restart
then show ?case using alien by auto

next
case (forget C T) note no-forget = this(9)
then have C ∈# learned-clss S and C /∈# learned-clss T
using forget.hyps by auto

then have ¬ learned-clss S ⊆# learned-clss T
by (auto simp add: mset-subset-eqD)

then show ?case using no-forget by blast
qed

lemma cdclW -stgy-step-decreasing:
fixes S T :: ′st
assumes
cdcl: 〈cdclW -stgy S T 〉 and
struct-inv: 〈cdclW -all-struct-inv S 〉 and
smaller : 〈no-smaller-propa S 〉

shows (cdclW -restart-measure T , cdclW -restart-measure S) ∈ lexn less-than 3
proof (rule cdclW -restart-measure-decreasing)
show 〈cdclW -restart S T 〉

using cdcl cdclW -cdclW -restart cdclW -stgy-cdclW by blast
show 〈¬ (learned-clss S ⊆# learned-clss T ∧ [] = trail T ∧ conflicting T = None)〉

using cdcl by (cases rule: cdclW -stgy-cases) (auto elim!: rulesE)
show 〈learned-clss S ⊆# learned-clss T 〉

using cdcl by (cases rule: cdclW -stgy-cases) (auto elim!: rulesE)
show 〈mark-of (hd-trail S ′) /∈# learned-clss S 〉 if 〈backtrack S S ′〉 for S ′
using cdclW -stgy-no-relearned-clause[of S S ′] cdclW -stgy-no-smaller-propa[of S S ′]
cdcl struct-inv smaller that unfolding clauses-def

by (auto elim!: rulesE)
show 〈no-strange-atm S 〉 and 〈cdclW -M-level-inv S 〉 and 〈distinct-cdclW -state S 〉 and

〈cdclW -conflicting S 〉 and 〈∀ s∈#learned-clss S . ¬ tautology s〉

using struct-inv unfolding cdclW -all-struct-inv-def by blast+
qed

lemma empty-trail-no-smaller-propa: 〈trail R = [] =⇒ no-smaller-propa R〉

by (simp add: no-smaller-propa-def)

129

Roughly corresponds to theorem 2.9.15 page 100 of Weidenbach’s book but using a different
bound (the bound is below)
lemma tranclp-cdclW -stgy-decreasing:
fixes R S T :: ′st
assumes cdclW -stgy++ R S and
tr : trail R = [] and
cdclW -all-struct-inv R
shows (cdclW -restart-measure S , cdclW -restart-measure R) ∈ lexn less-than 3
using assms
apply induction
using empty-trail-no-smaller-propa cdclW -stgy-no-relearned-clause cdclW -stgy-step-decreasing
apply blast

using tranclp-into-rtranclp[of cdclW -stgy R] lexn-transI [OF trans-less-than, of 3]
rtranclp-cdclW -stgy-no-smaller-propa unfolding trans-def

by (meson cdclW -stgy-step-decreasing empty-trail-no-smaller-propa
rtranclp-cdclW -stgy-cdclW -all-struct-inv)

lemma tranclp-cdclW -stgy-S0-decreasing:
fixes R S T :: ′st
assumes
pl: cdclW -stgy++ (init-state N) S and
no-dup: distinct-mset-mset N

shows (cdclW -restart-measure S , cdclW -restart-measure (init-state N)) ∈ lexn less-than 3
proof −
have cdclW -all-struct-inv (init-state N)
using no-dup unfolding cdclW -all-struct-inv-def by auto

then show ?thesis using pl tranclp-cdclW -stgy-decreasing init-state-trail by blast
qed

lemma wf-tranclp-cdclW -stgy:
wf {(S :: ′st, init-state N)| S N . distinct-mset-mset N ∧ cdclW -stgy++ (init-state N) S}
apply (rule wf-wf-if-measure ′-notation2 [of lexn less-than 3 - - cdclW -restart-measure])
apply (simp add: wf wf-lexn)
using tranclp-cdclW -stgy-S0-decreasing by blast

The following theorems is deeply linked with the strategy: It shows that a decision alone cannot
lead to a conflict. This is obvious but I expect this to be a major part of the proof that the
number of learnt clause cannot be larger that (2 :: ′a)n.
lemma no-conflict-after-decide:
assumes
dec: 〈decide S T 〉 and
inv: 〈cdclW -all-struct-inv T 〉 and
smaller : 〈no-smaller-propa T 〉 and
smaller-confl: 〈no-smaller-confl T 〉

shows 〈¬conflict T U 〉

proof (rule ccontr)
assume 〈¬ ?thesis〉

then obtain D where
D: 〈D ∈# clauses T 〉 and
confl: 〈trail T |=as CNot D〉

by (auto simp: conflict.simps)
obtain L where

〈conflicting S = None〉 and
undef : 〈undefined-lit (trail S) L〉 and
〈atm-of L ∈ atms-of-mm (init-clss S)〉 and

130

T : 〈T ∼ cons-trail (Decided L) S 〉

using dec by (auto simp: decide.simps)
have dist: 〈distinct-mset D〉

using inv D unfolding cdclW -all-struct-inv-def distinct-cdclW -state-def
by (auto dest!: multi-member-split simp: clauses-def)

have L-D: 〈L /∈# D〉

using confl undef T
by (auto dest!: multi-member-split simp: Decided-Propagated-in-iff-in-lits-of-l)

show False
proof (cases 〈−L ∈# D〉)
case True
have H : 〈trail T = M ′ @ Decided K # M =⇒
D + {#L#} ∈# clauses T =⇒ undefined-lit M L =⇒ ¬ M |=as CNot D〉

for M K M ′ D L
using smaller unfolding no-smaller-propa-def
by auto

have 〈trail S |=as CNot (remove1-mset (−L) D)〉

using true-annots-CNot-lit-of-notin-skip[of 〈Decided L〉 〈trail S 〉 〈remove1-mset (−L) D〉] T True
dist confl L-D

by (auto dest: multi-member-split)
then show False
using True H [of 〈Nil〉 L 〈trail S 〉 〈remove1-mset (−L) D〉 〈−L〉] T D confl undef
by auto

next
case False
have H : 〈trail T = M ′ @ Decided K # M =⇒
D ∈# clauses T =⇒ ¬ M |=as CNot D〉

for M K M ′ D
using smaller-confl unfolding no-smaller-confl-def
by auto

have 〈trail S |=as CNot D〉

using true-annots-CNot-lit-of-notin-skip[of 〈Decided L〉 〈trail S 〉 D] T False
dist confl L-D

by (auto dest: multi-member-split)
then show False
using False H [of 〈Nil〉 L 〈trail S 〉 D] T D confl undef
by auto

qed
qed

abbreviation list-weight-propa-trail :: 〈 (′v literal, ′v literal, ′v literal multiset) annotated-lit list ⇒ bool
list〉 where
〈list-weight-propa-trail M ≡ map is-proped M 〉

definition comp-list-weight-propa-trail :: 〈nat ⇒ (′v literal, ′v literal, ′v literal multiset) annotated-lit
list ⇒ bool list〉 where
〈comp-list-weight-propa-trail b M ≡ replicate (b − length M) False @ list-weight-propa-trail M 〉

lemma comp-list-weight-propa-trail-append[simp]:
〈comp-list-weight-propa-trail b (M @ M ′) =

comp-list-weight-propa-trail (b − length M ′) M @ list-weight-propa-trail M ′〉

by (auto simp: comp-list-weight-propa-trail-def)

lemma comp-list-weight-propa-trail-append-single[simp]:
〈comp-list-weight-propa-trail b (M @ [K]) =

131

comp-list-weight-propa-trail (b − 1) M @ [is-proped K]〉

by (auto simp: comp-list-weight-propa-trail-def)

lemma comp-list-weight-propa-trail-cons[simp]:
〈comp-list-weight-propa-trail b (K # M ′) =
comp-list-weight-propa-trail (b − Suc (length M ′)) [] @ is-proped K # list-weight-propa-trail M ′〉

by (auto simp: comp-list-weight-propa-trail-def)

fun of-list-weight :: 〈bool list ⇒ nat〉 where
〈of-list-weight [] = 0 〉

| 〈of-list-weight (b # xs) = (if b then 1 else 0) + 2 ∗ of-list-weight xs〉

lemma of-list-weight-append[simp]:
〈of-list-weight (a @ b) = of-list-weight a + 2^ (length a) ∗ of-list-weight b〉

by (induction a) auto

lemma of-list-weight-append-single[simp]:
〈of-list-weight (a @ [b]) = of-list-weight a + 2^ (length a) ∗ (if b then 1 else 0)〉

using of-list-weight-append[of 〈a〉 〈[b]〉]
by (auto simp del: of-list-weight-append)

lemma of-list-weight-replicate-False[simp]: 〈of-list-weight (replicate n False) = 0 〉

by (induction n) auto

lemma of-list-weight-replicate-True[simp]: 〈of-list-weight (replicate n True) = 2^n − 1 〉

apply (induction n)
subgoal by auto
subgoal for m
using power-gt1-lemma[of 〈2 :: nat〉]
by (auto simp add: algebra-simps Suc-diff-Suc)

done

lemma of-list-weight-le: 〈of-list-weight xs ≤ 2^ (length xs) − 1 〉

proof −
have 〈of-list-weight xs ≤ of-list-weight (replicate (length xs) True)〉

by (induction xs) auto
then show 〈?thesis〉

by auto
qed

lemma of-list-weight-lt: 〈of-list-weight xs < 2^ (length xs)〉

using of-list-weight-le[of xs] by (metis One-nat-def Suc-le-lessD
Suc-le-mono Suc-pred of-list-weight-le zero-less-numeral zero-less-power)

lemma [simp]: 〈of-list-weight (comp-list-weight-propa-trail n []) = 0 〉

by (auto simp: comp-list-weight-propa-trail-def)

abbreviation propa-weight
:: 〈nat ⇒ (′v literal, ′v literal, ′v literal multiset) annotated-lit list ⇒ nat〉

where
〈propa-weight n M ≡ of-list-weight (comp-list-weight-propa-trail n M)〉

lemma length-comp-list-weight-propa-trail[simp]: 〈length (comp-list-weight-propa-trail a M) = max (length
M) a〉

by (auto simp: comp-list-weight-propa-trail-def)

132

lemma (in −)pow2-times-n:
〈Suc a ≤ n =⇒ 2 ∗ 2^ (n − Suc a) = (2 ::nat)^ (n − a)〉

〈Suc a ≤ n =⇒ 2^ (n − Suc a) ∗ 2 = (2 ::nat)^ (n − a)〉

〈Suc a ≤ n =⇒ 2^ (n − Suc a) ∗ b ∗ 2 = (2 ::nat)^ (n − a) ∗ b〉

〈Suc a ≤ n =⇒ 2^ (n − Suc a) ∗ (b ∗ 2) = (2 ::nat)^ (n − a) ∗ b〉

〈Suc a ≤ n =⇒ 2^ (n − Suc a) ∗ (2 ∗ b) = (2 ::nat)^ (n − a) ∗ b〉

〈Suc a ≤ n =⇒ 2 ∗ b ∗ 2^ (n − Suc a) = (2 ::nat)^ (n − a) ∗ b〉

〈Suc a ≤ n =⇒ 2 ∗ (b ∗ 2^ (n − Suc a)) = (2 ::nat)^ (n − a) ∗ b〉

apply (simp-all add: Suc-diff-Suc semiring-normalization-rules(27))
using Suc-diff-le by fastforce+

lemma decide-propa-weight:
〈decide S T =⇒ n ≥ length (trail T) =⇒ propa-weight n (trail S) ≤ propa-weight n (trail T)〉

by (auto elim!: decideE simp: comp-list-weight-propa-trail-def
algebra-simps pow2-times-n)

lemma propagate-propa-weight:
〈propagate S T =⇒ n ≥ length (trail T) =⇒ propa-weight n (trail S) < propa-weight n (trail T)〉

by (auto elim!: propagateE simp: comp-list-weight-propa-trail-def
algebra-simps pow2-times-n)

The theorem below corresponds the bound of theorem 2.9.15 page 100 of Weidenbach’s book.
In the current version there is no proof of the bound.
The following proof contains an immense amount of stupid bookkeeping. The proof itself is
rather easy and Isabelle makes it extra-complicated.
Let’s consider the sequence S → ... → T. The bookkeping part:

1. We decompose it into its components f 0 → f 1 → ... → f n.

2. Then we extract the backjumps out of it, which are at position nth-nj 0, nth-nj 1, ...

3. Then we extract the conflicts out of it, which are at position nth-confl 0, nth-confl 1, ...

Then the simple part:

1. each backtrack increases propa-weight

2. but propa-weight is bounded by (2 :: ′a)card (atms-of-mm (init-clss S)) Therefore, we get the
bound.

Comments on the proof:

• The main problem of the proof is the number of inductions in the bookkeeping part.

• The proof is actually by contradiction to make sure that enough backtrack step exists.
This could probably be avoided, but without change in the proof.
Comments on the bound:

• The proof is very very crude: Any propagation also decreases the bound. The lemma
[[decide ?S ?T ; cdclW -all-struct-inv ?T ; no-smaller-propa ?T ; no-smaller-confl ?T]] =⇒
¬ conflict ?T ?U above shows that a decision cannot lead immediately to a conflict.

• TODO: can a backtrack could be immediately followed by another conflict (if there are
several conflicts for the initial backtrack)? If not the bound can be divided by two.

133

lemma cdcl-pow2-n-learned-clauses:
assumes
cdcl: 〈cdclW ∗∗ S T 〉 and
confl: 〈conflicting S = None〉 and
inv: 〈cdclW -all-struct-inv S 〉

shows 〈size (learned-clss T) ≤ size (learned-clss S) + 2 ^ (card (atms-of-mm (init-clss S)))〉

(is 〈- ≤ - + ?b〉)
proof (rule ccontr)
assume ge: 〈¬ ?thesis〉

let ?m = 〈card (atms-of-mm (init-clss S))〉

obtain n :: nat where
n: 〈(cdclW^^n) S T 〉

using cdcl unfolding rtranclp-power by fast
then obtain f :: 〈nat ⇒ ′st〉 where
f : 〈

∧
i. i < n =⇒ cdclW (f i) (f (Suc i))〉 and

[simp]: 〈f 0 = S 〉 and
[simp]: 〈f n = T 〉

using power-ex-decomp[OF n]
by auto

have cdcl-st-k: 〈cdclW ∗∗ S (f k)〉 if 〈k ≤ n〉 for k
using that
apply (induction k)
subgoal by auto
subgoal for k using f [of k] by (auto)
done

let ?g = 〈λi. size (learned-clss (f i))〉

have 〈?g 0 = size (learned-clss S)〉

by auto
have g-n: 〈?g n > ?g 0 + 2 ^ (card (atms-of-mm (init-clss S)))〉

using ge by auto
have g: 〈?g (Suc i) = ?g i ∨ (?g (Suc i) = Suc (?g i) ∧ backtrack (f i) (f (Suc i)))〉 if 〈i < n〉

for i
using f [OF that]
by (cases rule: cdclW .cases)

(auto elim: propagateE conflictE decideE backtrackE skipE resolveE
simp: cdclW -o.simps cdclW -bj.simps)

have g-le: 〈?g i ≤ i + ?g 0 〉 if 〈i ≤ n〉 for i
using that
apply (induction i)
subgoal by auto
subgoal for i
using g[of i]
by auto

done
from this[of n] have n-ge-m: 〈n > ?b〉

using g-n ge by auto
then have n0 : 〈n > 0 〉

using not-add-less1 by fastforce
define nth-bj where

〈nth-bj = rec-nat 0 (λ- j. (LEAST i. i > j ∧ i < n ∧ backtrack (f i) (f (Suc i))))〉

have [simp]: 〈nth-bj 0 = 0 〉

by (auto simp: nth-bj-def)
have nth-bj-Suc: 〈nth-bj (Suc i) = (LEAST x. nth-bj i < x ∧ x < n ∧ backtrack (f x) (f (Suc x)))〉

for i
by (auto simp: nth-bj-def)

134

have between-nth-bj-not-bt:
〈¬backtrack (f k) (f (Suc k))〉

if 〈k < n〉 〈k > nth-bj i〉 〈k < nth-bj (Suc i) 〉 for k i
using not-less-Least[of k 〈λx. nth-bj i < x ∧ x < n ∧ backtrack (f x) (f (Suc x))〉] that
unfolding nth-bj-Suc[symmetric]
by auto

have g-nth-bj-eq:
〈?g (Suc k) = ?g k〉

if 〈k < n〉 〈k > nth-bj i〉 〈k < nth-bj (Suc i)〉 for k i
using between-nth-bj-not-bt[OF that(1−3)] f [of k, OF that(1)]
by (auto elim: propagateE conflictE decideE backtrackE skipE resolveE

simp: cdclW -o.simps cdclW -bj.simps cdclW .simps)
have g-nth-bj-eq2 :

〈?g (Suc k) = ?g (Suc (nth-bj i))〉

if 〈k < n〉 〈k > nth-bj i〉 〈k < nth-bj (Suc i)〉 for k i
using that
apply (induction k)
subgoal by blast
subgoal for k
using g-nth-bj-eq less-antisym by fastforce

done
have [simp]: 〈?g (Suc 0) = ?g 0 〉

using confl f [of 0] n0
by (auto elim: propagateE conflictE decideE backtrackE skipE resolveE

simp: cdclW -o.simps cdclW -bj.simps cdclW .simps)
have 〈(?g (nth-bj i) = size (learned-clss S) + (i − 1)) ∧
nth-bj i < n ∧
nth-bj i ≥ i ∧
(i > 0 −→ backtrack (f (nth-bj i)) (f (Suc (nth-bj i)))) ∧
(i > 0 −→ ?g (Suc (nth-bj i)) = size (learned-clss S) + i) ∧
(i > 0 −→ nth-bj i > nth-bj (i−1))〉

if 〈i ≤ ?b+1 〉

for i
using that

proof (induction i)
case 0
then show ?case using n0 by auto

next
case (Suc i)
then have IH : 〈?g (nth-bj i) = size (learned-clss S) + (i − 1)〉

〈0 < i =⇒ backtrack (f (nth-bj i)) (f (Suc (nth-bj i)))〉

〈0 < i =⇒ ?g (Suc (nth-bj i)) = size (learned-clss S) + i〉 and
i-le-m: 〈Suc i ≤ ?b+1 〉 and
le-n: 〈nth-bj i < n〉 and
gei: 〈nth-bj i ≥ i〉

by auto
have ex-larger : 〈∃ x>nth-bj i. x < n ∧ backtrack (f x) (f (Suc x))〉

proof (rule ccontr)
assume 〈¬ ?thesis〉

then have [simp]: 〈n>x =⇒ x>nth-bj i =⇒ ?g (Suc x) = ?g x〉 for x
using g[of x] n-ge-m

by auto
have eq1 : 〈nth-bj i < Suc x =⇒ ¬ nth-bj i < x =⇒ x = nth-bj i〉 and

eq2 : 〈nth-bj i < x =⇒ ¬ nth-bj i < x − Suc 0 =⇒ nth-bj i = x − Suc 0 〉

135

for x
by simp-all

have ex-larger : 〈n>x =⇒ x>nth-bj i =⇒ ?g (Suc x) = ?g (Suc (nth-bj i))〉 for x
apply (induction x)

subgoal by auto
subgoal for x
by (cases 〈nth-bj i < x〉) (auto dest: eq1)

done
from this[of 〈n−1 〉] have g-n-nth-bj: 〈?g n = ?g (Suc (nth-bj i))〉

using n-ge-m i-le-m le-n
by (cases 〈nth-bj i < n − Suc 0 〉)

(auto dest: eq2)
then have 〈size (learned-clss (f (Suc (nth-bj i)))) < size (learned-clss T)〉

using g-n i-le-m n-ge-m g-le[of 〈Suc (nth-bj i)〉] le-n ge
〈?g (nth-bj i) = size (learned-clss S) + (i − 1)〉

using Suc.IH by auto
then show False
using g-n i-le-m n-ge-m g-le[of 〈Suc (nth-bj i)〉] g-n-nth-bj by auto

qed

from LeastI-ex[OF ex-larger]
have bt: 〈backtrack (f (nth-bj (Suc i))) (f (Suc (nth-bj (Suc i))))〉 and
le: 〈nth-bj (Suc i) < n〉 and
nth-mono: 〈nth-bj i < nth-bj (Suc i)〉

unfolding nth-bj-Suc[symmetric]
by auto

have g-nth-Suc-g-Suc-nth: 〈?g (nth-bj (Suc i)) = ?g (Suc (nth-bj i))〉

using g-nth-bj-eq2 [of 〈nth-bj (Suc i) − 1 〉 i] le nth-mono
apply auto
by (metis Suc-pred gr0I less-Suc0 less-Suc-eq less-imp-diff-less)

have H1 : 〈size (learned-clss (f (Suc (nth-bj (Suc i))))) =
1 + size (learned-clss (f (nth-bj (Suc i))))〉 if 〈i = 0 〉

using bt unfolding that
by (auto simp: that elim: backtrackE)

have ?case if 〈i > 0 〉

using IH that nth-mono le bt gei
by (auto elim: backtrackE simp: g-nth-Suc-g-Suc-nth)

moreover have ?case if 〈i = 0 〉

using le bt gei nth-mono IH g-nth-bj-eq2 [of 〈nth-bj (Suc i) − 1 〉 i]
g-nth-Suc-g-Suc-nth

apply (intro conjI)
subgoal by (simp add: that)
subgoal by (auto simp: that elim: backtrackE)
subgoal by (auto simp: that elim: backtrackE)
subgoal Hk by (auto simp: that elim: backtrackE)
subgoal using H1 by (auto simp: that elim: backtrackE)
subgoal using nth-mono by auto
done

ultimately show ?case by blast
qed
then have

〈(?g (nth-bj i) = size (learned-clss S) + (i − 1))〉 and
nth-bj-le: 〈nth-bj i < n〉 and
nth-bj-ge: 〈nth-bj i ≥ i〉 and
bt-nth-bj: 〈i > 0 =⇒ backtrack (f (nth-bj i)) (f (Suc (nth-bj i)))〉 and

136

〈i > 0 =⇒ ?g (Suc (nth-bj i)) = size (learned-clss S) + i〉 and
nth-bj-mono: 〈i > 0 =⇒ nth-bj (i − 1) < nth-bj i〉

if 〈i ≤ ?b+1 〉

for i
using that by blast+

have
confl-None: 〈conflicting (f (Suc (nth-bj i))) = None〉 and
confl-nth-bj: 〈conflicting (f (nth-bj i)) 6= None〉

if 〈i ≤ ?b+1 〉 〈i > 0 〉

for i
using bt-nth-bj[OF that] by (auto simp: backtrack.simps)

have conflicting-still-conflicting:
〈conflicting (f k) 6= None −→ conflicting (f (Suc k)) 6= None〉

if 〈k < n〉 〈k > nth-bj i〉 〈k < nth-bj (Suc i)〉 for k i
using between-nth-bj-not-bt[OF that] f [OF that(1)]
by (auto elim: propagateE conflictE decideE backtrackE skipE resolveE

simp: cdclW -o.simps cdclW -bj.simps cdclW .simps)

define nth-confl where
〈nth-confl n ≡ LEAST i. i > nth-bj n ∧ i < nth-bj (Suc n) ∧ conflict (f i) (f (Suc i))〉 for n

have 〈∃ i>nth-bj a. i < nth-bj (Suc a) ∧ conflict (f i) (f (Suc i))〉

if a-n: 〈a ≤ ?b〉 〈a > 0 〉

for a
proof (rule ccontr)
assume H : 〈¬ ?thesis〉

have 〈conflicting (f (nth-bj a + Suc i)) = None〉

if 〈nth-bj a + Suc i ≤ nth-bj (Suc a)〉 for i :: nat
using that
apply (induction i)
subgoal
using confl-None[of a] a-n n-ge-m by auto

subgoal for i
apply (cases 〈Suc (nth-bj a + i) < n〉)
using f [of 〈nth-bj a + Suc i〉] H
apply (auto elim: propagateE conflictE decideE backtrackE skipE resolveE
simp: cdclW -o.simps cdclW -bj.simps cdclW .simps)[]

using nth-bj-le[of 〈Suc a〉] a-n(1) by auto
done

from this[of 〈nth-bj (Suc a) − 1 − nth-bj a〉] a-n
show False
using nth-bj-mono[of 〈Suc a〉] a-n nth-bj-le[of 〈Suc a〉] confl-nth-bj[of 〈Suc a〉]
by auto

qed
from LeastI-ex[OF this] have nth-bj-le-nth-confl: 〈nth-bj a < nth-confl a〉 and
nth-confl: 〈conflict (f (nth-confl a)) (f (Suc (nth-confl a)))〉 and
nth-confl-le-nth-bj-Suc: 〈nth-confl a < nth-bj (Suc a)〉

if a-n: 〈a ≤ ?b〉 〈a > 0 〉

for a
using that unfolding nth-confl-def [symmetric]
by blast+

have nth-confl-conflicting: 〈conflicting (f (Suc (nth-confl a))) 6= None〉

if a-n: 〈a ≤ ?b〉 〈a > 0 〉

for a
using nth-confl[OF a-n]
by (auto simp: conflict.simps)

137

have no-conflict-before-nth-confl: 〈¬conflict (f k) (f (Suc k))〉

if 〈k > nth-bj a〉 and
〈k < nth-confl a〉 and
a-n: 〈a ≤ ?b〉 〈a > 0 〉

for k a
using not-less-Least[of k 〈λi. i > nth-bj a ∧ i < nth-bj (Suc a) ∧ conflict (f i) (f (Suc i))〉] that
nth-confl-le-nth-bj-Suc[of a]
unfolding nth-confl-def [symmetric]
by auto

have conflicting-after-nth-confl: 〈conflicting (f (Suc (nth-confl a) + k)) 6= None〉

if a-n: 〈a ≤ ?b〉 〈a > 0 〉 and
k: 〈Suc (nth-confl a) + k < nth-bj (Suc a)〉

for a k
using k
apply (induction k)
subgoal using nth-confl-conflicting[OF a-n] by simp
subgoal for k
using conflicting-still-conflicting[of 〈Suc (nth-confl a + k)〉 a] a-n
nth-bj-le[of a] nth-bj-le-nth-confl[of a]

apply (cases 〈Suc (nth-confl a + k) < n〉)
apply auto
by (metis (no-types, lifting) Suc-le-lessD add.commute le-less less-trans-Suc nth-bj-le
plus-1-eq-Suc)

done
have conflicting-before-nth-confl: 〈conflicting (f (Suc (nth-bj a) + k)) = None〉

if a-n: 〈a ≤ ?b〉 〈a > 0 〉 and
k: 〈Suc (nth-bj a) + k < nth-confl a〉

for a k
using k
apply (induction k)
subgoal using confl-None[of a] a-n by simp
subgoal for k
using f [of 〈Suc (nth-bj a) + k〉] no-conflict-before-nth-confl[of a 〈Suc (nth-bj a) + k〉] a-n
nth-confl-le-nth-bj-Suc[of a] nth-bj-le[of 〈Suc a〉]

apply (cases 〈Suc (nth-bj a + k) < n〉)
apply (auto elim!: propagateE conflictE decideE backtrackE skipE resolveE

simp: cdclW -o.simps cdclW -bj.simps cdclW .simps)[]
by linarith

done
have
ex-trail-decomp: 〈∃M . trail (f (Suc (nth-confl a))) = M @ trail (f (Suc (nth-confl a + k)))〉

if a-n: 〈a ≤ ?b〉 〈a > 0 〉 and
k: 〈Suc (nth-confl a) + k ≤ nth-bj (Suc a)〉

for a k
using k

proof (induction k)
case 0
then show 〈?case〉 by auto

next
case (Suc k)
moreover have 〈nth-confl a + k < n〉

proof −
have nth-bj (Suc a) < n
by (rule nth-bj-le) (use a-n(1) in simp)

then show ?thesis
using Suc.prems by linarith

138

qed
moreover have 〈∃Ma. M @ trail (f (Suc (nth-confl a + k))) =

Ma @ tl (trail (f (Suc (nth-confl a + k))))〉 for M
by (cases 〈trail (f (Suc (nth-confl a + k)))〉) auto

ultimately show ?case
using f [of 〈Suc (nth-confl a + k)〉] conflicting-after-nth-confl[of a 〈k〉, OF a-n] Suc
between-nth-bj-not-bt[of 〈Suc (nth-confl a + k)〉 〈a〉]

nth-bj-le-nth-confl[of a, OF a-n]
apply (cases 〈Suc (nth-confl a + k) < n〉)
subgoal
by (auto elim!: propagateE conflictE decideE skipE resolveE
simp: cdclW -o.simps cdclW -bj.simps cdclW .simps)[]

subgoal
by (metis (no-types, lifting) Suc-leD Suc-lessI a-n(1) add.commute add-Suc

add-mono-thms-linordered-semiring(1) le-numeral-extra(4) not-le nth-bj-le plus-1-eq-Suc)
done

qed
have propa-weight-decreasing-confl:

〈propa-weight n (trail (f (Suc (nth-bj (Suc a))))) > propa-weight n (trail (f (nth-confl a)))〉

if a-n: 〈a ≤ ?b〉 〈a > 0 〉 and
n: 〈n ≥ length (trail (f (nth-confl a)))〉

for a n
proof −
have pw0 : 〈propa-weight n (trail (f (Suc (nth-confl a)))) =
propa-weight n (trail (f (nth-confl a)))〉 and
[simp]: 〈trail (f (Suc (nth-confl a))) = trail (f (nth-confl a))〉

using nth-confl[OF a-n] by (auto elim!: conflictE)
have H : 〈nth-bj (Suc a) = Suc (nth-confl a) ∨ nth-bj (Suc a) ≥ Suc (Suc (nth-confl a))〉

using nth-bj-le-nth-confl[of a, OF a-n]
using a-n(1) nth-confl-le-nth-bj-Suc that(2) by force

from ex-trail-decomp[of a 〈nth-bj (Suc a) − (1+nth-confl a)〉, OF a-n]
obtain M where
M : 〈trail (f (Suc (nth-confl a))) = M @ trail (f (nth-bj (Suc a)))〉

apply −
apply (rule disjE [OF H])
subgoal
by auto

subgoal
using nth-bj-le-nth-confl[of a, OF a-n] nth-bj-ge[of 〈Suc a〉] a-n

by (auto simp add: numeral-2-eq-2)
done

obtain K M1 M2 D D ′ L where
decomp: 〈(Decided K # M1 , M2)
∈ set (get-all-ann-decomposition (trail (f (nth-bj (Suc a)))))〉 and

〈get-maximum-level (trail (f (nth-bj (Suc a)))) (add-mset L D ′) =
backtrack-lvl (f (nth-bj (Suc a)))〉 and

〈get-level (trail (f (nth-bj (Suc a)))) L = backtrack-lvl (f (nth-bj (Suc a)))〉 and
〈get-level (trail (f (nth-bj (Suc a)))) K =
Suc (get-maximum-level (trail (f (nth-bj (Suc a)))) D ′)〉 and

〈D ′ ⊆# D〉 and
〈clauses (f (nth-bj (Suc a))) |=pm add-mset L D ′〉 and
st-Suc: 〈f (Suc (nth-bj (Suc a))) ∼
cons-trail (Propagated L (add-mset L D ′))
(reduce-trail-to M1

(add-learned-cls (add-mset L D ′)

139

(update-conflicting None (f (nth-bj (Suc a))))))〉

using bt-nth-bj[of 〈Suc a〉] a-n
by (auto elim!: backtrackE)

obtain M3 where
tr : 〈trail (f (nth-bj (Suc a))) = M3 @ M2 @ Decided K # M1 〉

using decomp by auto
define M2 ′ where

〈M2 ′ = M3 @ M2 〉

then have
tr : 〈trail (f (nth-bj (Suc a))) = M2 ′ @ Decided K # M1 〉

using tr by auto
define M ′ where

〈M ′ = M @ M2 ′〉
then have tr2 : 〈trail (f (nth-confl a)) = M ′ @ Decided K # M1 〉

using tr M n
by auto

have [simp]: 〈max (length M) (n − Suc (length M1 + (length M2 ′)))
= (n − Suc (length M1 + (length M2 ′)))〉

using tr M st-Suc n by auto
have [simp]: 〈2 ∗

(of-list-weight (list-weight-propa-trail M1) ∗
(2 ^ length M2 ′ ∗
(2 ^ (n − Suc (length M1 + length M2 ′))))) =

of-list-weight (list-weight-propa-trail M1) ∗ 2 ^ (n − length M1)〉

using tr M n by (auto simp: algebra-simps field-simps pow2-times-n
comm-semiring-1-class.semiring-normalization-rules(26))
have n-ge: 〈Suc (length M + (length M2 ′ + length M1)) ≤ n〉

using n st-Suc tr M by auto
have WTF : 〈a < b =⇒ b ≤ c =⇒ a < c〉 and
WTF ′: 〈a ≤ b =⇒ b < c =⇒ a < c〉 for a b c :: nat
by auto

have 3 : 〈propa-weight (n − Suc (length M1 + (length M2 ′))) M
≤ 2^ (n − Suc (length M1 + length M2 ′)) − 1 〉

using of-list-weight-le
apply auto
by (metis 〈max (length M) (n − Suc (length M1 + (length M2 ′))) = n − Suc (length M1 + (length

M2 ′))〉

length-comp-list-weight-propa-trail)
have 1 : 〈of-list-weight (list-weight-propa-trail M2 ′) ∗
2 ^ (n − Suc (length M1 + length M2 ′)) < Suc (if M2 ′ = [] then 0
else 2 ^ (n − Suc (length M1)) − 2 ^ (n − Suc (length M1 + length M2 ′)))〉

apply (cases 〈M2 ′ = []〉)
subgoal by auto
subgoal

apply (rule WTF ′)
apply (rule Nat.mult-le-mono1 [of 〈of-list-weight (list-weight-propa-trail M2 ′)〉,
OF of-list-weight-le[of 〈(list-weight-propa-trail M2 ′)〉]])

using of-list-weight-le[of 〈(list-weight-propa-trail M2 ′)〉] n M tr
by (auto simp add: comm-semiring-1-class.semiring-normalization-rules(26)
algebra-simps)
done

have WTF2 :
〈a ≤ a ′ =⇒ b < b ′ =⇒ a + b < a ′ + b ′〉 for a b c a ′ b ′ c ′ :: nat
by auto

140

have 〈propa-weight (n − Suc (length M1 + length M2 ′)) M +
of-list-weight (list-weight-propa-trail M2 ′) ∗
2 ^ (n − Suc (length M1 + length M2 ′))
< 2 ^ (n − Suc (length M1))〉

apply (rule WTF)
apply (rule WTF2 [OF 3 1])
using n-ge[unfolded nat-le-iff-add] by (auto simp: ac-simps algebra-simps)
then have 〈propa-weight n (trail (f (nth-confl a))) < propa-weight n (trail (f (Suc (nth-bj (Suc

a)))))〉

using tr2 M st-Suc n tr
by (auto simp: pow2-times-n algebra-simps
comm-semiring-1-class.semiring-normalization-rules(26))

then show 〈?thesis〉

using pw0 by auto
qed
have length-trail-le-m: 〈length (trail (f k)) < ?m + 1 〉

if 〈k ≤ n〉

for k
proof −
have 〈cdclW -all-struct-inv (f k)〉

using rtranclp-cdclW -cdclW -restart[OF cdcl-st-k[OF that]] inv
rtranclp-cdclW -all-struct-inv-inv by blast

then have 〈cdclW -M-level-inv (f k)〉 and 〈no-strange-atm (f k)〉

unfolding cdclW -all-struct-inv-def by blast+
then have 〈no-dup (trail (f k))〉 and
incl: 〈atm-of ‘ lits-of-l (trail (f k)) ⊆ atms-of-mm (init-clss (f k))〉

unfolding cdclW -M-level-inv-def no-strange-atm-def
by auto

have eq: 〈(atms-of-mm (init-clss (f k))) = (atms-of-mm (init-clss S))〉

using rtranclp-cdclW -restart-init-clss[OF rtranclp-cdclW -cdclW -restart[OF cdcl-st-k[OF that]]]
by auto

have 〈length (trail (f k)) = card (atm-of ‘ lits-of-l (trail (f k)))〉

using 〈no-dup (trail (f k))〉 no-dup-length-eq-card-atm-of-lits-of-l by blast
also have 〈card (atm-of ‘ lits-of-l (trail (f k))) ≤ ?m〉

using card-mono[OF - incl] eq by auto
finally show ?thesis
by linarith

qed
have propa-weight-decreasing-propa:

〈propa-weight ?m (trail (f (nth-confl a))) ≥ propa-weight ?m (trail (f (Suc (nth-bj a))))〉

if a-n: 〈a ≤ ?b〉 〈a > 0 〉

for a
proof −
have ppa: 〈propa-weight ?m (trail (f (Suc (nth-bj a) + Suc k)))
≥ propa-weight ?m (trail (f (Suc (nth-bj a) + k)))〉

if 〈k < nth-confl a − Suc (nth-bj a)〉

for k
proof −
have 〈Suc (nth-bj a + k) < n〉 and 〈Suc (nth-bj a + k) < nth-confl a〉

using that nth-bj-le-nth-confl[OF a-n] nth-confl-le-nth-bj-Suc[OF a-n]
nth-bj-le[of 〈Suc a〉] a-n

by auto
then show ?thesis
using f [of 〈(Suc (nth-bj a) + k)〉] conflicting-before-nth-confl[OF a-n, of 〈k〉]

no-conflict-before-nth-confl[OF - - a-n, of 〈Suc (nth-bj a) + k〉] that
length-trail-le-m[of 〈Suc (Suc (nth-bj a) + k)〉]

141

by (auto elim!: skipE resolveE backtrackE
simp: cdclW -o.simps cdclW -bj.simps cdclW .simps

dest!: propagate-propa-weight[of - - ?m]
decide-propa-weight[of - - ?m])

qed
have WTF3 : 〈(Suc (nth-bj a + (nth-confl a − Suc (nth-bj a)))) = nth-confl a〉

using a-n(1) nth-bj-le-nth-confl that(2) by fastforce
have 〈propa-weight ?m (trail (f (Suc (nth-bj a) + k)))
≥ propa-weight ?m (trail (f (Suc (nth-bj a))))〉

if 〈k ≤ nth-confl a − Suc (nth-bj a)〉

for k
using that
apply (induction k)
subgoal by auto
subgoal for k using ppa[of k]
apply (cases 〈k < nth-confl a − Suc (nth-bj a)〉)

subgoal by auto
subgoal by linarith

done
done

from this[of 〈nth-confl a − (Suc (nth-bj a))〉]
show ?thesis
by (auto simp: WTF3)

qed
have propa-weight-decreasing-confl:

〈propa-weight ?m (trail (f (Suc (nth-bj a))))
< propa-weight ?m (trail (f (Suc (nth-bj (Suc a)))))〉

if a-n: 〈a ≤ ?b〉 〈a > 0 〉

for a
proof −
have WTF : 〈b < c =⇒ a ≤ b =⇒ a < c〉 for a b c :: nat by linarith
have 〈nth-confl a < n〉

by (metis Suc-le-mono a-n(1) add.commute add-lessD1 less-imp-le nat-le-iff-add
nth-bj-le nth-confl-le-nth-bj-Suc plus-1-eq-Suc that(2))

show ?thesis
apply (rule WTF)
apply (rule propa-weight-decreasing-confl[OF a-n, of ?m])

subgoal using length-trail-le-m[of 〈nth-confl a〉] 〈nth-confl a < n〉 by auto
apply (rule propa-weight-decreasing-propa[OF a-n])
done

qed
have weight1 : 〈propa-weight ?m (trail (f (Suc (nth-bj 1)))) ≥ 1 〉

using bt-nth-bj[of 1]
by (auto simp: elim!: backtrackE intro!: trans-le-add1)

have 〈propa-weight ?m (trail (f (Suc (nth-bj (Suc a))))) ≥
propa-weight ?m (trail (f (Suc (nth-bj 1)))) + a〉

if a-n: 〈a ≤ ?b〉

for a :: nat
using that
apply (induction a)
subgoal by auto
subgoal for a
using propa-weight-decreasing-confl[of 〈Suc a〉]
by auto

done

142

from this[of 〈?b〉] have 〈propa-weight ?m (trail (f (Suc (nth-bj (Suc (?b)))))) ≥ 1 + ?b〉

using weight1 by auto
moreover have

〈max (length (trail (f (Suc (nth-bj (Suc ?b)))))) ?m = ?m〉

using length-trail-le-m[of 〈(Suc (nth-bj (Suc ?b)))〉] Suc-leI nth-bj-le
nth-bj-le[of 〈Suc (?b)〉] by (auto simp: max-def)

ultimately show 〈False〉

using of-list-weight-le[of 〈comp-list-weight-propa-trail ?m (trail (f (Suc (nth-bj (Suc ?b)))))〉]
by (simp del: state-eq-init-clss state-eq-trail)

qed

Application of the previous theorem to an initial state:
corollary cdcl-pow2-n-learned-clauses2 :
assumes
cdcl: 〈cdclW ∗∗ (init-state N) T 〉 and
inv: 〈cdclW -all-struct-inv (init-state N)〉

shows 〈size (learned-clss T) ≤ 2 ^ (card (atms-of-mm N))〉

using assms cdcl-pow2-n-learned-clauses[of 〈init-state N 〉 T]
by auto

end

end

1.2 Merging backjump rules
theory CDCL-W-Merge
imports CDCL-W
begin

Before showing that Weidenbach’s CDCL is included in NOT’s CDCL, we need to work on a
variant of Weidenbach’s calculus: NOT’s backjump assumes the existence of a clause that is
suitable to backjump. This clause is obtained in W’s CDCL by applying:

1. conflict-driven-clause-learningW .conflict to find the conflict

2. the conflict is analysed by repetitive application of conflict-driven-clause-learningW .resolve
and conflict-driven-clause-learningW .skip,

3. finally conflict-driven-clause-learningW .backtrack is used to backtrack.

We show that this new calculus has the same final states than Weidenbach’s CDCL if the
calculus starts in a state such that the invariant holds and no conflict has been found yet. The
latter condition holds for initial states.

1.2.1 Inclusion of the States
context conflict-driven-clause-learningW

begin

declare cdclW -restart.intros[intro] cdclW -bj.intros[intro] cdclW -o.intros[intro]
state-prop [simp del]

lemma backtrack-no-cdclW -bj:

143

assumes cdcl: cdclW -bj T U
shows ¬backtrack V T
using cdcl
apply (induction rule: cdclW -bj.induct)
apply (elim skipE , force elim!: backtrackE simp: cdclW -M-level-inv-def)
apply (elim resolveE , force elim!: backtrackE simp: cdclW -M-level-inv-def)
apply standard
apply (elim backtrackE)
apply (force simp add: cdclW -M-level-inv-decomp)
done

skip-or-resolve corresponds to the analyze function in the code of MiniSAT.
inductive skip-or-resolve :: ′st ⇒ ′st ⇒ bool where
s-or-r-skip[intro]: skip S T =⇒ skip-or-resolve S T |
s-or-r-resolve[intro]: resolve S T =⇒ skip-or-resolve S T

lemma rtranclp-cdclW -bj-skip-or-resolve-backtrack:
assumes cdclW -bj∗∗ S U
shows skip-or-resolve∗∗ S U ∨ (∃T . skip-or-resolve∗∗ S T ∧ backtrack T U)
using assms

proof induction
case base
then show ?case by simp

next
case (step U V) note st = this(1) and bj = this(2) and IH = this(3)
consider

(SU) S = U
| (SUp) cdclW -bj++ S U
using st unfolding rtranclp-unfold by blast

then show ?case
proof cases
case SUp
have

∧
T . skip-or-resolve∗∗ S T =⇒ cdclW -restart∗∗ S T

using mono-rtranclp[of skip-or-resolve cdclW -restart]
by (blast intro: skip-or-resolve.cases)

then have skip-or-resolve∗∗ S U
using bj IH backtrack-no-cdclW -bj by meson

then show ?thesis
using bj by (auto simp: cdclW -bj.simps dest!: skip-or-resolve.intros)

next
case SU
then show ?thesis
using bj by (auto simp: cdclW -bj.simps dest!: skip-or-resolve.intros)

qed
qed

lemma rtranclp-skip-or-resolve-rtranclp-cdclW -restart:
skip-or-resolve∗∗ S T =⇒ cdclW -restart∗∗ S T
by (induction rule: rtranclp-induct)

(auto dest!: cdclW -bj.intros cdclW -restart.intros cdclW -o.intros simp: skip-or-resolve.simps)

definition backjump-l-cond :: ′v clause ⇒ ′v clause ⇒ ′v literal ⇒ ′st ⇒ ′st ⇒ bool where
backjump-l-cond ≡ λC C ′ L S T . True

lemma wf-skip-or-resolve:
wf {(T , S). skip-or-resolve S T}

144

proof −
have skip-or-resolve x y =⇒ length (trail y) < length (trail x) for x y
by (auto simp: skip-or-resolve.simps elim!: skipE resolveE)

then show ?thesis
using wfP-if-measure[of λ-. True skip-or-resolve λS . length (trail S)]
by meson

qed

definition invN OT :: ′st ⇒ bool where
invN OT ≡ λS . no-dup (trail S)

declare invN OT -def [simp]
end

context conflict-driven-clause-learningW

begin

1.2.2 More lemmas about Conflict, Propagate and Backjumping

Termination

lemma cdclW -bj-measure:
assumes cdclW -bj S T
shows length (trail S) + (if conflicting S = None then 0 else 1)
> length (trail T) + (if conflicting T = None then 0 else 1)

using assms by (induction rule: cdclW -bj.induct) (force elim!: backtrackE skipE resolveE)+

lemma wf-cdclW -bj:
wf {(b,a). cdclW -bj a b}
apply (rule wfP-if-measure[of λ-. True

- λT . length (trail T) + (if conflicting T = None then 0 else 1), simplified])
using cdclW -bj-measure by simp

lemma cdclW -bj-exists-normal-form:
shows ∃T . full cdclW -bj S T
using wf-exists-normal-form-full[OF wf-cdclW -bj] .

lemma rtranclp-skip-state-decomp:
assumes skip∗∗ S T
shows
∃M . trail S = M @ trail T ∧ (∀m∈set M . ¬is-decided m)
init-clss S = init-clss T
learned-clss S = learned-clss T
backtrack-lvl S = backtrack-lvl T
conflicting S = conflicting T

using assms by (induction rule: rtranclp-induct) (auto elim!: skipE)

Analysing is confluent

lemma backtrack-reduce-trail-to-state-eq:
assumes
V-T : 〈V ∼ tl-trail T 〉 and
decomp: 〈(Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail V))〉

shows 〈reduce-trail-to M1 (add-learned-cls E (update-conflicting None V))
∼ reduce-trail-to M1 (add-learned-cls E (update-conflicting None T))〉

proof −

145

let ?f = 〈λT . add-learned-cls E (update-conflicting None T)〉

have [simp]: 〈length (trail T) 6= length M1 〉 〈trail T 6= []〉

using decomp V-T by (cases 〈trail T 〉; auto)+
have 〈reduce-trail-to M1 (?f V) ∼ reduce-trail-to M1 (?f (tl-trail T))〉

apply (rule reduce-trail-to-state-eq)
using V-T by (simp-all add: add-learned-cls-state-eq update-conflicting-state-eq)

moreover {
have 〈add-learned-cls E (update-conflicting None (tl-trail T)) ∼
tl-trail (add-learned-cls E (update-conflicting None T))〉

apply (rule state-eq-trans[OF state-eq-sym[THEN iffD1], of
〈add-learned-cls E (tl-trail (update-conflicting None T))〉])

apply (auto simp: tl-trail-update-conflicting tl-trail-add-learned-cls-commute
update-conflicting-state-eq add-learned-cls-state-eq tl-trail-state-eq; fail)[]

apply (rule state-eq-trans[OF state-eq-sym[THEN iffD1], of
〈add-learned-cls E (tl-trail (update-conflicting None T))〉])

apply (auto simp: tl-trail-update-conflicting tl-trail-add-learned-cls-commute
update-conflicting-state-eq add-learned-cls-state-eq tl-trail-state-eq; fail)[]

apply (rule state-eq-trans[OF state-eq-sym[THEN iffD1], of
〈tl-trail (add-learned-cls E (update-conflicting None T))〉])

apply (auto simp: tl-trail-update-conflicting tl-trail-add-learned-cls-commute
update-conflicting-state-eq add-learned-cls-state-eq tl-trail-state-eq)

done
note - = reduce-trail-to-state-eq[OF this, of M1 M1]}

ultimately show 〈reduce-trail-to M1 (?f V) ∼ reduce-trail-to M1 (?f T)〉

by (subst (2) reduce-trail-to.simps)
(auto simp: tl-trail-update-conflicting tl-trail-add-learned-cls-commute intro: state-eq-trans)

qed

lemma rtranclp-skip-backtrack-reduce-trail-to-state-eq:
assumes
V-T : 〈skip∗∗ T V 〉 and
decomp: 〈(Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail V))〉

shows 〈reduce-trail-to M1 (add-learned-cls E (update-conflicting None T))
∼ reduce-trail-to M1 (add-learned-cls E (update-conflicting None V))〉

using V-T decomp
proof (induction arbitrary: M2 rule: rtranclp-induct)
case base
then show ?case by auto

next
case (step U V) note st = this(1) and skip = this(2) and IH = this(3) and decomp = this(4)
obtain M2 ′ where
decomp ′: 〈(Decided K # M1 , M2 ′) ∈ set (get-all-ann-decomposition (trail U))〉

using get-all-ann-decomposition-exists-prepend[OF decomp] skip
by atomize (auto elim!: rulesE simp del: get-all-ann-decomposition.simps

simp: Decided-cons-in-get-all-ann-decomposition-append-Decided-cons
append-Cons[symmetric] append-assoc[symmetric]
simp del: append-Cons append-assoc)

show ?case
using backtrack-reduce-trail-to-state-eq[OF - decomp, of U E] skip IH [OF decomp ′]
by (auto elim!: skipE simp del: get-all-ann-decomposition.simps intro: state-eq-trans ′)

qed

Backjumping after skipping or jump directly lemma rtranclp-skip-backtrack-backtrack:
assumes
skip∗∗ S T and
backtrack T W and

146

cdclW -all-struct-inv S
shows backtrack S W
using assms

proof induction
case base
then show ?case by simp

next
case (step T V) note st = this(1) and skip = this(2) and IH = this(3) and bt = this(4) and
inv = this(5)

have skip∗∗ S V
using st skip by auto

then have cdclW -all-struct-inv V
using rtranclp-mono[of skip cdclW -restart] assms(3) rtranclp-cdclW -all-struct-inv-inv mono-rtranclp
by (auto dest!: bj other cdclW -bj.skip)

then have cdclW -M-level-inv V
unfolding cdclW -all-struct-inv-def by auto

then obtain K i M1 M2 L D D ′ where
conf : conflicting V = Some (add-mset L D) and
decomp: (Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail V)) and
lev-L: get-level (trail V) L = backtrack-lvl V and
max: get-level (trail V) L = get-maximum-level (trail V) (add-mset L D ′) and
max-D: get-maximum-level (trail V) D ′ ≡ i and
lev-k: get-level (trail V) K = Suc i and
W : W ∼ cons-trail (Propagated L (add-mset L D ′))

(reduce-trail-to M1
(add-learned-cls (add-mset L D ′)

(update-conflicting None V))) and
D-D ′: 〈D ′ ⊆# D〉 and
NU-D ′: 〈clauses V |=pm add-mset L D ′〉
using bt inv by (elim backtrackE) metis

obtain L ′ C ′ M E where
tr : trail T = Propagated L ′ C ′ # M and
raw: conflicting T = Some E and
LE : −L ′ /∈# E and
E : E 6= {#} and
V : V ∼ tl-trail T
using skip by (elim skipE) metis

let ?M = Propagated L ′ C ′ # M
have tr-M : trail T = ?M
using tr V by auto

have MT : M = tl (trail T) and MV : M = trail V
using tr V by auto

have DE [simp]: E = add-mset L D
using V conf raw by auto

have cdclW -restart∗∗ S T
using bj cdclW -bj.skip mono-rtranclp[of skip cdclW -restart S T] other st by meson

then have inv ′: cdclW -all-struct-inv T
using rtranclp-cdclW -all-struct-inv-inv inv by blast

have M-lev: cdclW -M-level-inv T using inv ′ unfolding cdclW -all-struct-inv-def by auto
then have n-d ′: no-dup ?M
using tr-M unfolding cdclW -M-level-inv-def by auto

let ?k = backtrack-lvl T
have [simp]:
backtrack-lvl V = ?k
using V tr-M by simp

have ?k > 0

147

using decomp M-lev V tr unfolding cdclW -M-level-inv-def by auto
then have atm-of L ∈ atm-of ‘ lits-of-l (trail V)
using lev-L get-level-ge-0-atm-of-in[of 0 trail V L] by auto

then have L-L ′: atm-of L 6= atm-of L ′
using n-d ′ unfolding lits-of-def MV by (auto simp: defined-lit-map)

have L ′-M : undefined-lit M L ′
using n-d ′ unfolding lits-of-def by auto

have ?M |=as CNot D
using inv ′ raw unfolding cdclW -conflicting-def cdclW -all-struct-inv-def tr-M by auto

then have L ′ /∈# D
using L-L ′ L ′-M unfolding true-annots-true-cls true-clss-def
by (auto simp: uminus-lit-swap atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set defined-lit-map
lits-of-def dest!: in-diffD)

have [simp]: trail (reduce-trail-to M1 T) = M1
using decomp tr W V by auto

have skip∗∗ S V
using st skip by auto

have no-dup (trail S)
using inv unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def by auto

then have [simp]: init-clss S = init-clss V and [simp]: learned-clss S = learned-clss V
using rtranclp-skip-state-decomp[OF 〈skip∗∗ S V 〉] V by auto

have V-T : 〈V ∼ tl-trail T 〉

using skip by (auto elim: rulesE)
have
W-S : W ∼ cons-trail (Propagated L (add-mset L D ′)) (reduce-trail-to M1
(add-learned-cls (add-mset L D ′) (update-conflicting None T)))
apply (rule state-eq-trans[OF W])
unfolding DE
apply (rule cons-trail-state-eq)
apply (rule backtrack-reduce-trail-to-state-eq)
using V decomp by auto

have atm-of-L ′-D ′: atm-of L ′ /∈ atms-of D ′
by (metis DE LE 〈D ′ ⊆# D〉 〈L ′ /∈# D〉 atm-of-in-atm-of-set-in-uminus atms-of-def insert-iff

mset-subset-eqD set-mset-add-mset-insert)

obtain M2 ′ where
decomp ′: (Decided K # M1 , M2 ′) ∈ set (get-all-ann-decomposition (trail T))
using decomp V unfolding tr-M MV by (cases hd (get-all-ann-decomposition (trail V)),
cases get-all-ann-decomposition (trail V)) auto

moreover from L-L ′ have get-level ?M L = ?k
using lev-L V tr-M by (auto split: if-split-asm)

moreover have get-level ?M L = get-maximum-level ?M (add-mset L D ′)
using count-decided-ge-get-maximum-level[of 〈trail V 〉 D ′] calculation(2) lev-L max MV atm-of-L ′-D ′
unfolding get-maximum-level-add-mset
by auto

moreover have i = get-maximum-level ?M D ′
using max-D MV atm-of-L ′-D ′ by auto

moreover have atm-of L ′ 6= atm-of K
using inv ′ get-all-ann-decomposition-exists-prepend[OF decomp]
unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def tr MV by (auto simp: defined-lit-map)

ultimately have backtrack T W
apply −
apply (rule backtrack-rule[of T L D K M1 M2 ′ D ′ i])
unfolding tr-M [symmetric]
subgoal using raw by (simp; fail)
subgoal by (simp; fail)

148

subgoal by (simp; fail)
subgoal by (simp; fail)
subgoal by (simp; fail)
subgoal using lev-k tr unfolding MV [symmetric] by (auto; fail)[]
subgoal using D-D ′ by (simp; fail)
subgoal using NU-D ′ V-T by (simp; fail)
subgoal using W-S lev-k by (auto; fail)[]
done

then show ?thesis using IH inv by blast
qed

See also theorem rtranclp-skip-backtrack-backtrack
lemma rtranclp-skip-backtrack-backtrack-end:
assumes
skip: skip∗∗ S T and
bt: backtrack S W and
inv: cdclW -all-struct-inv S

shows backtrack T W
using assms

proof −
have M-lev: cdclW -M-level-inv S
using bt inv unfolding cdclW -all-struct-inv-def by (auto elim!: backtrackE)

then obtain K i M1 M2 L D D ′ where
S : conflicting S = Some (add-mset L D) and
decomp: (Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail S)) and
lev-l: get-level (trail S) L = backtrack-lvl S and
lev-l-D: get-level (trail S) L = get-maximum-level (trail S) (add-mset L D ′) and
i: get-maximum-level (trail S) D ′ ≡ i and
lev-K : get-level (trail S) K = Suc i and
W : W ∼ cons-trail (Propagated L (add-mset L D ′))

(reduce-trail-to M1
(add-learned-cls (add-mset L D ′)

(update-conflicting None S))) and
D-D ′: 〈D ′ ⊆# D〉 and
NU-D ′: 〈clauses S |=pm add-mset L D ′〉
using bt by (elim backtrackE) metis

let ?D = add-mset L D
let ?D ′ = add-mset L D ′

have [simp]: no-dup (trail S)
using M-lev by (auto simp: cdclW -M-level-inv-decomp)

have cdclW -all-struct-inv T
using mono-rtranclp[of skip cdclW -restart] by (smt bj cdclW -bj.skip inv local.skip other
rtranclp-cdclW -all-struct-inv-inv)

then have [simp]: no-dup (trail T)
unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def by auto

obtain MS MT where M : trail S = MS @ MT and MT : MT = trail T and nm: ∀m∈set MS .
¬is-decided m

using rtranclp-skip-state-decomp(1)[OF skip] S by auto
have T : state-butlast T = (MT , init-clss S , learned-clss S , Some (add-mset L D)) and
bt-S-T : backtrack-lvl S = backtrack-lvl T and
clss-S-T : 〈clauses S = clauses T 〉

using MT rtranclp-skip-state-decomp[of S T] skip S by (auto simp: clauses-def)

have cdclW -all-struct-inv T

149

apply (rule rtranclp-cdclW -all-struct-inv-inv[OF - inv])
using bj cdclW -bj.skip local.skip other rtranclp-mono[of skip cdclW -restart] by blast

then have MT |=as CNot ?D
unfolding cdclW -all-struct-inv-def cdclW -conflicting-def using T by auto

then have ∀L ′∈#?D. defined-lit MT L ′
using Decided-Propagated-in-iff-in-lits-of-l
by (auto dest: true-annots-CNot-definedD)

moreover have no-dup (trail S)
using inv unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def by auto

ultimately have undef-D: ∀L ′∈#?D. undefined-lit MS L ′
unfolding M by (auto dest: defined-lit-no-dupD)

then have H :
∧
L ′. L ′∈# D =⇒ get-level (trail S) L ′ = get-level MT L ′

get-level (trail S) L = get-level MT L
unfolding M by (auto simp: lits-of-def)

have [simp]: get-maximum-level (trail S) D = get-maximum-level MT D
using 〈MT |=as CNot (add-mset L D)〉 M nm undef-D by (auto simp: get-maximum-level-skip-beginning)

have lev-l ′: get-level MT L = backtrack-lvl S
using lev-l nm by (auto simp: H)

have [simp]: trail (reduce-trail-to M1 T) = M1
by (metis (no-types) M MT append-assoc get-all-ann-decomposition-exists-prepend[OF decomp] nm

reduce-trail-to-trail-tl-trail-decomp beginning-not-decided-invert)
obtain c where c: 〈MT = c @ Decided K # M1 〉

using nm decomp by (auto dest!: get-all-ann-decomposition-exists-prepend
simp: MT [symmetric] M append-assoc[symmetric]
simp del: append-assoc
dest!: beginning-not-decided-invert)

obtain c ′′ where
c ′′: 〈(Decided K # M1 , c ′′) ∈ set (get-all-ann-decomposition (c @ Decided K # M1))〉

using Decided-cons-in-get-all-ann-decomposition-append-Decided-cons[of K M1] by blast
have W : W ∼ cons-trail (Propagated L (add-mset L D ′)) (reduce-trail-to M1

(add-learned-cls (add-mset L D ′) (update-conflicting None T)))
apply (rule state-eq-trans[OF W])
apply (rule cons-trail-state-eq)
apply (rule rtranclp-skip-backtrack-reduce-trail-to-state-eq[of - - K M1])
using skip apply (simp; fail)
using c ′′ by (auto simp: MT [symmetric] M c)

have max-trail-S-MT-L-D ′: 〈get-maximum-level (trail S) ?D ′ = get-maximum-level MT ?D ′〉
by (rule get-maximum-level-cong) (use H D-D ′ in auto)

then have lev-l-D ′: get-level MT L = get-maximum-level MT ?D ′
using lev-l-D H by auto

have i ′: i = get-maximum-level MT D ′
unfolding i[symmetric]
by (rule get-maximum-level-cong) (use H D-D ′ in auto)

have Decided K # M1 ∈ set (map fst (get-all-ann-decomposition (trail S)))
using Set.imageI [OF decomp, of fst] by auto

then have Decided K # M1 ∈ set (map fst (get-all-ann-decomposition MT))
using fst-get-all-ann-decomposition-prepend-not-decided[OF nm] unfolding M by auto

then obtain M2 ′ where decomp ′: (Decided K # M1 , M2 ′) ∈ set (get-all-ann-decomposition MT)
by auto

moreover {
have undefined-lit MS K
using 〈no-dup (trail S)〉 decomp ′ unfolding M MT

by (auto simp: lits-of-def defined-lit-map no-dup-def)
then have get-level (trail T) K = get-level (trail S) K
unfolding M MT by auto }

150

ultimately show backtrack T W
apply −
apply (rule backtrack.intros[of T L D K M1 M2 ′ D ′ i])
subgoal using T by auto
subgoal using T by auto
subgoal using T lev-l ′ lev-l-D ′ bt-S-T by auto
subgoal using T lev-l-D ′ bt-S-T by auto
subgoal using i ′W lev-K unfolding MT [symmetric] clss-S-T by auto
subgoal using lev-K unfolding MT [symmetric] clss-S-T by auto
subgoal using D-D ′ .
subgoal using NU-D ′ unfolding clss-S-T .
subgoal using W unfolding i ′[symmetric] by auto
done

qed

lemma cdclW -bj-decomp-resolve-skip-and-bj:
assumes cdclW -bj∗∗ S T
shows (skip-or-resolve∗∗ S T
∨ (∃U . skip-or-resolve∗∗ S U ∧ backtrack U T))

using assms
proof induction
case base
then show ?case by simp

next
case (step T U) note st = this(1) and bj = this(2) and IH = this(3)
have IH : skip-or-resolve∗∗ S T
proof −
{ assume ∃U . skip-or-resolve∗∗ S U ∧ backtrack U T
then obtain V where
bt: backtrack V T and
skip-or-resolve∗∗ S V
by blast

then have cdclW -restart∗∗ S V
using rtranclp-skip-or-resolve-rtranclp-cdclW -restart by blast

with bj bt have False using backtrack-no-cdclW -bj by simp
}
then show ?thesis using IH by blast

qed
show ?case
using bj
proof (cases rule: cdclW -bj.cases)
case backtrack
then show ?thesis using IH by blast

qed (metis (no-types, lifting) IH rtranclp.simps skip-or-resolve.simps)+
qed

1.2.3 CDCL with Merging
inductive cdclW -merge-restart :: ′st ⇒ ′st ⇒ bool where
fw-r-propagate: propagate S S ′ =⇒ cdclW -merge-restart S S ′ |
fw-r-conflict: conflict S T =⇒ full cdclW -bj T U =⇒ cdclW -merge-restart S U |
fw-r-decide: decide S S ′ =⇒ cdclW -merge-restart S S ′|
fw-r-rf : cdclW -rf S S ′ =⇒ cdclW -merge-restart S S ′

lemma rtranclp-cdclW -bj-rtranclp-cdclW -restart:
cdclW -bj∗∗ S T =⇒ cdclW -restart∗∗ S T

151

using mono-rtranclp[of cdclW -bj cdclW -restart] by blast

lemma cdclW -merge-restart-cdclW -restart:
assumes cdclW -merge-restart S T
shows cdclW -restart∗∗ S T
using assms

proof induction
case (fw-r-conflict S T U) note confl = this(1) and bj = this(2)
have cdclW -restart S T using confl by (simp add: cdclW -restart.intros r-into-rtranclp)
moreover
have cdclW -bj∗∗ T U using bj unfolding full-def by auto
then have cdclW -restart∗∗ T U using rtranclp-cdclW -bj-rtranclp-cdclW -restart by blast

ultimately show ?case by auto
qed (simp-all add: cdclW -o.intros cdclW -restart.intros r-into-rtranclp)

lemma cdclW -merge-restart-conflicting-true-or-no-step:
assumes cdclW -merge-restart S T
shows conflicting T = None ∨ no-step cdclW -restart T
using assms

proof induction
case (fw-r-conflict S T U) note confl = this(1) and n-s = this(2)
{ fix D V
assume cdclW -restart U V and conflicting U = Some D
then have False
using n-s unfolding full-def
by (induction rule: cdclW -restart-all-rules-induct)

(auto dest!: cdclW -bj.intros elim: decideE propagateE conflictE forgetE restartE)
}
then show ?case by (cases conflicting U) fastforce+

qed (auto simp add: cdclW -rf .simps elim: propagateE decideE restartE forgetE)

inductive cdclW -merge :: ′st ⇒ ′st ⇒ bool where
fw-propagate: propagate S S ′ =⇒ cdclW -merge S S ′ |
fw-conflict: conflict S T =⇒ full cdclW -bj T U =⇒ cdclW -merge S U |
fw-decide: decide S S ′ =⇒ cdclW -merge S S ′|
fw-forget: forget S S ′ =⇒ cdclW -merge S S ′

lemma cdclW -merge-cdclW -merge-restart:
cdclW -merge S T =⇒ cdclW -merge-restart S T
by (meson cdclW -merge.cases cdclW -merge-restart.simps forget)

lemma rtranclp-cdclW -merge-tranclp-cdclW -merge-restart:
cdclW -merge∗∗ S T =⇒ cdclW -merge-restart∗∗ S T
using rtranclp-mono[of cdclW -merge cdclW -merge-restart] cdclW -merge-cdclW -merge-restart by blast

lemma cdclW -merge-rtranclp-cdclW -restart:
cdclW -merge S T =⇒ cdclW -restart∗∗ S T
using cdclW -merge-cdclW -merge-restart cdclW -merge-restart-cdclW -restart by blast

lemma rtranclp-cdclW -merge-rtranclp-cdclW -restart:
cdclW -merge∗∗ S T =⇒ cdclW -restart∗∗ S T
using rtranclp-mono[of cdclW -merge cdclW -restart∗∗] cdclW -merge-rtranclp-cdclW -restart by auto

lemma cdclW -all-struct-inv-tranclp-cdclW -merge-tranclp-cdclW -merge-cdclW -all-struct-inv:
assumes
inv: cdclW -all-struct-inv b

152

cdclW -merge++ b a
shows (λS T . cdclW -all-struct-inv S ∧ cdclW -merge S T)++ b a
using assms(2)

proof induction
case base
then show ?case using inv by auto

next
case (step c d) note st = this(1) and fw = this(2) and IH = this(3)
have cdclW -all-struct-inv c
using tranclp-into-rtranclp[OF st] cdclW -merge-rtranclp-cdclW -restart assms(1)
rtranclp-cdclW -all-struct-inv-inv rtranclp-mono[of cdclW -merge cdclW -restart∗∗] by fastforce

then have (λS T . cdclW -all-struct-inv S ∧ cdclW -merge S T)++ c d
using fw by auto

then show ?case using IH by auto
qed

lemma backtrack-is-full1-cdclW -bj:
assumes bt: backtrack S T
shows full1 cdclW -bj S T
using bt backtrack-no-cdclW -bj unfolding full1-def by blast

lemma rtrancl-cdclW -conflicting-true-cdclW -merge-restart:
assumes cdclW -restart∗∗ S V and inv: cdclW -M-level-inv S and conflicting S = None
shows (cdclW -merge-restart∗∗ S V ∧ conflicting V = None)
∨ (∃T U . cdclW -merge-restart∗∗ S T ∧ conflicting V 6= None ∧ conflict T U ∧ cdclW -bj∗∗ U V)

using assms
proof induction
case base
then show ?case by simp

next
case (step U V) note st = this(1) and cdclW -restart = this(2) and IH = this(3)[OF this(4−)] and
confl[simp] = this(5) and inv = this(4)

from cdclW -restart
show ?case
proof cases
case propagate
moreover have conflicting U = None and conflicting V = None
using propagate propagate by (auto elim: propagateE)

ultimately show ?thesis using IH cdclW -merge-restart.fw-r-propagate[of U V] by auto
next
case conflict
moreover have conflicting U = None and conflicting V 6= None
using conflict by (auto elim!: conflictE)

ultimately show ?thesis using IH by auto
next
case other
then show ?thesis
proof cases
case decide
then show ?thesis using IH cdclW -merge-restart.fw-r-decide[of U V] by (auto elim: decideE)

next
case bj
then consider

(s-or-r) skip-or-resolve U V |
(bt) backtrack U V
by (auto simp: cdclW -bj.simps)

153

then show ?thesis
proof cases
case s-or-r
have f1 : cdclW -bj++ U V
by (simp add: local.bj tranclp.r-into-trancl)

obtain T T ′ :: ′st where
f2 : cdclW -merge-restart∗∗ S U

∨ cdclW -merge-restart∗∗ S T ∧ conflicting U 6= None
∧ conflict T T ′ ∧ cdclW -bj∗∗ T ′ U

using IH confl by blast
have conflicting V 6= None ∧ conflicting U 6= None
using 〈skip-or-resolve U V 〉

by (auto simp: skip-or-resolve.simps elim!: skipE resolveE)
then show ?thesis
by (metis (full-types) IH f1 rtranclp-trans tranclp-into-rtranclp)

next
case bt
then have conflicting U 6= None by (auto elim: backtrackE)
then obtain T T ′ where
cdclW -merge-restart∗∗ S T and
conflicting U 6= None and
conflict T T ′ and
cdclW -bj∗∗ T ′ U
using IH confl by meson

have invU : cdclW -M-level-inv U
using inv rtranclp-cdclW -restart-consistent-inv step.hyps(1) by blast

then have conflicting V = None
using 〈backtrack U V 〉 inv by (auto elim: backtrackE simp: cdclW -M-level-inv-decomp)

have full cdclW -bj T ′ V
apply (rule rtranclp-fullI [of cdclW -bj T ′ U V])
using 〈cdclW -bj∗∗ T ′ U 〉 apply fast
using 〈backtrack U V 〉 backtrack-is-full1-cdclW -bj invU unfolding full1-def full-def
by blast

then show ?thesis
using cdclW -merge-restart.fw-r-conflict[of T T ′ V] 〈conflict T T ′〉

〈cdclW -merge-restart∗∗ S T 〉 〈conflicting V = None〉 by auto
qed

qed
next
case rf
moreover have conflicting U = None and conflicting V = None
using rf by (auto simp: cdclW -rf .simps elim: restartE forgetE)

ultimately show ?thesis using IH cdclW -merge-restart.fw-r-rf [of U V] by auto
qed

qed

lemma no-step-cdclW -restart-no-step-cdclW -merge-restart:
no-step cdclW -restart S =⇒ no-step cdclW -merge-restart S
by (auto simp: cdclW -restart.simps cdclW -merge-restart.simps cdclW -o.simps cdclW -bj.simps)

lemma no-step-cdclW -merge-restart-no-step-cdclW -restart:
assumes
conflicting S = None and
cdclW -M-level-inv S and
no-step cdclW -merge-restart S

shows no-step cdclW -restart S

154

proof −
{ fix S ′
assume conflict S S ′
then have cdclW -restart S S ′ using cdclW -restart.conflict by auto
then have cdclW -M-level-inv S ′
using assms(2) cdclW -restart-consistent-inv by blast

then obtain S ′′ where full cdclW -bj S ′ S ′′
using cdclW -bj-exists-normal-form[of S ′] by auto

then have False
using 〈conflict S S ′〉 assms(3) fw-r-conflict by blast

}
then show ?thesis
using assms unfolding cdclW -restart.simps cdclW -merge-restart.simps cdclW -o.simps cdclW -bj.simps
by (auto elim: skipE resolveE backtrackE conflictE decideE restartE)

qed

lemma cdclW -merge-restart-no-step-cdclW -bj:
assumes
cdclW -merge-restart S T

shows no-step cdclW -bj T
using assms
by (induction rule: cdclW -merge-restart.induct)
(force simp: cdclW -bj.simps cdclW -rf .simps cdclW -merge-restart.simps full-def
elim!: rulesE)+

lemma rtranclp-cdclW -merge-restart-no-step-cdclW -bj:
assumes
cdclW -merge-restart∗∗ S T and
conflicting S = None

shows no-step cdclW -bj T
using assms unfolding rtranclp-unfold
apply (elim disjE)
apply (force simp: cdclW -bj.simps cdclW -rf .simps elim!: rulesE)
by (auto simp: tranclp-unfold-end simp: cdclW -merge-restart-no-step-cdclW -bj)

If conflicting S 6= None, we cannot say anything.
Remark that this theorem does not say anything about well-foundedness: even if you know that
one relation is well-founded, it only states that the normal forms are shared.

lemma conflicting-true-full-cdclW -restart-iff-full-cdclW -merge:
assumes confl: conflicting S = None and lev: cdclW -M-level-inv S
shows full cdclW -restart S V ←→ full cdclW -merge-restart S V

proof
assume full: full cdclW -merge-restart S V
then have st: cdclW -restart∗∗ S V
using rtranclp-mono[of cdclW -merge-restart cdclW -restart∗∗] cdclW -merge-restart-cdclW -restart
unfolding full-def by auto

have n-s: no-step cdclW -merge-restart V
using full unfolding full-def by auto

have n-s-bj: no-step cdclW -bj V
using rtranclp-cdclW -merge-restart-no-step-cdclW -bj confl full unfolding full-def by auto

have
∧
S ′. conflict V S ′ =⇒ cdclW -M-level-inv S ′

using cdclW -restart.conflict cdclW -restart-consistent-inv lev rtranclp-cdclW -restart-consistent-inv st
by blast
then have

∧
S ′. conflict V S ′ =⇒ False

155

using n-s n-s-bj cdclW -bj-exists-normal-form cdclW -merge-restart.simps by meson
then have n-s-cdclW -restart: no-step cdclW -restart V
using n-s n-s-bj by (auto simp: cdclW -restart.simps cdclW -o.simps cdclW -merge-restart.simps)

then show full cdclW -restart S V using st unfolding full-def by auto
next
assume full: full cdclW -restart S V
have no-step cdclW -merge-restart V
using full no-step-cdclW -restart-no-step-cdclW -merge-restart unfolding full-def by blast

moreover {
consider

(fw) cdclW -merge-restart∗∗ S V and conflicting V = None |
(bj) T U where
cdclW -merge-restart∗∗ S T and
conflicting V 6= None and
conflict T U and
cdclW -bj∗∗ U V

using full rtrancl-cdclW -conflicting-true-cdclW -merge-restart confl lev unfolding full-def
by meson

then have cdclW -merge-restart∗∗ S V
proof cases
case fw
then show ?thesis by fast

next
case (bj T U)
have no-step cdclW -bj V
using full unfolding full-def by (meson cdclW -o.bj other)

then have full cdclW -bj U V
using 〈 cdclW -bj∗∗ U V 〉 unfolding full-def by auto

then have cdclW -merge-restart T V
using 〈conflict T U 〉 cdclW -merge-restart.fw-r-conflict by blast

then show ?thesis using 〈cdclW -merge-restart∗∗ S T 〉 by auto
qed }

ultimately show full cdclW -merge-restart S V unfolding full-def by fast
qed

lemma init-state-true-full-cdclW -restart-iff-full-cdclW -merge:
shows full cdclW -restart (init-state N) V ←→ full cdclW -merge-restart (init-state N) V
by (rule conflicting-true-full-cdclW -restart-iff-full-cdclW -merge) auto

1.2.4 CDCL with Merge and Strategy

The intermediate step

inductive cdclW -s ′ :: ′st ⇒ ′st ⇒ bool for S :: ′st where
conflict ′: conflict S S ′ =⇒ cdclW -s ′ S S ′ |
propagate ′: propagate S S ′ =⇒ cdclW -s ′ S S ′ |
decide ′: no-step conflict S =⇒ no-step propagate S =⇒ decide S S ′ =⇒ cdclW -s ′ S S ′ |
bj ′: full1 cdclW -bj S S ′ =⇒ cdclW -s ′ S S ′

inductive-cases cdclW -s ′E : cdclW -s ′ S T

lemma rtranclp-cdclW -bj-full1-cdclp-cdclW -stgy:
cdclW -bj∗∗ S S ′ =⇒ cdclW -stgy∗∗ S S ′

proof (induction rule: converse-rtranclp-induct)
case base
then show ?case by simp

156

next
case (step T U) note st = this(2) and bj = this(1) and IH = this(3)
have n-s: no-step conflict T no-step propagate T
using bj by (auto simp add: cdclW -bj.simps elim!: rulesE)

consider
(U) U = S ′
| (U ′) U ′ where cdclW -bj U U ′ and cdclW -bj∗∗ U ′ S ′
using st by (metis converse-rtranclpE)

then show ?case
proof cases
case U
then show ?thesis
using n-s cdclW -o.bj local.bj other ′ by (meson r-into-rtranclp)

next
case U ′ note U ′ = this(1)
have no-step conflict U no-step propagate U
using U ′ by (fastforce simp: cdclW -bj.simps elim!: rulesE)+

then have cdclW -stgy T U
using n-s cdclW -stgy.simps local.bj cdclW -o.bj by meson

then show ?thesis using IH by auto
qed

qed

lemma cdclW -s ′-is-rtranclp-cdclW -stgy:
cdclW -s ′ S T =⇒ cdclW -stgy∗∗ S T
by (induction rule: cdclW -s ′.induct)

(auto simp: full1-def
dest: tranclp-into-rtranclp rtranclp-cdclW -bj-full1-cdclp-cdclW -stgy cdclW -stgy.intros)

lemma cdclW -stgy-cdclW -s ′-no-step:
assumes cdclW -stgy S U and cdclW -all-struct-inv S and no-step cdclW -bj U
shows cdclW -s ′ S U
using assms apply (cases rule: cdclW -stgy.cases)
using bj ′[of S U] by (auto intro: cdclW -s ′.intros simp: cdclW -o.simps full1-def)

lemma rtranclp-cdclW -stgy-connected-to-rtranclp-cdclW -s ′:
assumes cdclW -stgy∗∗ S U and inv: cdclW -M-level-inv S
shows cdclW -s ′∗∗ S U ∨ (∃T . cdclW -s ′∗∗ S T ∧ cdclW -bj++ T U ∧ conflicting U 6= None)
using assms(1)

proof induction
case base
then show ?case by simp

next
case (step T V) note st = this(1) and o = this(2) and IH = this(3)
from o show ?case
proof cases
case conflict ′
then have cdclW -s ′∗∗ S T
using IH by (auto elim: conflictE)

moreover have f2 : cdclW -s ′∗∗ T V
using cdclW -s ′.conflict ′ conflict ′ by blast

ultimately show ?thesis by auto
next
case propagate ′
then have cdclW -s ′∗∗ S T
using IH by (auto elim: propagateE)

157

moreover have f2 : cdclW -s ′∗∗ T V
using cdclW -s ′.propagate ′ propagate ′ by blast

ultimately show ?thesis by auto
next
case other ′ note o = this(3) and n-s = this(1 ,2) and full = this(3)
then show ?thesis
using o

proof (cases rule: cdclW -o-rule-cases)
case decide
then have cdclW -s ′∗∗ S T
using IH by (auto elim: rulesE)

then show ?thesis
by (meson decide decide ′ full n-s rtranclp.rtrancl-into-rtrancl)

next
case backtrack
consider

(s ′) cdclW -s ′∗∗ S T |
(bj) S ′ where cdclW -s ′∗∗ S S ′ and cdclW -bj++ S ′ T and conflicting T 6= None
using IH by blast

then show ?thesis
proof cases
case s ′
moreover {
have cdclW -M-level-inv T
using inv local.step(1) rtranclp-cdclW -stgy-consistent-inv by auto

then have full1 cdclW -bj T V
using backtrack-is-full1-cdclW -bj backtrack by blast

then have cdclW -s ′ T V
using full bj ′ n-s by blast }

ultimately show ?thesis by auto
next
case (bj S ′) note S-S ′ = this(1) and bj-T = this(2)
moreover {
have cdclW -M-level-inv T
using inv local.step(1) rtranclp-cdclW -stgy-consistent-inv by auto

then have full1 cdclW -bj T V
using backtrack-is-full1-cdclW -bj backtrack by blast

then have full1 cdclW -bj S ′ V
using bj-T unfolding full1-def by fastforce }

ultimately have cdclW -s ′ S ′ V by (simp add: cdclW -s ′.bj ′)
then show ?thesis using S-S ′ by auto

qed
next
case skip
then have confl-V : conflicting V 6= None
using skip by (auto elim: rulesE)

have cdclW -bj T V
using local.skip by blast

then show ?thesis
using confl-V step.IH by auto

next
case resolve
have confl-V : conflicting V 6= None
using resolve by (auto elim!: rulesE)

have cdclW -bj T V
using local.resolve by blast

158

then show ?thesis
using confl-V step.IH by auto

qed
qed

qed

lemma n-step-cdclW -stgy-iff-no-step-cdclW -restart-cl-cdclW -o:
assumes inv: cdclW -all-struct-inv S
shows no-step cdclW -s ′ S ←→ no-step cdclW -stgy S (is ?S ′ S ←→ ?C S)

proof
assume ?C S
then show ?S ′ S
by (auto simp: cdclW -s ′.simps full1-def tranclp-unfold-begin cdclW -stgy.simps)

next
assume n-s: ?S ′ S
then show ?C S
by (metis bj ′ cdclW -bj-exists-normal-form cdclW -o.cases cdclW -s ′.intros
cdclW -stgy.cases decide ′ full-unfold)

qed

lemma cdclW -s ′-tranclp-cdclW -restart:
assumes cdclW -s ′ S S ′ shows cdclW -restart++ S S ′
using assms

proof (cases rule: cdclW -s ′.cases)
case conflict ′
then show ?thesis by blast

next
case propagate ′
then show ?thesis by blast

next
case decide ′
then show ?thesis
using cdclW -stgy.simps cdclW -stgy-tranclp-cdclW -restart by (meson cdclW -o.simps)

next
case bj ′
then show ?thesis
by (metis cdclW -s ′.bj ′ cdclW -s ′-is-rtranclp-cdclW -stgy full1-def
rtranclp-cdclW -stgy-rtranclp-cdclW -restart rtranclp-unfold tranclp-unfold-begin)

qed

lemma tranclp-cdclW -s ′-tranclp-cdclW -restart:
cdclW -s ′++ S S ′ =⇒ cdclW -restart++ S S ′
apply (induct rule: tranclp.induct)
using cdclW -s ′-tranclp-cdclW -restart apply blast
by (meson cdclW -s ′-tranclp-cdclW -restart tranclp-trans)

lemma rtranclp-cdclW -s ′-rtranclp-cdclW -restart:
cdclW -s ′∗∗ S S ′ =⇒ cdclW -restart∗∗ S S ′
using rtranclp-unfold[of cdclW -s ′ S S ′] tranclp-cdclW -s ′-tranclp-cdclW -restart[of S S ′] by auto

lemma full-cdclW -stgy-iff-full-cdclW -s ′:
assumes inv: cdclW -all-struct-inv S
shows full cdclW -stgy S T ←→ full cdclW -s ′ S T (is ?S ←→ ?S ′)

proof
assume ?S ′
then have cdclW -restart∗∗ S T

159

using rtranclp-cdclW -s ′-rtranclp-cdclW -restart[of S T] unfolding full-def by blast
then have inv ′: cdclW -all-struct-inv T
using rtranclp-cdclW -all-struct-inv-inv inv by blast

have cdclW -stgy∗∗ S T
using 〈?S ′〉 unfolding full-def
using cdclW -s ′-is-rtranclp-cdclW -stgy rtranclp-mono[of cdclW -s ′ cdclW -stgy∗∗] by auto

then show ?S
using 〈?S ′〉 inv ′ n-step-cdclW -stgy-iff-no-step-cdclW -restart-cl-cdclW -o unfolding full-def
by blast

next
assume ?S
then have inv-T : cdclW -all-struct-inv T
by (metis assms full-def rtranclp-cdclW -all-struct-inv-inv
rtranclp-cdclW -stgy-rtranclp-cdclW -restart)

consider
(s ′) cdclW -s ′∗∗ S T |
(st) S ′ where cdclW -s ′∗∗ S S ′ and cdclW -bj++ S ′ T and conflicting T 6= None
using rtranclp-cdclW -stgy-connected-to-rtranclp-cdclW -s ′[of S T] inv 〈?S 〉

unfolding full-def cdclW -all-struct-inv-def
by blast

then show ?S ′
proof cases
case s ′
then show ?thesis
using 〈full cdclW -stgy S T 〉 unfolding full-def
by (metis inv-T n-step-cdclW -stgy-iff-no-step-cdclW -restart-cl-cdclW -o)

next
case (st S ′) note st = this(1) and bj = this(2) and confl = this(3)
have no-step cdclW -bj T
using 〈?S 〉 cdclW -stgy.conflict ′ cdclW -stgy.intros(2) other ′ unfolding full-def by blast

then have full1 cdclW -bj S ′ T
using bj unfolding full1-def by blast

then have cdclW -s ′ S ′ T
using cdclW -s ′.bj ′[of S ′ T] by blast

then have cdclW -s ′∗∗ S T
using st(1) by auto

moreover have no-step cdclW -s ′ T
using inv-T 〈full cdclW -stgy S T 〉 n-step-cdclW -stgy-iff-no-step-cdclW -restart-cl-cdclW -o
unfolding full-def by blast

ultimately show ?thesis
unfolding full-def by blast

qed
qed

end

end

160

Chapter 2

NOT’s CDCL and DPLL

theory CDCL-WNOT-Measure
imports Weidenbach-Book-Base.WB-List-More
begin

The organisation of the development is the following:

• CDCL_WNOT_Measure.thy contains the measure used to show the termination the core of
CDCL.

• CDCL_NOT.thy contains the specification of the rules: the rules are defined, and we proof
the correctness and termination for some strategies CDCL.

• DPLL_NOT.thy contains the DPLL calculus based on the CDCL version.

• DPLL_W.thy contains Weidenbach’s version of DPLL and the proof of equivalence between
the two DPLL versions.

2.1 Measure

This measure show the termination of the core of CDCL: each step improves the number of
literals we know for sure.
This measure can also be seen as the increasing lexicographic order: it is an order on bounded
sequences, when each element is bounded. The proof involves a measure like the one defined
here (the same?).
definition µC :: nat ⇒ nat ⇒ nat list ⇒ nat where
µC s b M ≡ (

∑
i=0 ..<length M . M !i ∗ b^ (s +i − length M))

lemma µC-Nil[simp]:
µC s b [] = 0
unfolding µC-def by auto

lemma µC-single[simp]:
µC s b [L] = L ∗ b ^ (s − Suc 0)
unfolding µC-def by auto

lemma set-sum-atLeastLessThan-add:
(
∑

i=k..<k+(b::nat). f i) = (
∑

i=0 ..<b. f (k+ i))
by (induction b) auto

161

lemma set-sum-atLeastLessThan-Suc:
(
∑

i=1 ..<Suc j. f i) = (
∑

i=0 ..<j. f (Suc i))
using set-sum-atLeastLessThan-add[of - 1 j] by force

lemma µC-cons:
µC s b (L # M) = L ∗ b ^ (s − 1 − length M) + µC s b M

proof −
have µC s b (L # M) = (

∑
i=0 ..<length (L#M). (L#M)!i ∗ b^ (s +i − length (L#M)))

unfolding µC-def by blast
also have . . . = (

∑
i=0 ..<1 . (L#M)!i ∗ b^ (s +i − length (L#M)))

+ (
∑

i=1 ..<length (L#M). (L#M)!i ∗ b^ (s +i − length (L#M)))
by (rule sum.atLeastLessThan-concat[symmetric]) simp-all

finally have µC s b (L # M)= L ∗ b ^ (s − 1 − length M)
+ (

∑
i=1 ..<length (L#M). (L#M)!i ∗ b^ (s +i − length (L#M)))

by auto
moreover {
have (

∑
i=1 ..<length (L#M). (L#M)!i ∗ b^ (s +i − length (L#M))) =

(
∑

i=0 ..<length M . (L#M)!(Suc i) ∗ b^ (s + (Suc i) − length (L#M)))
unfolding length-Cons set-sum-atLeastLessThan-Suc by blast
also have . . . = (

∑
i=0 ..<length M . M !i ∗ b^ (s + i − length M))

by auto
finally have (

∑
i=1 ..<length (L#M). (L#M)!i ∗ b^ (s +i − length (L#M))) = µC s b M

unfolding µC-def .
}

ultimately show ?thesis by presburger
qed

lemma µC-append:
assumes s ≥ length (M@M ′)
shows µC s b (M@M ′) = µC (s − length M ′) b M + µC s b M ′

proof −
have µC s b (M@M ′) = (

∑
i=0 ..<length (M@M ′). (M@M ′)!i ∗ b^ (s +i − length (M@M ′)))

unfolding µC-def by blast
moreover then have . . . = (

∑
i=0 ..< length M . (M@M ′)!i ∗ b^ (s +i − length (M@M ′)))

+ (
∑

i=length M ..<length (M@M ′). (M@M ′)!i ∗ b^ (s +i − length (M@M ′)))
by (auto intro!: sum.atLeastLessThan-concat[symmetric])

moreover
have ∀ i∈{0 ..< length M}. (M@M ′)!i ∗ b^ (s +i − length (M@M ′)) = M ! i ∗ b ^ (s − length M ′

+ i − length M)
using 〈s ≥ length (M@M ′)〉 by (auto simp add: nth-append ac-simps)
then have µC (s − length M ′) b M = (

∑
i=0 ..< length M . (M@M ′)!i ∗ b^ (s +i − length

(M@M ′)))
unfolding µC-def by auto

ultimately have µC s b (M@M ′)= µC (s − length M ′) b M
+ (

∑
i=length M ..<length (M@M ′). (M@M ′)!i ∗ b^ (s +i − length (M@M ′)))

by auto
moreover {
have (

∑
i=length M ..<length (M@M ′). (M@M ′)!i ∗ b^ (s +i − length (M@M ′))) =

(
∑

i=0 ..<length M ′. M ′!i ∗ b^ (s + i − length M ′))
unfolding length-append set-sum-atLeastLessThan-add by auto
then have (

∑
i=length M ..<length (M@M ′). (M@M ′)!i ∗ b^ (s +i − length (M@M ′))) = µC s b

M ′

unfolding µC-def .
}

ultimately show ?thesis by presburger

162

qed

lemma µC-cons-non-empty-inf :
assumes M-ge-1 : ∀ i∈set M . i ≥ 1 and M : M 6= []
shows µC s b M ≥ b ^ (s − length M)
using assms by (cases M) (auto simp: mult-eq-if µC-cons)

Copy of ~~/src/HOL/ex/NatSum.thy (but generalized to 0 ≤ k)

lemma sum-of-powers: 0 ≤ k =⇒ (k − 1) ∗ (
∑

i=0 ..<n. k^i) = k^n − (1 ::nat)
apply (cases k = 0)
apply (cases n; simp)

by (induct n) (auto simp: Nat.nat-distrib)

In the degenerated cases, we only have the large inequality holds. In the other cases, the
following strict inequality holds:

lemma µC-bounded-non-degenerated:
fixes b ::nat
assumes
b > 0 and
M 6= [] and
M-le: ∀ i < length M . M !i < b and
s ≥ length M

shows µC s b M < b^s
proof −
consider (b1) b= 1 | (b) b>1 using 〈b>0 〉 by (cases b) auto
then show ?thesis
proof cases
case b1
then have ∀ i < length M . M !i = 0 using M-le by auto
then have µC s b M = 0 unfolding µC-def by auto
then show ?thesis using 〈b > 0 〉 by auto

next
case b
have ∀ i ∈ {0 ..<length M}. M !i ∗ b^ (s +i − length M) ≤ (b−1) ∗ b^ (s +i − length M)
using M-le 〈b > 1 〉 by auto

then have µC s b M ≤ (
∑

i=0 ..<length M . (b−1) ∗ b^ (s +i − length M))
using 〈M 6=[]〉 〈b>0 〉 unfolding µC-def by (auto intro: sum-mono)

also
have ∀ i ∈ {0 ..<length M}. (b−1) ∗ b^ (s +i − length M) = (b−1) ∗ b^ i ∗ b^ (s − length M)
by (metis Nat.add-diff-assoc2 add.commute assms(4) mult.assoc power-add)

then have (
∑

i=0 ..<length M . (b−1) ∗ b^ (s +i − length M))
= (

∑
i=0 ..<length M . (b−1)∗ b^ i ∗ b^ (s − length M))

by (auto simp add: ac-simps)
also have . . . = (

∑
i=0 ..<length M . b^ i) ∗ b^ (s − length M) ∗ (b−1)

by (simp add: sum-distrib-right sum-distrib-left ac-simps)
finally have µC s b M ≤ (

∑
i=0 ..<length M . b^ i) ∗ (b−1) ∗ b^ (s − length M)

by (simp add: ac-simps)

also
have (

∑
i=0 ..<length M . b^ i)∗ (b−1) = b ^ (length M) − 1

using sum-of-powers[of b length M] 〈b>1 〉

by (auto simp add: ac-simps)
finally have µC s b M ≤ (b ^ (length M) − 1) ∗ b ^ (s − length M)
by auto

also have . . . < b ^ (length M) ∗ b ^ (s − length M)

163

using 〈b>1 〉 by auto
also have . . . = b ^ s
by (metis assms(4) le-add-diff-inverse power-add)

finally show ?thesis unfolding µC-def by (auto simp add: ac-simps)
qed

qed

In the degenerate case b = (0 :: ′a), the list M is empty (since the list cannot contain any
element).

lemma µC-bounded:
fixes b :: nat
assumes
M-le: ∀ i < length M . M !i < b and
s ≥ length M
b > 0

shows µC s b M < b ^ s
proof −
consider (M0) M = [] | (M) b > 0 and M 6= []
using M-le by (cases b, cases M) auto

then show ?thesis
proof cases
case M0
then show ?thesis using M-le 〈b > 0 〉 by auto

next
case M
show ?thesis using µC-bounded-non-degenerated[OF M assms(1 ,2)] by arith

qed
qed

When b = 0, we cannot show that the measure is empty, since 0 0 = 1.

lemma µC-base-0 :
assumes length M ≤ s
shows µC s 0 M ≤ M !0

proof −
{
assume s = length M
moreover {
fix n
have (

∑
i=0 ..<n. M ! i ∗ (0 ::nat) ^ i) ≤ M ! 0

apply (induction n rule: nat-induct)
by simp (rename-tac n, case-tac n, auto)

}
ultimately have ?thesis unfolding µC-def by auto

}
moreover
{
assume length M < s
then have µC s 0 M = 0 unfolding µC-def by auto}

ultimately show ?thesis using assms unfolding µC-def by linarith
qed

lemma finite-bounded-pair-list:
fixes b :: nat
shows finite {(ys, xs). length xs < s ∧ length ys < s ∧

(∀ i< length xs. xs ! i < b) ∧ (∀ i< length ys. ys ! i < b)}

164

proof −
have H : {(ys, xs). length xs < s ∧ length ys < s ∧

(∀ i< length xs. xs ! i < b) ∧ (∀ i< length ys. ys ! i < b)}
⊆
{xs. length xs < s ∧ (∀ i< length xs. xs ! i < b)} ×
{xs. length xs < s ∧ (∀ i< length xs. xs ! i < b)}
by auto

moreover have finite {xs. length xs < s ∧ (∀ i< length xs. xs ! i < b)}
by (rule finite-bounded-list)

ultimately show ?thesis by (auto simp: finite-subset)
qed

definition νNOT :: nat ⇒ nat ⇒ (nat list × nat list) set where
νNOT s base = {(ys, xs). length xs < s ∧ length ys < s ∧

(∀ i< length xs. xs ! i < base) ∧ (∀ i< length ys. ys ! i < base) ∧
(ys, xs) ∈ lenlex less-than}

lemma finite-νNOT [simp]:
finite (νNOT s base)

proof −
have νNOT s base ⊆ {(ys, xs). length xs < s ∧ length ys < s ∧

(∀ i< length xs. xs ! i < base) ∧ (∀ i< length ys. ys ! i < base)}
by (auto simp: νNOT-def)

moreover have finite {(ys, xs). length xs < s ∧ length ys < s ∧
(∀ i< length xs. xs ! i < base) ∧ (∀ i< length ys. ys ! i < base)}
by (rule finite-bounded-pair-list)

ultimately show ?thesis by (auto simp: finite-subset)
qed

lemma acyclic-νNOT : acyclic (νNOT s base)
apply (rule acyclic-subset[of lenlex less-than νNOT s base])
apply (rule wf-acyclic)

by (auto simp: νNOT-def)

lemma wf-νNOT : wf (νNOT s base)
by (rule finite-acyclic-wf) (auto simp: acyclic-νNOT)

end
theory CDCL-NOT
imports
Weidenbach-Book-Base.WB-List-More
Weidenbach-Book-Base.Wellfounded-More
Entailment-Definition.Partial-Annotated-Herbrand-Interpretation
CDCL-WNOT-Measure

begin

2.2 NOT’s CDCL
2.2.1 Auxiliary Lemmas and Measure

We define here some more simplification rules, or rules that have been useful as help for some
tactic
lemma atms-of-uminus-lit-atm-of-lit-of :

〈atms-of {# −lit-of x. x ∈# A#} = atm-of ‘ (lit-of ‘ (set-mset A))〉

unfolding atms-of-def by (auto simp add: Fun.image-comp)

165

lemma atms-of-ms-single-image-atm-of-lit-of :
〈atms-of-ms (unmark-s A) = atm-of ‘ (lit-of ‘ A)〉

unfolding atms-of-ms-def by auto

2.2.2 Initial Definitions
The State

We define here an abstraction over operation on the state we are manipulating.
locale dpll-state-ops =
fixes
trail :: 〈 ′st ⇒ (′v, unit) ann-lits〉 and
clausesN OT :: 〈 ′st ⇒ ′v clauses〉 and
prepend-trail :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st〉 and
tl-trail :: 〈 ′st ⇒ ′st〉 and
add-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
remove-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉

begin
abbreviation stateN OT :: 〈 ′st ⇒ (′v, unit) ann-lit list × ′v clauses〉 where
〈stateN OT S ≡ (trail S , clausesN OT S)〉

end

NOT’s state is basically a pair composed of the trail (i.e. the candidate model) and the set of
clauses. We abstract this state to convert this state to other states. like Weidenbach’s five-tuple.
locale dpll-state =
dpll-state-ops
trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT — related to the state

for
trail :: 〈 ′st ⇒ (′v, unit) ann-lits〉 and
clausesN OT :: 〈 ′st ⇒ ′v clauses〉 and
prepend-trail :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st〉 and
tl-trail :: 〈 ′st ⇒ ′st〉 and
add-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
remove-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 +

assumes
prepend-trailN OT :

〈stateN OT (prepend-trail L st) = (L # trail st, clausesN OT st)〉 and
tl-trailN OT :

〈stateN OT (tl-trail st) = (tl (trail st), clausesN OT st)〉 and
add-clsN OT :

〈stateN OT (add-clsN OT C st) = (trail st, add-mset C (clausesN OT st))〉 and
remove-clsN OT :

〈stateN OT (remove-clsN OT C st) = (trail st, removeAll-mset C (clausesN OT st))〉

begin
lemma
trail-prepend-trail[simp]:

〈trail (prepend-trail L st) = L # trail st〉

and
trail-tl-trailN OT [simp]: 〈trail (tl-trail st) = tl (trail st)〉 and
trail-add-clsN OT [simp]: 〈trail (add-clsN OT C st) = trail st〉 and
trail-remove-clsN OT [simp]: 〈trail (remove-clsN OT C st) = trail st〉 and

clauses-prepend-trail[simp]:
〈clausesN OT (prepend-trail L st) = clausesN OT st〉

166

and
clauses-tl-trail[simp]: 〈clausesN OT (tl-trail st) = clausesN OT st〉 and
clauses-add-clsN OT [simp]:

〈clausesN OT (add-clsN OT C st) = add-mset C (clausesN OT st)〉 and
clauses-remove-clsN OT [simp]:

〈clausesN OT (remove-clsN OT C st) = removeAll-mset C (clausesN OT st)〉

using prepend-trailN OT [of L st] tl-trailN OT [of st] add-clsN OT [of C st] remove-clsN OT [of C st]
by (cases 〈stateN OT st〉; auto)+

We define the following function doing the backtrack in the trail:
function reduce-trail-toN OT :: 〈 ′a list ⇒ ′st ⇒ ′st〉 where
〈reduce-trail-toN OT F S =

(if length (trail S) = length F ∨ trail S = [] then S else reduce-trail-toN OT F (tl-trail S))〉

by fast+
termination by (relation 〈measure (λ(-, S). length (trail S))〉) auto

declare reduce-trail-toN OT .simps[simp del]

Then we need several lemmas about the reduce-trail-toN OT .
lemma
shows
reduce-trail-toN OT -Nil[simp]: 〈trail S = [] =⇒ reduce-trail-toN OT F S = S 〉 and
reduce-trail-toN OT -eq-length[simp]: 〈length (trail S) = length F =⇒ reduce-trail-toN OT F S = S 〉

by (auto simp: reduce-trail-toN OT .simps)

lemma reduce-trail-toN OT -length-ne[simp]:
〈length (trail S) 6= length F =⇒ trail S 6= [] =⇒
reduce-trail-toN OT F S = reduce-trail-toN OT F (tl-trail S)〉

by (auto simp: reduce-trail-toN OT .simps)

lemma trail-reduce-trail-toN OT -length-le:
assumes 〈length F > length (trail S)〉

shows 〈trail (reduce-trail-toN OT F S) = []〉

using assms by (induction F S rule: reduce-trail-toN OT .induct)
(simp add: less-imp-diff-less reduce-trail-toN OT .simps)

lemma trail-reduce-trail-toN OT -Nil[simp]:
〈trail (reduce-trail-toN OT [] S) = []〉

by (induction 〈[]〉 S rule: reduce-trail-toN OT .induct)
(simp add: less-imp-diff-less reduce-trail-toN OT .simps)

lemma clauses-reduce-trail-toN OT -Nil:
〈clausesN OT (reduce-trail-toN OT [] S) = clausesN OT S 〉

by (induction 〈[]〉 S rule: reduce-trail-toN OT .induct)
(simp add: less-imp-diff-less reduce-trail-toN OT .simps)

lemma trail-reduce-trail-toN OT -drop:
〈trail (reduce-trail-toN OT F S) =

(if length (trail S) ≥ length F
then drop (length (trail S) − length F) (trail S)
else [])〉

apply (induction F S rule: reduce-trail-toN OT .induct)
apply (rename-tac F S , case-tac 〈trail S 〉)
apply auto[]
apply (rename-tac list, case-tac 〈Suc (length list) > length F 〉)
prefer 2 apply simp

167

apply (subgoal-tac 〈Suc (length list) − length F = Suc (length list − length F)〉)
apply simp
apply simp
done

lemma reduce-trail-toN OT -skip-beginning:
assumes 〈trail S = F ′ @ F 〉

shows 〈trail (reduce-trail-toN OT F S) = F 〉

using assms by (auto simp: trail-reduce-trail-toN OT -drop)

lemma reduce-trail-toN OT -clauses[simp]:
〈clausesN OT (reduce-trail-toN OT F S) = clausesN OT S 〉

by (induction F S rule: reduce-trail-toN OT .induct)
(simp add: less-imp-diff-less reduce-trail-toN OT .simps)

lemma trail-eq-reduce-trail-toN OT -eq:
〈trail S = trail T =⇒ trail (reduce-trail-toN OT F S) = trail (reduce-trail-toN OT F T)〉

apply (induction F S arbitrary: T rule: reduce-trail-toN OT .induct)
by (metis trail-tl-trailN OT reduce-trail-toN OT -eq-length reduce-trail-toN OT -length-ne
reduce-trail-toN OT -Nil)

lemma trail-reduce-trail-toN OT -add-clsN OT [simp]:
〈no-dup (trail S) =⇒
trail (reduce-trail-toN OT F (add-clsN OT C S)) = trail (reduce-trail-toN OT F S)〉

by (rule trail-eq-reduce-trail-toN OT -eq) simp

lemma reduce-trail-toN OT -trail-tl-trail-decomp[simp]:
〈trail S = F ′ @ Decided K # F =⇒

trail (reduce-trail-toN OT F (tl-trail S)) = F 〉

apply (rule reduce-trail-toN OT -skip-beginning[of - 〈tl (F ′ @ Decided K # [])〉])
by (cases F ′) (auto simp add:tl-append reduce-trail-toN OT -skip-beginning)

lemma reduce-trail-toN OT -length:
〈length M = length M ′ =⇒ reduce-trail-toN OT M S = reduce-trail-toN OT M ′ S 〉

apply (induction M S rule: reduce-trail-toN OT .induct)
by (simp add: reduce-trail-toN OT .simps)

abbreviation trail-weight where
〈trail-weight S ≡ map ((λl. 1 + length l) o snd) (get-all-ann-decomposition (trail S))〉

As we are defining abstract states, the Isabelle equality about them is too strong: we want the
weaker equivalence stating that two states are equal if they cannot be distinguished, i.e. given
the getter trail and clausesN OT do not distinguish them.

definition state-eqN OT :: 〈 ′st ⇒ ′st ⇒ bool〉 (infix ∼ 50) where
〈S ∼ T ←→ trail S = trail T ∧ clausesN OT S = clausesN OT T 〉

lemma state-eqN OT -ref [intro, simp]:
〈S ∼ S 〉

unfolding state-eqN OT -def by auto

lemma state-eqN OT -sym:
〈S ∼ T ←→ T ∼ S 〉

unfolding state-eqN OT -def by auto

lemma state-eqN OT -trans:

168

〈S ∼ T =⇒ T ∼ U =⇒ S ∼ U 〉

unfolding state-eqN OT -def by auto

lemma
shows
state-eqN OT -trail: 〈S ∼ T =⇒ trail S = trail T 〉 and
state-eqN OT -clauses: 〈S ∼ T =⇒ clausesN OT S = clausesN OT T 〉

unfolding state-eqN OT -def by auto

lemmas state-simpN OT [simp] = state-eqN OT -trail state-eqN OT -clauses

lemma reduce-trail-toN OT -state-eqN OT -compatible:
assumes ST : 〈S ∼ T 〉

shows 〈reduce-trail-toN OT F S ∼ reduce-trail-toN OT F T 〉

proof −
have 〈clausesN OT (reduce-trail-toN OT F S) = clausesN OT (reduce-trail-toN OT F T)〉

using ST by auto
moreover have 〈trail (reduce-trail-toN OT F S) = trail (reduce-trail-toN OT F T)〉

using trail-eq-reduce-trail-toN OT -eq[of S T F] ST by auto
ultimately show ?thesis by (auto simp del: state-simpN OT simp: state-eqN OT -def)

qed

end — End on locale dpll-state.

Definition of the Transitions

Each possible is in its own locale.

locale propagate-ops =
dpll-state trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT

for
trail :: 〈 ′st ⇒ (′v, unit) ann-lits〉 and
clausesN OT :: 〈 ′st ⇒ ′v clauses〉 and
prepend-trail :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st〉 and
tl-trail :: 〈 ′st ⇒ ′st〉 and
add-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
remove-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 +

fixes
propagate-conds :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st ⇒ bool〉

begin
inductive propagateN OT :: 〈 ′st ⇒ ′st ⇒ bool〉 where
propagateN OT [intro]: 〈add-mset L C ∈# clausesN OT S =⇒ trail S |=as CNot C

=⇒ undefined-lit (trail S) L
=⇒ propagate-conds (Propagated L ()) S T
=⇒ T ∼ prepend-trail (Propagated L ()) S
=⇒ propagateN OT S T 〉

inductive-cases propagateN OTE [elim]: 〈propagateN OT S T 〉

end

locale decide-ops =
dpll-state trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT

for
trail :: 〈 ′st ⇒ (′v, unit) ann-lits〉 and
clausesN OT :: 〈 ′st ⇒ ′v clauses〉 and
prepend-trail :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st〉 and

169

tl-trail :: 〈 ′st ⇒ ′st〉 and
add-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
remove-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 +

fixes
decide-conds :: 〈 ′st ⇒ ′st ⇒ bool〉

begin
inductive decideN OT :: 〈 ′st ⇒ ′st ⇒ bool〉 where
decideN OT [intro]:

〈undefined-lit (trail S) L =⇒
atm-of L ∈ atms-of-mm (clausesN OT S) =⇒
T ∼ prepend-trail (Decided L) S =⇒
decide-conds S T =⇒
decideN OT S T 〉

inductive-cases decideN OTE [elim]: 〈decideN OT S S ′〉
end

locale backjumping-ops =
dpll-state trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT

for
trail :: 〈 ′st ⇒ (′v, unit) ann-lits〉 and
clausesN OT :: 〈 ′st ⇒ ′v clauses〉 and
prepend-trail :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st〉 and
tl-trail :: 〈 ′st ⇒ ′st〉 and
add-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
remove-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 +

fixes
backjump-conds :: 〈 ′v clause ⇒ ′v clause ⇒ ′v literal ⇒ ′st ⇒ ′st ⇒ bool〉

begin

inductive backjump where
〈trail S = F ′ @ Decided K # F

=⇒ T ∼ prepend-trail (Propagated L ()) (reduce-trail-toN OT F S)
=⇒ C ∈# clausesN OT S
=⇒ trail S |=as CNot C
=⇒ undefined-lit F L
=⇒ atm-of L ∈ atms-of-mm (clausesN OT S) ∪ atm-of ‘ (lits-of-l (trail S))
=⇒ clausesN OT S |=pm add-mset L C ′
=⇒ F |=as CNot C ′
=⇒ backjump-conds C C ′ L S T
=⇒ backjump S T 〉

inductive-cases backjumpE : 〈backjump S T 〉

The condition atm-of L ∈ atms-of-mm (clausesN OT S) ∪ atm-of ‘ lits-of-l (trail S) is not
implied by the the condition clausesN OT S |=pm add-mset L C ′ (no negation).
end

2.2.3 DPLL with Backjumping
locale dpll-with-backjumping-ops =
propagate-ops trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT propagate-conds +
decide-ops trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT decide-conds +
backjumping-ops trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT backjump-conds
for
trail :: 〈 ′st ⇒ (′v, unit) ann-lits〉 and
clausesN OT :: 〈 ′st ⇒ ′v clauses〉 and

170

prepend-trail :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st〉 and
tl-trail :: 〈 ′st ⇒ ′st〉 and
add-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
remove-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
inv :: 〈 ′st ⇒ bool〉 and
decide-conds :: 〈 ′st ⇒ ′st ⇒ bool〉 and
backjump-conds :: 〈 ′v clause ⇒ ′v clause ⇒ ′v literal ⇒ ′st ⇒ ′st ⇒ bool〉 and
propagate-conds :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st ⇒ bool〉 +

assumes
bj-can-jump:

〈
∧
S C F ′ K F L.
inv S =⇒
trail S = F ′ @ Decided K # F =⇒
C ∈# clausesN OT S =⇒
trail S |=as CNot C =⇒
undefined-lit F L =⇒
atm-of L ∈ atms-of-mm (clausesN OT S) ∪ atm-of ‘ (lits-of-l (F ′ @ Decided K # F)) =⇒
clausesN OT S |=pm add-mset L C ′ =⇒
F |=as CNot C ′ =⇒
¬no-step backjump S 〉 and

can-propagate-or-decide-or-backjump:
〈atm-of L ∈ atms-of-mm (clausesN OT S) =⇒
undefined-lit (trail S) L =⇒
satisfiable (set-mset (clausesN OT S)) =⇒
inv S =⇒
no-dup (trail S) =⇒
∃T . decideN OT S T ∨ propagateN OT S T ∨ backjump S T 〉

begin

We cannot add a like condition atms-of C ′ ⊆ atms-of-ms N to ensure that we can backjump
even if the last decision variable has disappeared from the set of clauses.
The part of the condition atm-of L ∈ atm-of ‘ lits-of-l (F ′ @ Decided K # F) is important,
otherwise you are not sure that you can backtrack.

Definition

We define dpll with backjumping:

inductive dpll-bj :: 〈 ′st ⇒ ′st ⇒ bool〉 for S :: ′st where
bj-decideN OT : 〈decideN OT S S ′ =⇒ dpll-bj S S ′〉 |
bj-propagateN OT : 〈propagateN OT S S ′ =⇒ dpll-bj S S ′〉 |
bj-backjump: 〈backjump S S ′ =⇒ dpll-bj S S ′〉

lemmas dpll-bj-induct = dpll-bj.induct[split-format(complete)]
thm dpll-bj-induct[OF dpll-with-backjumping-ops-axioms]
lemma dpll-bj-all-induct[consumes 2 , case-names decideN OT propagateN OT backjump]:
fixes S T :: 〈 ′st〉

assumes
〈dpll-bj S T 〉 and
〈inv S 〉

〈
∧
L T . undefined-lit (trail S) L =⇒ atm-of L ∈ atms-of-mm (clausesN OT S)

=⇒ T ∼ prepend-trail (Decided L) S
=⇒ P S T 〉 and

〈
∧
C L T . add-mset L C ∈# clausesN OT S =⇒ trail S |=as CNot C =⇒ undefined-lit (trail S) L

=⇒ T ∼ prepend-trail (Propagated L ()) S

171

=⇒ P S T 〉 and
〈
∧
C F ′ K F L C ′ T . C ∈# clausesN OT S =⇒ F ′ @ Decided K # F |=as CNot C

=⇒ trail S = F ′ @ Decided K # F
=⇒ undefined-lit F L
=⇒ atm-of L ∈ atms-of-mm (clausesN OT S) ∪ atm-of ‘ (lits-of-l (F ′ @ Decided K # F))
=⇒ clausesN OT S |=pm add-mset L C ′
=⇒ F |=as CNot C ′
=⇒ T ∼ prepend-trail (Propagated L ()) (reduce-trail-toN OT F S)
=⇒ P S T 〉

shows 〈P S T 〉

apply (induct T rule: dpll-bj-induct[OF local.dpll-with-backjumping-ops-axioms])
apply (rule assms(1))
using assms(3) apply blast
apply (elim propagateN OTE) using assms(4) apply blast
apply (elim backjumpE) using assms(5) 〈inv S 〉 by simp

Basic properties
First, some better suited induction principle lemma dpll-bj-clauses:
assumes 〈dpll-bj S T 〉 and 〈inv S 〉

shows 〈clausesN OT S = clausesN OT T 〉

using assms by (induction rule: dpll-bj-all-induct) auto

No duplicates in the trail lemma dpll-bj-no-dup:
assumes 〈dpll-bj S T 〉 and 〈inv S 〉

and 〈no-dup (trail S)〉

shows 〈no-dup (trail T)〉

using assms by (induction rule: dpll-bj-all-induct)
(auto simp add: defined-lit-map reduce-trail-toN OT -skip-beginning dest: no-dup-appendD)

Valuations lemma dpll-bj-sat-iff :
assumes 〈dpll-bj S T 〉 and 〈inv S 〉

shows 〈I |=sm clausesN OT S ←→ I |=sm clausesN OT T 〉

using assms by (induction rule: dpll-bj-all-induct) auto

Clauses lemma dpll-bj-atms-of-ms-clauses-inv:
assumes

〈dpll-bj S T 〉 and
〈inv S 〉

shows 〈atms-of-mm (clausesN OT S) = atms-of-mm (clausesN OT T)〉

using assms by (induction rule: dpll-bj-all-induct) auto

lemma dpll-bj-atms-in-trail:
assumes

〈dpll-bj S T 〉 and
〈inv S 〉 and
〈atm-of ‘ (lits-of-l (trail S)) ⊆ atms-of-mm (clausesN OT S)〉

shows 〈atm-of ‘ (lits-of-l (trail T)) ⊆ atms-of-mm (clausesN OT S)〉

using assms by (induction rule: dpll-bj-all-induct)
(auto simp: in-plus-implies-atm-of-on-atms-of-ms reduce-trail-toN OT -skip-beginning)

lemma dpll-bj-atms-in-trail-in-set:
assumes 〈dpll-bj S T 〉and

〈inv S 〉 and
〈atms-of-mm (clausesN OT S) ⊆ A〉 and

172

〈atm-of ‘ (lits-of-l (trail S)) ⊆ A〉

shows 〈atm-of ‘ (lits-of-l (trail T)) ⊆ A〉

using assms by (induction rule: dpll-bj-all-induct)
(auto simp: in-plus-implies-atm-of-on-atms-of-ms)

lemma dpll-bj-all-decomposition-implies-inv:
assumes

〈dpll-bj S T 〉 and
inv: 〈inv S 〉 and
decomp: 〈all-decomposition-implies-m (clausesN OT S) (get-all-ann-decomposition (trail S))〉

shows 〈all-decomposition-implies-m (clausesN OT T) (get-all-ann-decomposition (trail T))〉

using assms(1 ,2)
proof (induction rule:dpll-bj-all-induct)
case decideN OT

then show ?case using decomp by auto
next
case (propagateN OT C L T) note propa = this(1) and undef = this(3) and T = this(4)
let ?M ′ = 〈trail (prepend-trail (Propagated L ()) S)〉

let ?N = 〈clausesN OT S 〉

obtain a y l where ay: 〈get-all-ann-decomposition ?M ′ = (a, y) # l〉

by (cases 〈get-all-ann-decomposition ?M ′〉) fastforce+
then have M ′: 〈?M ′ = y @ a〉 using get-all-ann-decomposition-decomp[of ?M ′] by auto
have M : 〈get-all-ann-decomposition (trail S) = (a, tl y) # l〉

using ay undef by (cases 〈 get-all-ann-decomposition (trail S)〉) auto
have y0: 〈y = (Propagated L ()) # (tl y)〉

using ay undef by (auto simp add: M)
from arg-cong[OF this, of set] have y[simp]: 〈set y = insert (Propagated L ()) (set (tl y))〉

by simp
have tr-S : 〈trail S = tl y @ a〉

using arg-cong[OF M ′, of tl] y0 M get-all-ann-decomposition-decomp by force
have a-Un-N-M : 〈unmark-l a ∪ set-mset ?N |=ps unmark-l (tl y)〉

using decomp ay unfolding all-decomposition-implies-def by (simp add: M)+

moreover have 〈unmark-l a ∪ set-mset ?N |=p {#L#}〉 (is 〈?I |=p -〉)
proof (rule true-clss-cls-plus-CNot)
show 〈?I |=p add-mset L C 〉

using propa propagateN OT .prems by (auto dest!: true-clss-clss-in-imp-true-clss-cls)
next
have 〈unmark-l ?M ′ |=ps CNot C 〉

using 〈trail S |=as CNot C 〉 undef by (auto simp add: true-annots-true-clss-clss)
have a1 : 〈unmark-l a ∪ unmark-l (tl y) |=ps CNot C 〉

using propagateN OT .hyps(2) tr-S true-annots-true-clss-clss
by (force simp add: image-Un sup-commute)

then have 〈unmark-l a ∪ set-mset (clausesN OT S) |=ps unmark-l a ∪ unmark-l (tl y)〉

using a-Un-N-M true-clss-clss-def by blast
then show 〈unmark-l a ∪ set-mset (clausesN OT S) |=ps CNot C 〉

using a1 by (meson true-clss-clss-left-right true-clss-clss-union-and
true-clss-clss-union-l-r)

qed
ultimately have 〈unmark-l a ∪ set-mset ?N |=ps unmark-l ?M ′〉

unfolding M ′ by (auto simp add: all-in-true-clss-clss image-Un)
then show ?case
using decomp T M undef unfolding ay all-decomposition-implies-def by (auto simp add: ay)

next
case (backjump C F ′ K F L D T) note confl = this(2) and tr = this(3) and undef = this(4) and
L = this(5) and N-C = this(6) and vars-D = this(5) and T = this(8)

173

have decomp: 〈all-decomposition-implies-m (clausesN OT S) (get-all-ann-decomposition F)〉

using decomp unfolding tr all-decomposition-implies-def
by (metis (no-types, lifting) get-all-ann-decomposition.simps(1)
get-all-ann-decomposition-never-empty hd-Cons-tl insert-iff list.sel(3) list.set(2)
tl-get-all-ann-decomposition-skip-some)

obtain a b li where F : 〈get-all-ann-decomposition F = (a, b) # li〉

by (cases 〈get-all-ann-decomposition F 〉) auto
have 〈F = b @ a〉

using get-all-ann-decomposition-decomp[of F a b] F by auto
have a-N-b:〈unmark-l a ∪ set-mset (clausesN OT S) |=ps unmark-l b〉

using decomp unfolding all-decomposition-implies-def by (auto simp add: F)

have F-D: 〈unmark-l F |=ps CNot D〉

using 〈F |=as CNot D〉 by (simp add: true-annots-true-clss-clss)
then have 〈unmark-l a ∪ unmark-l b |=ps CNot D〉

unfolding 〈F = b @ a〉 by (simp add: image-Un sup.commute)
have a-N-CNot-D: 〈unmark-l a ∪ set-mset (clausesN OT S) |=ps CNot D ∪ unmark-l b〉

apply (rule true-clss-clss-left-right)
using a-N-b F-D unfolding 〈F = b @ a〉 by (auto simp add: image-Un ac-simps)

have a-N-D-L: 〈unmark-l a ∪ set-mset (clausesN OT S) |=p add-mset L D〉

by (simp add: N-C)
have 〈unmark-l a ∪ set-mset (clausesN OT S) |=p {#L#}〉

using a-N-D-L a-N-CNot-D by (blast intro: true-clss-cls-plus-CNot)
then show ?case
using decomp T tr undef unfolding all-decomposition-implies-def by (auto simp add: F)

qed

Termination
Using a proper measure lemma length-get-all-ann-decomposition-append-Decided:

〈length (get-all-ann-decomposition (F ′ @ Decided K # F)) =
length (get-all-ann-decomposition F ′)
+ length (get-all-ann-decomposition (Decided K # F))
− 1 〉

by (induction F ′ rule: ann-lit-list-induct) auto

lemma take-length-get-all-ann-decomposition-decided-sandwich:
〈take (length (get-all-ann-decomposition F))

(map (f o snd) (rev (get-all-ann-decomposition (F ′ @ Decided K # F))))
=
map (f o snd) (rev (get-all-ann-decomposition F))

〉

proof (induction F ′ rule: ann-lit-list-induct)
case Nil
then show ?case by auto

next
case (Decided K)
then show ?case by (simp add: length-get-all-ann-decomposition-append-Decided)

next
case (Propagated L m F ′) note IH = this(1)
obtain a b l where F ′: 〈get-all-ann-decomposition (F ′ @ Decided K # F) = (a, b) # l〉

by (cases 〈get-all-ann-decomposition (F ′ @ Decided K # F)〉) auto
have 〈length (get-all-ann-decomposition F) − length l = 0 〉

using length-get-all-ann-decomposition-append-Decided[of F ′ K F]

174

unfolding F ′ by (cases 〈get-all-ann-decomposition F ′〉) auto
then show ?case
using IH by (simp add: F ′)

qed

lemma length-get-all-ann-decomposition-length:
〈length (get-all-ann-decomposition M) ≤ 1 + length M 〉

by (induction M rule: ann-lit-list-induct) auto

lemma length-in-get-all-ann-decomposition-bounded:
assumes i:〈i ∈ set (trail-weight S)〉

shows 〈i ≤ Suc (length (trail S))〉

proof −
obtain a b where

〈(a, b) ∈ set (get-all-ann-decomposition (trail S))〉 and
ib: 〈i = Suc (length b)〉

using i by auto
then obtain c where 〈trail S = c @ b @ a〉

using get-all-ann-decomposition-exists-prepend ′ by metis
from arg-cong[OF this, of length] show ?thesis using i ib by auto

qed

Well-foundedness The bounds are the following:

• 1 + card (atms-of-ms A): card (atms-of-ms A) is an upper bound on the length of the
list. As get-all-ann-decomposition appends an possibly empty couple at the end, adding
one is needed.

• 2 + card (atms-of-ms A): card (atms-of-ms A) is an upper bound on the number of
elements, where adding one is necessary for the same reason as for the bound on the list,
and one is needed to have a strict bound.

abbreviation unassigned-lit :: 〈 ′b clause set ⇒ ′a list ⇒ nat〉 where
〈unassigned-lit N M ≡ card (atms-of-ms N) − length M 〉

lemma dpll-bj-trail-mes-increasing-prop:
fixes M :: 〈(′v, unit) ann-lits 〉 and N :: 〈 ′v clauses〉

assumes
〈dpll-bj S T 〉 and
〈inv S 〉 and
NA: 〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and
MA: 〈atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A〉 and
n-d: 〈no-dup (trail S)〉 and
finite: 〈finite A〉

shows 〈µC (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T)
> µC (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight S)〉

using assms(1 ,2)
proof (induction rule: dpll-bj-all-induct)
case (propagateN OT C L T) note CLN = this(1) and MC = this(2) and undef-L = this(3) and T

= this(4)
have incl: 〈atm-of ‘ lits-of-l (Propagated L () # trail S) ⊆ atms-of-ms A〉

using propagateN OT dpll-bj-atms-in-trail-in-set bj-propagateN OT NA MA CLN
by (auto simp: in-plus-implies-atm-of-on-atms-of-ms)

175

have no-dup: 〈no-dup (Propagated L () # trail S)〉

using defined-lit-map n-d undef-L by auto
obtain a b l where M : 〈get-all-ann-decomposition (trail S) = (a, b) # l〉

by (cases 〈get-all-ann-decomposition (trail S)〉) auto
have b-le-M : 〈length b ≤ length (trail S)〉

using get-all-ann-decomposition-decomp[of 〈trail S 〉] by (simp add: M)
have 〈finite (atms-of-ms A)〉 using finite by simp

then have 〈length (Propagated L () # trail S) ≤ card (atms-of-ms A)〉

using incl finite unfolding no-dup-length-eq-card-atm-of-lits-of-l[OF no-dup]
by (simp add: card-mono)

then have latm: 〈unassigned-lit A b = Suc (unassigned-lit A (Propagated L () # b))〉

using b-le-M by auto
then show ?case using T undef-L by (auto simp: latm M µC-cons)

next
case (decideN OT L) note undef-L = this(1) and MC = this(2) and T = this(3)
have incl: 〈atm-of ‘ lits-of-l (Decided L # (trail S)) ⊆ atms-of-ms A〉

using dpll-bj-atms-in-trail-in-set bj-decideN OT decideN OT .decideN OT [OF decideN OT .hyps] NA MA
MC

by auto

have no-dup: 〈no-dup (Decided L # (trail S))〉

using defined-lit-map n-d undef-L by auto
obtain a b l where M : 〈get-all-ann-decomposition (trail S) = (a, b) # l〉

by (cases 〈get-all-ann-decomposition (trail S)〉) auto

then have 〈length (Decided L # (trail S)) ≤ card (atms-of-ms A)〉

using incl finite unfolding no-dup-length-eq-card-atm-of-lits-of-l[OF no-dup]
by (simp add: card-mono)

show ?case using T undef-L by (simp add: µC-cons)
next
case (backjump C F ′ K F L C ′ T) note undef-L = this(4) and MC = this(1) and tr-S = this(3)

and
L = this(5) and T = this(8)

have incl: 〈atm-of ‘ lits-of-l (Propagated L () # F) ⊆ atms-of-ms A〉

using dpll-bj-atms-in-trail-in-set NA MA L by (auto simp: tr-S)

have no-dup: 〈no-dup (Propagated L () # F)〉

using defined-lit-map n-d undef-L tr-S by (auto dest: no-dup-appendD)
obtain a b l where M : 〈get-all-ann-decomposition (trail S) = (a, b) # l〉

by (cases 〈get-all-ann-decomposition (trail S)〉) auto
have b-le-M : 〈length b ≤ length (trail S)〉

using get-all-ann-decomposition-decomp[of 〈trail S 〉] by (simp add: M)
have fin-atms-A: 〈finite (atms-of-ms A)〉 using finite by simp

then have F-le-A: 〈length (Propagated L () # F) ≤ card (atms-of-ms A)〉

using incl finite unfolding no-dup-length-eq-card-atm-of-lits-of-l[OF no-dup]
by (simp add: card-mono)

have tr-S-le-A: 〈length (trail S) ≤ card (atms-of-ms A)〉

using n-d MA by (metis fin-atms-A card-mono no-dup-length-eq-card-atm-of-lits-of-l)
obtain a b l where F : 〈get-all-ann-decomposition F = (a, b) # l〉

by (cases 〈get-all-ann-decomposition F 〉) auto
then have 〈F = b @ a〉

using get-all-ann-decomposition-decomp[of 〈Propagated L () # F 〉 a
〈Propagated L () # b〉] by simp

then have latm: 〈unassigned-lit A b = Suc (unassigned-lit A (Propagated L () # b))〉

176

using F-le-A by simp
obtain rem where
rem:〈map (λa. Suc (length (snd a))) (rev (get-all-ann-decomposition (F ′ @ Decided K # F)))
= map (λa. Suc (length (snd a))) (rev (get-all-ann-decomposition F)) @ rem〉

using take-length-get-all-ann-decomposition-decided-sandwich[of F 〈λa. Suc (length a)〉 F ′ K]
unfolding o-def by (metis append-take-drop-id)

then have rem: 〈map (λa. Suc (length (snd a)))
(get-all-ann-decomposition (F ′ @ Decided K # F))

= rev rem @ map (λa. Suc (length (snd a))) ((get-all-ann-decomposition F))〉

by (simp add: rev-map[symmetric] rev-swap)
have 〈length (rev rem @ map (λa. Suc (length (snd a))) (get-all-ann-decomposition F))

≤ Suc (card (atms-of-ms A))〉

using arg-cong[OF rem, of length] tr-S-le-A
length-get-all-ann-decomposition-length[of 〈F ′ @ Decided K # F 〉] tr-S by auto

moreover {
{ fix i :: nat and xs :: 〈 ′a list〉

have 〈i < length xs =⇒ length xs − Suc i < length xs〉

by auto
then have H : 〈i<length xs =⇒ rev xs ! i ∈ set xs〉

using rev-nth[of i xs] unfolding in-set-conv-nth by (force simp add: in-set-conv-nth)
} note H = this
have 〈∀ i<length rem. rev rem ! i < card (atms-of-ms A) + 2 〉

using tr-S-le-A length-in-get-all-ann-decomposition-bounded[of - S] unfolding tr-S
by (force simp add: o-def rem dest!: H intro: length-get-all-ann-decomposition-length) }

ultimately show ?case
using µC-bounded[of 〈rev rem〉 〈card (atms-of-ms A)+2 〉 〈unassigned-lit A l〉] T undef-L
by (simp add: rem µC-append µC-cons F tr-S)

qed

lemma dpll-bj-trail-mes-decreasing-prop:
assumes dpll: 〈dpll-bj S T 〉 and inv: 〈inv S 〉 and
N-A: 〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and
M-A: 〈atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A〉 and
nd: 〈no-dup (trail S)〉 and
fin-A: 〈finite A〉

shows 〈(2+card (atms-of-ms A)) ^ (1+card (atms-of-ms A))
− µC (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T)

< (2+card (atms-of-ms A)) ^ (1+card (atms-of-ms A))
− µC (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight S)〉

proof −
let ?b = 〈2+card (atms-of-ms A)〉

let ?s = 〈1+card (atms-of-ms A)〉

let ?µ = 〈µC ?s ?b〉

have M ′-A: 〈atm-of ‘ lits-of-l (trail T) ⊆ atms-of-ms A〉

by (meson M-A N-A dpll dpll-bj-atms-in-trail-in-set inv)
have nd ′: 〈no-dup (trail T)〉

using 〈dpll-bj S T 〉 dpll-bj-no-dup nd inv by blast
{ fix i :: nat and xs :: 〈 ′a list〉

have 〈i < length xs =⇒ length xs − Suc i < length xs〉

by auto
then have H : 〈i<length xs =⇒ xs ! i ∈ set xs〉

using rev-nth[of i xs] unfolding in-set-conv-nth by (force simp add: in-set-conv-nth)
} note H = this

have l-M-A: 〈length (trail S) ≤ card (atms-of-ms A)〉

by (simp add: fin-A M-A card-mono no-dup-length-eq-card-atm-of-lits-of-l nd)

177

have l-M ′-A: 〈length (trail T) ≤ card (atms-of-ms A)〉

by (simp add: fin-A M ′-A card-mono no-dup-length-eq-card-atm-of-lits-of-l nd ′)
have l-trail-weight-M : 〈length (trail-weight T) ≤ 1+card (atms-of-ms A)〉

using l-M ′-A length-get-all-ann-decomposition-length[of 〈trail T 〉] by auto
have bounded-M : 〈∀ i<length (trail-weight T). (trail-weight T)! i < card (atms-of-ms A) + 2 〉

using length-in-get-all-ann-decomposition-bounded[of - T] l-M ′-A
by (metis (no-types, lifting) H Nat.le-trans add-2-eq-Suc ′ not-le not-less-eq-eq)

from dpll-bj-trail-mes-increasing-prop[OF dpll inv N-A M-A nd fin-A]
have 〈µC ?s ?b (trail-weight S) < µC ?s ?b (trail-weight T)〉 by simp
moreover from µC-bounded[OF bounded-M l-trail-weight-M]
have 〈µC ?s ?b (trail-weight T) ≤ ?b ^ ?s〉 by auto

ultimately show ?thesis by linarith
qed

lemma wf-dpll-bj:
assumes fin: 〈finite A〉

shows 〈wf {(T , S). dpll-bj S T
∧ atms-of-mm (clausesN OT S) ⊆ atms-of-ms A ∧ atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A
∧ no-dup (trail S) ∧ inv S}〉

(is 〈wf ?A〉)
proof (rule wf-bounded-measure[of -

〈λ-. (2 + card (atms-of-ms A))^ (1 + card (atms-of-ms A))〉

〈λS . µC (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight S)〉])
fix a b :: 〈 ′st〉

let ?b = 〈2+card (atms-of-ms A)〉

let ?s = 〈1+card (atms-of-ms A)〉

let ?µ = 〈µC ?s ?b〉

assume ab: 〈(b, a) ∈ ?A〉

have fin-A: 〈finite (atms-of-ms A)〉

using fin by auto
have
dpll-bj: 〈dpll-bj a b〉 and
N-A: 〈atms-of-mm (clausesN OT a) ⊆ atms-of-ms A〉 and
M-A: 〈atm-of ‘ lits-of-l (trail a) ⊆ atms-of-ms A〉 and
nd: 〈no-dup (trail a)〉 and
inv: 〈inv a〉

using ab by auto

have M ′-A: 〈atm-of ‘ lits-of-l (trail b) ⊆ atms-of-ms A〉

by (meson M-A N-A 〈dpll-bj a b〉 dpll-bj-atms-in-trail-in-set inv)
have nd ′: 〈no-dup (trail b)〉

using 〈dpll-bj a b〉 dpll-bj-no-dup nd inv by blast
{ fix i :: nat and xs :: 〈 ′a list〉

have 〈i < length xs =⇒ length xs − Suc i < length xs〉

by auto
then have H : 〈i<length xs =⇒ xs ! i ∈ set xs〉

using rev-nth[of i xs] unfolding in-set-conv-nth by (force simp add: in-set-conv-nth)
} note H = this

have l-M-A: 〈length (trail a) ≤ card (atms-of-ms A)〉

by (simp add: fin-A M-A card-mono no-dup-length-eq-card-atm-of-lits-of-l nd)
have l-M ′-A: 〈length (trail b) ≤ card (atms-of-ms A)〉

by (simp add: fin-A M ′-A card-mono no-dup-length-eq-card-atm-of-lits-of-l nd ′)
have l-trail-weight-M : 〈length (trail-weight b) ≤ 1+card (atms-of-ms A)〉

178

using l-M ′-A length-get-all-ann-decomposition-length[of 〈trail b〉] by auto
have bounded-M : 〈∀ i<length (trail-weight b). (trail-weight b)! i < card (atms-of-ms A) + 2 〉

using length-in-get-all-ann-decomposition-bounded[of - b] l-M ′-A
by (metis (no-types, lifting) Nat.le-trans One-nat-def Suc-1 add.right-neutral add-Suc-right
le-imp-less-Suc less-eq-Suc-le nth-mem)

from dpll-bj-trail-mes-increasing-prop[OF dpll-bj inv N-A M-A nd fin]
have 〈µC ?s ?b (trail-weight a) < µC ?s ?b (trail-weight b)〉 by simp
moreover from µC-bounded[OF bounded-M l-trail-weight-M]
have 〈µC ?s ?b (trail-weight b) ≤ ?b ^ ?s〉 by auto

ultimately show 〈?b ^ ?s ≤ ?b ^ ?s ∧
µC ?s ?b (trail-weight b) ≤ ?b ^ ?s ∧
µC ?s ?b (trail-weight a) < µC ?s ?b (trail-weight b)〉

by blast
qed

Alternative termination proof abbreviation DPLL-mesW where
〈DPLL-mesW A M ≡
map (λL. if is-decided L then 2 ::nat else 1) (rev M) @ replicate (card A − length M) 3 〉

lemma distinctcard-atm-of-lit-of-eq-length:
assumes no-dup S
shows card (atm-of ‘ lits-of-l S) = length S
using assms by (induct S) (auto simp add: image-image lits-of-def no-dup-def)

lemma dpll-bj-trail-mes-decreasing-less-than:
assumes dpll: 〈dpll-bj S T 〉 and inv: 〈inv S 〉 and
N-A: 〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and
M-A: 〈atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A〉 and
nd: 〈no-dup (trail S)〉 and
fin-A: 〈finite A〉

shows 〈(DPLL-mesW (atms-of-ms A) (trail T), DPLL-mesW (atms-of-ms A) (trail S)) ∈
lexn less-than (card ((atms-of-ms A)))〉

using assms(1 ,2)
proof (induction rule: dpll-bj-all-induct)
case (decideN OT L T)
define n where

〈n = card (atms-of-ms A) − card (atm-of ‘ lits-of-l (trail S))〉

have [simp]: 〈length (trail S) = card (atm-of ‘ lits-of-l (trail S))〉

using nd by (auto simp: no-dup-def lits-of-def image-image dest: distinct-card)
have 〈atm-of L /∈ atm-of ‘ lits-of-l (trail S)〉

by (metis decideN OT .hyps(1) defined-lit-map imageE in-lits-of-l-defined-litD)

have 〈card (atms-of-ms A) > card (atm-of ‘ lits-of-l (trail S))〉

by (metis N-A 〈atm-of L /∈ atm-of ‘ lits-of-l (trail S)〉 atms-of-ms-finite card-seteq decideN OT .hyps(2)
M-A fin-A not-le subsetCE)

then have
n-0 : 〈n > 0 〉 and
n-Suc: 〈card (atms-of-ms A) − Suc (card (atm-of ‘ lits-of-l (trail S))) = n − 1 〉

unfolding n-def by auto

show ?case
using fin-A decideN OT n-0 unfolding state-eqN OT -trail[OF decideN OT (3)]
by (cases n) (auto simp: prepend-same-lexn n-def [symmetric] n-Suc lexn-Suc

simp del: state-simpN OT lexn.simps)

179

next
case (propagateN OT C L T) note C = this(1) and undef = this(3) and T = this(3)
then have 〈card (atms-of-ms A) > length (trail S)〉

proof −
have f7 : atm-of L ∈ atms-of-ms A
using N-A C in-m-in-literals by blast

have undefined-lit (trail S) (− L)
using undef by auto

then show ?thesis
using f7 nd fin-A M-A undef by (metis atm-of-in-atm-of-set-in-uminus atms-of-ms-finite

card-seteq in-lits-of-l-defined-litD leI no-dup-length-eq-card-atm-of-lits-of-l)
qed
then show ?case
using fin-A unfolding state-eqN OT -trail[OF propagateN OT (4)]
by (cases 〈card (atms-of-ms A) − length (trail S)〉)

(auto simp: prepend-same-lexn lexn-Suc
simp del: state-simpN OT lexn.simps)

next
case (backjump C F ′ K F L C ′ T) note tr-S = this(3)
have 〈trail (reduce-trail-toN OT F S) = F 〉

by (simp add: tr-S)
have 〈no-dup F 〉

using nd tr-S by (auto dest: no-dup-appendD)
then have card-A-F : 〈card (atms-of-ms A) > length F 〉

using distinctcard-atm-of-lit-of-eq-length[of 〈trail S 〉] card-mono[OF - M-A] fin-A nd tr-S
by auto

have 〈no-dup (F ′ @ F)〉

using nd tr-S by (auto dest: no-dup-appendD)
then have 〈no-dup F ′〉
apply (subst (asm) no-dup-rev[symmetric])
using nd tr-S by (auto dest: no-dup-appendD)

then have card-A-F ′: 〈card (atms-of-ms A) > length F ′ + length F 〉

using distinctcard-atm-of-lit-of-eq-length[of 〈trail S 〉] card-mono[OF - M-A] fin-A nd tr-S
by auto

show ?case
using card-A-F card-A-F ′
unfolding state-eqN OT -trail[OF backjump(8)]
by (cases 〈card (atms-of-ms A) − length F 〉)

(auto simp: tr-S prepend-same-lexn lexn-Suc simp del: state-simpN OT lexn.simps)
qed

lemma
assumes fin[simp]: 〈finite A〉

shows 〈wf {(T , S). dpll-bj S T
∧ atms-of-mm (clausesN OT S) ⊆ atms-of-ms A ∧ atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A
∧ no-dup (trail S) ∧ inv S}〉

(is 〈wf ?A〉)
unfolding conj-commute[of 〈dpll-bj - -〉]
apply (rule wf-wf-if-measure ′[of - - - 〈λS . DPLL-mesW ((atms-of-ms A)) (trail S)〉])
apply (rule wf-lexn)
apply (rule wf-less-than)
by (rule dpll-bj-trail-mes-decreasing-less-than; use fin in simp)

180

Normal Forms

We prove that given a normal form of DPLL, with some structural invariants, then either N is
satisfiable and the built valuation M is a model; or N is unsatisfiable.
Idea of the proof: We have to prove tat satisfiable N, ¬ M |=as N and there is no remaining
step is incompatible.

1. The decide rule tells us that every variable in N has a value.

2. The assumption ¬ M |=as N implies that there is conflict.

3. There is at least one decision in the trail (otherwise, M would be a model of the set of
clauses N).

4. Now if we build the clause with all the decision literals of the trail, we can apply the
backjump rule.
The assumption are saying that we have a finite upper bound A for the literals, that we
cannot do any step ∀S ′. ¬ dpll-bj S S ′

theorem dpll-backjump-final-state:
fixes A :: 〈 ′v clause set〉 and S T :: 〈 ′st〉

assumes
〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and
〈atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A〉 and
〈no-dup (trail S)〉 and
〈finite A〉 and
inv: 〈inv S 〉 and
n-d: 〈no-dup (trail S)〉 and
n-s: 〈no-step dpll-bj S 〉 and
decomp: 〈all-decomposition-implies-m (clausesN OT S) (get-all-ann-decomposition (trail S))〉

shows 〈unsatisfiable (set-mset (clausesN OT S))
∨ (trail S |=asm clausesN OT S ∧ satisfiable (set-mset (clausesN OT S)))〉

proof −
let ?N = 〈set-mset (clausesN OT S)〉

let ?M = 〈trail S 〉

consider
(sat) 〈satisfiable ?N 〉 and 〈?M |=as ?N 〉

| (sat ′) 〈satisfiable ?N 〉 and 〈¬ ?M |=as ?N 〉

| (unsat) 〈unsatisfiable ?N 〉

by auto
then show ?thesis
proof cases
case sat ′ note sat = this(1) and M = this(2)
obtain C where 〈C ∈ ?N 〉 and 〈¬?M |=a C 〉 using M unfolding true-annots-def by auto
obtain I :: 〈 ′v literal set〉 where

〈I |=s ?N 〉 and
cons: 〈consistent-interp I 〉 and
tot: 〈total-over-m I ?N 〉 and
atm-I-N : 〈atm-of ‘I ⊆ atms-of-ms ?N 〉

using sat unfolding satisfiable-def-min by auto
let ?I = 〈I ∪ {P| P. P ∈ lits-of-l ?M ∧ atm-of P /∈ atm-of ‘ I}〉

let ?O = 〈{unmark L |L. is-decided L ∧ L ∈ set ?M ∧ atm-of (lit-of L) /∈ atms-of-ms ?N}〉

have cons-I ′: 〈consistent-interp ?I 〉

using cons using 〈no-dup ?M 〉 unfolding consistent-interp-def

181

by (auto simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set lits-of-def
dest!: no-dup-cannot-not-lit-and-uminus)

have tot-I ′: 〈total-over-m ?I (?N ∪ unmark-l ?M)〉

using tot atm-I-N unfolding total-over-m-def total-over-set-def
by (fastforce simp: image-iff lits-of-def)

have 〈{P |P. P ∈ lits-of-l ?M ∧ atm-of P /∈ atm-of ‘ I} |=s ?O〉

using 〈I |=s ?N 〉 atm-I-N by (auto simp add: atm-of-eq-atm-of true-clss-def lits-of-def)
then have I ′-N : 〈?I |=s ?N ∪ ?O〉

using 〈I |=s ?N 〉 true-clss-union-increase by force
have tot ′: 〈total-over-m ?I (?N∪?O)〉

using atm-I-N tot unfolding total-over-m-def total-over-set-def
by (force simp: lits-of-def elim!: is-decided-ex-Decided)

have atms-N-M : 〈atms-of-ms ?N ⊆ atm-of ‘ lits-of-l ?M 〉

proof (rule ccontr)
assume 〈¬ ?thesis〉

then obtain l :: ′v where
l-N : 〈l ∈ atms-of-ms ?N 〉 and
l-M : 〈l /∈ atm-of ‘ lits-of-l ?M 〉

by auto
have 〈undefined-lit ?M (Pos l)〉

using l-M by (metis Decided-Propagated-in-iff-in-lits-of-l
atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set literal.sel(1))

then show False
using l-N n-s can-propagate-or-decide-or-backjump[of 〈Pos l〉 S] inv n-d sat
by (auto dest: dpll-bj.intros)

qed
have 〈?M |=as CNot C 〉

apply (rule all-variables-defined-not-imply-cnot)
using 〈C ∈ set-mset (clausesN OT S)〉 〈¬ trail S |=a C 〉

atms-N-M by (auto dest: atms-of-atms-of-ms-mono)
have 〈∃ l ∈ set ?M . is-decided l〉

proof (rule ccontr)
let ?O = 〈{unmark L |L. is-decided L ∧ L ∈ set ?M ∧ atm-of (lit-of L) /∈ atms-of-ms ?N}〉

have ϑ[iff]: 〈
∧
I . total-over-m I (?N ∪ ?O ∪ unmark-l ?M)

←→ total-over-m I (?N ∪unmark-l ?M)〉

unfolding total-over-set-def total-over-m-def atms-of-ms-def by blast
assume 〈¬ ?thesis〉

then have [simp]:〈{unmark L |L. is-decided L ∧ L ∈ set ?M}
= {unmark L |L. is-decided L ∧ L ∈ set ?M ∧ atm-of (lit-of L) /∈ atms-of-ms ?N}〉

by auto
then have 〈?N ∪ ?O |=ps unmark-l ?M 〉

using all-decomposition-implies-propagated-lits-are-implied[OF decomp] by auto

then have 〈?I |=s unmark-l ?M 〉

using cons-I ′ I ′-N tot-I ′ 〈?I |=s ?N ∪ ?O〉 unfolding ϑ true-clss-clss-def by blast
then have 〈lits-of-l ?M ⊆ ?I 〉

unfolding true-clss-def lits-of-def by auto
then have 〈?M |=as ?N 〉

using I ′-N 〈C ∈ ?N 〉 〈¬ ?M |=a C 〉 cons-I ′ atms-N-M
by (meson 〈trail S |=as CNot C 〉 consistent-CNot-not rev-subsetD sup-ge1 true-annot-def
true-annots-def true-cls-mono-set-mset-l true-clss-def)

then show False using M by fast
qed

from List.split-list-first-propE [OF this] obtain K :: 〈 ′v literal〉 and
F F ′ :: 〈(′v, unit) ann-lits〉 where

182

M-K : 〈?M = F ′ @ Decided K # F 〉 and
nm: 〈∀ f∈set F ′. ¬is-decided f 〉

by (metis (full-types) is-decided-ex-Decided old.unit.exhaust)
let ?K = 〈Decided K :: (′v, unit) ann-lit〉

have 〈?K ∈ set ?M 〉

unfolding M-K by auto
let ?C = 〈image-mset lit-of {#L∈#mset ?M . is-decided L ∧ L 6=?K#} :: ′v clause〉

let ?C ′ = 〈set-mset (image-mset (λL:: ′v literal. {#L#}) (?C + unmark ?K))〉

have 〈?N ∪ {unmark L |L. is-decided L ∧ L ∈ set ?M} |=ps unmark-l ?M 〉

using all-decomposition-implies-propagated-lits-are-implied[OF decomp] .
moreover have C ′: 〈?C ′ = {unmark L |L. is-decided L ∧ L ∈ set ?M}〉

unfolding M-K by standard force+
ultimately have N-C-M : 〈?N ∪ ?C ′ |=ps unmark-l ?M 〉

by auto
have N-M-False: 〈?N ∪ (λL. unmark L) ‘ (set ?M) |=ps {{#}}〉

unfolding true-clss-clss-def true-annots-def Ball-def true-annot-def
proof (intro allI impI)
fix LL :: ′v literal set
assume
tot: 〈total-over-m LL (set-mset (clausesN OT S) ∪ unmark-l (trail S) ∪ {{#}})〉 and
cons: 〈consistent-interp LL〉 and
LL: 〈LL |=s set-mset (clausesN OT S) ∪ unmark-l (trail S)〉

have 〈total-over-m LL (CNot C)〉

by (metis 〈C ∈# clausesN OT S 〉 insert-absorb tot total-over-m-CNot-toal-over-m
total-over-m-insert total-over-m-union)

then have total-over-m LL (unmark-l (trail S) ∪ CNot C)
using tot by force

then show LL |=s {{#}}
using tot cons LL
by (metis (no-types) 〈C ∈# clausesN OT S 〉 〈trail S |=as CNot C 〉 consistent-CNot-not

true-annots-true-clss-clss true-clss-clss-def true-clss-def true-clss-union)
qed
have 〈undefined-lit F K 〉 using 〈no-dup ?M 〉 unfolding M-K by (auto simp: defined-lit-map)
moreover {
have 〈?N ∪ ?C ′ |=ps {{#}}〉

proof −
have A: 〈?N ∪ ?C ′ ∪ unmark-l ?M = ?N ∪ unmark-l ?M 〉

unfolding M-K by auto
show ?thesis
using true-clss-clss-left-right[OF N-C-M , of 〈{{#}}〉] N-M-False unfolding A by auto

qed
have 〈?N |=p image-mset uminus ?C + {#−K#}〉

unfolding true-clss-cls-def true-clss-clss-def total-over-m-def
proof (intro allI impI)
fix I
assume
tot: 〈total-over-set I (atms-of-ms (?N ∪ {image-mset uminus ?C+ {#− K#}}))〉 and
cons: 〈consistent-interp I 〉 and
〈I |=s ?N 〉

have 〈(K ∈ I ∧ −K /∈ I) ∨ (−K ∈ I ∧ K /∈ I)〉

using cons tot unfolding consistent-interp-def by (cases K) auto
have 〈 {a ∈ set (trail S). is-decided a ∧ a 6= Decided K} =
set (trail S) ∩ {L. is-decided L ∧ L 6= Decided K}〉

by auto
then have tot ′: 〈total-over-set I

(atm-of ‘ lit-of ‘ (set ?M ∩ {L. is-decided L ∧ L 6= Decided K}))〉

183

using tot by (auto simp add: atms-of-uminus-lit-atm-of-lit-of)
{ fix x :: 〈(′v, unit) ann-lit〉

assume
a3 : 〈lit-of x /∈ I 〉 and
a1 : 〈x ∈ set ?M 〉 and
a4 : 〈is-decided x〉 and
a5 : 〈x 6= Decided K 〉

then have 〈Pos (atm-of (lit-of x)) ∈ I ∨ Neg (atm-of (lit-of x)) ∈ I 〉

using a5 a4 tot ′ a1 unfolding total-over-set-def atms-of-s-def by blast
moreover have f6 : 〈Neg (atm-of (lit-of x)) = − Pos (atm-of (lit-of x))〉

by simp
ultimately have 〈− lit-of x ∈ I 〉

using f6 a3 by (metis (no-types) atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
literal.sel(1))

} note H = this

have 〈¬I |=s ?C ′〉
using 〈?N ∪ ?C ′ |=ps {{#}}〉 tot cons 〈I |=s ?N 〉

unfolding true-clss-clss-def total-over-m-def
by (simp add: atms-of-uminus-lit-atm-of-lit-of atms-of-ms-single-image-atm-of-lit-of)

then show 〈I |= image-mset uminus ?C + {#− K#}〉

unfolding true-clss-def true-cls-def using 〈(K ∈ I ∧ −K /∈ I) ∨ (−K ∈ I ∧ K /∈ I)〉

by (auto dest!: H)
qed }

moreover have 〈F |=as CNot (image-mset uminus ?C)〉

using nm unfolding true-annots-def CNot-def M-K by (auto simp add: lits-of-def)
ultimately have False
using bj-can-jump[of S F ′ K F C 〈−K 〉

〈image-mset uminus (image-mset lit-of {# L :# mset ?M . is-decided L ∧ L 6= Decided K#})〉]
〈C∈?N 〉 n-s 〈?M |=as CNot C 〉 bj-backjump inv 〈no-dup (trail S)〉 sat
unfolding M-K by auto

then show ?thesis by fast
qed auto

qed

end — End of the locale dpll-with-backjumping-ops.

locale dpll-with-backjumping =
dpll-with-backjumping-ops trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT inv
decide-conds backjump-conds propagate-conds

for
trail :: 〈 ′st ⇒ (′v, unit) ann-lits〉 and
clausesN OT :: 〈 ′st ⇒ ′v clauses〉 and
prepend-trail :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st〉 and
tl-trail :: 〈 ′st ⇒ ′st〉 and
add-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
remove-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
inv :: 〈 ′st ⇒ bool〉 and
decide-conds :: 〈 ′st ⇒ ′st ⇒ bool〉 and
backjump-conds :: 〈 ′v clause ⇒ ′v clause ⇒ ′v literal ⇒ ′st ⇒ ′st ⇒ bool〉 and
propagate-conds :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st ⇒ bool〉

+
assumes dpll-bj-inv: 〈

∧
S T . dpll-bj S T =⇒ inv S =⇒ inv T 〉

begin

lemma rtranclp-dpll-bj-inv:

184

assumes 〈dpll-bj∗∗ S T 〉 and 〈inv S 〉

shows 〈inv T 〉

using assms by (induction rule: rtranclp-induct)
(auto simp add: dpll-bj-no-dup intro: dpll-bj-inv)

lemma rtranclp-dpll-bj-no-dup:
assumes 〈dpll-bj∗∗ S T 〉 and 〈inv S 〉

and 〈no-dup (trail S)〉

shows 〈no-dup (trail T)〉

using assms by (induction rule: rtranclp-induct)
(auto simp add: dpll-bj-no-dup dest: rtranclp-dpll-bj-inv dpll-bj-inv)

lemma rtranclp-dpll-bj-atms-of-ms-clauses-inv:
assumes

〈dpll-bj∗∗ S T 〉 and 〈inv S 〉

shows 〈atms-of-mm (clausesN OT S) = atms-of-mm (clausesN OT T)〉

using assms by (induction rule: rtranclp-induct)
(auto dest: rtranclp-dpll-bj-inv dpll-bj-atms-of-ms-clauses-inv)

lemma rtranclp-dpll-bj-atms-in-trail:
assumes

〈dpll-bj∗∗ S T 〉 and
〈inv S 〉 and
〈atm-of ‘ (lits-of-l (trail S)) ⊆ atms-of-mm (clausesN OT S)〉

shows 〈atm-of ‘ (lits-of-l (trail T)) ⊆ atms-of-mm (clausesN OT T)〉

using assms apply (induction rule: rtranclp-induct)
using dpll-bj-atms-in-trail dpll-bj-atms-of-ms-clauses-inv rtranclp-dpll-bj-inv by auto

lemma rtranclp-dpll-bj-sat-iff :
assumes 〈dpll-bj∗∗ S T 〉 and 〈inv S 〉

shows 〈I |=sm clausesN OT S ←→ I |=sm clausesN OT T 〉

using assms by (induction rule: rtranclp-induct)
(auto dest!: dpll-bj-sat-iff simp: rtranclp-dpll-bj-inv)

lemma rtranclp-dpll-bj-atms-in-trail-in-set:
assumes

〈dpll-bj∗∗ S T 〉 and
〈inv S 〉

〈atms-of-mm (clausesN OT S) ⊆ A〉 and
〈atm-of ‘ (lits-of-l (trail S)) ⊆ A〉

shows 〈atm-of ‘ (lits-of-l (trail T)) ⊆ A〉

using assms by (induction rule: rtranclp-induct)
(auto dest: rtranclp-dpll-bj-inv
simp: dpll-bj-atms-in-trail-in-set rtranclp-dpll-bj-atms-of-ms-clauses-inv rtranclp-dpll-bj-inv)

lemma rtranclp-dpll-bj-all-decomposition-implies-inv:
assumes

〈dpll-bj∗∗ S T 〉 and
〈inv S 〉

〈all-decomposition-implies-m (clausesN OT S) (get-all-ann-decomposition (trail S))〉

shows 〈all-decomposition-implies-m (clausesN OT T) (get-all-ann-decomposition (trail T))〉

using assms by (induction rule: rtranclp-induct)
(auto intro: dpll-bj-all-decomposition-implies-inv simp: rtranclp-dpll-bj-inv)

lemma rtranclp-dpll-bj-inv-incl-dpll-bj-inv-trancl:
〈{(T , S). dpll-bj++ S T

185

∧ atms-of-mm (clausesN OT S) ⊆ atms-of-ms A ∧ atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A
∧ no-dup (trail S) ∧ inv S}
⊆ {(T , S). dpll-bj S T ∧ atms-of-mm (clausesN OT S) ⊆ atms-of-ms A
∧ atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A ∧ no-dup (trail S) ∧ inv S}+〉

(is 〈?A ⊆ ?B+〉)
proof standard
fix x
assume x-A: 〈x ∈ ?A〉

obtain S T ::〈 ′st〉 where
x[simp]: 〈x = (T , S)〉 by (cases x) auto

have
〈dpll-bj++ S T 〉 and
〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and
〈atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A〉 and
〈no-dup (trail S)〉 and

〈inv S 〉

using x-A by auto
then show 〈x ∈ ?B+〉 unfolding x
proof (induction rule: tranclp-induct)
case base
then show ?case by auto

next
case (step T U) note step = this(1) and ST = this(2) and IH = this(3)[OF this(4−7)]
and N-A = this(4) and M-A = this(5) and nd = this(6) and inv = this(7)

have [simp]: 〈atms-of-mm (clausesN OT S) = atms-of-mm (clausesN OT T)〉

using step rtranclp-dpll-bj-atms-of-ms-clauses-inv tranclp-into-rtranclp inv by fastforce
have 〈no-dup (trail T)〉

using local.step nd rtranclp-dpll-bj-no-dup tranclp-into-rtranclp inv by fastforce
moreover have 〈atm-of ‘ (lits-of-l (trail T)) ⊆ atms-of-ms A〉

by (metis inv M-A N-A local.step rtranclp-dpll-bj-atms-in-trail-in-set
tranclp-into-rtranclp)

moreover have 〈inv T 〉

using inv local.step rtranclp-dpll-bj-inv tranclp-into-rtranclp by fastforce
ultimately have 〈(U , T) ∈ ?B〉 using ST N-A M-A inv by auto
then show ?case using IH by (rule trancl-into-trancl2)

qed
qed

lemma wf-tranclp-dpll-bj:
assumes fin: 〈finite A〉

shows 〈wf {(T , S). dpll-bj++ S T
∧ atms-of-mm (clausesN OT S) ⊆ atms-of-ms A ∧ atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A
∧ no-dup (trail S) ∧ inv S}〉

using wf-trancl[OF wf-dpll-bj[OF fin]] rtranclp-dpll-bj-inv-incl-dpll-bj-inv-trancl
by (rule wf-subset)

lemma dpll-bj-sat-ext-iff :
〈dpll-bj S T =⇒ inv S =⇒ I |=sextm clausesN OT S ←→ I |=sextm clausesN OT T 〉

by (simp add: dpll-bj-clauses)

lemma rtranclp-dpll-bj-sat-ext-iff :
〈dpll-bj∗∗ S T =⇒ inv S =⇒ I |=sextm clausesN OT S ←→ I |=sextm clausesN OT T 〉

by (induction rule: rtranclp-induct) (simp-all add: rtranclp-dpll-bj-inv dpll-bj-sat-ext-iff)

theorem full-dpll-backjump-final-state:

186

fixes A :: 〈 ′v clause set〉 and S T :: 〈 ′st〉

assumes
full: 〈full dpll-bj S T 〉 and
atms-S : 〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and
atms-trail: 〈atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A〉 and
n-d: 〈no-dup (trail S)〉 and
〈finite A〉 and
inv: 〈inv S 〉 and
decomp: 〈all-decomposition-implies-m (clausesN OT S) (get-all-ann-decomposition (trail S))〉

shows 〈unsatisfiable (set-mset (clausesN OT S))
∨ (trail T |=asm clausesN OT S ∧ satisfiable (set-mset (clausesN OT S)))〉

proof −
have st: 〈dpll-bj∗∗ S T 〉 and 〈no-step dpll-bj T 〉

using full unfolding full-def by fast+
moreover have 〈atms-of-mm (clausesN OT T) ⊆ atms-of-ms A〉

using atms-S inv rtranclp-dpll-bj-atms-of-ms-clauses-inv st by blast
moreover have 〈atm-of ‘ lits-of-l (trail T) ⊆ atms-of-ms A〉

using atms-S atms-trail inv rtranclp-dpll-bj-atms-in-trail-in-set st by auto
moreover have 〈no-dup (trail T)〉

using n-d inv rtranclp-dpll-bj-no-dup st by blast
moreover have inv: 〈inv T 〉

using inv rtranclp-dpll-bj-inv st by blast
moreover
have decomp: 〈all-decomposition-implies-m (clausesN OT T) (get-all-ann-decomposition (trail T))〉

using 〈inv S 〉 decomp rtranclp-dpll-bj-all-decomposition-implies-inv st by blast
ultimately have 〈unsatisfiable (set-mset (clausesN OT T))
∨ (trail T |=asm clausesN OT T ∧ satisfiable (set-mset (clausesN OT T)))〉

using 〈finite A〉 dpll-backjump-final-state by force
then show ?thesis
by (meson 〈inv S 〉 rtranclp-dpll-bj-sat-iff satisfiable-carac st true-annots-true-cls)

qed

corollary full-dpll-backjump-final-state-from-init-state:
fixes A :: 〈 ′v clause set〉 and S T :: 〈 ′st〉

assumes
full: 〈full dpll-bj S T 〉 and
〈trail S = []〉 and
〈clausesN OT S = N 〉 and
〈inv S 〉

shows 〈unsatisfiable (set-mset N) ∨ (trail T |=asm N ∧ satisfiable (set-mset N))〉

using assms full-dpll-backjump-final-state[of S T 〈set-mset N 〉] by auto

lemma tranclp-dpll-bj-trail-mes-decreasing-prop:
assumes dpll: 〈dpll-bj++ S T 〉 and inv: 〈inv S 〉 and
N-A: 〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and
M-A: 〈atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A〉 and
n-d: 〈no-dup (trail S)〉 and
fin-A: 〈finite A〉

shows 〈(2+card (atms-of-ms A)) ^ (1+card (atms-of-ms A))
− µC (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T)

< (2+card (atms-of-ms A)) ^ (1+card (atms-of-ms A))
− µC (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight S)〉

using dpll
proof induction
case base
then show ?case

187

using N-A M-A n-d dpll-bj-trail-mes-decreasing-prop fin-A inv by blast
next
case (step T U) note st = this(1) and dpll = this(2) and IH = this(3)
have 〈atms-of-mm (clausesN OT S) = atms-of-mm (clausesN OT T)〉

using rtranclp-dpll-bj-atms-of-ms-clauses-inv by (metis dpll-bj-clauses dpll-bj-inv inv st
tranclpD)

then have N-A ′: 〈atms-of-mm (clausesN OT T) ⊆ atms-of-ms A〉

using N-A by auto
moreover have M-A ′: 〈atm-of ‘ lits-of-l (trail T) ⊆ atms-of-ms A〉

by (meson M-A N-A inv rtranclp-dpll-bj-atms-in-trail-in-set st dpll
tranclp.r-into-trancl tranclp-into-rtranclp tranclp-trans)

moreover have nd: 〈no-dup (trail T)〉

by (metis inv n-d rtranclp-dpll-bj-no-dup st tranclp-into-rtranclp)
moreover have 〈inv T 〉

by (meson dpll dpll-bj-inv inv rtranclp-dpll-bj-inv st tranclp-into-rtranclp)
ultimately show ?case
using IH dpll-bj-trail-mes-decreasing-prop[of T U A] dpll fin-A by linarith

qed

end — End of the locale dpll-with-backjumping.

2.2.4 CDCL

In this section we will now define the conflict driven clause learning above DPLL: we first
introduce the rules learn and forget, and the add these rules to the DPLL calculus.

Learn and Forget

Learning adds a new clause where all the literals are already included in the clauses.

locale learn-ops =
dpll-state trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT

for
trail :: 〈 ′st ⇒ (′v, unit) ann-lits〉 and
clausesN OT :: 〈 ′st ⇒ ′v clauses〉 and
prepend-trail :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st〉 and
tl-trail :: 〈 ′st ⇒ ′st〉 and
add-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
remove-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 +

fixes
learn-conds :: 〈 ′v clause ⇒ ′st ⇒ bool〉

begin

inductive learn :: 〈 ′st ⇒ ′st ⇒ bool〉 where
learnN OT -rule: 〈clausesN OT S |=pm C =⇒
atms-of C ⊆ atms-of-mm (clausesN OT S) ∪ atm-of ‘ (lits-of-l (trail S)) =⇒
learn-conds C S =⇒
T ∼ add-clsN OT C S =⇒
learn S T 〉

inductive-cases learnN OTE : 〈learn S T 〉

lemma learn-µC-stable:
assumes 〈learn S T 〉 and 〈no-dup (trail S)〉

shows 〈µC A B (trail-weight S) = µC A B (trail-weight T)〉

using assms by (auto elim: learnN OTE)

188

end

Forget removes an information that can be deduced from the context (e.g. redundant clauses,
tautologies)
locale forget-ops =
dpll-state trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT

for
trail :: 〈 ′st ⇒ (′v, unit) ann-lits〉 and
clausesN OT :: 〈 ′st ⇒ ′v clauses〉 and
prepend-trail :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st〉 and
tl-trail :: 〈 ′st ⇒ ′st〉 and
add-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
remove-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 +

fixes
forget-conds :: 〈 ′v clause ⇒ ′st ⇒ bool〉

begin

inductive forgetN OT :: 〈 ′st ⇒ ′st ⇒ bool〉 where
forgetN OT :

〈removeAll-mset C (clausesN OT S) |=pm C =⇒
forget-conds C S =⇒
C ∈# clausesN OT S =⇒
T ∼ remove-clsN OT C S =⇒

forgetN OT S T 〉

inductive-cases forgetN OTE : 〈forgetN OT S T 〉

lemma forget-µC-stable:
assumes 〈forgetN OT S T 〉

shows 〈µC A B (trail-weight S) = µC A B (trail-weight T)〉

using assms by (auto elim!: forgetN OTE)
end

locale learn-and-forgetN OT =
learn-ops trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT learn-conds +
forget-ops trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT forget-conds
for
trail :: 〈 ′st ⇒ (′v, unit) ann-lits〉 and
clausesN OT :: 〈 ′st ⇒ ′v clauses〉 and
prepend-trail :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st〉 and
tl-trail :: 〈 ′st ⇒ ′st〉 and
add-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
remove-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
learn-conds forget-conds :: 〈 ′v clause ⇒ ′st ⇒ bool〉

begin
inductive learn-and-forgetN OT :: 〈 ′st ⇒ ′st ⇒ bool〉

where
lf-learn: 〈learn S T =⇒ learn-and-forgetN OT S T 〉 |
lf-forget: 〈forgetN OT S T =⇒ learn-and-forgetN OT S T 〉

end

Definition of CDCL
locale conflict-driven-clause-learning-ops =
dpll-with-backjumping-ops trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT

inv decide-conds backjump-conds propagate-conds +

189

learn-and-forgetN OT trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT learn-conds
forget-conds

for
trail :: 〈 ′st ⇒ (′v, unit) ann-lits〉 and
clausesN OT :: 〈 ′st ⇒ ′v clauses〉 and
prepend-trail :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st〉 and
tl-trail :: 〈 ′st ⇒ ′st〉 and
add-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
remove-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
inv :: 〈 ′st ⇒ bool〉 and
decide-conds :: 〈 ′st ⇒ ′st ⇒ bool〉 and
backjump-conds :: 〈 ′v clause ⇒ ′v clause ⇒ ′v literal ⇒ ′st ⇒ ′st ⇒ bool〉 and
propagate-conds :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st ⇒ bool〉 and
learn-conds forget-conds :: 〈 ′v clause ⇒ ′st ⇒ bool〉

begin

inductive cdclN OT :: 〈 ′st ⇒ ′st ⇒ bool〉 for S :: ′st where
c-dpll-bj: 〈dpll-bj S S ′ =⇒ cdclN OT S S ′〉 |
c-learn: 〈learn S S ′ =⇒ cdclN OT S S ′〉 |
c-forgetN OT : 〈forgetN OT S S ′ =⇒ cdclN OT S S ′〉

lemma cdclN OT -all-induct[consumes 1 , case-names dpll-bj learn forgetN OT]:
fixes S T :: 〈 ′st〉

assumes 〈cdclN OT S T 〉 and
dpll: 〈

∧
T . dpll-bj S T =⇒ P S T 〉 and

learning:
〈
∧
C T . clausesN OT S |=pm C =⇒

atms-of C ⊆ atms-of-mm (clausesN OT S) ∪ atm-of ‘ (lits-of-l (trail S)) =⇒
T ∼ add-clsN OT C S =⇒
P S T 〉 and

forgetting: 〈
∧
C T . removeAll-mset C (clausesN OT S) |=pm C =⇒

C ∈# clausesN OT S =⇒
T ∼ remove-clsN OT C S =⇒
P S T 〉

shows 〈P S T 〉

using assms(1) by (induction rule: cdclN OT .induct)
(auto intro: assms(2 , 3 , 4) elim!: learnN OTE forgetN OTE)+

lemma cdclN OT -no-dup:
assumes

〈cdclN OT S T 〉 and
〈inv S 〉 and
〈no-dup (trail S)〉

shows 〈no-dup (trail T)〉

using assms by (induction rule: cdclN OT -all-induct) (auto intro: dpll-bj-no-dup)

Consistency of the trail lemma cdclN OT -consistent:
assumes

〈cdclN OT S T 〉 and
〈inv S 〉 and
〈no-dup (trail S)〉

shows 〈consistent-interp (lits-of-l (trail T))〉

using cdclN OT -no-dup[OF assms] distinct-consistent-interp by fast

The subtle problem here is that tautologies can be removed, meaning that some variable can
disappear of the problem. It is also means that some variable of the trail might not be present

190

in the clauses anymore.

lemma cdclN OT -atms-of-ms-clauses-decreasing:
assumes 〈cdclN OT S T 〉and 〈inv S 〉

shows 〈atms-of-mm (clausesN OT T) ⊆ atms-of-mm (clausesN OT S) ∪ atm-of ‘ (lits-of-l (trail S))〉

using assms by (induction rule: cdclN OT -all-induct)
(auto dest!: dpll-bj-atms-of-ms-clauses-inv set-mp simp add: atms-of-ms-def Union-eq)

lemma cdclN OT -atms-in-trail:
assumes 〈cdclN OT S T 〉and 〈inv S 〉

and 〈atm-of ‘ (lits-of-l (trail S)) ⊆ atms-of-mm (clausesN OT S)〉

shows 〈atm-of ‘ (lits-of-l (trail T)) ⊆ atms-of-mm (clausesN OT S)〉

using assms by (induction rule: cdclN OT -all-induct) (auto simp add: dpll-bj-atms-in-trail)

lemma cdclN OT -atms-in-trail-in-set:
assumes

〈cdclN OT S T 〉 and 〈inv S 〉 and
〈atms-of-mm (clausesN OT S) ⊆ A〉 and
〈atm-of ‘ (lits-of-l (trail S)) ⊆ A〉

shows 〈atm-of ‘ (lits-of-l (trail T)) ⊆ A〉

using assms
by (induction rule: cdclN OT -all-induct)

(simp-all add: dpll-bj-atms-in-trail-in-set dpll-bj-atms-of-ms-clauses-inv)

lemma cdclN OT -all-decomposition-implies:
assumes 〈cdclN OT S T 〉 and 〈inv S 〉 and

〈all-decomposition-implies-m (clausesN OT S) (get-all-ann-decomposition (trail S))〉

shows
〈all-decomposition-implies-m (clausesN OT T) (get-all-ann-decomposition (trail T))〉

using assms(1 ,2 ,3)
proof (induction rule: cdclN OT -all-induct)
case dpll-bj
then show ?case
using dpll-bj-all-decomposition-implies-inv by blast

next
case learn
then show ?case by (auto simp add: all-decomposition-implies-def)

next
case (forgetN OT C T) note cls-C = this(1) and C = this(2) and T = this(3) and inv = this(4)

and
decomp = this(5)

show ?case
unfolding all-decomposition-implies-def Ball-def
proof (intro allI , clarify)
fix a b
assume 〈(a, b) ∈ set (get-all-ann-decomposition (trail T))〉

then have 〈unmark-l a ∪ set-mset (clausesN OT S) |=ps unmark-l b〉

using decomp T by (auto simp add: all-decomposition-implies-def)
moreover
have a1 :〈C ∈ set-mset (clausesN OT S)〉

using C by blast
have 〈clausesN OT T = clausesN OT (remove-clsN OT C S)〉

using T state-eqN OT -clauses by blast
then have 〈set-mset (clausesN OT T) |=ps set-mset (clausesN OT S)〉

using a1 by (metis (no-types) clauses-remove-clsN OT cls-C insert-Diff order-refl
set-mset-minus-replicate-mset(1) true-clss-clss-def true-clss-clss-insert)

191

ultimately show 〈unmark-l a ∪ set-mset (clausesN OT T)
|=ps unmark-l b〉

using true-clss-clss-generalise-true-clss-clss by blast
qed

qed

Extension of models lemma cdclN OT -bj-sat-ext-iff :
assumes 〈cdclN OT S T 〉and 〈inv S 〉

shows 〈I |=sextm clausesN OT S ←→ I |=sextm clausesN OT T 〉

using assms
proof (induction rule:cdclN OT -all-induct)
case dpll-bj
then show ?case by (simp add: dpll-bj-clauses)

next
case (learn C T) note T = this(3)
{ fix J
assume

〈I |=sextm clausesN OT S 〉 and
〈I ⊆ J 〉 and
tot: 〈total-over-m J (set-mset (add-mset C (clausesN OT S)))〉 and
cons: 〈consistent-interp J 〉

then have 〈J |=sm clausesN OT S 〉 unfolding true-clss-ext-def by auto

moreover
with 〈clausesN OT S |=pm C 〉 have 〈J |= C 〉

using tot cons unfolding true-clss-cls-def by auto
ultimately have 〈J |=sm {#C#} + clausesN OT S 〉 by auto

}
then have H : 〈I |=sextm (clausesN OT S) =⇒ I |=sext insert C (set-mset (clausesN OT S))〉

unfolding true-clss-ext-def by auto
show ?case
apply standard
using T apply (auto simp add: H)[]

using T apply simp
by (metis Diff-insert-absorb insert-subset subsetI subset-antisym
true-clss-ext-decrease-right-remove-r)

next
case (forgetN OT C T) note cls-C = this(1) and T = this(3)
{ fix J
assume

〈I |=sext set-mset (clausesN OT S) − {C}〉 and
〈I ⊆ J 〉 and
tot: 〈total-over-m J (set-mset (clausesN OT S))〉 and
cons: 〈consistent-interp J 〉

then have 〈J |=s set-mset (clausesN OT S) − {C}〉

unfolding true-clss-ext-def by (meson Diff-subset total-over-m-subset)

moreover
with cls-C have 〈J |= C 〉

using tot cons unfolding true-clss-cls-def
by (metis Un-commute forgetN OT .hyps(2) insert-Diff insert-is-Un order-refl
set-mset-minus-replicate-mset(1))

ultimately have 〈J |=sm (clausesN OT S)〉 by (metis insert-Diff-single true-clss-insert)
}
then have H : 〈I |=sext set-mset (clausesN OT S) − {C} =⇒ I |=sextm (clausesN OT S)〉

unfolding true-clss-ext-def by blast

192

show ?case using T by (auto simp: true-clss-ext-decrease-right-remove-r H)
qed

end — End of the locale conflict-driven-clause-learning-ops.

CDCL with invariant
locale conflict-driven-clause-learning =
conflict-driven-clause-learning-ops +
assumes cdclN OT -inv: 〈

∧
S T . cdclN OT S T =⇒ inv S =⇒ inv T 〉

begin
sublocale dpll-with-backjumping
apply unfold-locales
using cdclN OT .simps cdclN OT -inv by auto

lemma rtranclp-cdclN OT -inv:
〈cdclN OT

∗∗ S T =⇒ inv S =⇒ inv T 〉

by (induction rule: rtranclp-induct) (auto simp add: cdclN OT -inv)

lemma rtranclp-cdclN OT -no-dup:
assumes 〈cdclN OT

∗∗ S T 〉 and 〈inv S 〉

and 〈no-dup (trail S)〉

shows 〈no-dup (trail T)〉

using assms by (induction rule: rtranclp-induct) (auto intro: cdclN OT -no-dup rtranclp-cdclN OT -inv)

lemma rtranclp-cdclN OT -trail-clauses-bound:
assumes
cdcl: 〈cdclN OT

∗∗ S T 〉 and
inv: 〈inv S 〉 and
atms-clauses-S : 〈atms-of-mm (clausesN OT S) ⊆ A〉 and
atms-trail-S : 〈atm-of ‘(lits-of-l (trail S)) ⊆ A〉

shows 〈atm-of ‘ (lits-of-l (trail T)) ⊆ A ∧ atms-of-mm (clausesN OT T) ⊆ A〉

using cdcl
proof (induction rule: rtranclp-induct)
case base
then show ?case using atms-clauses-S atms-trail-S by simp

next
case (step T U) note st = this(1) and cdclN OT = this(2) and IH = this(3)
have 〈inv T 〉 using inv st rtranclp-cdclN OT -inv by blast
have 〈atms-of-mm (clausesN OT U) ⊆ A〉

using cdclN OT -atms-of-ms-clauses-decreasing[OF cdclN OT] IH 〈inv T 〉 by fast
moreover
have 〈atm-of ‘(lits-of-l (trail U)) ⊆ A〉

using cdclN OT -atms-in-trail-in-set[OF cdclN OT , of A]
by (meson atms-trail-S atms-clauses-S IH 〈inv T 〉 cdclN OT)

ultimately show ?case by fast
qed

lemma rtranclp-cdclN OT -all-decomposition-implies:
assumes 〈cdclN OT

∗∗ S T 〉 and 〈inv S 〉 and 〈no-dup (trail S)〉 and
〈all-decomposition-implies-m (clausesN OT S) (get-all-ann-decomposition (trail S))〉

shows
〈all-decomposition-implies-m (clausesN OT T) (get-all-ann-decomposition (trail T))〉

using assms by (induction)
(auto intro: rtranclp-cdclN OT -inv cdclN OT -all-decomposition-implies rtranclp-cdclN OT -no-dup)

193

lemma rtranclp-cdclN OT -bj-sat-ext-iff :
assumes 〈cdclN OT

∗∗ S T 〉and 〈inv S 〉

shows 〈I |=sextm clausesN OT S ←→ I |=sextm clausesN OT T 〉

using assms apply (induction rule: rtranclp-induct)
using cdclN OT -bj-sat-ext-iff by (auto intro: rtranclp-cdclN OT -inv rtranclp-cdclN OT -no-dup)

definition cdclN OT -NOT-all-inv where
〈cdclN OT -NOT-all-inv A S ←→ (finite A ∧ inv S ∧ atms-of-mm (clausesN OT S) ⊆ atms-of-ms A
∧ atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A ∧ no-dup (trail S))〉

lemma cdclN OT -NOT-all-inv:
assumes 〈cdclN OT

∗∗ S T 〉 and 〈cdclN OT -NOT-all-inv A S 〉

shows 〈cdclN OT -NOT-all-inv A T 〉

using assms unfolding cdclN OT -NOT-all-inv-def
by (simp add: rtranclp-cdclN OT -inv rtranclp-cdclN OT -no-dup rtranclp-cdclN OT -trail-clauses-bound)

abbreviation learn-or-forget where
〈learn-or-forget S T ≡ learn S T ∨ forgetN OT S T 〉

lemma rtranclp-learn-or-forget-cdclN OT :
〈learn-or-forget∗∗ S T =⇒ cdclN OT

∗∗ S T 〉

using rtranclp-mono[of learn-or-forget cdclN OT] by (blast intro: cdclN OT .c-learn cdclN OT .c-forgetN OT)

lemma learn-or-forget-dpll-µC :
assumes
l-f : 〈learn-or-forget∗∗ S T 〉 and
dpll: 〈dpll-bj T U 〉 and
inv: 〈cdclN OT -NOT-all-inv A S 〉

shows 〈(2+card (atms-of-ms A)) ^ (1+card (atms-of-ms A))
− µC (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight U)

< (2+card (atms-of-ms A)) ^ (1+card (atms-of-ms A))
− µC (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight S)〉

(is 〈?µ U < ?µ S 〉)
proof −
have 〈?µ S = ?µ T 〉

using l-f
proof (induction)
case base
then show ?case by simp

next
case (step T U)
moreover then have 〈no-dup (trail T)〉

using rtranclp-cdclN OT -no-dup[of S T] cdclN OT -NOT-all-inv-def inv
rtranclp-learn-or-forget-cdclN OT by auto

ultimately show ?case
using forget-µC-stable learn-µC-stable inv unfolding cdclN OT -NOT-all-inv-def by presburger

qed
moreover have 〈cdclN OT -NOT-all-inv A T 〉

using rtranclp-learn-or-forget-cdclN OT cdclN OT -NOT-all-inv l-f inv by blast
ultimately show ?thesis
using dpll-bj-trail-mes-decreasing-prop[of T U A, OF dpll] finite
unfolding cdclN OT -NOT-all-inv-def by presburger

qed

lemma infinite-cdclN OT -exists-learn-and-forget-infinite-chain:

194

assumes
〈
∧
i. cdclN OT (f i) (f (Suc i))〉 and

inv: 〈cdclN OT -NOT-all-inv A (f 0)〉

shows 〈∃ j. ∀ i≥j. learn-or-forget (f i) (f (Suc i))〉

using assms
proof (induction 〈(2+card (atms-of-ms A)) ^ (1+card (atms-of-ms A))
− µC (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight (f 0))〉

arbitrary: f
rule: nat-less-induct-case)

case (Suc n) note IH = this(1) and µ = this(2) and cdclN OT = this(3) and inv = this(4)
consider

(dpll-end) 〈∃ j. ∀ i≥j. learn-or-forget (f i) (f (Suc i))〉

| (dpll-more) 〈¬(∃ j. ∀ i≥j. learn-or-forget (f i) (f (Suc i)))〉

by blast
then show ?case
proof cases
case dpll-end
then show ?thesis by auto

next
case dpll-more
then have j: 〈∃ i. ¬ learn (f i) (f (Suc i)) ∧ ¬forgetN OT (f i) (f (Suc i))〉

by blast
obtain i where
i-learn-forget: 〈¬learn (f i) (f (Suc i)) ∧ ¬forgetN OT (f i) (f (Suc i))〉 and
〈∀ k<i. learn-or-forget (f k) (f (Suc k))〉

proof −
obtain i0 where 〈¬ learn (f i0) (f (Suc i0)) ∧ ¬forgetN OT (f i0) (f (Suc i0))〉

using j by auto
then have 〈{i. i≤i0 ∧ ¬ learn (f i) (f (Suc i)) ∧ ¬forgetN OT (f i) (f (Suc i))} 6= {}〉

by auto
let ?I = 〈{i. i≤i0 ∧ ¬ learn (f i) (f (Suc i)) ∧ ¬forgetN OT (f i) (f (Suc i))}〉

let ?i = 〈Min ?I 〉

have 〈finite ?I 〉

by auto
have 〈¬ learn (f ?i) (f (Suc ?i)) ∧ ¬forgetN OT (f ?i) (f (Suc ?i))〉

using Min-in[OF 〈finite ?I 〉 〈?I 6= {}〉] by auto
moreover have 〈∀ k<?i. learn-or-forget (f k) (f (Suc k))〉

using Min.coboundedI [of 〈{i. i ≤ i0 ∧ ¬ learn (f i) (f (Suc i)) ∧ ¬ forgetN OT (f i)
(f (Suc i))}〉, simplified]

by (meson 〈¬ learn (f i0) (f (Suc i0)) ∧ ¬ forgetN OT (f i0) (f (Suc i0))〉 less-imp-le
dual-order .trans not-le)

ultimately show ?thesis using that by blast
qed
define g where 〈g = (λn. f (n + Suc i))〉

have 〈dpll-bj (f i) (g 0)〉

using i-learn-forget cdclN OT cdclN OT .cases unfolding g-def by auto
{
fix j
assume 〈j ≤ i〉

then have 〈learn-or-forget∗∗ (f 0) (f j)〉

apply (induction j)
apply simp
by (metis (no-types, lifting) Suc-leD Suc-le-lessD rtranclp.simps

〈∀ k<i. learn (f k) (f (Suc k)) ∨ forgetN OT (f k) (f (Suc k))〉)
}
then have 〈learn-or-forget∗∗ (f 0) (f i)〉 by blast

195

then have 〈(2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
− µC (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight (g 0))
< (2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
− µC (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight (f 0))〉

using learn-or-forget-dpll-µC [of 〈f 0 〉 〈f i〉 〈g 0 〉 A] inv 〈dpll-bj (f i) (g 0)〉

unfolding cdclN OT -NOT-all-inv-def by linarith

moreover have cdclN OT -i: 〈cdclN OT
∗∗ (f 0) (g 0)〉

using rtranclp-learn-or-forget-cdclN OT [of 〈f 0 〉 〈f i〉] 〈learn-or-forget∗∗ (f 0) (f i)〉

cdclN OT [of i] unfolding g-def by auto
moreover have 〈

∧
i. cdclN OT (g i) (g (Suc i))〉

using cdclN OT g-def by auto
moreover have 〈cdclN OT -NOT-all-inv A (g 0)〉

using inv cdclN OT -i rtranclp-cdclN OT -trail-clauses-bound g-def cdclN OT -NOT-all-inv by auto
ultimately obtain j where j: 〈

∧
i. i≥j =⇒ learn-or-forget (g i) (g (Suc i))〉

using IH unfolding µ[symmetric] by presburger
show ?thesis
proof
{
fix k
assume 〈k ≥ j + Suc i〉

then have 〈learn-or-forget (f k) (f (Suc k))〉

using j[of 〈k−Suc i〉] unfolding g-def by auto
}
then show 〈∀ k≥j+Suc i. learn-or-forget (f k) (f (Suc k))〉

by auto
qed

qed
next
case 0 note H = this(1) and cdclN OT = this(2) and inv = this(3)
show ?case
proof (rule ccontr)
assume 〈¬ ?case〉

then have j: 〈∃ i. ¬ learn (f i) (f (Suc i)) ∧ ¬forgetN OT (f i) (f (Suc i))〉

by blast
obtain i where

〈¬learn (f i) (f (Suc i)) ∧ ¬forgetN OT (f i) (f (Suc i))〉 and
〈∀ k<i. learn-or-forget (f k) (f (Suc k))〉

proof −
obtain i0 where 〈¬ learn (f i0) (f (Suc i0)) ∧ ¬forgetN OT (f i0) (f (Suc i0))〉

using j by auto
then have 〈{i. i≤i0 ∧ ¬ learn (f i) (f (Suc i)) ∧ ¬forgetN OT (f i) (f (Suc i))} 6= {}〉

by auto
let ?I = 〈{i. i≤i0 ∧ ¬ learn (f i) (f (Suc i)) ∧ ¬forgetN OT (f i) (f (Suc i))}〉

let ?i = 〈Min ?I 〉

have 〈finite ?I 〉

by auto
have 〈¬ learn (f ?i) (f (Suc ?i)) ∧ ¬forgetN OT (f ?i) (f (Suc ?i))〉

using Min-in[OF 〈finite ?I 〉 〈?I 6= {}〉] by auto
moreover have 〈∀ k<?i. learn-or-forget (f k) (f (Suc k))〉

using Min.coboundedI [of 〈{i. i ≤ i0 ∧ ¬ learn (f i) (f (Suc i)) ∧ ¬ forgetN OT (f i)
(f (Suc i))}〉, simplified]

by (meson 〈¬ learn (f i0) (f (Suc i0)) ∧ ¬ forgetN OT (f i0) (f (Suc i0))〉 less-imp-le
dual-order .trans not-le)

ultimately show ?thesis using that by blast
qed

196

have 〈dpll-bj (f i) (f (Suc i))〉

using 〈¬ learn (f i) (f (Suc i)) ∧ ¬ forgetN OT (f i) (f (Suc i))〉 cdclN OT cdclN OT .cases
by blast

{
fix j
assume 〈j ≤ i〉

then have 〈learn-or-forget∗∗ (f 0) (f j)〉

apply (induction j)
apply simp
by (metis (no-types, lifting) Suc-leD Suc-le-lessD rtranclp.simps

〈∀ k<i. learn (f k) (f (Suc k)) ∨ forgetN OT (f k) (f (Suc k))〉)
}
then have 〈learn-or-forget∗∗ (f 0) (f i)〉 by blast

then show False
using learn-or-forget-dpll-µC [of 〈f 0 〉 〈f i〉 〈f (Suc i)〉 A] inv 0

〈dpll-bj (f i) (f (Suc i))〉 unfolding cdclN OT -NOT-all-inv-def by linarith
qed

qed

lemma wf-cdclN OT -no-learn-and-forget-infinite-chain:
assumes
no-infinite-lf : 〈

∧
f j. ¬ (∀ i≥j. learn-or-forget (f i) (f (Suc i)))〉

shows 〈wf {(T , S). cdclN OT S T ∧ cdclN OT -NOT-all-inv A S}〉

(is 〈wf {(T , S). cdclN OT S T ∧ ?inv S}〉)
unfolding wf-iff-no-infinite-down-chain

proof (rule ccontr)
assume 〈¬ ¬ (∃ f . ∀ i. (f (Suc i), f i) ∈ {(T , S). cdclN OT S T ∧ ?inv S})〉

then obtain f where
〈∀ i. cdclN OT (f i) (f (Suc i)) ∧ ?inv (f i)〉

by fast
then have 〈∃ j. ∀ i≥j. learn-or-forget (f i) (f (Suc i))〉

using infinite-cdclN OT -exists-learn-and-forget-infinite-chain[of f] by meson
then show False using no-infinite-lf by blast

qed

lemma inv-and-tranclp-cdcl-N OT -tranclp-cdclN OT -and-inv:
〈cdclN OT

++ S T ∧ cdclN OT -NOT-all-inv A S ←→ (λS T . cdclN OT S T ∧ cdclN OT -NOT-all-inv A
S)++ S T 〉

(is 〈?A ∧ ?I ←→ ?B〉)
proof
assume 〈?A ∧ ?I 〉

then have ?A and ?I by blast+
then show ?B
apply induction
apply (simp add: tranclp.r-into-trancl)

by (subst tranclp.simps) (auto intro: cdclN OT -NOT-all-inv tranclp-into-rtranclp)
next
assume ?B
then have ?A by induction auto
moreover have ?I using 〈?B〉 tranclpD by fastforce
ultimately show 〈?A ∧ ?I 〉 by blast

qed

lemma wf-tranclp-cdclN OT -no-learn-and-forget-infinite-chain:
assumes

197

no-infinite-lf : 〈
∧
f j. ¬ (∀ i≥j. learn-or-forget (f i) (f (Suc i)))〉

shows 〈wf {(T , S). cdclN OT
++ S T ∧ cdclN OT -NOT-all-inv A S}〉

using wf-trancl[OF wf-cdclN OT -no-learn-and-forget-infinite-chain[OF no-infinite-lf]]
apply (rule wf-subset)
by (auto simp: trancl-set-tranclp inv-and-tranclp-cdcl-N OT -tranclp-cdclN OT -and-inv)

lemma cdclN OT -final-state:
assumes
n-s: 〈no-step cdclN OT S 〉 and
inv: 〈cdclN OT -NOT-all-inv A S 〉 and
decomp: 〈all-decomposition-implies-m (clausesN OT S) (get-all-ann-decomposition (trail S))〉

shows 〈unsatisfiable (set-mset (clausesN OT S))
∨ (trail S |=asm clausesN OT S ∧ satisfiable (set-mset (clausesN OT S)))〉

proof −
have n-s ′: 〈no-step dpll-bj S 〉

using n-s by (auto simp: cdclN OT .simps)
show ?thesis
apply (rule dpll-backjump-final-state[of S A])
using inv decomp n-s ′ unfolding cdclN OT -NOT-all-inv-def by auto

qed

lemma full-cdclN OT -final-state:
assumes
full: 〈full cdclN OT S T 〉 and
inv: 〈cdclN OT -NOT-all-inv A S 〉 and
n-d: 〈no-dup (trail S)〉 and
decomp: 〈all-decomposition-implies-m (clausesN OT S) (get-all-ann-decomposition (trail S))〉

shows 〈unsatisfiable (set-mset (clausesN OT T))
∨ (trail T |=asm clausesN OT T ∧ satisfiable (set-mset (clausesN OT T)))〉

proof −
have st: 〈cdclN OT

∗∗ S T 〉 and n-s: 〈no-step cdclN OT T 〉

using full unfolding full-def by blast+
have n-s ′: 〈cdclN OT -NOT-all-inv A T 〉

using cdclN OT -NOT-all-inv inv st by blast
moreover have 〈all-decomposition-implies-m (clausesN OT T) (get-all-ann-decomposition (trail T))〉

using cdclN OT -NOT-all-inv-def decomp inv rtranclp-cdclN OT -all-decomposition-implies st by auto
ultimately show ?thesis
using cdclN OT -final-state n-s by blast

qed

end — End of the locale conflict-driven-clause-learning.

Termination

To prove termination we need to restrict learn and forget. Otherwise we could forget and relearn
the exact same clause over and over. A first idea is to forbid removing clauses that can be used
to backjump. This does not change the rules of the calculus. A second idea is to “merge”
backjump and learn: that way, though closer to implementation, needs a change of the rules,
since the backjump-rule learns the clause used to backjump.

Restricting learn and forget
locale conflict-driven-clause-learning-learning-before-backjump-only-distinct-learnt =
dpll-state trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT +
conflict-driven-clause-learning trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT

198

inv decide-conds backjump-conds propagate-conds
〈λC S . distinct-mset C ∧ ¬tautology C ∧ learn-restrictions C S ∧

(∃F K d F ′ C ′ L. trail S = F ′ @ Decided K # F ∧ C = add-mset L C ′ ∧ F |=as CNot C ′
∧ add-mset L C ′ /∈# clausesN OT S)〉

〈λC S . ¬(∃F ′ F K d L. trail S = F ′ @ Decided K # F ∧ F |=as CNot (remove1-mset L C))
∧ forget-restrictions C S 〉

for
trail :: 〈 ′st ⇒ (′v, unit) ann-lits〉 and
clausesN OT :: 〈 ′st ⇒ ′v clauses〉 and
prepend-trail :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st〉 and
tl-trail :: 〈 ′st ⇒ ′st〉 and
add-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
remove-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
inv :: 〈 ′st ⇒ bool〉 and
decide-conds :: 〈 ′st ⇒ ′st ⇒ bool〉 and
backjump-conds :: 〈 ′v clause ⇒ ′v clause ⇒ ′v literal ⇒ ′st ⇒ ′st ⇒ bool〉 and
propagate-conds :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st ⇒ bool〉 and
learn-restrictions forget-restrictions :: 〈 ′v clause ⇒ ′st ⇒ bool〉

begin

lemma cdclN OT -learn-all-induct[consumes 1 , case-names dpll-bj learn forgetN OT]:
fixes S T :: 〈 ′st〉

assumes 〈cdclN OT S T 〉 and
dpll: 〈

∧
T . dpll-bj S T =⇒ P S T 〉 and

learning:
〈
∧
C F K F ′ C ′ L T . clausesN OT S |=pm C =⇒
atms-of C ⊆ atms-of-mm (clausesN OT S) ∪ atm-of ‘ (lits-of-l (trail S)) =⇒
distinct-mset C =⇒
¬ tautology C =⇒
learn-restrictions C S =⇒
trail S = F ′ @ Decided K # F =⇒
C = add-mset L C ′ =⇒
F |=as CNot C ′ =⇒
add-mset L C ′ /∈# clausesN OT S =⇒
T ∼ add-clsN OT C S =⇒
P S T 〉 and

forgetting: 〈
∧
C T . removeAll-mset C (clausesN OT S) |=pm C =⇒

C ∈# clausesN OT S =⇒
¬(∃F ′ F K L. trail S = F ′ @ Decided K # F ∧ F |=as CNot (C − {#L#})) =⇒
T ∼ remove-clsN OT C S =⇒
forget-restrictions C S =⇒
P S T 〉

shows 〈P S T 〉

using assms(1)
apply (induction rule: cdclN OT .induct)
apply (auto dest: assms(2) simp add: learn-ops-axioms)[]
apply (auto elim!: learn-ops.learn.cases[OF learn-ops-axioms] dest: assms(3))[]
apply (auto elim!: forget-ops.forgetN OT .cases[OF forget-ops-axioms] dest!: assms(4))
done

lemma rtranclp-cdclN OT -inv:
〈cdclN OT

∗∗ S T =⇒ inv S =⇒ inv T 〉

apply (induction rule: rtranclp-induct)
apply simp
using cdclN OT -inv unfolding conflict-driven-clause-learning-def
conflict-driven-clause-learning-axioms-def by blast

199

lemma learn-always-simple-clauses:
assumes
learn: 〈learn S T 〉 and
n-d: 〈no-dup (trail S)〉

shows 〈set-mset (clausesN OT T − clausesN OT S)
⊆ simple-clss (atms-of-mm (clausesN OT S) ∪ atm-of ‘ lits-of-l (trail S))〉

proof
fix C assume C : 〈C ∈ set-mset (clausesN OT T − clausesN OT S)〉

have 〈distinct-mset C 〉 〈¬tautology C 〉 using learn C n-d by (elim learnN OTE ; auto)+
then have 〈C ∈ simple-clss (atms-of C)〉

using distinct-mset-not-tautology-implies-in-simple-clss by blast
moreover have 〈atms-of C ⊆ atms-of-mm (clausesN OT S) ∪ atm-of ‘ lits-of-l (trail S)〉

using learn C n-d by (elim learnN OTE) (auto simp: atms-of-ms-def atms-of-def image-Un
true-annots-CNot-all-atms-defined)

moreover have 〈finite (atms-of-mm (clausesN OT S) ∪ atm-of ‘ lits-of-l (trail S))〉

by auto
ultimately show 〈C ∈ simple-clss (atms-of-mm (clausesN OT S) ∪ atm-of ‘ lits-of-l (trail S))〉

using simple-clss-mono by (metis (no-types) insert-subset mk-disjoint-insert)
qed

definition 〈conflicting-bj-clss S ≡
{C+{#L#} |C L. C+{#L#} ∈# clausesN OT S ∧ distinct-mset (C+{#L#})
∧ ¬tautology (C+{#L#})
∧ (∃F ′ K F . trail S = F ′ @ Decided K # F ∧ F |=as CNot C)}〉

lemma conflicting-bj-clss-remove-clsN OT [simp]:
〈conflicting-bj-clss (remove-clsN OT C S) = conflicting-bj-clss S − {C}〉

unfolding conflicting-bj-clss-def by fastforce

lemma conflicting-bj-clss-remove-clsN OT
′[simp]:

〈T ∼ remove-clsN OT C S =⇒ conflicting-bj-clss T = conflicting-bj-clss S − {C}〉

unfolding conflicting-bj-clss-def by fastforce

lemma conflicting-bj-clss-add-clsN OT -state-eq:
assumes
T : 〈T ∼ add-clsN OT C ′ S 〉 and
n-d: 〈no-dup (trail S)〉

shows 〈conflicting-bj-clss T
= conflicting-bj-clss S
∪ (if ∃C L. C ′ = add-mset L C ∧ distinct-mset (add-mset L C) ∧ ¬tautology (add-mset L C)
∧ (∃F ′ K d F . trail S = F ′ @ Decided K # F ∧ F |=as CNot C)
then {C ′} else {})〉

proof −
define P where 〈P = (λC L T . distinct-mset (add-mset L C) ∧ ¬ tautology (add-mset L C) ∧

(∃F ′ K F . trail T = F ′ @ Decided K # F ∧ F |=as CNot C))〉

have conf : 〈
∧
T . conflicting-bj-clss T = {add-mset L C |C L. add-mset L C ∈# clausesN OT T ∧ P

C L T}〉

unfolding conflicting-bj-clss-def P-def by auto
have P-S-T : 〈

∧
C L. P C L T = P C L S 〉

using T n-d unfolding P-def by auto
have P: 〈conflicting-bj-clss T = {add-mset L C |C L. add-mset L C ∈# clausesN OT S ∧ P C L T} ∪
{add-mset L C |C L. add-mset L C ∈# {#C ′#} ∧ P C L T}〉

using T n-d unfolding conf by auto
moreover have 〈{add-mset L C |C L. add-mset L C ∈# clausesN OT S ∧ P C L T} = conflicting-bj-clss

S 〉

200

using T n-d unfolding P-def conflicting-bj-clss-def by auto
moreover have 〈{add-mset L C |C L. add-mset L C ∈# {#C ′#} ∧ P C L T} =

(if ∃C L. C ′ = add-mset L C ∧ P C L S then {C ′} else {})〉

using n-d T by (force simp: P-S-T)
ultimately show ?thesis unfolding P-def by presburger

qed

lemma conflicting-bj-clss-add-clsN OT :
〈no-dup (trail S) =⇒
conflicting-bj-clss (add-clsN OT C ′ S)

= conflicting-bj-clss S
∪ (if ∃C L. C ′ = C +{#L#}∧ distinct-mset (C+{#L#}) ∧ ¬tautology (C+{#L#})
∧ (∃F ′ K d F . trail S = F ′ @ Decided K # F ∧ F |=as CNot C)
then {C ′} else {})〉

using conflicting-bj-clss-add-clsN OT -state-eq by auto

lemma conflicting-bj-clss-incl-clauses:
〈conflicting-bj-clss S ⊆ set-mset (clausesN OT S)〉

unfolding conflicting-bj-clss-def by auto

lemma finite-conflicting-bj-clss[simp]:
〈finite (conflicting-bj-clss S)〉

using conflicting-bj-clss-incl-clauses[of S] rev-finite-subset by blast

lemma learn-conflicting-increasing:
〈no-dup (trail S) =⇒ learn S T =⇒ conflicting-bj-clss S ⊆ conflicting-bj-clss T 〉

apply (elim learnN OTE)
by (subst conflicting-bj-clss-add-clsN OT -state-eq[of T]) auto

abbreviation 〈conflicting-bj-clss-yet b S ≡
3 ^ b − card (conflicting-bj-clss S)〉

abbreviation µL :: 〈nat ⇒ ′st ⇒ nat × nat〉 where
〈µL b S ≡ (conflicting-bj-clss-yet b S , card (set-mset (clausesN OT S)))〉

lemma do-not-forget-before-backtrack-rule-clause-learned-clause-untouched:
assumes 〈forgetN OT S T 〉

shows 〈conflicting-bj-clss S = conflicting-bj-clss T 〉

using assms apply (elim forgetN OTE)
apply rule
apply (subst conflicting-bj-clss-remove-clsN OT

′[of T], simp)
apply (fastforce simp: conflicting-bj-clss-def remove1-mset-add-mset-If split: if-splits)
apply fastforce
done

lemma forget-µL-decrease:
assumes forgetN OT : 〈forgetN OT S T 〉

shows 〈(µL b T , µL b S) ∈ less-than <∗lex∗> less-than〉

proof −
have 〈card (set-mset (clausesN OT S)) > 0 〉

using forgetN OT by (elim forgetN OTE) (auto simp: size-mset-removeAll-mset-le-iff card-gt-0-iff)
then have 〈card (set-mset (clausesN OT T)) < card (set-mset (clausesN OT S))〉

using forgetN OT by (elim forgetN OTE) (auto simp: size-mset-removeAll-mset-le-iff)
then show ?thesis
unfolding do-not-forget-before-backtrack-rule-clause-learned-clause-untouched[OF forgetN OT]
by auto

201

qed

lemma set-condition-or-split:
〈{a. (a = b ∨ Q a) ∧ S a} = (if S b then {b} else {}) ∪ {a. Q a ∧ S a}〉

by auto

lemma set-insert-neq:
〈A 6= insert a A ←→ a /∈ A〉

by auto

lemma learn-µL-decrease:
assumes learnST : 〈learn S T 〉 and n-d: 〈no-dup (trail S)〉 and
A: 〈atms-of-mm (clausesN OT S) ∪ atm-of ‘ lits-of-l (trail S) ⊆ A〉 and
fin-A: 〈finite A〉

shows 〈(µL (card A) T , µL (card A) S) ∈ less-than <∗lex∗> less-than〉

proof −
have [simp]: 〈(atms-of-mm (clausesN OT T) ∪ atm-of ‘ lits-of-l (trail T))

= (atms-of-mm (clausesN OT S) ∪ atm-of ‘ lits-of-l (trail S))〉

using learnST n-d by (elim learnN OTE) auto

then have 〈card (atms-of-mm (clausesN OT T) ∪ atm-of ‘ lits-of-l (trail T))
= card (atms-of-mm (clausesN OT S) ∪ atm-of ‘ lits-of-l (trail S))〉

by (auto intro!: card-mono)
then have 3 : 〈(3 ::nat) ^ card (atms-of-mm (clausesN OT T) ∪ atm-of ‘ lits-of-l (trail T))

= 3 ^ card (atms-of-mm (clausesN OT S) ∪ atm-of ‘ lits-of-l (trail S))〉

by (auto intro: power-mono)
moreover have 〈conflicting-bj-clss S ⊆ conflicting-bj-clss T 〉

using learnST n-d by (simp add: learn-conflicting-increasing)
moreover have 〈conflicting-bj-clss S 6= conflicting-bj-clss T 〉

using learnST
proof (elim learnN OTE , goal-cases)
case (1 C) note clss-S = this(1) and atms-C = this(2) and inv = this(3) and T = this(4)
then obtain F K F ′ C ′ L where
tr-S : 〈trail S = F ′ @ Decided K # F 〉 and
C : 〈C = add-mset L C ′〉 and
F : 〈F |=as CNot C ′〉 and
C-S :〈add-mset L C ′ /∈# clausesN OT S 〉

by blast
moreover have 〈distinct-mset C 〉 〈¬ tautology C 〉 using inv by blast+
ultimately have 〈add-mset L C ′ ∈ conflicting-bj-clss T 〉

using T n-d unfolding conflicting-bj-clss-def by fastforce
moreover have 〈add-mset L C ′ /∈ conflicting-bj-clss S 〉

using C-S unfolding conflicting-bj-clss-def by auto
ultimately show ?case by blast

qed
moreover have fin-T : 〈finite (conflicting-bj-clss T)〉

using learnST by induction (auto simp add: conflicting-bj-clss-add-clsN OT)
ultimately have 〈card (conflicting-bj-clss T) ≥ card (conflicting-bj-clss S)〉

using card-mono by blast

moreover
have fin ′: 〈finite (atms-of-mm (clausesN OT T) ∪ atm-of ‘ lits-of-l (trail T))〉

by auto
have 1 :〈atms-of-ms (conflicting-bj-clss T) ⊆ atms-of-mm (clausesN OT T)〉

unfolding conflicting-bj-clss-def atms-of-ms-def by auto
have 2 : 〈

∧
x. x∈ conflicting-bj-clss T =⇒ ¬ tautology x ∧ distinct-mset x〉

202

unfolding conflicting-bj-clss-def by auto
have T : 〈conflicting-bj-clss T
⊆ simple-clss (atms-of-mm (clausesN OT T) ∪ atm-of ‘ lits-of-l (trail T))〉

by standard (meson 1 2 fin ′ 〈finite (conflicting-bj-clss T)〉 simple-clss-mono
distinct-mset-set-def simplified-in-simple-clss subsetCE sup.coboundedI1)

moreover
then have #: 〈3 ^ card (atms-of-mm (clausesN OT T) ∪ atm-of ‘ lits-of-l (trail T))
≥ card (conflicting-bj-clss T)〉

by (meson Nat.le-trans simple-clss-card simple-clss-finite card-mono fin ′)
have 〈atms-of-mm (clausesN OT T) ∪ atm-of ‘ lits-of-l (trail T) ⊆ A〉

using learnN OTE [OF learnST] A by simp
then have 〈3 ^ (card A) ≥ card (conflicting-bj-clss T)〉

using # fin-A by (meson simple-clss-card simple-clss-finite
simple-clss-mono calculation(2) card-mono dual-order .trans)

ultimately show ?thesis
using psubset-card-mono[OF fin-T]
unfolding less-than-iff lex-prod-def by clarify

(meson 〈conflicting-bj-clss S 6= conflicting-bj-clss T 〉

〈conflicting-bj-clss S ⊆ conflicting-bj-clss T 〉

diff-less-mono2 le-less-trans not-le psubsetI)
qed

We have to assume the following:

• inv S : the invariant holds in the inital state.

• A is a (finite finite A) superset of the literals in the trail atm-of ‘ lits-of-l (trail S) ⊆
atms-of-ms A and in the clauses atms-of-mm (clausesN OT S) ⊆ atms-of-ms A. This can
the the set of all the literals in the starting set of clauses.

• no-dup (trail S): no duplicate in the trail. This is invariant along the path.

definition µC DC L where
〈µC DC L A T ≡ ((2+card (atms-of-ms A)) ^ (1+card (atms-of-ms A))

− µC (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T),
conflicting-bj-clss-yet (card (atms-of-ms A)) T , card (set-mset (clausesN OT T)))〉

lemma cdclN OT -decreasing-measure:
assumes

〈cdclN OT S T 〉 and
inv: 〈inv S 〉 and
atm-clss: 〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and
atm-lits: 〈atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A〉 and
n-d: 〈no-dup (trail S)〉 and
fin-A: 〈finite A〉

shows 〈(µC DC L A T , µC DC L A S)
∈ less-than <∗lex∗> (less-than <∗lex∗> less-than)〉

using assms(1)
proof induction
case (c-dpll-bj T)
from dpll-bj-trail-mes-decreasing-prop[OF this(1) inv atm-clss atm-lits n-d fin-A]
show ?case unfolding µC DC L-def
by (meson in-lex-prod less-than-iff)

next
case (c-learn T) note learn = this(1)
then have S : 〈trail S = trail T 〉

203

using inv atm-clss atm-lits n-d fin-A
by (elim learnN OTE) auto

show ?case
using learn-µL-decrease[OF learn n-d, of 〈atms-of-ms A〉] atm-clss atm-lits fin-A n-d
unfolding S µC DC L-def by auto

next
case (c-forgetN OT T) note forgetN OT = this(1)
have 〈trail S = trail T 〉 using forgetN OT by induction auto
then show ?case
using forget-µL-decrease[OF forgetN OT] unfolding µC DC L-def by auto

qed

lemma wf-cdclN OT -restricted-learning:
assumes 〈finite A〉

shows 〈wf {(T , S).
(atms-of-mm (clausesN OT S) ⊆ atms-of-ms A ∧ atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A
∧ no-dup (trail S)
∧ inv S)
∧ cdclN OT S T }〉

by (rule wf-wf-if-measure ′[of 〈less-than <∗lex∗> (less-than <∗lex∗> less-than)〉])
(auto intro: cdclN OT -decreasing-measure[OF - - - - - assms])

definition µC
′ :: 〈 ′v clause set ⇒ ′st ⇒ nat〉 where

〈µC
′ A T ≡ µC (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T)〉

definition µC DC L
′ :: 〈 ′v clause set ⇒ ′st ⇒ nat〉 where

〈µC DC L
′ A T ≡

((2+card (atms-of-ms A)) ^ (1+card (atms-of-ms A)) − µC
′ A T) ∗ (1+ 3^card (atms-of-ms A)) ∗

2
+ conflicting-bj-clss-yet (card (atms-of-ms A)) T ∗ 2
+ card (set-mset (clausesN OT T))〉

lemma cdclN OT -decreasing-measure ′:
assumes

〈cdclN OT S T 〉 and
inv: 〈inv S 〉 and
atms-clss: 〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and
atms-trail: 〈atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A〉 and
n-d: 〈no-dup (trail S)〉 and
fin-A: 〈finite A〉

shows 〈µC DC L
′ A T < µC DC L

′ A S 〉

using assms(1)
proof (induction rule: cdclN OT -learn-all-induct)
case (dpll-bj T)
then have 〈(2+card (atms-of-ms A)) ^ (1+card (atms-of-ms A)) − µC

′ A T
< (2+card (atms-of-ms A)) ^ (1+card (atms-of-ms A)) − µC

′ A S 〉

using dpll-bj-trail-mes-decreasing-prop fin-A inv n-d atms-clss atms-trail
unfolding µC

′-def by blast
then have XX : 〈((2+card (atms-of-ms A)) ^ (1+card (atms-of-ms A)) − µC

′ A T) + 1
≤ (2+card (atms-of-ms A)) ^ (1+card (atms-of-ms A)) − µC

′ A S 〉

by auto
from mult-le-mono1 [OF this, of 〈1 + 3 ^ card (atms-of-ms A)〉]
have 〈((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A)) − µC

′ A T) ∗
(1 + 3 ^ card (atms-of-ms A)) + (1 + 3 ^ card (atms-of-ms A))
≤ ((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A)) − µC

′ A S)
∗ (1 + 3 ^ card (atms-of-ms A))〉

204

unfolding Nat.add-mult-distrib
by presburger

moreover
have cl-T-S : 〈clausesN OT T = clausesN OT S 〉

using dpll-bj.hyps inv dpll-bj-clauses by auto
have 〈conflicting-bj-clss-yet (card (atms-of-ms A)) S < 1+ 3 ^ card (atms-of-ms A)〉

by simp
ultimately have 〈((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A)) − µC

′ A T)
∗ (1 + 3 ^ card (atms-of-ms A)) + conflicting-bj-clss-yet (card (atms-of-ms A)) T

< ((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A)) − µC
′ A S) ∗(1 + 3 ^ card (atms-of-ms

A))〉

by linarith
then have 〈((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A)) − µC

′ A T)
∗ (1 + 3 ^ card (atms-of-ms A))

+ conflicting-bj-clss-yet (card (atms-of-ms A)) T
< ((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A)) − µC

′ A S)
∗ (1 + 3 ^ card (atms-of-ms A))

+ conflicting-bj-clss-yet (card (atms-of-ms A)) S 〉

by linarith
then have 〈((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A)) − µC

′ A T)
∗ (1 + 3 ^ card (atms-of-ms A)) ∗ 2

+ conflicting-bj-clss-yet (card (atms-of-ms A)) T ∗ 2
< ((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A)) − µC

′ A S)
∗ (1 + 3 ^ card (atms-of-ms A)) ∗ 2

+ conflicting-bj-clss-yet (card (atms-of-ms A)) S ∗ 2 〉

by linarith
then show ?case unfolding µC DC L

′-def cl-T-S by presburger
next
case (learn C F ′ K F C ′ L T) note clss-S-C = this(1) and atms-C = this(2) and dist = this(3)
and tauto = this(4) and learn-restr = this(5) and tr-S = this(6) and C ′ = this(7) and
F-C = this(8) and C-new = this(9) and T = this(10)

have 〈insert C (conflicting-bj-clss S) ⊆ simple-clss (atms-of-ms A)〉

proof −
have 〈C ∈ simple-clss (atms-of-ms A)〉

using C ′
by (metis (no-types, hide-lams) Un-subset-iff simple-clss-mono
contra-subsetD dist distinct-mset-not-tautology-implies-in-simple-clss
dual-order .trans atms-C atms-clss atms-trail tauto)

moreover have 〈conflicting-bj-clss S ⊆ simple-clss (atms-of-ms A)〉

proof
fix x :: 〈 ′v clause〉

assume 〈x ∈ conflicting-bj-clss S 〉

then have 〈x ∈# clausesN OT S ∧ distinct-mset x ∧ ¬ tautology x〉

unfolding conflicting-bj-clss-def by blast
then show 〈x ∈ simple-clss (atms-of-ms A)〉

by (meson atms-clss atms-of-atms-of-ms-mono atms-of-ms-finite simple-clss-mono
distinct-mset-not-tautology-implies-in-simple-clss fin-A finite-subset
set-rev-mp)

qed
ultimately show ?thesis
by auto

qed
then have 〈card (insert C (conflicting-bj-clss S)) ≤ 3 ^ (card (atms-of-ms A))〉

by (meson Nat.le-trans atms-of-ms-finite simple-clss-card simple-clss-finite
card-mono fin-A)

moreover have [simp]: 〈card (insert C (conflicting-bj-clss S))

205

= Suc (card ((conflicting-bj-clss S)))〉

by (metis (no-types) C ′ C-new card-insert-if conflicting-bj-clss-incl-clauses contra-subsetD
finite-conflicting-bj-clss)

moreover have [simp]: 〈conflicting-bj-clss (add-clsN OT C S) = conflicting-bj-clss S ∪ {C}〉

using dist tauto F-C by (subst conflicting-bj-clss-add-clsN OT [OF n-d]) (force simp: C ′ tr-S n-d)
ultimately have [simp]: 〈conflicting-bj-clss-yet (card (atms-of-ms A)) S

= Suc (conflicting-bj-clss-yet (card (atms-of-ms A)) (add-clsN OT C S))〉

by simp
have 1 : 〈clausesN OT T = clausesN OT (add-clsN OT C S)〉 using T by auto
have 2 : 〈conflicting-bj-clss-yet (card (atms-of-ms A)) T

= conflicting-bj-clss-yet (card (atms-of-ms A)) (add-clsN OT C S)〉

using T unfolding conflicting-bj-clss-def by auto
have 3 : 〈µC

′ A T = µC
′ A (add-clsN OT C S)〉

using T unfolding µC
′-def by auto

have 〈((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A)) − µC
′ A (add-clsN OT C S))

∗ (1 + 3 ^ card (atms-of-ms A)) ∗ 2
= ((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A)) − µC

′ A S)
∗ (1 + 3 ^ card (atms-of-ms A)) ∗ 2 〉

using n-d unfolding µC
′-def by auto

moreover
have 〈conflicting-bj-clss-yet (card (atms-of-ms A)) (add-clsN OT C S)
∗ 2

+ card (set-mset (clausesN OT (add-clsN OT C S)))
< conflicting-bj-clss-yet (card (atms-of-ms A)) S ∗ 2
+ card (set-mset (clausesN OT S))〉

by (simp add: C ′ C-new n-d)
ultimately show ?case unfolding µC DC L

′-def 1 2 3 by presburger
next
case (forgetN OT C T) note T = this(4)
have [simp]: 〈µC

′ A (remove-clsN OT C S) = µC
′ A S 〉

unfolding µC
′-def by auto

have 〈forgetN OT S T 〉

apply (rule forgetN OT .intros) using forgetN OT by auto
then have 〈conflicting-bj-clss T = conflicting-bj-clss S 〉

using do-not-forget-before-backtrack-rule-clause-learned-clause-untouched by blast
moreover have 〈card (set-mset (clausesN OT T)) < card (set-mset (clausesN OT S))〉

by (metis T card-Diff1-less clauses-remove-clsN OT finite-set-mset forgetN OT .hyps(2)
order-refl set-mset-minus-replicate-mset(1) state-eqN OT -clauses)

ultimately show ?case unfolding µC DC L
′-def

using T 〈µC
′ A (remove-clsN OT C S) = µC

′ A S 〉 by (metis (no-types) add-le-cancel-left
µC
′-def not-le state-eqN OT -trail)

qed

lemma cdclN OT -clauses-bound:
assumes

〈cdclN OT S T 〉 and
〈inv S 〉 and
〈atms-of-mm (clausesN OT S) ⊆ A〉 and
〈atm-of ‘(lits-of-l (trail S)) ⊆ A〉 and
n-d: 〈no-dup (trail S)〉 and
fin-A[simp]: 〈finite A〉

shows 〈set-mset (clausesN OT T) ⊆ set-mset (clausesN OT S) ∪ simple-clss A〉

using assms
proof (induction rule: cdclN OT -learn-all-induct)
case dpll-bj
then show ?case using dpll-bj-clauses by simp

206

next
case forgetN OT

then show ?case using clauses-remove-clsN OT unfolding state-eqN OT -def by auto
next
case (learn C F K d F ′ C ′ L) note atms-C = this(2) and dist = this(3) and tauto = this(4) and
T = this(10) and atms-clss-S = this(12) and atms-trail-S = this(13)
have 〈atms-of C ⊆ A〉

using atms-C atms-clss-S atms-trail-S by fast
then have 〈simple-clss (atms-of C) ⊆ simple-clss A〉

by (simp add: simple-clss-mono)
then have 〈C ∈ simple-clss A〉

using finite dist tauto by (auto dest: distinct-mset-not-tautology-implies-in-simple-clss)
then show ?case using T n-d by auto

qed

lemma rtranclp-cdclN OT -clauses-bound:
assumes

〈cdclN OT
∗∗ S T 〉 and

〈inv S 〉 and
〈atms-of-mm (clausesN OT S) ⊆ A〉 and
〈atm-of ‘(lits-of-l (trail S)) ⊆ A〉 and
n-d: 〈no-dup (trail S)〉 and
finite: 〈finite A〉

shows 〈set-mset (clausesN OT T) ⊆ set-mset (clausesN OT S) ∪ simple-clss A〉

using assms(1−5)
proof induction
case base
then show ?case by simp

next
case (step T U) note st = this(1) and cdclN OT = this(2) and IH = this(3)[OF this(4−7)] and
inv = this(4) and atms-clss-S = this(5) and atms-trail-S = this(6) and finite-cls-S = this(7)

have 〈inv T 〉

using rtranclp-cdclN OT -inv st inv by blast
moreover have 〈atms-of-mm (clausesN OT T) ⊆ A〉 and 〈atm-of ‘ lits-of-l (trail T) ⊆ A〉

using rtranclp-cdclN OT -trail-clauses-bound[OF st] inv atms-clss-S atms-trail-S n-d by auto
moreover have 〈no-dup (trail T)〉

using rtranclp-cdclN OT -no-dup[OF st 〈inv S 〉 n-d] by simp
ultimately have 〈set-mset (clausesN OT U) ⊆ set-mset (clausesN OT T) ∪ simple-clss A〉

using cdclN OT finite n-d by (auto simp: cdclN OT -clauses-bound)
then show ?case using IH by auto

qed

lemma rtranclp-cdclN OT -card-clauses-bound:
assumes

〈cdclN OT
∗∗ S T 〉 and

〈inv S 〉 and
〈atms-of-mm (clausesN OT S) ⊆ A〉 and
〈atm-of ‘(lits-of-l (trail S)) ⊆ A〉 and
n-d: 〈no-dup (trail S)〉 and
finite: 〈finite A〉

shows 〈card (set-mset (clausesN OT T)) ≤ card (set-mset (clausesN OT S)) + 3 ^ (card A)〉

using rtranclp-cdclN OT -clauses-bound[OF assms] finite by (meson Nat.le-trans
simple-clss-card simple-clss-finite card-Un-le card-mono finite-UnI
finite-set-mset nat-add-left-cancel-le)

lemma rtranclp-cdclN OT -card-clauses-bound ′:

207

assumes
〈cdclN OT

∗∗ S T 〉 and
〈inv S 〉 and
〈atms-of-mm (clausesN OT S) ⊆ A〉 and
〈atm-of ‘(lits-of-l (trail S)) ⊆ A〉 and
n-d: 〈no-dup (trail S)〉 and
finite: 〈finite A〉

shows 〈card {C |C . C ∈# clausesN OT T ∧ (tautology C ∨ ¬distinct-mset C)}
≤ card {C |C . C∈# clausesN OT S ∧ (tautology C ∨ ¬distinct-mset C)} + 3 ^ (card A)〉

(is 〈card ?T ≤ card ?S + -〉)
using rtranclp-cdclN OT -clauses-bound[OF assms] finite

proof −
have 〈?T ⊆ ?S ∪ simple-clss A〉

using rtranclp-cdclN OT -clauses-bound[OF assms] by force
then have 〈card ?T ≤ card (?S ∪ simple-clss A)〉

using finite by (simp add: assms(5) simple-clss-finite card-mono)
then show ?thesis
by (meson le-trans simple-clss-card card-Un-le local.finite nat-add-left-cancel-le)

qed

lemma rtranclp-cdclN OT -card-simple-clauses-bound:
assumes

〈cdclN OT
∗∗ S T 〉 and

〈inv S 〉 and
NA: 〈atms-of-mm (clausesN OT S) ⊆ A〉 and
MA: 〈atm-of ‘ (lits-of-l (trail S)) ⊆ A〉 and
n-d: 〈no-dup (trail S)〉 and
finite: 〈finite A〉

shows 〈card (set-mset (clausesN OT T))
≤ card {C . C ∈# clausesN OT S ∧ (tautology C ∨ ¬distinct-mset C)} + 3 ^ (card A)〉

(is 〈card ?T ≤ card ?S + -〉)
using rtranclp-cdclN OT -clauses-bound[OF assms] finite

proof −
have 〈

∧
x. x ∈# clausesN OT T =⇒ ¬ tautology x =⇒ distinct-mset x =⇒ x ∈ simple-clss A〉

using rtranclp-cdclN OT -clauses-bound[OF assms] by (metis (no-types, hide-lams) Un-iff NA
atms-of-atms-of-ms-mono simple-clss-mono contra-subsetD subset-trans
distinct-mset-not-tautology-implies-in-simple-clss)

then have 〈set-mset (clausesN OT T) ⊆ ?S ∪ simple-clss A〉

using rtranclp-cdclN OT -clauses-bound[OF assms] by auto
then have 〈card(set-mset (clausesN OT T)) ≤ card (?S ∪ simple-clss A)〉

using finite by (simp add: assms(5) simple-clss-finite card-mono)
then show ?thesis
by (meson le-trans simple-clss-card card-Un-le local.finite nat-add-left-cancel-le)

qed

definition µC DC L
′-bound :: 〈 ′v clause set ⇒ ′st ⇒ nat〉 where

〈µC DC L
′-bound A S =

((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))) ∗ (1 + 3 ^ card (atms-of-ms A)) ∗ 2
+ 2∗3 ^ (card (atms-of-ms A))
+ card {C . C ∈# clausesN OT S ∧ (tautology C ∨ ¬distinct-mset C)} + 3 ^ (card (atms-of-ms

A))〉

lemma µC DC L
′-bound-reduce-trail-toN OT [simp]:

〈µC DC L
′-bound A (reduce-trail-toN OT M S) = µC DC L

′-bound A S 〉

unfolding µC DC L
′-bound-def by auto

208

lemma rtranclp-cdclN OT -µC DC L
′-bound-reduce-trail-toN OT :

assumes
〈cdclN OT

∗∗ S T 〉 and
〈inv S 〉 and
〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and
〈atm-of ‘(lits-of-l (trail S)) ⊆ atms-of-ms A〉 and
n-d: 〈no-dup (trail S)〉 and
finite: 〈finite (atms-of-ms A)〉 and
U : 〈U ∼ reduce-trail-toN OT M T 〉

shows 〈µC DC L
′ A U ≤ µC DC L

′-bound A S 〉

proof −
have 〈 ((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A)) − µC

′ A U)
≤ (2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))〉

by auto
then have 〈((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A)) − µC

′ A U)
∗ (1 + 3 ^ card (atms-of-ms A)) ∗ 2

≤ (2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A)) ∗ (1 + 3 ^ card (atms-of-ms A)) ∗ 2 〉

using mult-le-mono1 by blast
moreover
have 〈conflicting-bj-clss-yet (card (atms-of-ms A)) T ∗ 2 ≤ 2 ∗ 3 ^ card (atms-of-ms A)〉

by linarith
moreover have 〈card (set-mset (clausesN OT U))
≤ card {C . C ∈# clausesN OT S ∧ (tautology C ∨ ¬distinct-mset C)} + 3 ^ card (atms-of-ms A)〉

using rtranclp-cdclN OT -card-simple-clauses-bound[OF assms(1−6)] U by auto
ultimately show ?thesis
unfolding µC DC L

′-def µC DC L
′-bound-def by linarith

qed

lemma rtranclp-cdclN OT -µC DC L
′-bound:

assumes
〈cdclN OT

∗∗ S T 〉 and
〈inv S 〉 and
〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and
〈atm-of ‘(lits-of-l (trail S)) ⊆ atms-of-ms A〉 and
n-d: 〈no-dup (trail S)〉 and
finite: 〈finite (atms-of-ms A)〉

shows 〈µC DC L
′ A T ≤ µC DC L

′-bound A S 〉

proof −
have 〈µC DC L

′ A (reduce-trail-toN OT (trail T) T) = µC DC L
′ A T 〉

unfolding µC DC L
′-def µC

′-def conflicting-bj-clss-def by auto
then show ?thesis using rtranclp-cdclN OT -µC DC L

′-bound-reduce-trail-toN OT [OF assms, of - 〈trail
T 〉]

state-eqN OT -ref by fastforce
qed

lemma rtranclp-µC DC L
′-bound-decreasing:

assumes
〈cdclN OT

∗∗ S T 〉 and
〈inv S 〉 and
〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and
〈atm-of ‘(lits-of-l (trail S)) ⊆ atms-of-ms A〉 and
n-d: 〈no-dup (trail S)〉 and
finite[simp]: 〈finite (atms-of-ms A)〉

shows 〈µC DC L
′-bound A T ≤ µC DC L

′-bound A S 〉

proof −
have 〈{C . C ∈# clausesN OT T ∧ (tautology C ∨ ¬ distinct-mset C)}

209

⊆ {C . C ∈# clausesN OT S ∧ (tautology C ∨ ¬ distinct-mset C)}〉 (is 〈?T ⊆ ?S 〉)
proof (rule Set.subsetI)
fix C assume 〈C ∈ ?T 〉

then have C-T : 〈C ∈# clausesN OT T 〉 and t-d: 〈tautology C ∨ ¬ distinct-mset C 〉

by auto
then have 〈C /∈ simple-clss (atms-of-ms A)〉

by (auto dest: simple-clssE)
then show 〈C ∈ ?S 〉

using C-T rtranclp-cdclN OT -clauses-bound[OF assms] t-d by force
qed

then have 〈card {C . C ∈# clausesN OT T ∧ (tautology C ∨ ¬ distinct-mset C)} ≤
card {C . C ∈# clausesN OT S ∧ (tautology C ∨ ¬ distinct-mset C)}〉

by (simp add: card-mono)
then show ?thesis
unfolding µC DC L

′-bound-def by auto
qed

end — End of the locale conflict-driven-clause-learning-learning-before-backjump-only-distinct-learnt.

2.2.5 CDCL with Restarts

Definition

locale restart-ops =
fixes
cdclN OT :: 〈 ′st ⇒ ′st ⇒ bool〉 and
restart :: 〈 ′st ⇒ ′st ⇒ bool〉

begin
inductive cdclN OT -raw-restart :: 〈 ′st ⇒ ′st ⇒ bool〉 where
〈cdclN OT S T =⇒ cdclN OT -raw-restart S T 〉 |
〈restart S T =⇒ cdclN OT -raw-restart S T 〉

end

locale conflict-driven-clause-learning-with-restarts =
conflict-driven-clause-learning trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT

inv decide-conds backjump-conds propagate-conds learn-conds forget-conds
for
trail :: 〈 ′st ⇒ (′v, unit) ann-lits〉 and
clausesN OT :: 〈 ′st ⇒ ′v clauses〉 and
prepend-trail :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st〉 and
tl-trail :: 〈 ′st ⇒ ′st〉 and
add-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
remove-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
inv :: 〈 ′st ⇒ bool〉 and
decide-conds :: 〈 ′st ⇒ ′st ⇒ bool〉 and
backjump-conds :: 〈 ′v clause ⇒ ′v clause ⇒ ′v literal ⇒ ′st ⇒ ′st ⇒ bool〉 and
propagate-conds :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st ⇒ bool〉 and
learn-conds forget-conds :: 〈 ′v clause ⇒ ′st ⇒ bool〉

begin

lemma cdclN OT -iff-cdclN OT -raw-restart-no-restarts:
〈cdclN OT S T ←→ restart-ops.cdclN OT -raw-restart cdclN OT (λ- -. False) S T 〉

(is 〈?C S T ←→ ?R S T 〉)
proof
fix S T

210

assume 〈?C S T 〉

then show 〈?R S T 〉 by (simp add: restart-ops.cdclN OT -raw-restart.intros(1))
next
fix S T
assume 〈?R S T 〉

then show 〈?C S T 〉

apply (cases rule: restart-ops.cdclN OT -raw-restart.cases)
using 〈?R S T 〉 by fast+

qed

lemma cdclN OT -cdclN OT -raw-restart:
〈cdclN OT S T =⇒ restart-ops.cdclN OT -raw-restart cdclN OT restart S T 〉

by (simp add: restart-ops.cdclN OT -raw-restart.intros(1))
end

Increasing restarts

Definition We define our increasing restart very abstractly: the predicate (called cdclN OT)
does not have to be a CDCL calculus. We just need some assuptions to prove termination:

• a function f that is strictly monotonic. The first step is actually only used as a restart to
clean the state (e.g. to ensure that the trail is empty). Then we assume that (1 :: ′a) ≤ f
n for (1 :: ′a) ≤ n: it means that between two consecutive restarts, at least one step will
be done. This is necessary to avoid sequence. like: full – restart – full – ...

• a measure µ: it should decrease under the assumptions bound-inv, whenever a cdclN OT

or a restart is done. A parameter is given to µ: for conflict- driven clause learning, it is
an upper-bound of the clauses. We are assuming that such a bound can be found after a
restart whenever the invariant holds.

• we also assume that the measure decrease after any cdclN OT step.

• an invariant on the states cdclN OT -inv that also holds after restarts.

• it is not required that the measure decrease with respect to restarts, but the measure has
to be bound by some function µ-bound taking the same parameter as µ and the initial
state of the considered cdclN OT chain.

locale cdclN OT -increasing-restarts-ops =
restart-ops cdclN OT restart for
restart :: 〈 ′st ⇒ ′st ⇒ bool〉 and
cdclN OT :: 〈 ′st ⇒ ′st ⇒ bool〉 +

fixes
f :: 〈nat ⇒ nat〉 and
bound-inv :: 〈 ′bound ⇒ ′st ⇒ bool〉 and
µ :: 〈 ′bound ⇒ ′st ⇒ nat〉 and
cdclN OT -inv :: 〈 ′st ⇒ bool〉 and
µ-bound :: 〈 ′bound ⇒ ′st ⇒ nat〉

assumes
f : 〈unbounded f 〉 and
f-ge-1 : 〈

∧
n. n≥1 =⇒ f n 6= 0 〉 and

bound-inv: 〈
∧
A S T . cdclN OT -inv S =⇒ bound-inv A S =⇒ cdclN OT S T =⇒ bound-inv A T 〉 and

cdclN OT -measure: 〈
∧
A S T . cdclN OT -inv S =⇒ bound-inv A S =⇒ cdclN OT S T =⇒ µ A T < µ

A S 〉 and

211

measure-bound2 : 〈
∧
A T U . cdclN OT -inv T =⇒ bound-inv A T =⇒ cdclN OT

∗∗ T U
=⇒ µ A U ≤ µ-bound A T 〉 and

measure-bound4 : 〈
∧
A T U . cdclN OT -inv T =⇒ bound-inv A T =⇒ cdclN OT

∗∗ T U
=⇒ µ-bound A U ≤ µ-bound A T 〉 and

cdclN OT -restart-inv: 〈
∧
A U V . cdclN OT -inv U =⇒ restart U V =⇒ bound-inv A U =⇒ bound-inv

A V 〉

and
exists-bound: 〈

∧
R S . cdclN OT -inv R =⇒ restart R S =⇒ ∃A. bound-inv A S 〉 and

cdclN OT -inv: 〈
∧
S T . cdclN OT -inv S =⇒ cdclN OT S T =⇒ cdclN OT -inv T 〉 and

cdclN OT -inv-restart: 〈
∧
S T . cdclN OT -inv S =⇒ restart S T =⇒ cdclN OT -inv T 〉

begin

lemma cdclN OT -cdclN OT -inv:
assumes

〈(cdclN OT^^n) S T 〉 and
〈cdclN OT -inv S 〉

shows 〈cdclN OT -inv T 〉

using assms by (induction n arbitrary: T) (auto intro:bound-inv cdclN OT -inv)

lemma cdclN OT -bound-inv:
assumes

〈(cdclN OT^^n) S T 〉 and
〈cdclN OT -inv S 〉

〈bound-inv A S 〉

shows 〈bound-inv A T 〉

using assms by (induction n arbitrary: T) (auto intro:bound-inv cdclN OT -cdclN OT -inv)

lemma rtranclp-cdclN OT -cdclN OT -inv:
assumes

〈cdclN OT
∗∗ S T 〉 and

〈cdclN OT -inv S 〉

shows 〈cdclN OT -inv T 〉

using assms by induction (auto intro: cdclN OT -inv)

lemma rtranclp-cdclN OT -bound-inv:
assumes

〈cdclN OT
∗∗ S T 〉 and

〈bound-inv A S 〉 and
〈cdclN OT -inv S 〉

shows 〈bound-inv A T 〉

using assms by induction (auto intro:bound-inv rtranclp-cdclN OT -cdclN OT -inv)

lemma cdclN OT -comp-n-le:
assumes

〈(cdclN OT^^ (Suc n)) S T 〉 and
〈bound-inv A S 〉

〈cdclN OT -inv S 〉

shows 〈µ A T < µ A S − n〉

using assms
proof (induction n arbitrary: T)
case 0
then show ?case using cdclN OT -measure by auto

next
case (Suc n) note IH = this(1)[OF - this(3) this(4)] and S-T = this(2) and b-inv = this(3) and
c-inv = this(4)
obtain U :: ′st where S-U : 〈(cdclN OT^^ (Suc n)) S U 〉 and U-T : 〈cdclN OT U T 〉 using S-T by

212

auto
then have 〈µ A U < µ A S − n〉 using IH [of U] by simp
moreover
have 〈bound-inv A U 〉

using S-U b-inv cdclN OT -bound-inv c-inv by blast
then have 〈µ A T < µ A U 〉 using cdclN OT -measure[OF - - U-T] S-U c-inv cdclN OT -cdclN OT -inv

by auto
ultimately show ?case by linarith

qed

lemma wf-cdclN OT :
〈wf {(T , S). cdclN OT S T ∧ cdclN OT -inv S ∧ bound-inv A S}〉 (is 〈wf ?A〉)
apply (rule wfP-if-measure2 [of - - 〈µ A〉])
using cdclN OT -comp-n-le[of 0 - - A] by auto

lemma rtranclp-cdclN OT -measure:
assumes

〈cdclN OT
∗∗ S T 〉 and

〈bound-inv A S 〉 and
〈cdclN OT -inv S 〉

shows 〈µ A T ≤ µ A S 〉

using assms
proof (induction rule: rtranclp-induct)
case base
then show ?case by auto

next
case (step T U) note IH = this(3)[OF this(4) this(5)] and st = this(1) and cdclN OT = this(2)

and
b-inv = this(4) and c-inv = this(5)

have 〈bound-inv A T 〉

by (meson cdclN OT -bound-inv rtranclp-imp-relpowp st step.prems)
moreover have 〈cdclN OT -inv T 〉

using c-inv rtranclp-cdclN OT -cdclN OT -inv st by blast
ultimately have 〈µ A U < µ A T 〉 using cdclN OT -measure[OF - - cdclN OT] by auto
then show ?case using IH by linarith

qed

lemma cdclN OT -comp-bounded:
assumes

〈bound-inv A S 〉 and 〈cdclN OT -inv S 〉 and 〈m ≥ 1+µ A S 〉

shows 〈¬(cdclN OT ^^ m) S T 〉

using assms cdclN OT -comp-n-le[of 〈m−1 〉 S T A] by fastforce

• f n < m ensures that at least one step has been done.

inductive cdclN OT -restart where
restart-step: 〈(cdclN OT^^m) S T =⇒ m ≥ f n =⇒ restart T U

=⇒ cdclN OT -restart (S , n) (U , Suc n)〉 |
restart-full: 〈full1 cdclN OT S T =⇒ cdclN OT -restart (S , n) (T , Suc n)〉

lemmas cdclN OT -with-restart-induct = cdclN OT -restart.induct[split-format(complete),
OF cdclN OT -increasing-restarts-ops-axioms]

lemma cdclN OT -restart-cdclN OT -raw-restart:
〈cdclN OT -restart S T =⇒ cdclN OT -raw-restart∗∗ (fst S) (fst T)〉

213

proof (induction rule: cdclN OT -restart.induct)
case (restart-step m S T n U)
then have 〈cdclN OT

∗∗ S T 〉 by (meson relpowp-imp-rtranclp)
then have 〈cdclN OT -raw-restart∗∗ S T 〉 using cdclN OT -raw-restart.intros(1)
rtranclp-mono[of cdclN OT cdclN OT -raw-restart] by blast

moreover have 〈cdclN OT -raw-restart T U 〉

using 〈restart T U 〉 cdclN OT -raw-restart.intros(2) by blast
ultimately show ?case by auto

next
case (restart-full S T)
then have 〈cdclN OT

∗∗ S T 〉 unfolding full1-def by auto
then show ?case using cdclN OT -raw-restart.intros(1)
rtranclp-mono[of cdclN OT cdclN OT -raw-restart] by auto

qed

lemma cdclN OT -with-restart-bound-inv:
assumes

〈cdclN OT -restart S T 〉 and
〈bound-inv A (fst S)〉 and
〈cdclN OT -inv (fst S)〉

shows 〈bound-inv A (fst T)〉

using assms apply (induction rule: cdclN OT -restart.induct)
prefer 2 apply (metis rtranclp-unfold fstI full1-def rtranclp-cdclN OT -bound-inv)

by (metis cdclN OT -bound-inv cdclN OT -cdclN OT -inv cdclN OT -restart-inv fst-conv)

lemma cdclN OT -with-restart-cdclN OT -inv:
assumes

〈cdclN OT -restart S T 〉 and
〈cdclN OT -inv (fst S)〉

shows 〈cdclN OT -inv (fst T)〉

using assms apply induction
apply (metis cdclN OT -cdclN OT -inv cdclN OT -inv-restart fst-conv)
apply (metis fstI full-def full-unfold rtranclp-cdclN OT -cdclN OT -inv)
done

lemma rtranclp-cdclN OT -with-restart-cdclN OT -inv:
assumes

〈cdclN OT -restart∗∗ S T 〉 and
〈cdclN OT -inv (fst S)〉

shows 〈cdclN OT -inv (fst T)〉

using assms by induction (auto intro: cdclN OT -with-restart-cdclN OT -inv)

lemma rtranclp-cdclN OT -with-restart-bound-inv:
assumes

〈cdclN OT -restart∗∗ S T 〉 and
〈cdclN OT -inv (fst S)〉 and
〈bound-inv A (fst S)〉

shows 〈bound-inv A (fst T)〉

using assms apply induction
apply (simp add: cdclN OT -cdclN OT -inv cdclN OT -with-restart-bound-inv)
using cdclN OT -with-restart-bound-inv rtranclp-cdclN OT -with-restart-cdclN OT -inv by blast

lemma cdclN OT -with-restart-increasing-number :
〈cdclN OT -restart S T =⇒ snd T = 1 + snd S 〉

by (induction rule: cdclN OT -restart.induct) auto
end

214

locale cdclN OT -increasing-restarts =
cdclN OT -increasing-restarts-ops restart cdclN OT f bound-inv µ cdclN OT -inv µ-bound +
dpll-state trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT

for
trail :: 〈 ′st ⇒ (′v, unit) ann-lits〉 and
clausesN OT :: 〈 ′st ⇒ ′v clauses〉 and
prepend-trail :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st〉 and
tl-trail :: 〈 ′st ⇒ ′st〉 and
add-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
remove-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
f :: 〈nat ⇒ nat〉 and
restart :: 〈 ′st ⇒ ′st ⇒ bool〉 and
bound-inv :: 〈 ′bound ⇒ ′st ⇒ bool〉 and
µ :: 〈 ′bound ⇒ ′st ⇒ nat〉 and
cdclN OT :: 〈 ′st ⇒ ′st ⇒ bool〉 and
cdclN OT -inv :: 〈 ′st ⇒ bool〉 and
µ-bound :: 〈 ′bound ⇒ ′st ⇒ nat〉 +

assumes
measure-bound: 〈

∧
A T V n. cdclN OT -inv T =⇒ bound-inv A T

=⇒ cdclN OT -restart (T , n) (V , Suc n) =⇒ µ A V ≤ µ-bound A T 〉 and
cdclN OT -raw-restart-µ-bound:

〈cdclN OT -restart (T , a) (V , b) =⇒ cdclN OT -inv T =⇒ bound-inv A T
=⇒ µ-bound A V ≤ µ-bound A T 〉

begin

lemma rtranclp-cdclN OT -raw-restart-µ-bound:
〈cdclN OT -restart∗∗ (T , a) (V , b) =⇒ cdclN OT -inv T =⇒ bound-inv A T

=⇒ µ-bound A V ≤ µ-bound A T 〉

apply (induction rule: rtranclp-induct2)
apply simp
by (metis cdclN OT -raw-restart-µ-bound dual-order .trans fst-conv
rtranclp-cdclN OT -with-restart-bound-inv rtranclp-cdclN OT -with-restart-cdclN OT -inv)

lemma cdclN OT -raw-restart-measure-bound:
〈cdclN OT -restart (T , a) (V , b) =⇒ cdclN OT -inv T =⇒ bound-inv A T

=⇒ µ A V ≤ µ-bound A T 〉

apply (cases rule: cdclN OT -restart.cases)
apply simp
using measure-bound relpowp-imp-rtranclp apply fastforce
by (metis full-def full-unfold measure-bound2 prod.inject)

lemma rtranclp-cdclN OT -raw-restart-measure-bound:
〈cdclN OT -restart∗∗ (T , a) (V , b) =⇒ cdclN OT -inv T =⇒ bound-inv A T

=⇒ µ A V ≤ µ-bound A T 〉

apply (induction rule: rtranclp-induct2)
apply (simp add: measure-bound2)

by (metis dual-order .trans fst-conv measure-bound2 r-into-rtranclp rtranclp.rtrancl-refl
rtranclp-cdclN OT -with-restart-bound-inv rtranclp-cdclN OT -with-restart-cdclN OT -inv
rtranclp-cdclN OT -raw-restart-µ-bound)

lemma wf-cdclN OT -restart:
〈wf {(T , S). cdclN OT -restart S T ∧ cdclN OT -inv (fst S)}〉 (is 〈wf ?A〉)

proof (rule ccontr)
assume 〈¬ ?thesis〉

then obtain g where

215

g: 〈
∧
i. cdclN OT -restart (g i) (g (Suc i))〉 and

cdclN OT -inv-g: 〈
∧
i. cdclN OT -inv (fst (g i))〉

unfolding wf-iff-no-infinite-down-chain by fast

have snd-g: 〈
∧
i. snd (g i) = i + snd (g 0)〉

apply (induct-tac i)
apply simp
by (metis Suc-eq-plus1-left add.commute add.left-commute
cdclN OT -with-restart-increasing-number g)

then have snd-g-0 : 〈
∧
i. i > 0 =⇒ snd (g i) = i + snd (g 0)〉

by blast
have unbounded-f-g: 〈unbounded (λi. f (snd (g i)))〉

using f unfolding bounded-def by (metis add.commute f less-or-eq-imp-le snd-g
not-bounded-nat-exists-larger not-le le-iff-add)

{ fix i
have H : 〈

∧
T Ta m. (cdclN OT ^^ m) T Ta =⇒ no-step cdclN OT T =⇒ m = 0 〉

apply (case-tac m) by simp (meson relpowp-E2)
have 〈∃ T m. (cdclN OT ^^ m) (fst (g i)) T ∧ m ≥ f (snd (g i))〉

using g[of i] apply (cases rule: cdclN OT -restart.cases)
apply auto[]

using g[of 〈Suc i〉] f-ge-1 apply (cases rule: cdclN OT -restart.cases)
apply (auto simp add: full1-def full-def dest: H dest: tranclpD)
using H Suc-leI leD by blast

} note H = this
obtain A where 〈bound-inv A (fst (g 1))〉

using g[of 0] cdclN OT -inv-g[of 0] apply (cases rule: cdclN OT -restart.cases)
apply (metis One-nat-def cdclN OT -inv exists-bound fst-conv relpowp-imp-rtranclp
rtranclp-induct)

using H [of 1] unfolding full1-def by (metis One-nat-def Suc-eq-plus1 diff-is-0-eq ′ diff-zero
f-ge-1 fst-conv le-add2 relpowp-E2 snd-conv)

let ?j = 〈µ-bound A (fst (g 1)) + 1 〉

obtain j where
j: 〈f (snd (g j)) > ?j〉 and 〈j > 1 〉

using unbounded-f-g not-bounded-nat-exists-larger by blast
{
fix i j
have cdclN OT -with-restart: 〈j ≥ i =⇒ cdclN OT -restart∗∗ (g i) (g j)〉

apply (induction j)
apply simp

by (metis g le-Suc-eq rtranclp.rtrancl-into-rtrancl rtranclp.rtrancl-refl)
} note cdclN OT -restart = this
have 〈cdclN OT -inv (fst (g (Suc 0)))〉

by (simp add: cdclN OT -inv-g)
have 〈cdclN OT -restart∗∗ (fst (g 1), snd (g 1)) (fst (g j), snd (g j))〉

using 〈j> 1 〉 by (simp add: cdclN OT -restart)
have 〈µ A (fst (g j)) ≤ µ-bound A (fst (g 1))〉

apply (rule rtranclp-cdclN OT -raw-restart-measure-bound)
using 〈cdclN OT -restart∗∗ (fst (g 1), snd (g 1)) (fst (g j), snd (g j))〉 apply blast

apply (simp add: cdclN OT -inv-g)
using 〈bound-inv A (fst (g 1))〉 apply simp

done
then have 〈µ A (fst (g j)) ≤ ?j〉

by auto
have inv: 〈bound-inv A (fst (g j))〉

using 〈bound-inv A (fst (g 1))〉 〈cdclN OT -inv (fst (g (Suc 0)))〉

216

〈cdclN OT -restart∗∗ (fst (g 1), snd (g 1)) (fst (g j), snd (g j))〉

rtranclp-cdclN OT -with-restart-bound-inv by auto
obtain T m where
cdclN OT -m: 〈(cdclN OT ^^ m) (fst (g j)) T 〉 and
f-m: 〈f (snd (g j)) ≤ m〉

using H [of j] by blast
have 〈?j < m〉

using f-m j Nat.le-trans by linarith

then show False
using 〈µ A (fst (g j)) ≤ µ-bound A (fst (g 1))〉

cdclN OT -comp-bounded[OF inv cdclN OT -inv-g, of] cdclN OT -inv-g cdclN OT -m
〈?j < m〉 by auto

qed

lemma cdclN OT -restart-steps-bigger-than-bound:
assumes

〈cdclN OT -restart S T 〉 and
〈bound-inv A (fst S)〉 and
〈cdclN OT -inv (fst S)〉 and
〈f (snd S) > µ-bound A (fst S)〉

shows 〈full1 cdclN OT (fst S) (fst T)〉

using assms
proof (induction rule: cdclN OT -restart.induct)
case restart-full
then show ?case by auto

next
case (restart-step m S T n U) note st = this(1) and f = this(2) and bound-inv = this(4) and
cdclN OT -inv = this(5) and µ = this(6)

then obtain m ′ where m: 〈m = Suc m ′〉 by (cases m) auto
have 〈µ A S − m ′ = 0 〉

using f bound-inv cdclN OT -inv µ m rtranclp-cdclN OT -raw-restart-measure-bound by fastforce
then have False using cdclN OT -comp-n-le[of m ′ S T A] restart-step unfolding m by simp
then show ?case by fast

qed

lemma rtranclp-cdclN OT -with-inv-inv-rtranclp-cdclN OT :
assumes
inv: 〈cdclN OT -inv S 〉 and
binv: 〈bound-inv A S 〉

shows 〈(λS T . cdclN OT S T ∧ cdclN OT -inv S ∧ bound-inv A S)∗∗ S T ←→ cdclN OT
∗∗ S T 〉

(is 〈?A∗∗ S T ←→ ?B∗∗ S T 〉)
apply (rule iffI)
using rtranclp-mono[of ?A ?B] apply blast

apply (induction rule: rtranclp-induct)
using inv binv apply simp

by (metis (mono-tags, lifting) binv inv rtranclp.simps rtranclp-cdclN OT -bound-inv
rtranclp-cdclN OT -cdclN OT -inv)

lemma no-step-cdclN OT -restart-no-step-cdclN OT :
assumes
n-s: 〈no-step cdclN OT -restart S 〉 and
inv: 〈cdclN OT -inv (fst S)〉 and
binv: 〈bound-inv A (fst S)〉

shows 〈no-step cdclN OT (fst S)〉

proof (rule ccontr)

217

assume 〈¬ ?thesis〉

then obtain T where T : 〈cdclN OT (fst S) T 〉

by blast
then obtain U where U : 〈full (λS T . cdclN OT S T ∧ cdclN OT -inv S ∧ bound-inv A S) T U 〉

using wf-exists-normal-form-full[OF wf-cdclN OT , of A T] by auto
moreover have inv-T : 〈cdclN OT -inv T 〉

using 〈cdclN OT (fst S) T 〉 cdclN OT -inv inv by blast
moreover have b-inv-T : 〈bound-inv A T 〉

using 〈cdclN OT (fst S) T 〉 binv bound-inv inv by blast
ultimately have 〈full cdclN OT T U 〉

using rtranclp-cdclN OT -with-inv-inv-rtranclp-cdclN OT rtranclp-cdclN OT -bound-inv
rtranclp-cdclN OT -cdclN OT -inv unfolding full-def by blast

then have 〈full1 cdclN OT (fst S) U 〉

using T full-fullI by metis
then show False by (metis n-s prod.collapse restart-full)

qed

end

2.2.6 Merging backjump and learning
locale cdclN OT -merge-bj-learn-ops =
decide-ops trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT decide-conds +
forget-ops trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT forget-conds +
propagate-ops trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT propagate-conds
for
trail :: 〈 ′st ⇒ (′v, unit) ann-lits〉 and
clausesN OT :: 〈 ′st ⇒ ′v clauses〉 and
prepend-trail :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st〉 and
tl-trail :: 〈 ′st ⇒ ′st〉 and
add-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
remove-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
decide-conds :: 〈 ′st ⇒ ′st ⇒ bool〉 and
propagate-conds :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st ⇒ bool〉 and
forget-conds :: 〈 ′v clause ⇒ ′st ⇒ bool〉 +

fixes backjump-l-cond :: 〈 ′v clause ⇒ ′v clause ⇒ ′v literal ⇒ ′st ⇒ ′st ⇒ bool〉

begin

We have a new backjump that combines the backjumping on the trail and the learning of the
used clause (called C ′′ below)

inductive backjump-l where
backjump-l: 〈trail S = F ′ @ Decided K # F

=⇒ T ∼ prepend-trail (Propagated L ()) (reduce-trail-toN OT F (add-clsN OT C ′′ S))
=⇒ C ∈# clausesN OT S
=⇒ trail S |=as CNot C
=⇒ undefined-lit F L
=⇒ atm-of L ∈ atms-of-mm (clausesN OT S) ∪ atm-of ‘ (lits-of-l (trail S))
=⇒ clausesN OT S |=pm add-mset L C ′
=⇒ C ′′ = add-mset L C ′
=⇒ F |=as CNot C ′
=⇒ backjump-l-cond C C ′ L S T
=⇒ backjump-l S T 〉

Avoid (meaningless) simplification in the theorem generated by inductive-cases:

declare reduce-trail-toN OT -length-ne[simp del] Set.Un-iff [simp del] Set.insert-iff [simp del]

218

inductive-cases backjump-lE : 〈backjump-l S T 〉

thm backjump-lE
declare reduce-trail-toN OT -length-ne[simp] Set.Un-iff [simp] Set.insert-iff [simp]

inductive cdclN OT -merged-bj-learn :: 〈 ′st ⇒ ′st ⇒ bool〉 for S :: ′st where
cdclN OT -merged-bj-learn-decideN OT : 〈decideN OT S S ′ =⇒ cdclN OT -merged-bj-learn S S ′〉 |
cdclN OT -merged-bj-learn-propagateN OT : 〈propagateN OT S S ′ =⇒ cdclN OT -merged-bj-learn S S ′〉 |
cdclN OT -merged-bj-learn-backjump-l: 〈backjump-l S S ′ =⇒ cdclN OT -merged-bj-learn S S ′〉 |
cdclN OT -merged-bj-learn-forgetN OT : 〈forgetN OT S S ′ =⇒ cdclN OT -merged-bj-learn S S ′〉

lemma cdclN OT -merged-bj-learn-no-dup-inv:
〈cdclN OT -merged-bj-learn S T =⇒ no-dup (trail S) =⇒ no-dup (trail T)〉

apply (induction rule: cdclN OT -merged-bj-learn.induct)
using defined-lit-map apply fastforce

using defined-lit-map apply fastforce
apply (force simp: defined-lit-map elim!: backjump-lE dest: no-dup-appendD)[]
using forgetN OT .simps apply (auto; fail)
done

end

locale cdclN OT -merge-bj-learn-proxy =
cdclN OT -merge-bj-learn-ops trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT

decide-conds propagate-conds forget-conds
〈λC C ′ L ′ S T . backjump-l-cond C C ′ L ′ S T
∧ distinct-mset C ′ ∧ L ′ /∈# C ′ ∧ ¬tautology (add-mset L ′ C ′)〉

for
trail :: 〈 ′st ⇒ (′v, unit) ann-lits〉 and
clausesN OT :: 〈 ′st ⇒ ′v clauses〉 and
prepend-trail :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st〉 and
tl-trail :: 〈 ′st ⇒ ′st〉 and
add-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
remove-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
decide-conds :: 〈 ′st ⇒ ′st ⇒ bool〉 and
propagate-conds :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st ⇒ bool〉 and
forget-conds :: 〈 ′v clause ⇒ ′st ⇒ bool〉 and
backjump-l-cond :: 〈 ′v clause ⇒ ′v clause ⇒ ′v literal ⇒ ′st ⇒ ′st ⇒ bool〉 +

fixes
inv :: 〈 ′st ⇒ bool〉

begin

abbreviation backjump-conds :: 〈 ′v clause ⇒ ′v clause ⇒ ′v literal ⇒ ′st ⇒ ′st ⇒ bool〉

where
〈backjump-conds ≡ λC C ′ L ′ S T . distinct-mset C ′ ∧ L ′ /∈# C ′ ∧ ¬tautology (add-mset L ′ C ′)〉

sublocale backjumping-ops trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT

backjump-conds
by standard

end

locale cdclN OT -merge-bj-learn =
cdclN OT -merge-bj-learn-proxy trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT

decide-conds propagate-conds forget-conds backjump-l-cond inv
for
trail :: 〈 ′st ⇒ (′v, unit) ann-lits〉 and
clausesN OT :: 〈 ′st ⇒ ′v clauses〉 and

219

prepend-trail :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st〉 and
tl-trail :: 〈 ′st ⇒ ′st〉 and
add-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
remove-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
decide-conds :: 〈 ′st ⇒ ′st ⇒ bool〉 and
propagate-conds :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st ⇒ bool〉 and
forget-conds :: 〈 ′v clause ⇒ ′st ⇒ bool〉 and
backjump-l-cond :: 〈 ′v clause ⇒ ′v clause ⇒ ′v literal ⇒ ′st ⇒ ′st ⇒ bool〉 and
inv :: 〈 ′st ⇒ bool〉 +

assumes
bj-merge-can-jump:
〈
∧
S C F ′ K F L.
inv S
=⇒ trail S = F ′ @ Decided K # F
=⇒ C ∈# clausesN OT S
=⇒ trail S |=as CNot C
=⇒ undefined-lit F L
=⇒ atm-of L ∈ atms-of-mm (clausesN OT S) ∪ atm-of ‘ (lits-of-l (F ′ @ Decided K # F))
=⇒ clausesN OT S |=pm add-mset L C ′
=⇒ F |=as CNot C ′
=⇒ ¬no-step backjump-l S 〉 and

cdcl-merged-inv: 〈
∧
S T . cdclN OT -merged-bj-learn S T =⇒ inv S =⇒ inv T 〉 and

can-propagate-or-decide-or-backjump-l:
〈atm-of L ∈ atms-of-mm (clausesN OT S) =⇒
undefined-lit (trail S) L =⇒
inv S =⇒
satisfiable (set-mset (clausesN OT S)) =⇒
∃T . decideN OT S T ∨ propagateN OT S T ∨ backjump-l S T 〉

begin

lemma backjump-no-step-backjump-l:
〈backjump S T =⇒ inv S =⇒ ¬no-step backjump-l S 〉

apply (elim backjumpE)
apply (rule bj-merge-can-jump)
apply auto[7]

by blast

lemma tautology-single-add:
〈tautology (L + {#a#}) ←→ tautology L ∨ −a ∈# L〉

unfolding tautology-decomp by (cases a) auto

lemma backjump-l-implies-exists-backjump:
assumes bj: 〈backjump-l S T 〉 and 〈inv S 〉 and n-d: 〈no-dup (trail S)〉

shows 〈∃U . backjump S U 〉

proof −
obtain C F ′ K F L C ′ where
tr : 〈trail S = F ′ @ Decided K # F 〉 and
C : 〈C ∈# clausesN OT S 〉 and
T : 〈T ∼ prepend-trail (Propagated L ()) (reduce-trail-toN OT F (add-clsN OT (add-mset L C ′) S))〉

and
tr-C : 〈trail S |=as CNot C 〉 and
undef : 〈undefined-lit F L〉 and
L: 〈atm-of L ∈ atms-of-mm (clausesN OT S) ∪ atm-of ‘ (lits-of-l (trail S))〉 and
S-C-L: 〈clausesN OT S |=pm add-mset L C ′〉 and
F-C ′: 〈F |=as CNot C ′〉 and
cond: 〈backjump-l-cond C C ′ L S T 〉 and

220

dist: 〈distinct-mset (add-mset L C ′)〉 and
taut: 〈¬ tautology (add-mset L C ′)〉

using bj by (elim backjump-lE) force
have 〈L /∈# C ′〉
using dist by auto

show ?thesis
using backjump.intros[OF tr - C tr-C undef L S-C-L F-C ′] cond dist taut
by auto

qed

Without additional knowledge on backjump-l-cond, it is impossible to have the same invariant.
sublocale dpll-with-backjumping-ops trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT

inv decide-conds backjump-conds propagate-conds
proof (unfold-locales, goal-cases)
case 1
{ fix S S ′
assume bj: 〈backjump-l S S ′〉
then obtain F ′ K F L C ′ C D where
S ′: 〈S ′ ∼ prepend-trail (Propagated L ()) (reduce-trail-toN OT F (add-clsN OT D S))〉

and
tr-S : 〈trail S = F ′ @ Decided K # F 〉 and
C : 〈C ∈# clausesN OT S 〉 and
tr-S-C : 〈trail S |=as CNot C 〉 and
undef-L: 〈undefined-lit F L〉 and
atm-L:
〈atm-of L ∈ insert (atm-of K) (atms-of-mm (clausesN OT S) ∪ atm-of ‘ (lits-of-l F ′ ∪ lits-of-l F))〉

and
cls-S-C ′: 〈clausesN OT S |=pm add-mset L C ′〉 and
F-C ′: 〈F |=as CNot C ′〉 and
dist: 〈distinct-mset (add-mset L C ′)〉 and
not-tauto: 〈¬ tautology (add-mset L C ′)〉 and
cond: 〈backjump-l-cond C C ′ L S S ′〉
〈D = add-mset L C ′〉
by (elim backjump-lE) simp

interpret backjumping-ops trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT

backjump-conds
by unfold-locales

have 〈∃T . backjump S T 〉

apply rule
apply (rule backjump.intros)

using tr-S apply simp
apply (rule state-eqN OT -ref)
using C apply simp
using tr-S-C apply simp

using undef-L apply simp
using atm-L tr-S apply simp
using cls-S-C ′ apply simp
using F-C ′ apply simp
using dist not-tauto cond by simp

}
then show ?case using 1 bj-merge-can-jump by meson

next
case 2
then show ?case
using can-propagate-or-decide-or-backjump-l backjump-l-implies-exists-backjump by blast

qed

221

sublocale conflict-driven-clause-learning-ops trail clausesN OT prepend-trail tl-trail add-clsN OT

remove-clsN OT inv decide-conds backjump-conds propagate-conds
〈λC -. distinct-mset C ∧ ¬tautology C 〉

forget-conds
by unfold-locales

lemma backjump-l-learn-backjump:
assumes bt: 〈backjump-l S T 〉 and inv: 〈inv S 〉

shows 〈∃C ′ L D. learn S (add-clsN OT D S)
∧ D = add-mset L C ′
∧ backjump (add-clsN OT D S) T
∧ atms-of (add-mset L C ′) ⊆ atms-of-mm (clausesN OT S) ∪ atm-of ‘ (lits-of-l (trail S))〉

proof −
obtain C F ′ K F L l C ′ D where
tr-S : 〈trail S = F ′ @ Decided K # F 〉 and
T : 〈T ∼ prepend-trail (Propagated L l) (reduce-trail-toN OT F (add-clsN OT D S))〉 and
C-cls-S : 〈C ∈# clausesN OT S 〉 and
tr-S-CNot-C : 〈trail S |=as CNot C 〉 and
undef : 〈undefined-lit F L〉 and
atm-L: 〈atm-of L ∈ atms-of-mm (clausesN OT S) ∪ atm-of ‘ (lits-of-l (trail S))〉 and
clss-C : 〈clausesN OT S |=pm D〉 and
D: 〈D = add-mset L C ′〉
〈F |=as CNot C ′〉 and
distinct: 〈distinct-mset D〉 and
not-tauto: 〈¬ tautology D〉 and
cond: 〈backjump-l-cond C C ′ L S T 〉

using bt inv by (elim backjump-lE) simp
have atms-C ′: 〈atms-of C ′ ⊆ atm-of ‘ (lits-of-l F)〉

by (metis D(2) atms-of-def image-subsetI true-annots-CNot-all-atms-defined)
then have 〈atms-of (add-mset L C ′) ⊆ atms-of-mm (clausesN OT S) ∪ atm-of ‘ (lits-of-l (trail S))〉

using atm-L tr-S by auto
moreover have learn: 〈learn S (add-clsN OT D S)〉

apply (rule learn.intros)
apply (rule clss-C)

using atms-C ′ atm-L D apply (fastforce simp add: tr-S in-plus-implies-atm-of-on-atms-of-ms)
apply standard
apply (rule distinct)
apply (rule not-tauto)
apply simp
done

moreover have bj: 〈backjump (add-clsN OT D S) T 〉

apply (rule backjump.intros[of - - - - - L C C ′])
using 〈F |=as CNot C ′〉 C-cls-S tr-S-CNot-C undef T distinct not-tauto D cond
by (auto simp: tr-S state-eqN OT -def simp del: state-simpN OT)

ultimately show ?thesis using D by blast
qed

lemma backjump-l-backjump-learn:
assumes bt: 〈backjump-l S T 〉 and inv: 〈inv S 〉

shows 〈∃C ′ L D S ′. backjump S S ′
∧ learn S ′ T
∧ D = (add-mset L C ′)
∧ T ∼ add-clsN OT D S ′
∧ atms-of (add-mset L C ′) ⊆ atms-of-mm (clausesN OT S) ∪ atm-of ‘ (lits-of-l (trail S))
∧ clausesN OT S |=pm D〉

222

proof −
obtain C F ′ K F L l C ′ D where
tr-S : 〈trail S = F ′ @ Decided K # F 〉 and
T : 〈T ∼ prepend-trail (Propagated L l) (reduce-trail-toN OT F (add-clsN OT D S))〉 and
C-cls-S : 〈C ∈# clausesN OT S 〉 and
tr-S-CNot-C : 〈trail S |=as CNot C 〉 and
undef : 〈undefined-lit F L〉 and
atm-L: 〈atm-of L ∈ atms-of-mm (clausesN OT S) ∪ atm-of ‘ (lits-of-l (trail S))〉 and
clss-C : 〈clausesN OT S |=pm D〉 and
D: 〈D = add-mset L C ′〉
〈F |=as CNot C ′〉 and
distinct: 〈distinct-mset D〉 and
not-tauto: 〈¬ tautology D〉 and
cond: 〈backjump-l-cond C C ′ L S T 〉

using bt inv by (elim backjump-lE) simp
let ?S ′ = 〈prepend-trail (Propagated L ()) (reduce-trail-toN OT F S)〉

have atms-C ′: 〈atms-of C ′ ⊆ atm-of ‘ (lits-of-l F)〉

by (metis D(2) atms-of-def image-subsetI true-annots-CNot-all-atms-defined)
then have 〈atms-of (add-mset L C ′) ⊆ atms-of-mm (clausesN OT S) ∪ atm-of ‘ (lits-of-l (trail S))〉

using atm-L tr-S by auto
moreover have learn: 〈learn ?S ′ T 〉

apply (rule learn.intros)
using clss-C apply auto[]

using atms-C ′ atm-L D apply (fastforce simp add: tr-S in-plus-implies-atm-of-on-atms-of-ms)
apply standard
apply (rule distinct)
apply (rule not-tauto)
using T apply (auto simp: tr-S state-eqN OT -def simp del: state-simpN OT)
done

moreover have bj: 〈backjump S (prepend-trail (Propagated L ()) (reduce-trail-toN OT F S))〉

apply (rule backjump.intros[of S F ′ K F - L])
using 〈F |=as CNot C ′〉 C-cls-S tr-S-CNot-C undef T distinct not-tauto D cond clss-C atm-L
by (auto simp: tr-S)

moreover have 〈T ∼ (add-clsN OT D ?S ′)〉

using T by (auto simp: tr-S state-eqN OT -def simp del: state-simpN OT)
ultimately show ?thesis
using D clss-C by blast

qed

lemma cdclN OT -merged-bj-learn-is-tranclp-cdclN OT :
〈cdclN OT -merged-bj-learn S T =⇒ inv S =⇒ cdclN OT

++ S T 〉

proof (induction rule: cdclN OT -merged-bj-learn.induct)
case (cdclN OT -merged-bj-learn-decideN OT T)
then have 〈cdclN OT S T 〉

using bj-decideN OT cdclN OT .simps by fastforce
then show ?case by auto

next
case (cdclN OT -merged-bj-learn-propagateN OT T)
then have 〈cdclN OT S T 〉

using bj-propagateN OT cdclN OT .simps by fastforce
then show ?case by auto

next
case (cdclN OT -merged-bj-learn-forgetN OT T)
then have 〈cdclN OT S T 〉

using c-forgetN OT by blast
then show ?case by auto

223

next
case (cdclN OT -merged-bj-learn-backjump-l T) note bt = this(1) and inv = this(2)
obtain C ′ :: 〈 ′v clause〉 and L :: 〈 ′v literal〉 and D :: 〈 ′v clause〉 where
f3 : 〈learn S (add-clsN OT D S) ∧
backjump (add-clsN OT D S) T ∧
atms-of (add-mset L C ′) ⊆ atms-of-mm (clausesN OT S) ∪ atm-of ‘ lits-of-l (trail S)〉 and

D: 〈D = add-mset L C ′〉
using backjump-l-learn-backjump[OF bt inv] by blast

then have f4 : 〈cdclN OT S (add-clsN OT D S)〉

using c-learn by blast
have 〈cdclN OT (add-clsN OT D S) T 〉

using f3 bj-backjump c-dpll-bj by blast
then show ?case
using f4 by (meson tranclp.r-into-trancl tranclp.trancl-into-trancl)

qed

lemma rtranclp-cdclN OT -merged-bj-learn-is-rtranclp-cdclN OT -and-inv:
〈cdclN OT -merged-bj-learn∗∗ S T =⇒ inv S =⇒ cdclN OT

∗∗ S T ∧ inv T 〉

proof (induction rule: rtranclp-induct)
case base
then show ?case by auto

next
case (step T U) note st = this(1) and cdclN OT = this(2) and IH = this(3)[OF this(4−)] and
inv = this(4)

have 〈cdclN OT
∗∗ T U 〉

using cdclN OT -merged-bj-learn-is-tranclp-cdclN OT [OF cdclN OT] IH
inv by auto

then have 〈cdclN OT
∗∗ S U 〉 using IH by fastforce

moreover have 〈inv U 〉 using IH cdclN OT cdcl-merged-inv inv by blast
ultimately show ?case using st by fast

qed

lemma rtranclp-cdclN OT -merged-bj-learn-is-rtranclp-cdclN OT :
〈cdclN OT -merged-bj-learn∗∗ S T =⇒ inv S =⇒ cdclN OT

∗∗ S T 〉

using rtranclp-cdclN OT -merged-bj-learn-is-rtranclp-cdclN OT -and-inv by blast

lemma rtranclp-cdclN OT -merged-bj-learn-inv:
〈cdclN OT -merged-bj-learn∗∗ S T =⇒ inv S =⇒ inv T 〉

using rtranclp-cdclN OT -merged-bj-learn-is-rtranclp-cdclN OT -and-inv by blast

lemma rtranclp-cdclN OT -merged-bj-learn-no-dup-inv:
〈cdclN OT -merged-bj-learn∗∗ S T =⇒ no-dup (trail S) =⇒ no-dup (trail T)〉

by (induction rule: rtranclp-induct) (auto simp: cdclN OT -merged-bj-learn-no-dup-inv)

definition µC
′ :: 〈 ′v clause set ⇒ ′st ⇒ nat〉 where

〈µC
′ A T ≡ µC (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T)〉

definition µC DC L
′-merged :: 〈 ′v clause set ⇒ ′st ⇒ nat〉 where

〈µC DC L
′-merged A T ≡

((2+card (atms-of-ms A)) ^ (1+card (atms-of-ms A)) − µC
′ A T) ∗ 2 + card (set-mset (clausesN OT

T))〉

lemma cdclN OT -decreasing-measure ′:
assumes

〈cdclN OT -merged-bj-learn S T 〉 and
inv: 〈inv S 〉 and

224

atm-clss: 〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and
atm-trail: 〈atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A〉 and
n-d: 〈no-dup (trail S)〉 and
fin-A: 〈finite A〉

shows 〈µC DC L
′-merged A T < µC DC L

′-merged A S 〉

using assms(1)
proof induction
case (cdclN OT -merged-bj-learn-decideN OT T)
have 〈clausesN OT S = clausesN OT T 〉

using cdclN OT -merged-bj-learn-decideN OT .hyps by auto
moreover have

〈(2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
− µC (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)

< (2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
− µC (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight S)〉

apply (rule dpll-bj-trail-mes-decreasing-prop)
using cdclN OT -merged-bj-learn-decideN OT fin-A atm-clss atm-trail n-d inv
by (simp-all add: bj-decideN OT cdclN OT -merged-bj-learn-decideN OT .hyps)

ultimately show ?case
unfolding µC DC L

′-merged-def µC
′-def by simp

next
case (cdclN OT -merged-bj-learn-propagateN OT T)
have 〈clausesN OT S = clausesN OT T 〉

using cdclN OT -merged-bj-learn-propagateN OT .hyps
by (simp add: bj-propagateN OT inv dpll-bj-clauses)

moreover have
〈(2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
− µC (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)

< (2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
− µC (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight S)〉

apply (rule dpll-bj-trail-mes-decreasing-prop)
using inv n-d atm-clss atm-trail fin-A by (simp-all add: bj-propagateN OT

cdclN OT -merged-bj-learn-propagateN OT .hyps)
ultimately show ?case
unfolding µC DC L

′-merged-def µC
′-def by simp

next
case (cdclN OT -merged-bj-learn-forgetN OT T)
have 〈card (set-mset (clausesN OT T)) < card (set-mset (clausesN OT S))〉

using 〈forgetN OT S T 〉 by (metis card-Diff1-less clauses-remove-clsN OT finite-set-mset
forgetN OT .cases linear set-mset-minus-replicate-mset(1) state-eqN OT -def)

moreover
have 〈trail S = trail T 〉

using 〈forgetN OT S T 〉 by (auto elim: forgetN OTE)
then have

〈(2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
− µC (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)

= (2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
− µC (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight S)〉

by auto
ultimately show ?case
unfolding µC DC L

′-merged-def µC
′-def by simp

next
case (cdclN OT -merged-bj-learn-backjump-l T) note bj-l = this(1)
obtain C ′ L D S ′ where
learn: 〈learn S ′ T 〉 and
bj: 〈backjump S S ′〉 and

225

atms-C : 〈atms-of (add-mset L C ′) ⊆ atms-of-mm (clausesN OT S) ∪ atm-of ‘ (lits-of-l (trail S))〉

and
D: 〈D = add-mset L C ′〉 and
T : 〈T ∼ add-clsN OT D S ′〉
using bj-l inv backjump-l-backjump-learn [of S] n-d atm-clss atm-trail by blast

have card-T-S : 〈card (set-mset (clausesN OT T)) ≤ 1+ card (set-mset (clausesN OT S))〉

using bj-l inv by (force elim!: backjump-lE simp: card-insert-if)
have tr-S-T : 〈trail-weight S ′ = trail-weight T 〉

using T by auto
have

〈((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
− µC (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight S ′))

< ((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
− µC (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A))

(trail-weight S))〉

apply (rule dpll-bj-trail-mes-decreasing-prop)
using bj bj-backjump apply blast
using inv apply blast
using atms-C atm-clss atm-trail D apply (simp add: n-d; fail)
using atm-trail n-d apply (simp; fail)
apply (simp add: n-d; fail)
using fin-A apply (simp; fail)
done

then show ?case
using card-T-S unfolding µC DC L

′-merged-def µC
′-def tr-S-T by linarith

qed

lemma wf-cdclN OT -merged-bj-learn:
assumes
fin-A: 〈finite A〉

shows 〈wf {(T , S).
(inv S ∧ atms-of-mm (clausesN OT S) ⊆ atms-of-ms A ∧ atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A
∧ no-dup (trail S))
∧ cdclN OT -merged-bj-learn S T}〉

apply (rule wfP-if-measure[of - - 〈µC DC L
′-merged A〉])

using cdclN OT -decreasing-measure ′ fin-A by simp

lemma in-atms-neg-defined: 〈x ∈ atms-of C ′ =⇒ F |=as CNot C ′ =⇒ x ∈ atm-of ‘ lits-of-l F 〉

by (metis (no-types, lifting) atms-of-def imageE true-annots-CNot-all-atms-defined)

lemma cdclN OT -merged-bj-learn-atms-of-ms-clauses-decreasing:
assumes 〈cdclN OT -merged-bj-learn S T 〉and 〈inv S 〉

shows 〈atms-of-mm (clausesN OT T) ⊆ atms-of-mm (clausesN OT S) ∪ atm-of ‘ (lits-of-l (trail S))〉

using assms
apply (induction rule: cdclN OT -merged-bj-learn.induct)

prefer 4 apply (auto dest!: dpll-bj-atms-of-ms-clauses-inv set-mp
simp add: atms-of-ms-def Union-eq
elim!: decideN OTE propagateN OTE forgetN OTE)[3]

apply (elim backjump-lE)
by (auto dest!: in-atms-neg-defined simp del:)

lemma cdclN OT -merged-bj-learn-atms-in-trail-in-set:
assumes

〈cdclN OT -merged-bj-learn S T 〉 and 〈inv S 〉 and
〈atms-of-mm (clausesN OT S) ⊆ A〉 and
〈atm-of ‘ (lits-of-l (trail S)) ⊆ A〉

226

shows 〈atm-of ‘ (lits-of-l (trail T)) ⊆ A〉

using assms
apply (induction rule: cdclN OT -merged-bj-learn.induct)

apply (meson bj-decideN OT dpll-bj-atms-in-trail-in-set)
apply (meson bj-propagateN OT dpll-bj-atms-in-trail-in-set)
defer
apply (metis forgetN OTE state-eqN OT -trail trail-remove-clsN OT)

by (metis (no-types, lifting) backjump-l-backjump-learn bj-backjump dpll-bj-atms-in-trail-in-set
state-eqN OT -trail trail-add-clsN OT)

lemma rtranclp-cdclN OT -merged-bj-learn-trail-clauses-bound:
assumes
cdcl: 〈cdclN OT -merged-bj-learn∗∗ S T 〉 and
inv: 〈inv S 〉 and
atms-clauses-S : 〈atms-of-mm (clausesN OT S) ⊆ A〉 and
atms-trail-S : 〈atm-of ‘(lits-of-l (trail S)) ⊆ A〉

shows 〈atm-of ‘ (lits-of-l (trail T)) ⊆ A ∧ atms-of-mm (clausesN OT T) ⊆ A〉

using cdcl
proof (induction rule: rtranclp-induct)
case base
then show ?case using atms-clauses-S atms-trail-S by simp

next
case (step T U) note st = this(1) and cdclN OT = this(2) and IH = this(3)
have 〈inv T 〉 using inv st rtranclp-cdclN OT -merged-bj-learn-is-rtranclp-cdclN OT -and-inv by blast
then have 〈atms-of-mm (clausesN OT U) ⊆ A〉

using cdclN OT -merged-bj-learn-atms-of-ms-clauses-decreasing cdclN OT IH 〈inv T 〉 by fast
moreover
have 〈atm-of ‘(lits-of-l (trail U)) ⊆ A〉

using cdclN OT -merged-bj-learn-atms-in-trail-in-set[of - - A] 〈inv T 〉 cdclN OT step.IH by auto
ultimately show ?case by fast

qed

lemma cdclN OT -merged-bj-learn-trail-clauses-bound:
assumes
cdcl: 〈cdclN OT -merged-bj-learn S T 〉 and
inv: 〈inv S 〉 and
atms-clauses-S : 〈atms-of-mm (clausesN OT S) ⊆ A〉 and
atms-trail-S : 〈atm-of ‘(lits-of-l (trail S)) ⊆ A〉

shows 〈atm-of ‘ (lits-of-l (trail T)) ⊆ A ∧ atms-of-mm (clausesN OT T) ⊆ A〉

using rtranclp-cdclN OT -merged-bj-learn-trail-clauses-bound[of S T] assms by auto

lemma tranclp-cdclN OT -cdclN OT -tranclp:
assumes

〈cdclN OT -merged-bj-learn++ S T 〉 and
inv: 〈inv S 〉 and
atm-clss: 〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and
atm-trail: 〈atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A〉 and
n-d: 〈no-dup (trail S)〉 and
fin-A[simp]: 〈finite A〉

shows 〈(T , S) ∈ {(T , S).
(inv S ∧ atms-of-mm (clausesN OT S) ⊆ atms-of-ms A ∧ atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A
∧ no-dup (trail S))
∧ cdclN OT -merged-bj-learn S T}+〉 (is 〈- ∈ ?P+〉)

using assms(1)
proof (induction rule: tranclp-induct)
case base

227

then show ?case using n-d atm-clss atm-trail inv by auto
next
case (step T U) note st = this(1) and cdclN OT = this(2) and IH = this(3)
have st: 〈cdclN OT -merged-bj-learn∗∗ S T 〉

using [[simp-trace]]
by (simp add: rtranclp-unfold st)

have 〈cdclN OT
∗∗ S T 〉

apply (rule rtranclp-cdclN OT -merged-bj-learn-is-rtranclp-cdclN OT)
using st cdclN OT inv n-d atm-clss atm-trail inv by auto

have 〈inv T 〉

apply (rule rtranclp-cdclN OT -merged-bj-learn-inv)
using inv st cdclN OT n-d atm-clss atm-trail inv by auto

moreover have 〈atms-of-mm (clausesN OT T) ⊆ atms-of-ms A〉

using rtranclp-cdclN OT -merged-bj-learn-trail-clauses-bound[OF st inv atm-clss atm-trail]
by fast

moreover have 〈atm-of ‘ (lits-of-l (trail T))⊆ atms-of-ms A〉

using rtranclp-cdclN OT -merged-bj-learn-trail-clauses-bound[OF st inv atm-clss atm-trail]
by fast

moreover have 〈no-dup (trail T)〉

using rtranclp-cdclN OT -merged-bj-learn-no-dup-inv[OF st n-d] by fast
ultimately have 〈(U , T) ∈ ?P〉

using cdclN OT by auto
then show ?case using IH by (simp add: trancl-into-trancl2)

qed

lemma wf-tranclp-cdclN OT -merged-bj-learn:
assumes 〈finite A〉

shows 〈wf {(T , S).
(inv S ∧ atms-of-mm (clausesN OT S) ⊆ atms-of-ms A ∧ atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A
∧ no-dup (trail S))
∧ cdclN OT -merged-bj-learn++ S T}〉

apply (rule wf-subset)
apply (rule wf-trancl[OF wf-cdclN OT -merged-bj-learn])
using assms apply simp
using tranclp-cdclN OT -cdclN OT -tranclp[OF - - - - - 〈finite A〉] by auto

lemma cdclN OT -merged-bj-learn-final-state:
fixes A :: 〈 ′v clause set〉 and S T :: 〈 ′st〉

assumes
n-s: 〈no-step cdclN OT -merged-bj-learn S 〉 and
atms-S : 〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and
atms-trail: 〈atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A〉 and
n-d: 〈no-dup (trail S)〉 and
〈finite A〉 and
inv: 〈inv S 〉 and
decomp: 〈all-decomposition-implies-m (clausesN OT S) (get-all-ann-decomposition (trail S))〉

shows 〈unsatisfiable (set-mset (clausesN OT S))
∨ (trail S |=asm clausesN OT S ∧ satisfiable (set-mset (clausesN OT S)))〉

proof −
let ?N = 〈set-mset (clausesN OT S)〉

let ?M = 〈trail S 〉

consider
(sat) 〈satisfiable ?N 〉 and 〈?M |=as ?N 〉

| (sat ′) 〈satisfiable ?N 〉 and 〈¬ ?M |=as ?N 〉

| (unsat) 〈unsatisfiable ?N 〉

by auto

228

then show ?thesis
proof cases
case sat ′ note sat = this(1) and M = this(2)
obtain C where 〈C ∈ ?N 〉 and 〈¬?M |=a C 〉 using M unfolding true-annots-def by auto
obtain I :: 〈 ′v literal set〉 where

〈I |=s ?N 〉 and
cons: 〈consistent-interp I 〉 and
tot: 〈total-over-m I ?N 〉 and
atm-I-N : 〈atm-of ‘I ⊆ atms-of-ms ?N 〉

using sat unfolding satisfiable-def-min by auto
let ?I = 〈I ∪ {P| P. P ∈ lits-of-l ?M ∧ atm-of P /∈ atm-of ‘ I}〉

let ?O = 〈{unmark L |L. is-decided L ∧ L ∈ set ?M ∧ atm-of (lit-of L) /∈ atms-of-ms ?N}〉

have cons-I ′: 〈consistent-interp ?I 〉

using cons using 〈no-dup ?M 〉 unfolding consistent-interp-def
by (auto simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set lits-of-def
dest!: no-dup-cannot-not-lit-and-uminus)

have tot-I ′: 〈total-over-m ?I (?N ∪ unmark-l ?M)〉

using tot atms-of-s-def unfolding total-over-m-def total-over-set-def
by (fastforce simp: image-iff)

have 〈{P |P. P ∈ lits-of-l ?M ∧ atm-of P /∈ atm-of ‘ I} |=s ?O〉

using 〈I |=s ?N 〉 atm-I-N by (auto simp add: atm-of-eq-atm-of true-clss-def lits-of-def)
then have I ′-N : 〈?I |=s ?N ∪ ?O〉

using 〈I |=s ?N 〉 true-clss-union-increase by force
have tot ′: 〈total-over-m ?I (?N∪?O)〉

using atm-I-N tot unfolding total-over-m-def total-over-set-def
by (force simp: lits-of-def elim!: is-decided-ex-Decided)

have atms-N-M : 〈atms-of-ms ?N ⊆ atm-of ‘ lits-of-l ?M 〉

proof (rule ccontr)
assume 〈¬ ?thesis〉

then obtain l :: ′v where
l-N : 〈l ∈ atms-of-ms ?N 〉 and
l-M : 〈l /∈ atm-of ‘ lits-of-l ?M 〉

by auto
have 〈undefined-lit ?M (Pos l)〉

using l-M by (metis Decided-Propagated-in-iff-in-lits-of-l
atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set literal.sel(1))

then show False
using can-propagate-or-decide-or-backjump-l[of 〈Pos l〉 S] l-N
cdclN OT -merged-bj-learn-decideN OT n-s inv sat
by (auto dest!: cdclN OT -merged-bj-learn.intros)

qed

have 〈?M |=as CNot C 〉

apply (rule all-variables-defined-not-imply-cnot)
using atms-N-M 〈C ∈ ?N 〉 〈¬ ?M |=a C 〉 atms-of-atms-of-ms-mono[OF 〈C ∈ ?N 〉]
by (auto dest: atms-of-atms-of-ms-mono)

have 〈∃ l ∈ set ?M . is-decided l〉

proof (rule ccontr)
let ?O = 〈{unmark L |L. is-decided L ∧ L ∈ set ?M ∧ atm-of (lit-of L) /∈ atms-of-ms ?N}〉

have ϑ[iff]: 〈
∧
I . total-over-m I (?N ∪ ?O ∪ unmark-l ?M)

←→ total-over-m I (?N ∪unmark-l ?M)〉

unfolding total-over-set-def total-over-m-def atms-of-ms-def by blast
assume 〈¬ ?thesis〉

then have [simp]:〈{unmark L |L. is-decided L ∧ L ∈ set ?M}
= {unmark L |L. is-decided L ∧ L ∈ set ?M ∧ atm-of (lit-of L) /∈ atms-of-ms ?N}〉

229

by auto
then have 〈?N ∪ ?O |=ps unmark-l ?M 〉

using all-decomposition-implies-propagated-lits-are-implied[OF decomp] by auto

then have 〈?I |=s unmark-l ?M 〉

using cons-I ′ I ′-N tot-I ′ 〈?I |=s ?N ∪ ?O〉 unfolding ϑ true-clss-clss-def by blast
then have 〈lits-of-l ?M ⊆ ?I 〉

unfolding true-clss-def lits-of-def by auto
then have 〈?M |=as ?N 〉

using I ′-N 〈C ∈ ?N 〉 〈¬ ?M |=a C 〉 cons-I ′ atms-N-M
by (meson 〈trail S |=as CNot C 〉 consistent-CNot-not rev-subsetD sup-ge1 true-annot-def
true-annots-def true-cls-mono-set-mset-l true-clss-def)

then show False using M by fast
qed

from List.split-list-first-propE [OF this] obtain K :: 〈 ′v literal〉 and d :: unit and
F F ′ :: 〈(′v, unit) ann-lits〉 where
M-K : 〈?M = F ′ @ Decided K # F 〉 and
nm: 〈∀ f∈set F ′. ¬is-decided f 〉

by (metis (full-types) is-decided-ex-Decided old.unit.exhaust)
let ?K = 〈Decided K ::(′v, unit) ann-lit〉

have 〈?K ∈ set ?M 〉

unfolding M-K by auto
let ?C = 〈image-mset lit-of {#L∈#mset ?M . is-decided L ∧ L 6=?K#} :: ′v clause〉

let ?C ′ = 〈set-mset (image-mset (λL:: ′v literal. {#L#}) (?C + unmark ?K))〉

have 〈?N ∪ {unmark L |L. is-decided L ∧ L ∈ set ?M} |=ps unmark-l ?M 〉

using all-decomposition-implies-propagated-lits-are-implied[OF decomp] .
moreover have C ′: 〈?C ′ = {unmark L |L. is-decided L ∧ L ∈ set ?M}〉

unfolding M-K apply standard
apply force

by auto
ultimately have N-C-M : 〈?N ∪ ?C ′ |=ps unmark-l ?M 〉

by auto
have N-M-False: 〈?N ∪ (λL. unmark L) ‘ (set ?M) |=ps {{#}}〉

unfolding true-clss-clss-def true-annots-def Ball-def true-annot-def
proof (intro allI impI)
fix LL :: ′v literal set
assume
tot: 〈total-over-m LL (set-mset (clausesN OT S) ∪ unmark-l (trail S) ∪ {{#}})〉 and
cons: 〈consistent-interp LL〉 and
LL: 〈LL |=s set-mset (clausesN OT S) ∪ unmark-l (trail S)〉

have 〈total-over-m LL (CNot C)〉

by (metis 〈C ∈# clausesN OT S 〉 insert-absorb tot total-over-m-CNot-toal-over-m
total-over-m-insert total-over-m-union)

then have total-over-m LL (unmark-l (trail S) ∪ CNot C)
using tot by force

then show LL |=s {{#}}
using tot cons LL
by (metis (no-types) 〈C ∈# clausesN OT S 〉 〈trail S |=as CNot C 〉 consistent-CNot-not

true-annots-true-clss-clss true-clss-clss-def true-clss-def true-clss-union)
qed

have 〈undefined-lit F K 〉 using 〈no-dup ?M 〉 unfolding M-K by (auto simp: defined-lit-map)
moreover {
have 〈?N ∪ ?C ′ |=ps {{#}}〉

proof −
have A: 〈?N ∪ ?C ′ ∪ unmark-l ?M = ?N ∪ unmark-l ?M 〉

230

unfolding M-K by auto
show ?thesis
using true-clss-clss-left-right[OF N-C-M , of 〈{{#}}〉] N-M-False unfolding A by auto

qed
have 〈?N |=p image-mset uminus ?C + {#−K#}〉

unfolding true-clss-cls-def true-clss-clss-def total-over-m-def
proof (intro allI impI)
fix I
assume
tot: 〈total-over-set I (atms-of-ms (?N ∪ {image-mset uminus ?C+ {#− K#}}))〉 and
cons: 〈consistent-interp I 〉 and
〈I |=s ?N 〉

have 〈(K ∈ I ∧ −K /∈ I) ∨ (−K ∈ I ∧ K /∈ I)〉

using cons tot unfolding consistent-interp-def by (cases K) auto
have 〈{a ∈ set (trail S). is-decided a ∧ a 6= Decided K} =
set (trail S) ∩ {L. is-decided L ∧ L 6= Decided K}〉

by auto
then have tot ′: 〈total-over-set I

(atm-of ‘ lit-of ‘ (set ?M ∩ {L. is-decided L ∧ L 6= Decided K}))〉

using tot by (auto simp add: atms-of-uminus-lit-atm-of-lit-of)
{ fix x :: 〈(′v, unit) ann-lit〉

assume
a3 : 〈lit-of x /∈ I 〉 and
a1 : 〈x ∈ set ?M 〉 and
a4 : 〈is-decided x〉 and
a5 : 〈x 6= Decided K 〉

then have 〈Pos (atm-of (lit-of x)) ∈ I ∨ Neg (atm-of (lit-of x)) ∈ I 〉

using a5 a4 tot ′ a1 unfolding total-over-set-def atms-of-s-def by blast
moreover have f6 : 〈Neg (atm-of (lit-of x)) = − Pos (atm-of (lit-of x))〉

by simp
ultimately have 〈− lit-of x ∈ I 〉

using f6 a3 by (metis (no-types) atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
literal.sel(1))

} note H = this

have 〈¬I |=s ?C ′〉
using 〈?N ∪ ?C ′ |=ps {{#}}〉 tot cons 〈I |=s ?N 〉

unfolding true-clss-clss-def total-over-m-def
by (simp add: atms-of-uminus-lit-atm-of-lit-of atms-of-ms-single-image-atm-of-lit-of)

then show 〈I |= image-mset uminus ?C + {#− K#}〉

unfolding true-clss-def true-cls-def Bex-def
using 〈(K ∈ I ∧ −K /∈ I) ∨ (−K ∈ I ∧ K /∈ I)〉

by (auto dest!: H)
qed }

moreover have 〈F |=as CNot (image-mset uminus ?C)〉

using nm unfolding true-annots-def CNot-def M-K by (auto simp add: lits-of-def)
ultimately have False
using bj-merge-can-jump[of S F ′ K F C 〈−K 〉

〈image-mset uminus (image-mset lit-of {# L :# mset ?M . is-decided L ∧ L 6= Decided K#})〉]
〈C∈?N 〉 n-s 〈?M |=as CNot C 〉 bj-backjump inv sat unfolding M-K
by (auto simp: cdclN OT -merged-bj-learn.simps)

then show ?thesis by fast
qed auto

qed

lemma cdclN OT -merged-bj-learn-all-decomposition-implies:

231

assumes 〈cdclN OT -merged-bj-learn S T 〉 and inv: 〈inv S 〉

〈all-decomposition-implies-m (clausesN OT S) (get-all-ann-decomposition (trail S))〉

shows
〈all-decomposition-implies-m (clausesN OT T) (get-all-ann-decomposition (trail T))〉

using assms
proof (induction rule: cdclN OT -merged-bj-learn.induct)
case (cdclN OT -merged-bj-learn-backjump-l T) note bj-l = this(1)
obtain C ′ L D S ′ where
learn: 〈learn S ′ T 〉 and
bj: 〈backjump S S ′〉 and
atms-C : 〈atms-of (add-mset L C ′) ⊆ atms-of-mm (clausesN OT S) ∪ atm-of ‘ (lits-of-l (trail S))〉

and
D: 〈D = add-mset L C ′〉 and
T : 〈T ∼ add-clsN OT D S ′〉
using bj-l inv backjump-l-backjump-learn [of S] by blast

have 〈all-decomposition-implies-m (clausesN OT S ′) (get-all-ann-decomposition (trail S ′))〉

using bj bj-backjump dpll-bj-clauses inv(1) inv(2)
by (fastforce simp: dpll-bj-all-decomposition-implies-inv)

then show ?case
using T by (auto simp: all-decomposition-implies-insert-single)

qed (auto simp: dpll-bj-all-decomposition-implies-inv cdclN OT -all-decomposition-implies
dest!: dpll-bj.intros cdclN OT .intros)

lemma rtranclp-cdclN OT -merged-bj-learn-all-decomposition-implies:
assumes 〈cdclN OT -merged-bj-learn∗∗ S T 〉 and inv: 〈inv S 〉

〈all-decomposition-implies-m (clausesN OT S) (get-all-ann-decomposition (trail S))〉

shows
〈all-decomposition-implies-m (clausesN OT T) (get-all-ann-decomposition (trail T))〉

using assms
apply (induction rule: rtranclp-induct)
apply simp

using cdclN OT -merged-bj-learn-all-decomposition-implies
rtranclp-cdclN OT -merged-bj-learn-is-rtranclp-cdclN OT -and-inv by blast

lemma full-cdclN OT -merged-bj-learn-final-state:
fixes A :: 〈 ′v clause set〉 and S T :: 〈 ′st〉

assumes
full: 〈full cdclN OT -merged-bj-learn S T 〉 and
atms-S : 〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and
atms-trail: 〈atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A〉 and
n-d: 〈no-dup (trail S)〉 and
〈finite A〉 and
inv: 〈inv S 〉 and
decomp: 〈all-decomposition-implies-m (clausesN OT S) (get-all-ann-decomposition (trail S))〉

shows 〈unsatisfiable (set-mset (clausesN OT T))
∨ (trail T |=asm clausesN OT T ∧ satisfiable (set-mset (clausesN OT T)))〉

proof −
have st: 〈cdclN OT -merged-bj-learn∗∗ S T 〉 and n-s: 〈no-step cdclN OT -merged-bj-learn T 〉

using full unfolding full-def by blast+
then have st ′: 〈cdclN OT

∗∗ S T 〉

using inv rtranclp-cdclN OT -merged-bj-learn-is-rtranclp-cdclN OT -and-inv n-d by auto
have 〈atms-of-mm (clausesN OT T) ⊆ atms-of-ms A〉 and 〈atm-of ‘ lits-of-l (trail T) ⊆ atms-of-ms A〉

using rtranclp-cdclN OT -merged-bj-learn-trail-clauses-bound[OF st inv atms-S atms-trail] by blast+
moreover have 〈no-dup (trail T)〉

using rtranclp-cdclN OT -merged-bj-learn-no-dup-inv inv n-d st by blast
moreover have 〈inv T 〉

232

using rtranclp-cdclN OT -merged-bj-learn-inv inv st by blast
moreover have 〈all-decomposition-implies-m (clausesN OT T) (get-all-ann-decomposition (trail T))〉

using rtranclp-cdclN OT -merged-bj-learn-all-decomposition-implies inv st decomp n-d by blast
ultimately show ?thesis
using cdclN OT -merged-bj-learn-final-state[of T A] 〈finite A〉 n-s by fast

qed

end

2.2.7 Instantiations

In this section, we instantiate the previous locales to ensure that the assumption are not con-
tradictory.

locale cdclN OT -with-backtrack-and-restarts =
conflict-driven-clause-learning-learning-before-backjump-only-distinct-learnt
trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT

inv decide-conds backjump-conds propagate-conds learn-restrictions forget-restrictions
for
trail :: 〈 ′st ⇒ (′v, unit) ann-lits〉 and
clausesN OT :: 〈 ′st ⇒ ′v clauses〉 and
prepend-trail :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st〉 and
tl-trail :: 〈 ′st ⇒ ′st〉 and
add-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
remove-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
inv :: 〈 ′st ⇒ bool〉 and
decide-conds :: 〈 ′st ⇒ ′st ⇒ bool〉 and
backjump-conds :: 〈 ′v clause ⇒ ′v clause ⇒ ′v literal ⇒ ′st ⇒ ′st ⇒ bool〉 and
propagate-conds :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st ⇒ bool〉 and
learn-restrictions forget-restrictions :: 〈 ′v clause ⇒ ′st ⇒ bool〉

+
fixes f :: 〈nat ⇒ nat〉

assumes
unbounded: 〈unbounded f 〉 and f-ge-1 : 〈

∧
n. n ≥ 1 =⇒ f n ≥ 1 〉 and

inv-restart:〈
∧
S T . inv S =⇒ T ∼ reduce-trail-toN OT ([]:: ′a list) S =⇒ inv T 〉

begin

lemma bound-inv-inv:
assumes

〈inv S 〉 and
n-d: 〈no-dup (trail S)〉 and
atms-clss-S-A: 〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and
atms-trail-S-A:〈atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A〉 and
〈finite A〉 and
cdclN OT : 〈cdclN OT S T 〉

shows
〈atms-of-mm (clausesN OT T) ⊆ atms-of-ms A〉 and
〈atm-of ‘ lits-of-l (trail T) ⊆ atms-of-ms A〉 and
〈finite A〉

proof −
have 〈cdclN OT S T 〉

using 〈inv S 〉 cdclN OT by linarith
then have 〈atms-of-mm (clausesN OT T) ⊆ atms-of-mm (clausesN OT S) ∪ atm-of ‘ lits-of-l (trail S)〉

using 〈inv S 〉

by (meson conflict-driven-clause-learning-ops.cdclN OT -atms-of-ms-clauses-decreasing
conflict-driven-clause-learning-ops-axioms n-d)

233

then show 〈atms-of-mm (clausesN OT T) ⊆ atms-of-ms A〉

using atms-clss-S-A atms-trail-S-A by blast
next
show 〈atm-of ‘ lits-of-l (trail T) ⊆ atms-of-ms A〉

by (meson 〈inv S 〉 atms-clss-S-A atms-trail-S-A cdclN OT cdclN OT -atms-in-trail-in-set n-d)
next
show 〈finite A〉

using 〈finite A〉 by simp
qed

sublocale cdclN OT -increasing-restarts-ops 〈λS T . T ∼ reduce-trail-toN OT ([]:: ′a list) S 〉 cdclN OT f
〈λA S . atms-of-mm (clausesN OT S) ⊆ atms-of-ms A ∧ atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A ∧
finite A〉

µC DC L
′ 〈λS . inv S ∧ no-dup (trail S)〉

µC DC L
′-bound

apply unfold-locales
apply (simp add: unbounded)
using f-ge-1 apply force
using bound-inv-inv apply meson
apply (rule cdclN OT -decreasing-measure ′; simp)
apply (rule rtranclp-cdclN OT -µC DC L

′-bound; simp)
apply (rule rtranclp-µC DC L

′-bound-decreasing; simp)
apply auto[]

apply auto[]
using cdclN OT -inv cdclN OT -no-dup apply blast
using inv-restart apply auto[]
done

lemma cdclN OT -with-restart-µC DC L
′-le-µC DC L

′-bound:
assumes
cdclN OT : 〈cdclN OT -restart (T , a) (V , b)〉 and
cdclN OT -inv:

〈inv T 〉

〈no-dup (trail T)〉 and
bound-inv:

〈atms-of-mm (clausesN OT T) ⊆ atms-of-ms A〉

〈atm-of ‘ lits-of-l (trail T) ⊆ atms-of-ms A〉

〈finite A〉

shows 〈µC DC L
′ A V ≤ µC DC L

′-bound A T 〉

using cdclN OT -inv bound-inv
proof (induction rule: cdclN OT -with-restart-induct[OF cdclN OT])
case (1 m S T n U) note U = this(3)
show ?case
apply (rule rtranclp-cdclN OT -µC DC L

′-bound-reduce-trail-toN OT [of S T])
using 〈(cdclN OT ^^ m) S T 〉 apply (fastforce dest!: relpowp-imp-rtranclp)
using 1 by auto

next
case (2 S T n) note full = this(2)
show ?case
apply (rule rtranclp-cdclN OT -µC DC L

′-bound)
using full 2 unfolding full1-def by force+

qed

lemma cdclN OT -with-restart-µC DC L
′-bound-le-µC DC L

′-bound:
assumes
cdclN OT : 〈cdclN OT -restart (T , a) (V , b)〉 and

234

cdclN OT -inv:
〈inv T 〉

〈no-dup (trail T)〉 and
bound-inv:

〈atms-of-mm (clausesN OT T) ⊆ atms-of-ms A〉

〈atm-of ‘ lits-of-l (trail T) ⊆ atms-of-ms A〉

〈finite A〉

shows 〈µC DC L
′-bound A V ≤ µC DC L

′-bound A T 〉

using cdclN OT -inv bound-inv
proof (induction rule: cdclN OT -with-restart-induct[OF cdclN OT])
case (1 m S T n U) note U = this(3)
have 〈µC DC L

′-bound A T ≤ µC DC L
′-bound A S 〉

apply (rule rtranclp-µC DC L
′-bound-decreasing)

using 〈(cdclN OT ^^ m) S T 〉 apply (fastforce dest: relpowp-imp-rtranclp)
using 1 by auto

then show ?case using U unfolding µC DC L
′-bound-def by auto

next
case (2 S T n) note full = this(2)
show ?case
apply (rule rtranclp-µC DC L

′-bound-decreasing)
using full 2 unfolding full1-def by force+

qed

sublocale cdclN OT -increasing-restarts - - - - - -
f
〈λS T . T ∼ reduce-trail-toN OT ([]:: ′a list) S 〉

〈λA S . atms-of-mm (clausesN OT S) ⊆ atms-of-ms A
∧ atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A ∧ finite A〉

µC DC L
′ cdclN OT

〈λS . inv S ∧ no-dup (trail S)〉

µC DC L
′-bound

apply unfold-locales
using cdclN OT -with-restart-µC DC L

′-le-µC DC L
′-bound apply simp

using cdclN OT -with-restart-µC DC L
′-bound-le-µC DC L

′-bound apply simp
done

lemma cdclN OT -restart-all-decomposition-implies:
assumes 〈cdclN OT -restart S T 〉 and

〈inv (fst S)〉 and
〈no-dup (trail (fst S))〉

〈all-decomposition-implies-m (clausesN OT (fst S)) (get-all-ann-decomposition (trail (fst S)))〉

shows
〈all-decomposition-implies-m (clausesN OT (fst T)) (get-all-ann-decomposition (trail (fst T)))〉

using assms apply (induction)
using rtranclp-cdclN OT -all-decomposition-implies by (auto dest!: tranclp-into-rtranclp
simp: full1-def)

lemma rtranclp-cdclN OT -restart-all-decomposition-implies:
assumes 〈cdclN OT -restart∗∗ S T 〉 and
inv: 〈inv (fst S)〉 and
n-d: 〈no-dup (trail (fst S))〉 and
decomp:

〈all-decomposition-implies-m (clausesN OT (fst S)) (get-all-ann-decomposition (trail (fst S)))〉

shows
〈all-decomposition-implies-m (clausesN OT (fst T)) (get-all-ann-decomposition (trail (fst T)))〉

using assms(1)

235

proof (induction rule: rtranclp-induct)
case base
then show ?case using decomp by simp

next
case (step T u) note st = this(1) and r = this(2) and IH = this(3)
have 〈inv (fst T)〉

using rtranclp-cdclN OT -with-restart-cdclN OT -inv[OF st] inv n-d by blast
moreover have 〈no-dup (trail (fst T))〉

using rtranclp-cdclN OT -with-restart-cdclN OT -inv[OF st] inv n-d by blast
ultimately show ?case
using cdclN OT -restart-all-decomposition-implies r IH n-d by fast

qed

lemma cdclN OT -restart-sat-ext-iff :
assumes
st: 〈cdclN OT -restart S T 〉 and
n-d: 〈no-dup (trail (fst S))〉 and
inv: 〈inv (fst S)〉

shows 〈I |=sextm clausesN OT (fst S) ←→ I |=sextm clausesN OT (fst T)〉

using assms
proof (induction)
case (restart-step m S T n U)
then show ?case
using rtranclp-cdclN OT -bj-sat-ext-iff n-d by (fastforce dest!: relpowp-imp-rtranclp)

next
case restart-full
then show ?case using rtranclp-cdclN OT -bj-sat-ext-iff unfolding full1-def
by (fastforce dest!: tranclp-into-rtranclp)

qed

lemma rtranclp-cdclN OT -restart-sat-ext-iff :
fixes S T :: 〈 ′st × nat〉

assumes
st: 〈cdclN OT -restart∗∗ S T 〉 and
n-d: 〈no-dup (trail (fst S))〉 and
inv: 〈inv (fst S)〉

shows 〈I |=sextm clausesN OT (fst S) ←→ I |=sextm clausesN OT (fst T)〉

using st
proof (induction)
case base
then show ?case by simp

next
case (step T U) note st = this(1) and r = this(2) and IH = this(3)
have 〈inv (fst T)〉

using rtranclp-cdclN OT -with-restart-cdclN OT -inv[OF st] inv n-d by blast+
moreover have 〈no-dup (trail (fst T))〉

using rtranclp-cdclN OT -with-restart-cdclN OT -inv rtranclp-cdclN OT -no-dup st inv n-d by blast
ultimately show ?case
using cdclN OT -restart-sat-ext-iff [OF r] IH by blast

qed

theorem full-cdclN OT -restart-backjump-final-state:
fixes A :: 〈 ′v clause set〉 and S T :: 〈 ′st〉

assumes
full: 〈full cdclN OT -restart (S , n) (T , m)〉 and
atms-S : 〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and

236

atms-trail: 〈atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A〉 and
n-d: 〈no-dup (trail S)〉 and
fin-A[simp]: 〈finite A〉 and
inv: 〈inv S 〉 and
decomp: 〈all-decomposition-implies-m (clausesN OT S) (get-all-ann-decomposition (trail S))〉

shows 〈unsatisfiable (set-mset (clausesN OT S))
∨ (lits-of-l (trail T) |=sextm clausesN OT S ∧ satisfiable (set-mset (clausesN OT S)))〉

proof −
have st: 〈cdclN OT -restart∗∗ (S , n) (T , m)〉 and
n-s: 〈no-step cdclN OT -restart (T , m)〉

using full unfolding full-def by fast+
have binv-T : 〈atms-of-mm (clausesN OT T) ⊆ atms-of-ms A〉

〈atm-of ‘ lits-of-l (trail T) ⊆ atms-of-ms A〉

using rtranclp-cdclN OT -with-restart-bound-inv[OF st, of A] inv n-d atms-S atms-trail
by auto

moreover have inv-T : 〈no-dup (trail T)〉 〈inv T 〉

using rtranclp-cdclN OT -with-restart-cdclN OT -inv[OF st] inv n-d by auto
moreover have 〈all-decomposition-implies-m (clausesN OT T) (get-all-ann-decomposition (trail T))〉

using rtranclp-cdclN OT -restart-all-decomposition-implies[OF st] inv n-d
decomp by auto

ultimately have T : 〈unsatisfiable (set-mset (clausesN OT T))
∨ (trail T |=asm clausesN OT T ∧ satisfiable (set-mset (clausesN OT T)))〉

using no-step-cdclN OT -restart-no-step-cdclN OT [of 〈(T , m)〉 A] n-s
cdclN OT -final-state[of T A] unfolding cdclN OT -NOT-all-inv-def by auto

have eq-sat-S-T :〈
∧
I . I |=sextm clausesN OT S ←→ I |=sextm clausesN OT T 〉

using rtranclp-cdclN OT -restart-sat-ext-iff [OF st] inv n-d atms-S
atms-trail by auto

have cons-T : 〈consistent-interp (lits-of-l (trail T))〉

using inv-T (1) distinct-consistent-interp by blast
consider

(unsat) 〈unsatisfiable (set-mset (clausesN OT T))〉

| (sat) 〈trail T |=asm clausesN OT T 〉 and 〈satisfiable (set-mset (clausesN OT T))〉

using T by blast
then show ?thesis
proof cases
case unsat
then have 〈unsatisfiable (set-mset (clausesN OT S))〉

using eq-sat-S-T consistent-true-clss-ext-satisfiable true-clss-imp-true-cls-ext
unfolding satisfiable-def by blast

then show ?thesis by fast
next
case sat
then have 〈lits-of-l (trail T) |=sextm clausesN OT S 〉

using rtranclp-cdclN OT -restart-sat-ext-iff [OF st] inv n-d atms-S
atms-trail by (auto simp: true-clss-imp-true-cls-ext true-annots-true-cls)

moreover then have 〈satisfiable (set-mset (clausesN OT S))〉

using cons-T consistent-true-clss-ext-satisfiable by blast
ultimately show ?thesis by blast

qed
qed
end — End of the locale cdclN OT -with-backtrack-and-restarts.

The restart does only reset the trail, contrary to Weidenbach’s version where forget and restart
are always combined. But there is a forget rule.
locale cdclN OT -merge-bj-learn-with-backtrack-restarts =
cdclN OT -merge-bj-learn trail clausesN OT prepend-trail tl-trail add-clsN OT remove-clsN OT

237

decide-conds propagate-conds forget-conds
〈λC C ′ L ′ S T . distinct-mset C ′ ∧ L ′ /∈# C ′ ∧ backjump-l-cond C C ′ L ′ S T 〉 inv

for
trail :: 〈 ′st ⇒ (′v, unit) ann-lits〉 and
clausesN OT :: 〈 ′st ⇒ ′v clauses〉 and
prepend-trail :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st〉 and
tl-trail :: 〈 ′st ⇒ ′st〉 and
add-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
remove-clsN OT :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
decide-conds :: 〈 ′st ⇒ ′st ⇒ bool〉 and
propagate-conds :: 〈(′v, unit) ann-lit ⇒ ′st ⇒ ′st ⇒ bool〉 and
inv :: 〈 ′st ⇒ bool〉 and
forget-conds :: 〈 ′v clause ⇒ ′st ⇒ bool〉 and
backjump-l-cond :: 〈 ′v clause ⇒ ′v clause ⇒ ′v literal ⇒ ′st ⇒ ′st ⇒ bool〉

+
fixes f :: 〈nat ⇒ nat〉

assumes
unbounded: 〈unbounded f 〉 and f-ge-1 : 〈

∧
n. n ≥ 1 =⇒ f n ≥ 1 〉 and

inv-restart:〈
∧
S T . inv S =⇒ T ∼ reduce-trail-toN OT [] S =⇒ inv T 〉

begin

definition not-simplified-cls :: 〈 ′b clause multiset ⇒ ′b clauses〉

where
〈not-simplified-cls A ≡ {#C ∈# A. C /∈ simple-clss (atms-of-mm A)#}〉

lemma not-simplified-cls-tautology-distinct-mset:
〈not-simplified-cls A = {#C ∈# A. tautology C ∨ ¬distinct-mset C#}〉

unfolding not-simplified-cls-def by (rule filter-mset-cong) (auto simp: simple-clss-def)

lemma simple-clss-or-not-simplified-cls:
assumes 〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and

〈x ∈# clausesN OT S 〉 and 〈finite A〉

shows 〈x ∈ simple-clss (atms-of-ms A) ∨ x ∈# not-simplified-cls (clausesN OT S)〉

proof −
consider

(simpl) 〈¬tautology x〉 and 〈distinct-mset x〉

| (n-simp) 〈tautology x ∨ ¬distinct-mset x〉

by auto
then show ?thesis
proof cases
case simpl
then have 〈x ∈ simple-clss (atms-of-ms A)〉

by (meson assms atms-of-atms-of-ms-mono atms-of-ms-finite simple-clss-mono
distinct-mset-not-tautology-implies-in-simple-clss finite-subset
subsetCE)

then show ?thesis by blast
next
case n-simp
then have 〈x ∈# not-simplified-cls (clausesN OT S)〉

using 〈x ∈# clausesN OT S 〉 unfolding not-simplified-cls-tautology-distinct-mset by auto
then show ?thesis by blast

qed
qed

lemma cdclN OT -merged-bj-learn-clauses-bound:
assumes

238

〈cdclN OT -merged-bj-learn S T 〉 and
inv: 〈inv S 〉 and
atms-clss: 〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and
atms-trail: 〈atm-of ‘(lits-of-l (trail S)) ⊆ atms-of-ms A〉 and
fin-A[simp]: 〈finite A〉

shows 〈set-mset (clausesN OT T) ⊆ set-mset (not-simplified-cls (clausesN OT S))
∪ simple-clss (atms-of-ms A)〉

using assms(1−4)
proof (induction rule: cdclN OT -merged-bj-learn.induct)
case cdclN OT -merged-bj-learn-decideN OT

then show ?case using dpll-bj-clauses by (force dest!: simple-clss-or-not-simplified-cls)
next
case cdclN OT -merged-bj-learn-propagateN OT

then show ?case using dpll-bj-clauses by (force dest!: simple-clss-or-not-simplified-cls)
next
case cdclN OT -merged-bj-learn-forgetN OT

then show ?case using clauses-remove-clsN OT unfolding state-eqN OT -def
by (force elim!: forgetN OTE dest: simple-clss-or-not-simplified-cls)

next
case (cdclN OT -merged-bj-learn-backjump-l T) note bj = this(1) and inv = this(2) and
atms-clss = this(3) and atms-trail = this(4)

have st: 〈cdclN OT -merged-bj-learn∗∗ S T 〉

using bj inv cdclN OT -merged-bj-learn.simps by blast+
have 〈atm-of ‘(lits-of-l (trail T)) ⊆ atms-of-ms A〉 and 〈atms-of-mm (clausesN OT T) ⊆ atms-of-ms

A〉

using rtranclp-cdclN OT -merged-bj-learn-trail-clauses-bound[OF st] inv atms-trail atms-clss
by auto

obtain F ′ K F L l C ′ C D where
tr-S : 〈trail S = F ′ @ Decided K # F 〉 and
T : 〈T ∼ prepend-trail (Propagated L l) (reduce-trail-toN OT F (add-clsN OT D S))〉 and
〈C ∈# clausesN OT S 〉 and
〈trail S |=as CNot C 〉 and
undef : 〈undefined-lit F L〉 and
〈clausesN OT S |=pm add-mset L C ′〉 and
〈F |=as CNot C ′〉 and
D: 〈D = add-mset L C ′〉 and
dist: 〈distinct-mset (add-mset L C ′)〉 and
tauto: 〈¬ tautology (add-mset L C ′)〉 and
〈backjump-l-cond C C ′ L S T 〉

using 〈backjump-l S T 〉 apply (elim backjump-lE) by auto

have 〈atms-of C ′ ⊆ atm-of ‘ (lits-of-l F)〉

using 〈F |=as CNot C ′〉 by (simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
atms-of-def image-subset-iff in-CNot-implies-uminus(2))

then have 〈atms-of (C ′+{#L#}) ⊆ atms-of-ms A〉

using T 〈atm-of ‘ lits-of-l (trail T) ⊆ atms-of-ms A〉 tr-S undef by auto
then have 〈simple-clss (atms-of (add-mset L C ′)) ⊆ simple-clss (atms-of-ms A)〉

apply − by (rule simple-clss-mono) (simp-all)
then have 〈add-mset L C ′ ∈ simple-clss (atms-of-ms A)〉

using distinct-mset-not-tautology-implies-in-simple-clss[OF dist tauto]
by auto

then show ?case
using T inv atms-clss undef tr-S D by (force dest!: simple-clss-or-not-simplified-cls)

qed

239

lemma cdclN OT -merged-bj-learn-not-simplified-decreasing:
assumes 〈cdclN OT -merged-bj-learn S T 〉

shows 〈not-simplified-cls (clausesN OT T) ⊆# not-simplified-cls (clausesN OT S)〉

using assms apply induction
prefer 4
unfolding not-simplified-cls-tautology-distinct-mset apply (auto elim!: backjump-lE forgetN OTE)[3]
by (elim backjump-lE) auto

lemma rtranclp-cdclN OT -merged-bj-learn-not-simplified-decreasing:
assumes 〈cdclN OT -merged-bj-learn∗∗ S T 〉

shows 〈not-simplified-cls (clausesN OT T) ⊆# not-simplified-cls (clausesN OT S)〉

using assms apply induction
apply simp
by (drule cdclN OT -merged-bj-learn-not-simplified-decreasing) auto

lemma rtranclp-cdclN OT -merged-bj-learn-clauses-bound:
assumes

〈cdclN OT -merged-bj-learn∗∗ S T 〉 and
〈inv S 〉 and
〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and
〈atm-of ‘(lits-of-l (trail S)) ⊆ atms-of-ms A〉 and
finite[simp]: 〈finite A〉

shows 〈set-mset (clausesN OT T) ⊆ set-mset (not-simplified-cls (clausesN OT S))
∪ simple-clss (atms-of-ms A)〉

using assms(1−4)
proof induction
case base
then show ?case by (auto dest!: simple-clss-or-not-simplified-cls)

next
case (step T U) note st = this(1) and cdclN OT = this(2) and IH = this(3)[OF this(4−6)] and
inv = this(4) and atms-clss-S = this(5) and atms-trail-S = this(6)

have st ′: 〈cdclN OT
∗∗ S T 〉

using inv rtranclp-cdclN OT -merged-bj-learn-is-rtranclp-cdclN OT -and-inv st by blast
have 〈inv T 〉

using inv rtranclp-cdclN OT -merged-bj-learn-inv st by blast
moreover
have 〈atms-of-mm (clausesN OT T) ⊆ atms-of-ms A〉 and

〈atm-of ‘ lits-of-l (trail T) ⊆ atms-of-ms A〉

using rtranclp-cdclN OT -merged-bj-learn-trail-clauses-bound[OF st] inv atms-clss-S
atms-trail-S by blast+

ultimately have 〈set-mset (clausesN OT U)
⊆ set-mset (not-simplified-cls (clausesN OT T)) ∪ simple-clss (atms-of-ms A)〉

using cdclN OT finite cdclN OT -merged-bj-learn-clauses-bound
by (auto intro!: cdclN OT -merged-bj-learn-clauses-bound)

moreover have 〈set-mset (not-simplified-cls (clausesN OT T))
⊆ set-mset (not-simplified-cls (clausesN OT S))〉

using rtranclp-cdclN OT -merged-bj-learn-not-simplified-decreasing[OF st] by auto
ultimately show ?case using IH inv atms-clss-S
by (auto dest!: simple-clss-or-not-simplified-cls)

qed

abbreviation µC DC L
′-bound where

〈µC DC L
′-bound A T ≡ ((2+card (atms-of-ms A)) ^ (1+card (atms-of-ms A))) ∗ 2

+ card (set-mset (not-simplified-cls(clausesN OT T)))
+ 3 ^ card (atms-of-ms A)〉

240

lemma rtranclp-cdclN OT -merged-bj-learn-clauses-bound-card:
assumes

〈cdclN OT -merged-bj-learn∗∗ S T 〉 and
〈inv S 〉 and
〈atms-of-mm (clausesN OT S) ⊆ atms-of-ms A〉 and
〈atm-of ‘(lits-of-l (trail S)) ⊆ atms-of-ms A〉 and
finite: 〈finite A〉

shows 〈µC DC L
′-merged A T ≤ µC DC L

′-bound A S 〉

proof −
have 〈set-mset (clausesN OT T) ⊆ set-mset (not-simplified-cls(clausesN OT S))
∪ simple-clss (atms-of-ms A)〉

using rtranclp-cdclN OT -merged-bj-learn-clauses-bound[OF assms] .
moreover have 〈card (set-mset (not-simplified-cls(clausesN OT S))
∪ simple-clss (atms-of-ms A))
≤ card (set-mset (not-simplified-cls(clausesN OT S))) + 3 ^ card (atms-of-ms A)〉

by (meson Nat.le-trans atms-of-ms-finite simple-clss-card card-Un-le finite
nat-add-left-cancel-le)

ultimately have 〈card (set-mset (clausesN OT T))
≤ card (set-mset (not-simplified-cls(clausesN OT S))) + 3 ^ card (atms-of-ms A)〉

by (meson Nat.le-trans atms-of-ms-finite simple-clss-finite card-mono
finite-UnI finite-set-mset local.finite)

moreover have 〈((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A)) − µC
′ A T) ∗ 2

≤ (2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A)) ∗ 2 〉

by auto
ultimately show ?thesis unfolding µC DC L

′-merged-def by auto
qed

sublocale cdclN OT -increasing-restarts-ops 〈λS T . T ∼ reduce-trail-toN OT ([]:: ′a list) S 〉

cdclN OT -merged-bj-learn f
〈λA S . atms-of-mm (clausesN OT S) ⊆ atms-of-ms A
∧ atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A ∧ finite A〉

µC DC L
′-merged

〈λS . inv S ∧ no-dup (trail S)〉

µC DC L
′-bound

apply unfold-locales
using unbounded apply simp
using f-ge-1 apply force
using cdclN OT -merged-bj-learn-trail-clauses-bound apply meson
apply (simp add: cdclN OT -decreasing-measure ′)
using rtranclp-cdclN OT -merged-bj-learn-clauses-bound-card apply blast
apply (drule rtranclp-cdclN OT -merged-bj-learn-not-simplified-decreasing)
apply (auto simp: card-mono set-mset-mono)[]

apply simp
apply auto[]
using cdclN OT -merged-bj-learn-no-dup-inv cdcl-merged-inv apply blast
apply (auto simp: inv-restart)[]
done

lemma cdclN OT -restart-µC DC L
′-merged-le-µC DC L

′-bound:
assumes

〈cdclN OT -restart T V 〉

〈inv (fst T)〉 and
〈no-dup (trail (fst T))〉 and
〈atms-of-mm (clausesN OT (fst T)) ⊆ atms-of-ms A〉 and
〈atm-of ‘ lits-of-l (trail (fst T)) ⊆ atms-of-ms A〉 and

241

〈finite A〉

shows 〈µC DC L
′-merged A (fst V) ≤ µC DC L

′-bound A (fst T)〉

using assms
proof induction
case (restart-full S T n)
show ?case
unfolding fst-conv
apply (rule rtranclp-cdclN OT -merged-bj-learn-clauses-bound-card)
using restart-full unfolding full1-def by (force dest!: tranclp-into-rtranclp)+

next
case (restart-step m S T n U) note st = this(1) and U = this(3) and inv = this(4) and
n-d = this(5) and atms-clss = this(6) and atms-trail = this(7) and finite = this(8)

then have st ′: 〈cdclN OT -merged-bj-learn∗∗ S T 〉

by (blast dest: relpowp-imp-rtranclp)
then have st ′′: 〈cdclN OT

∗∗ S T 〉

using inv n-d apply − by (rule rtranclp-cdclN OT -merged-bj-learn-is-rtranclp-cdclN OT) auto
have 〈inv T 〉

apply (rule rtranclp-cdclN OT -merged-bj-learn-inv)
using inv st ′ n-d by auto

then have 〈inv U 〉

using U by (auto simp: inv-restart)
have 〈atms-of-mm (clausesN OT T) ⊆ atms-of-ms A〉

using rtranclp-cdclN OT -merged-bj-learn-trail-clauses-bound[OF st ′] inv atms-clss atms-trail n-d
by simp

then have 〈atms-of-mm (clausesN OT U) ⊆ atms-of-ms A〉

using U by simp
have 〈not-simplified-cls (clausesN OT U) ⊆# not-simplified-cls (clausesN OT T)〉

using 〈U ∼ reduce-trail-toN OT [] T 〉 by auto
moreover have 〈not-simplified-cls (clausesN OT T) ⊆# not-simplified-cls (clausesN OT S)〉

apply (rule rtranclp-cdclN OT -merged-bj-learn-not-simplified-decreasing)
using 〈(cdclN OT -merged-bj-learn ^^ m) S T 〉 by (auto dest!: relpowp-imp-rtranclp)

ultimately have U-S : 〈not-simplified-cls (clausesN OT U) ⊆# not-simplified-cls (clausesN OT S)〉

by auto

have 〈(set-mset (clausesN OT U))
⊆ set-mset (not-simplified-cls (clausesN OT U)) ∪ simple-clss (atms-of-ms A)〉

apply (rule rtranclp-cdclN OT -merged-bj-learn-clauses-bound)
apply simp
using 〈inv U 〉 apply simp
using 〈atms-of-mm (clausesN OT U) ⊆ atms-of-ms A〉 apply simp
using U apply simp

using finite apply simp
done

then have f1 : 〈card (set-mset (clausesN OT U)) ≤ card (set-mset (not-simplified-cls (clausesN OT U))
∪ simple-clss (atms-of-ms A))〉

by (simp add: simple-clss-finite card-mono local.finite)

moreover have 〈set-mset (not-simplified-cls (clausesN OT U)) ∪ simple-clss (atms-of-ms A)
⊆ set-mset (not-simplified-cls (clausesN OT S)) ∪ simple-clss (atms-of-ms A)〉

using U-S by auto
then have f2 :

〈card (set-mset (not-simplified-cls (clausesN OT U)) ∪ simple-clss (atms-of-ms A))
≤ card (set-mset (not-simplified-cls (clausesN OT S)) ∪ simple-clss (atms-of-ms A))〉

by (simp add: simple-clss-finite card-mono local.finite)

moreover have 〈card (set-mset (not-simplified-cls (clausesN OT S))

242

∪ simple-clss (atms-of-ms A))
≤ card (set-mset (not-simplified-cls (clausesN OT S))) + card (simple-clss (atms-of-ms A))〉

using card-Un-le by blast
moreover have 〈card (simple-clss (atms-of-ms A)) ≤ 3 ^ card (atms-of-ms A)〉

using atms-of-ms-finite simple-clss-card local.finite by blast
ultimately have 〈card (set-mset (clausesN OT U))
≤ card (set-mset (not-simplified-cls (clausesN OT S))) + 3 ^ card (atms-of-ms A)〉

by linarith
then show ?case unfolding µC DC L

′-merged-def by auto
qed

lemma cdclN OT -restart-µC DC L
′-bound-le-µC DC L

′-bound:
assumes

〈cdclN OT -restart T V 〉 and
〈no-dup (trail (fst T))〉 and
〈inv (fst T)〉 and
fin: 〈finite A〉

shows 〈µC DC L
′-bound A (fst V) ≤ µC DC L

′-bound A (fst T)〉

using assms(1−3)
proof induction
case (restart-full S T n)
have 〈not-simplified-cls (clausesN OT T) ⊆# not-simplified-cls (clausesN OT S)〉

apply (rule rtranclp-cdclN OT -merged-bj-learn-not-simplified-decreasing)
using 〈full1 cdclN OT -merged-bj-learn S T 〉 unfolding full1-def
by (auto dest: tranclp-into-rtranclp)

then show ?case by (auto simp: card-mono set-mset-mono)
next
case (restart-step m S T n U) note st = this(1) and U = this(3) and n-d = this(4) and
inv = this(5)

then have st ′: 〈cdclN OT -merged-bj-learn∗∗ S T 〉

by (blast dest: relpowp-imp-rtranclp)
then have st ′′: 〈cdclN OT

∗∗ S T 〉

using inv n-d apply − by (rule rtranclp-cdclN OT -merged-bj-learn-is-rtranclp-cdclN OT) auto
have 〈inv T 〉

apply (rule rtranclp-cdclN OT -merged-bj-learn-inv)
using inv st ′ n-d by auto

then have 〈inv U 〉

using U by (auto simp: inv-restart)
have 〈not-simplified-cls (clausesN OT U) ⊆# not-simplified-cls (clausesN OT T)〉

using 〈U ∼ reduce-trail-toN OT [] T 〉 by auto
moreover have 〈not-simplified-cls (clausesN OT T) ⊆# not-simplified-cls (clausesN OT S)〉

apply (rule rtranclp-cdclN OT -merged-bj-learn-not-simplified-decreasing)
using 〈(cdclN OT -merged-bj-learn ^^ m) S T 〉 by (auto dest!: relpowp-imp-rtranclp)

ultimately have U-S : 〈not-simplified-cls (clausesN OT U) ⊆# not-simplified-cls (clausesN OT S)〉

by auto
then show ?case by (auto simp: card-mono set-mset-mono)

qed

sublocale cdclN OT -increasing-restarts - - - - - - f
〈λS T . T ∼ reduce-trail-toN OT ([]:: ′a list) S 〉

〈λA S . atms-of-mm (clausesN OT S) ⊆ atms-of-ms A
∧ atm-of ‘ lits-of-l (trail S) ⊆ atms-of-ms A ∧ finite A〉

µC DC L
′-merged cdclN OT -merged-bj-learn

〈λS . inv S ∧ no-dup (trail S)〉

〈λA T . ((2+card (atms-of-ms A)) ^ (1+card (atms-of-ms A))) ∗ 2

243

+ card (set-mset (not-simplified-cls(clausesN OT T)))
+ 3 ^ card (atms-of-ms A)〉

apply unfold-locales
using cdclN OT -restart-µC DC L

′-merged-le-µC DC L
′-bound apply force

using cdclN OT -restart-µC DC L
′-bound-le-µC DC L

′-bound by fastforce

lemma true-clss-ext-decrease-right-insert: 〈I |=sext insert C (set-mset M) =⇒ I |=sextm M 〉

by (metis Diff-insert-absorb insert-absorb true-clss-ext-decrease-right-remove-r)

lemma true-clss-ext-decrease-add-implied:
assumes 〈M |=pm C 〉

shows 〈I |=sext insert C (set-mset M) ←→ I |=sextm M 〉

proof −
{ fix J
assume

〈I |=sextm M 〉 and
〈I ⊆ J 〉 and
tot: 〈total-over-m J (set-mset ({#C#} + M))〉 and
cons: 〈consistent-interp J 〉

then have 〈J |=sm M 〉 unfolding true-clss-ext-def by auto

moreover
with 〈M |=pm C 〉 have 〈J |= C 〉

using tot cons unfolding true-clss-cls-def by auto
ultimately have 〈J |=sm {#C#} + M 〉 by auto

}
then have H : 〈I |=sextm M =⇒ I |=sext insert C (set-mset M)〉

unfolding true-clss-ext-def by auto
then show ?thesis
by (auto simp: true-clss-ext-decrease-right-insert)

qed

lemma cdclN OT -merged-bj-learn-bj-sat-ext-iff :
assumes 〈cdclN OT -merged-bj-learn S T 〉 and inv: 〈inv S 〉

shows 〈I |=sextm clausesN OT S ←→ I |=sextm clausesN OT T 〉

using assms
proof (induction rule: cdclN OT -merged-bj-learn.induct)
case (cdclN OT -merged-bj-learn-backjump-l T) note bj-l = this(1)
obtain C ′ L D S ′ where
learn: 〈learn S ′ T 〉 and
bj: 〈backjump S S ′〉 and
atms-C : 〈atms-of (add-mset L C ′) ⊆ atms-of-mm (clausesN OT S) ∪ atm-of ‘ (lits-of-l (trail S))〉

and
D: 〈D = add-mset L C ′〉 and
T : 〈T ∼ add-clsN OT D S ′〉 and
clss-D: 〈clausesN OT S |=pm D〉

using bj-l inv backjump-l-backjump-learn [of S] by blast
have [simp]: 〈clausesN OT S ′ = clausesN OT S 〉

using bj by (auto elim: backjumpE)
have 〈(I |=sextm clausesN OT S) ←→ (I |=sextm clausesN OT S ′)〉

using bj bj-backjump dpll-bj-clauses inv by fastforce
then show ?case
using clss-D T by (auto simp: true-clss-ext-decrease-add-implied)

qed (auto simp: cdclN OT -bj-sat-ext-iff
dest!: dpll-bj.intros cdclN OT .intros)

244

lemma rtranclp-cdclN OT -merged-bj-learn-bj-sat-ext-iff :
assumes 〈cdclN OT -merged-bj-learn∗∗ S T 〉and 〈inv S 〉

shows 〈I |=sextm clausesN OT S ←→ I |=sextm clausesN OT T 〉

using assms apply (induction rule: rtranclp-induct)
apply simp

using cdclN OT -merged-bj-learn-bj-sat-ext-iff
rtranclp-cdclN OT -merged-bj-learn-is-rtranclp-cdclN OT -and-inv by blast

lemma cdclN OT -restart-eq-sat-iff :
assumes

〈cdclN OT -restart S T 〉 and
inv: 〈inv (fst S)〉

shows 〈I |=sextm clausesN OT (fst S) ←→ I |=sextm clausesN OT (fst T)〉

using assms
proof (induction rule: cdclN OT -restart.induct)
case (restart-full S T n)
then have 〈cdclN OT -merged-bj-learn∗∗ S T 〉

by (simp add: tranclp-into-rtranclp full1-def)
then show ?case
using rtranclp-cdclN OT -merged-bj-learn-bj-sat-ext-iff restart-full.prems by auto

next
case (restart-step m S T n U)
then have 〈cdclN OT -merged-bj-learn∗∗ S T 〉

by (auto simp: tranclp-into-rtranclp full1-def dest!: relpowp-imp-rtranclp)
then have 〈I |=sextm clausesN OT S ←→ I |=sextm clausesN OT T 〉

using rtranclp-cdclN OT -merged-bj-learn-bj-sat-ext-iff restart-step.prems by auto
moreover have 〈I |=sextm clausesN OT T ←→ I |=sextm clausesN OT U 〉

using restart-step.hyps(3) by auto
ultimately show ?case by auto

qed

lemma rtranclp-cdclN OT -restart-eq-sat-iff :
assumes

〈cdclN OT -restart∗∗ S T 〉 and
inv: 〈inv (fst S)〉 and n-d: 〈no-dup(trail (fst S))〉

shows 〈I |=sextm clausesN OT (fst S) ←→ I |=sextm clausesN OT (fst T)〉

using assms(1)
proof (induction rule: rtranclp-induct)
case base
then show ?case by simp

next
case (step T U) note st = this(1) and cdcl = this(2) and IH = this(3)
have 〈inv (fst T)〉 and 〈no-dup (trail (fst T))〉

using rtranclp-cdclN OT -with-restart-cdclN OT -inv using st inv n-d by blast+
then have 〈I |=sextm clausesN OT (fst T) ←→ I |=sextm clausesN OT (fst U)〉

using cdclN OT -restart-eq-sat-iff cdcl by blast
then show ?case using IH by blast

qed

lemma cdclN OT -restart-all-decomposition-implies-m:
assumes

〈cdclN OT -restart S T 〉 and
inv: 〈inv (fst S)〉 and n-d: 〈no-dup(trail (fst S))〉 and
〈all-decomposition-implies-m (clausesN OT (fst S))

(get-all-ann-decomposition (trail (fst S)))〉

shows 〈all-decomposition-implies-m (clausesN OT (fst T))

245

(get-all-ann-decomposition (trail (fst T)))〉

using assms
proof induction
case (restart-full S T n) note full = this(1) and inv = this(2) and n-d = this(3) and
decomp = this(4)

have st: 〈cdclN OT -merged-bj-learn∗∗ S T 〉 and
n-s: 〈no-step cdclN OT -merged-bj-learn T 〉

using full unfolding full1-def by (fast dest: tranclp-into-rtranclp)+
have st ′: 〈cdclN OT

∗∗ S T 〉

using inv rtranclp-cdclN OT -merged-bj-learn-is-rtranclp-cdclN OT -and-inv st n-d by auto
have 〈inv T 〉

using rtranclp-cdclN OT -cdclN OT -inv[OF st] inv n-d by auto
then show ?case
using rtranclp-cdclN OT -merged-bj-learn-all-decomposition-implies[OF - - decomp] st inv by auto

next
case (restart-step m S T n U) note st = this(1) and U = this(3) and inv = this(4) and
n-d = this(5) and decomp = this(6)

show ?case using U by auto
qed

lemma rtranclp-cdclN OT -restart-all-decomposition-implies-m:
assumes

〈cdclN OT -restart∗∗ S T 〉 and
inv: 〈inv (fst S)〉 and n-d: 〈no-dup(trail (fst S))〉 and
decomp: 〈all-decomposition-implies-m (clausesN OT (fst S))

(get-all-ann-decomposition (trail (fst S)))〉

shows 〈all-decomposition-implies-m (clausesN OT (fst T))
(get-all-ann-decomposition (trail (fst T)))〉

using assms
proof induction
case base
then show ?case using decomp by simp

next
case (step T U) note st = this(1) and cdcl = this(2) and IH = this(3)[OF this(4−)] and
inv = this(4) and n-d = this(5) and decomp = this(6)

have 〈inv (fst T)〉 and 〈no-dup (trail (fst T))〉

using rtranclp-cdclN OT -with-restart-cdclN OT -inv using st inv n-d by blast+
then show ?case
using cdclN OT -restart-all-decomposition-implies-m[OF cdcl] IH by auto

qed

lemma full-cdclN OT -restart-normal-form:
assumes
full: 〈full cdclN OT -restart S T 〉 and
inv: 〈inv (fst S)〉 and n-d: 〈no-dup(trail (fst S))〉 and
decomp: 〈all-decomposition-implies-m (clausesN OT (fst S))

(get-all-ann-decomposition (trail (fst S)))〉 and
atms-cls: 〈atms-of-mm (clausesN OT (fst S)) ⊆ atms-of-ms A〉 and
atms-trail: 〈atm-of ‘ lits-of-l (trail (fst S)) ⊆ atms-of-ms A〉 and
fin: 〈finite A〉

shows 〈unsatisfiable (set-mset (clausesN OT (fst S)))
∨ lits-of-l (trail (fst T)) |=sextm clausesN OT (fst S) ∧

satisfiable (set-mset (clausesN OT (fst S)))〉

proof −
have inv-T : 〈inv (fst T)〉 and n-d-T : 〈no-dup (trail (fst T))〉

using rtranclp-cdclN OT -with-restart-cdclN OT -inv using full inv n-d unfolding full-def by blast+

246

moreover have
atms-cls-T : 〈atms-of-mm (clausesN OT (fst T)) ⊆ atms-of-ms A〉 and
atms-trail-T : 〈atm-of ‘ lits-of-l (trail (fst T)) ⊆ atms-of-ms A〉

using rtranclp-cdclN OT -with-restart-bound-inv[of S T A] full atms-cls atms-trail fin inv n-d
unfolding full-def by blast+

ultimately have 〈no-step cdclN OT -merged-bj-learn (fst T)〉

apply −
apply (rule no-step-cdclN OT -restart-no-step-cdclN OT [of - A])
using full unfolding full-def apply simp
apply simp

using fin apply simp
done

moreover have 〈all-decomposition-implies-m (clausesN OT (fst T))
(get-all-ann-decomposition (trail (fst T)))〉

using rtranclp-cdclN OT -restart-all-decomposition-implies-m[of S T] inv n-d decomp
full unfolding full-def by auto

ultimately have 〈unsatisfiable (set-mset (clausesN OT (fst T)))
∨ trail (fst T) |=asm clausesN OT (fst T) ∧ satisfiable (set-mset (clausesN OT (fst T)))〉

apply −
apply (rule cdclN OT -merged-bj-learn-final-state)
using atms-cls-T atms-trail-T fin n-d-T fin inv-T by blast+

then consider
(unsat) 〈unsatisfiable (set-mset (clausesN OT (fst T)))〉

| (sat) 〈trail (fst T) |=asm clausesN OT (fst T)〉 and 〈satisfiable (set-mset (clausesN OT (fst T)))〉

by auto
then show 〈unsatisfiable (set-mset (clausesN OT (fst S)))
∨ lits-of-l (trail (fst T)) |=sextm clausesN OT (fst S) ∧

satisfiable (set-mset (clausesN OT (fst S)))〉

proof cases
case unsat
then have 〈unsatisfiable (set-mset (clausesN OT (fst S)))〉

unfolding satisfiable-def apply auto
using rtranclp-cdclN OT -restart-eq-sat-iff [of S T] full inv n-d
consistent-true-clss-ext-satisfiable true-clss-imp-true-cls-ext
unfolding satisfiable-def full-def by blast

then show ?thesis by blast
next
case sat
then have 〈lits-of-l (trail (fst T)) |=sextm clausesN OT (fst T)〉

using true-clss-imp-true-cls-ext by (auto simp: true-annots-true-cls)
then have 〈lits-of-l (trail (fst T)) |=sextm clausesN OT (fst S)〉

using rtranclp-cdclN OT -restart-eq-sat-iff [of S T] full inv n-d unfolding full-def by blast
moreover then have 〈satisfiable (set-mset (clausesN OT (fst S)))〉

using consistent-true-clss-ext-satisfiable distinct-consistent-interp n-d-T by fast
ultimately show ?thesis by fast

qed
qed

corollary full-cdclN OT -restart-normal-form-init-state:
assumes
init-state: 〈trail S = []〉 〈clausesN OT S = N 〉 and
full: 〈full cdclN OT -restart (S , 0) T 〉 and
inv: 〈inv S 〉

shows 〈unsatisfiable (set-mset N)
∨ lits-of-l (trail (fst T)) |=sextm N ∧ satisfiable (set-mset N)〉

using full-cdclN OT -restart-normal-form[of 〈(S , 0)〉 T] assms by auto

247

end — End of locale cdclN OT -merge-bj-learn-with-backtrack-restarts.

end
theory CDCL-WNOT
imports CDCL-NOT CDCL-W-Merge
begin

2.3 Link between Weidenbach’s and NOT’s CDCL
2.3.1 Inclusion of the states
declare upt.simps(2)[simp del]

fun convert-ann-lit-from-W where
convert-ann-lit-from-W (Propagated L -) = Propagated L () |
convert-ann-lit-from-W (Decided L) = Decided L

abbreviation convert-trail-from-W ::
(′v, ′mark) ann-lits
⇒ (′v, unit) ann-lits where

convert-trail-from-W ≡ map convert-ann-lit-from-W

lemma lits-of-l-convert-trail-from-W [simp]:
lits-of-l (convert-trail-from-W M) = lits-of-l M
by (induction rule: ann-lit-list-induct) simp-all

lemma lit-of-convert-trail-from-W [simp]:
lit-of (convert-ann-lit-from-W L) = lit-of L
by (cases L) auto

lemma no-dup-convert-from-W [simp]:
no-dup (convert-trail-from-W M) ←→ no-dup M
by (auto simp: comp-def no-dup-def)

lemma convert-trail-from-W-true-annots[simp]:
convert-trail-from-W M |=as C ←→ M |=as C
by (auto simp: true-annots-true-cls image-image lits-of-def)

lemma defined-lit-convert-trail-from-W [simp]:
defined-lit (convert-trail-from-W S) = defined-lit S
by (auto simp: defined-lit-map image-comp intro!: ext)

lemma is-decided-convert-trail-from-W [simp]:
〈is-decided (convert-ann-lit-from-W L) = is-decided L〉

by (cases L) auto

lemma count-decided-conver-Trail-from-W [simp]:
〈count-decided (convert-trail-from-W M) = count-decided M 〉

unfolding count-decided-def by (auto simp: comp-def)

The values 0 and {#} are dummy values.

consts dummy-cls :: ′cls
fun convert-ann-lit-from-NOT

:: (′v, ′mark) ann-lit ⇒ (′v, ′cls) ann-lit where

248

convert-ann-lit-from-NOT (Propagated L -) = Propagated L dummy-cls |
convert-ann-lit-from-NOT (Decided L) = Decided L

abbreviation convert-trail-from-NOT where
convert-trail-from-NOT ≡ map convert-ann-lit-from-NOT

lemma undefined-lit-convert-trail-from-NOT [simp]:
undefined-lit (convert-trail-from-NOT F) L ←→ undefined-lit F L
by (induction F rule: ann-lit-list-induct) (auto simp: defined-lit-map)

lemma lits-of-l-convert-trail-from-NOT :
lits-of-l (convert-trail-from-NOT F) = lits-of-l F
by (induction F rule: ann-lit-list-induct) auto

lemma convert-trail-from-W-from-NOT [simp]:
convert-trail-from-W (convert-trail-from-NOT M) = M
by (induction rule: ann-lit-list-induct) auto

lemma convert-trail-from-W-convert-lit-from-NOT [simp]:
convert-ann-lit-from-W (convert-ann-lit-from-NOT L) = L
by (cases L) auto

abbreviation trailN OT where
trailN OT S ≡ convert-trail-from-W (fst S)

lemma undefined-lit-convert-trail-from-W [iff]:
undefined-lit (convert-trail-from-W M) L ←→ undefined-lit M L
by (auto simp: defined-lit-map image-comp)

lemma lit-of-convert-ann-lit-from-NOT [iff]:
lit-of (convert-ann-lit-from-NOT L) = lit-of L
by (cases L) auto

sublocale stateW ⊆ dpll-state-ops where
trail = λS . convert-trail-from-W (trail S) and
clausesN OT = clauses and
prepend-trail = λL S . cons-trail (convert-ann-lit-from-NOT L) S and
tl-trail = λS . tl-trail S and
add-clsN OT = λC S . add-learned-cls C S and
remove-clsN OT = λC S . remove-cls C S
by unfold-locales

sublocale stateW ⊆ dpll-state where
trail = λS . convert-trail-from-W (trail S) and
clausesN OT = clauses and
prepend-trail = λL S . cons-trail (convert-ann-lit-from-NOT L) S and
tl-trail = λS . tl-trail S and
add-clsN OT = λC S . add-learned-cls C S and
remove-clsN OT = λC S . remove-cls C S
by unfold-locales (auto simp: map-tl o-def)

context stateW

begin
declare state-simpN OT [simp del]
end

249

2.3.2 Inclusion of Weidendenbch’s CDCL without Strategy

sublocale conflict-driven-clause-learningW ⊆ cdclN OT -merge-bj-learn-ops where
trail = λS . convert-trail-from-W (trail S) and
clausesN OT = clauses and
prepend-trail = λL S . cons-trail (convert-ann-lit-from-NOT L) S and
tl-trail = λS . tl-trail S and
add-clsN OT = λC S . add-learned-cls C S and
remove-clsN OT = λC S . remove-cls C S and
decide-conds = λ- -. True and
propagate-conds = λ- - -. True and
forget-conds = λ- S . conflicting S = None and
backjump-l-cond = λC C ′ L ′ S T . backjump-l-cond C C ′ L ′ S T
∧ distinct-mset C ′ ∧ L ′ /∈# C ′ ∧ ¬tautology (add-mset L ′ C ′)

by unfold-locales

sublocale conflict-driven-clause-learningW ⊆ cdclN OT -merge-bj-learn-proxy where
trail = λS . convert-trail-from-W (trail S) and
clausesN OT = clauses and
prepend-trail = λL S . cons-trail (convert-ann-lit-from-NOT L) S and
tl-trail = λS . tl-trail S and
add-clsN OT = λC S . add-learned-cls C S and
remove-clsN OT = λC S . remove-cls C S and
decide-conds = λ- -. True and
propagate-conds = λ- - -. True and
forget-conds = λ- S . conflicting S = None and
backjump-l-cond = backjump-l-cond and
inv = invN OT

by unfold-locales

sublocale conflict-driven-clause-learningW ⊆ cdclN OT -merge-bj-learn where
trail = λS . convert-trail-from-W (trail S) and
clausesN OT = clauses and
prepend-trail = λL S . cons-trail (convert-ann-lit-from-NOT L) S and
tl-trail = λS . tl-trail S and
add-clsN OT = λC S . add-learned-cls C S and
remove-clsN OT = λC S . remove-cls C S and
decide-conds = λ- -. True and
propagate-conds = λ- - -. True and
forget-conds = λ- S . conflicting S = None and
backjump-l-cond = backjump-l-cond and
inv = invN OT

proof (unfold-locales, goal-cases)
case 2
then show ?case using cdclN OT -merged-bj-learn-no-dup-inv by (auto simp: comp-def)

next
case (1 C ′ S C F ′ K F L)
let ?C ′ = remdups-mset C ′
have L /∈# C ′
using 〈F |=as CNot C ′〉 〈undefined-lit F L〉 Decided-Propagated-in-iff-in-lits-of-l
in-CNot-implies-uminus(2) by fast

then have dist: distinct-mset ?C ′ L /∈# C ′
by simp-all

have no-dup F
using 〈invN OT S 〉 〈convert-trail-from-W (trail S) = F ′ @ Decided K # F 〉

250

unfolding invN OT -def by (metis no-dup-appendD no-dup-cons no-dup-convert-from-W)
then have consistent-interp (lits-of-l F)
using distinct-consistent-interp by blast

then have ¬ tautology C ′
using 〈F |=as CNot C ′〉 consistent-CNot-not-tautology true-annots-true-cls by blast

then have taut: ¬ tautology (add-mset L ?C ′)
using 〈F |=as CNot C ′〉 〈undefined-lit F L〉 by (metis CNot-remdups-mset

Decided-Propagated-in-iff-in-lits-of-l in-CNot-uminus tautology-add-mset
tautology-remdups-mset true-annot-singleton true-annots-def)

have f2 : no-dup (convert-trail-from-W (trail S))
using 〈invN OT S 〉 unfolding invN OT -def by (simp add: o-def)

have f3 : atm-of L ∈ atms-of-mm (clauses S)
∪ atm-of ‘ lits-of-l (convert-trail-from-W (trail S))
using 〈convert-trail-from-W (trail S) = F ′ @ Decided K # F 〉

〈atm-of L ∈ atms-of-mm (clauses S) ∪ atm-of ‘ lits-of-l (F ′ @ Decided K # F)〉 by auto
have f4 : clauses S |=pm add-mset L ?C ′
by (metis 1 (7) dist(2) remdups-mset-singleton-sum true-clss-cls-remdups-mset)

have F |=as CNot ?C ′
by (simp add: 〈F |=as CNot C ′〉)

have Ex (backjump-l S)
apply standard
apply (rule backjump-l.intros[of - - - - - L add-mset L ?C ′ - ?C ′])
using f4 f3 f2 〈¬ tautology (add-mset L ?C ′)〉

1 taut dist 〈F |=as CNot (remdups-mset C ′)〉

state-eqN OT -ref unfolding backjump-l-cond-def set-mset-remdups-mset by blast+
then show ?case
by blast

next
case (3 L S)
then show ∃T . decideN OT S T ∨ propagateN OT S T ∨ backjump-l S T
using decideN OT .intros[of S L] by auto

qed

context conflict-driven-clause-learningW

begin

Notations are lost while proving locale inclusion:
notation state-eqN OT (infix ∼N OT 50)

2.3.3 Additional Lemmas between NOT and W states
lemma trailW -eq-reduce-trail-toN OT -eq:
trail S = trail T =⇒ trail (reduce-trail-toN OT F S) = trail (reduce-trail-toN OT F T)

proof (induction F S arbitrary: T rule: reduce-trail-toN OT .induct)
case (1 F S T) note IH = this(1) and tr = this(2)
then have [] = convert-trail-from-W (trail S)
∨ length F = length (convert-trail-from-W (trail S))
∨ trail (reduce-trail-toN OT F (tl-trail S)) = trail (reduce-trail-toN OT F (tl-trail T))
using IH by (metis (no-types) trail-tl-trail)

then show trail (reduce-trail-toN OT F S) = trail (reduce-trail-toN OT F T)
using tr by (metis (no-types) reduce-trail-toN OT .elims)

qed

lemma trail-reduce-trail-toN OT -add-learned-cls:

251

no-dup (trail S) =⇒
trail (reduce-trail-toN OT M (add-learned-cls D S)) = trail (reduce-trail-toN OT M S)
by (rule trailW -eq-reduce-trail-toN OT -eq) simp

lemma reduce-trail-toN OT -reduce-trail-convert:
reduce-trail-toN OT C S = reduce-trail-to (convert-trail-from-NOT C) S
apply (induction C S rule: reduce-trail-toN OT .induct)
apply (subst reduce-trail-toN OT .simps, subst reduce-trail-to.simps)
by auto

lemma reduce-trail-to-map[simp]:
reduce-trail-to (map f M) S = reduce-trail-to M S
by (rule reduce-trail-to-length) simp

lemma reduce-trail-toN OT -map[simp]:
reduce-trail-toN OT (map f M) S = reduce-trail-toN OT M S
by (rule reduce-trail-toN OT -length) simp

lemma skip-or-resolve-state-change:
assumes skip-or-resolve∗∗ S T
shows
∃M . trail S = M @ trail T ∧ (∀m ∈ set M . ¬is-decided m)
clauses S = clauses T
backtrack-lvl S = backtrack-lvl T
init-clss S = init-clss T
learned-clss S = learned-clss T

using assms
proof (induction rule: rtranclp-induct)
case base
case 1 show ?case by simp
case 2 show ?case by simp
case 3 show ?case by simp
case 4 show ?case by simp
case 5 show ?case by simp

next
case (step T U) note st = this(1) and s-o-r = this(2) and IH = this(3) and IH ′ = this(3−)

case 2 show ?case using IH ′ s-o-r by (auto elim!: rulesE simp: skip-or-resolve.simps)
case 3 show ?case using IH ′ s-o-r by (cases 〈trail T 〉) (auto elim!: rulesE simp: skip-or-resolve.simps)
case 1 show ?case
using s-o-r IH by (cases trail T) (auto elim!: rulesE simp: skip-or-resolve.simps)

case 4 show ?case
using s-o-r IH ′ by (cases trail T) (auto elim!: rulesE simp: skip-or-resolve.simps)

case 5 show ?case
using s-o-r IH ′ by (cases trail T) (auto elim!: rulesE simp: skip-or-resolve.simps)

qed

2.3.4 Inclusion of Weidenbach’s CDCL in NOT’s CDCL

This lemma shows the inclusion of Weidenbach’s CDCL cdclW -merge (with merging) in NOT’s
cdclN OT -merged-bj-learn.

lemma cdclW -merge-is-cdclN OT -merged-bj-learn:
assumes
inv: cdclW -all-struct-inv S and
cdclW -restart: cdclW -merge S T

252

shows cdclN OT -merged-bj-learn S T
∨ (no-step cdclW -merge T ∧ conflicting T 6= None)

using cdclW -restart inv
proof induction
case (fw-propagate S T) note propa = this(1)
then obtain M N U L C where
H : state-butlast S = (M , N , U , None) and
CL: C + {#L#} ∈# clauses S and
M-C : M |=as CNot C and
undef : undefined-lit (trail S) L and
T : state-butlast T = (Propagated L (C + {#L#}) # M , N , U , None)
by (auto elim: propagate-high-levelE)

have propagateN OT S T
using H CL T undef M-C by (auto simp: state-eqN OT -def clauses-def simp del: state-simp)

then show ?case
using cdclN OT -merged-bj-learn.intros(2) by blast

next
case (fw-decide S T) note dec = this(1) and inv = this(2)
then obtain L where
undef-L: undefined-lit (trail S) L and
atm-L: atm-of L ∈ atms-of-mm (init-clss S) and
T : T ∼ cons-trail (Decided L) S
by (auto elim: decideE)

have decideN OT S T
apply (rule decideN OT .decideN OT)
using undef-L apply (simp; fail)

using atm-L inv apply (auto simp: cdclW -all-struct-inv-def no-strange-atm-def clauses-def ; fail)
using T undef-L unfolding state-eqN OT -def by (auto simp: clauses-def)

then show ?case using cdclN OT -merged-bj-learn-decideN OT by blast
next
case (fw-forget S T) note rf = this(1) and inv = this(2)
then obtain C where

S : conflicting S = None and
C-le: C ∈# learned-clss S and
¬(trail S) |=asm clauses S and
C /∈ set (get-all-mark-of-propagated (trail S)) and
C-init: C /∈# init-clss S and
T : T ∼ remove-cls C S and
S-C : 〈removeAll-mset C (clauses S) |=pm C 〉

by (auto elim: forgetE)
have forgetN OT S T
apply (rule forgetN OT .forgetN OT)
using S-C apply blast
using S apply simp
using C-init C-le apply (simp add: clauses-def)
using T C-le C-init by (auto simp: Un-Diff state-eqN OT -def clauses-def ac-simps)

then show ?case using cdclN OT -merged-bj-learn-forgetN OT by blast
next
case (fw-conflict S T U) note confl = this(1) and bj = this(2) and inv = this(3)
obtain CS CT where
confl-T : conflicting T = Some CT and
CT : CT = CS and
CS : CS ∈# clauses S and
tr-S-CS : trail S |=as CNot CS

using confl by (elim conflictE) auto
have inv-T : cdclW -all-struct-inv T

253

using cdclW -restart.simps cdclW -all-struct-inv-inv confl inv by blast
then have cdclW -M-level-inv T
unfolding cdclW -all-struct-inv-def by auto

then consider
(no-bt) skip-or-resolve∗∗ T U |
(bt) T ′ where skip-or-resolve∗∗ T T ′ and backtrack T ′ U
using bj rtranclp-cdclW -bj-skip-or-resolve-backtrack unfolding full-def by meson

then show ?case
proof cases
case no-bt
then have conflicting U 6= None
using confl by (induction rule: rtranclp-induct)
(auto simp: skip-or-resolve.simps elim!: rulesE)

moreover then have no-step cdclW -merge U
by (auto simp: cdclW -merge.simps elim: rulesE)

ultimately show ?thesis by blast
next
case bt note s-or-r = this(1) and bt = this(2)
have cdclW -restart∗∗ T T ′
using s-or-r mono-rtranclp[of skip-or-resolve cdclW -restart]
rtranclp-skip-or-resolve-rtranclp-cdclW -restart

by blast
then have cdclW -M-level-inv T ′
using rtranclp-cdclW -restart-consistent-inv 〈cdclW -M-level-inv T 〉 by blast

then obtain M1 M2 i D L K D ′ where
confl-T ′: conflicting T ′ = Some (add-mset L D) and
M1-M2 :(Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail T ′)) and
get-level (trail T ′) K = i+1
get-level (trail T ′) L = backtrack-lvl T ′ and
get-level (trail T ′) L = get-maximum-level (trail T ′) (add-mset L D ′) and
get-maximum-level (trail T ′) D ′ = i and
U : U ∼ cons-trail (Propagated L (add-mset L D ′))

(reduce-trail-to M1
(add-learned-cls (add-mset L D ′)

(update-conflicting None T ′))) and
D-D ′: 〈D ′ ⊆# D〉 and
T ′-L-D ′: 〈clauses T ′ |=pm add-mset L D ′〉
using bt by (auto elim: backtrackE)

let ?D ′ = 〈add-mset L D ′〉
have [simp]: clauses S = clauses T
using confl by (auto elim: rulesE)

have [simp]: clauses T = clauses T ′
using s-or-r

proof (induction)
case base
then show ?case by simp

next
case (step U V) note st = this(1) and s-o-r = this(2) and IH = this(3)
have clauses U = clauses V
using s-o-r by (auto simp: skip-or-resolve.simps elim: rulesE)

then show ?case using IH by auto
qed
have cdclW -restart∗∗ T T ′
using rtranclp-skip-or-resolve-rtranclp-cdclW -restart s-or-r by blast

have inv-T ′: cdclW -all-struct-inv T ′
using 〈cdclW -restart∗∗ T T ′〉 inv-T rtranclp-cdclW -all-struct-inv-inv by blast

254

have inv-U : cdclW -all-struct-inv U
using cdclW -merge-restart-cdclW -restart confl fw-r-conflict inv local.bj
rtranclp-cdclW -all-struct-inv-inv by blast

have [simp]: init-clss S = init-clss T ′
using 〈cdclW -restart∗∗ T T ′〉 cdclW -restart-init-clss confl cdclW -all-struct-inv-def conflict
inv by (metis rtranclp-cdclW -restart-init-clss)

then have atm-L: atm-of L ∈ atms-of-mm (clauses S)
using inv-T ′ confl-T ′ unfolding cdclW -all-struct-inv-def no-strange-atm-def
clauses-def
by (simp add: atms-of-def image-subset-iff)

obtain M where tr-T : trail T = M @ trail T ′
using s-or-r skip-or-resolve-state-change by meson

obtain M ′ where
tr-T ′: trail T ′ = M ′ @ Decided K # tl (trail U) and
tr-U : trail U = Propagated L ?D ′ # tl (trail U)
using U M1-M2 inv-T ′ unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def
by fastforce

define M ′′ where M ′′ ≡ M @ M ′

have tr-T : trail S = M ′′ @ Decided K # tl (trail U)
using tr-T tr-T ′ confl unfolding M ′′-def by (auto elim: rulesE)

have init-clss T ′ + learned-clss S |=pm ?D ′
using inv-T ′ confl-T ′ 〈clauses S = clauses T 〉 〈clauses T = clauses T ′〉 T ′-L-D ′
unfolding cdclW -all-struct-inv-def cdclW -learned-clause-alt-def clauses-def by auto

have reduce-trail-to (convert-trail-from-NOT (convert-trail-from-W M1)) S =
reduce-trail-to M1 S
by (rule reduce-trail-to-length) simp

moreover have trail (reduce-trail-to M1 S) = M1
apply (rule reduce-trail-to-skip-beginning[of - M @ - @ M2 @ [Decided K]])
using confl M1-M2 〈trail T = M @ trail T ′〉
apply (auto dest!: get-all-ann-decomposition-exists-prepend
elim!: conflictE)

by (rule sym) auto
ultimately have [simp]: trail (reduce-trail-toN OT M1 S) = M1
using M1-M2 confl by (subst reduce-trail-toN OT -reduce-trail-convert)
(auto simp: comp-def elim: rulesE)

have every-mark-is-a-conflict U
using inv-U unfolding cdclW -all-struct-inv-def cdclW -conflicting-def by simp

then have U-D: tl (trail U) |=as CNot D ′
by (subst tr-U , subst (asm) tr-U) fastforce

have undef-L: undefined-lit (tl (trail U)) L
using U M1-M2 inv-U unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def
by (auto simp: lits-of-def defined-lit-map)

have backjump-l S U
apply (rule backjump-l[of - - - - - L ?D ′ - D ′])

using tr-T apply (simp; fail)
using U M1-M2 confl M1-M2 inv-T ′ inv unfolding cdclW -all-struct-inv-def
cdclW -M-level-inv-def apply (auto simp: state-eqN OT -def
trail-reduce-trail-toN OT -add-learned-cls; fail)[]

using CS apply (auto; fail)[]
using tr-S-CS apply (simp; fail)

using undef-L apply (auto; fail)[]
using atm-L apply (simp add: trail-reduce-trail-toN OT -add-learned-cls; fail)
using 〈init-clss T ′ + learned-clss S |=pm ?D ′〉 unfolding clauses-def
apply (simp; fail)

255

apply (simp; fail)
apply (metis U-D convert-trail-from-W-true-annots)
using inv-T ′ inv-U U confl-T ′ undef-L M1-M2 unfolding cdclW -all-struct-inv-def
distinct-cdclW -state-def by (auto simp: cdclW -M-level-inv-decomp backjump-l-cond-def

dest: multi-member-split)
then show ?thesis using cdclN OT -merged-bj-learn-backjump-l by fast

qed
qed

abbreviation cdclN OT -restart where
cdclN OT -restart ≡ restart-ops.cdclN OT -raw-restart cdclN OT restart

lemma cdclW -merge-restart-is-cdclN OT -merged-bj-learn-restart-no-step:
assumes
inv: cdclW -all-struct-inv S and
cdclW -restart:cdclW -merge-restart S T

shows cdclN OT -restart∗∗ S T ∨ (no-step cdclW -merge T ∧ conflicting T 6= None)
proof −
consider

(fw) cdclW -merge S T |
(fw-r) restart S T
using cdclW -restart by (meson cdclW -merge-restart.simps cdclW -rf .cases fw-conflict fw-decide

fw-forget
fw-propagate)

then show ?thesis
proof cases
case fw
then have IH : cdclN OT -merged-bj-learn S T ∨ (no-step cdclW -merge T ∧ conflicting T 6= None)
using inv cdclW -merge-is-cdclN OT -merged-bj-learn by blast

have invS : invN OT S
using inv unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def by auto

have ff2 : cdclN OT
++ S T −→ cdclN OT

∗∗ S T
by (meson tranclp-into-rtranclp)

have ff3 : no-dup (convert-trail-from-W (trail S))
using invS by (simp add: comp-def)

have cdclN OT ≤ cdclN OT -restart
by (auto simp: restart-ops.cdclN OT -raw-restart.simps)

then show ?thesis
using ff3 ff2 IH cdclN OT -merged-bj-learn-is-tranclp-cdclN OT

rtranclp-mono[of cdclN OT cdclN OT -restart] invS predicate2D by blast
next
case fw-r
then show ?thesis by (blast intro: restart-ops.cdclN OT -raw-restart.intros)

qed
qed

abbreviation µF W :: ′st ⇒ nat where
µF W S ≡ (if no-step cdclW -merge S then 0 else 1+µC DC L

′-merged (set-mset (init-clss S)) S)

lemma cdclW -merge-µF W -decreasing:
assumes
inv: cdclW -all-struct-inv S and
fw: cdclW -merge S T

shows µF W T < µF W S
proof −
let ?A = init-clss S

256

have atm-clauses: atms-of-mm (clauses S) ⊆ atms-of-mm ?A
using inv unfolding cdclW -all-struct-inv-def no-strange-atm-def clauses-def by auto

have atm-trail: atm-of ‘ lits-of-l (trail S) ⊆ atms-of-mm ?A
using inv unfolding cdclW -all-struct-inv-def no-strange-atm-def clauses-def by auto

have n-d: no-dup (trail S)
using inv unfolding cdclW -all-struct-inv-def by (auto simp: cdclW -M-level-inv-decomp)

have [simp]: ¬ no-step cdclW -merge S
using fw by auto

have [simp]: init-clss S = init-clss T
using cdclW -merge-restart-cdclW -restart[of S T] inv rtranclp-cdclW -restart-init-clss
unfolding cdclW -all-struct-inv-def
by (meson cdclW -merge.simps cdclW -merge-restart.simps cdclW -rf .simps fw)

consider
(merged) cdclN OT -merged-bj-learn S T |
(n-s) no-step cdclW -merge T
using cdclW -merge-is-cdclN OT -merged-bj-learn inv fw by blast

then show ?thesis
proof cases
case merged
then show ?thesis
using cdclN OT -decreasing-measure ′[OF - - atm-clauses, of T] atm-trail n-d
by (auto split: if-split simp: comp-def image-image lits-of-def)

next
case n-s
then show ?thesis by simp

qed
qed

lemma wf-cdclW -merge: wf {(T , S). cdclW -all-struct-inv S ∧ cdclW -merge S T}
apply (rule wfP-if-measure[of - - µF W])
using cdclW -merge-µF W -decreasing by blast

lemma tranclp-cdclW -merge-cdclW -merge-trancl:
{(T , S). cdclW -all-struct-inv S ∧ cdclW -merge++ S T}
⊆ {(T , S). cdclW -all-struct-inv S ∧ cdclW -merge S T}+

proof −
have (T , S) ∈ {(T , S). cdclW -all-struct-inv S ∧ cdclW -merge S T}+

if inv: cdclW -all-struct-inv S and cdclW -merge++ S T
for S T :: ′st
using that(2)
proof (induction rule: tranclp-induct)
case base
then show ?case using inv by auto

next
case (step T U) note st = this(1) and s = this(2) and IH = this(3)
have cdclW -all-struct-inv T
using st by (meson inv rtranclp-cdclW -all-struct-inv-inv
rtranclp-cdclW -merge-rtranclp-cdclW -restart tranclp-into-rtranclp)

then have (U , T) ∈ {(T , S). cdclW -all-struct-inv S ∧ cdclW -merge S T}+

using s by auto
then show ?case using IH by auto

qed
then show ?thesis by auto

qed

lemma wf-tranclp-cdclW -merge: wf {(T , S). cdclW -all-struct-inv S ∧ cdclW -merge++ S T}

257

apply (rule wf-subset)
apply (rule wf-trancl)
using wf-cdclW -merge apply simp

using tranclp-cdclW -merge-cdclW -merge-trancl by simp

lemma wf-cdclW -bj-all-struct: wf {(T , S). cdclW -all-struct-inv S ∧ cdclW -bj S T}
apply (rule wfP-if-measure[of λ-. True

- λT . length (trail T) + (if conflicting T = None then 0 else 1), simplified])
using cdclW -bj-measure by (simp add: cdclW -all-struct-inv-def)

lemma cdclW -conflicting-true-cdclW -merge-restart:
assumes cdclW S V and confl: conflicting S = None
shows (cdclW -merge S V ∧ conflicting V = None) ∨ (conflicting V 6= None ∧ conflict S V)
using assms

proof (induction rule: cdclW .induct)
case W-propagate
then show ?case by (auto intro: cdclW -merge.intros elim: rulesE)

next
case (W-conflict S ′)
then show ?case by (auto intro: cdclW -merge.intros elim: rulesE)

next
case W-other
then show ?case
proof cases
case decide
then show ?thesis
by (auto intro: cdclW -merge.intros elim: rulesE)

next
case bj
then show ?thesis
using confl by (auto simp: cdclW -bj.simps elim: rulesE)

qed
qed

lemma trancl-cdclW -conflicting-true-cdclW -merge-restart:
assumes cdclW ++ S V and inv: cdclW -M-level-inv S and conflicting S = None
shows (cdclW -merge++ S V ∧ conflicting V = None)
∨ (∃T U . cdclW -merge∗∗ S T ∧ conflicting V 6= None ∧ conflict T U ∧ cdclW -bj∗∗ U V)

using assms
proof induction
case base
then show ?case using cdclW -conflicting-true-cdclW -merge-restart by blast

next
case (step U V) note st = this(1) and cdclW = this(2) and IH = this(3)[OF this(4−)] and
confl[simp] = this(5) and inv = this(4)

from cdclW
show ?case
proof (cases)
case W-propagate
moreover have conflicting U = None and conflicting V = None
using W-propagate by (auto elim: propagateE)

ultimately show ?thesis using IH cdclW -merge.fw-propagate[of U V] by auto
next
case W-conflict
moreover have confl-U : conflicting U = None and confl-V : conflicting V 6= None
using W-conflict by (auto elim!: conflictE)

258

moreover have cdclW -merge∗∗ S U
using IH confl-U by auto

ultimately show ?thesis using IH by auto
next
case W-other
then show ?thesis
proof cases
case decide
then show ?thesis using IH cdclW -merge.fw-decide[of U V] by (auto elim: decideE)

next
case bj
then consider

(s-or-r) skip-or-resolve U V |
(bt) backtrack U V
by (auto simp: cdclW -bj.simps)

then show ?thesis
proof cases
case s-or-r
have f1 : cdclW -bj++ U V
by (simp add: local.bj tranclp.r-into-trancl)

obtain T T ′ :: ′st where
f2 : cdclW -merge++ S U

∨ cdclW -merge∗∗ S T ∧ conflicting U 6= None
∧ conflict T T ′ ∧ cdclW -bj∗∗ T ′ U

using IH confl by (meson bj rtranclp.intros(1)
rtranclp-cdclW -merge-restart-no-step-cdclW -bj
rtranclp-cdclW -merge-tranclp-cdclW -merge-restart)

have conflicting V 6= None ∧ conflicting U 6= None
using 〈skip-or-resolve U V 〉

by (auto simp: skip-or-resolve.simps elim!: skipE resolveE)
then show ?thesis
by (metis (full-types) IH f1 rtranclp-trans tranclp-into-rtranclp)

next
case bt
then have conflicting U 6= None by (auto elim: backtrackE)
then obtain T T ′ where
cdclW -merge∗∗ S T and
conflicting U 6= None and
conflict T T ′ and
cdclW -bj∗∗ T ′ U
using IH confl by (meson bj rtranclp.intros(1)

rtranclp-cdclW -merge-restart-no-step-cdclW -bj
rtranclp-cdclW -merge-tranclp-cdclW -merge-restart)

have invU : cdclW -M-level-inv U
using inv rtranclp-cdclW -restart-consistent-inv step.hyps(1)
by (meson 〈cdclW -bj∗∗ T ′ U 〉 〈cdclW -merge∗∗ S T 〉 〈conflict T T ′〉

cdclW -restart-consistent-inv conflict rtranclp-cdclW -bj-rtranclp-cdclW -restart
rtranclp-cdclW -merge-rtranclp-cdclW -restart)

then have conflicting V = None
using 〈backtrack U V 〉 inv by (auto elim: backtrackE

simp: cdclW -M-level-inv-decomp)
have full cdclW -bj T ′ V
apply (rule rtranclp-fullI [of cdclW -bj T ′ U V])
using 〈cdclW -bj∗∗ T ′ U 〉 apply fast
using 〈backtrack U V 〉 backtrack-is-full1-cdclW -bj invU unfolding full1-def full-def
by blast

259

then show ?thesis
using cdclW -merge.fw-conflict[of T T ′ V] 〈conflict T T ′〉

〈cdclW -merge∗∗ S T 〉 〈conflicting V = None〉 by auto
qed

qed
qed

qed

lemma wf-cdclW : wf {(T , S). cdclW -all-struct-inv S ∧ cdclW S T}
unfolding wf-iff-no-infinite-down-chain

proof clarify
fix f :: nat ⇒ ′st
assume ∀ i. (f (Suc i), f i) ∈ {(T , S). cdclW -all-struct-inv S ∧ cdclW S T}
then have f :

∧
i. (f (Suc i), f i) ∈ {(T , S). cdclW -all-struct-inv S ∧ cdclW S T}

by blast
{
fix f :: nat ⇒ ′st
assume
f : (f (Suc i), f i) ∈ {(T , S). cdclW -all-struct-inv S ∧ cdclW S T} and
confl: conflicting (f i) 6= None for i

have (f (Suc i), f i) ∈ {(T , S). cdclW -all-struct-inv S ∧ cdclW -bj S T} for i
using f [of i] confl[of i] by (auto simp: cdclW .simps cdclW -o.simps cdclW -rf .simps
elim!: rulesE)

then have False
using wf-cdclW -bj-all-struct unfolding wf-iff-no-infinite-down-chain by blast

} note no-infinite-conflict = this

have st: cdclW ++ (f i) (f (Suc (i+j))) for i j :: nat
proof (induction j)
case 0
then show ?case using f by auto

next
case (Suc j)
then show ?case using f [of i+j+1] by auto

qed
have st: i < j =⇒ cdclW ++ (f i) (f j) for i j :: nat
using st[of i j − i − 1] by auto

obtain ib where ib: conflicting (f ib) = None
using f no-infinite-conflict by blast

define i0 where i0: i0 = Max {i0. ∀ i < i0. conflicting (f i) 6= None}
have finite {i0. ∀ i < i0. conflicting (f i) 6= None}
proof −
have {i0. ∀ i < i0. conflicting (f i) 6= None} ⊆ {0 ..ib}
using ib by (metis (mono-tags, lifting) atLeast0AtMost atMost-iff mem-Collect-eq not-le

subsetI)
then show ?thesis
by (simp add: finite-subset)

qed
moreover have {i0. ∀ i < i0. conflicting (f i) 6= None} 6= {}
by auto

ultimately have i0 ∈ {i0. ∀ i < i0. conflicting (f i) 6= None}
using Max-in[of {i0. ∀ i<i0. conflicting (f i) 6= None}] unfolding i0 by fast

then have confl-i0: conflicting (f i0) = None
proof −

260

have f1 : ∀n<i0. conflicting (f n) 6= None
using 〈i0 ∈ {i0. ∀ i<i0. conflicting (f i) 6= None}〉 by blast

have Suc i0 /∈ {n. ∀na<n. conflicting (f na) 6= None}
by (metis (lifting) Max-ge 〈finite {i0. ∀ i<i0. conflicting (f i) 6= None}〉

i0 lessI not-le)
then have ∃n<Suc i0. conflicting (f n) = None
by fastforce

then show conflicting (f i0) = None
using f1 by (metis le-less less-Suc-eq-le)

qed
have ∀ i < i0. conflicting (f i) 6= None
using 〈i0 ∈ {i0. ∀ i < i0. conflicting (f i) 6= None}〉 by blast

have not-conflicting-none: False if confl: ∀ x>i. conflicting (f x) = None for i :: nat
proof −
let ?f = λj. f (i + j+1)
have cdclW -merge (?f j) (?f (Suc j)) for j :: nat
using f [of i+j+1] confl that by (auto dest!: cdclW -conflicting-true-cdclW -merge-restart)

then have (?f (Suc j), ?f j) ∈ {(T , S). cdclW -all-struct-inv S ∧ cdclW -merge S T}
for j :: nat
using f [of i+j+1] by auto

then show False
using wf-cdclW -merge unfolding wf-iff-no-infinite-down-chain by fast

qed

have not-conflicting: False if confl: ∀ x>i. conflicting (f x) 6= None for i :: nat
proof −
let ?f = λj. f (Suc (i + j))
have confl: conflicting (f x) 6= None if x > i for x :: nat
using confl that by auto

have [iff]: ¬propagate (?f j) S ¬decide (?f j) S ¬conflict (?f j) S
for j :: nat and S :: ′st
using confl[of i+j+1] by (auto elim!: rulesE)

have [iff]: ¬ backtrack (f (Suc (i + j))) (f (Suc (Suc (i + j)))) for j :: nat
using confl[of i+j+2] by (auto elim!: rulesE)

have cdclW -bj (?f j) (?f (Suc j)) for j :: nat
using f [of i+j+1] confl that by (auto simp: cdclW .simps cdclW -o.simps elim: rulesE)

then have (?f (Suc j), ?f j) ∈ {(T , S). cdclW -all-struct-inv S ∧ cdclW -bj S T}
for j :: nat
using f [of i+j+1] by auto

then show False
using wf-cdclW -bj-all-struct unfolding wf-iff-no-infinite-down-chain by fast

qed

then have [simp]: ∃ x>i. conflicting (f x) = None for i :: nat
by meson

have {j. j > i ∧ conflicting (f j) 6= None} 6= {} for i :: nat
using not-conflicting-none by (rule ccontr) auto

define g where g: g = rec-nat i0 (λ- i. LEAST j. j > i ∧ conflicting (f j) = None)
have g-0 : g 0 = i0
unfolding g by auto

have g-Suc: g (Suc i) = (LEAST j. j > g i ∧ conflicting (f j) = None) for i
unfolding g by auto

have g-prop:g (Suc i) > g i ∧ conflicting (f (g (Suc i))) = None for i

261

proof (cases i)
case 0
then show ?thesis
using LeastI-ex[of λj. j > i0 ∧ conflicting (f j) = None]
by (auto simp: g)[]

next
case (Suc i ′)
then show ?thesis
apply (subst g-Suc, subst g-Suc)
using LeastI-ex[of λj. j > g (Suc i ′) ∧ conflicting (f j) = None]
by auto

qed
then have g-increasing: g (Suc i) > g i for i :: nat by simp
have confl-f-G[simp]: conflicting (f (g i)) = None for i :: nat
by (cases i) (auto simp: g-prop g-0 confl-i0)

have [simp]: cdclW -M-level-inv (f i) cdclW -all-struct-inv (f i) for i :: nat
using f [of i] by (auto simp: cdclW -all-struct-inv-def)

let ?fg = λi. (f (g i))
have ∀ i < Suc j. (f (g (Suc i)), f (g i)) ∈ {(T , S). cdclW -all-struct-inv S ∧ cdclW -merge++ S T}
for j :: nat

proof (induction j)
case 0
have cdclW ++ (?fg 0) (?fg 1)
using g-increasing[of 0] by (simp add: st)

then show ?case by (auto dest!: trancl-cdclW -conflicting-true-cdclW -merge-restart)
next
case (Suc j) note IH = this(1)
let ?i = g (Suc j)
let ?j = g (Suc (Suc j))
have conflicting (f ?i) = None
by auto

moreover have cdclW -all-struct-inv (f ?i)
by auto

ultimately have cdclW ++ (f ?i) (f ?j)
using g-increasing by (simp add: st)

then have cdclW -merge++ (f ?i) (f ?j)
by (auto dest!: trancl-cdclW -conflicting-true-cdclW -merge-restart)

then show ?case using IH not-less-less-Suc-eq by auto
qed
then have ∀ i. (f (g (Suc i)), f (g i)) ∈ {(T , S). cdclW -all-struct-inv S ∧ cdclW -merge++ S T}
by blast

then show False
using wf-tranclp-cdclW -merge unfolding wf-iff-no-infinite-down-chain by fast

qed

lemma wf-cdclW -stgy:
〈wf {(T , S). cdclW -all-struct-inv S ∧ cdclW -stgy S T}〉

by (rule wf-subset[OF wf-cdclW]) (auto dest: cdclW -stgy-cdclW)

end

2.3.5 Inclusion of Weidendenbch’s CDCL with Strategy
context conflict-driven-clause-learningW

begin
abbreviation propagate-conds where

262

propagate-conds ≡ λ-. propagate

abbreviation (input) decide-conds where
decide-conds S T ≡ decide S T ∧ no-step conflict S ∧ no-step propagate S

abbreviation backjump-l-conds-stgy :: ′v clause ⇒ ′v clause ⇒ ′v literal ⇒ ′st ⇒ ′st ⇒ bool where
backjump-l-conds-stgy C C ′ L S V ≡

(∃T U . conflict S T ∧ full skip-or-resolve T U ∧ conflicting T = Some C ∧
mark-of (hd-trail V) = add-mset L C ′ ∧ backtrack U V)

abbreviation invN OT -stgy where
invN OT -stgy S ≡ conflicting S = None ∧ cdclW -all-struct-inv S ∧ no-smaller-propa S ∧
cdclW -stgy-invariant S ∧ propagated-clauses-clauses S

interpretation cdclW -with-strategy: cdclN OT -merge-bj-learn-ops where
trail = λS . convert-trail-from-W (trail S) and
clausesN OT = clauses and
prepend-trail = λL S . cons-trail (convert-ann-lit-from-NOT L) S and
tl-trail = λS . tl-trail S and
add-clsN OT = λC S . add-learned-cls C S and
remove-clsN OT = λC S . remove-cls C S and
decide-conds = decide-conds and
propagate-conds = propagate-conds and
forget-conds = λ- -. False and
backjump-l-cond = λC C ′ L ′ S T . backjump-l-conds-stgy C C ′ L ′ S T
∧ distinct-mset C ′ ∧ L ′ /∈# C ′ ∧ ¬tautology (add-mset L ′ C ′)

by unfold-locales

interpretation cdclW -with-strategy: cdclN OT -merge-bj-learn-proxy where
trail = λS . convert-trail-from-W (trail S) and
clausesN OT = clauses and
prepend-trail = λL S . cons-trail (convert-ann-lit-from-NOT L) S and
tl-trail = λS . tl-trail S and
add-clsN OT = λC S . add-learned-cls C S and
remove-clsN OT = λC S . remove-cls C S and
decide-conds = decide-conds and
propagate-conds = propagate-conds and
forget-conds = λ- -. False and
backjump-l-cond = backjump-l-conds-stgy and
inv = invN OT -stgy
by unfold-locales

lemma cdclW -with-strategy-cdclN OT -merged-bj-learn-conflict:
assumes
cdclW -with-strategy.cdclN OT -merged-bj-learn S T
conflicting S = None

shows
conflicting T = None

using assms
apply (cases rule: cdclW -with-strategy.cdclN OT -merged-bj-learn.cases;
elim cdclW -with-strategy.forgetN OTE cdclW -with-strategy.propagateN OTE
cdclW -with-strategy.decideN OTE rulesE
cdclW -with-strategy.backjump-lE backjumpE)

apply (auto elim!: rulesE simp: comp-def)
done

263

lemma cdclW -with-strategy-no-forgetN OT [iff]: cdclW -with-strategy.forgetN OT S T ←→ False
by (auto elim: cdclW -with-strategy.forgetN OTE)

lemma cdclW -with-strategy-cdclN OT -merged-bj-learn-cdclW -stgy:
assumes
cdclW -with-strategy.cdclN OT -merged-bj-learn S V

shows
cdclW -stgy∗∗ S V

using assms
proof (cases rule: cdclW -with-strategy.cdclN OT -merged-bj-learn.cases)
case cdclN OT -merged-bj-learn-decideN OT

then show ?thesis
apply (elim cdclW -with-strategy.decideN OTE)
using cdclW -stgy.other ′[of S V] cdclW -o.decide[of S V] by blast

next
case cdclN OT -merged-bj-learn-propagateN OT

then show ?thesis
using cdclW -stgy.propagate ′ by (blast elim: cdclW -with-strategy.propagateN OTE)

next
case cdclN OT -merged-bj-learn-forgetN OT

then show ?thesis
by blast

next
case cdclN OT -merged-bj-learn-backjump-l
then obtain T U where
confl: conflict S T and
full: full skip-or-resolve T U and
bt: backtrack U V
by (elim cdclW -with-strategy.backjump-lE) blast

have cdclW -bj∗∗ T U
using full mono-rtranclp[of skip-or-resolve cdclW -bj] unfolding full-def
by (blast elim: skip-or-resolve.cases)

moreover have cdclW -bj U V and no-step cdclW -bj V
using bt by (auto dest: backtrack-no-cdclW -bj)

ultimately have full1 cdclW -bj T V
unfolding full1-def by auto

then have cdclW -stgy∗∗ T V
using cdclW -s ′.bj ′[of T V] cdclW -s ′-is-rtranclp-cdclW -stgy[of T V] by blast

then show ?thesis
using confl cdclW -stgy.conflict ′[of S T] by auto

qed

lemma rtranclp-transition-function:
〈R∗∗ a b =⇒ ∃ f j. (∀ i<j. R (f i) (f (Suc i))) ∧ f 0 = a ∧ f j = b〉

proof (induction rule: rtranclp-induct)
case base
then show ?case by auto

next
case (step b c) note st = this(1) and R = this(2) and IH = this(3)
from IH obtain f j where
i: 〈∀ i<j. R (f i) (f (Suc i))〉 and
a: 〈f 0 = a〉 and
b: 〈f j = b〉

by auto
let ?f = 〈f (Suc j := c)〉

264

have
i: 〈∀ i<Suc j. R (?f i) (?f (Suc i))〉 and
a: 〈?f 0 = a〉 and
b: 〈?f (Suc j) = c〉

using i a b R by auto
then show ?case by blast

qed

lemma cdclW -bj-cdclW -stgy: 〈cdclW -bj S T =⇒ cdclW -stgy S T 〉

by (rule cdclW -stgy.other ′) (auto simp: cdclW -bj.simps cdclW -o.simps elim!: rulesE)

lemma cdclW -restart-propagated-clauses-clauses:
〈cdclW -restart S T =⇒ propagated-clauses-clauses S =⇒ propagated-clauses-clauses T 〉

by (induction rule: cdclW -restart-all-induct) (auto simp: propagated-clauses-clauses-def
in-get-all-mark-of-propagated-in-trail simp: state-prop)

lemma rtranclp-cdclW -restart-propagated-clauses-clauses:
〈cdclW -restart∗∗ S T =⇒ propagated-clauses-clauses S =⇒ propagated-clauses-clauses T 〉

by (induction rule: rtranclp-induct) (auto simp: cdclW -restart-propagated-clauses-clauses)

lemma rtranclp-cdclW -stgy-propagated-clauses-clauses:
〈cdclW -stgy∗∗ S T =⇒ propagated-clauses-clauses S =⇒ propagated-clauses-clauses T 〉

using rtranclp-cdclW -restart-propagated-clauses-clauses[of S T]
rtranclp-cdclW -stgy-rtranclp-cdclW -restart by blast

lemma conflicting-clause-bt-lvl-gt-0-backjump:
assumes
inv: 〈invN OT -stgy S 〉 and
C : 〈C ∈# clauses S 〉 and
tr-C : 〈trail S |=as CNot C 〉 and
bt: 〈backtrack-lvl S > 0 〉

shows 〈∃ T U V . conflict S T ∧ full skip-or-resolve T U ∧ backtrack U V 〉

proof −
let ?T = update-conflicting (Some C) S
have confl-S-T : conflict S ?T
using C tr-C inv by (auto intro!: conflict-rule)

have count: count-decided (trail S) > 0
using inv bt unfolding cdclW -stgy-invariant-def cdclW -all-struct-inv-def cdclW -M-level-inv-def
by auto

have 〈(∃K M ′. trail S = M ′ @ Decided K # M) =⇒ D ∈# clauses S =⇒ ¬ M |=as CNot D〉 for M
D

using inv C tr-C unfolding cdclW -stgy-invariant-def no-smaller-confl-def
by auto

from this[OF - C] have C-ne: 〈C 6= {#}〉

using tr-C bt count by (fastforce simp: filter-empty-conv in-set-conv-decomp count-decided-def
elim!: is-decided-ex-Decided)

obtain U where
U : 〈full skip-or-resolve ?T U 〉

by (meson wf-exists-normal-form-full wf-skip-or-resolve)
then have s-o-r : skip-or-resolve∗∗ ?T U
unfolding full-def by blast

then obtain C ′ where C ′: 〈conflicting U = Some C ′〉
by (induction rule: rtranclp-induct) (auto simp: skip-or-resolve.simps elim: rulesE)

have 〈cdclW -stgy∗∗ ?T U 〉

using s-o-r by induction

265

(auto simp: skip-or-resolve.simps dest!: cdclW -bj.intros cdclW -bj-cdclW -stgy)
then have 〈cdclW -stgy∗∗ S U 〉

using confl-S-T by (auto dest!: cdclW -stgy.intros)
then have
inv-U : 〈cdclW -all-struct-inv U 〉 and
no-smaller-U : 〈no-smaller-propa U 〉 and
inv-stgy-U : 〈cdclW -stgy-invariant U 〉

using inv rtranclp-cdclW -stgy-cdclW -all-struct-inv rtranclp-cdclW -stgy-no-smaller-propa
rtranclp-cdclW -stgy-cdclW -stgy-invariant by blast+

show ?thesis
proof (cases C ′)
case (add L D)
then obtain V where 〈cdclW -stgy U V 〉

using conflicting-no-false-can-do-step[of U C ′] C ′ inv-U inv-stgy-U
unfolding cdclW -all-struct-inv-def cdclW -stgy-invariant-def
by (auto simp del: conflict-is-false-with-level-def)

then have 〈backtrack U V 〉

using C ′ U unfolding full-def
by (auto simp: cdclW -stgy.simps cdclW -o.simps cdclW -bj.simps elim: rulesE)

then show ?thesis
using U confl-S-T by blast

next
case [simp]: empty
obtain f j where
f-s-o-r : 〈i<j =⇒ skip-or-resolve (f i) (f (Suc i))〉 and
f-0 : 〈f 0 = ?T 〉 and
f-j: 〈f j = U 〉 for i
using rtranclp-transition-function[OF s-o-r] by blast

have j-0 : 〈j 6= 0 〉

using C ′ f-j C-ne f-0 by (cases j) auto

have bt-lvl-f-l: 〈backtrack-lvl (f k) = backtrack-lvl (f 0)〉 if 〈k ≤ j〉 for k
using that

proof (induction k)
case 0
then show ?case by (simp add: f-0)

next
case (Suc k)
then have 〈backtrack-lvl (f (Suc k)) = backtrack-lvl (f k)〉

apply (cases 〈k < j〉; cases 〈trail (f k)〉)
using f-s-o-r [of k] apply (auto simp: skip-or-resolve.simps elim!: rulesE)[2]
by (auto simp: skip-or-resolve.simps elim!: rulesE simp del: local.state-simp)

then show ?case
using f-s-o-r [of k] Suc by simp

qed

have st-f : 〈cdclW -stgy∗∗ ?T (f k)〉 if 〈k < j〉 for k
using that

proof (induction k)
case 0
then show ?case by (simp add: f-0)

next
case (Suc k)
then show ?case
apply (cases 〈k < j〉)
using f-s-o-r [of k] apply (auto simp: skip-or-resolve.simps

266

dest!: cdclW -bj.intros cdclW -bj-cdclW -stgy)[]
using f-s-o-r [of j − 1] j-0 by (simp del: local.state-simp)

qed note st-f-T = this(1)
have st-f-s-k: 〈cdclW -stgy∗∗ S (f k)〉 if 〈k < j〉 for k
using confl-S-T that st-f-T [of k] by (auto dest!: cdclW -stgy.intros)

have f-confl: conflicting (f k) 6= None if 〈k ≤ j〉 for k
using that f-s-o-r [of k] f-j C ′
by (auto simp: skip-or-resolve.simps le-eq-less-or-eq elim!: rulesE)

have 〈size (the (conflicting (f j))) = 0 〉

using f-j C ′ by simp
moreover have 〈size (the (conflicting (f 0))) > 0 〉

using C-ne f-0 by (cases C) auto
then have 〈∃ x∈set [0 ..<Suc j]. 0 < size (the (conflicting (f x)))〉

by force
ultimately obtain ys l zs where

〈[0 ..<Suc j] = ys @ l # zs〉 and
〈0 < size (the (conflicting (f l)))〉 and
〈∀ z∈set zs. ¬ 0 < size (the (conflicting (f z)))〉

using split-list-last-prop[of [0 ..<Suc j] λi. size (the (conflicting (f i))) > 0]
by blast

moreover have 〈l < j〉

by (metis C ′ Suc-le-lessD 〈C ′ = {#}〉 append1-eq-conv append-cons-eq-upt-length-i-end
calculation(1) calculation(2) f-j le-eq-less-or-eq neq0-conv option.sel
size-eq-0-iff-empty upt-Suc)

ultimately have 〈size (the (conflicting (f (Suc l)))) = 0 〉

by (metis (no-types, hide-lams) 〈size (the (conflicting (f j))) = 0 〉 append1-eq-conv
append-cons-eq-upt-length-i-end less-eq-nat.simps(1) list.exhaust list.set-intros(1)
neq0-conv upt-Suc upt-eq-Cons-conv)

then have confl-Suc-l: 〈conflicting (f (Suc l)) = Some {#}〉

using f-confl[of Suc l] 〈l < j〉 by (cases 〈conflicting (f (Suc l))〉) auto
let ?T ′ = 〈f l〉

let ?T ′′ = 〈f (Suc l)〉

have res: 〈resolve ?T ′ ?T ′′〉
using confl-Suc-l 〈0 < size (the (conflicting (f l)))〉 f-s-o-r [of l] 〈l < j〉

by (auto simp: skip-or-resolve.simps elim: rulesE)
then have confl-T ′: 〈size (the (conflicting (f l))) = 1 〉

using confl-Suc-l by (auto elim!: rulesE
simp: Diff-eq-empty-iff-mset subset-eq-mset-single-iff)

then have size (mark-of (hd (trail ?T ′))) = 1 and hd-t ′-dec:¬is-decided (hd (trail ?T ′))
and tr-T ′-ne: 〈trail ?T ′ 6= []〉

using res C ′ confl-Suc-l
by (auto elim!: resolveE simp: Diff-eq-empty-iff-mset subset-eq-mset-single-iff)

then obtain L where L: mark-of (hd (trail ?T ′)) = {#L#}
by (cases hd (trail ?T ′); cases mark-of (hd (trail ?T ′))) auto

have
inv-f-l: 〈cdclW -all-struct-inv (f l)〉 and
no-smaller-f-l: 〈no-smaller-propa (f l)〉 and
inv-stgy-f-l: 〈cdclW -stgy-invariant (f l)〉 and
propa-cls-f-l: 〈propagated-clauses-clauses (f l)〉

using inv st-f-s-k[OF 〈l < j〉] rtranclp-cdclW -stgy-cdclW -all-struct-inv[of S f l]
rtranclp-cdclW -stgy-no-smaller-propa[of S f l]
rtranclp-cdclW -stgy-cdclW -stgy-invariant[of S f l]
rtranclp-cdclW -stgy-propagated-clauses-clauses

by blast+

267

have hd-T ′: 〈hd (trail ?T ′) = Propagated L {#L#}〉

using inv-f-l L tr-T ′-ne hd-t ′-dec unfolding cdclW -all-struct-inv-def cdclW -conflicting-def
by (cases trail ?T ′; cases (hd (trail ?T ′))) force+

let ?D = mark-of (hd (trail ?T ′))
have 〈get-level (trail (f l)) L = 0 〉

using propagate-single-literal-clause-get-level-is-0 [of f l L]
propa-cls-f-l no-smaller-f-l hd-T ′ inv-f-l

unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def
by (cases 〈trail (f l)〉) auto

then have 〈count-decided (trail ?T ′) = 0 〉

using hd-T ′ by (cases 〈trail (f l)〉) auto
then have 〈backtrack-lvl ?T ′ = 0 〉

using inv-f-l unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def
by auto

then show ?thesis
using bt bt-lvl-f-l[of l] 〈l < j〉 confl-S-T by (auto simp: f-0 elim: rulesE)

qed
qed

lemma conflict-full-skip-or-resolve-backtrack-backjump-l:
assumes
conf : 〈conflict S T 〉 and
full: 〈full skip-or-resolve T U 〉 and
bt: 〈backtrack U V 〉 and
inv: 〈cdclW -all-struct-inv S 〉

shows 〈cdclW -with-strategy.backjump-l S V 〉

proof −
have inv-U : 〈cdclW -all-struct-inv U 〉

by (metis cdclW -stgy.conflict ′ cdclW -stgy-cdclW -all-struct-inv
conf full full-def inv rtranclp-cdclW -all-struct-inv-inv
rtranclp-skip-or-resolve-rtranclp-cdclW -restart)

then have inv-V : 〈cdclW -all-struct-inv V 〉

by (metis backtrack bt cdclW -bj-cdclW -stgy cdclW -stgy-cdclW -all-struct-inv)
obtain C where
C-S : 〈C ∈# clauses S 〉 and
S-Not-C : 〈trail S |=as CNot C 〉 and
tr-T-S : 〈trail T = trail S 〉 and
T : 〈T ∼ update-conflicting (Some C) S 〉 and
clss-T-S : 〈clauses T = clauses S 〉

using conf by (auto elim: rulesE)
have s-o-r : 〈skip-or-resolve∗∗ T U 〉

using full unfolding full-def by blast
then have

〈∃M . trail T = M @ trail U 〉 and
bt-T-U : 〈backtrack-lvl T = backtrack-lvl U 〉 and
bt-lvl-T-U : 〈backtrack-lvl T = backtrack-lvl U 〉 and
clss-T-U : 〈clauses T = clauses U 〉 and
init-T-U : 〈init-clss T = init-clss U 〉 and
learned-T-U : 〈learned-clss T = learned-clss U 〉

using skip-or-resolve-state-change[of T U] by blast+
then obtain M where M : 〈trail T = M @ trail U 〉

by blast
obtain D D ′ :: ′v clause and K L :: ′v literal and
M1 M2 :: (′v, ′v clause) ann-lit list and i :: nat where
confl-D: conflicting U = Some (add-mset L D) and
decomp: (Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (trail U)) and

268

lev-L-U : get-level (trail U) L = backtrack-lvl U and
max-D-L-U : get-level (trail U) L = get-maximum-level (trail U) (add-mset L D ′) and
i: get-maximum-level (trail U) D ′ ≡ i and
lev-K-U : get-level (trail U) K = i + 1 and
V : V ∼ cons-trail (Propagated L (add-mset L D ′))

(reduce-trail-to M1
(add-learned-cls (add-mset L D ′)

(update-conflicting None U))) and
U-L-D ′: 〈clauses U |=pm add-mset L D ′〉 and
D-D ′: 〈D ′ ⊆# D〉

using bt by (auto elim!: rulesE)
let ?D ′ = 〈add-mset L D ′〉
obtain M ′ where M ′: 〈trail U = M ′ @ M2 @ Decided K # M1 〉

using decomp by auto
have 〈clauses V = {#?D ′#} + clauses U 〉

using V by auto
moreover have 〈trail V = (Propagated L ?D ′) # trail (reduce-trail-to M1 U)〉

using V T M tr-T-S [symmetric] M ′ clss-T-U [symmetric] unfolding state-eqN OT -def
by (auto simp del: state-simp dest!: state-simp(1))

ultimately have V ′: 〈V ∼N OT

cons-trail (Propagated L dummy-cls) (reduce-trail-toN OT M1 (add-learned-cls ?D ′ S))〉

using V T M tr-T-S [symmetric] M ′ clss-T-U [symmetric] unfolding state-eqN OT -def
by (auto simp del: state-simp

simp: trail-reduce-trail-toN OT -drop drop-map drop-tl clss-T-S)
have 〈no-dup (trail V)〉

using inv-V V unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def by blast
then have undef-L: 〈undefined-lit M1 L〉

using V decomp by (auto simp: defined-lit-map)

have 〈atm-of L ∈ atms-of-mm (init-clss V)〉

using inv-V V decomp unfolding cdclW -all-struct-inv-def no-strange-atm-def by auto
moreover have init-clss-VU-S : 〈init-clss V = init-clss S 〉

〈init-clss U = init-clss S 〉〈learned-clss U = learned-clss S 〉

using T V init-T-U learned-T-U by auto
ultimately have atm-L: 〈atm-of L ∈ atms-of-mm (clauses S)〉

by (auto simp: clauses-def)

have 〈distinct-mset ?D ′〉 and 〈¬ tautology ?D ′〉
using inv-U confl-D decomp D-D ′ unfolding cdclW -all-struct-inv-def distinct-cdclW -state-def
apply simp-all
using inv-V V not-tautology-mono[OF D-D ′] distinct-mset-mono[OF D-D ′]
unfolding cdclW -all-struct-inv-def
apply (auto simp add: tautology-add-mset)
done

have 〈L /∈# D ′〉
using 〈distinct-mset ?D ′〉 by (auto simp: not-in-iff)

have bj: 〈backjump-l-conds-stgy C D ′ L S V 〉

apply (rule exI [of - T], rule exI [of - U])
using 〈distinct-mset ?D ′〉 〈¬ tautology ?D ′〉 conf full bt confl-D

〈L /∈# D ′〉 V T
by (auto)

have M1-D ′: M1 |=as CNot D ′
using backtrack-M1-CNot-D ′[of U D ′ 〈i〉 K M1 M2 L 〈add-mset L D〉 V 〈Propagated L (add-mset L

269

D ′)〉]
inv-U confl-D decomp lev-L-U max-D-L-U i lev-K-U V U-L-D ′ D-D ′

unfolding cdclW -all-struct-inv-def cdclW -conflicting-def cdclW -M-level-inv-def
by (auto simp: subset-mset-trans-add-mset)

show ?thesis
apply (rule cdclW -with-strategy.backjump-l.intros[of S - K

convert-trail-from-W M1 - L - C D ′])
apply (simp add: tr-T-S [symmetric] M ′ M ; fail)
using V ′ apply (simp; fail)
using C-S apply (simp; fail)
using S-Not-C apply (simp; fail)
using undef-L apply (simp; fail)
using atm-L apply (simp; fail)
using U-L-D ′ init-clss-VU-S apply (simp add: clauses-def ; fail)
apply (simp; fail)
using M1-D ′ apply (simp; fail)
using bj 〈distinct-mset ?D ′〉 〈¬ tautology ?D ′〉 by auto

qed

lemma is-decided-o-convert-ann-lit-from-W [simp]:
〈is-decided o convert-ann-lit-from-W = is-decided〉

apply (rule ext)
apply (rename-tac x, case-tac x)
apply (auto simp: comp-def)
done

lemma cdclW -with-strategy-propagateN OT -propagate-iff [iff]:
〈cdclW -with-strategy.propagateN OT S T ←→ propagate S T 〉 (is ?NOT ←→ ?W)

proof (rule iffI)
assume ?NOT
then show ?W by auto

next
assume ?W
then obtain E L where

〈conflicting S = None〉 and
E : 〈E ∈# clauses S 〉 and
LE : 〈L ∈# E 〉 and
tr-E : 〈trail S |=as CNot (remove1-mset L E)〉 and
undef : 〈undefined-lit (trail S) L〉 and
T : 〈T ∼ cons-trail (Propagated L E) S 〉

by (auto elim!: propagateE)
show ?NOT
apply (rule cdclW -with-strategy.propagateN OT [of L 〈remove1-mset L E 〉])

using LE E apply (simp; fail)
using tr-E apply (simp; fail)
using undef apply (simp; fail)
using 〈?W 〉 apply (simp; fail)
using T by (simp add: state-eqN OT -def clauses-def)

qed

interpretation cdclW -with-strategy: cdclN OT -merge-bj-learn where
trail = λS . convert-trail-from-W (trail S) and
clausesN OT = clauses and
prepend-trail = λL S . cons-trail (convert-ann-lit-from-NOT L) S and
tl-trail = λS . tl-trail S and

270

add-clsN OT = λC S . add-learned-cls C S and
remove-clsN OT = λC S . remove-cls C S and
decide-conds = decide-conds and
propagate-conds = propagate-conds and
forget-conds = λ- -. False and
backjump-l-cond = backjump-l-conds-stgy and
inv = invN OT -stgy

proof (unfold-locales, goal-cases)
case (2 S T)
then show ?case
using cdclW -with-strategy-cdclN OT -merged-bj-learn-cdclW -stgy[of S T]
cdclW -with-strategy-cdclN OT -merged-bj-learn-conflict[of S T]
rtranclp-cdclW -stgy-cdclW -all-struct-inv rtranclp-cdclW -stgy-no-smaller-propa
rtranclp-cdclW -stgy-cdclW -stgy-invariant rtranclp-cdclW -stgy-propagated-clauses-clauses
by blast

next
case (1 C ′ S C F ′ K F L)
have 〈count-decided (convert-trail-from-W (trail S)) > 0 〉

unfolding 〈convert-trail-from-W (trail S) = F ′ @ Decided K # F 〉 by simp
then have 〈count-decided (trail S) > 0 〉

by simp
then have 〈backtrack-lvl S > 0 〉

using 〈invN OT -stgy S 〉 unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def by auto
have ∃T U V . conflict S T ∧ full skip-or-resolve T U ∧ backtrack U V
apply (rule conflicting-clause-bt-lvl-gt-0-backjump)
using 〈invN OT -stgy S 〉 apply (auto; fail)[]
using 〈C ∈# clauses S 〉 apply (simp; fail)
using 〈convert-trail-from-W (trail S) |=as CNot C 〉 apply (simp; fail)
using 〈backtrack-lvl S > 0 〉 by (simp; fail)

then show ?case
using conflict-full-skip-or-resolve-backtrack-backjump-l 〈invN OT -stgy S 〉 by blast

next
case (3 L S) note atm = this(1 ,2) and inv = this(3) and sat = this(4)
moreover have 〈Ex(cdclW -with-strategy.backjump-l S)〉 if 〈conflict S T 〉 for T
proof −
have 〈∃C . C ∈# clauses S ∧ trail S |=as CNot C 〉

using that by (auto elim: rulesE)
then obtain C where 〈C ∈# clauses S 〉 and 〈trail S |=as CNot C 〉 by blast
have 〈backtrack-lvl S > 0 〉

proof (rule ccontr)
assume 〈¬ ?thesis〉

then have 〈backtrack-lvl S = 0 〉

by simp
then have 〈count-decided (trail S) = 0 〉

using inv unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def by simp
then have 〈get-all-ann-decomposition (trail S) = [([], trail S)]〉

by (auto simp: filter-empty-conv no-decision-get-all-ann-decomposition count-decided-0-iff)
then have 〈set-mset (clauses S) |=ps unmark-l (trail S)〉

using 3 (3) unfolding cdclW -all-struct-inv-def by auto
obtain I where
consistent: 〈consistent-interp I 〉 and
I-S : 〈I |=m clauses S 〉 and
tot: 〈total-over-m I (set-mset (clauses S))〉

using sat by (auto simp: satisfiable-def)
have 〈total-over-m I (set-mset (clauses S)) ∧ total-over-m I (unmark-l (trail S))〉

using tot inv unfolding cdclW -all-struct-inv-def no-strange-atm-def

271

by (auto simp: clauses-def total-over-set-def total-over-m-def)
then have 〈I |=s unmark-l (trail S)〉

using 〈set-mset (clauses S) |=ps unmark-l (trail S)〉 consistent I-S
unfolding true-clss-clss-def clauses-def
by auto

have 〈I |=s CNot C 〉

by (meson 〈trail S |=as CNot C 〉 〈I |=s unmark-l (trail S)〉 set-mp true-annots-true-cls
true-cls-def true-clss-def true-clss-singleton-lit-of-implies-incl true-lit-def)

moreover have 〈I |= C 〉

using 〈C ∈# clauses S 〉 and 〈I |=m clauses S 〉 unfolding true-cls-mset-def by auto
ultimately show False
using consistent consistent-CNot-not by blast

qed
then show ?thesis
using conflicting-clause-bt-lvl-gt-0-backjump[of S C]
conflict-full-skip-or-resolve-backtrack-backjump-l[of S]
〈C ∈# clauses S 〉 〈trail S |=as CNot C 〉 inv by fast

qed
moreover {
have atm: 〈atms-of-mm (clauses S) = atms-of-mm (init-clss S)〉

using 3 (3) unfolding cdclW -all-struct-inv-def no-strange-atm-def
by (auto simp: clauses-def)

have 〈decide S (cons-trail (Decided L) S)〉

apply (rule decide-rule)
using 3 by (auto simp: atm) }

moreover have 〈cons-trail (Decided L) S ∼N OT cons-trail (Decided L) S 〉

by (simp add: state-eqN OT -def del: state-simp)
ultimately show ∃T . cdclW -with-strategy.decideN OT S T ∨
cdclW -with-strategy.propagateN OT S T ∨
cdclW -with-strategy.backjump-l S T
using cdclW -with-strategy.decideN OT .intros[of S L cons-trail (Decided L) S]
by auto

qed

thm cdclW -with-strategy.full-cdclN OT -merged-bj-learn-final-state

end

end
theory CDCL-W-Full
imports CDCL-W-Termination CDCL-WNOT
begin

context conflict-driven-clause-learningW

begin
lemma rtranclp-cdclW -merge-stgy-distinct-mset-clauses:
assumes
invR: cdclW -all-struct-inv R and
st: cdclW -s ′∗∗ R S and
smaller : 〈no-smaller-propa R〉 and
dist: distinct-mset (clauses R)

shows distinct-mset (clauses S)
using rtranclp-cdclW -stgy-distinct-mset-clauses[OF - invR dist smaller]
invR st rtranclp-mono[of cdclW -s ′ cdclW -stgy∗∗] cdclW -s ′-is-rtranclp-cdclW -stgy
by (auto dest!: cdclW -s ′-is-rtranclp-cdclW -stgy)

272

end

end
theory CDCL-W-Restart
imports CDCL-W-Full
begin

273

274

Chapter 3

Extensions on Weidenbach’s CDCL

We here extend our calculus.

3.1 Restarts
context conflict-driven-clause-learningW

begin

This is an unrestricted version.
inductive cdclW -restart-stgy for S T :: 〈 ′st × nat〉 where

〈cdclW -stgy (fst S) (fst T) =⇒ snd S = snd T =⇒ cdclW -restart-stgy S T 〉 |
〈restart (fst S) (fst T) =⇒ snd T = Suc (snd S) =⇒ cdclW -restart-stgy S T 〉

lemma cdclW -stgy-cdclW -restart: 〈cdclW -stgy S S ′ =⇒ cdclW -restart S S ′〉
by (induction rule: cdclW -stgy.induct) auto

lemma cdclW -restart-stgy-cdclW -restart:
〈cdclW -restart-stgy S T =⇒ cdclW -restart (fst S) (fst T)〉

by (induction rule: cdclW -restart-stgy.induct)
(auto dest: cdclW -stgy-cdclW -restart simp: cdclW -restart.simps cdclW -rf .restart)

lemma rtranclp-cdclW -restart-stgy-cdclW -restart:
〈cdclW -restart-stgy∗∗ S T =⇒ cdclW -restart∗∗ (fst S) (fst T)〉

by (induction rule: rtranclp-induct)
(auto dest: cdclW -restart-stgy-cdclW -restart)

lemma cdclW -stgy-cdclW -restart-stgy:
〈cdclW -stgy S T =⇒ cdclW -restart-stgy (S , n) (T , n)〉

using cdclW -restart-stgy.intros [of 〈(S , n)〉 〈(T , n)〉]
by auto

lemma rtranclp-cdclW -stgy-cdclW -restart-stgy:
〈cdclW -stgy∗∗ S T =⇒ cdclW -restart-stgy∗∗ (S , n) (T , n)〉

apply (induction rule: rtranclp-induct)
subgoal by auto
subgoal for T U
by (auto dest!: cdclW -stgy-cdclW -restart-stgy[of - - n])

done

lemma cdclW -restart-dclW -all-struct-inv:
〈cdclW -restart-stgy S T =⇒ cdclW -all-struct-inv (fst S) =⇒ cdclW -all-struct-inv (fst T)〉

275

using cdclW -all-struct-inv-inv[OF cdclW -restart-stgy-cdclW -restart] .

lemma rtranclp-cdclW -restart-dclW -all-struct-inv:
〈cdclW -restart-stgy∗∗ S T =⇒ cdclW -all-struct-inv (fst S) =⇒ cdclW -all-struct-inv (fst T)〉

by (induction rule: rtranclp-induct)
(auto intro: cdclW -restart-dclW -all-struct-inv)

lemma restart-cdclW -stgy-invariant:
〈restart S T =⇒ cdclW -stgy-invariant T 〉

by (auto simp: restart.simps cdclW -stgy-invariant-def state-prop no-smaller-confl-def)

lemma cdclW -restart-dclW -stgy-invariant:
〈cdclW -restart-stgy S T =⇒ cdclW -all-struct-inv (fst S) =⇒ cdclW -stgy-invariant (fst S) =⇒

cdclW -stgy-invariant (fst T)〉

apply (induction rule: cdclW -restart-stgy.induct)
subgoal using cdclW -stgy-cdclW -stgy-invariant .
subgoal by (auto dest!: cdclW -rf .intros cdclW -restart.intros simp: restart-cdclW -stgy-invariant)
done

lemma rtranclp-cdclW -restart-dclW -stgy-invariant:
〈cdclW -restart-stgy∗∗ S T =⇒ cdclW -all-struct-inv (fst S) =⇒ cdclW -stgy-invariant (fst S) =⇒

cdclW -stgy-invariant (fst T)〉

apply (induction rule: rtranclp-induct)
subgoal by auto
subgoal by (auto simp: rtranclp-cdclW -restart-dclW -all-struct-inv cdclW -restart-dclW -stgy-invariant)
done

end

locale cdclW -restart-restart-ops =
conflict-driven-clause-learningW

state-eq
state
— functions for the state:
— access functions:

trail init-clss learned-clss conflicting
— changing state:

cons-trail tl-trail add-learned-cls remove-cls
update-conflicting

— get state:
init-state

for
state-eq :: 〈 ′st ⇒ ′st ⇒ bool〉 (infix ∼ 50) and
state :: 〈 ′st ⇒ (′v, ′v clause) ann-lits × ′v clauses × ′v clauses × ′v clause option ×
′b〉 and

trail :: 〈 ′st ⇒ (′v, ′v clause) ann-lits〉 and
init-clss :: 〈 ′st ⇒ ′v clauses〉 and
learned-clss :: 〈 ′st ⇒ ′v clauses〉 and
conflicting :: 〈 ′st ⇒ ′v clause option〉 and

cons-trail :: 〈(′v, ′v clause) ann-lit ⇒ ′st ⇒ ′st〉 and
tl-trail :: 〈 ′st ⇒ ′st〉 and
add-learned-cls :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
remove-cls :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
update-conflicting :: 〈 ′v clause option ⇒ ′st ⇒ ′st〉 and

276

init-state :: 〈 ′v clauses ⇒ ′st〉 +
fixes
f :: 〈nat ⇒ nat〉

locale cdclW -restart-restart =
cdclW -restart-restart-ops +
assumes
f : 〈unbounded f 〉

The condition of the differences of cardinality has to be strict. Otherwise, you could be in
a strange state, where nothing remains to do, but a restart is done. See the proof of well-
foundedness. The same applies for the cdclW -stgy+↓ S T : With a cdclW -stgy↓ S T, this rules
could be applied one after the other, doing nothing each time.

context cdclW -restart-restart-ops
begin
inductive cdclW -merge-with-restart where
restart-step:

〈(cdclW -stgy^^ (card (set-mset (learned-clss T)) − card (set-mset (learned-clss S)))) S T
=⇒ card (set-mset (learned-clss T)) − card (set-mset (learned-clss S)) > f n
=⇒ restart T U =⇒ cdclW -merge-with-restart (S , n) (U , Suc n)〉 |

restart-full: 〈full1 cdclW -stgy S T =⇒ cdclW -merge-with-restart (S , n) (T , Suc n)〉

lemma cdclW -merge-with-restart-rtranclp-cdclW -restart:
〈cdclW -merge-with-restart S T =⇒ cdclW -restart∗∗ (fst S) (fst T)〉

by (induction rule: cdclW -merge-with-restart.induct)
(auto dest!: relpowp-imp-rtranclp rtranclp-cdclW -stgy-rtranclp-cdclW -restart cdclW -restart.rf
cdclW -rf .restart tranclp-into-rtranclp simp: full1-def)

lemma cdclW -merge-with-restart-increasing-number :
〈cdclW -merge-with-restart S T =⇒ snd T = 1 + snd S 〉

by (induction rule: cdclW -merge-with-restart.induct) auto

lemma 〈full1 cdclW -stgy S T =⇒ cdclW -merge-with-restart (S , n) (T , Suc n)〉

using restart-full by blast

lemma cdclW -all-struct-inv-learned-clss-bound:
assumes inv: 〈cdclW -all-struct-inv S 〉

shows 〈set-mset (learned-clss S) ⊆ simple-clss (atms-of-mm (init-clss S))〉

proof
fix C
assume C : 〈C ∈ set-mset (learned-clss S)〉

have 〈distinct-mset C 〉

using C inv unfolding cdclW -all-struct-inv-def distinct-cdclW -state-def distinct-mset-set-def
by auto

moreover have 〈¬tautology C 〉

using C inv unfolding cdclW -all-struct-inv-def cdclW -learned-clause-alt-def by auto
moreover
have 〈atms-of C ⊆ atms-of-mm (learned-clss S)〉

using C by auto
then have 〈atms-of C ⊆ atms-of-mm (init-clss S)〉

using inv unfolding cdclW -all-struct-inv-def no-strange-atm-def by force
moreover have 〈finite (atms-of-mm (init-clss S))〉

using inv unfolding cdclW -all-struct-inv-def by auto
ultimately show 〈C ∈ simple-clss (atms-of-mm (init-clss S))〉

277

using distinct-mset-not-tautology-implies-in-simple-clss simple-clss-mono
by blast

qed

lemma cdclW -merge-with-restart-init-clss:
〈cdclW -merge-with-restart S T =⇒ cdclW -M-level-inv (fst S) =⇒
init-clss (fst S) = init-clss (fst T)〉

using cdclW -merge-with-restart-rtranclp-cdclW -restart rtranclp-cdclW -restart-init-clss by blast

lemma (in cdclW -restart-restart)
〈wf {(T , S). cdclW -all-struct-inv (fst S) ∧ cdclW -merge-with-restart S T}〉

proof (rule ccontr)
assume 〈¬ ?thesis〉

then obtain g where
g: 〈

∧
i. cdclW -merge-with-restart (g i) (g (Suc i))〉 and

inv: 〈
∧
i. cdclW -all-struct-inv (fst (g i))〉

unfolding wf-iff-no-infinite-down-chain by fast
{ fix i
have 〈init-clss (fst (g i)) = init-clss (fst (g 0))〉

apply (induction i)
apply simp

using g inv unfolding cdclW -all-struct-inv-def by (metis cdclW -merge-with-restart-init-clss)
} note init-g = this

let ?S = 〈g 0 〉

have 〈finite (atms-of-mm (init-clss (fst ?S)))〉

using inv unfolding cdclW -all-struct-inv-def by auto
have snd-g: 〈

∧
i. snd (g i) = i + snd (g 0)〉

apply (induct-tac i)
apply simp

by (metis Suc-eq-plus1-left add-Suc cdclW -merge-with-restart-increasing-number g)
then have snd-g-0 : 〈

∧
i. i > 0 =⇒ snd (g i) = i + snd (g 0)〉

by blast
have unbounded-f-g: 〈unbounded (λi. f (snd (g i)))〉

using f unfolding bounded-def by (metis add.commute f less-or-eq-imp-le snd-g
not-bounded-nat-exists-larger not-le le-iff-add)

obtain k where
f-g-k: 〈f (snd (g k)) > card (simple-clss (atms-of-mm (init-clss (fst ?S))))〉 and
〈k > card (simple-clss (atms-of-mm (init-clss (fst ?S))))〉

using not-bounded-nat-exists-larger [OF unbounded-f-g] by blast

The following does not hold anymore with the non-strict version of cardinality in the definition.
{ fix i
assume 〈no-step cdclW -stgy (fst (g i))〉

with g[of i]
have False
proof (induction rule: cdclW -merge-with-restart.induct)
case (restart-step T S n) note H = this(1) and c = this(2) and n-s = this(4)
obtain S ′ where 〈cdclW -stgy S S ′〉
using H c by (metis gr-implies-not0 relpowp-E2)

then show False using n-s by auto
next
case (restart-full S T)
then show False unfolding full1-def by (auto dest: tranclpD)

qed
} note H = this

278

obtain m T where
m: 〈m = card (set-mset (learned-clss T)) − card (set-mset (learned-clss (fst (g k))))〉 and
〈m > f (snd (g k))〉 and
〈restart T (fst (g (k+1)))〉 and
cdclW -stgy: 〈(cdclW -stgy ^^ m) (fst (g k)) T 〉

using g[of k] H [of 〈Suc k〉] by (force simp: cdclW -merge-with-restart.simps full1-def)
have 〈cdclW -stgy∗∗ (fst (g k)) T 〉

using cdclW -stgy relpowp-imp-rtranclp by metis
then have 〈cdclW -all-struct-inv T 〉

using inv[of k] rtranclp-cdclW -all-struct-inv-inv rtranclp-cdclW -stgy-rtranclp-cdclW -restart
by blast

moreover have 〈card (set-mset (learned-clss T)) − card (set-mset (learned-clss (fst (g k))))
> card (simple-clss (atms-of-mm (init-clss (fst ?S))))〉

unfolding m[symmetric] using 〈m > f (snd (g k))〉 f-g-k by linarith
then have 〈card (set-mset (learned-clss T))
> card (simple-clss (atms-of-mm (init-clss (fst ?S))))〉

by linarith
moreover
have 〈init-clss (fst (g k)) = init-clss T 〉

using 〈cdclW -stgy∗∗ (fst (g k)) T 〉 rtranclp-cdclW -stgy-rtranclp-cdclW -restart
rtranclp-cdclW -restart-init-clss inv unfolding cdclW -all-struct-inv-def by blast

then have 〈init-clss (fst ?S) = init-clss T 〉

using init-g[of k] by auto
ultimately show False
using cdclW -all-struct-inv-learned-clss-bound
by (simp add: 〈finite (atms-of-mm (init-clss (fst (g 0))))〉 simple-clss-finite
card-mono leD)

qed

lemma cdclW -merge-with-restart-distinct-mset-clauses:
assumes invR: 〈cdclW -all-struct-inv (fst R)〉 and
st: 〈cdclW -merge-with-restart R S 〉 and
dist: 〈distinct-mset (clauses (fst R))〉 and
R: 〈no-smaller-propa (fst R)〉

shows 〈distinct-mset (clauses (fst S))〉

using assms(2 ,1 ,3 ,4)
proof induction
case (restart-full S T)
then show ?case using rtranclp-cdclW -stgy-distinct-mset-clauses[of S T] unfolding full1-def
by (auto dest: tranclp-into-rtranclp)

next
case (restart-step T S n U)
then have 〈distinct-mset (clauses T)〉

using rtranclp-cdclW -stgy-distinct-mset-clauses[of S T] unfolding full1-def
by (auto dest: relpowp-imp-rtranclp)

then show ?case using 〈restart T U 〉 unfolding clauses-def
by (metis distinct-mset-union fstI restartE subset-mset.le-iff-add union-assoc)

qed

inductive cdclW -restart-with-restart where
restart-step:

〈cdclW -stgy∗∗ S T =⇒
card (set-mset (learned-clss T)) − card (set-mset (learned-clss S)) > f n =⇒
restart T U =⇒

cdclW -restart-with-restart (S , n) (U , Suc n)〉 |
restart-full: 〈full1 cdclW -stgy S T =⇒ cdclW -restart-with-restart (S , n) (T , Suc n)〉

279

lemma cdclW -restart-with-restart-rtranclp-cdclW -restart:
〈cdclW -restart-with-restart S T =⇒ cdclW -restart∗∗ (fst S) (fst T)〉

apply (induction rule: cdclW -restart-with-restart.induct)
by (auto dest!: relpowp-imp-rtranclp tranclp-into-rtranclp cdclW -restart.rf

cdclW -rf .restart rtranclp-cdclW -stgy-rtranclp-cdclW -restart
simp: full1-def)

lemma cdclW -restart-with-restart-increasing-number :
〈cdclW -restart-with-restart S T =⇒ snd T = 1 + snd S 〉

by (induction rule: cdclW -restart-with-restart.induct) auto

lemma 〈full1 cdclW -stgy S T =⇒ cdclW -restart-with-restart (S , n) (T , Suc n)〉

using restart-full by blast

lemma cdclW -restart-with-restart-init-clss:
〈cdclW -restart-with-restart S T =⇒ cdclW -M-level-inv (fst S) =⇒

init-clss (fst S) = init-clss (fst T)〉

using cdclW -restart-with-restart-rtranclp-cdclW -restart rtranclp-cdclW -restart-init-clss by blast

theorem (in cdclW -restart-restart)
〈wf {(T , S). cdclW -all-struct-inv (fst S) ∧ cdclW -restart-with-restart S T}〉

proof (rule ccontr)
assume 〈¬ ?thesis〉

then obtain g where
g: 〈

∧
i. cdclW -restart-with-restart (g i) (g (Suc i))〉 and

inv: 〈
∧
i. cdclW -all-struct-inv (fst (g i))〉

unfolding wf-iff-no-infinite-down-chain by fast
{ fix i
have 〈init-clss (fst (g i)) = init-clss (fst (g 0))〉

apply (induction i)
apply simp

using g inv unfolding cdclW -all-struct-inv-def by (metis cdclW -restart-with-restart-init-clss)
} note init-g = this

let ?S = 〈g 0 〉

have 〈finite (atms-of-mm (init-clss (fst ?S)))〉

using inv unfolding cdclW -all-struct-inv-def by auto
have snd-g: 〈

∧
i. snd (g i) = i + snd (g 0)〉

apply (induct-tac i)
apply simp

by (metis Suc-eq-plus1-left add-Suc cdclW -restart-with-restart-increasing-number g)
then have snd-g-0 : 〈

∧
i. i > 0 =⇒ snd (g i) = i + snd (g 0)〉

by blast
have unbounded-f-g: 〈unbounded (λi. f (snd (g i)))〉

using f unfolding bounded-def by (metis add.commute f less-or-eq-imp-le snd-g
not-bounded-nat-exists-larger not-le le-iff-add)

obtain k where
f-g-k: 〈f (snd (g k)) > card (simple-clss (atms-of-mm (init-clss (fst ?S))))〉 and
〈k > card (simple-clss (atms-of-mm (init-clss (fst ?S))))〉

using not-bounded-nat-exists-larger [OF unbounded-f-g] by blast

The following does not hold anymore with the non-strict version of cardinality in the definition.
have H : False if 〈no-step cdclW -stgy (fst (g i))〉 for i
using g[of i] that

proof (induction rule: cdclW -restart-with-restart.induct)

280

case (restart-step S T n) note H = this(1) and c = this(2) and n-s = this(4)
obtain S ′ where 〈cdclW -stgy S S ′〉
using H c by (subst (asm) rtranclp-unfold) (auto dest!: tranclpD)
then show False using n-s by auto

next
case (restart-full S T)
then show False unfolding full1-def by (auto dest: tranclpD)

qed
obtain m T where
m: 〈m = card (set-mset (learned-clss T)) − card (set-mset (learned-clss (fst (g k))))〉 and
〈m > f (snd (g k))〉 and
〈restart T (fst (g (k+1)))〉 and
cdclW -stgy: 〈cdclW -stgy∗∗ (fst (g k)) T 〉

using g[of k] H [of 〈Suc k〉] by (force simp: cdclW -restart-with-restart.simps full1-def)
have 〈cdclW -all-struct-inv T 〉

using inv[of k] rtranclp-cdclW -all-struct-inv-inv rtranclp-cdclW -stgy-rtranclp-cdclW -restart
cdclW -stgy by blast

moreover {
have 〈card (set-mset (learned-clss T)) − card (set-mset (learned-clss (fst (g k))))
> card (simple-clss (atms-of-mm (init-clss (fst ?S))))〉

unfolding m[symmetric] using 〈m > f (snd (g k))〉 f-g-k by linarith
then have 〈card (set-mset (learned-clss T))
> card (simple-clss (atms-of-mm (init-clss (fst ?S))))〉

by linarith
}
moreover {
have 〈init-clss (fst (g k)) = init-clss T 〉

using 〈cdclW -stgy∗∗ (fst (g k)) T 〉 rtranclp-cdclW -stgy-rtranclp-cdclW -restart rtranclp-cdclW -restart-init-clss
inv unfolding cdclW -all-struct-inv-def
by blast

then have 〈init-clss (fst ?S) = init-clss T 〉

using init-g[of k] by auto
}
ultimately show False
using cdclW -all-struct-inv-learned-clss-bound
by (simp add: 〈finite (atms-of-mm (init-clss (fst (g 0))))〉 simple-clss-finite
card-mono leD)

qed

lemma cdclW -restart-with-restart-distinct-mset-clauses:
assumes invR: 〈cdclW -all-struct-inv (fst R)〉 and
st: 〈cdclW -restart-with-restart R S 〉 and
dist: 〈distinct-mset (clauses (fst R))〉 and
R: 〈no-smaller-propa (fst R)〉

shows 〈distinct-mset (clauses (fst S))〉

using assms(2 ,1 ,3 ,4)
proof (induction)
case (restart-full S T)
then show ?case using rtranclp-cdclW -stgy-distinct-mset-clauses[of S T] unfolding full1-def
by (auto dest: tranclp-into-rtranclp)

next
case (restart-step S T n U)
then have 〈distinct-mset (clauses T)〉 using rtranclp-cdclW -stgy-distinct-mset-clauses[of S T]
unfolding full1-def by (auto dest: relpowp-imp-rtranclp)

then show ?case using 〈restart T U 〉 unfolding clauses-def
by (metis distinct-mset-union fstI restartE subset-mset.le-iff-add union-assoc)

281

qed

end

locale luby-sequence =
fixes ur :: nat
assumes 〈ur > 0 〉

begin

lemma exists-luby-decomp:
fixes i ::nat
shows 〈∃ k::nat. (2 ^ (k − 1) ≤ i ∧ i < 2 ^ k − 1) ∨ i = 2 ^ k − 1 〉

proof (induction i)
case 0
then show ?case
by (rule exI [of - 0], simp)

next
case (Suc n)
then obtain k where 〈2 ^ (k − 1) ≤ n ∧ n < 2 ^ k − 1 ∨ n = 2 ^ k − 1 〉

by blast
then consider

(st-interv) 〈2 ^ (k − 1) ≤ n〉 and 〈n ≤ 2 ^ k − 2 〉

| (end-interv) 〈2 ^ (k − 1) ≤ n〉 and 〈n = 2 ^ k − 2 〉

| (pow2) 〈n = 2 ^ k − 1 〉

by linarith
then show ?case
proof cases
case st-interv
then show ?thesis apply − apply (rule exI [of - k])
by (metis (no-types, lifting) One-nat-def Suc-diff-Suc Suc-lessI

〈2 ^ (k − 1) ≤ n ∧ n < 2 ^ k − 1 ∨ n = 2 ^ k − 1 〉 diff-self-eq-0
dual-order .trans le-SucI le-imp-less-Suc numeral-2-eq-2 one-le-numeral
one-le-power zero-less-numeral zero-less-power)

next
case end-interv
then show ?thesis apply − apply (rule exI [of - k]) by auto

next
case pow2
then show ?thesis apply − apply (rule exI [of - 〈k+1 〉]) by auto

qed
qed

Luby sequences are defined by:

• 2 k − 1, if i = (2 :: ′a)k − (1 :: ′a)

• luby-sequence-core (i − 2 k − 1 + 1), if (2 :: ′a)k − 1 ≤ i and i ≤ (2 :: ′a)k − (1 :: ′a)

Then the sequence is then scaled by a constant unit run (called ur here), strictly positive.
function luby-sequence-core :: 〈nat ⇒ nat〉 where
〈luby-sequence-core i =

(if ∃ k. i = 2^k − 1
then 2^ ((SOME k. i = 2^k − 1) − 1)
else luby-sequence-core (i − 2^ ((SOME k. 2^ (k−1)≤ i ∧ i < 2^k − 1) − 1) + 1))〉

by auto

282

termination
proof (relation 〈less-than〉, goal-cases)
case 1
then show ?case by auto

next
case (2 i)
let ?k = 〈SOME k. 2 ^ (k − 1) ≤ i ∧ i < 2 ^ k − 1 〉

have 〈2 ^ (?k − 1) ≤ i ∧ i < 2 ^ ?k − 1 〉

by (rule someI-ex) (use 2 exists-luby-decomp in blast)
then show ?case

proof −
have 〈∀n na. ¬ (1 ::nat) ≤ n ∨ 1 ≤ n ^ na〉

by (meson one-le-power)
then have f1 : 〈(1 ::nat) ≤ 2 ^ (?k − 1)〉

using one-le-numeral by blast
have f2 : 〈i − 2 ^ (?k − 1) + 2 ^ (?k − 1) = i〉

using 〈2 ^ (?k − 1) ≤ i ∧ i < 2 ^ ?k − 1 〉 le-add-diff-inverse2 by blast
have f3 : 〈2 ^ ?k − 1 6= Suc 0 〉

using f1 〈2 ^ (?k − 1) ≤ i ∧ i < 2 ^ ?k − 1 〉 by linarith
have 〈2 ^ ?k − (1 ::nat) 6= 0 〉

using 〈2 ^ (?k − 1) ≤ i ∧ i < 2 ^ ?k − 1 〉 gr-implies-not0 by blast
then have f4 : 〈2 ^ ?k 6= (1 ::nat)〉

by linarith
have f5 : 〈∀n na. if na = 0 then (n::nat) ^ na = 1 else n ^ na = n ∗ n ^ (na − 1)〉

by (simp add: power-eq-if)
then have 〈?k 6= 0 〉

using f4 by meson
then have 〈2 ^ (?k − 1) 6= Suc 0 〉

using f5 f3 by presburger
then have 〈Suc 0 < 2 ^ (?k − 1)〉

using f1 by linarith
then show ?thesis
using f2 less-than-iff by presburger

qed
qed

declare luby-sequence-core.simps[simp del]

lemma two-pover-n-eq-two-power-n ′-eq:
assumes H : 〈(2 ::nat) ^ (k::nat) − 1 = 2 ^ k ′ − 1 〉

shows 〈k ′ = k〉

proof −
have 〈(2 ::nat) ^ (k::nat) = 2 ^ k ′〉
using H by (metis One-nat-def Suc-pred zero-less-numeral zero-less-power)

then show ?thesis by simp
qed

lemma luby-sequence-core-two-power-minus-one:
〈luby-sequence-core (2^k − 1) = 2^ (k−1)〉 (is 〈?L = ?K 〉)

proof −
have decomp: 〈∃ ka. 2 ^ k − 1 = 2 ^ ka − 1 〉

by auto
have 〈?L = 2^ ((SOME k ′. (2 ::nat)^k − 1 = 2^k ′ − 1) − 1)〉

apply (subst luby-sequence-core.simps, subst decomp)
by simp

283

moreover have 〈(SOME k ′. (2 ::nat)^k − 1 = 2^k ′ − 1) = k〉

apply (rule some-equality)
apply simp
using two-pover-n-eq-two-power-n ′-eq by blast

ultimately show ?thesis by presburger
qed

lemma different-luby-decomposition-false:
assumes
H : 〈2 ^ (k − Suc 0) ≤ i〉 and
k ′: 〈i < 2 ^ k ′ − Suc 0 〉 and
k-k ′: 〈k > k ′〉

shows 〈False〉

proof −
have 〈2 ^ k ′ − Suc 0 < 2 ^ (k − Suc 0)〉

using k-k ′ less-eq-Suc-le by auto
then show ?thesis
using H k ′ by linarith

qed

lemma luby-sequence-core-not-two-power-minus-one:
assumes
k-i: 〈2 ^ (k − 1) ≤ i〉 and
i-k: 〈i < 2^ k − 1 〉

shows 〈luby-sequence-core i = luby-sequence-core (i − 2 ^ (k − 1) + 1)〉

proof −
have H : 〈¬ (∃ ka. i = 2 ^ ka − 1)〉

proof (rule ccontr)
assume 〈¬ ?thesis〉

then obtain k ′::nat where k ′: 〈i = 2 ^ k ′ − 1 〉 by blast
have 〈(2 ::nat) ^ k ′ − 1 < 2 ^ k − 1 〉

using i-k unfolding k ′ .
then have 〈(2 ::nat) ^ k ′ < 2 ^ k〉

by linarith
then have 〈k ′ < k〉

by simp
have 〈2 ^ (k − 1) ≤ 2 ^ k ′ − (1 ::nat)〉

using k-i unfolding k ′ .
then have 〈(2 ::nat) ^ (k−1) < 2 ^ k ′〉
by (metis Suc-diff-1 not-le not-less-eq zero-less-numeral zero-less-power)

then have 〈k−1 < k ′〉
by simp

show False using 〈k ′ < k〉 〈k−1 < k ′〉 by linarith
qed

have 〈
∧
k k ′. 2 ^ (k − Suc 0) ≤ i =⇒ i < 2 ^ k − Suc 0 =⇒ 2 ^ (k ′ − Suc 0) ≤ i =⇒

i < 2 ^ k ′ − Suc 0 =⇒ k = k ′〉
by (meson different-luby-decomposition-false linorder-neqE-nat)

then have k: 〈(SOME k. 2 ^ (k − Suc 0) ≤ i ∧ i < 2 ^ k − Suc 0) = k〉

using k-i i-k by auto
show ?thesis
apply (subst luby-sequence-core.simps[of i], subst H)
by (simp add: k)

qed

lemma unbounded-luby-sequence-core: 〈unbounded luby-sequence-core〉

284

unfolding bounded-def
proof
assume 〈∃ b. ∀n. luby-sequence-core n ≤ b〉

then obtain b where b: 〈
∧
n. luby-sequence-core n ≤ b〉

by metis
have 〈luby-sequence-core (2^ (b+1) − 1) = 2^b〉

using luby-sequence-core-two-power-minus-one[of 〈b+1 〉] by simp
moreover have 〈(2 ::nat)^b > b〉

by (induction b) auto
ultimately show False using b[of 〈2^ (b+1) − 1 〉] by linarith

qed

abbreviation luby-sequence :: 〈nat ⇒ nat〉 where
〈luby-sequence n ≡ ur ∗ luby-sequence-core n〉

lemma bounded-luby-sequence: 〈unbounded luby-sequence〉

using bounded-const-product[of ur] luby-sequence-axioms
luby-sequence-def unbounded-luby-sequence-core by blast

lemma luby-sequence-core-0 : 〈luby-sequence-core 0 = 1 〉

proof −
have 0 : 〈(0 ::nat) = 2^0−1 〉

by auto
show ?thesis
by (subst 0 , subst luby-sequence-core-two-power-minus-one) simp

qed

lemma 〈luby-sequence-core n ≥ 1 〉

proof (induction n rule: nat-less-induct-case)
case 0
then show ?case by (simp add: luby-sequence-core-0)

next
case (Suc n) note IH = this

consider
(interv) k where 〈2 ^ (k − 1) ≤ Suc n〉 and 〈Suc n < 2 ^ k − 1 〉 |
(pow2) k where 〈Suc n = 2 ^ k − Suc 0 〉

using exists-luby-decomp[of 〈Suc n〉] by auto

then show ?case
proof cases
case pow2
show ?thesis
using luby-sequence-core-two-power-minus-one pow2 by auto

next
case interv
have n: 〈Suc n − 2 ^ (k − 1) + 1 < Suc n〉

by (metis Suc-1 Suc-eq-plus1 add.commute add-diff-cancel-left ′ add-less-mono1 gr0I
interv(1) interv(2) le-add-diff-inverse2 less-Suc-eq not-le power-0 power-one-right
power-strict-increasing-iff)

show ?thesis
apply (subst luby-sequence-core-not-two-power-minus-one[OF interv])
using IH n by auto

qed
qed
end

285

locale luby-sequence-restart =
luby-sequence ur +
conflict-driven-clause-learningW

— functions for the state:
state-eq state
— access functions:

trail init-clss learned-clss conflicting
— changing state:

cons-trail tl-trail add-learned-cls remove-cls
update-conflicting

— get state:
init-state

for
ur :: nat and
state-eq :: 〈 ′st ⇒ ′st ⇒ bool〉 (infix ∼ 50) and
state :: 〈 ′st ⇒ (′v, ′v clause) ann-lits × ′v clauses × ′v clauses × ′v clause option ×
′b〉 and

trail :: 〈 ′st ⇒ (′v, ′v clause) ann-lits〉 and
hd-trail :: 〈 ′st ⇒ (′v, ′v clause) ann-lit〉 and
init-clss :: 〈 ′st ⇒ ′v clauses〉 and
learned-clss :: 〈 ′st ⇒ ′v clauses〉 and
conflicting :: 〈 ′st ⇒ ′v clause option〉 and

cons-trail :: 〈(′v, ′v clause) ann-lit ⇒ ′st ⇒ ′st〉 and
tl-trail :: 〈 ′st ⇒ ′st〉 and
add-learned-cls :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
remove-cls :: 〈 ′v clause ⇒ ′st ⇒ ′st〉 and
update-conflicting :: 〈 ′v clause option ⇒ ′st ⇒ ′st〉 and

init-state :: 〈 ′v clauses ⇒ ′st〉

begin

sublocale cdclW -restart-restart where
f = luby-sequence
by unfold-locales (use bounded-luby-sequence in blast)

end

end
theory CDCL-W-Incremental
imports CDCL-W-Full
begin

3.2 Incremental SAT solving
locale stateW -adding-init-clause-no-state =
stateW -no-state
state-eq
state
— functions about the state:
— getter:

trail init-clss learned-clss conflicting
— setter:

286

cons-trail tl-trail add-learned-cls remove-cls
update-conflicting

— Some specific states:
init-state

for
state-eq :: ′st ⇒ ′st ⇒ bool (infix ∼ 50) and
state :: ′st ⇒ (′v, ′v clause) ann-lits × ′v clauses × ′v clauses × ′v clause option ×
′b and

trail :: ′st ⇒ (′v, ′v clause) ann-lits and
init-clss :: ′st ⇒ ′v clauses and
learned-clss :: ′st ⇒ ′v clauses and
conflicting :: ′st ⇒ ′v clause option and

cons-trail :: (′v, ′v clause) ann-lit ⇒ ′st ⇒ ′st and
tl-trail :: ′st ⇒ ′st and
add-learned-cls :: ′v clause ⇒ ′st ⇒ ′st and
remove-cls :: ′v clause ⇒ ′st ⇒ ′st and
update-conflicting :: ′v clause option ⇒ ′st ⇒ ′st and

init-state :: ′v clauses ⇒ ′st +
fixes
add-init-cls :: ′v clause ⇒ ′st ⇒ ′st

assumes
add-init-cls:
state st = (M , N , U , S ′) =⇒
state (add-init-cls C st) = (M , {#C#} + N , U , S ′)

locale stateW -adding-init-clause-ops =
stateW -adding-init-clause-no-state
state-eq
state
— functions about the state:
— getter:

trail init-clss learned-clss conflicting
— setter:

cons-trail tl-trail add-learned-cls remove-cls update-conflicting

— Some specific states:
init-state
add-init-cls

for
state-eq :: ′st ⇒ ′st ⇒ bool (infix ∼ 50) and
state :: ′st ⇒ (′v, ′v clause) ann-lits × ′v clauses × ′v clauses × ′v clause option ×
′b and

trail :: ′st ⇒ (′v, ′v clause) ann-lits and
init-clss :: ′st ⇒ ′v clauses and
learned-clss :: ′st ⇒ ′v clauses and
conflicting :: ′st ⇒ ′v clause option and

cons-trail :: (′v, ′v clause) ann-lit ⇒ ′st ⇒ ′st and
tl-trail :: ′st ⇒ ′st and
add-learned-cls :: ′v clause ⇒ ′st ⇒ ′st and
remove-cls :: ′v clause ⇒ ′st ⇒ ′st and
update-conflicting :: ′v clause option ⇒ ′st ⇒ ′st and

287

init-state :: ′v clauses ⇒ ′st and
add-init-cls :: ′v clause ⇒ ′st ⇒ ′st +

assumes
state-prop[simp]:

〈state S = (trail S , init-clss S , learned-clss S , conflicting S , additional-info S)〉

locale stateW -adding-init-clause =
stateW -adding-init-clause-ops
state-eq
state
— functions about the state:
— getter:

trail init-clss learned-clss conflicting
— setter:

cons-trail tl-trail add-learned-cls remove-cls update-conflicting

— Some specific states:
init-state add-init-cls

for
state-eq :: ′st ⇒ ′st ⇒ bool (infix ∼ 50) and
state :: ′st ⇒ (′v, ′v clause) ann-lits × ′v clauses × ′v clauses × ′v clause option ×
′b and

trail :: ′st ⇒ (′v, ′v clause) ann-lits and
init-clss :: ′st ⇒ ′v clauses and
learned-clss :: ′st ⇒ ′v clauses and
conflicting :: ′st ⇒ ′v clause option and

cons-trail :: (′v, ′v clause) ann-lit ⇒ ′st ⇒ ′st and
tl-trail :: ′st ⇒ ′st and
add-learned-cls :: ′v clause ⇒ ′st ⇒ ′st and
remove-cls :: ′v clause ⇒ ′st ⇒ ′st and
update-conflicting :: ′v clause option ⇒ ′st ⇒ ′st and

init-state :: ′v clauses ⇒ ′st and
add-init-cls :: ′v clause ⇒ ′st ⇒ ′st

begin

sublocale stateW

by unfold-locales auto

lemma
trail-add-init-cls[simp]:
trail (add-init-cls C st) = trail st and

init-clss-add-init-cls[simp]:
init-clss (add-init-cls C st) = {#C#} + init-clss st
and

learned-clss-add-init-cls[simp]:
learned-clss (add-init-cls C st) = learned-clss st and

conflicting-add-init-cls[simp]:
conflicting (add-init-cls C st) = conflicting st

using add-init-cls[of st - - - - C] by (cases state st; auto; fail)+

lemma clauses-add-init-cls[simp]:
clauses (add-init-cls N S) = {#N#} + init-clss S + learned-clss S
unfolding clauses-def by auto

288

lemma reduce-trail-to-add-init-cls[simp]:
trail (reduce-trail-to F (add-init-cls C S)) = trail (reduce-trail-to F S)
by (rule trail-eq-reduce-trail-to-eq) auto

lemma conflicting-add-init-cls-iff-conflicting[simp]:
conflicting (add-init-cls C S) = None ←→ conflicting S = None
by fastforce+

end

locale conflict-driven-clause-learning-with-adding-init-clauseW =
stateW -adding-init-clause
state-eq
state
— functions for the state:
— access functions:

trail init-clss learned-clss conflicting
— changing state:

cons-trail tl-trail add-learned-cls remove-cls update-conflicting

— get state:
init-state
— Adding a clause:

add-init-cls
for
state-eq :: ′st ⇒ ′st ⇒ bool (infix ∼ 50) and
state :: ′st ⇒ (′v, ′v clause) ann-lits × ′v clauses × ′v clauses × ′v clause option ×
′b and

trail :: ′st ⇒ (′v, ′v clause) ann-lits and
init-clss :: ′st ⇒ ′v clauses and
learned-clss :: ′st ⇒ ′v clauses and
conflicting :: ′st ⇒ ′v clause option and

cons-trail :: (′v, ′v clause) ann-lit ⇒ ′st ⇒ ′st and
tl-trail :: ′st ⇒ ′st and
add-learned-cls :: ′v clause ⇒ ′st ⇒ ′st and
remove-cls :: ′v clause ⇒ ′st ⇒ ′st and
update-conflicting :: ′v clause option ⇒ ′st ⇒ ′st and

init-state :: ′v clauses ⇒ ′st and
add-init-cls :: ′v clause ⇒ ′st ⇒ ′st

begin

sublocale conflict-driven-clause-learningW

by unfold-locales

This invariant holds all the invariant related to the strategy. See the structural invariant in
cdclW -all-struct-inv

When we add a new clause, we reduce the trail until we get to tho first literal included in C.
Then we can mark the conflict.
fun cut-trail-wrt-clause where
cut-trail-wrt-clause C [] S = S |
cut-trail-wrt-clause C (Decided L # M) S =

(if −L ∈# C then S
else cut-trail-wrt-clause C M (tl-trail S)) |

cut-trail-wrt-clause C (Propagated L - # M) S =

289

(if −L ∈# C then S
else cut-trail-wrt-clause C M (tl-trail S))

definition add-new-clause-and-update :: ′v clause ⇒ ′st ⇒ ′st where
add-new-clause-and-update C S =

(if trail S |=as CNot C
then update-conflicting (Some C) (add-init-cls C

(cut-trail-wrt-clause C (trail S) S))
else add-init-cls C S)

lemma init-clss-cut-trail-wrt-clause[simp]:
init-clss (cut-trail-wrt-clause C M S) = init-clss S
by (induction rule: cut-trail-wrt-clause.induct) auto

lemma learned-clss-cut-trail-wrt-clause[simp]:
learned-clss (cut-trail-wrt-clause C M S) = learned-clss S
by (induction rule: cut-trail-wrt-clause.induct) auto

lemma conflicting-clss-cut-trail-wrt-clause[simp]:
conflicting (cut-trail-wrt-clause C M S) = conflicting S
by (induction rule: cut-trail-wrt-clause.induct) auto

lemma trail-cut-trail-wrt-clause:
∃M . trail S = M @ trail (cut-trail-wrt-clause C (trail S) S)

proof (induction trail S arbitrary: S rule: ann-lit-list-induct)
case Nil
then show ?case by simp

next
case (Decided L M) note IH = this(1)[of tl-trail S] and M = this(2)[symmetric]
then show ?case using Cons-eq-appendI by fastforce+

next
case (Propagated L l M) note IH = this(1)[of tl-trail S] and M = this(2)[symmetric]
then show ?case using Cons-eq-appendI by fastforce+

qed

lemma n-dup-no-dup-trail-cut-trail-wrt-clause[simp]:
assumes n-d: no-dup (trail T)
shows no-dup (trail (cut-trail-wrt-clause C (trail T) T))

proof −
obtain M where
M : trail T = M @ trail (cut-trail-wrt-clause C (trail T) T)
using trail-cut-trail-wrt-clause[of T C] by auto

show ?thesis
using n-d unfolding arg-cong[OF M , of no-dup] by (auto simp: no-dup-def)

qed

lemma cut-trail-wrt-clause-backtrack-lvl-length-decided:
assumes

backtrack-lvl T = count-decided (trail T)
shows
backtrack-lvl (cut-trail-wrt-clause C (trail T) T) =
count-decided (trail (cut-trail-wrt-clause C (trail T) T))

using assms
proof (induction trail T arbitrary:T rule: ann-lit-list-induct)
case Nil
then show ?case by simp

290

next
case (Decided L M) note IH = this(1)[of tl-trail T] and M = this(2)[symmetric]
and bt = this(3)

then show ?case by auto
next
case (Propagated L l M) note IH = this(1)[of tl-trail T] and M = this(2)[symmetric] and
bt = this(3)

then show ?case by auto
qed

lemma cut-trail-wrt-clause-CNot-trail:
assumes trail T |=as CNot C
shows

(trail ((cut-trail-wrt-clause C (trail T) T))) |=as CNot C
using assms

proof (induction trail T arbitrary: T rule: ann-lit-list-induct)
case Nil
then show ?case by simp

next
case (Decided L M) note IH = this(1)[of tl-trail T] and M = this(2)[symmetric]
and bt = this(3)

show ?case
proof (cases count C (−L) = 0)
case False
then show ?thesis
using IH M bt by (auto simp: true-annots-true-cls)

next
case True
obtain mma :: ′v clause where
f6 : (mma ∈ {{#− l#} |l. l ∈# C} −→ M |=a mma) −→ M |=as {{#− l#} |l. l ∈# C}
using true-annots-def by blast

have mma ∈ {{#− l#} |l. l ∈# C} −→ trail T |=a mma
using CNot-def M bt by (metis (no-types) true-annots-def)

then have M |=as {{#− l#} |l. l ∈# C}
using f6 True M bt by (force simp: count-eq-zero-iff)

then show ?thesis
using IH true-annots-true-cls M by (auto simp: CNot-def)

qed
next
case (Propagated L l M) note IH = this(1)[of tl-trail T] and M = this(2)[symmetric] and bt =

this(3)
show ?case
proof (cases count C (−L) = 0)
case False
then show ?thesis
using IH M bt by (auto simp: true-annots-true-cls)

next
case True
obtain mma :: ′v clause where
f6 : (mma ∈ {{#− l#} |l. l ∈# C} −→ M |=a mma) −→ M |=as {{#− l#} |l. l ∈# C}
using true-annots-def by blast

have mma ∈ {{#− l#} |l. l ∈# C} −→ trail T |=a mma
using CNot-def M bt by (metis (no-types) true-annots-def)

then have M |=as {{#− l#} |l. l ∈# C}
using f6 True M bt by (force simp: count-eq-zero-iff)

then show ?thesis

291

using IH true-annots-true-cls M by (auto simp: CNot-def)
qed

qed

lemma cut-trail-wrt-clause-hd-trail-in-or-empty-trail:
((∀L ∈#C . −L /∈ lits-of-l (trail T)) ∧ trail (cut-trail-wrt-clause C (trail T) T) = [])
∨ (−lit-of (hd (trail (cut-trail-wrt-clause C (trail T) T))) ∈# C
∧ length (trail (cut-trail-wrt-clause C (trail T) T)) ≥ 1)

proof (induction trail T arbitrary:T rule: ann-lit-list-induct)
case Nil
then show ?case by simp

next
case (Decided L M) note IH = this(1)[of tl-trail T] and M = this(2)[symmetric]
then show ?case by simp force

next
case (Propagated L l M) note IH = this(1)[of tl-trail T] and M = this(2)[symmetric]
then show ?case by simp force

qed

We can fully run cdclW -restart-s or add a clause. Remark that we use cdclW -restart-s to avoid
an explicit skip, resolve, and backtrack normalisation to get rid of the conflict C if possible.
inductive incremental-cdclW :: ′st ⇒ ′st ⇒ bool for S where
add-confl:
trail S |=asm init-clss S =⇒ distinct-mset C =⇒ conflicting S = None =⇒
trail S |=as CNot C =⇒
full cdclW -stgy

(update-conflicting (Some C)
(add-init-cls C (cut-trail-wrt-clause C (trail S) S))) T =⇒

incremental-cdclW S T |
add-no-confl:
trail S |=asm init-clss S =⇒ distinct-mset C =⇒ conflicting S = None =⇒
¬trail S |=as CNot C =⇒
full cdclW -stgy (add-init-cls C S) T =⇒
incremental-cdclW S T

lemma cdclW -all-struct-inv-add-new-clause-and-update-cdclW -all-struct-inv:
assumes
inv-T : cdclW -all-struct-inv T and
tr-T-N [simp]: trail T |=asm N and
tr-C [simp]: trail T |=as CNot C and
[simp]: distinct-mset C

shows cdclW -all-struct-inv (add-new-clause-and-update C T) (is cdclW -all-struct-inv ?T ′)
proof −
let ?T = update-conflicting (Some C)

(add-init-cls C (cut-trail-wrt-clause C (trail T) T))
obtain M where
M : trail T = M @ trail (cut-trail-wrt-clause C (trail T) T)
using trail-cut-trail-wrt-clause[of T C] by blast

have H [dest]:
∧
x. x ∈ lits-of-l (trail (cut-trail-wrt-clause C (trail T) T)) =⇒

x ∈ lits-of-l (trail T)
using inv-T arg-cong[OF M , of lits-of-l] by auto

have H ′[dest]:
∧
x. x ∈ set (trail (cut-trail-wrt-clause C (trail T) T)) =⇒

x ∈ set (trail T)
using inv-T arg-cong[OF M , of set] by auto

have H-proped:
∧
x. x ∈ set (get-all-mark-of-propagated (trail (cut-trail-wrt-clause C

292

(trail T) T))) =⇒ x ∈ set (get-all-mark-of-propagated (trail T))
using inv-T arg-cong[OF M , of get-all-mark-of-propagated] by auto

have [simp]: no-strange-atm ?T
using inv-T unfolding cdclW -all-struct-inv-def no-strange-atm-def add-new-clause-and-update-def
cdclW -M-level-inv-def by (auto 20 1)

have M-lev: cdclW -M-level-inv T
using inv-T unfolding cdclW -all-struct-inv-def by blast

then have no-dup (M @ trail (cut-trail-wrt-clause C (trail T) T))
unfolding cdclW -M-level-inv-def unfolding M [symmetric] by auto

then have [simp]: no-dup (trail (cut-trail-wrt-clause C (trail T) T))
by (auto simp: no-dup-def)

have consistent-interp (lits-of-l (M @ trail (cut-trail-wrt-clause C (trail T) T)))
using M-lev unfolding cdclW -M-level-inv-def unfolding M [symmetric] by auto

then have [simp]: consistent-interp (lits-of-l (trail (cut-trail-wrt-clause C
(trail T) T)))
unfolding consistent-interp-def by auto

have [simp]: cdclW -M-level-inv ?T
using M-lev unfolding cdclW -M-level-inv-def
by (auto simp: M-lev cdclW -M-level-inv-def cut-trail-wrt-clause-backtrack-lvl-length-decided)

have [simp]:
∧
s. s ∈# learned-clss T =⇒ ¬tautology s

using inv-T unfolding cdclW -all-struct-inv-def by auto

have distinct-cdclW -state T
using inv-T unfolding cdclW -all-struct-inv-def by auto

then have [simp]: distinct-cdclW -state ?T
unfolding distinct-cdclW -state-def by auto

have cdclW -conflicting T
using inv-T unfolding cdclW -all-struct-inv-def by auto

have trail ?T |=as CNot C
by (simp add: cut-trail-wrt-clause-CNot-trail)

then have [simp]: cdclW -conflicting ?T
unfolding cdclW -conflicting-def apply simp
by (metis M 〈cdclW -conflicting T 〉 append-assoc cdclW -conflicting-decomp(2))

have
decomp-T : all-decomposition-implies-m (clauses T) (get-all-ann-decomposition (trail T))
using inv-T unfolding cdclW -all-struct-inv-def by auto

have all-decomposition-implies-m (clauses ?T) (get-all-ann-decomposition (trail ?T))
unfolding all-decomposition-implies-def
proof clarify
fix a b
assume (a, b) ∈ set (get-all-ann-decomposition (trail ?T))
from in-get-all-ann-decomposition-in-get-all-ann-decomposition-prepend[OF this, of M]
obtain b ′ where

(a, b ′ @ b) ∈ set (get-all-ann-decomposition (trail T))
using M by auto

then have unmark-l a ∪ set-mset (clauses T) |=ps unmark-l (b ′ @ b)
using decomp-T unfolding all-decomposition-implies-def by fastforce

then have unmark-l a ∪ set-mset (clauses ?T) |=ps unmark-l (b ′ @ b)
by (simp add: clauses-def)

then show unmark-l a ∪ set-mset (clauses ?T) |=ps unmark-l b

293

by (auto simp: image-Un)
qed

have [simp]: cdclW -learned-clause ?T
using inv-T unfolding cdclW -all-struct-inv-def cdclW -learned-clause-alt-def
by (auto dest!: H-proped simp: clauses-def)

show ?thesis
using 〈all-decomposition-implies-m (clauses ?T) (get-all-ann-decomposition (trail ?T))〉

unfolding cdclW -all-struct-inv-def by (auto simp: add-new-clause-and-update-def)
qed

lemma cdclW -all-struct-inv-add-new-clause-and-update-cdclW -stgy-inv:
assumes
inv-s: cdclW -stgy-invariant T and
inv: cdclW -all-struct-inv T and
tr-T-N [simp]: trail T |=asm N and
tr-C [simp]: trail T |=as CNot C and
[simp]: distinct-mset C

shows cdclW -stgy-invariant (add-new-clause-and-update C T)
(is cdclW -stgy-invariant ?T ′)

proof −
have cdclW -all-struct-inv ?T ′
using cdclW -all-struct-inv-add-new-clause-and-update-cdclW -all-struct-inv assms by blast

then have
no-dup-cut-T [simp]: no-dup (trail (cut-trail-wrt-clause C (trail T) T)) and
n-d[simp]: no-dup (trail T)
using cdclW -M-level-inv-decomp(2) cdclW -all-struct-inv-def inv
n-dup-no-dup-trail-cut-trail-wrt-clause by blast+

then have trail (add-new-clause-and-update C T) |=as CNot C
by (simp add: add-new-clause-and-update-def cut-trail-wrt-clause-CNot-trail
cdclW -M-level-inv-def cdclW -all-struct-inv-def)

obtain MT where
MT : trail T = MT @ trail (cut-trail-wrt-clause C (trail T) T)
using trail-cut-trail-wrt-clause by blast

consider
(false) ∀L∈#C . − L /∈ lits-of-l (trail T) and
trail (cut-trail-wrt-clause C (trail T) T) = [] |

(not-false)
− lit-of (hd (trail (cut-trail-wrt-clause C (trail T) T))) ∈# C and
1 ≤ length (trail (cut-trail-wrt-clause C (trail T) T))

using cut-trail-wrt-clause-hd-trail-in-or-empty-trail[of C T] by auto
then show ?thesis
proof cases
case false note C = this(1) and empty-tr = this(2)
then have [simp]: C = {#}
by (simp add: in-CNot-implies-uminus(2) multiset-eqI)

show ?thesis
using empty-tr unfolding cdclW -stgy-invariant-def no-smaller-confl-def
cdclW -all-struct-inv-def by (auto simp: add-new-clause-and-update-def)

next
case not-false note C = this(1) and l = this(2)
let ?L = − lit-of (hd (trail (cut-trail-wrt-clause C (trail T) T)))
have L: get-level (trail (cut-trail-wrt-clause C (trail T) T)) (−?L)

= count-decided (trail (cut-trail-wrt-clause C (trail T) T))
apply (cases trail (add-init-cls C

(cut-trail-wrt-clause C (trail T) T));

294

cases hd (trail (cut-trail-wrt-clause C (trail T) T)))
using l by (auto split: if-split-asm
simp:rev-swap[symmetric] add-new-clause-and-update-def)

have L ′: count-decided(trail (cut-trail-wrt-clause C
(trail T) T))
= backtrack-lvl (cut-trail-wrt-clause C (trail T) T)
using 〈cdclW -all-struct-inv ?T ′〉 unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def
by (auto simp:add-new-clause-and-update-def)

have [simp]: no-smaller-confl (update-conflicting (Some C)
(add-init-cls C (cut-trail-wrt-clause C (trail T) T)))
unfolding no-smaller-confl-def

proof (clarify, goal-cases)
case (1 M K M ′ D)
then consider

(DC) D = C
| (D-T) D ∈# clauses T
by (auto simp: clauses-def split: if-split-asm)

then show False
proof cases
case D-T
have no-smaller-confl T
using inv-s unfolding cdclW -stgy-invariant-def by auto

have trail T = (MT @ M ′) @ Decided K # M
using MT 1 (1) by auto

then show False
using D-T 〈no-smaller-confl T 〉 1 (3) unfolding no-smaller-confl-def by blast

next
case DC note -[simp] = this
then have atm-of (−?L) ∈ atm-of ‘ (lits-of-l M)
using 1 (3) C in-CNot-implies-uminus(2) by blast

moreover
have lit-of (hd (M ′ @ Decided K # [])) = −?L
using l 1 (1)[symmetric] inv
by (cases M ′, cases trail (add-init-cls C

(cut-trail-wrt-clause C (trail T) T)))
(auto dest!: arg-cong[of - # - - hd] simp: hd-append cdclW -all-struct-inv-def
cdclW -M-level-inv-def)

from arg-cong[OF this, of atm-of]
have atm-of (−?L) ∈ atm-of ‘ (lits-of-l (M ′ @ Decided K # []))
by (cases (M ′ @ Decided K # [])) auto

moreover have no-dup (trail (cut-trail-wrt-clause C (trail T) T))
using 〈cdclW -all-struct-inv ?T ′〉 unfolding cdclW -all-struct-inv-def
cdclW -M-level-inv-def by (auto simp: add-new-clause-and-update-def)

ultimately show False
unfolding 1 (1)[simplified] by (auto simp: lits-of-def no-dup-def)

qed
qed
show ?thesis using L L ′ C
unfolding cdclW -stgy-invariant-def cdclW -all-struct-inv-def
by (auto simp: add-new-clause-and-update-def get-level-def count-decided-def intro: rev-bexI)

qed
qed

lemma incremental-cdclW -inv:

295

assumes
inc: incremental-cdclW S T and
inv: cdclW -all-struct-inv S and
s-inv: cdclW -stgy-invariant S and
learned-entailed: 〈cdclW -learned-clauses-entailed-by-init S 〉

shows
cdclW -all-struct-inv T and
cdclW -stgy-invariant T and
learned-entailed: 〈cdclW -learned-clauses-entailed-by-init T 〉

using inc
proof induction
case (add-confl C T)
let ?T = (update-conflicting (Some C) (add-init-cls C

(cut-trail-wrt-clause C (trail S) S)))
have inv ′: cdclW -all-struct-inv ?T and inv-s-T : cdclW -stgy-invariant ?T
using add-confl.hyps(1 ,2 ,4) add-new-clause-and-update-def
cdclW -all-struct-inv-add-new-clause-and-update-cdclW -all-struct-inv inv apply auto[1]
using add-confl.hyps(1 ,2 ,4) add-new-clause-and-update-def
cdclW -all-struct-inv-add-new-clause-and-update-cdclW -stgy-inv inv s-inv by auto

case 1 show ?case
by (metis add-confl.hyps(1 ,2 ,4 ,5) add-new-clause-and-update-def
cdclW -all-struct-inv-add-new-clause-and-update-cdclW -all-struct-inv
rtranclp-cdclW -all-struct-inv-inv rtranclp-cdclW -stgy-rtranclp-cdclW -restart full-def inv)

case 2 show ?case
by (metis inv-s-T add-confl.hyps(1 ,2 ,4 ,5) add-new-clause-and-update-def
cdclW -all-struct-inv-add-new-clause-and-update-cdclW -all-struct-inv full-def inv
rtranclp-cdclW -stgy-cdclW -stgy-invariant)

case 3 show ?case
using learned-entailed rtranclp-cdclW -learned-clauses-entailed[of ?T T] add-confl inv ′
unfolding cdclW -all-struct-inv-def full-def
by (auto simp: cdclW -learned-clauses-entailed-by-init-def

dest!: rtranclp-cdclW -stgy-rtranclp-cdclW -restart)
next
case (add-no-confl C T)
have inv ′: cdclW -all-struct-inv (add-init-cls C S)
using inv 〈distinct-mset C 〉 unfolding cdclW -all-struct-inv-def no-strange-atm-def
cdclW -M-level-inv-def distinct-cdclW -state-def cdclW -conflicting-def cdclW -learned-clause-alt-def
by (auto 9 1 simp: all-decomposition-implies-insert-single clauses-def)

case 1
show ?case
using inv ′ add-no-confl(5) unfolding full-def by (auto intro: rtranclp-cdclW -stgy-cdclW -all-struct-inv)

case 2
have nc: ∀M . (∃K i M ′. trail S = M ′ @ Decided K # M) −→ ¬ M |=as CNot C
using 〈¬ trail S |=as CNot C 〉

by (auto simp: true-annots-true-cls-def-iff-negation-in-model)

have cdclW -stgy-invariant (add-init-cls C S)
using s-inv 〈¬ trail S |=as CNot C 〉 inv unfolding cdclW -stgy-invariant-def
no-smaller-confl-def eq-commute[of - trail -] cdclW -M-level-inv-def cdclW -all-struct-inv-def
by (auto simp: clauses-def nc)

then show ?case
by (metis 〈cdclW -all-struct-inv (add-init-cls C S)〉 add-no-confl.hyps(5) full-def

296

rtranclp-cdclW -stgy-cdclW -stgy-invariant)

case 3
have 〈cdclW -learned-clauses-entailed-by-init (add-init-cls C S)〉

using learned-entailed by (auto simp: cdclW -learned-clauses-entailed-by-init-def)
then show ?case
using add-no-confl(5) learned-entailed rtranclp-cdclW -learned-clauses-entailed[of - T] add-confl inv ′
unfolding cdclW -all-struct-inv-def full-def
by (auto simp: cdclW -learned-clauses-entailed-by-init-def

dest!: rtranclp-cdclW -stgy-rtranclp-cdclW -restart)
qed

lemma rtranclp-incremental-cdclW -inv:
assumes
inc: incremental-cdclW ∗∗ S T and
inv: cdclW -all-struct-inv S and
s-inv: cdclW -stgy-invariant S and
learned-entailed: 〈cdclW -learned-clauses-entailed-by-init S 〉

shows
cdclW -all-struct-inv T and
cdclW -stgy-invariant T and
〈cdclW -learned-clauses-entailed-by-init T 〉

using inc apply induction
using inv apply simp
using s-inv apply simp
using learned-entailed apply simp
using incremental-cdclW -inv by blast+

lemma incremental-conclusive-state:
assumes
inc: incremental-cdclW S T and
inv: cdclW -all-struct-inv S and
s-inv: cdclW -stgy-invariant S and
learned-entailed: 〈cdclW -learned-clauses-entailed-by-init S 〉

shows conflicting T = Some {#} ∧ unsatisfiable (set-mset (init-clss T))
∨ conflicting T = None ∧ trail T |=asm init-clss T ∧ satisfiable (set-mset (init-clss T))

using inc
proof induction
case (add-confl C T) note tr = this(1) and dist = this(2) and conf = this(3) and C = this(4) and
full = this(5)

have full cdclW -stgy T T
using full unfolding full-def by auto

then show ?case
using C conf dist full incremental-cdclW .add-confl incremental-cdclW -inv
incremental-cdclW -inv inv learned-entailed
〈full cdclW -stgy T T 〉 full-cdclW -stgy-inv-normal-form
s-inv tr by blast

next
case (add-no-confl C T) note tr = this(1) and dist = this(2) and conf = this(3) and C = this(4)
and full = this(5)

have full cdclW -stgy T T
using full unfolding full-def by auto

then show ?case
using 〈full cdclW -stgy T T 〉 full-cdclW -stgy-inv-normal-form C conf dist full

297

incremental-cdclW .add-no-confl incremental-cdclW -inv inv learned-entailed
s-inv tr by blast

qed

lemma tranclp-incremental-correct:
assumes
inc: incremental-cdclW ++ S T and
inv: cdclW -all-struct-inv S and
s-inv: cdclW -stgy-invariant S and
learned-entailed: 〈cdclW -learned-clauses-entailed-by-init S 〉

shows conflicting T = Some {#} ∧ unsatisfiable (set-mset (init-clss T))
∨ conflicting T = None ∧ trail T |=asm init-clss T ∧ satisfiable (set-mset (init-clss T))

using inc apply induction
using assms incremental-conclusive-state apply blast
by (meson incremental-conclusive-state inv rtranclp-incremental-cdclW -inv s-inv
tranclp-into-rtranclp learned-entailed)

end

end
theory DPLL-CDCL-W-Implementation
imports
Entailment-Definition.Partial-Annotated-Herbrand-Interpretation
CDCL-W-Level

begin

298

Chapter 4

List-based Implementation of DPLL
and CDCL

We can now reuse all the theorems to go towards an implementation using 2-watched literals:

• CDCL_W_Abstract_State.thy defines a better-suited state: the operation operating on it
are more constrained, allowing simpler proofs and less edge cases later.

4.1 Simple List-Based Implementation of the DPLL and CDCL

The idea of the list-based implementation is to test the stack: the theories about the calculi,
adapting the theorems to a simple implementation and the code exportation. The implemen-
tation are very simple ans simply iterate over-and-over on lists.

4.1.1 Common Rules
Propagation

The following theorem holds:
lemma lits-of-l-unfold:

(∀ c ∈ set C . −c ∈ lits-of-l Ms) ←→ Ms |=as CNot (mset C)
unfolding true-annots-def Ball-def true-annot-def CNot-def by auto

The right-hand version is written at a high-level, but only the left-hand side is executable.
definition is-unit-clause :: ′a literal list ⇒ (′a, ′b) ann-lits ⇒ ′a literal option
where
is-unit-clause l M =

(case List.filter (λa. atm-of a /∈ atm-of ‘ lits-of-l M) l of
a # [] ⇒ if M |=as CNot (mset l − {#a#}) then Some a else None
| - ⇒ None)

definition is-unit-clause-code :: ′a literal list ⇒ (′a, ′b) ann-lits
⇒ ′a literal option where
is-unit-clause-code l M =

(case List.filter (λa. atm-of a /∈ atm-of ‘ lits-of-l M) l of
a # [] ⇒ if (∀ c ∈set (remove1 a l). −c ∈ lits-of-l M) then Some a else None
| - ⇒ None)

299

lemma is-unit-clause-is-unit-clause-code[code]:
is-unit-clause l M = is-unit-clause-code l M

proof −
have 1 :

∧
a. (∀ c∈set (remove1 a l). − c ∈ lits-of-l M) ←→ M |=as CNot (mset l − {#a#})

using lits-of-l-unfold[of remove1 - l, of - M] by simp
then show ?thesis
unfolding is-unit-clause-code-def is-unit-clause-def 1 by blast

qed

lemma is-unit-clause-some-undef :
assumes is-unit-clause l M = Some a
shows undefined-lit M a

proof −
have (case [a←l . atm-of a /∈ atm-of ‘ lits-of-l M] of [] ⇒ None

| [a] ⇒ if M |=as CNot (mset l − {#a#}) then Some a else None
| a # ab # xa ⇒ Map.empty xa) = Some a

using assms unfolding is-unit-clause-def .
then have a ∈ set [a←l . atm-of a /∈ atm-of ‘ lits-of-l M]
apply (cases [a←l . atm-of a /∈ atm-of ‘ lits-of-l M])
apply simp

apply (rename-tac aa list; case-tac list) by (auto split: if-split-asm)
then have atm-of a /∈ atm-of ‘ lits-of-l M by auto
then show ?thesis
by (simp add: Decided-Propagated-in-iff-in-lits-of-l
atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)

qed

lemma is-unit-clause-some-CNot: is-unit-clause l M = Some a =⇒ M |=as CNot (mset l − {#a#})
unfolding is-unit-clause-def

proof −
assume (case [a←l . atm-of a /∈ atm-of ‘ lits-of-l M] of [] ⇒ None

| [a] ⇒ if M |=as CNot (mset l − {#a#}) then Some a else None
| a # ab # xa ⇒ Map.empty xa) = Some a

then show ?thesis
apply (cases [a←l . atm-of a /∈ atm-of ‘ lits-of-l M], simp)
apply simp

apply (rename-tac aa list, case-tac list) by (auto split: if-split-asm)
qed

lemma is-unit-clause-some-in: is-unit-clause l M = Some a =⇒ a ∈ set l
unfolding is-unit-clause-def

proof −
assume (case [a←l . atm-of a /∈ atm-of ‘ lits-of-l M] of [] ⇒ None

| [a] ⇒ if M |=as CNot (mset l − {#a#}) then Some a else None
| a # ab # xa ⇒ Map.empty xa) = Some a

then show a ∈ set l
by (cases [a←l . atm-of a /∈ atm-of ‘ lits-of-l M])

(fastforce dest: filter-eq-ConsD split: if-split-asm split: list.splits)+
qed

lemma is-unit-clause-Nil[simp]: is-unit-clause [] M = None
unfolding is-unit-clause-def by auto

300

Unit propagation for all clauses

Finding the first clause to propagate

fun find-first-unit-clause :: ′a literal list list ⇒ (′a, ′b) ann-lits
⇒ (′a literal × ′a literal list) option where

find-first-unit-clause (a # l) M =
(case is-unit-clause a M of
None ⇒ find-first-unit-clause l M
| Some L ⇒ Some (L, a)) |

find-first-unit-clause [] - = None

lemma find-first-unit-clause-some:
find-first-unit-clause l M = Some (a, c)
=⇒ c ∈ set l ∧ M |=as CNot (mset c − {#a#}) ∧ undefined-lit M a ∧ a ∈ set c
apply (induction l)
apply simp

by (auto split: option.splits dest: is-unit-clause-some-in is-unit-clause-some-CNot
is-unit-clause-some-undef)

lemma propagate-is-unit-clause-not-None:
assumes
M : M |=as CNot (mset c − {#a#}) and
undef : undefined-lit M a and
ac: a ∈ set c
shows is-unit-clause c M 6= None

proof −
have [a←c . atm-of a /∈ atm-of ‘ lits-of-l M] = [a]
using assms
proof (induction c)
case Nil then show ?case by simp

next
case (Cons ac c)
show ?case
proof (cases a = ac)
case True
then show ?thesis using Cons
by (auto simp del: lits-of-l-unfold

simp add: lits-of-l-unfold[symmetric] Decided-Propagated-in-iff-in-lits-of-l
atm-of-eq-atm-of atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)

next
case False
then have T : mset c + {#ac#} − {#a#} = mset c − {#a#} + {#ac#}
by (auto simp add: multiset-eq-iff)

show ?thesis using False Cons
by (auto simp add: T atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)

qed
qed

then show ?thesis
using M unfolding is-unit-clause-def by auto

qed

lemma find-first-unit-clause-none:
c ∈ set l =⇒ M |=as CNot (mset c − {#a#}) =⇒ undefined-lit M a =⇒ a ∈ set c
=⇒ find-first-unit-clause l M 6= None
by (induction l)

301

(auto split: option.split simp add: propagate-is-unit-clause-not-None)

Decide

fun find-first-unused-var :: ′a literal list list ⇒ ′a literal set ⇒ ′a literal option where
find-first-unused-var (a # l) M =

(case List.find (λlit. lit /∈ M ∧ −lit /∈ M) a of
None ⇒ find-first-unused-var l M
| Some a ⇒ Some a) |

find-first-unused-var [] - = None

lemma find-none[iff]:
List.find (λlit. lit /∈ M ∧ −lit /∈ M) a = None ←→ atm-of ‘ set a ⊆ atm-of ‘ M
apply (induct a)
using atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
by (force simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)+

lemma find-some: List.find (λlit. lit /∈ M ∧ −lit /∈ M) a = Some b =⇒ b ∈ set a ∧ b /∈ M ∧ −b /∈ M
unfolding find-Some-iff by (metis nth-mem)

lemma find-first-unused-var-None[iff]:
find-first-unused-var l M = None ←→ (∀ a ∈ set l. atm-of ‘ set a ⊆ atm-of ‘ M)
by (induct l)

(auto split: option.splits dest!: find-some
simp add: image-subset-iff atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)

lemma find-first-unused-var-Some-not-all-incl:
assumes find-first-unused-var l M = Some c
shows ¬(∀ a ∈ set l. atm-of ‘ set a ⊆ atm-of ‘ M)

proof −
have find-first-unused-var l M 6= None
using assms by (cases find-first-unused-var l M) auto

then show ¬(∀ a ∈ set l. atm-of ‘ set a ⊆ atm-of ‘ M) by auto
qed

lemma find-first-unused-var-Some:
find-first-unused-var l M = Some a =⇒ (∃m ∈ set l. a ∈ set m ∧ a /∈ M ∧ −a /∈ M)
by (induct l) (auto split: option.splits dest: find-some)

lemma find-first-unused-var-undefined:
find-first-unused-var l (lits-of-l Ms) = Some a =⇒ undefined-lit Ms a
using find-first-unused-var-Some[of l lits-of-l Ms a] Decided-Propagated-in-iff-in-lits-of-l
by blast

4.1.2 CDCL specific functions

Level

fun maximum-level-code:: ′a literal list ⇒ (′a, ′b) ann-lits ⇒ nat
where

maximum-level-code [] - = 0 |
maximum-level-code (L # Ls) M = max (get-level M L) (maximum-level-code Ls M)

lemma maximum-level-code-eq-get-maximum-level[simp]:
maximum-level-code D M = get-maximum-level M (mset D)
by (induction D) (auto simp add: get-maximum-level-add-mset)

302

lemma [code]:
fixes M :: (′a, ′b) ann-lits
shows get-maximum-level M (mset D) = maximum-level-code D M
by simp

Backjumping
fun find-level-decomp where
find-level-decomp M [] D k = None |
find-level-decomp M (L # Ls) D k =

(case (get-level M L, maximum-level-code (D @ Ls) M) of
(i, j) ⇒ if i = k ∧ j < i then Some (L, j) else find-level-decomp M Ls (L#D) k

)

lemma find-level-decomp-some:
assumes find-level-decomp M Ls D k = Some (L, j)
shows L ∈ set Ls ∧ get-maximum-level M (mset (remove1 L (Ls @ D))) = j ∧ get-level M L = k
using assms

proof (induction Ls arbitrary: D)
case Nil
then show ?case by simp

next
case (Cons L ′ Ls) note IH = this(1) and H = this(2)

define find where find ≡ (if get-level M L ′ 6= k ∨ ¬ get-maximum-level M (mset D + mset Ls) <
get-level M L ′

then find-level-decomp M Ls (L ′ # D) k
else Some (L ′, get-maximum-level M (mset D + mset Ls)))

have a1 :
∧
D. find-level-decomp M Ls D k = Some (L, j) =⇒

L ∈ set Ls ∧ get-maximum-level M (mset Ls + mset D − {#L#}) = j ∧ get-level M L = k
using IH by simp

have a2 : find = Some (L, j)
using H unfolding find-def by (auto split: if-split-asm)

{ assume Some (L ′, get-maximum-level M (mset D + mset Ls)) 6= find
then have f3 : L ∈ set Ls and get-maximum-level M (mset Ls + mset (L ′ # D) − {#L#}) = j
using a1 IH a2 unfolding find-def by meson+

moreover then have mset Ls + mset D − {#L#} + {#L ′#} = {#L ′#} + mset D + (mset Ls
− {#L#})

by (auto simp: ac-simps multiset-eq-iff Suc-leI)
ultimately have f4 : get-maximum-level M (mset Ls + mset D − {#L#} + {#L ′#}) = j
by auto

} note f4 = this
have {#L ′#} + (mset Ls + mset D) = mset Ls + (mset D + {#L ′#})

by (auto simp: ac-simps)
then have
L = L ′ −→ get-maximum-level M (mset Ls + mset D) = j ∧ get-level M L ′ = k and
L 6= L ′ −→ L ∈ set Ls ∧ get-maximum-level M (mset Ls + mset D − {#L#} + {#L ′#}) = j ∧
get-level M L = k
using a2 a1 [of L ′ # D] unfolding find-def
apply (metis add.commute add-diff-cancel-left ′ add-mset-add-single mset.simps(2)

option.inject prod.inject)
using f4 a2 a1 [of L ′ # D] unfolding find-def by (metis option.inject prod.inject)

then show ?case by simp
qed

303

lemma find-level-decomp-none:
assumes find-level-decomp M Ls E k = None and mset (L#D) = mset (Ls @ E)
shows ¬(L ∈ set Ls ∧ get-maximum-level M (mset D) < k ∧ k = get-level M L)
using assms

proof (induction Ls arbitrary: E L D)
case Nil
then show ?case by simp

next
case (Cons L ′ Ls) note IH = this(1) and find-none = this(2) and LD = this(3)
have mset D + {#L ′#} = mset E + (mset Ls + {#L ′#}) =⇒ mset D = mset E + mset Ls
by (metis add-right-imp-eq union-assoc)

then show ?case
using find-none IH [of L ′ # E L D] LD by (auto simp add: ac-simps split: if-split-asm)

qed

fun bt-cut where
bt-cut i (Propagated - - # Ls) = bt-cut i Ls |
bt-cut i (Decided K # Ls) = (if count-decided Ls = i then Some (Decided K # Ls) else bt-cut i Ls) |
bt-cut i [] = None

lemma bt-cut-some-decomp:
assumes no-dup M and bt-cut i M = Some M ′

shows ∃K M2 M1 . M = M2 @ M ′ ∧ M ′ = Decided K # M1 ∧ get-level M K = (i+1)
using assms by (induction i M rule: bt-cut.induct) (auto simp: no-dup-def split: if-split-asm)

lemma bt-cut-not-none:
assumes no-dup M and M = M2 @ Decided K # M ′ and get-level M K = (i+1)
shows bt-cut i M 6= None
using assms by (induction M2 arbitrary: M rule: ann-lit-list-induct)
(auto simp: no-dup-def atm-lit-of-set-lits-of-l)

lemma get-all-ann-decomposition-ex:
∃N . (Decided K # M ′, N) ∈ set (get-all-ann-decomposition (M2@Decided K # M ′))
apply (induction M2 rule: ann-lit-list-induct)
apply auto[2]

by (rename-tac L m xs, case-tac get-all-ann-decomposition (xs @ Decided K # M ′))
auto

lemma bt-cut-in-get-all-ann-decomposition:
assumes no-dup M and bt-cut i M = Some M ′

shows ∃M2 . (M ′, M2) ∈ set (get-all-ann-decomposition M)
using bt-cut-some-decomp[OF assms] by (auto simp add: get-all-ann-decomposition-ex)

fun do-backtrack-step where
do-backtrack-step (M , N , U , Some D) =

(case find-level-decomp M D [] (count-decided M) of
None ⇒ (M , N , U , Some D)
| Some (L, j) ⇒

(case bt-cut j M of
Some (Decided - # Ls) ⇒ (Propagated L D # Ls, N , D # U , None)
| - ⇒ (M , N , U , Some D))

) |
do-backtrack-step S = S

end
theory DPLL-W-Implementation

304

imports DPLL-CDCL-W-Implementation DPLL-W HOL−Library.Code-Target-Numeral
begin

4.1.3 Simple Implementation of DPLL
Combining the propagate and decide: a DPLL step
definition DPLL-step :: int dpllW -ann-lits × int literal list list
⇒ int dpllW -ann-lits × int literal list list where

DPLL-step = (λ(Ms, N).
(case find-first-unit-clause N Ms of
Some (L, -) ⇒ (Propagated L () # Ms, N)
| - ⇒
if ∃C ∈ set N . (∀ c ∈ set C . −c ∈ lits-of-l Ms)
then

(case backtrack-split Ms of
(-, L # M) ⇒ (Propagated (− (lit-of L)) () # M , N)
| (-, -) ⇒ (Ms, N)
)

else
(case find-first-unused-var N (lits-of-l Ms) of

Some a ⇒ (Decided a # Ms, N)
| None ⇒ (Ms, N))))

Example of propagation:
value DPLL-step ([Decided (Neg 1)], [[Pos (1 ::int), Neg 2]])

We define the conversion function between the states as defined in Prop-DPLL (with multisets)
and here (with lists).
abbreviation toS ≡ λ(Ms::(int, unit) ann-lits)

(N :: int literal list list). (Ms, mset (map mset N))
abbreviation toS ′ ≡ λ(Ms::(int, unit) ann-lits,

N :: int literal list list). (Ms, mset (map mset N))

Proof of correctness of DPLL-step
lemma DPLL-step-is-a-dpllW -step:
assumes step: (Ms ′, N ′) = DPLL-step (Ms, N)
and neq: (Ms, N) 6= (Ms ′, N ′)
shows dpllW (toS Ms N) (toS Ms ′ N ′)

proof −
let ?S = (Ms, mset (map mset N))
{ fix L E
assume unit: find-first-unit-clause N Ms = Some (L, E)
then have Ms ′N : (Ms ′, N ′) = (Propagated L () # Ms, N)
using step unfolding DPLL-step-def by auto

obtain C where
C : C ∈ set N and
Ms: Ms |=as CNot (mset C − {#L#}) and
undef : undefined-lit Ms L and
L ∈ set C using find-first-unit-clause-some[OF unit] by metis

have dpllW (Ms, mset (map mset N))
(Propagated L () # fst (Ms, mset (map mset N)), snd (Ms, mset (map mset N)))

apply (rule dpllW .propagate)
using Ms undef C 〈L ∈ set C 〉 by (auto simp add: C)

then have ?thesis using Ms ′N by auto

305

}
moreover
{ assume unit: find-first-unit-clause N Ms = None
assume exC : ∃C ∈ set N . Ms |=as CNot (mset C)
then obtain C where C : C ∈ set N and Ms: Ms |=as CNot (mset C) by auto
then obtain L M M ′ where bt: backtrack-split Ms = (M ′, L # M)
using step exC neq unfolding DPLL-step-def prod.case unit
by (cases backtrack-split Ms, rename-tac b, case-tac b) (auto simp: lits-of-l-unfold)

then have is-decided L using backtrack-split-snd-hd-decided[of Ms] by auto
have 1 : dpllW (Ms, mset (map mset N))

(Propagated (− lit-of L) () # M , snd (Ms, mset (map mset N)))
apply (rule dpllW .backtrack[OF - 〈is-decided L〉, of])
using C Ms bt by auto

moreover have (Ms ′, N ′) = (Propagated (− (lit-of L)) () # M , N)
using step exC unfolding DPLL-step-def bt prod.case unit by (auto simp: lits-of-l-unfold)

ultimately have ?thesis by auto
}
moreover
{ assume unit: find-first-unit-clause N Ms = None
assume exC : ¬ (∃C ∈ set N . Ms |=as CNot (mset C))
obtain L where unused: find-first-unused-var N (lits-of-l Ms) = Some L
using step exC neq unfolding DPLL-step-def prod.case unit
by (cases find-first-unused-var N (lits-of-l Ms)) (auto simp: lits-of-l-unfold)

have dpllW (Ms, mset (map mset N))
(Decided L # fst (Ms, mset (map mset N)), snd (Ms, mset (map mset N)))

apply (rule dpllW .decided[of ?S L])
using find-first-unused-var-Some[OF unused]
by (auto simp add: Decided-Propagated-in-iff-in-lits-of-l atms-of-ms-def)

moreover have (Ms ′, N ′) = (Decided L # Ms, N)
using step exC unfolding DPLL-step-def unused prod.case unit by (auto simp: lits-of-l-unfold)

ultimately have ?thesis by auto
}
ultimately show ?thesis by (cases find-first-unit-clause N Ms) auto

qed

lemma DPLL-step-stuck-final-state:
assumes step: (Ms, N) = DPLL-step (Ms, N)
shows conclusive-dpllW -state (toS Ms N)

proof −
have unit: find-first-unit-clause N Ms = None
using step unfolding DPLL-step-def by (auto split:option.splits)

{ assume n: ∃C ∈ set N . Ms |=as CNot (mset C)
then have Ms: (Ms, N) = (case backtrack-split Ms of (x, []) ⇒ (Ms, N)

| (x, L # M) ⇒ (Propagated (− lit-of L) () # M , N))
using step unfolding DPLL-step-def by (simp add: unit lits-of-l-unfold)

have snd (backtrack-split Ms) = []
proof (cases backtrack-split Ms, cases snd (backtrack-split Ms))
fix a b
assume backtrack-split Ms = (a, b) and snd (backtrack-split Ms) = []
then show snd (backtrack-split Ms) = [] by blast

next
fix a b aa list
assume
bt: backtrack-split Ms = (a, b) and

306

bt ′: snd (backtrack-split Ms) = aa # list
then have Ms: Ms = Propagated (− lit-of aa) () # list using Ms by auto
have is-decided aa using backtrack-split-snd-hd-decided[of Ms] bt bt ′ by auto
moreover have fst (backtrack-split Ms) @ aa # list = Ms
using backtrack-split-list-eq[of Ms] bt ′ by auto

ultimately have False unfolding Ms by auto
then show snd (backtrack-split Ms) = [] by blast

qed

then have ?thesis
using n backtrack-snd-empty-not-decided[of Ms] unfolding conclusive-dpllW -state-def
by (cases backtrack-split Ms) auto

}
moreover {
assume n: ¬ (∃C ∈ set N . Ms |=as CNot (mset C))
then have find-first-unused-var N (lits-of-l Ms) = None
using step unfolding DPLL-step-def by (simp add: unit lits-of-l-unfold split: option.splits)

then have a: ∀ a ∈ set N . atm-of ‘ set a ⊆ atm-of ‘ (lits-of-l Ms) by auto
have fst (toS Ms N) |=asm snd (toS Ms N) unfolding true-annots-def CNot-def Ball-def
proof clarify
fix x
assume x: x ∈ set-mset (clauses (toS Ms N))
then have ¬Ms |=as CNot x using n unfolding true-annots-def CNot-def Ball-def by auto
moreover have total-over-m (lits-of-l Ms) {x}
using a x image-iff in-mono atms-of-s-def
unfolding total-over-m-def total-over-set-def lits-of-def by fastforce

ultimately show fst (toS Ms N) |=a x
using total-not-CNot[of lits-of-l Ms x] by (simp add: true-annot-def true-annots-true-cls)

qed
then have ?thesis unfolding conclusive-dpllW -state-def by blast

}
ultimately show ?thesis by blast

qed

Adding invariants
Invariant tested in the function function DPLL-ci :: int dpllW -ann-lits ⇒ int literal list list
⇒ int dpllW -ann-lits × int literal list list where

DPLL-ci Ms N =
(if ¬dpllW -all-inv (Ms, mset (map mset N))
then (Ms, N)
else
let (Ms ′, N ′) = DPLL-step (Ms, N) in
if (Ms ′, N ′) = (Ms, N) then (Ms, N) else DPLL-ci Ms ′ N)
by fast+

termination
proof (relation {(S ′, S). (toS ′ S ′, toS ′ S) ∈ {(S ′, S). dpllW -all-inv S ∧ dpllW S S ′}})
show wf {(S ′, S).(toS ′ S ′, toS ′ S) ∈ {(S ′, S). dpllW -all-inv S ∧ dpllW S S ′}}
using wf-if-measure-f [OF wf-dpllW , of toS ′] by auto

next
fix Ms :: int dpllW -ann-lits and N x xa y
assume¬ ¬ dpllW -all-inv (toS Ms N)
and step: x = DPLL-step (Ms, N)
and x: (xa, y) = x
and (xa, y) 6= (Ms, N)
then show ((xa, N), Ms, N) ∈ {(S ′, S). (toS ′ S ′, toS ′ S) ∈ {(S ′, S). dpllW -all-inv S ∧ dpllW S S ′}}

307

using DPLL-step-is-a-dpllW -step dpllW -same-clauses split-conv by fastforce
qed

No invariant tested function (domintros) DPLL-part:: int dpllW -ann-lits ⇒ int literal list list ⇒
int dpllW -ann-lits × int literal list list where

DPLL-part Ms N =
(let (Ms ′, N ′) = DPLL-step (Ms, N) in
if (Ms ′, N ′) = (Ms, N) then (Ms, N) else DPLL-part Ms ′ N)
by fast+

lemma snd-DPLL-step[simp]:
snd (DPLL-step (Ms, N)) = N
unfolding DPLL-step-def by (auto split: if-split option.splits prod.splits list.splits)

lemma dpllW -all-inv-implieS-2-eq3-and-dom:
assumes dpllW -all-inv (Ms, mset (map mset N))
shows DPLL-ci Ms N = DPLL-part Ms N ∧ DPLL-part-dom (Ms, N)
using assms

proof (induct rule: DPLL-ci.induct)
case (1 Ms N)
have snd (DPLL-step (Ms, N)) = N by auto
then obtain Ms ′ where Ms ′: DPLL-step (Ms, N) = (Ms ′, N) by (cases DPLL-step (Ms, N)) auto
have inv ′: dpllW -all-inv (toS Ms ′ N) by (metis (mono-tags) 1 .prems DPLL-step-is-a-dpllW -step
Ms ′ dpllW -all-inv old.prod.inject)

{ assume (Ms ′, N) 6= (Ms, N)
then have DPLL-ci Ms ′ N = DPLL-part Ms ′ N ∧ DPLL-part-dom (Ms ′, N) using 1 (1)[of - Ms ′

N] Ms ′
1 (2) inv ′ by auto

then have DPLL-part-dom (Ms, N) using DPLL-part.domintros Ms ′ by fastforce
moreover have DPLL-ci Ms N = DPLL-part Ms N using 1 .prems DPLL-part.psimps Ms ′

〈DPLL-ci Ms ′ N = DPLL-part Ms ′ N ∧ DPLL-part-dom (Ms ′, N)〉 〈DPLL-part-dom (Ms, N)〉 by
auto

ultimately have ?case by blast
}
moreover {
assume (Ms ′, N) = (Ms, N)
then have ?case using DPLL-part.domintros DPLL-part.psimps Ms ′ by fastforce

}
ultimately show ?case by blast

qed

lemma DPLL-ci-dpllW -rtranclp:
assumes DPLL-ci Ms N = (Ms ′, N ′)
shows dpllW ∗∗ (toS Ms N) (toS Ms ′ N)
using assms

proof (induct Ms N arbitrary: Ms ′ N ′ rule: DPLL-ci.induct)
case (1 Ms N Ms ′ N ′) note IH = this(1) and step = this(2)
obtain S1 S2 where S : (S1, S2) = DPLL-step (Ms, N) by (cases DPLL-step (Ms, N)) auto

{ assume ¬dpllW -all-inv (toS Ms N)
then have (Ms, N) = (Ms ′, N) using step by auto
then have ?case by auto

}
moreover
{ assume dpllW -all-inv (toS Ms N)
and (S1, S2) = (Ms, N)

308

then have ?case using S step by auto
}
moreover
{ assume dpllW -all-inv (toS Ms N)
and (S1, S2) 6= (Ms, N)
moreover obtain S1

′ S2
′ where DPLL-ci S1 N = (S1

′, S2
′) by (cases DPLL-ci S1 N) auto

moreover have DPLL-ci Ms N = DPLL-ci S1 N using DPLL-ci.simps[of Ms N] calculation
proof −
have (case (S1, S2) of (ms, lss) ⇒
if (ms, lss) = (Ms, N) then (Ms, N) else DPLL-ci ms N) = DPLL-ci Ms N
using S DPLL-ci.simps[of Ms N] calculation by presburger

then have (if (S1, S2) = (Ms, N) then (Ms, N) else DPLL-ci S1 N) = DPLL-ci Ms N
by fastforce

then show ?thesis
using calculation(2) by presburger

qed
ultimately have dpllW ∗∗ (toS S1

′ N) (toS Ms ′ N) using IH [of (S1, S2) S1 S2] S step by simp

moreover have dpllW (toS Ms N) (toS S1 N)
by (metis DPLL-step-is-a-dpllW -step S 〈(S1, S2) 6= (Ms, N)〉 prod.sel(2) snd-DPLL-step)

ultimately have ?case by (metis (mono-tags, hide-lams) IH S 〈(S1, S2) 6= (Ms, N)〉

〈DPLL-ci Ms N = DPLL-ci S1 N 〉 〈dpllW -all-inv (toS Ms N)〉 converse-rtranclp-into-rtranclp
local.step)

}
ultimately show ?case by blast

qed

lemma dpllW -all-inv-dpllW -tranclp-irrefl:
assumes dpllW -all-inv (Ms, N)
and dpllW ++ (Ms, N) (Ms, N)
shows False

proof −
have 1 : wf {(S ′, S). dpllW -all-inv S ∧ dpllW ++ S S ′} using wf-dpllW -tranclp by auto
have ((Ms, N), (Ms, N)) ∈ {(S ′, S). dpllW -all-inv S ∧ dpllW ++ S S ′} using assms by auto
then show False using wf-not-refl[OF 1] by blast

qed

lemma DPLL-ci-final-state:
assumes step: DPLL-ci Ms N = (Ms, N)
and inv: dpllW -all-inv (toS Ms N)
shows conclusive-dpllW -state (toS Ms N)

proof −
have st: dpllW ∗∗ (toS Ms N) (toS Ms N) using DPLL-ci-dpllW -rtranclp[OF step] .
have DPLL-step (Ms, N) = (Ms, N)
proof (rule ccontr)
obtain Ms ′ N ′ where Ms ′N : (Ms ′, N ′) = DPLL-step (Ms, N)
by (cases DPLL-step (Ms, N)) auto

assume ¬ ?thesis
then have DPLL-ci Ms ′ N = (Ms, N) using step inv st Ms ′N [symmetric] by fastforce
then have dpllW ++ (toS Ms N) (toS Ms N)
by (metis DPLL-ci-dpllW -rtranclp DPLL-step-is-a-dpllW -step Ms ′N 〈DPLL-step (Ms, N) 6= (Ms,

N)〉

prod.sel(2) rtranclp-into-tranclp2 snd-DPLL-step)
then show False using dpllW -all-inv-dpllW -tranclp-irrefl inv by auto

qed
then show ?thesis using DPLL-step-stuck-final-state[of Ms N] by simp

309

qed

lemma DPLL-step-obtains:
obtains Ms ′ where (Ms ′, N) = DPLL-step (Ms, N)
unfolding DPLL-step-def by (metis (no-types, lifting) DPLL-step-def prod.collapse snd-DPLL-step)

lemma DPLL-ci-obtains:
obtains Ms ′ where (Ms ′, N) = DPLL-ci Ms N

proof (induct rule: DPLL-ci.induct)
case (1 Ms N) note IH = this(1) and that = this(2)
obtain S where SN : (S , N) = DPLL-step (Ms, N) using DPLL-step-obtains by metis
{ assume ¬ dpllW -all-inv (toS Ms N)
then have ?case using that by auto

}
moreover {
assume n: (S , N) 6= (Ms, N)
and inv: dpllW -all-inv (toS Ms N)
have ∃ms. DPLL-step (Ms, N) = (ms, N)
by (metis 〈

∧
thesisa. (

∧
S . (S , N) = DPLL-step (Ms, N) =⇒ thesisa) =⇒ thesisa〉)

then have ?thesis
using IH that by fastforce

}
moreover {
assume n: (S , N) = (Ms, N)
then have ?case using SN that by fastforce

}
ultimately show ?case by blast

qed

lemma DPLL-ci-no-more-step:
assumes step: DPLL-ci Ms N = (Ms ′, N ′)
shows DPLL-ci Ms ′ N ′ = (Ms ′, N ′)
using assms

proof (induct arbitrary: Ms ′ N ′ rule: DPLL-ci.induct)
case (1 Ms N Ms ′ N ′) note IH = this(1) and step = this(2)
obtain S1 where S : (S1, N) = DPLL-step (Ms, N) using DPLL-step-obtains by auto
{ assume ¬dpllW -all-inv (toS Ms N)
then have ?case using step by auto

}
moreover {
assume dpllW -all-inv (toS Ms N)
and (S1, N) = (Ms, N)
then have ?case using S step by auto

}
moreover
{ assume inv: dpllW -all-inv (toS Ms N)
assume n: (S1, N) 6= (Ms, N)
obtain S1

′ where SS : (S1
′, N) = DPLL-ci S1 N using DPLL-ci-obtains by blast

moreover have DPLL-ci Ms N = DPLL-ci S1 N
proof −
have (case (S1, N) of (ms, lss) ⇒ if (ms, lss) = (Ms, N) then (Ms, N) else DPLL-ci ms N)

= DPLL-ci Ms N
using S DPLL-ci.simps[of Ms N] calculation inv by presburger

then have (if (S1, N) = (Ms, N) then (Ms, N) else DPLL-ci S1 N) = DPLL-ci Ms N
by fastforce

310

then show ?thesis
using calculation n by presburger

qed
moreover
have DPLL-ci S1

′ N = (S1
′, N) using step IH [OF - - S n SS [symmetric]] inv by blast

ultimately have ?case using step by fastforce
}
ultimately show ?case by blast

qed

lemma DPLL-part-dpllW -all-inv-final:
fixes M Ms ′:: (int, unit) ann-lits and
N :: int literal list list

assumes inv: dpllW -all-inv (Ms, mset (map mset N))
and MsN : DPLL-part Ms N = (Ms ′, N)
shows conclusive-dpllW -state (toS Ms ′ N) ∧ dpllW ∗∗ (toS Ms N) (toS Ms ′ N)

proof −
have 2 : DPLL-ci Ms N = DPLL-part Ms N using inv dpllW -all-inv-implieS-2-eq3-and-dom by blast
then have star : dpllW ∗∗ (toS Ms N) (toS Ms ′ N) unfolding MsN using DPLL-ci-dpllW -rtranclp

by blast
then have inv ′: dpllW -all-inv (toS Ms ′ N) using inv rtranclp-dpllW -all-inv by blast
show ?thesis using star DPLL-ci-final-state[OF DPLL-ci-no-more-step inv ′] 2 unfolding MsN by

blast
qed

Embedding the invariant into the type

Defining the type typedef dpllW -state =
{(M ::(int, unit) ann-lits, N ::int literal list list).

dpllW -all-inv (toS M N)}
morphisms rough-state-of state-of

proof
show ([],[]) ∈ {(M , N). dpllW -all-inv (toS M N)} by (auto simp add: dpllW -all-inv-def)

qed

lemma
DPLL-part-dom ([], N)
using dpllW -all-inv-implieS-2-eq3-and-dom[of [] N] by (simp add: dpllW -all-inv-def)

Some type classes instantiation dpllW -state :: equal
begin
definition equal-dpllW -state :: dpllW -state ⇒ dpllW -state ⇒ bool where
equal-dpllW -state S S ′ = (rough-state-of S = rough-state-of S ′)
instance
by standard (simp add: rough-state-of-inject equal-dpllW -state-def)

end

DPLL definition DPLL-step ′ :: dpllW -state ⇒ dpllW -state where
DPLL-step ′ S = state-of (DPLL-step (rough-state-of S))

declare rough-state-of-inverse[simp]

lemma DPLL-step-dpllW -conc-inv:
DPLL-step (rough-state-of S) ∈ {(M , N). dpllW -all-inv (toS M N)}

311

proof −
obtain M N where
S : 〈rough-state-of S = (M , N)〉

by (cases 〈rough-state-of S 〉)
obtain M ′ N ′ where
S ′: 〈DPLL-step (rough-state-of S) = (M ′, N ′)〉

by (cases 〈DPLL-step (rough-state-of S)〉)
have 〈dpllW ∗∗ (toS M N) (toS M ′ N ′)〉

by (metis DPLL-step-is-a-dpllW -step S S ′ fst-conv r-into-rtranclp rtranclp.rtrancl-refl snd-conv)
then show ?thesis
using rough-state-of [of S] unfolding S ′ unfolding S by (auto intro: rtranclp-dpllW -all-inv)

qed

lemma rough-state-of-DPLL-step ′-DPLL-step[simp]:
rough-state-of (DPLL-step ′ S) = DPLL-step (rough-state-of S)
using DPLL-step-dpllW -conc-inv DPLL-step ′-def state-of-inverse by auto

function DPLL-tot:: dpllW -state ⇒ dpllW -state where
DPLL-tot S =

(let S ′ = DPLL-step ′ S in
if S ′ = S then S else DPLL-tot S ′)
by fast+

termination
proof (relation {(T ′, T).

(rough-state-of T ′, rough-state-of T)
∈ {(S ′, S). (toS ′ S ′, toS ′ S)

∈ {(S ′, S). dpllW -all-inv S ∧ dpllW S S ′}}})
show wf {(b, a).

(rough-state-of b, rough-state-of a)
∈ {(b, a). (toS ′ b, toS ′ a)
∈ {(b, a). dpllW -all-inv a ∧ dpllW a b}}}

using wf-if-measure-f [OF wf-if-measure-f [OF wf-dpllW , of toS ′], of rough-state-of] .
next
fix S x
assume x: x = DPLL-step ′ S
and x 6= S
have dpllW -all-inv (case rough-state-of S of (Ms, N) ⇒ (Ms, mset (map mset N)))
by (metis (no-types, lifting) case-prodE mem-Collect-eq old.prod.case rough-state-of)

moreover have dpllW (case rough-state-of S of (Ms, N) ⇒ (Ms, mset (map mset N)))
(case rough-state-of (DPLL-step ′ S) of (Ms, N) ⇒ (Ms, mset (map mset N)))

proof −
obtain Ms N where Ms: (Ms, N) = rough-state-of S by (cases rough-state-of S) auto
have dpllW -all-inv (toS ′ (Ms, N)) using calculation unfolding Ms by blast
moreover obtain Ms ′ N ′ where Ms ′: (Ms ′, N ′) = rough-state-of (DPLL-step ′ S)
by (cases rough-state-of (DPLL-step ′ S)) auto

ultimately have dpllW -all-inv (toS ′ (Ms ′, N ′)) unfolding Ms ′
by (metis (no-types, lifting) case-prod-unfold mem-Collect-eq rough-state-of)

have dpllW (toS Ms N) (toS Ms ′ N ′)
apply (rule DPLL-step-is-a-dpllW -step[of Ms ′ N ′ Ms N])
unfolding Ms Ms ′ using 〈x 6= S 〉 rough-state-of-inject x by fastforce+

then show ?thesis unfolding Ms[symmetric] Ms ′[symmetric] by auto
qed

ultimately show (x, S) ∈ {(T ′, T). (rough-state-of T ′, rough-state-of T)
∈ {(S ′, S). (toS ′ S ′, toS ′ S) ∈ {(S ′, S). dpllW -all-inv S ∧ dpllW S S ′}}}
by (auto simp add: x)

312

qed

lemma [code]:
DPLL-tot S =

(let S ′ = DPLL-step ′ S in
if S ′ = S then S else DPLL-tot S ′) by auto

lemma DPLL-tot-DPLL-step-DPLL-tot[simp]: DPLL-tot (DPLL-step ′ S) = DPLL-tot S
apply (cases DPLL-step ′ S = S)
apply simp
unfolding DPLL-tot.simps[of S] by (simp del: DPLL-tot.simps)

lemma DOPLL-step ′-DPLL-tot[simp]:
DPLL-step ′ (DPLL-tot S) = DPLL-tot S
by (rule DPLL-tot.induct[of λS . DPLL-step ′ (DPLL-tot S) = DPLL-tot S S])

(metis (full-types) DPLL-tot.simps)

lemma DPLL-tot-final-state:
assumes DPLL-tot S = S
shows conclusive-dpllW -state (toS ′ (rough-state-of S))

proof −
have DPLL-step ′ S = S using assms[symmetric] DOPLL-step ′-DPLL-tot by metis
then have DPLL-step (rough-state-of S) = (rough-state-of S)
unfolding DPLL-step ′-def using DPLL-step-dpllW -conc-inv rough-state-of-inverse
by (metis rough-state-of-DPLL-step ′-DPLL-step)

then show ?thesis
by (metis (mono-tags, lifting) DPLL-step-stuck-final-state old.prod.exhaust split-conv)

qed

lemma DPLL-tot-star :
assumes rough-state-of (DPLL-tot S) = S ′
shows dpllW ∗∗ (toS ′ (rough-state-of S)) (toS ′ S ′)
using assms

proof (induction arbitrary: S ′ rule: DPLL-tot.induct)
case (1 S S ′)
let ?x = DPLL-step ′ S
{ assume ?x = S
then have ?case using 1 (2) by simp

}
moreover {
assume S : ?x 6= S
have ?case
apply (cases DPLL-step ′ S = S)
using S apply blast

by (smt 1 .IH 1 .prems DPLL-step-is-a-dpllW -step DPLL-tot.simps case-prodE2
rough-state-of-DPLL-step ′-DPLL-step rtranclp.rtrancl-into-rtrancl rtranclp.rtrancl-refl
rtranclp-idemp split-conv)

}
ultimately show ?case by auto

qed

lemma rough-state-of-rough-state-of-Nil[simp]:
rough-state-of (state-of ([], N)) = ([], N)
apply (rule DPLL-W-Implementation.dpllW -state.state-of-inverse)

313

unfolding dpllW -all-inv-def by auto

Theorem of correctness
lemma DPLL-tot-correct:
assumes rough-state-of (DPLL-tot (state-of (([], N)))) = (M , N ′)
and (M ′, N ′′) = toS ′ (M , N ′)
shows M ′ |=asm N ′′←→ satisfiable (set-mset N ′′)

proof −
have dpllW ∗∗ (toS ′ ([], N)) (toS ′ (M , N ′)) using DPLL-tot-star [OF assms(1)] by auto
moreover have conclusive-dpllW -state (toS ′ (M , N ′))
using DPLL-tot-final-state by (metis (mono-tags, lifting) DOPLL-step ′-DPLL-tot DPLL-tot.simps
assms(1))

ultimately show ?thesis using dpllW -conclusive-state-correct by (smt DPLL-ci.simps
DPLL-ci-dpllW -rtranclp assms(2) dpllW -all-inv-def prod.case prod.sel(1) prod.sel(2)
rtranclp-dpllW -inv(3) rtranclp-dpllW -inv-starting-from-0)

qed

Code export
A conversion to DPLL-W-Implementation.dpllW -state definition Con :: (int, unit) ann-lits ×
int literal list list

⇒ dpllW -state where
Con xs = state-of (if dpllW -all-inv (toS (fst xs) (snd xs)) then xs else ([], []))

lemma [code abstype]:
Con (rough-state-of S) = S
using rough-state-of [of S] unfolding Con-def by auto

declare rough-state-of-DPLL-step ′-DPLL-step[code abstract]

lemma Con-DPLL-step-rough-state-of-state-of [simp]:
Con (DPLL-step (rough-state-of s)) = state-of (DPLL-step (rough-state-of s))
unfolding Con-def by (metis (mono-tags, lifting) DPLL-step-dpllW -conc-inv mem-Collect-eq
prod.case-eq-if)

A slightly different version of DPLL-tot where the returned boolean indicates the result.
definition DPLL-tot-rep where
DPLL-tot-rep S =

(let (M , N) = (rough-state-of (DPLL-tot S)) in (∀A ∈ set N . (∃ a∈set A. a ∈ lits-of-l M), M))

One version of the generated SML code is here, but not included in the generated document.
The only differences are:

• export ′a literal from the SML Module Clausal-Logic;

• export the constructor Con from DPLL-W-Implementation;

• export the int constructor from Arith.
All these allows to test on the code on some examples.

end
theory CDCL-W-Implementation
imports DPLL-CDCL-W-Implementation CDCL-W-Termination

HOL−Library.Code-Target-Numeral
begin

314

4.1.4 List-based CDCL Implementation

We here have a very simple implementation of Weidenbach’s CDCL, based on the same principle
as the implementation of DPLL: iterating over-and-over on lists. We do not use any fancy data-
structure (see the two-watched literals for a better suited data-structure).
The goal was (as for DPLL) to test the infrastructure and see if an important lemma was missing
to prove the correctness and the termination of a simple implementation.

Types and Instantiation
notation image-mset (infixr ‘# 90)

type-synonym ′a cdclW -restart-mark = ′a clause

type-synonym ′v cdclW -restart-ann-lit = (′v, ′v cdclW -restart-mark) ann-lit
type-synonym ′v cdclW -restart-ann-lits = (′v, ′v cdclW -restart-mark) ann-lits
type-synonym ′v cdclW -restart-state =
′v cdclW -restart-ann-lits × ′v clauses × ′v clauses × ′v clause option

abbreviation raw-trail :: ′a × ′b × ′c × ′d ⇒ ′a where
raw-trail ≡ (λ(M , -). M)

abbreviation raw-cons-trail :: ′a ⇒ ′a list × ′b × ′c × ′d ⇒ ′a list × ′b × ′c × ′d
where

raw-cons-trail ≡ (λL (M , S). (L#M , S))

abbreviation raw-tl-trail :: ′a list × ′b × ′c × ′d ⇒ ′a list × ′b × ′c × ′d where
raw-tl-trail ≡ (λ(M , S). (tl M , S))

abbreviation raw-init-clss :: ′a × ′b × ′c × ′d ⇒ ′b where
raw-init-clss ≡ λ(M , N , -). N

abbreviation raw-learned-clss :: ′a × ′b × ′c × ′d ⇒ ′c where
raw-learned-clss ≡ λ(M , N , U , -). U

abbreviation raw-conflicting :: ′a × ′b × ′c × ′d ⇒ ′d where
raw-conflicting ≡ λ(M , N , U , D). D

abbreviation raw-update-conflicting :: ′d ⇒ ′a × ′b × ′c × ′d ⇒ ′a × ′b × ′c × ′d
where

raw-update-conflicting ≡ λS (M , N , U , -). (M , N , U , S)

abbreviation S0-cdclW -restart N ≡ (([], N , {#}, None):: ′v cdclW -restart-state)

abbreviation raw-add-learned-clss where
raw-add-learned-clss ≡ λC (M , N , U , S). (M , N , {#C#} + U , S)

abbreviation raw-remove-cls where
raw-remove-cls ≡ λC (M , N , U , S). (M , removeAll-mset C N , removeAll-mset C U , S)

lemma raw-trail-conv: raw-trail (M , N , U , D) = M and
clauses-conv: raw-init-clss (M , N , U , D) = N and
raw-learned-clss-conv: raw-learned-clss (M , N , U , D) = U and
raw-conflicting-conv: raw-conflicting (M , N , U , D) = D
by auto

315

lemma state-conv:
S = (raw-trail S , raw-init-clss S , raw-learned-clss S , raw-conflicting S)
by (cases S) auto

definition state where
〈state S = (raw-trail S , raw-init-clss S , raw-learned-clss S , raw-conflicting S , ())〉

interpretation stateW

(=)
state
raw-trail raw-init-clss raw-learned-clss raw-conflicting
λL (M , S). (L # M , S)
λ(M , S). (tl M , S)
λC (M , N , U , S). (M , N , add-mset C U , S)
λC (M , N , U , S). (M , removeAll-mset C N , removeAll-mset C U , S)
λD (M , N , U , -). (M , N , U , D)
λN . ([], N , {#}, None)
by unfold-locales (auto simp: state-def)

declare state-simp[simp del]

interpretation conflict-driven-clause-learningW

(=) state
raw-trail raw-init-clss raw-learned-clss
raw-conflicting
λL (M , S). (L # M , S)
λ(M , S). (tl M , S)
λC (M , N , U , S). (M , N , add-mset C U , S)
λC (M , N , U , S). (M , removeAll-mset C N , removeAll-mset C U , S)
λD (M , N , U , -). (M , N , U , D)
λN . ([], N , {#}, None)
by unfold-locales auto

declare clauses-def [simp]

lemma reduce-trail-to-empty-trail[simp]:
reduce-trail-to F ([], aa, ab, b) = ([], aa, ab, b)
using reduce-trail-to.simps by auto

lemma reduce-trail-to ′:
reduce-trail-to F S =

((if length (raw-trail S) ≥ length F
then drop (length (raw-trail S) − length F) (raw-trail S)
else []), raw-init-clss S , raw-learned-clss S , raw-conflicting S)
(is ?S = -)

proof (induction F S rule: reduce-trail-to.induct)
case (1 F S) note IH = this
show ?case
proof (cases raw-trail S)
case Nil
then show ?thesis using IH by (cases S) auto

next
case (Cons L M)
then show ?thesis
apply (cases Suc (length M) > length F)

316

prefer 2 using IH reduce-trail-to-length-ne[of S F] apply (cases S) apply auto[]
apply (subgoal-tac Suc (length M) − length F = Suc (length M − length F))
using reduce-trail-to-length-ne[of S F] IH by (cases S) auto

qed
qed

Definition of the rules
Types lemma true-raw-init-clss-remdups[simp]:
I |=s (mset ◦ remdups) ‘ N ←→ I |=s mset ‘ N
by (simp add: true-clss-def)

lemma true-clss-raw-remdups-mset-mset[simp]:
〈I |=s (λL. remdups-mset (mset L)) ‘ N ′←→ I |=s mset ‘ N ′〉
by (simp add: true-clss-def)

declare satisfiable-carac[iff del]
lemma satisfiable-mset-remdups[simp]:
satisfiable ((mset ◦ remdups) ‘ N) ←→ satisfiable (mset ‘ N)
satisfiable ((λL. remdups-mset (mset L)) ‘ N ′) ←→ satisfiable (mset ‘ N ′)
unfolding satisfiable-carac[symmetric] by simp-all

type-synonym ′v cdclW -restart-state-inv-st = (′v, ′v literal list) ann-lit list ×
′v literal list list × ′v literal list list × ′v literal list option

We need some functions to convert between our abstract state ′v cdclW -restart-state and the
concrete state ′v cdclW -restart-state-inv-st.
fun convert :: (′a, ′c list) ann-lit ⇒ (′a, ′c multiset) ann-lit where
convert (Propagated L C) = Propagated L (mset C) |
convert (Decided K) = Decided K

abbreviation convertC :: ′a list option ⇒ ′a multiset option where
convertC ≡ map-option mset

lemma convert-Propagated[elim!]:
convert z = Propagated L C =⇒ (∃C ′. z = Propagated L C ′ ∧ C = mset C ′)
by (cases z) auto

lemma is-decided-convert[simp]: is-decided (convert x) = is-decided x
by (cases x) auto

lemma is-decided-convert-is-decided[simp]: 〈(is-decided ◦ convert) = (is-decided)〉

by auto

lemma get-level-map-convert[simp]:
get-level (map convert M) x = get-level M x
by (induction M rule: ann-lit-list-induct) (auto simp: comp-def get-level-def)

lemma get-maximum-level-map-convert[simp]:
get-maximum-level (map convert M) D = get-maximum-level M D
by (induction D) (auto simp add: get-maximum-level-add-mset)

lemma count-decided-convert[simp]:
〈count-decided (map convert M) = count-decided M 〉

by (auto simp: count-decided-def)

317

lemma atm-lit-of-convert[simp]:
lit-of (convert x) = lit-of x
by (cases x) auto

lemma no-dup-convert[simp]:
〈no-dup (map convert M) = no-dup M 〉

by (auto simp: no-dup-def image-image comp-def)

Conversion function
fun toS :: ′v cdclW -restart-state-inv-st ⇒ ′v cdclW -restart-state where
toS (M , N , U , C) = (map convert M , mset (map mset N), mset (map mset U), convertC C)

Definition an abstract type
typedef ′v cdclW -restart-state-inv = {S :: ′v cdclW -restart-state-inv-st. cdclW -all-struct-inv (toS S)}
morphisms rough-state-of state-of

proof
show ([],[], [], None) ∈ {S . cdclW -all-struct-inv (toS S)}
by (auto simp add: cdclW -all-struct-inv-def)

qed

instantiation cdclW -restart-state-inv :: (type) equal
begin
definition equal-cdclW -restart-state-inv :: ′v cdclW -restart-state-inv ⇒
′v cdclW -restart-state-inv ⇒ bool where
equal-cdclW -restart-state-inv S S ′ = (rough-state-of S = rough-state-of S ′)
instance
by standard (simp add: rough-state-of-inject equal-cdclW -restart-state-inv-def)

end

lemma lits-of-map-convert[simp]: lits-of-l (map convert M) = lits-of-l M
by (induction M rule: ann-lit-list-induct) simp-all

lemma undefined-lit-map-convert[iff]:
undefined-lit (map convert M) L ←→ undefined-lit M L
by (auto simp add: defined-lit-map image-image)

lemma true-annot-map-convert[simp]: map convert M |=a N ←→ M |=a N
by (simp-all add: true-annot-def image-image lits-of-def)

lemma true-annots-map-convert[simp]: map convert M |=as N ←→ M |=as N
unfolding true-annots-def by auto

lemmas propagateE
lemma find-first-unit-clause-some-is-propagate:
assumes H : find-first-unit-clause (N @ U) M = Some (L, C)
shows propagate (toS (M , N , U , None)) (toS (Propagated L C # M , N , U , None))
using assms
by (auto dest!: find-first-unit-clause-some simp add: propagate.simps
intro!: exI [of - mset C − {#L#}])

The Transitions
Propagate definition do-propagate-step :: 〈 ′v cdclW -restart-state-inv-st ⇒ ′v cdclW -restart-state-inv-st〉

where
do-propagate-step S =

318

(case S of
(M , N , U , None) ⇒

(case find-first-unit-clause (N @ U) M of
Some (L, C) ⇒ (Propagated L C # M , N , U , None)
| None ⇒ (M , N , U , None))

| S ⇒ S)

lemma do-propagate-step:
do-propagate-step S 6= S =⇒ propagate (toS S) (toS (do-propagate-step S))
apply (cases S , cases raw-conflicting S)
using find-first-unit-clause-some-is-propagate[of raw-init-clss S raw-learned-clss S raw-trail S]
by (auto simp add: do-propagate-step-def split: option.splits)

lemma do-propagate-step-option[simp]:
raw-conflicting S 6= None =⇒ do-propagate-step S = S
unfolding do-propagate-step-def by (cases S , cases raw-conflicting S) auto

lemma do-propagate-step-no-step:
assumes prop-step: do-propagate-step S = S
shows no-step propagate (toS S)

proof (standard, standard)
fix T
assume propagate (toS S) T
then obtain M N U C L E where
toSS : toS S = (M , N , U , None) and
LE : L ∈# E and
T : T = (Propagated L E # M , N , U , None) and
MC : M |=as CNot C and
undef : undefined-lit M L and
CL: C + {#L#} ∈# N + U
apply − by (cases toS S) (auto elim!: propagateE)

let ?M = raw-trail S
let ?N = raw-init-clss S
let ?U = raw-learned-clss S
let ?D = None
have S : S = (?M , ?N , ?U , ?D)
using toSS by (cases S , cases raw-conflicting S) simp-all

have S : toS S = toS (?M , ?N , ?U , ?D)
unfolding S [symmetric] by simp

have
M : M = map convert ?M and
N : N = mset (map mset ?N) and
U : U = mset (map mset ?U)
using toSS [unfolded S] by auto

obtain D where
DCL: mset D = C + {#L#} and
D: D ∈ set (?N @ ?U)
using CL unfolding N U by auto

obtain C ′ L ′ where
setD: set D = set (L ′ # C ′) and
C ′: mset C ′ = C and
L: L = L ′
using DCL by (metis add-mset-add-single ex-mset list.simps(15) set-mset-add-mset-insert

set-mset-mset)

319

have find-first-unit-clause (?N @ ?U) ?M 6= None
apply (rule find-first-unit-clause-none[of D ?N @ ?U ?M L, OF D])
using MC setD DCL M MC unfolding C ′[symmetric] apply auto[1]
using M undef apply auto[1]
unfolding setD L by auto

then show False using prop-step S unfolding do-propagate-step-def by (cases S) auto
qed

Conflict fun find-conflict where
find-conflict M [] = None |
find-conflict M (N # Ns) = (if (∀ c ∈ set N . −c ∈ lits-of-l M) then Some N else find-conflict M Ns)

lemma find-conflict-Some:
find-conflict M Ns = Some N =⇒ N ∈ set Ns ∧ M |=as CNot (mset N)
by (induction Ns rule: find-conflict.induct)

(auto split: if-split-asm simp: lits-of-l-unfold)

lemma find-conflict-None:
find-conflict M Ns = None ←→ (∀N ∈ set Ns. ¬M |=as CNot (mset N))
by (induction Ns) (auto simp: lits-of-l-unfold)

lemma find-conflict-None-no-confl:
find-conflict M (N@U) = None ←→ no-step conflict (toS (M , N , U , None))
by (auto simp add: find-conflict-None conflict.simps)

definition do-conflict-step :: 〈 ′v cdclW -restart-state-inv-st ⇒ ′v cdclW -restart-state-inv-st〉 where
do-conflict-step S =

(case S of
(M , N , U , None) ⇒

(case find-conflict M (N @ U) of
Some a ⇒ (M , N , U , Some a)
| None ⇒ (M , N , U , None))

| S ⇒ S)

lemma do-conflict-step:
do-conflict-step S 6= S =⇒ conflict (toS S) (toS (do-conflict-step S))
apply (cases S , cases raw-conflicting S)
unfolding conflict.simps do-conflict-step-def
by (auto dest!:find-conflict-Some split: option.splits)

lemma do-conflict-step-no-step:
do-conflict-step S = S =⇒ no-step conflict (toS S)
apply (cases S , cases raw-conflicting S)
unfolding do-conflict-step-def
using find-conflict-None-no-confl[of raw-trail S raw-init-clss S raw-learned-clss S]
by (auto split: option.splits elim!: conflictE)

lemma do-conflict-step-option[simp]:
raw-conflicting S 6= None =⇒ do-conflict-step S = S
unfolding do-conflict-step-def by (cases S , cases raw-conflicting S) auto

lemma do-conflict-step-raw-conflicting[dest]:
do-conflict-step S 6= S =⇒ raw-conflicting (do-conflict-step S) 6= None
unfolding do-conflict-step-def by (cases S , cases raw-conflicting S) (auto split: option.splits)

definition do-cp-step where

320

do-cp-step S =
(do-propagate-step o do-conflict-step) S

lemma cdclW -all-struct-inv-rough-state[simp]: cdclW -all-struct-inv (toS (rough-state-of S))
using rough-state-of by auto

lemma [simp]: cdclW -all-struct-inv (toS S) =⇒ rough-state-of (state-of S) = S
by (simp add: state-of-inverse)

Skip fun do-skip-step :: ′v cdclW -restart-state-inv-st ⇒ ′v cdclW -restart-state-inv-st where
do-skip-step (Propagated L C # Ls, N , U , Some D) =

(if −L /∈ set D ∧ D 6= []
then (Ls, N , U , Some D)
else (Propagated L C #Ls, N , U , Some D)) |

do-skip-step S = S

lemma do-skip-step:
do-skip-step S 6= S =⇒ skip (toS S) (toS (do-skip-step S))
apply (induction S rule: do-skip-step.induct)
by (auto simp add: skip.simps)

lemma do-skip-step-no:
do-skip-step S = S =⇒ no-step skip (toS S)
by (induction S rule: do-skip-step.induct)

(auto simp add: other split: if-split-asm elim: skipE)

lemma do-skip-step-raw-trail-is-None[iff]:
do-skip-step S = (a, b, c, None) ←→ S = (a, b, c, None)
by (cases S rule: do-skip-step.cases) auto

Resolve fun maximum-level-code:: ′a literal list ⇒ (′a, ′a literal list) ann-lit list ⇒ nat
where

maximum-level-code [] - = 0 |
maximum-level-code (L # Ls) M = max (get-level M L) (maximum-level-code Ls M)

lemma maximum-level-code-eq-get-maximum-level[code, simp]:
maximum-level-code D M = get-maximum-level M (mset D)
by (induction D) (auto simp add: get-maximum-level-add-mset)

fun do-resolve-step :: ′v cdclW -restart-state-inv-st ⇒ ′v cdclW -restart-state-inv-st where
do-resolve-step (Propagated L C # Ls, N , U , Some D) =

(if −L ∈ set D ∧ maximum-level-code (remove1 (−L) D) (Propagated L C # Ls) = count-decided Ls
then (Ls, N , U , Some (remdups (remove1 L C @ remove1 (−L) D)))
else (Propagated L C # Ls, N , U , Some D)) |

do-resolve-step S = S

lemma do-resolve-step:
cdclW -all-struct-inv (toS S) =⇒ do-resolve-step S 6= S
=⇒ resolve (toS S) (toS (do-resolve-step S))

proof (induction S rule: do-resolve-step.induct)
case (1 L C M N U D)
then have
− L ∈ set D and
M : maximum-level-code (remove1 (−L) D) (Propagated L C # M) = count-decided M
by (cases mset D − {#− L#} = {#},

321

auto dest!: get-maximum-level-exists-lit-of-max-level[of - Propagated L C # M]
split: if-split-asm)+

have every-mark-is-a-conflict (toS (Propagated L C # M , N , U , Some D))
using 1 (1) unfolding cdclW -all-struct-inv-def cdclW -conflicting-def by fast

then have L ∈ set C by fastforce
then obtain C ′ where C : mset C = add-mset L C ′
by (metis in-multiset-in-set insert-DiffM)

obtain D ′ where D: mset D = add-mset (−L) D ′
using 〈− L ∈ set D〉 by (metis in-multiset-in-set insert-DiffM)

have D ′L: D ′ + {#− L#} − {#−L#} = D ′ by (auto simp add: multiset-eq-iff)

have CL: mset C − {#L#} + {#L#} = mset C using 〈L ∈ set C 〉 by (auto simp add: multiset-eq-iff)
have get-maximum-level (Propagated L (C ′ + {#L#}) # map convert M) D ′ = count-decided M
using M [simplified] unfolding maximum-level-code-eq-get-maximum-level C [symmetric] CL
by (metis D D ′L 〈add-mset L C ′ = mset C 〉 add-mset-add-single convert.simps(1)

get-maximum-level-map-convert list.simps(9))
then have
resolve

(map convert (Propagated L C # M), mset ‘# mset N , mset ‘# mset U , Some (mset D))
(map convert M , mset ‘# mset N , mset ‘# mset U ,
Some (((mset D − {#−L#}) ∪# (mset C − {#L#}))))

unfolding resolve.simps
by (simp add: C D)

moreover have
(map convert (Propagated L C # M), mset ‘# mset N , mset ‘# mset U , Some (mset D))
= toS (Propagated L C # M , N , U , Some D)
by auto

moreover
have distinct-mset (mset C) and distinct-mset (mset D)
using 〈cdclW -all-struct-inv (toS (Propagated L C # M , N , U , Some D))〉

unfolding cdclW -all-struct-inv-def distinct-cdclW -state-def
by auto

then have (mset C − {#L#}) ∪# (mset D − {#− L#}) =
remdups-mset (mset C − {#L#} + (mset D − {#− L#}))
by (auto simp: distinct-mset-rempdups-union-mset)

then have (map convert M , mset ‘# mset N , mset ‘# mset U ,
Some ((mset D − {#− L#}) ∪# (mset C − {#L#})))
= toS (do-resolve-step (Propagated L C # M , N , U , Some D))
using 〈− L ∈ set D〉 M by (auto simp: ac-simps)

ultimately show ?case
by simp

qed auto

lemma do-resolve-step-no:
do-resolve-step S = S =⇒ no-step resolve (toS S)
apply (cases S ; cases hd (raw-trail S);cases raw-trail S ; cases raw-conflicting S)
by (auto
elim!: resolveE split: if-split-asm
dest!: union-single-eq-member
simp del: in-multiset-in-set get-maximum-level-map-convert
simp: get-maximum-level-map-convert[symmetric] count-decided-def)

lemma rough-state-of-state-of-resolve[simp]:
cdclW -all-struct-inv (toS S) =⇒
rough-state-of (state-of (do-resolve-step S)) = do-resolve-step S

apply (rule state-of-inverse)

322

apply (cases do-resolve-step S = S)
apply (simp; fail)
by (metis (mono-tags, lifting) bj cdclW -all-struct-inv-inv do-resolve-step mem-Collect-eq other

resolve)

lemma do-resolve-step-raw-trail-is-None[iff]:
do-resolve-step S = (a, b, c, None) ←→ S = (a, b, c, None)
by (cases S rule: do-resolve-step.cases) auto

Backjumping lemma get-all-ann-decomposition-map-convert:
(get-all-ann-decomposition (map convert M)) =
map (λ(a, b). (map convert a, map convert b)) (get-all-ann-decomposition M)

apply (induction M rule: ann-lit-list-induct)
apply simp

by (rename-tac L xs, case-tac get-all-ann-decomposition xs; auto)+

lemma do-backtrack-step:
assumes
db: do-backtrack-step S 6= S and
inv: cdclW -all-struct-inv (toS S)

shows backtrack (toS S) (toS (do-backtrack-step S))
proof (cases S , cases raw-conflicting S , goal-cases)
case (1 M N U E)
then show ?case using db by auto

next
case (2 M N U E C) note S = this(1) and confl = this(2)
have E : E = Some C using S confl by auto

obtain L j where fd: find-level-decomp M C [] (count-decided M) = Some (L, j)
using db unfolding S E by (cases C) (auto split: if-split-asm option.splits list.splits

annotated-lit.splits)
have
L ∈ set C and
j: get-maximum-level M (mset (remove1 L C)) = j and
levL: get-level M L = count-decided M
using find-level-decomp-some[OF fd] by auto

obtain C ′ where C : mset C = add-mset L (mset C ′)
using 〈L ∈ set C 〉 by (metis ex-mset in-multiset-in-set insert-DiffM)

obtain M2 where M2 : bt-cut j M = Some M2
using db fd unfolding S E by (auto split: option.splits)

have no-dup M
using inv unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def S
by (auto simp: comp-def)

then obtain M1 K c where
M1 : M2 = Decided K # M1 and lev-K : get-level M K = j + 1 and
c: M = c @ M2
using bt-cut-some-decomp[OF - M2] by (cases M2) auto

have j ≤ count-decided M unfolding c j[symmetric]
by (metis (mono-tags, lifting) count-decided-ge-get-maximum-level)

have max-l-j: maximum-level-code C ′ M = j
using db fd M2 C unfolding S E by (auto

split: option.splits list.splits annotated-lit.splits
dest!: find-level-decomp-some)[1]

have get-maximum-level M (mset C) ≥ count-decided M
using 〈L ∈ set C 〉 levL get-maximum-level-ge-get-level by (metis set-mset-mset)

moreover have get-maximum-level M (mset C) ≤ count-decided M

323

using count-decided-ge-get-maximum-level by blast
ultimately have max-lev-count-dec: get-maximum-level M (mset C) = count-decided M by auto

have clss-C : 〈clauses (toS S) |=pm mset C 〉 and
M-C : 〈M |=as CNot (mset C)〉 and
lev-inv: cdclW -M-level-inv (toS S)
using inv unfolding cdclW -all-struct-inv-def cdclW -learned-clause-alt-def S E
cdclW -conflicting-def

by auto
obtain M2 ′ where M2 ′: (M2 , M2 ′) ∈ set (get-all-ann-decomposition M)
using bt-cut-in-get-all-ann-decomposition[OF 〈no-dup M 〉 M2] by metis

have decomp:
(Decided K # (map convert M1),

(map convert M2 ′)) ∈
set (get-all-ann-decomposition (map convert M))

using imageI [of - - λ(a, b). (map convert a, map convert b), OF M2 ′] j
unfolding S E M1 by (simp add: get-all-ann-decomposition-map-convert)

have decomp ′:
(Decided K # (map convert M1),

(map convert M2 ′)) ∈
set (get-all-ann-decomposition (raw-trail (toS S)))

using imageI [of - - λ(a, b). (map convert a, map convert b), OF M2 ′] j
unfolding S E M1 by (simp add: get-all-ann-decomposition-map-convert)

show ?case
apply (rule backtrackW -rule[of 〈toS S 〉 L 〈remove1-mset L (mset C)〉 K 〈map convert M1 〉 〈map

convert M2 ′〉
j])

subgoal using 〈L ∈ set C 〉 unfolding S E M1 by auto
subgoal using M2 ′ decomp unfolding S by auto
subgoal using levL unfolding S E M1 by auto
subgoal using 〈L ∈ set C 〉 levL 〈get-maximum-level M (mset C) = count-decided M 〉

unfolding S E M1 by auto
subgoal using j unfolding S E M1 by auto
subgoal using 〈L ∈ set C 〉 lev-K unfolding S E M1 by auto
subgoal using S confl fd M2 M1 decomp 〈L ∈ set C 〉 by (auto simp: reduce-trail-to ′ M2 c)
subgoal using inv unfolding cdclW -all-struct-inv-def S by fast
subgoal using inv unfolding cdclW -all-struct-inv-def S by fast
subgoal using inv unfolding cdclW -all-struct-inv-def S by fast
done

qed

lemma map-eq-list-length:
map f L = L ′ =⇒ length L = length L ′
by auto

lemma map-mmset-of-mlit-eq-cons:
assumes map convert M = a @ c
obtains a ′ c ′ where

M = a ′ @ c ′ and
a = map convert a ′ and
c = map convert c ′

using that[of take (length a) M drop (length a) M]
assms by (metis append-eq-conv-conj append-take-drop-id drop-map take-map)

lemma Decided-convert-iff :

324

Decided K = convert za ←→ za = Decided K
by (cases za) auto

declare conflict-is-false-with-level-def [simp del]

lemma do-backtrack-step-no:
assumes
db: do-backtrack-step S = S and
inv: cdclW -all-struct-inv (toS S) and
ns: 〈no-step skip (toS S)〉 〈no-step resolve (toS S)〉

shows no-step backtrack (toS S)
proof (rule ccontr , cases S , cases raw-conflicting S , goal-cases)
case 1
then show ?case using db by (auto split: option.splits elim: backtrackE)

next
case (2 M N U E C) note bt = this(1) and S = this(2) and confl = this(3)
have E : E = Some C using S confl by auto
obtain T ′ where 〈simple-backtrack (toS S) T ′〉
using no-analyse-backtrack-Ex-simple-backtrack[of 〈toS S 〉]
bt inv ns unfolding cdclW -all-struct-inv-def by meson

then obtain K j M1 M2 L D where
CE : map-option mset (raw-conflicting S) = Some (add-mset L D) and
decomp: (Decided K # M1 , M2) ∈ set (get-all-ann-decomposition (raw-trail S)) and
levL: get-level (raw-trail S) L = count-decided (raw-trail (toS S)) and
k: get-level (raw-trail S) L = get-maximum-level (raw-trail S) (add-mset L D) and
j: get-maximum-level (raw-trail S) D ≡ j and
lev-K : get-level (raw-trail S) K = Suc j
apply clarsimp
apply (elim simple-backtrackE)
apply (cases S)
by (auto simp add: get-all-ann-decomposition-map-convert reduce-trail-to
Decided-convert-iff)

obtain c where c: raw-trail S = c @ M2 @ Decided K # M1
using decomp by blast

have n-d: no-dup M
using inv S unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def
by (auto simp: comp-def)

then have count-decided (raw-trail (toS S)) > j
using j count-decided-ge-get-maximum-level[of raw-trail S D]
count-decided-ge-get-level[of raw-trail S K] decomp lev-K
unfolding k S by (auto simp: get-all-ann-decomposition-map-convert)

have CD: mset C = add-mset L D
using CE confl by auto

then have L-C : 〈L ∈ set C 〉

using set-mset-mset by fastforce
have find-level-decomp M C [] (count-decided (raw-trail (toS S))) 6= None
apply rule
apply (drule find-level-decomp-none[of - - - - L 〈remove1 L C 〉])
using L-C CD 〈count-decided (raw-trail (toS S)) > j〉 mset-eq-setD S levL unfolding k[symmetric]

j[symmetric]
by (auto simp: ac-simps)

then obtain L ′ j ′ where fd-some: find-level-decomp M C [] (count-decided (raw-trail (toS S))) =
Some (L ′, j ′)

by (cases find-level-decomp M C [] (count-decided (raw-trail (toS S)))) auto
have L ′: L ′ = L

325

proof (rule ccontr)
assume ¬ ?thesis
then have L ′ ∈# D
using fd-some find-level-decomp-some set-mset-mset
by (metis CD insert-iff set-mset-add-mset-insert)

then have get-level M L ′ ≤ get-maximum-level M D
using get-maximum-level-ge-get-level by blast

then show False
using 〈count-decided (raw-trail (toS S)) > j〉 j
find-level-decomp-some[OF fd-some] S by auto

qed
then have j ′: j ′ = j using find-level-decomp-some[OF fd-some] j S CD by auto

obtain c ′ M1 ′ where cM : M = c ′ @ Decided K # M1 ′
apply (rule map-mmset-of-mlit-eq-cons[of M map convert (c @ M2)
map convert (Decided K # M1)])
using c S apply simp

apply (rule map-mmset-of-mlit-eq-cons[of - map convert [Decided K] map convert M1])
apply auto[]
apply (rename-tac a b ′ aa b, case-tac aa)
apply auto[]
apply (rename-tac a b ′ aa b, case-tac aa)
by auto

have btc-none: bt-cut j M 6= None
apply (rule bt-cut-not-none[of M])
using n-d cM S lev-K S apply blast+

using lev-K S by auto
show ?case using db n-d fd-some L ′ j ′ btc-none unfolding S E
by (auto dest: bt-cut-some-decomp)

qed

lemma rough-state-of-state-of-backtrack[simp]:
assumes inv: cdclW -all-struct-inv (toS S)
shows rough-state-of (state-of (do-backtrack-step S)) = do-backtrack-step S

proof (rule state-of-inverse)
consider

(step) backtrack (toS S) (toS (do-backtrack-step S)) |
(0) do-backtrack-step S = S
using do-backtrack-step inv by blast

then show do-backtrack-step S ∈ {S . cdclW -all-struct-inv (toS S)}
proof cases
case 0
thus ?thesis using inv by simp

next
case step
then show ?thesis
using inv
by (auto dest!: cdclW -restart.other cdclW -o.bj cdclW -bj.backtrack intro: cdclW -all-struct-inv-inv)

qed
qed

Decide fun do-decide-step where
do-decide-step (M , N , U , None) =

(case find-first-unused-var N (lits-of-l M) of
None ⇒ (M , N , U , None)
| Some L ⇒ (Decided L # M , N , U , None)) |

326

do-decide-step S = S

lemma do-decide-step:
do-decide-step S 6= S =⇒ decide (toS S) (toS (do-decide-step S))
apply (cases S , cases raw-conflicting S)
defer
apply (auto split: option.splits simp add: decide.simps

dest: find-first-unused-var-undefined find-first-unused-var-Some
intro: atms-of-atms-of-ms-mono)[1]

proof −
fix a :: (′a, ′a literal list) ann-lit list and

b :: ′a literal list list and c :: ′a literal list list and
e :: ′a literal list option

{
fix a :: (′a, ′a literal list) ann-lit list and

b :: ′a literal list list and c :: ′a literal list list and
x2 :: ′a literal and m :: ′a literal list

assume a1 : m ∈ set b
assume x2 ∈ set m
then have f2 : atm-of x2 ∈ atms-of (mset m)
by simp

have
∧
f . (f m:: ′a literal multiset) ∈ f ‘ set b

using a1 by blast
then have

∧
f . (atms-of (f m):: ′a set) ⊆ atms-of-ms (f ‘ set b)

using atms-of-atms-of-ms-mono by blast
then have

∧
n f . (n:: ′a) ∈ atms-of-ms (f ‘ set b) ∨ n /∈ atms-of (f m)

by (meson contra-subsetD)
then have atm-of x2 ∈ atms-of-ms (mset ‘ set b)
using f2 by blast

} note H = this
{
fix m :: ′a literal list and x2
have m ∈ set b =⇒ x2 ∈ set m =⇒ x2 /∈ lits-of-l a =⇒ − x2 /∈ lits-of-l a =⇒
∃ aa∈set b. ¬ atm-of ‘ set aa ⊆ atm-of ‘ lits-of-l a
by (meson atm-of-in-atm-of-set-in-uminus contra-subsetD rev-image-eqI)

} note H ′ = this

assume do-decide-step S 6= S and
S = (a, b, c, e) and
raw-conflicting S = None

then show decide (toS S) (toS (do-decide-step S))
using H H ′ by (auto split: option.splits simp: decide.simps defined-lit-map lits-of-def
image-image atm-of-eq-atm-of dest!: find-first-unused-var-Some)

qed

lemma do-decide-step-no:
do-decide-step S = S =⇒ no-step decide (toS S)
apply (cases S , cases raw-conflicting S)
apply (auto simp: atms-of-ms-mset-unfold Decided-Propagated-in-iff-in-lits-of-l lits-of-def

dest!: atm-of-in-atm-of-set-in-uminus
elim!: decideE
split: option.splits)+

using atm-of-eq-atm-of by blast+

lemma rough-state-of-state-of-do-decide-step[simp]:

327

cdclW -all-struct-inv (toS S) =⇒ rough-state-of (state-of (do-decide-step S)) = do-decide-step S
proof (subst state-of-inverse, goal-cases)
case 1
then show ?case
by (cases do-decide-step S = S)

(auto dest: do-decide-step decide other intro: cdclW -all-struct-inv-inv)
qed simp

lemma rough-state-of-state-of-do-skip-step[simp]:
cdclW -all-struct-inv (toS S) =⇒ rough-state-of (state-of (do-skip-step S)) = do-skip-step S
apply (subst state-of-inverse, cases do-skip-step S = S)
apply simp
by (blast dest: other skip bj do-skip-step cdclW -all-struct-inv-inv)+

Code generation

Type definition There are two invariants: one while applying conflict and propagate and one
for the other rules

declare rough-state-of-inverse[simp add]
definition Con where
Con xs = state-of (if cdclW -all-struct-inv (toS (fst xs, snd xs)) then xs
else ([], [], [], None))

lemma [code abstype]:
Con (rough-state-of S) = S
using rough-state-of [of S] unfolding Con-def by simp

definition do-cp-step ′ where
do-cp-step ′ S = state-of (do-cp-step (rough-state-of S))

typedef ′v cdclW -restart-state-inv-from-init-state =
{S :: ′v cdclW -restart-state-inv-st. cdclW -all-struct-inv (toS S)
∧ cdclW -stgy∗∗ (S0-cdclW -restart (raw-init-clss (toS S))) (toS S)}

morphisms rough-state-from-init-state-of state-from-init-state-of
proof
show ([],[], [], None) ∈ {S . cdclW -all-struct-inv (toS S)
∧ cdclW -stgy∗∗ (S0-cdclW -restart (raw-init-clss (toS S))) (toS S)}
by (auto simp add: cdclW -all-struct-inv-def)

qed

instantiation cdclW -restart-state-inv-from-init-state :: (type) equal
begin
definition equal-cdclW -restart-state-inv-from-init-state :: ′v cdclW -restart-state-inv-from-init-state ⇒
′v cdclW -restart-state-inv-from-init-state ⇒ bool where
equal-cdclW -restart-state-inv-from-init-state S S ′←→

(rough-state-from-init-state-of S = rough-state-from-init-state-of S ′)
instance
by standard (simp add: rough-state-from-init-state-of-inject
equal-cdclW -restart-state-inv-from-init-state-def)

end

definition ConI where
ConI S = state-from-init-state-of (if cdclW -all-struct-inv (toS (fst S , snd S))
∧ cdclW -stgy∗∗ (S0-cdclW -restart (raw-init-clss (toS S))) (toS S) then S else ([], [], [], None))

328

lemma [code abstype]:
ConI (rough-state-from-init-state-of S) = S
using rough-state-from-init-state-of [of S] unfolding ConI-def
by (simp add: rough-state-from-init-state-of-inverse)

definition id-of-I-to:: ′v cdclW -restart-state-inv-from-init-state ⇒ ′v cdclW -restart-state-inv where
id-of-I-to S = state-of (rough-state-from-init-state-of S)

lemma [code abstract]:
rough-state-of (id-of-I-to S) = rough-state-from-init-state-of S
unfolding id-of-I-to-def using rough-state-from-init-state-of [of S] by auto

lemma in-clauses-rough-state-of-is-distinct:
c∈set (raw-init-clss (rough-state-of S) @ raw-learned-clss (rough-state-of S)) =⇒ distinct c
apply (cases rough-state-of S)
using rough-state-of [of S] by (auto simp add: distinct-mset-set-distinct cdclW -all-struct-inv-def
distinct-cdclW -state-def)

The other rules fun do-if-not-equal where
do-if-not-equal [] S = S |
do-if-not-equal (f # fs) S =

(let T = f S in
if T 6= S then T else do-if-not-equal fs S)

fun do-cdcl-step where
do-cdcl-step S =
do-if-not-equal [do-conflict-step, do-propagate-step, do-skip-step, do-resolve-step,
do-backtrack-step, do-decide-step] S

lemma do-cdcl-step:
assumes inv: cdclW -all-struct-inv (toS S) and
st: do-cdcl-step S 6= S
shows cdclW -stgy (toS S) (toS (do-cdcl-step S))
using st by (auto simp add: do-skip-step do-resolve-step do-backtrack-step do-decide-step
do-conflict-step
do-propagate-step do-conflict-step-no-step do-propagate-step-no-step
cdclW -stgy.intros cdclW -bj.intros cdclW -o.intros inv Let-def)

lemma do-cdcl-step-no:
assumes inv: cdclW -all-struct-inv (toS S) and
st: do-cdcl-step S = S
shows no-step cdclW (toS S)
using st inv by (auto split: if-split-asm elim: cdclW -bjE
simp add: Let-def cdclW -bj.simps cdclW .simps do-conflict-step
do-propagate-step do-conflict-step-no-step do-propagate-step-no-step
elim!: cdclW -o.cases
dest!: do-skip-step-no do-resolve-step-no do-backtrack-step-no do-decide-step-no)

lemma rough-state-of-state-of-do-cdcl-step[simp]:
rough-state-of (state-of (do-cdcl-step (rough-state-of S))) = do-cdcl-step (rough-state-of S)

proof (cases do-cdcl-step (rough-state-of S) = rough-state-of S)
case True
then show ?thesis by simp

next
case False
have cdclW (toS (rough-state-of S)) (toS (do-cdcl-step (rough-state-of S)))

329

using False cdclW -all-struct-inv-rough-state cdclW -stgy-cdclW do-cdcl-step by blast
then have cdclW -all-struct-inv (toS (do-cdcl-step (rough-state-of S)))
using cdclW -all-struct-inv-inv cdclW -all-struct-inv-rough-state cdclW -cdclW -restart by blast

then show ?thesis
by (simp add: CollectI state-of-inverse)

qed

definition do-cdclW -stgy-step :: ′v cdclW -restart-state-inv ⇒ ′v cdclW -restart-state-inv where
do-cdclW -stgy-step S =
state-of (do-cdcl-step (rough-state-of S))

lemma rough-state-of-do-cdclW -stgy-step[code abstract]:
rough-state-of (do-cdclW -stgy-step S) = do-cdcl-step (rough-state-of S)
apply (cases do-cdcl-step (rough-state-of S) = rough-state-of S)
unfolding do-cdclW -stgy-step-def apply simp

using do-cdcl-step[of rough-state-of S] rough-state-of-state-of-do-cdcl-step by blast

definition do-cdclW -stgy-step ′ where
do-cdclW -stgy-step ′ S = state-from-init-state-of (rough-state-of (do-cdclW -stgy-step (id-of-I-to S)))

Correction of the transformation lemma do-cdclW -stgy-step:
assumes do-cdclW -stgy-step S 6= S
shows cdclW -stgy (toS (rough-state-of S)) (toS (rough-state-of (do-cdclW -stgy-step S)))

proof −
have do-cdcl-step (rough-state-of S) 6= rough-state-of S
by (metis (no-types) assms do-cdclW -stgy-step-def rough-state-of-inject
rough-state-of-state-of-do-cdcl-step)

then have cdclW -stgy (toS (rough-state-of S)) (toS (do-cdcl-step (rough-state-of S)))
using cdclW -all-struct-inv-rough-state do-cdcl-step by blast

then show ?thesis
by (metis (no-types) do-cdclW -stgy-step-def rough-state-of-state-of-do-cdcl-step)

qed

lemma length-raw-trail-toS [simp]:
length (raw-trail (toS S)) = length (raw-trail S)
by (cases S) auto

lemma raw-conflicting-noTrue-iff-toS [simp]:
raw-conflicting (toS S) 6= None ←→ raw-conflicting S 6= None
by (cases S) auto

lemma raw-trail-toS-neq-imp-raw-trail-neq:
raw-trail (toS S) 6= raw-trail (toS S ′) =⇒ raw-trail S 6= raw-trail S ′
by (cases S , cases S ′) auto

lemma do-cp-step-neq-raw-trail-increase:
∃ c. raw-trail (do-cp-step S) = c @ raw-trail S ∧ (∀m ∈ set c. ¬ is-decided m)
by (cases S , cases raw-conflicting S)

(auto simp add: do-cp-step-def do-conflict-step-def do-propagate-step-def split: option.splits)

lemma do-cp-step-raw-conflicting:
raw-conflicting (rough-state-of S) 6= None =⇒ do-cp-step ′ S = S
unfolding do-cp-step ′-def do-cp-step-def by simp

lemma do-decide-step-not-raw-conflicting-one-more-decide:
assumes

330

raw-conflicting S = None and
do-decide-step S 6= S

shows Suc (length (filter is-decided (raw-trail S)))
= length (filter is-decided (raw-trail (do-decide-step S)))

using assms by (cases S) (auto simp: Let-def split: if-split-asm option.splits
dest!: find-first-unused-var-Some-not-all-incl)

lemma do-decide-step-not-raw-conflicting-one-more-decide-bt:
assumes raw-conflicting S 6= None and
do-decide-step S 6= S
shows length (filter is-decided (raw-trail S)) < length (filter is-decided (raw-trail (do-decide-step S)))
using assms by (cases S , cases raw-conflicting S)

(auto simp add: Let-def split: if-split-asm option.splits)

lemma count-decided-raw-trail-toS :
count-decided (raw-trail (toS S)) = count-decided (raw-trail S)
by (cases S) (auto simp: comp-def)

lemma rough-state-of-state-of-do-skip-step-rough-state-of [simp]:
rough-state-of (state-of (do-skip-step (rough-state-of S))) = do-skip-step (rough-state-of S)
using cdclW -all-struct-inv-rough-state rough-state-of-state-of-do-skip-step by blast

lemma raw-conflicting-do-resolve-step-iff [iff]:
raw-conflicting (do-resolve-step S) = None ←→ raw-conflicting S = None
by (cases S rule: do-resolve-step.cases)
(auto simp add: Let-def split: option.splits)

lemma raw-conflicting-do-skip-step-iff [iff]:
raw-conflicting (do-skip-step S) = None ←→ raw-conflicting S = None
by (cases S rule: do-skip-step.cases)

(auto simp add: Let-def split: option.splits)

lemma raw-conflicting-do-decide-step-iff [iff]:
raw-conflicting (do-decide-step S) = None ←→ raw-conflicting S = None
by (cases S rule: do-decide-step.cases)

(auto simp add: Let-def split: option.splits)

lemma raw-conflicting-do-backtrack-step-imp[simp]:
do-backtrack-step S 6= S =⇒ raw-conflicting (do-backtrack-step S) = None
apply (cases S rule: do-backtrack-step.cases)
apply (auto simp add: Let-def split: option.splits list.splits

) — TODO splitting should solve the goal
apply (rename-tac dec tr)
by (case-tac dec) auto

lemma do-skip-step-eq-iff-raw-trail-eq:
do-skip-step S = S ←→ raw-trail (do-skip-step S) = raw-trail S
by (cases S rule: do-skip-step.cases) auto

lemma do-decide-step-eq-iff-raw-trail-eq:
do-decide-step S = S ←→ raw-trail (do-decide-step S) = raw-trail S
by (cases S rule: do-decide-step.cases) (auto split: option.split)

lemma do-backtrack-step-eq-iff-raw-trail-eq:
assumes no-dup (raw-trail S)
shows do-backtrack-step S = S ←→ raw-trail (do-backtrack-step S) = raw-trail S

331

using assms apply (cases S rule: do-backtrack-step.cases)
apply (auto split: option.split list.splits

simp: comp-def
dest!: bt-cut-in-get-all-ann-decomposition) — TODO splitting should solve the goal

apply (rename-tac dec tr tra)
by (case-tac dec) auto

lemma do-resolve-step-eq-iff-raw-trail-eq:
do-resolve-step S = S ←→ raw-trail (do-resolve-step S) = raw-trail S
by (cases S rule: do-resolve-step.cases) auto

lemma do-cdclW -stgy-step-no:
assumes S : do-cdclW -stgy-step S = S
shows no-step cdclW -stgy (toS (rough-state-of S))

proof −
have do-cdcl-step (rough-state-of S) = rough-state-of S
by (metis assms rough-state-of-do-cdclW -stgy-step)

then show ?thesis
using cdclW -all-struct-inv-rough-state cdclW -stgy-cdclW do-cdcl-step-no by blast

qed

lemma toS-rough-state-of-state-of-rough-state-from-init-state-of [simp]:
toS (rough-state-of (state-of (rough-state-from-init-state-of S)))

= toS (rough-state-from-init-state-of S)
using rough-state-from-init-state-of [of S] by (auto simp add: state-of-inverse)

lemma cdclW -stgy-is-rtranclp-cdclW -restart:
cdclW -stgy S T =⇒ cdclW -restart∗∗ S T
by (simp add: cdclW -stgy-tranclp-cdclW -restart rtranclp-unfold)

lemma cdclW -stgy-init-raw-init-clss:
cdclW -stgy S T =⇒ cdclW -M-level-inv S =⇒ raw-init-clss S = raw-init-clss T
using cdclW -stgy-no-more-init-clss by blast

lemma clauses-toS-rough-state-of-do-cdclW -stgy-step[simp]:
raw-init-clss (toS (rough-state-of (do-cdclW -stgy-step (state-of (rough-state-from-init-state-of S)))))

= raw-init-clss (toS (rough-state-from-init-state-of S)) (is - = raw-init-clss (toS ?S))
apply (cases do-cdclW -stgy-step (state-of ?S) = state-of ?S)
apply simp

by (metis cdclW -stgy-no-more-init-clss do-cdclW -stgy-step
toS-rough-state-of-state-of-rough-state-from-init-state-of)

lemma rough-state-from-init-state-of-do-cdclW -stgy-step ′[code abstract]:
rough-state-from-init-state-of (do-cdclW -stgy-step ′ S) =
rough-state-of (do-cdclW -stgy-step (id-of-I-to S))

proof −
let ?S = (rough-state-from-init-state-of S)
have cdclW -stgy∗∗ (S0-cdclW -restart (raw-init-clss (toS (rough-state-from-init-state-of S))))

(toS (rough-state-from-init-state-of S))
using rough-state-from-init-state-of [of S] by auto

moreover have cdclW -stgy∗∗
(toS (rough-state-from-init-state-of S))
(toS (rough-state-of (do-cdclW -stgy-step

(state-of (rough-state-from-init-state-of S)))))
using do-cdclW -stgy-step[of state-of ?S]

332

by (cases do-cdclW -stgy-step (state-of ?S) = state-of ?S) auto
ultimately show ?thesis
unfolding do-cdclW -stgy-step ′-def id-of-I-to-def
by (auto intro!: state-from-init-state-of-inverse)

qed

All rules together function do-all-cdclW -stgy where
do-all-cdclW -stgy S =

(let T = do-cdclW -stgy-step ′ S in
if T = S then S else do-all-cdclW -stgy T)

by fast+
termination
proof (relation {(T , S).

(cdclW -restart-measure (toS (rough-state-from-init-state-of T)),
cdclW -restart-measure (toS (rough-state-from-init-state-of S)))
∈ lexn less-than 3}, goal-cases)

case 1
show ?case by (rule wf-if-measure-f) (auto intro!: wf-lexn wf-less)

next
case (2 S T) note T = this(1) and ST = this(2)
let ?S = rough-state-from-init-state-of S
have S : cdclW -stgy∗∗ (S0-cdclW -restart (raw-init-clss (toS ?S))) (toS ?S)
using rough-state-from-init-state-of [of S] by auto

moreover have cdclW -stgy (toS (rough-state-from-init-state-of S))
(toS (rough-state-from-init-state-of T))

proof −
have

∧
c. rough-state-of (state-of (rough-state-from-init-state-of c)) =

rough-state-from-init-state-of c
using rough-state-from-init-state-of state-of-inverse by fastforce

then have diff : do-cdclW -stgy-step (state-of (rough-state-from-init-state-of S))
6= state-of (rough-state-from-init-state-of S)

using ST T by (metis (no-types) id-of-I-to-def rough-state-from-init-state-of-inject
rough-state-from-init-state-of-do-cdclW -stgy-step ′)

have rough-state-of (do-cdclW -stgy-step (state-of (rough-state-from-init-state-of S)))
= rough-state-from-init-state-of (do-cdclW -stgy-step ′ S)

by (simp add: id-of-I-to-def rough-state-from-init-state-of-do-cdclW -stgy-step ′)
then show ?thesis
using do-cdclW -stgy-step T diff unfolding id-of-I-to-def do-cdclW -stgy-step by fastforce

qed
moreover have invs: cdclW -all-struct-inv (toS (rough-state-from-init-state-of S))

using rough-state-from-init-state-of [of S] by auto
moreover {
have cdclW -all-struct-inv (S0-cdclW -restart (raw-init-clss (toS (rough-state-from-init-state-of S))))
using invs by (cases rough-state-from-init-state-of S)

(auto simp add: cdclW -all-struct-inv-def distinct-cdclW -state-def)
then have 〈no-smaller-propa (toS (rough-state-from-init-state-of S))〉

using rtranclp-cdclW -stgy-no-smaller-propa[OF S]
by (auto simp: empty-trail-no-smaller-propa) }

ultimately show ?case
using tranclp-cdclW -stgy-S0-decreasing
by (auto intro!: cdclW -stgy-step-decreasing[of]
simp del: cdclW -restart-measure.simps)

qed

thm do-all-cdclW -stgy.induct
lemma do-all-cdclW -stgy-induct:

333

(
∧
S . (do-cdclW -stgy-step ′ S 6= S =⇒ P (do-cdclW -stgy-step ′ S)) =⇒ P S) =⇒ P a0

using do-all-cdclW -stgy.induct by metis

lemma no-step-cdclW -stgy-cdclW -restart-all:
fixes S :: ′a cdclW -restart-state-inv-from-init-state
shows no-step cdclW -stgy (toS (rough-state-from-init-state-of (do-all-cdclW -stgy S)))
apply (induction S rule: do-all-cdclW -stgy-induct)
apply (rename-tac S , case-tac do-cdclW -stgy-step ′ S 6= S)

proof −
fix Sa :: ′a cdclW -restart-state-inv-from-init-state
assume a1 : ¬ do-cdclW -stgy-step ′ Sa 6= Sa
{ fix pp
have (if True then Sa else do-all-cdclW -stgy Sa) = do-all-cdclW -stgy Sa
using a1 by auto

then have ¬ cdclW -stgy (toS (rough-state-from-init-state-of (do-all-cdclW -stgy Sa))) pp
using a1 by (metis (no-types) do-cdclW -stgy-step-no id-of-I-to-def
rough-state-from-init-state-of-do-cdclW -stgy-step ′ rough-state-of-inverse) }

then show no-step cdclW -stgy (toS (rough-state-from-init-state-of (do-all-cdclW -stgy Sa)))
by fastforce

next
fix Sa :: ′a cdclW -restart-state-inv-from-init-state
assume a1 : do-cdclW -stgy-step ′ Sa 6= Sa

=⇒ no-step cdclW -stgy (toS (rough-state-from-init-state-of
(do-all-cdclW -stgy (do-cdclW -stgy-step ′ Sa))))

assume a2 : do-cdclW -stgy-step ′ Sa 6= Sa
have do-all-cdclW -stgy Sa = do-all-cdclW -stgy (do-cdclW -stgy-step ′ Sa)
by (metis (full-types) do-all-cdclW -stgy.simps)

then show no-step cdclW -stgy (toS (rough-state-from-init-state-of (do-all-cdclW -stgy Sa)))
using a2 a1 by presburger

qed

lemma do-all-cdclW -stgy-is-rtranclp-cdclW -stgy:
cdclW -stgy∗∗ (toS (rough-state-from-init-state-of S))

(toS (rough-state-from-init-state-of (do-all-cdclW -stgy S)))
proof (induction S rule: do-all-cdclW -stgy-induct)
case (1 S) note IH = this(1)
show ?case
proof (cases do-cdclW -stgy-step ′ S = S)
case True
then show ?thesis by simp

next
case False
have f2 : do-cdclW -stgy-step (id-of-I-to S) = id-of-I-to S −→
rough-state-from-init-state-of (do-cdclW -stgy-step ′ S)
= rough-state-of (state-of (rough-state-from-init-state-of S))
using rough-state-from-init-state-of-do-cdclW -stgy-step ′
by (simp add: id-of-I-to-def rough-state-from-init-state-of-do-cdclW -stgy-step ′)
have f3 : do-all-cdclW -stgy S = do-all-cdclW -stgy (do-cdclW -stgy-step ′ S)
by (metis (full-types) do-all-cdclW -stgy.simps)

have cdclW -stgy (toS (rough-state-from-init-state-of S))
(toS (rough-state-from-init-state-of (do-cdclW -stgy-step ′ S)))

= cdclW -stgy (toS (rough-state-of (id-of-I-to S)))
(toS (rough-state-of (do-cdclW -stgy-step (id-of-I-to S))))

using rough-state-from-init-state-of-do-cdclW -stgy-step ′
toS-rough-state-of-state-of-rough-state-from-init-state-of
by (simp add: id-of-I-to-def rough-state-from-init-state-of-do-cdclW -stgy-step ′)

334

then show ?thesis
using f3 f2 IH do-cdclW -stgy-step by fastforce

qed
qed

Final theorem:

lemma DPLL-tot-correct:
assumes
r : rough-state-from-init-state-of (do-all-cdclW -stgy (state-from-init-state-of

(([], map remdups N , [], None)))) = S and
S : (M ′, N ′, U ′, E) = toS S

shows (E 6= Some {#} ∧ satisfiable (set (map mset N)))
∨ (E = Some {#} ∧ unsatisfiable (set (map mset N)))

proof −
let ?N = map remdups N
have inv: cdclW -all-struct-inv (toS ([], map remdups N , [], None))
unfolding cdclW -all-struct-inv-def distinct-cdclW -state-def distinct-mset-set-def by auto

then have S0 : rough-state-of (state-of ([], map remdups N , [], None))
= ([], map remdups N , [], None) by simp

have 1 : full cdclW -stgy (toS ([], ?N , [], None)) (toS S)
unfolding full-def apply rule
using do-all-cdclW -stgy-is-rtranclp-cdclW -stgy[of
state-from-init-state-of ([], map remdups N , [], None)] inv
no-step-cdclW -stgy-cdclW -restart-all
apply (auto simp del: do-all-cdclW -stgy.simps simp: state-from-init-state-of-inverse
r [symmetric] comp-def)[]

using do-all-cdclW -stgy-is-rtranclp-cdclW -stgy[of
state-from-init-state-of ([], map remdups N , [], None)] inv
no-step-cdclW -stgy-cdclW -restart-all
by (force simp: state-from-init-state-of-inverse r [symmetric] comp-def)

moreover have 2 : finite (set (map mset ?N)) by auto
moreover have 3 : distinct-mset-set (set (map mset ?N))
unfolding distinct-mset-set-def by auto

moreover
have cdclW -all-struct-inv (toS S)
by (metis (no-types) cdclW -all-struct-inv-rough-state r
toS-rough-state-of-state-of-rough-state-from-init-state-of)

then have cons: consistent-interp (lits-of-l M ′)
unfolding cdclW -all-struct-inv-def cdclW -M-level-inv-def S [symmetric] by auto

moreover
have raw-init-clss (toS ([], ?N , [], None)) = raw-init-clss (toS S)
apply (rule rtranclp-cdclW -stgy-no-more-init-clss)
using 1 unfolding full-def by (auto simp add: rtranclp-cdclW -stgy-rtranclp-cdclW -restart)

then have N ′: mset (map mset ?N) = N ′
using S [symmetric] by auto

have (E 6= Some {#} ∧ satisfiable (set (map mset ?N)))
∨ (E = Some {#} ∧ unsatisfiable (set (map mset ?N)))
using full-cdclW -stgy-final-state-conclusive unfolding N ′ apply rule

using 1 apply (simp; fail)
using 3 apply (simp add: comp-def ; fail)
using S [symmetric] N ′ apply (auto; fail)[1]

using S [symmetric] N ′ cons by (fastforce simp: true-annots-true-cls)
then show ?thesis by auto

qed

335

The Code The SML code is skipped in the documentation, but stays to ensure that some
version of the exported code is working. The only difference between the generated code and
the one used here is the export of the constructor ConI.
theory CDCL-Abstract-Clause-Representation
imports Entailment-Definition.Partial-Herbrand-Interpretation
begin

type-synonym ′v clause = ′v literal multiset
type-synonym ′v clauses = ′v clause multiset

4.1.5 Abstract Clause Representation

We will abstract the representation of clause and clauses via two locales. We expect our rep-
resentation to behave like multiset, but the internal representation can be done using list or
whatever other representation.
We assume the following:

• there is an equivalent to adding and removing a literal and to taking the union of clauses.

locale raw-cls =
fixes
mset-cls :: ′cls ⇒ ′v clause

begin
end

The two following locales are the exact same locale, but we need two different locales. Otherwise,
instantiating raw-clss would lead to duplicate constants.
locale abstract-with-index =
fixes
get-lit :: ′a ⇒ ′it ⇒ ′conc option and
convert-to-mset :: ′a ⇒ ′conc multiset

assumes
in-clss-mset-cls[dest]:
get-lit Cs a = Some e =⇒ e ∈# convert-to-mset Cs and

in-mset-cls-exists-preimage:
b ∈# convert-to-mset Cs =⇒ ∃ b ′. get-lit Cs b ′ = Some b

locale abstract-with-index2 =
fixes
get-lit :: ′a ⇒ ′it ⇒ ′conc option and
convert-to-mset :: ′a ⇒ ′conc multiset

assumes
in-clss-mset-clss[dest]:
get-lit Cs a = Some e =⇒ e ∈# convert-to-mset Cs and

in-mset-clss-exists-preimage:
b ∈# convert-to-mset Cs =⇒ ∃ b ′. get-lit Cs b ′ = Some b

locale raw-clss =
abstract-with-index get-lit mset-cls +
abstract-with-index2 get-cls mset-clss
for
get-lit :: ′cls ⇒ ′lit ⇒ ′v literal option and
mset-cls :: ′cls ⇒ ′v clause and

336

get-cls :: ′clss ⇒ ′cls-it ⇒ ′cls option and
mset-clss:: ′clss ⇒ ′cls multiset

begin

definition cls-lit :: ′cls ⇒ ′lit ⇒ ′v literal (infix ↓ 49) where
C ↓ a ≡ the (get-lit C a)

definition clss-cls :: ′clss ⇒ ′cls-it ⇒ ′cls (infix ⇓ 49) where
C ⇓ a ≡ the (get-cls C a)

definition in-cls :: ′lit ⇒ ′cls ⇒ bool (infix ∈↓ 49) where
a ∈↓ Cs ≡ get-lit Cs a 6= None

definition in-clss :: ′cls-it ⇒ ′clss ⇒ bool (infix ∈⇓ 49) where
a ∈⇓ Cs ≡ get-cls Cs a 6= None

definition raw-clss where
raw-clss S ≡ image-mset mset-cls (mset-clss S)

end

experiment
begin
fun safe-nth where
safe-nth (x # -) 0 = Some x |
safe-nth (- # xs) (Suc n) = safe-nth xs n |
safe-nth [] - = None

lemma safe-nth-nth: n < length l =⇒ safe-nth l n = Some (nth l n)
by (induction l n rule: safe-nth.induct) auto

lemma safe-nth-None: n ≥ length l =⇒ safe-nth l n = None
by (induction l n rule: safe-nth.induct) auto

lemma safe-nth-Some-iff : safe-nth l n = Some m ←→ n < length l ∧ m = nth l n
apply (rule iffI)
defer apply (auto simp: safe-nth-nth)[]

by (induction l n rule: safe-nth.induct) auto

lemma safe-nth-None-iff : safe-nth l n = None ←→ n ≥ length l
apply (rule iffI)
defer apply (auto simp: safe-nth-None)[]

by (induction l n rule: safe-nth.induct) auto

interpretation abstract-with-index
safe-nth
mset
apply unfold-locales
apply (simp add: safe-nth-Some-iff)

by (metis in-set-conv-nth safe-nth-nth set-mset-mset)

interpretation abstract-with-index2
safe-nth
mset
apply unfold-locales

337

apply (simp add: safe-nth-Some-iff)
by (metis in-set-conv-nth safe-nth-nth set-mset-mset)

interpretation list-cls: raw-clss
safe-nth mset
safe-nth mset
by unfold-locales

end

end
theory CDCL-W-Abstract-State
imports CDCL-W-Full CDCL-W-Restart

begin

4.2 Instantiation of Weidenbach’s CDCL by Multisets

We first instantiate the locale of Weidenbach’s locale. Then we refine it to a 2-WL program.

type-synonym ′v cdclW -restart-mset = (′v, ′v clause) ann-lit list ×
′v clauses ×
′v clauses ×
′v clause option

We use definition, otherwise we could not use the simplification theorems we have already shown.

fun trail :: ′v cdclW -restart-mset ⇒ (′v, ′v clause) ann-lit list where
trail (M , -) = M

fun init-clss :: ′v cdclW -restart-mset ⇒ ′v clauses where
init-clss (-, N , -) = N

fun learned-clss :: ′v cdclW -restart-mset ⇒ ′v clauses where
learned-clss (-, -, U , -) = U

fun conflicting :: ′v cdclW -restart-mset ⇒ ′v clause option where
conflicting (-, -, -, C) = C

fun cons-trail :: (′v, ′v clause) ann-lit ⇒ ′v cdclW -restart-mset ⇒ ′v cdclW -restart-mset where
cons-trail L (M , R) = (L # M , R)

fun tl-trail where
tl-trail (M , R) = (tl M , R)

fun add-learned-cls where
add-learned-cls C (M , N , U , R) = (M , N , {#C#} + U , R)

fun remove-cls where
remove-cls C (M , N , U , R) = (M , removeAll-mset C N , removeAll-mset C U , R)

fun update-conflicting where
update-conflicting D (M , N , U , -) = (M , N , U , D)

fun init-state where
init-state N = ([], N , {#}, None)

338

declare trail.simps[simp del] cons-trail.simps[simp del] tl-trail.simps[simp del]
add-learned-cls.simps[simp del] remove-cls.simps[simp del]
update-conflicting.simps[simp del] init-clss.simps[simp del] learned-clss.simps[simp del]
conflicting.simps[simp del] init-state.simps[simp del]

lemmas cdclW -restart-mset-state = trail.simps cons-trail.simps tl-trail.simps add-learned-cls.simps
remove-cls.simps update-conflicting.simps init-clss.simps learned-clss.simps
conflicting.simps init-state.simps

definition state where
〈state S = (trail S , init-clss S , learned-clss S , conflicting S , ())〉

interpretation cdclW -restart-mset: stateW -ops where
state = state and
trail = trail and
init-clss = init-clss and
learned-clss = learned-clss and
conflicting = conflicting and

cons-trail = cons-trail and
tl-trail = tl-trail and
add-learned-cls = add-learned-cls and
remove-cls = remove-cls and
update-conflicting = update-conflicting and
init-state = init-state
.

definition state-eq :: ′v cdclW -restart-mset ⇒ ′v cdclW -restart-mset ⇒ bool (infix ∼m 50) where
〈S ∼m T ←→ state S = state T 〉

interpretation cdclW -restart-mset: stateW where
state = state and
trail = trail and
init-clss = init-clss and
learned-clss = learned-clss and
conflicting = conflicting and
state-eq = state-eq and
cons-trail = cons-trail and
tl-trail = tl-trail and
add-learned-cls = add-learned-cls and
remove-cls = remove-cls and
update-conflicting = update-conflicting and
init-state = init-state
by unfold-locales (auto simp: cdclW -restart-mset-state state-eq-def state-def)

abbreviation backtrack-lvl :: ′v cdclW -restart-mset ⇒ nat where
backtrack-lvl ≡ cdclW -restart-mset.backtrack-lvl

interpretation cdclW -restart-mset: conflict-driven-clause-learningW where
state = state and
trail = trail and
init-clss = init-clss and
learned-clss = learned-clss and
conflicting = conflicting and

339

state-eq = state-eq and
cons-trail = cons-trail and
tl-trail = tl-trail and
add-learned-cls = add-learned-cls and
remove-cls = remove-cls and
update-conflicting = update-conflicting and
init-state = init-state
by unfold-locales

lemma cdclW -restart-mset-state-eq-eq: state-eq = (=)
apply (intro ext)
unfolding state-eq-def
by (auto simp: cdclW -restart-mset-state state-def)

lemma clauses-def : 〈cdclW -restart-mset.clauses (M , N , U , C) = N + U 〉

by (subst cdclW -restart-mset.clauses-def) (simp add: cdclW -restart-mset-state)

lemma cdclW -restart-mset-reduce-trail-to:
cdclW -restart-mset.reduce-trail-to F S =

((if length (trail S) ≥ length F
then drop (length (trail S) − length F) (trail S)
else []), init-clss S , learned-clss S , conflicting S)
(is ?S = -)

proof (induction F S rule: cdclW -restart-mset.reduce-trail-to.induct)
case (1 F S) note IH = this
show ?case
proof (cases trail S)
case Nil
then show ?thesis using IH by (cases S) (auto simp: cdclW -restart-mset-state)

next
case (Cons L M)
then show ?thesis
apply (cases Suc (length M) > length F)
subgoal
apply (subgoal-tac Suc (length M) − length F = Suc (length M − length F))
using cdclW -restart-mset.reduce-trail-to-length-ne[of S F] IH by auto

subgoal
using IH cdclW -restart-mset.reduce-trail-to-length-ne[of S F]
apply (cases S)

by (simp add: cdclW -restart-mset.trail-reduce-trail-to-drop cdclW -restart-mset-state)
done

qed
qed

lemma full-cdclW -init-state:
〈full cdclW -restart-mset.cdclW -stgy (init-state {#}) S ←→ S = init-state {#}〉

unfolding full-def rtranclp-unfold
by (subst tranclp-unfold-begin)

(auto simp: cdclW -restart-mset.cdclW -stgy.simps
cdclW -restart-mset.conflict.simps cdclW -restart-mset.cdclW -o.simps
cdclW -restart-mset.propagate.simps cdclW -restart-mset.decide.simps
cdclW -restart-mset.cdclW -bj.simps cdclW -restart-mset.backtrack.simps
cdclW -restart-mset.skip.simps cdclW -restart-mset.resolve.simps
cdclW -restart-mset-state clauses-def)

340

locale twl-restart-ops =
fixes
f :: 〈nat ⇒ nat〉

begin

interpretation cdclW -restart-mset: cdclW -restart-restart-ops where
state = state and
trail = trail and
init-clss = init-clss and
learned-clss = learned-clss and
conflicting = conflicting and

state-eq = state-eq and
cons-trail = cons-trail and
tl-trail = tl-trail and
add-learned-cls = add-learned-cls and
remove-cls = remove-cls and
update-conflicting = update-conflicting and
init-state = init-state and
f = f
by unfold-locales

end

locale twl-restart =
twl-restart-ops f for f :: 〈nat ⇒ nat〉 +
assumes
f : 〈unbounded f 〉

begin

interpretation cdclW -restart-mset: cdclW -restart-restart where
state = state and
trail = trail and
init-clss = init-clss and
learned-clss = learned-clss and
conflicting = conflicting and

state-eq = state-eq and
cons-trail = cons-trail and
tl-trail = tl-trail and
add-learned-cls = add-learned-cls and
remove-cls = remove-cls and
update-conflicting = update-conflicting and
init-state = init-state and
f = f
by unfold-locales (rule f)

end

context conflict-driven-clause-learningW

begin

lemma distinct-cdclW -state-alt-def :
〈distinct-cdclW -state S =

((∀T . conflicting S = Some T −→ distinct-mset T) ∧

341

distinct-mset-mset (clauses S) ∧
(∀L mark. Propagated L mark ∈ set (trail S) −→ distinct-mset mark))〉

unfolding distinct-cdclW -state-def clauses-def
by auto

end

lemma cdclW -stgy-cdclW -init-state-empty-no-step:
〈cdclW -restart-mset.cdclW -stgy (init-state {#}) S ←→ False〉

unfolding rtranclp-unfold
by (auto simp: cdclW -restart-mset.cdclW -stgy.simps

cdclW -restart-mset.conflict.simps cdclW -restart-mset.cdclW -o.simps
cdclW -restart-mset.propagate.simps cdclW -restart-mset.decide.simps
cdclW -restart-mset.cdclW -bj.simps cdclW -restart-mset.backtrack.simps
cdclW -restart-mset.skip.simps cdclW -restart-mset.resolve.simps
cdclW -restart-mset-state clauses-def)

lemma cdclW -stgy-cdclW -init-state:
〈cdclW -restart-mset.cdclW -stgy∗∗ (init-state {#}) S ←→ S = init-state {#}〉

unfolding rtranclp-unfold
by (subst tranclp-unfold-begin)

(auto simp: cdclW -stgy-cdclW -init-state-empty-no-step simp del: init-state.simps)

end

342

	Weidenbach's DPLL
	Rules
	Invariants
	Termination
	Final States

	Weidenbach's CDCL
	Weidenbach's CDCL with Multisets
	The State
	CDCL Rules
	Structural Invariants
	CDCL Strong Completeness
	Higher level strategy
	Structural Invariant
	Strategy-Specific Invariant
	Additional Invariant: No Smaller Propagation
	More Invariants: Conflict is False if no decision
	Some higher level use on the invariants
	Termination

	Merging backjump rules
	Inclusion of the States
	More lemmas about Conflict, Propagate and Backjumping
	CDCL with Merging
	CDCL with Merge and Strategy

	NOT's CDCL and DPLL
	Measure
	NOT's CDCL
	Auxiliary Lemmas and Measure
	Initial Definitions
	DPLL with Backjumping
	CDCL
	CDCL with Restarts
	Merging backjump and learning
	Instantiations

	Link between Weidenbach's and NOT's CDCL
	Inclusion of the states
	Inclusion of Weidendenbch's CDCL without Strategy
	Additional Lemmas between NOT and W states
	Inclusion of Weidenbach's CDCL in NOT's CDCL
	Inclusion of Weidendenbch's CDCL with Strategy

	Extensions on Weidenbach's CDCL
	Restarts
	Incremental SAT solving

	List-based Implementation of DPLL and CDCL
	Simple List-Based Implementation of the DPLL and CDCL
	Common Rules
	CDCL specific functions
	Simple Implementation of DPLL
	List-based CDCL Implementation
	Abstract Clause Representation

	Instantiation of Weidenbach's CDCL by Multisets

