Formalisation of Ground Resolution and CDCL in Isabelle/HOL

Mathias Fleury and Jasmin Blanchette
January 20, 2020

Contents

1 Normalisation 5
1.1 Logics 5
1.1.1 Definition and Abstraction 5
1.1.2 Properties of the Abstraction 6
1.1.3 Subformulas and Properties 9
1.1.4 Positions 12
1.2 Semantics over the Syntax 15
1.3 Rewrite Systems and Properties 16
1.3.1 Lifting of Rewrite Rules 16
1.3.2 Consistency Preservation 19
1.3.3 Full Lifting 20
1.4 Transformation testing 20
1.4.1 Definition and first Properties 20
1.4.2 Invariant conservation 23
1.5 Rewrite Rules 26
1.5.1 Elimination of the Equivalences 26
1.5.2 Eliminate Implication 28
1.5.3 Eliminate all the True and False in the formula 29
1.5.4 PushNeg 35
1.5.5 Push Inside 40
1.6 The Full Transformations 54
1.6.1 Abstract Definition 54
1.6.2 Conjunctive Normal Form 56
1.6.3 Disjunctive Normal Form 57
1.7 More aggressive simplifications: Removing true and false at the beginning 58
1.7.1 Transformation 58
1.7.2 More invariants 60
1.7.3 The new CNF and DNF transformation 64
1.8 Link with Multiset Version 65
1.8.1 Transformation to Multiset 65
1.8.2 Equisatisfiability of the two Versions 65
2 Resolution-based techniques 73
2.1 Resolution 73
2.1.1 Simplification Rules 73
2.1.2 Unconstrained Resolution 75
2.1.3 Inference Rule 75
2.1.4 Lemma about the Simplified State 90
2.1.5 Resolution and Invariants 93
2.2 Superposition 113
2.2.1 We can now define the rules of the calculus 120
theory Prop-Logic
imports Mainbegin

Chapter 1

Normalisation

We define here the normalisation from formula towards conjunctive and disjunctive normal form, including normalisation towards multiset of multisets to represent CNF.

1.1 Logics

In this section we define the syntax of the formula and an abstraction over it to have simpler proofs. After that we define some properties like subformula and rewriting.

1.1.1 Definition and Abstraction

The propositional logic is defined inductively. The type parameter is the type of the variables.

```
datatype 'v propo =
    FT|FF|FVar 'v | FNot 'v propo | FAnd 'v propo 'v propo | FOr 'v propo 'v propo
    | FImp 'v propo 'v propo | FEq'v propo 'v propo
```

We do not define any notation for the formula, to distinguish properly between the formulas and Isabelle's logic.

To ease the proofs, we will write the the formula on a homogeneous manner, namely a connecting argument and a list of arguments.

```
datatype 'v connective =CT|CF|CVar 'v | CNot | CAnd | COr | CImp | CEq
abbreviation nullary-connective }\equiv{CF}\cup{CT}\cup{CVar x | x. True
definition binary-connectives \equiv {CAnd, COr, CImp,CEq}
```

We define our own induction principal: instead of distinguishing every constructor, we group them by arity.

```
lemma propo-induct-arity[case-names nullary unary binary]:
    fixes \(\varphi \psi\) :: 'v propo
    assumes nullary: \(\bigwedge \varphi x . \varphi=F F \vee \varphi=F T \vee \varphi=F\) Var \(x \Longrightarrow P \varphi\)
    and unary: \(\wedge \psi \cdot P \psi \Longrightarrow P(F N o t \psi)\)
    and binary: \(\wedge \varphi \psi 1 \psi 2 \cdot P \psi 1 \Longrightarrow P \psi 2 \Longrightarrow \varphi=\) FAnd \(\psi 1 \psi 2 \vee \varphi=\) FOr \(\psi 1 \psi 2 \vee \varphi=\) FImp \(\psi 1\)
\(\psi 2\)
    \(\vee \varphi=F E q \psi 1 \psi 2 \Longrightarrow P \varphi\)
    shows \(P \psi\)
    apply (induct rule: propo.induct)
    using assms by metis+
```

The function conn is the interpretation of our representation (connective and list of arguments). We define any thing that has no sense to be false

```
conn \(C T[]=F T\)
conn \(C F[]=F F \mid\)
conn \((C \operatorname{Var} v)[]=F \operatorname{Var} v \mid\)
conn CNot \([\varphi]=F N o t \varphi\)
conn CAnd \((\varphi \#[\psi])=\) FAnd \(\varphi \psi \mid\)
conn \(\operatorname{COr}(\varphi \#[\psi])=\operatorname{FOr} \varphi \psi\)
conn \(\operatorname{CImp}(\varphi \#[\psi])=F \operatorname{Imp} \varphi \psi \mid\)
\(\operatorname{conn} \operatorname{CEq}(\varphi \#[\psi])=F E q \varphi \psi \mid\)
conn - - \(=F F\)
```

fun conn $::$ 'v connective $\Rightarrow{ }^{\prime} v$ propo list \Rightarrow 'v propo where

We will often use case distinction, based on the arity of the 'v connective, thus we define our own splitting principle.

```
lemma connective-cases-arity[case-names nullary binary unary]:
    assumes nullary: \(\bigwedge x . c=C T \vee c=C F \vee c=C \operatorname{Var} x \Longrightarrow P\)
    and binary: \(c \in\) binary-connectives \(\Longrightarrow P\)
    and unary: \(c=C N o t \Longrightarrow P\)
    shows \(P\)
    using assms by (cases c) (auto simp: binary-connectives-def)
```

```
lemma connective-cases-arity-2[case-names nullary unary binary]:
    assumes nullary: \(c \in\) nullary-connective \(\Longrightarrow P\)
    and unary: \(c=C N o t \Longrightarrow P\)
    and binary: \(c \in\) binary-connectives \(\Longrightarrow P\)
    shows \(P\)
    using assms by (cases c, auto simp add: binary-connectives-def)
```

Our previous definition is not necessary correct (connective and list of arguments), so we define an inductive predicate.
inductive wf-conn $:: ~ ' v ~ c o n n e c t i v e ~ \Rightarrow ' v ~ p r o p o ~ l i s t ~ \Rightarrow b o o l ~ f o r ~ c ~:: ~ ' v ~ c o n n e c t i v e ~ w h e r e ~$
wf-conn-nullary $[s i m p]:(c=C T \vee c=C F \vee c=C V a r v) \Longrightarrow w f$-conn $c[] \mid$
wf-conn-unary[simp]: $c=$ CNot \Longrightarrow wf-conn $c[\psi] \mid$
wf-conn-binary[simp]: $c \in$ binary-connectives \Longrightarrow wf-conn $c\left(\psi \# \psi^{\prime} \#[]\right)$
thm wf-conn.induct
lemma wf-conn-induct[consumes 1, case-names CT CF CVar CNot COr CAnd CImp CEq]:
assumes wf-conn cx and
$\wedge v . c=C T \Longrightarrow P[]$ and
$\wedge v . c=C F \Longrightarrow P[]$ and
$\bigwedge v . c=C \operatorname{Var} v \Longrightarrow P[]$ and
$\Lambda \psi . c=C N o t \Longrightarrow P[\psi]$ and
$\bigwedge \psi \psi^{\prime} . c=\operatorname{COr} \Longrightarrow P\left[\psi, \psi^{\jmath}\right]$ and
$\Lambda \psi \psi^{\prime} \cdot c=C A n d \Longrightarrow P\left[\psi, \psi^{\prime}\right]$ and
$\Lambda \psi \psi^{\prime} \cdot c=C \operatorname{Imp} \Longrightarrow P\left[\psi, \psi^{\prime}\right]$ and
$\bigwedge \psi \psi^{\prime} . c=C E q \Longrightarrow P\left[\psi, \psi^{\prime}\right]$
shows $P x$
using assms by induction (auto simp: binary-connectives-def)

1.1.2 Properties of the Abstraction

First we can define simplification rules.
lemma wf-conn-conn[simp]:

$$
w f-c o n n C T l \Longrightarrow \operatorname{conn} C T l=F T
$$

$$
\text { wf-conn } C F l \Longrightarrow \text { conn } C F l=F F
$$

$$
\text { wf-conn }(C \operatorname{Var} x) l \Longrightarrow \operatorname{conn}(C \operatorname{Var} x) l=F \operatorname{Var} x
$$

apply (simp-all add: wf-conn.simps)
unfolding binary-connectives-def by simp-all

```
lemma wf-conn-list-decomp[simp]:
wf-conn \(C T l \longleftrightarrow l=[]\)
wf-conn CF \(l \longleftrightarrow l=[]\)
wf-conn \((C \operatorname{Var} x) l \longleftrightarrow l=[]\)
wf-conn CNot \(\left(\xi @ \varphi \# \xi^{\prime}\right) \longleftrightarrow \xi=[] \wedge \xi^{\prime}=[]\)
apply (simp-all add: wf-conn.simps)
    unfolding binary-connectives-def apply simp-all
by (metis append-Nil append-is-Nil-conv list.distinct(1) list.sel(3) tl-append2)
```

lemma wf-conn-list:

```
w-conn c l \Longrightarrow conn c l = FT \longleftrightarrow (c=CT ^l= [])
wf-conn c l \Longrightarrow conn c l = FF\longleftrightarrow 
w-conn cl \Longrightarrow conn cl=FVar x \longleftrightarrow(c=CVar x ^l= [])
w-conn c l \Longrightarrow conn c l=FAnd a b \longleftrightarrow(c=CAnd ^l=a# b # [])
wf-conn c l \Longrightarrow conn c l = FOr a b \longleftrightarrow (c=COr ^l=a# b# [])
wf-conn c l \Longrightarrowconn c l = FEqab\longleftrightarrow < c=CEq^l=a#b# [])
w-conn c l \Longrightarrow conn c l = FImp a b \longleftrightarrow(c=CImp ^l=a# b# [])
w-conn c l \Longrightarrow conn c l = FNot a \longleftrightarrow (c=CNot ^l=a# [])
apply (induct l rule: wf-conn.induct)
unfolding binary-connectives-def by auto
```

In the binary connective cases, we will often decompose the list of arguments (of length 2) into two elements.
lemma list-length2-decomp: length $l=2 \Longrightarrow(\exists a b . l=a \# b \#[])$
apply (induct l, auto)
by (rename-tac l, case-tac l, auto)
$w f$-conn for binary operators means that there are two arguments.

```
lemma wf-conn-bin-list-length:
    fixes l :: 'v propo list
    assumes conn: c\in binary-connectives
    shows length l=2 \longleftrightarrowwf-conn cl
proof
    assume length l=2
    then show wf-conn cl using wf-conn-binary list-length2-decomp using conn by metis
next
    assume wf-conn c l
    then show length l=2 (is ?P l)
        proof (cases rule: wf-conn.induct)
            case wf-conn-nullary
            then show ?P [] using conn binary-connectives-def
                using connective.distinct(11) connective.distinct(13) connective.distinct(9) by blast
        next
                fix \psi :: 'v propo
                case wf-conn-unary
                then show ?P [\psi] using conn binary-connectives-def
                    using connective.distinct by blast
```

```
    next
        fix }\psi\mp@subsup{\psi}{}{\prime}:: 'v prop
        show ?P [\psi, \psi'] by auto
    qed
qed
lemma wf-conn-not-list-length[iff]:
    fixes l:: 'v propo list
    shows wf-conn CNot l \longleftrightarrow length l=1
    apply auto
    apply (metis append-Nil connective.distinct(5,17,27) length-Cons list.size(3) wf-conn.simps
        wf-conn-list-decomp(4))
    by (simp add: length-Suc-conv wf-conn.simps)
```

Decomposing the Not into an element is moreover very useful.

```
lemma wf-conn-Not-decomp:
    fixes \(l::\) ' \(v\) propo list and \(a::\) ' \(v\)
    assumes corr: wf-conn CNot \(l\)
    shows \(\exists a . l=[a]\)
    by (metis (no-types, lifting) One-nat-def Suc-length-conv corr length-0-conv
        wf-conn-not-list-length)
```

The wf-conn remains correct if the length of list does not change. This lemma is very useful when we do one rewriting step

```
lemma wf-conn-no-arity-change:
    length \(l=\) length \(l^{\prime} \Longrightarrow w f\)-conn \(c l \longleftrightarrow w f\)-conn \(c l^{\prime}\)
proof -
    \{
        fix \(l l^{\prime}\)
        have length \(l=\) length \(l^{\prime} \Longrightarrow w f\)-conn \(c l \Longrightarrow w f\)-conn \(c l^{\prime}\)
            apply (cases c l rule: wf-conn.induct, auto)
            by (metis wf-conn-bin-list-length)
    \}
    then show length \(l=\) length \(l^{\prime} \Longrightarrow\) wf-conn \(c l=w f-c o n n c l^{\prime}\) by metis
qed
lemma wf-conn-no-arity-change-helper:
    length \(\left(\xi @ \varphi \# \xi^{\prime}\right)=\) length \(\left(\xi @ \varphi^{\prime} \# \xi^{\prime}\right)\)
    by auto
```

The injectivity of conn is useful to prove equality of the connectives and the lists.
lemma conn-inj-not:
assumes correct: wf-conn cl
and conn: conn cl$=F N o t \psi$
shows $c=C N o t$ and $l=[\psi]$
apply (cases c l rule: wf-conn.cases)
using correct conn unfolding binary-connectives-def apply auto
apply (cases c l rule: wf-conn.cases)
using correct conn unfolding binary-connectives-def by auto
lemma conn-inj:
fixes c ca :: 'v connective and $l \psi s::$ 'v propo list
assumes corr: wf-conn cal
and corr': wf-conn c ψs
and eq: conn cal $=\operatorname{conn} c \psi s$
shows $c a=c \wedge \psi s=l$
using corr
proof (cases ca l rule: wf-conn.cases)
case (wf-conn-nullary v)
then show $c a=c \wedge \psi s=l$ using assms
by (metis conn.simps(1) conn.simps(2) conn.simps(3) wf-conn-list(1-3))
next
case (wf-conn-unary ψ^{\prime})
then have $*$: FNot $\psi^{\prime}=$ conn c ψs using conn-inj-not eq assms by auto
then have $c=c a$ by (metis conn-inj-not(1) corr' wf-conn-unary(2))
moreover have $\psi s=l$ using $*$ conn-inj-not(2) corr' $w f$-conn-unary(1) by force
ultimately show $c a=c \wedge \psi s=l$ by auto
next
case (wf-conn-binary $\psi^{\prime} \psi^{\prime \prime}$)
then show $c a=c \wedge \psi s=l$
using eq corr' unfolding binary-connectives-def apply (cases ca, auto simp add: wf-conn-list)
using wf-conn-list(4-7) corr' by metis+
qed

1.1.3 Subformulas and Properties

A characterization using sub-formulas is interesting for rewriting: we will define our relation on the sub-term level, and then lift the rewriting on the term-level. So the rewriting takes place on a subformula.
inductive subformula :: 'v propo \Rightarrow 'v propo \Rightarrow bool (infix $\preceq 45$) for φ where
subformula-reff[simp]: $\varphi \preceq \varphi \mid$
subformula-into-subformula: $\psi \in$ set $l \Longrightarrow w f$-conn $c l \Longrightarrow \varphi \preceq \psi \Longrightarrow \varphi \preceq$ conn c l
On the subformula-into-subformula, we can see why we use our conn representation: one case is enough to express the subformulas property instead of listing all the cases.

This is an example of a property related to subformulas.

```
lemma subformula-in-subformula-not:
shows \(b\) : \(F N o t ~ \varphi \preceq \psi \Longrightarrow \varphi \preceq \psi\)
    apply (induct rule: subformula.induct)
    using subformula-into-subformula wf-conn-unary subformula-refl list.set-intros(1) subformula-refl
    by (fastforce intro: subformula-into-subformula) +
lemma subformula-in-binary-conn:
    assumes conn: \(c \in\) binary-connectives
    shows \(f \preceq\) conn \(c[f, g]\)
    and \(g \preceq \operatorname{conn} c[f, g]\)
proof -
    have \(a\) : wf-conn \(c(f \#[g])\) using conn wf-conn-binary binary-connectives-def by auto
    moreover have \(b\) : \(f \preceq f\) using subformula-refl by auto
    ultimately show \(f \preceq \operatorname{conn} c[f, g]\)
        by (metis append-Nil in-set-conv-decomp subformula-into-subformula)
next
    have a: wf-conn c([f] @ [g]) using conn wf-conn-binary binary-connectives-def by auto
    moreover have \(b: g \preceq g\) using subformula-refl by auto
    ultimately show \(g \preceq \operatorname{conn} c[f, g]\) using subformula-into-subformula by force
qed
lemma subformula-trans:
```

```
\psi\preceq\mp@subsup{\psi}{}{\prime}\Longrightarrow\varphi\preceq\psi\Longrightarrow\varphi\preceq䭫
    apply (induct \psi' rule: subformula.inducts)
    by (auto simp: subformula-into-subformula)
lemma subformula-leaf:
    fixes }\varphi\psi:: 'v prop
    assumes incl: \varphi\preceq \psi
    and simple: }\psi=FT\vee\psi=FF\vee\psi=F\operatorname{Var}
    shows }\varphi=
    using incl simple
    by (induct rule: subformula.induct, auto simp: wf-conn-list)
lemma subfurmula-not-incl-eq:
    assumes \varphi}\preceq\mathrm{ conn cl
    and wf-conn cl
    and }\forall\psi.\psi\in\mathrm{ set l}\longrightarrow\neg\varphi\preceq
    shows }\varphi=\mathrm{ conn cl
    using assms apply (induction conn c l rule: subformula.induct, auto)
    using conn-inj by blast
lemma wf-subformula-conn-cases:
    w-conn c l\Longrightarrow\varphi\preceq conn cl \longleftrightarrow(\varphi=\operatorname{conn cl }\vee(\exists\psi.\psi\in\operatorname{set}l\wedge\varphi\preceq\psi))
    apply standard
    using subfurmula-not-incl-eq apply metis
    by (auto simp add: subformula-into-subformula)
lemma subformula-decomp-explicit[simp]:
```



```
    \preceq FOr }\psi\mp@subsup{\psi}{}{\prime}\longleftrightarrow(\varphi=\mathrm{ FOr }\psi\mp@subsup{\psi}{}{\prime}\vee\varphi\preceq\psi\vee \ \varrho\preceq \psi'
    \varrho\preceqFEq\psi \psi'\longleftrightarrow}\longleftrightarrow(\varphi=FEq\psi\mp@subsup{\psi}{}{\prime}\vee\varphi\preceq\psi\vee\varphi\varrho\preceq\mp@subsup{\psi}{}{\prime}
    \varphi\preceqFImp \psi \psi' \longleftrightarrow}\longleftrightarrow(\varphi=FImp\psi\mp@subsup{\psi}{}{\prime}\vee\varphi\preceq\psi\vee\varphi\preceq䭫
proof -
    have wf-conn CAnd [\psi, \psi'] by (simp add: binary-connectives-def)
    then have }\varphi\preceq conn CAnd [\psi,\psi`]
        ( }\varphi=\mathrm{ conn CAnd [ }\psi,\mp@subsup{\psi}{}{\prime}]\vee(\exists\mp@subsup{\psi}{}{\prime\prime}.\mp@subsup{\psi}{}{\prime\prime}\in\operatorname{set}[\psi,\mp@subsup{\psi}{}{\prime}]\wedge\varphi\preceq\mp@subsup{\psi}{}{\prime\prime})
        using wf-subformula-conn-cases by metis
    then show ?P FAnd by auto
next
    have wf-conn COr [\psi, \psi'] by (simp add: binary-connectives-def)
    then have }\varphi\preceq\mathrm{ conn COr }[\psi,\mp@subsup{\psi}{}{\prime}]
        (\varphi= conn COr [\psi,\psi]
        using wf-subformula-conn-cases by metis
    then show ?P FOr by auto
next
    have wf-conn CEq[\psi,\psi` by (simp add: binary-connectives-def)
    then have }\varphi\preceq\mathrm{ conn CEq [ }\psi,\psi]
        (\varphi= conn CEq [\psi,\mp@subsup{\psi}{}{\prime}]\vee(\exists\mp@subsup{\psi}{}{\prime\prime}.\mp@subsup{\psi}{}{\prime\prime}\in\operatorname{set}[\psi,\mp@subsup{\psi}{}{\prime}]\wedge\varphi\preceq\mp@subsup{\psi}{}{\prime\prime}))
        using wf-subformula-conn-cases by metis
    then show ?P FEq by auto
next
    have wf-conn CImp [ }\psi,\psi}\mathrm{ by (simp add: binary-connectives-def)
    then have }\varphi\preceq conn CImp [ \psi, \psi']
        (\varphi= conn CImp [\psi,\psi`]\vee (\exists\mp@subsup{\psi}{}{\prime\prime}.\mp@subsup{\psi}{}{\prime\prime}\in\operatorname{set}[\psi,\mp@subsup{\psi}{}{\prime}]\wedge\varphi\preceq\mp@subsup{\psi}{}{\prime\prime})}
        using wf-subformula-conn-cases by metis
    then show ?P FImp by auto
qed
```

```
lemma wf-conn-helper-facts[iff]:
    wf-conn CNot [\varphi]
    wf-conn CT []
    wf-conn CF []
    wf-conn (CVar x) []
    wf-conn CAnd [\varphi,\psi]
    wf-conn COr [\varphi,\psi]
    wf-conn CImp [ }\varphi,\psi
    wf-conn CEq[\varphi,\psi]
    using wf-conn.intros unfolding binary-connectives-def by fastforce+
lemma exists-c-conn: \exists cl. \varphi = conn cl \ wf-conn c l
    by (cases \varphi) force+
lemma subformula-conn-decomp[simp]:
    assumes wf:wf-conn cl
    shows }\varphi\preceq\mathrm{ conn cl }\longleftrightarrow(\varphi=\operatorname{conn c l V (\exists\psi\in set l. \varphi\preceq\psi))(is?A \longleftrightarrow?B)
proof (rule iffI)
    {
        fix }
        have }\varphi\preceq\xi\Longrightarrow\xi=conn cl \Longrightarrow wf-conn c l\Longrightarrow\forallx::'a propo\inset l.\neg\varphi\preceqx\Longrightarrow\varphi=conn c l
            apply (induct rule: subformula.induct)
                apply simp
            using conn-inj by blast
    }
    moreover assume ?A
    ultimately show ?B using wf by metis
next
    assume ?B
    then show }\varphi\preceq conn cl using wf wf-subformula-conn-cases by blas
qed
lemma subformula-leaf-explicit[simp]:
    \varrho\preceqFT\longleftrightarrow\varphi=FT
    \varrho\preceqFF\longleftrightarrow\varphi=FF
    \preceq FVar x \longleftrightarrow\varphi=FVar }
    apply auto
    using subformula-leaf by metis +
The variables inside the formula gives precisely the variables that are needed for the formula.
primrec vars-of-prop:: 'v propo }=>\mathrm{ 'v set where
vars-of-prop FT = {} |
vars-of-prop FF = {} |
vars-of-prop (FVar x)={x}|
vars-of-prop (FNot \varphi) = vars-of-prop }\varphi
vars-of-prop (FAnd \varphi\psi)= vars-of-prop }\varphi\cup\mathrm{ vars-of-prop }\psi
vars-of-prop (FOr }\varphi\psi)=\mathrm{ vars-of-prop }\varphi\cup\mathrm{ vars-of-prop }\psi
vars-of-prop (FImp \varphi\psi) = vars-of-prop }\varphi\cup\mathrm{ vars-of-prop }\psi
vars-of-prop (FEq \varphi \psi) = vars-of-prop }\varphi\cup\mathrm{ vars-of-prop }
lemma vars-of-prop-incl-conn:
    fixes \xi \xi' :: 'v propo list and \psi :: 'v propo and c :: 'v connective
    assumes corr: wf-conn c l and incl: }\psi\in\mathrm{ set l
    shows vars-of-prop }\psi\subseteq\mathrm{ vars-of-prop (conn c l)
proof (cases c rule: connective-cases-arity-2)
```

```
    case nullary
    then have False using corr incl by auto
    then show vars-of-prop \psi\subseteqvars-of-prop (conn c l) by blast
next
    case binary note c= this
    then obtain }ab\mathrm{ where ab:l=[a,b]
        using wf-conn-bin-list-length list-length2-decomp corr by metis
    then have \psi}=a\vee\psi=b\mathrm{ using incl by auto
    then show vars-of-prop }\psi\subseteq\mathrm{ vars-of-prop (conn c l)
        using ab c unfolding binary-connectives-def by auto
next
    case unary note c= this
    fix }\varphi\mathrm{ ::'v propo
    have}l=[\psi] using corr c incl split-list by forc
    then show vars-of-prop \psi\subseteqvars-of-prop (conn c l) using c by auto
qed
```

The set of variables is compatible with the subformula order.

```
lemma subformula-vars-of-prop:
    \varphi \preceq \psi \Longrightarrow \text { vars-of-prop } \varphi \subseteq \text { vars-of-prop } \psi
    apply (induct rule: subformula.induct)
    apply simp
    using vars-of-prop-incl-conn by blast
```


1.1.4 Positions

Instead of 1 or 2 we use L or R
datatype $\operatorname{sign}=L \mid R$
We use $n i l$ instead of ε.
fun pos :: 'v propo \Rightarrow sign list set where
pos $F F=\{[]\} \mid$
$\operatorname{pos} F T=\{[]\} \mid$
pos $(F \operatorname{Var} x)=\{[]\} \mid$
pos $($ FAnd $\varphi \psi)=\{[]\} \cup\{L \# p \mid p . p \in \operatorname{pos} \varphi\} \cup\{R \# p \mid p . p \in \operatorname{pos} \psi\} \mid$
pos $(F O r \varphi \psi)=\{[]\} \cup\{L \# p \mid p . p \in \operatorname{pos} \varphi\} \cup\{R \# p \mid p . p \in \operatorname{pos} \psi\} \mid$
$\operatorname{pos}(F E q \varphi \psi)=\{[]\} \cup\{L \# p \mid p . p \in \operatorname{pos} \varphi\} \cup\{R \# p \mid p . p \in \operatorname{pos} \psi\} \mid$
$\operatorname{pos}(F \operatorname{Imp} \varphi \psi)=\{[]\} \cup\{L \# p \mid p \cdot p \in \operatorname{pos} \varphi\} \cup\{R \# p \mid p \cdot p \in \operatorname{pos} \psi\} \mid$
pos $($ FNot $\varphi)=\{[]\} \cup\{L \# p \mid p . p \in \operatorname{pos} \varphi\}$
lemma finite-pos: finite (pos φ)
by (induct φ, auto)
lemma finite-inj-comp-set:
fixes $s::$ ' v set
assumes finite: finite s
and $i n j$: inj f
shows $\operatorname{card}(\{f p \mid p . p \in s\})=\operatorname{card} s$
using finite
proof (induct s rule: finite-induct)
show card $\{f p \mid p . p \in\{ \}\}=$ card $\}$ by auto
next
fix $x::{ }^{\prime} v$ and $s::^{\prime} v$ set
assume f : finite s and notin: $x \notin s$
and $I H:$ card $\{f p \mid p . p \in s\}=\operatorname{card} s$

```
    have f': finite {f p|p.p\in insert x s} using f by auto
    have notin': f x }\not={fp|p.p\ins} using notin inj injD by fastforc
    have {f p|p.p\in insert x s} = insert (fx) {f p|p.p\in s} by auto
    then have card {f p|p.p\in insert x s} =1 + card {f p|p.p\ins}
        using finite card-insert-disjoint f' notin' by auto
    moreover have ... = card (insert x s) using notin f IH by auto
    finally show card {f p|p.p\in insert x s}= card (insert x s).
qed
lemma cons-inject:
    inj ((#) s)
    by (meson injI list.inject)
lemma finite-insert-nil-cons:
    finite s\Longrightarrowcard (insert [] {L# p|p.p\ins})=1 + card {L# p |p.p\ins}
    using card-insert-disjoint by auto
lemma cord-not[simp]:
    card (pos (FNot \varphi)) = 1 + card (pos \varphi)
by (simp add: cons-inject finite-inj-comp-set finite-pos)
lemma card-seperate:
    assumes finite s1 and finite s2
    shows card ({L# p|p.p\ins1}\cup{R#p|p.p\ins2})= card ({L# p|p.p\ins1})
        +card({R#p|p.p\ins2})(is card (?L\cup?R) = card ?L + card ?R)
proof -
    have finite?L using assms by auto
    moreover have finite ?R using assms by auto
    moreover have ?L \cap ?R = {} by blast
    ultimately show ?thesis using assms card-Un-disjoint by blast
qed
definition prop-size where prop-size }\varphi=\operatorname{card}(\operatorname{pos}\varphi
lemma prop-size-vars-of-prop:
    fixes \varphi :: 'v propo
    shows card (vars-of-prop \varphi)}\leq\mathrm{ prop-size }
    unfolding prop-size-def apply (induct \varphi, auto simp add: cons-inject finite-inj-comp-set finite-pos)
proof -
    fix \varphi1 \varphi2 :: 'v propo
    assume IH1:card (vars-of-prop \varphi 1) \leqcard (pos \varphi1)
    and IH2: card (vars-of-prop \varphi2) \leq card (pos \varphi2)
    let ?L}={L#p|p.p\in\operatorname{pos}\varphi1
    let ?R = {R# p |p.p\in pos \varphi\mathcal{L}}
    have card (?L\cup?R) = card ?L + card ?R
        using card-seperate finite-pos by blast
    moreover have .. = card (pos \varphi1) + card (pos \varphi2)
    by (simp add: cons-inject finite-inj-comp-set finite-pos)
    moreover have .. \geq card (vars-of-prop \varphi1) + card (vars-of-prop \varphi2) using IH1 IH2 by arith
    then have ... \geq card (vars-of-prop \varphi1 \cup vars-of-prop \varphi2) using card-Un-le le-trans by blast
    ultimately
    show card (vars-of-prop \varphi1 \cup vars-of-prop \varphiQ) \leqSuc (card (?L\cup?R))
                card (vars-of-prop \varphi1\cupvars-of-prop \varphi2) \leqSuc (card (?L\cup?R))
        card (vars-of-prop \varphi1\cupvars-of-prop \varphi2) \leqSuc (card (?L\cup?R))
```

```
        card (vars-of-prop \varphi1 \cup vars-of-prop \varphi\mathcal{Q})\leqSuc (card (?L\cup?R))
    by auto
qed
value pos (FImp (FAnd (FVar P) (FVar Q)) (FOr (FVar P) (FVar Q ))
inductive path-to :: sign list }=>\mp@subsup{|}{}{\prime}v propo = 'v propo => bool wher
path-to-refl[intro]: path-to [] \varphi \varphi |
path-to-l: c\inbinary-connectives \veec=CNot \Longrightarrowwf-conn c (\varphi#l)\Longrightarrow path-to p \varphi \varphi'\Longrightarrow
    path-to (L#p) (conn c (\varphi#l)) \varphi'|
path-to-r: c\inbinary-connectives \Longrightarrowwf-conn c(\psi#\varphi#[])\Longrightarrow path-to p\varphi \varphi' \Longrightarrow
    path-to (R#p) (conn c (\psi#\varphi#[])) \varphi'
```

There is a deep link between subformulas and pathes: a (correct) path leads to a subformula and a subformula is associated to a given path.

```
lemma path-to-subformula:
    path-to p\varphi \varphi ` \Longrightarrow \varphi' }\preceq
    apply (induct rule: path-to.induct)
        apply simp
    apply (metis list.set-intros(1) subformula-into-subformula)
    using subformula-trans subformula-in-binary-conn(2) by metis
lemma subformula-path-exists:
    fixes }\varphi\mp@subsup{\varphi}{}{\prime}:: 'v prop
    shows }\mp@subsup{\varphi}{}{\prime}\preceq\varphi\Longrightarrow\existsp.path-to p\varphi\mp@subsup{\varphi}{}{\prime
proof (induct rule: subformula.induct)
    case subformula-refl
    have path-to [] \varphi' }\mp@subsup{\varphi}{}{\prime}\mathrm{ by auto
    then show }\existsp\mathrm{ . path-to p }\mp@subsup{\varphi}{}{\prime}\mp@subsup{\varphi}{}{\prime}\mathrm{ by metis
next
    case (subformula-into-subformula \psi l c)
    note wf = this(2) and IH = this(4) and \psi = this(1)
    then obtain p}\mathrm{ where p: path-to p }\psi\mp@subsup{\varphi}{}{\prime}\mathrm{ by metis
    {
        fix }x:: '
        assume c=CT\vee c=CF\vee c=CVar x
        then have False using subformula-into-subformula by auto
        then have }\exists\textrm{p}\mathrm{ . path-to p (conn c l) }\mp@subsup{\varphi}{}{\prime}\mathrm{ by blast
    }
    moreover {
        assume c: c=CNot
        then have l=[\psi] using wf \psi wf-conn-Not-decomp by fastforce
        then have path-to (L# p) (conn c l) \varphi' by (metis c wf-conn-unary p path-to-l)
    then have }\exists\textrm{p}\mathrm{ . path-to p (conn c l) }\mp@subsup{\varphi}{}{\prime}\mathrm{ by blast
    }
    moreover {
        assume c:c\in binary-connectives
        obtain a b where ab: [a,b]=l using subformula-into-subformula c wf-conn-bin-list-length
            list-length2-decomp by metis
        then have }a=\psi\veeb=\psi\mathrm{ using }\psi\mathrm{ by auto
        then have path-to (L# p) (conn c l) \varphi'v path-to (R#p) (conn c l) \varphi ' using c path-to-l
            path-to-r p ab by (metis wf-conn-binary)
        then have }\exists\mathrm{ p. path-to p (conn c l) ¢' by blast
    }
    ultimately show \exists p. path-to p (conn c l) \varphi' using connective-cases-arity by metis
qed
```

```
fun replace-at :: sign list \(\Rightarrow\) 'v propo \(\Rightarrow\) 'v propo \(\Rightarrow{ }^{\prime} v\) propo where
replace-at []- \(\psi=\psi \mid\)
replace-at \((L \# l)\left(F A n d \varphi \varphi^{\prime}\right) \psi=\) FAnd \((\) replace-at \(l \varphi \psi) \varphi^{\prime} \mid\)
replace-at \((R \# l)\left(\right.\) FAnd \(\left.\varphi \varphi^{\prime}\right) \psi=\) FAnd \(\varphi\left(\right.\) replace-at \(\left.l \varphi^{\prime} \psi\right) \mid\)
replace-at \((L \# l)\left(F O r \varphi \varphi^{\prime}\right) \psi=F O r(\) replace-at \(l \varphi \psi) \varphi^{\prime} \mid\)
replace-at \((R \# l)\left(\right.\) FOr \(\left.\varphi \varphi^{\prime}\right) \psi=\) FOr \(\varphi\left(\right.\) replace-at \(\left.l \varphi^{\prime} \psi\right) \mid\)
replace-at \((L \# l)\left(F E q \varphi \varphi^{\prime}\right) \psi=F E q(\) replace-at \(l \varphi \psi) \varphi^{\prime} \mid\)
replace-at \((R \# l)\left(F E q \varphi \varphi^{\prime}\right) \psi=F E q \varphi\left(\right.\) replace-at \(\left.l \varphi^{\prime} \psi\right) \mid\)
replace-at \((L \# l)\left(F \operatorname{Imp} \varphi \varphi^{\prime}\right) \psi=\) FImp \((\) replace-at \(l \varphi \psi) \varphi^{\prime}\)
replace-at \((R \# l)\left(F \operatorname{Imp} \varphi \varphi^{\prime}\right) \psi=F \operatorname{Imp} \varphi\left(\right.\) replace-at \(\left.l \varphi^{\prime} \psi\right) \mid\)
replace-at \((L \# l)(F N o t \varphi) \psi=F N o t(r e p l a c e-a t l \varphi \psi)\)
```


1.2 Semantics over the Syntax

Given the syntax defined above, we define a semantics, by defining an evaluation function eval. This function is the bridge between the logic as we define it here and the built-in logic of Isabelle.
fun eval $::(' v \Rightarrow$ bool $) \Rightarrow{ }^{\prime} v$ propo \Rightarrow bool (infix $\left.\models 50\right)$ where

$$
\mathcal{A} \models F T=\text { True }
$$

$$
\mathcal{A} \models F F=\text { False }
$$

$$
\mathcal{A} \vDash F \operatorname{Var} v=(\mathcal{A} v) \mid
$$

$$
\mathcal{A} \models F \operatorname{Not} \varphi=(\neg(\mathcal{A} \vDash \varphi)) \mid
$$

$$
\mathcal{A} \vDash F A n d \varphi_{1} \varphi_{2}=\left(\mathcal{A} \models \varphi_{1} \wedge \mathcal{A} \models \varphi_{2}\right) \mid
$$

$$
\mathcal{A} \vDash F O r \varphi_{1} \varphi_{2}=\left(\mathcal{A} \models \varphi_{1} \vee \mathcal{A} \models \varphi_{2}\right) \mid
$$

$$
\mathcal{A} \vDash F \operatorname{Imp} \varphi_{1} \varphi_{2}=\left(\mathcal{A} \models \varphi_{1} \longrightarrow \mathcal{A} \models \varphi_{2}\right) \mid
$$

$$
\mathcal{A} \models F E q \varphi_{1} \varphi_{2}=\left(\mathcal{A} \models \varphi_{1} \longleftrightarrow \mathcal{A} \models \varphi_{2}\right)
$$

definition evalf (infix $\models f 50$) where
evalf $\varphi \psi=(\forall A . A \models \varphi \longrightarrow A \models \psi)$
The deduction rule is in the book. And the proof looks like to the one of the book.

```
theorem deduction-theorem:
    \(\varphi \models f \psi \longleftrightarrow(\forall A . A \models F \operatorname{Imp} \varphi \psi)\)
proof
    assume \(H: \varphi \models f \psi\)
    \{
        fix \(A\)
        have \(A \models F \operatorname{Imp} \varphi \psi\)
            proof (cases \(A \models \varphi\) )
                case True
                then have \(A \models \psi\) using \(H\) unfolding evalf-def by metis
                then show \(A \models F \operatorname{Imp} \varphi \psi\) by auto
            next
                case False
                then show \(A \models F \operatorname{Imp} \varphi \psi\) by auto
            qed
    \}
    then show \(\forall A . A \models F \operatorname{Imp} \varphi \psi\) by blast
next
    assume \(A: \forall A . A \models F \operatorname{Imp} \varphi \psi\)
    show \(\varphi \models f \psi\)
        proof (rule ccontr)
            assume \(\neg \varphi \models f \psi\)
            then obtain \(A\) where \(A \models \varphi\) and \(\neg A \models \psi\) using evalf-def by metis
```

```
        then have \(\neg A \models F \operatorname{Imp} \varphi \psi\) by auto
        then show False using \(A\) by blast
    qed
qed
A shorter proof:
```

```
lemma \(\varphi \models f \psi \longleftrightarrow(\forall A . A \models F \operatorname{Imp} \varphi \psi)\)
```

lemma $\varphi \models f \psi \longleftrightarrow(\forall A . A \models F \operatorname{Imp} \varphi \psi)$
by (simp add: evalf-def)
by (simp add: evalf-def)
definition same-over-set:: ('v \Rightarrow bool $) \Rightarrow(' v \Rightarrow$ bool $) \Rightarrow$ 'v set \Rightarrow bool where
definition same-over-set:: ('v \Rightarrow bool $) \Rightarrow(' v \Rightarrow$ bool $) \Rightarrow$ 'v set \Rightarrow bool where
same-over-set $A B S=(\forall c \in S . A c=B c)$

```
same-over-set \(A B S=(\forall c \in S . A c=B c)\)
```

If two mapping A and B have the same value over the variables, then the same formula are satisfiable.

```
lemma same-over-set-eval:
    assumes same-over-set A B (vars-of-prop \varphi)
    shows }A\models\varphi\longleftrightarrowB\models
    using assms unfolding same-over-set-def by (induct \varphi, auto)
end
theory Prop-Abstract-Transformation
imports Prop-Logic Weidenbach-Book-Base.Wellfounded-More
```


begin

This file is devoted to abstract properties of the transformations, like consistency preservation and lifting from terms to proposition.

1.3 Rewrite Systems and Properties

1.3.1 Lifting of Rewrite Rules

We can lift a rewrite relation r over a full1 formula: the relation r works on terms, while propo-rew-step works on formulas.

```
inductive propo-rew-step :: ('v propo => 'v propo }=>\mathrm{ bool) 知'v propo = 'v propo }=>\mathrm{ bool
    for r :: 'v propo => 'v propo }=>\mathrm{ bool where
global-rel: r }\varphi>>\mathrm{ propo-rew-step r }\varphi\psi
propo-rew-one-step-lift: propo-rew-step r \varphi \varphi' \Longrightarrowwf-conn c (\psis @ \varphi#\psis')
    \Longrightarrow propo-rew-step r (conn c (\psis @ \varphi # \psis')) (conn c (\psis@ @ \varphi'# \psi ' ' ) )
```

Here is a more precise link between the lifting and the subformulas: if a rewriting takes place between φ and φ^{\prime}, then there are two subformulas ψ in φ and ψ^{\prime} in $\varphi^{\prime}, \psi^{\prime}$ is the result of the rewriting of r on ψ.

This lemma is only a health condition:

```
lemma propo-rew-step-subformula-imp:
shows propo-rew-step \(r \varphi \varphi^{\prime} \Longrightarrow \exists \psi \psi^{\prime} . \psi \preceq \varphi \wedge \psi^{\prime} \preceq \varphi^{\prime} \wedge r \psi \psi^{\prime}\)
    apply (induct rule: propo-rew-step.induct)
    using subformula.simps subformula-into-subformula apply blast
    using wf-conn-no-arity-change subformula-into-subformula wf-conn-no-arity-change-helper
    in-set-conv-decomp by metis
```

The converse is moreover true: if there is a ψ and ψ^{\prime}, then every formula φ containing ψ, can be rewritten into a formula φ^{\prime}, such that it contains φ^{\prime}.

```
lemma propo-rew-step-subformula-rec:
    fixes }\psi\mp@subsup{\psi}{}{\prime}\varphi::: 'v prop
    shows \psi}\preceq\varphi\Longrightarrowr\psi\mp@subsup{\psi}{}{\prime}\Longrightarrow(\exists\mp@subsup{\varphi}{}{\prime}.\mp@subsup{\psi}{}{\prime}\preceq\mp@subsup{\varphi}{}{\prime}\wedge propo-rew-step r \varphi \varphi )
proof (induct \varphi rule: subformula.induct)
    case subformula-refl
    then have propo-rew-step r \psi \psi' using propo-rew-step.intros by auto
    moreover have }\mp@subsup{\psi}{}{\prime}\preceq\mp@subsup{\psi}{}{\prime}\mathrm{ using Prop-Logic.subformula-refl by auto
    ultimately show }\exists\mp@subsup{\varphi}{}{\prime}.\mp@subsup{\psi}{}{\prime}\preceq\mp@subsup{\varphi}{}{\prime}\wedge propo-rew-step r \psi \mp@subsup{\varphi}{}{\prime}\mathrm{ by fastforce
next
    case (subformula-into-subformula \psi''l c)
    note IH = this(4) and r=this(5) and }\mp@subsup{\psi}{}{\prime\prime}=this(1) and wf = this(2) and incl = this(3
    then obtain }\mp@subsup{\varphi}{}{\prime}\mathrm{ where *: }\mp@subsup{\psi}{}{\prime}\preceq\mp@subsup{\varphi}{}{\prime}\wedge\mathrm{ propo-rew-step }r\mp@subsup{\psi}{}{\prime\prime}\mp@subsup{\varphi}{}{\prime}\mathrm{ by metis
    moreover obtain }\xi\mp@subsup{\xi}{}{\prime}:: 'v propo list wher
        l:l=\xi@ @'"# \xi' using List.split-list }\mp@subsup{\psi}{}{\prime\prime}\mathrm{ by metis
    ultimately have propo-rew-step r (conn c l) (conn c (\xi@ \varphi' # \xi'))
        using propo-rew-step.intros(2) wf by metis
    moreover have }\mp@subsup{\psi}{}{\prime}\preceq\operatorname{conn c (\xi @ \varphi
        using wf * wf-conn-no-arity-change Prop-Logic.subformula-into-subformula
        by (metis (no-types) in-set-conv-decomp l wf-conn-no-arity-change-helper)
    ultimately show }\exists\mp@subsup{\varphi}{}{\prime}.\mp@subsup{\psi}{}{\prime}\preceq\mp@subsup{\varphi}{}{\prime}\wedge propo-rew-step r (conn c l) \varphi' by meti
qed
lemma propo-rew-step-subformula:
\(\left(\exists \psi \psi^{\prime} \cdot \psi \preceq \varphi \wedge r \psi \psi^{\prime}\right) \longleftrightarrow\left(\exists \varphi^{\prime}\right.\). propo-rew-step \(\left.r \varphi \varphi^{\prime}\right)\)
using propo-rew-step-subformula-imp propo-rew-step-subformula-rec by metis+
lemma consistency-decompose-into-list:
assumes \(w f\) : wf-conn \(c l\) and \(w f^{\prime}: w f\)-conn \(c l^{\prime}\)
and same: \(\forall n . A \models l!n \longleftrightarrow\left(A \models l^{\prime}!n\right)\)
shows \(A \models\) conn cl \(\longleftrightarrow A \models\) conn c \(l^{\prime}\)
proof (cases c rule: connective-cases-arity-2)
case nullary
then show \((A \models \operatorname{conn} c l) \longleftrightarrow\left(A \models \operatorname{conn} c l^{\prime}\right)\) using \(w f w f^{\prime}\) by auto
next
case unary note \(c=\) this
then obtain \(a\) where \(l: l=[a]\) using wf-conn-Not-decomp wf by metis
obtain \(a^{\prime}\) where \(l^{\prime}: l^{\prime}=[a]\) using wf-conn-Not-decomp wf \({ }^{\prime}\) c by metis
have \(A \models a \longleftrightarrow A \models a^{\prime}\) using \(l l^{\prime}\) by (metis nth-Cons-0 same)
then show \(A \models\) conn \(c l \longleftrightarrow A \models \operatorname{conn} c l^{\prime}\) using \(l l^{\prime} c\) by auto
next
case binary note \(c=\) this
then obtain \(a b\) where \(l: l=[a, b]\) using wf-conn-bin-list-length list-length2-decomp wf by metis
obtain \(a^{\prime} b^{\prime}\) where \(l^{\prime}: l^{\prime}=\left[a^{\prime}, b\right]\)
using wf-conn-bin-list-length list-length2-decomp wf \({ }^{\prime} c\) by metis
have \(p: A \models a \longleftrightarrow A \models a^{\prime} A \models b \longleftrightarrow A \models b^{\prime}\)
using \(l l^{\prime}\) same by (metis diff-Suc-1 nth-Cons' nat.distinct(2))+
show \(A \models\) conn c \(l \longleftrightarrow A \models\) conn c \(l^{\prime}\)
using wf c \(p\) unfolding binary-connectives-def \(l l^{\prime}\) by auto
qed
```

Relation between propo-rew-step and the rewriting we have seen before: propo-rew-step r $\varphi \varphi^{\prime}$ means that we rewrite ψ inside φ (ie at a path p) into ψ^{\prime}.
lemma propo-rew-step-rewrite:
fixes $\varphi \varphi^{\prime}::{ }^{\prime} v$ propo and $r::{ }^{\prime} v$ propo $\Rightarrow{ }^{\prime} v$ propo \Rightarrow bool

```
    assumes propo-rew-step r \varphi \varphi'
    shows \exists\psi \psi' p.r \psi \psi'^ path-to p }\varphi\psi\wedge replace-at p \varphi \mp@subsup{\psi}{}{\prime}=\mp@subsup{\varphi}{}{\prime
    using assms
proof (induct rule: propo-rew-step.induct)
    case(global-rel \varphi \psi)
    moreover have path-to [] \varphi\varphi by auto
    moreover have replace-at [] \varphi\psi=\psi by auto
    ultimately show ?case by metis
next
    case (propo-rew-one-step-lift \varphi \mp@subsup{\varphi}{}{\prime}}\mathrm{ c }\xi\mp@subsup{\xi}{}{\prime})\mathrm{ note rel = this(1) and IH0 = this(2) and corr = this(3)
    obtain \psi \psi' p where IH:r \psi \psi '}^^\mathrm{ path-to p }\psi\vee\wedge replace-at p \varphi \psi' = \mp@subsup{\varphi}{}{\prime}\mathrm{ using IH0 by metis
{
    fix }x::'
    assume c=CT\veec=CF\veec=CVar x
    then have False using corr by auto
    then have }\exists\psi\mp@subsup{\psi}{}{\prime}\mathrm{ p.r * * '}^^\mathrm{ path-to p (conn c ( छ@ ( }|#\mp@subsup{\xi}{}{\prime})))
                        ^replace-at p (conn c (\xi@ (\varphi# % '})))\mp@subsup{\psi}{}{\prime}=\operatorname{conn c (\xi@ (\mp@subsup{\varphi}{}{\prime}#\mp@subsup{\xi}{}{\prime}))
        by fast
}
moreover {
    assume c:c=CNot
    then have empty: }\xi=[]\mp@subsup{\xi}{}{\prime}=[] using corr by aut
    have path-to (L#p) (conn c (\xi@ (\varphi# \xi'))) \psi
        using c empty IH wf-conn-unary path-to-l by fastforce
```



```
        using c empty IH by auto
    ultimately have }\exists\mp@subsup{\psi}{}{\prime}\mp@subsup{\psi}{}{\prime}\mathrm{ p.r * *'^}^\mathrm{ path-to p (conn c (乡@ ( 
                        ^replace-at p (conn c (\xi@ (\varphi# #
    using IH by metis
}
moreover {
    assume c: c f binary-connectives
    have length (\xi@ \varphi# '')=2 using wf-conn-bin-list-length corr c by metis
    then have length }\xi+\mathrm{ length }\mp@subsup{\xi}{}{\prime}=1\mathrm{ by auto
    then have ld:(length }\xi=1\wedge length \mp@subsup{\xi}{}{\prime}=0)\vee(length \xi=0^ length \mp@subsup{\xi}{}{\prime}=1) by arit
    obtain a b where ab:(\xi=[]^\mp@subsup{\xi}{}{\prime}=[b])\vee(\xi=[a]\wedge\mp@subsup{\xi}{}{\prime}=[])
        using ld by (case-tac \xi, case-tac \xi', auto)
    {
        assume \varphi: }\xi=[]\wedge\mp@subsup{\xi}{}{\prime}=[b
        have path-to (L#p) (conn c (\xi@ (\varphi# \xi})))
                using \varphi c IH ab corr by (simp add: path-to-l)
        moreover have replace-at (L#p) (conn c (\xi@ (\varphi# \xi'))) \psi' = conn c (\xi@ (\varphi'# # ' )}
                using c IH ab \varphi unfolding binary-connectives-def by auto
```



```
                \wedge replace-at p (conn c (\xi@ (\varphi# \xi})))\mp@subsup{\psi}{}{\prime}=\operatorname{conn c}(\xi@(\mp@subsup{\varphi}{}{\prime}#\mp@subsup{\xi}{}{\prime})
                using IH by metis
    }
    moreover {
            assume }\varphi:\xi=[a]\quad\mp@subsup{\xi}{}{\prime}=[
```



```
                using c IH corr path-to-r corr }\varphi\mathrm{ by (simp add: path-to-r)
```



```
            using c IH ab \varphi unfolding binary-connectives-def by auto
            ultimately have ?case using IH by metis
    }
```

ultimately have ?case using $a b$ by blast
\}
ultimately show ?case using connective-cases-arity by blast
qed

1.3.2 Consistency Preservation

We define preserve-models: it means that a relation preserves consistency.
definition preserve-models where
preserve-models $r \longleftrightarrow(\forall \varphi \psi \cdot r \varphi \psi \longrightarrow(\forall A . A \models \varphi \longleftrightarrow A \models \psi))$
lemma propo-rew-step-preservers-val-explicit:
propo-rew-step $r \varphi \psi \Longrightarrow$ preserve-models $r \Longrightarrow$ propo-rew-step $r \varphi \psi \Longrightarrow(\forall A . A \models \varphi \longleftrightarrow A \models \psi)$
unfolding preserve-models-def
proof (induction rule: propo-rew-step.induct)
case global-rel
then show? case by simp
next
case (propo-rew-one-step-lift $\varphi \varphi^{\prime} c \xi \xi^{\prime}$) note rel $=$ this(1) and $w f=$ this(2)
and $I H=$ this(3) $[$ OF this(4) this(1) $]$ and consistent $=$ this(4)
\{
fix A
from $I H$ have $\forall n$. $\left(A \models\left(\xi @ \varphi \# \xi^{\prime}\right)!n\right)=\left(A \models\left(\xi @ \varphi^{\prime} \# \xi^{\prime}\right)!n\right)$
by (metis (mono-tags, hide-lams) list-update-length nth-Cons-0 nth-append-length-plus nth-list-update-neq)
then have $\left(A \models \operatorname{conn} c\left(\xi @ \varphi \# \xi^{\prime}\right)\right)=\left(A \models \operatorname{conn} c\left(\xi @ \varphi^{\prime} \# \xi^{\prime}\right)\right)$
by (meson consistency-decompose-into-list wf wf-conn-no-arity-change-helper wf-conn-no-arity-change)
\}
then show $\forall A . A \models \operatorname{conn} c\left(\xi @ \varphi \# \xi^{\prime}\right) \longleftrightarrow A \models \operatorname{conn} c\left(\xi @ \varphi^{\prime} \# \xi^{\prime}\right)$ by auto qed
lemma propo-rew-step-preservers-val':
assumes preserve-models r
shows preserve-models (propo-rew-step r)
using assms by (simp add: preserve-models-def propo-rew-step-preservers-val-explicit)
lemma preserve-models-OO[intro]:
preserve-models $f \Longrightarrow$ preserve-models $g \Longrightarrow$ preserve-models $(f O O g)$
unfolding preserve-models-def by auto
lemma star-consistency-preservation-explicit:
assumes (propo-rew-step r) ${ }^{\wedge} * * \psi$ and preserve-models r
shows $\forall A . A \models \varphi \longleftrightarrow A \models \psi$
using assms by (induct rule: rtranclp-induct)
(auto simp add: propo-rew-step-preservers-val-explicit)
lemma star-consistency-preservation:
preserve-models $r \Longrightarrow$ preserve-models (propo-rew-step r) ${ }^{\wedge} * *$
by (simp add: star-consistency-preservation-explicit preserve-models-def)

1.3.3 Full Lifting

In the previous a relation was lifted to a formula, now we define the relation such it is applied as long as possible. The definition is thus simply: it can be derived and nothing more can be derived.
lemma full-ropo-rew-step-preservers-val[simp]:
preserve-models $r \Longrightarrow$ preserve-models (full (propo-rew-step r))
by (metis full-def preserve-models-def star-consistency-preservation)
lemma full-propo-rew-step-subformula:
full (propo-rew-step $r) \varphi^{\prime} \varphi \Longrightarrow \neg\left(\exists \psi \psi^{\prime} . \psi \preceq \varphi \wedge r \psi \psi^{\prime}\right)$
unfolding full-def using propo-rew-step-subformula-rec by metis

1.4 Transformation testing

1.4.1 Definition and first Properties

To prove correctness of our transformation, we create a all-subformula-st predicate. It tests recursively all subformulas. At each step, the actual formula is tested. The aim of this test-symb function is to test locally some properties of the formulas (i.e. at the level of the connective or at first level). This allows a clause description between the rewrite relation and the test-symb

```
definition all-subformula-st :: ('a propo }=>\mathrm{ bool) => 'a propo }=>\mathrm{ bool where
all-subformula-st test-symb }\varphi\equiv\forall\psi.\psi\preceq\varphi\longrightarrow\mathrm{ test-symb }
```


lemma test-symb-imp-all-subformula-st [simp]:

test-symb $F T \Longrightarrow$ all-subformula-st test-symb FT
test-symb $F F \Longrightarrow$ all-subformula-st test-symb FF
test-symb (F Var x) \Longrightarrow all-subformula-st test-symb (FVar x)
unfolding all-subformula-st-def using subformula-leaf by metis+

```
lemma all-subformula-st-test-symb-true-phi:
    all-subformula-st test-symb \varphi\Longrightarrow test-symb \varphi
    unfolding all-subformula-st-def by auto
lemma all-subformula-st-decomp-imp:
    wf-conn c l\Longrightarrow(test-symb (conn c l)}\wedge(\forall\varphi\in set l. all-subformula-st test-symb \varphi))
    \Longrightarrow \text { all-subformula-st test-symb (conn c l)}
    unfolding all-subformula-st-def by auto
```

To ease the finding of proofs, we give some explicit theorem about the decomposition.

```
lemma all-subformula-st-decomp-rec:
    all-subformula-st test-symb (conn c l) \Longrightarrowwf-conn c l
    \Longrightarrow ( t e s t - s y m b ~ ( c o n n ~ c ~ l ) ~ \wedge ( \forall \varphi \in ~ s e t ~ l . ~ a l l - s u b f o r m u l a - s t ~ t e s t - s y m b ~ \varphi ) ) ~
    unfolding all-subformula-st-def by auto
lemma all-subformula-st-decomp:
    fixes c :: 'v connective and l :: 'v propo list
    assumes wf-conn c l
    shows all-subformula-st test-symb (conn c l)
        \longleftrightarrow ( \text { test-symb (conn c l)} \wedge ( \forall \varphi \in \text { set l. all-subformula-st test-symb } \varphi ) )
    using assms all-subformula-st-decomp-rec all-subformula-st-decomp-imp by metis
```

lemma helper-fact: $c \in$ binary-connectives $\longleftrightarrow(c=C O r \vee c=C A n d \vee c=C E q \vee c=C I m p)$
unfolding binary-connectives-def by auto
lemma all-subformula-st-decomp-explicit[simp]:
fixes $\varphi \psi$:: 'v propo
shows all-subformula-st test-symb (FAnd $\varphi \psi$)
$\longleftrightarrow($ test-symb $(F A n d \varphi \psi) \wedge$ all-subformula-st test-symb $\varphi \wedge$ all-subformula-st test-symb ψ)
and all-subformula-st test-symb (FOr $\varphi \psi$)
$\longleftrightarrow($ test-symb $($ FOr $\varphi \psi) \wedge$ all-subformula-st test-symb $\varphi \wedge$ all-subformula-st test-symb ψ)
and all-subformula-st test-symb (FNot φ) $\longleftrightarrow($ test-symb $($ FNot $\varphi) \wedge$ all-subformula-st test-symb $\varphi)$
and all-subformula-st test-symb $(F E q \varphi \psi)$ \longleftrightarrow (test-symb $(F E q \varphi \psi) \wedge$ all-subformula-st test-symb $\varphi \wedge$ all-subformula-st test-symb ψ)
and all-subformula-st test-symb (FImp $\varphi \psi$) $\longleftrightarrow($ test-symb $(F \operatorname{Imp} \varphi \psi) \wedge$ all-subformula-st test-symb $\varphi \wedge$ all-subformula-st test-symb $\psi)$
proof -
have all-subformula-st test-symb $(F A n d \varphi \psi) \longleftrightarrow$ all-subformula-st test-symb (conn CAnd $[\varphi, \psi])$ by auto
moreover have $\ldots \longleftrightarrow$ test-symb (conn CAnd $[\varphi, \psi]) \wedge(\forall \xi \in$ set $[\varphi, \psi]$. all-subformula-st test-symb
$\xi)$
using all-subformula-st-decomp wf-conn-helper-facts(5) by metis
finally show all-subformula-st test-symb (FAnd $\varphi \psi$) \longleftrightarrow (test-symb $($ FAnd $\varphi \psi) \wedge$ all-subformula-st test-symb $\varphi \wedge$ all-subformula-st test-symb ψ) by simp
have all-subformula-st test-symb $($ FOr $\varphi \psi) \longleftrightarrow$ all-subformula-st test-symb (conn COr $[\varphi, \psi]$) by auto
moreover have ... \longleftrightarrow
(test-symb $($ conn $\operatorname{COr}[\varphi, \psi]) \wedge(\forall \xi \in \operatorname{set}[\varphi, \psi]$. all-subformula-st test-symb $\xi))$
using all-subformula-st-decomp wf-conn-helper-facts(6) by metis
finally show all-subformula-st test-symb (FOr $\varphi \psi$)
\longleftrightarrow (test-symb $($ FOr $\varphi \psi) \wedge$ all-subformula-st test-symb $\varphi \wedge$ all-subformula-st test-symb ψ)
by simp
have all-subformula-st test-symb $(F E q \varphi \psi) \longleftrightarrow$ all-subformula-st test-symb (conn CEq $[\varphi, \psi]$) by auto
moreover have ...
$\longleftrightarrow($ test-symb $(\operatorname{conn} C E q[\varphi, \psi]) \wedge(\forall \xi \in$ set $[\varphi, \psi]$. all-subformula-st test-symb $\xi))$
using all-subformula-st-decomp wf-conn-helper-facts(8) by metis
finally show all-subformula-st test-symb $(F E q \varphi \psi)$
$\longleftrightarrow($ test-symb $(F E q \varphi \psi) \wedge$ all-subformula-st test-symb $\varphi \wedge$ all-subformula-st test-symb $\psi)$
by simp
have all-subformula-st test-symb $(F \operatorname{Imp} \varphi \psi) \longleftrightarrow$ all-subformula-st test-symb (conn CImp $[\varphi, \psi]$) by auto
moreover have ...
$\longleftrightarrow($ test-symb $($ conn $\operatorname{CImp}[\varphi, \psi]) \wedge(\forall \xi \in \operatorname{set}[\varphi, \psi]$. all-subformula-st test-symb $\xi))$
using all-subformula-st-decomp wf-conn-helper-facts(7) by metis
finally show all-subformula-st test-symb $(F \operatorname{Imp} \varphi \psi)$
$\longleftrightarrow($ test-symb $(F \operatorname{Imp} \varphi \psi) \wedge$ all-subformula-st test-symb $\varphi \wedge$ all-subformula-st test-symb ψ) by simp
have all-subformula-st test-symb (FNot $\varphi) \longleftrightarrow$ all-subformula-st test-symb (conn CNot [φ]) by auto
moreover have $\ldots=($ test-symb $(\operatorname{conn} C N o t[\varphi]) \wedge(\forall \xi \in$ set $[\varphi]$. all-subformula-st test-symb $\xi))$ using all-subformula-st-decomp wf-conn-helper-facts(1) by metis
finally show all-subformula-st test-symb (FNot φ)

```
    \(\longleftrightarrow(\) test-symb \((\) FNot \(\varphi) \wedge\) all-subformula-st test-symb \(\varphi)\) by simp
qed
```

As all-subformula-st tests recursively, the function is true on every subformula.
lemma subformula-all-subformula-st:
$\psi \preceq \varphi \Longrightarrow$ all-subformula-st test-symb $\varphi \Longrightarrow$ all-subformula-st test-symb ψ
by (induct rule: subformula.induct, auto simp add: all-subformula-st-decomp)
The following theorem no-test-symb-step-exists shows the link between the test-symb function and the corresponding rewrite relation r : if we assume that if every time test-symb is true, then a r can be applied, finally as long as \neg all-subformula-st test-symb φ, then something can be rewritten in φ.
lemma no-test-symb-step-exists:
fixes $r::$ 'v propo \Rightarrow 'v propo \Rightarrow bool and test-symb:: 'v propo \Rightarrow bool and $x::{ }^{\prime} v$
and $\varphi::$ 'v propo
assumes
test-symb-false-nullary: $\forall x$. test-symb $F F \wedge$ test-symb $F T \wedge$ test-symb (FVar x) and $\forall \varphi^{\prime} \cdot \varphi^{\prime} \preceq \varphi \longrightarrow\left(\neg\right.$ test-symb $\left.\varphi^{\prime}\right) \longrightarrow\left(\exists \psi \cdot r \varphi^{\prime} \psi\right)$ and \neg all-subformula-st test-symb φ
shows $\exists \psi \psi^{\prime} \cdot \psi \preceq \varphi \wedge r \psi \psi^{\prime}$
using assms
proof (induct φ rule: propo-induct-arity)
case (nullary φ x)
then show $\exists \psi \psi^{\prime} . \psi \preceq \varphi \wedge r \psi \psi^{\prime}$
using wf-conn-nullary test-symb-false-nullary by fastforce
next
case (unary φ) note $I H=$ this(1)[OF this(2)] and $r=$ this(2) and nst $=$ this(3) and subf $=$ this(4)
from r IH nst have $H: \neg$ all-subformula-st test-symb $\varphi \Longrightarrow \exists \psi \cdot \psi \preceq \varphi \wedge\left(\exists \psi^{\prime} . r \psi \psi^{\prime}\right)$
by (metis subformula-in-subformula-not subformula-refl subformula-trans)
\{
assume n : \neg test-symb (FNot φ)
obtain ψ where $r(F N o t \varphi) \psi$ using subformula-refl $r n$ nst by blast
moreover have $F N o t \varphi$ φ FNot φ using subformula-refl by auto
ultimately have $\exists \psi \psi^{\prime} . \psi \preceq F N o t \varphi \wedge r \psi \psi^{\prime}$ by metis
\}
moreover \{
assume n : test-symb (FNot φ)
then have \neg all-subformula-st test-symb φ
using all-subformula-st-decomp-explicit(3) nst subf by blast
then have $\exists \psi \psi^{\prime} . \psi \preceq F N o t \varphi \wedge r \psi \psi^{\prime}$
using H subformula-in-subformula-not subformula-refl subformula-trans by blast
\}
ultimately show $\exists \psi \psi^{\prime} \cdot \psi \preceq F N o t ~ \varphi \wedge r \psi \psi^{\prime}$ by blast
next
case (binary $\varphi \varphi 1 \varphi 2$)
note $\operatorname{IH\varphi } 1-0=$ this(1)[OF this(4)] and $\operatorname{IH\varphi R}$ - $0=$ this(2) $[$ OF this(4)] and $r=$ this(4)
and $\varphi=$ this(3) and $l e=t h i s(5)$ and $n s t=\operatorname{this}(6)$
obtain $c::$ 'v connective where
$c:(c=C A n d \vee c=C O r \vee c=C I m p \vee c=C E q) \wedge \operatorname{conn} c[\varphi 1, \varphi 2]=\varphi$
using φ by fastforce
then have corr: wf-conn $c[\varphi 1, \varphi 2]$ using wf-conn.simps unfolding binary-connectives-def by auto have inc: $\varphi 1$ § $\varphi 2 \preceq \varphi$ using binary-connectives-def c subformula-in-binary-conn by blast+
from r IH φ 1-0 have $I H \varphi 1$: \neg all-subformula-st test-symb $\varphi 1 \Longrightarrow \exists \psi \psi^{\prime} \cdot \psi \preceq \varphi 1 \wedge r \psi \psi^{\prime}$ using inc(1) subformula-trans le by blast
from $r I H \varphi 2-0$ have $I H \varphi 2: \neg$ all-subformula-st test-symb $\varphi 2 \Longrightarrow \exists \psi . \psi \preceq \varphi 2 \wedge\left(\exists \psi^{\prime} . r \psi^{\prime}\right)$ using inc(2) subformula-trans le by blast
have cases: \neg test-symb $\varphi \vee \neg$ all-subformula-st test-symb $\varphi 1 \vee \neg$ all-subformula-st test-symb $\varphi 2$ using c nst by auto
show $\exists \psi \psi^{\prime} . \psi \preceq \varphi \wedge r \psi \psi^{\prime}$
using $\operatorname{IH} \varphi 1$ IH $\varphi 2$ subformula-trans inc subformula-refl cases le by blast
qed

1.4.2 Invariant conservation

If two rewrite relation are independant (or at least independant enough), then the property characterizing the first relation all-subformula-st test-symb remains true. The next show the same property, with changes in the assumptions.

The assumption $\forall \varphi^{\prime} \psi \cdot \varphi^{\prime} \preceq \Phi \longrightarrow r \varphi^{\prime} \psi \longrightarrow$ all-subformula-st test-symb $\varphi^{\prime} \longrightarrow$ all-subformula-st test-symb ψ means that rewriting with r does not mess up the property we want to preserve locally.

The previous assumption is not enough to go from r to propo-rew-step r : we have to add the assumption that rewriting inside does not mess up the term: $\forall c \xi \varphi \xi^{\prime} \varphi^{\prime} . \varphi \preceq \Phi \longrightarrow$ propo-rew-step $r \varphi \varphi^{\prime} \longrightarrow w f$-conn $c\left(\xi @ \varphi \# \xi^{\prime}\right) \longrightarrow$ test-symb $\left(\operatorname{conn} c\left(\xi @ \varphi \# \xi^{\prime}\right)\right) \longrightarrow$ test-symb $\varphi^{\prime} \longrightarrow$ test-symb $\left(\operatorname{conn} c\left(\xi @ \varphi^{\prime} \# \xi^{\prime}\right)\right)$

Invariant while lifting of the Rewriting Relation

The condition $\varphi \preceq \Phi$ (that will by used with $\Phi=\varphi$ most of the time) is here to ensure that the recursive conditions on Φ will moreover hold for the subterm we are rewriting. For example if there is no equivalence symbol in Φ, we do not have to care about equivalence symbols in the two previous assumptions.

```
lemma propo-rew-step-inv-stay':
    fixes r:: 'v propo => 'v propo }=>\mathrm{ bool and test-symb:: 'v propo }=>\mathrm{ bool and x :: 'v
    and }\varphi\psi\Phi:: 'v prop
```



```
        \longrightarrow \text { all-subformula-st test-symb } \psi
    and }\mp@subsup{H}{}{\prime}:\forall(c:: 'v connective) \xi \varphi \xi' \varphi'. \varphi\preceq\Phi \ propo-rew-step r \varphi \varphi
        \longrightarrow w f - c o n n ~ c ( \xi @ \varphi \# \# \xi ^ { \prime } ) \longrightarrow \text { test-symb (conn c ( } \xi @ \varphi \# \xi ^ { \prime } ) ) \longrightarrow \text { test-symb } \varphi ^ { \prime }
        test-symb (conn c(\xi@ \varphi' # \xi')) and
        propo-rew-step r \varphi \psi and
        \varphi \preceq \Phi ~ a n d
        all-subformula-st test-symb \varphi
    shows all-subformula-st test-symb \psi
    using assms(3-5)
proof (induct rule: propo-rew-step.induct)
    case global-rel
    then show ?case using H by simp
next
    case (propo-rew-one-step-lift \varphi \varphi' c \xi \xi')
    note rel = this(1) and \varphi = this(2) and corr = this(3) and \Phi=this(4) and nst = this(5)
    have sq: \varphi\preceq\Phi
        using \Phi corr subformula-into-subformula subformula-refl subformula-trans
        by (metis in-set-conv-decomp)
    from corr have }\forall\psi.\psi\in\operatorname{set}(\xi@\varphi#\mp@subsup{\xi}{}{\prime})\longrightarrow\mathrm{ all-subformula-st test-symb }
```

using all-subformula-st-decomp nst by blast
then have $*: \forall \psi \cdot \psi \in \operatorname{set}\left(\xi @ \varphi^{\prime} \# \xi^{\prime}\right) \longrightarrow$ all-subformula-st test-symb ψ using φ sq by fastforce
then have test-symb φ^{\prime} using all-subformula-st-test-symb-true-phi by auto
moreover from corr nst have test-symb (conn c $\left(\xi @ \varphi \# \xi^{\prime}\right)$)
using all-subformula-st-decomp by blast
ultimately have test-symb: test-symb (conn c($\left.\oint \varphi^{\prime} \# \xi^{\prime}\right)$) using H^{\prime} sq corr rel by blast
have $w f$-conn c (ξ @ $\left.\varphi^{\prime} \# \xi^{\prime}\right)$
by (metis wf-conn-no-arity-change-helper corr wf-conn-no-arity-change)
then show all-subformula-st test-symb (conn c $\left(\xi\right.$ @ $\left.\varphi^{\prime} \# \xi^{\prime}\right)$)
using $*$ test-symb by (metis all-subformula-st-decomp)
qed
The need for $\varphi \preceq \Phi$ is not always necessary, hence we moreover have a version without inclusion.
lemma propo-rew-step-inv-stay:
fixes $r::$ 'v propo \Rightarrow 'v propo \Rightarrow bool and test-symb:: 'v propo \Rightarrow bool and $x::$ 'v
and $\varphi \psi::{ }^{\prime} v$ propo
assumes
$H: \forall \varphi^{\prime} \psi \cdot r \varphi^{\prime} \psi \longrightarrow$ all-subformula-st test-symb $\varphi^{\prime} \longrightarrow$ all-subformula-st test-symb ψ and
$H^{\prime}: \forall(c::$ 'v connective $) \xi \varphi \xi^{\prime} \varphi^{\prime}$. wf-conn $c\left(\xi @ \varphi \# \xi^{\prime}\right) \longrightarrow$ test-symb $\left(\operatorname{conn} c\left(\xi @ \varphi \# \xi^{\prime}\right)\right)$
\longrightarrow test-symb $\varphi^{\prime} \longrightarrow$ test-symb $\left(\operatorname{conn} c\left(\xi @ \varphi^{\prime} \# \xi^{\prime}\right)\right)$ and
propo-rew-step $r \varphi \psi$ and
all-subformula-st test-symb φ
shows all-subformula-st test-symb ψ
using propo-rew-step-inv-stay'[of φ r test-symb $\varphi \psi$] assms subformula-refl by metis
The lemmas can be lifted to propo-rew-step r^{\downarrow} instead of propo-rew-step

Invariant after all Rewriting

lemma full-propo-rew-step-inv-stay-with-inc:
fixes $r::$ 'v propo \Rightarrow 'v propo \Rightarrow bool and test-symb:: 'v propo \Rightarrow bool and $x::$ 'v
and $\varphi \psi::{ }^{\prime} v$ propo
assumes
$H: \forall \varphi \psi$. propo-rew-step $r \varphi \psi \longrightarrow$ all-subformula-st test-symb φ
\longrightarrow all-subformula-st test-symb ψ and
$H^{\prime}: \forall(c:: ~ ' v$ connective $) \xi \varphi \xi^{\prime} \varphi^{\prime} . \varphi \preceq \Phi \longrightarrow$ propo-rew-step $r \varphi \varphi^{\prime}$
$\longrightarrow w f-c o n n c\left(\xi @ \varphi \# \xi^{\prime}\right) \longrightarrow$ test-symb $\left(\operatorname{conn} c\left(\xi @ \varphi \# \xi^{\prime}\right)\right) \longrightarrow$ test-symb φ^{\prime}
\longrightarrow test-symb $\left(\operatorname{conn} c\left(\xi @ \varphi^{\prime} \# \xi^{\prime}\right)\right)$ and
$\varphi \preceq \Phi$ and
full: full (propo-rew-step r) $\varphi \psi$ and
init: all-subformula-st test-symb φ
shows all-subformula-st test-symb ψ
using assms unfolding full-def
proof -
have rel: (propo-rew-step $r)^{* *} \varphi \psi$ using full unfolding full-def by auto
then show all-subformula-st test-symb ψ
using init
proof (induct rule: rtranclp-induct)
case base
then show all-subformula-st test-symb φ by blast
next
case $($ step $b c)$ note star $=$ this(1) and $I H=$ this(3) and one $=$ this(2) and all $=$ this(4)
then have all-subformula-st test-symb b by metis
then show all-subformula-st test-symb c using propo-rew-step-inv-stay' $H^{\prime} H^{\prime}$ rel one by auto
qed
qed
lemma full-propo-rew-step-inv-stay':
fixes $r::$ 'v propo \Rightarrow 'v propo \Rightarrow bool and test-symb:: 'v propo \Rightarrow bool and $x::{ }^{\prime} v$
and $\varphi \psi::{ }^{\prime} v$ propo

assumes

$H: \forall \varphi \psi$. propo-rew-step $r \varphi \psi \longrightarrow$ all-subformula-st test-symb φ
\longrightarrow all-subformula-st test-symb ψ and
$H^{\prime}: \forall(c:: ~ ' v$ connective $) \xi \varphi \xi^{\prime} \varphi^{\prime}$. propo-rew-step $r \varphi \varphi^{\prime} \longrightarrow w f$-conn $c\left(\xi @ \varphi \# \xi^{\prime}\right)$
\longrightarrow test-symb $\left(\right.$ conn $\left.c\left(\xi @ \varphi \# \xi^{\prime}\right)\right) \longrightarrow$ test-symb $\varphi^{\prime} \longrightarrow$ test-symb $\left(\operatorname{conn} c\left(\xi @ \varphi^{\prime} \# \xi^{\prime}\right)\right)$ and
full: full (propo-rew-step r) $\varphi \psi$ and
init: all-subformula-st test-symb φ
shows all-subformula-st test-symb ψ
using full-propo-rew-step-inv-stay-with-inc[of r test-symb φ] assms subformula-refl by metis
lemma full-propo-rew-step-inv-stay:
fixes $r::{ }^{\prime} v$ propo \Rightarrow 'v propo \Rightarrow bool and test-symb:: 'v propo \Rightarrow bool and $x::{ }^{\prime} v$
and $\varphi \psi$:: 'v propo

assumes

$H: \forall \varphi \psi . r \varphi \psi \longrightarrow$ all-subformula-st test-symb $\varphi \longrightarrow$ all-subformula-st test-symb ψ and $H^{\prime}: \forall(c:: ~ ' v ~ c o n n e c t i v e) ~ \xi \varphi \xi^{\prime} \varphi^{\prime}$.wf-conn $c\left(\xi @ \varphi \# \xi^{\prime}\right) \longrightarrow$ test-symb $\left(\right.$ conn $\left.c\left(\xi @ \varphi \# \xi^{\prime}\right)\right)$
\longrightarrow test-symb $\varphi^{\prime} \longrightarrow$ test-symb $\left(\operatorname{conn} c\left(\xi @ \varphi^{\prime} \# \xi^{\prime}\right)\right)$ and
full: full (propo-rew-step r) $\varphi \psi$ and
init: all-subformula-st test-symb φ
shows all-subformula-st test-symb ψ
unfolding full-def
proof -
have rel: (propo-rew-step r) ${ }^{\wedge} * * \varphi \psi$ using full unfolding full-def by auto
then show all-subformula-st test-symb ψ
using init
proof (induct rule: rtranclp-induct)
case base
then show all-subformula-st test-symb φ by blast
next
case (step bc)
note star $=$ this(1) and $I H=$ this(3) and one $=$ this(2) and all $=$ this(4)
then have all-subformula-st test-symb b by metis
then show all-subformula-st test-symb c
using propo-rew-step-inv-stay subformula-refl $H H^{\prime}$ rel one by auto

qed

qed
lemma full-propo-rew-step-inv-stay-conn:
fixes $r::{ }^{\prime} v$ propo \Rightarrow 'v propo \Rightarrow bool and test-symb:: 'v propo \Rightarrow bool and $x::{ }^{\prime} v$
and $\varphi \psi::{ }^{\prime} v$ propo

assumes

$H: \forall \varphi \psi . r \varphi \psi \longrightarrow$ all-subformula-st test-symb $\varphi \longrightarrow$ all-subformula-st test-symb ψ and
$H^{\prime}: \forall(c:: ~ ' v ~ c o n n e c t i v e) ~ l l^{\prime}$. wf-conn $c l \longrightarrow w f-c o n n c l^{\prime}$
$\longrightarrow\left(\right.$ test-symb $($ conn $c l) \longleftrightarrow$ test-symb $\left(\right.$ conn $\left.\left.c l^{\prime}\right)\right)$ and
full: full (propo-rew-step r) $\varphi \psi$ and
init: all-subformula-st test-symb φ
shows all-subformula-st test-symb ψ

proof -


```
    lest-symb (conn c(\xi@ \varphi # \xi'}))\Longrightarrow\mathrm{ test-symb }\mp@subsup{\varphi}{}{\prime}\Longrightarrow\mathrm{ test-symb (conn c ( }\xi@\mp@subsup{\varphi}{}{\prime}#\mp@subsup{\xi}{}{\prime})
    using H' by (metis wf-conn-no-arity-change-helper wf-conn-no-arity-change)
    then show all-subformula-st test-symb \psi
    using H full init full-propo-rew-step-inv-stay by blast
qed
end
theory Prop-Normalisation
imports Prop-Logic Prop-Abstract-Transformation Nested-Multisets-Ordinals.Multiset-More
begin
```

Given the previous definition about abstract rewriting and theorem about them, we now have the detailed rule making the transformation into CNF/DNF.

1.5 Rewrite Rules

The idea of Christoph Weidenbach's book is to remove gradually the operators: first equivalencies, then implication, after that the unused true/false and finally the reorganizing the or/and. We will prove each transformation seperately.

1.5.1 Elimination of the Equivalences

The first transformation consists in removing every equivalence symbol.

```
inductive elim-equiv :: 'v propo => 'v propo }=>\mathrm{ bool where
```

elim-equiv $[\operatorname{simp}]$: elim-equiv $(F E q \varphi \psi)(F A n d(F \operatorname{Imp} \varphi \psi)(F \operatorname{Imp} \psi \varphi))$
lemma elim-equiv-transformation-consistent:

```
\(A \models F E q \varphi \psi \longleftrightarrow A \models F A n d(F \operatorname{Imp} \varphi \psi)(F \operatorname{Imp} \psi \varphi)\)
    by auto
```

lemma elim-equiv-explicit: elim-equiv $\varphi \psi \Longrightarrow \forall A . A \models \varphi \longleftrightarrow A \models \psi$
by (induct rule: elim-equiv.induct, auto)
lemma elim-equiv-consistent: preserve-models elim-equiv
unfolding preserve-models-def by (simp add: elim-equiv-explicit)
lemma elimEquv-lifted-consistant:
preserve-models (full (propo-rew-step elim-equiv))
by (simp add: elim-equiv-consistent)

This function ensures that there is no equivalencies left in the formula tested by no-equiv-symb.

```
fun no-equiv-symb :: 'v propo }=>\mathrm{ bool where
no-equiv-symb (FEq--) = False |
no-equiv-symb - = True
```

Given the definition of no-equiv-symb, it does not depend on the formula, but only on the connective used.
lemma no-equiv-symb-conn-characterization[simp]:
fixes $c::$ ' v connective and $l::$ 'v propo list
assumes wf: wf-conn cl
shows no-equiv-symb $($ conn $c l) \longleftrightarrow c \neq C E q$
by (metis connective.distinct(13,25,35,43) wf no-equiv-symb.elims(3) no-equiv-symb.simps(1) wf-conn.cases wf-conn-list(6))
definition no-equiv where no-equiv $=$ all-subformula-st no-equiv-symb

```
lemma no-equiv-eq[simp]:
    fixes }\varphi\psi :: 'v prop
    shows
        \negno-equiv (FEq \varphi \psi)
        no-equiv FT
        no-equiv FF
    using no-equiv-symb.simps(1) all-subformula-st-test-symb-true-phi unfolding no-equiv-def by auto
```

The following lemma helps to reconstruct no-equiv expressions: this representation is easier to use than the set definition.

```
lemma all-subformula-st-decomp-explicit-no-equiv[iff]:
fixes \(\varphi \psi::\) 'v propo
shows
    no-equiv (FNot \(\varphi\) ) \(\longleftrightarrow\) no-equiv \(\varphi\)
    no-equiv \((F A n d \varphi \psi) \longleftrightarrow\) (no-equiv \(\varphi \wedge\) no-equiv \(\psi\) )
    no-equiv \((F O r \varphi \psi) \longleftrightarrow(\) no-equiv \(\varphi \wedge\) no-equiv \(\psi)\)
    no-equiv \((F \operatorname{Imp} \varphi \psi) \longleftrightarrow\) (no-equiv \(\varphi \wedge\) no-equiv \(\psi\) )
    by (auto simp: no-equiv-def)
```

A theorem to show the link between the rewrite relation elim-equiv and the function no-equiv-symb. This theorem is one of the assumption we need to characterize the transformation.

```
lemma no-equiv-elim-equiv-step:
    fixes \varphi :: 'v propo
    assumes no-equiv: ᄀ no-equiv }
    shows }\exists\psi\mp@subsup{\psi}{}{\prime}.\psi\preceq\varphi\wedge elim-equiv \psi \psi
proof -
    have test-symb-false-nullary:
        \forall::'v. no-equiv-symb FF ^ no-equiv-symb FT ^ no-equiv-symb (FVar x)
        unfolding no-equiv-def by auto
    moreover {
        fix c:: 'v connective and l::'v propo list and \psi :: 'v propo
            assume a1: elim-equiv (conn c l) \psi
            have }\bigwedgep\mathrm{ pa. ᄀ elim-equiv ( p::'v propo) pa }\vee\neg\mathrm{ no-equiv-symb p
                using elim-equiv.cases no-equiv-symb.simps(1) by blast
            then have elim-equiv (conn c l) \psi\Longrightarrow \no-equiv-symb (conn c l) using a1 by metis
    }
    moreover have }\mp@subsup{H}{}{\prime}:\forall\psi\mathrm{ . ᄀelim-equiv FT }\psi\forall\psi\mathrm{ . ᄀelim-equiv FF }\psi\forall\psix\mathrm{ . ᄀelim-equiv (FVar x) }
        using elim-equiv.cases by auto
    moreover have }\bigwedge\varphi.\neg no-equiv-symb \varphi\Longrightarrow\exists\psi. elim-equiv \varphi
        by (case-tac \varphi, auto simp: elim-equiv.simps)
    then have }\Lambda\mp@subsup{\varphi}{}{\prime}.\mp@subsup{\varphi}{}{\prime}\preceq\varphi\Longrightarrow\negno-equiv-symb \mp@subsup{\varphi}{}{\prime}\Longrightarrow\exists\psi. elim-equiv \mp@subsup{\varphi}{}{\prime}\psi\mathrm{ by force
    ultimately show ?thesis
        using no-test-symb-step-exists no-equiv test-symb-false-nullary unfolding no-equiv-def by blast
qed
```

Given all the previous theorem and the characterization, once we have rewritten everything, there is no equivalence symbol any more.
lemma no-equiv-full-propo-rew-step-elim-equiv:
full (propo-rew-step elim-equiv) $\varphi \psi \Longrightarrow$ no-equiv ψ
using full-propo-rew-step-subformula no-equiv-elim-equiv-step by blast

1.5.2 Eliminate Implication

After that, we can eliminate the implication symbols.
inductive elim-imp :: 'v propo \Rightarrow 'v propo \Rightarrow bool where
[simp]: elim-imp (FImp $\varphi \psi)(F O r(F N o t ~ \varphi) \psi)$
lemma elim-imp-transformation-consistent:
$A \models F \operatorname{Imp} \varphi \psi \longleftrightarrow A \models \operatorname{FOr}($ FNot $\varphi) \psi$
by auto
lemma elim-imp-explicit: elim-imp $\varphi \psi \Longrightarrow \forall A \models \varphi \longleftrightarrow A \models \psi$
by (induct $\varphi \psi$ rule: elim-imp.induct, auto)
lemma elim-imp-consistent: preserve-models elim-imp
unfolding preserve-models-def by (simp add: elim-imp-explicit)
lemma elim-imp-lifted-consistant:
preserve-models (full (propo-rew-step elim-imp))
by (simp add: elim-imp-consistent)
fun no-imp-symb where
no-imp-symb (FImp - -) = False \mid
no-imp-symb - = True
lemma no-imp-symb-conn-characterization:
wf-conn cl\Longrightarrow no-imp-symb (conn cl) $\longleftrightarrow c \neq C I m p$
by (induction rule: wf-conn-induct) auto
definition no-imp where no-imp \equiv all-subformula-st no-imp-symb
declare no-imp-def [simp]
lemma no-imp-Imp[simp]:
\neg no-imp (FImp $\varphi \psi$)
no-imp $F T$
no-imp $F F$
unfolding no-imp-def by auto
lemma all-subformula-st-decomp-explicit-imp[simp]:
fixes $\varphi \psi$:: 'v propo
shows
no-imp $($ FNot $\varphi) \longleftrightarrow$ no-imp φ
no-imp $($ FAnd $\varphi \psi) \longleftrightarrow($ no-imp $\varphi \wedge$ no-imp $\psi)$
no-imp $($ FOr $\varphi \psi) \longleftrightarrow($ no-imp $\varphi \wedge$ no-imp $\psi)$
by auto
Invariant of the elim-imp transformation
lemma elim-imp-no-equiv:
elim-imp $\varphi \psi \Longrightarrow$ no-equiv $\varphi \Longrightarrow$ no-equiv ψ
by (induct $\varphi \psi$ rule: elim-imp.induct, auto)
lemma elim-imp-inv:
fixes $\varphi \psi$:: 'v propo
assumes full (propo-rew-step elim-imp) $\varphi \psi$ and no-equiv φ
shows no-equiv ψ
using full-propo-rew-step-inv-stay-conn[of elim-imp no-equiv-symb $\varphi \psi$] assms elim-imp-no-equiv
no-equiv-symb-conn-characterization unfolding no-equiv-def by metis

```
lemma no-no-imp-elim-imp-step-exists:
    fixes \varphi :: 'v propo
    assumes no-equiv: ᄀ no-imp \varphi
    shows \exists\psi \psi'.}\psi\preceq\varphi^ elim-imp \psi \psi'
proof -
    have test-symb-false-nullary: \forallx. no-imp-symb FF ^ no-imp-symb FT ^ no-imp-symb (FVar (x:: 'v))
        by auto
    moreover {
        fix c:: 'v connective and l:: 'v propo list and \psi :: 'v propo
        have H: elim-imp (conn c l) \psi\Longrightarrow \negno-imp-symb (conn c l)
            by (auto elim: elim-imp.cases)
        }
    moreover
        have }\mp@subsup{H}{}{\prime}:\forall\psi.\neg\mathrm{ elim-imp FT }\psi\forall\psi.\neg\mathrm{ elim-imp FF }\psi\forall\psi\mathrm{ x. ᄀelim-imp (FVar x) }
            by (auto elim: elim-imp.cases)+
    moreover
        have \\varphi. ᄀ no-imp-symb \varphi\Longrightarrow\exists\psi. elim-imp \varphi\psi
            by (case-tac \varphi) (force simp: elim-imp.simps)+
        then have }\Lambda\mp@subsup{\varphi}{}{\prime}.\mp@subsup{\varphi}{}{\prime}\preceq\varphi\Longrightarrow\neg\mathrm{ no-imp-symb }\mp@subsup{\varphi}{}{\prime}\Longrightarrow\exists\psi\mathrm{ . elim-imp }\mp@subsup{\varphi}{}{\prime}\psi\mathrm{ by force
    ultimately show ?thesis
        using no-test-symb-step-exists no-equiv test-symb-false-nullary unfolding no-imp-def by blast
qed
lemma no-imp-full-propo-rew-step-elim-imp: full (propo-rew-step elim-imp) \varphi\psi\Longrightarrow no-imp \psi
    using full-propo-rew-step-subformula no-no-imp-elim-imp-step-exists by blast
```


1.5.3 Eliminate all the True and False in the formula

Contrary to the book, we have to give the transformation and the "commutative" transformation. The latter is implicit in the book.

```
inductive elimTB where
ElimTB1: elimTB (FAnd \varphi FT) \varphi |
ElimTB1': elimTB (FAnd FT \varphi) \varphi|
ElimTB2: elimTB (FAnd \varphi FF) FF |
ElimTB2': elimTB (FAnd FF \varphi) FF |
ElimTB3: elimTB (FOr \varphi FT) FT |
ElimTB3': elimTB (FOr FT \varphi) FT |
ElimTB4: elimTB (FOr \varphi FF) \varphi |
ElimTB4': elimTB (FOr FF \varphi) \varphi |
ElimTB5: elimTB (FNot FT) FF |
ElimTB6: elimTB (FNot FF) FT
lemma elimTB-consistent: preserve-models elimTB
proof -
    {
        fix }\varphi\psi:: 'b prop
        have elimTB \varphi\psi\Longrightarrow\forallA.A\models\varphi\longleftrightarrow (
}
```

then show ?thesis using preserve-models-def by auto qed
inductive no-T-F-symb :: 'v propo \Rightarrow bool where
no-T-F-symb-comp: $c \neq C F \Longrightarrow c \neq C T \Longrightarrow$ wf-conn c $l \Longrightarrow(\forall \varphi \in$ set $l . \varphi \neq F T \wedge \varphi \neq F F)$
\Longrightarrow no-T-F-symb (conn cl)
lemma wf-conn-no-T-F-symb-iff[simp]:

```
wf-conn \(c \psi s \Longrightarrow\)
    no-T-F-symb \((\) conn \(c \psi s) \longleftrightarrow(c \neq C F \wedge c \neq C T \wedge(\forall \psi \in\) set \(\psi s . \psi \neq F F \wedge \psi \neq F T))\)
unfolding no-T-F-symb.simps apply (cases c)
            using wf-conn-list(1) apply fastforce
            using wf-conn-list(2) apply fastforce
            using wf-conn-list(3) apply fastforce
            apply (metis (no-types, hide-lams) conn-inj connective.distinct \((5,17)\) )
            using conn-inj apply blast+
done
```

lemma wf-conn-no-T-F-symb-iff-explicit[simp]:

```
no-T-F-symb (FAnd \varphi\psi)\longleftrightarrow(\forall\chi\in set [\varphi,\psi].\chi\not=FF^\chi\not=FT)
no-T-F-symb }(FOr\varphi\psi)\longleftrightarrow(\forall\chi\in\operatorname{set}[\varphi,\psi].\chi\not=FF\wedge\chi\not=FT
no-T-F-symb }(FEq\varphi\psi)\longleftrightarrow(\forall\chi\in\operatorname{set}[\varphi,\psi].\chi\not=FF\wedge\chi\not=FT
no-T-F-symb (FImp \varphi\psi)\longleftrightarrow(\forall\chi\in\operatorname{set}[\varphi,\psi].\chi\not=FF\wedge\chi\not=FT)
    apply (metis conn.simps(36) conn.simps(37) conn.simps(5) propo.distinct(19)
    wf-conn-helper-facts(5) wf-conn-no-T-F-symb-iff)
    apply (metis conn.simps(36) conn.simps(37) conn.simps(6) propo.distinct(22)
        wf-conn-helper-facts(6) wf-conn-no-T-F-symb-iff)
    using wf-conn-no-T-F-symb-iff apply fastforce
by (metis conn.simps(36) conn.simps(37) conn.simps(7) propo.distinct(23) wf-conn-helper-facts(7)
    wf-conn-no-T-F-symb-iff)
```

lemma no-T-F-symb-false[simp]:
fixes $c::$ ' v connective
shows
$\neg n o-T-F$-symb ($F T::{ }^{\prime} v$ propo)
\neg no-T-F-symb (FF :: 'v propo)
by (metis (no-types) conn.simps(1,2) wf-conn-no-T-F-symb-iff wf-conn-nullary)+
lemma no-T-F-symb-bool[simp]:
fixes $x:{ }^{\prime}{ }^{\prime} v$
shows no-T-F-symb (FVar x)
using no-T-F-symb-comp wf-conn-nullary by (metis connective.distinct(3, 15) conn.simps(3)
empty-iff list.set(1))
lemma no-T-F-symb-fnot-imp:
\neg no-T-F-symb $($ FNot $\varphi) \Longrightarrow \varphi=F T \vee \varphi=F F$
proof (rule ccontr)
assume n : \neg no-T-F-symb (FNot φ)
assume $\neg(\varphi=F T \vee \varphi=F F)$
then have $\forall \varphi^{\prime} \in \operatorname{set}[\varphi] . \varphi^{\prime} \neq F T \wedge \varphi^{\prime} \neq F F$ by auto
moreover have wf-conn CNot $[\varphi]$ by simp
ultimately have no-T-F-symb (FNot φ)
using no-T-F-symb.intros by (metis conn.simps(4) connective.distinct(5,17))

```
    then show False using n by blast
qed
lemma no-T-F-symb-fnot[simp]:
    no-T-F-symb (FNot \varphi) \longleftrightarrow\neg(\varphi=FT\vee \varphi=FF)
    using no-T-F-symb.simps no-T-F-symb-fnot-imp by (metis conn-inj-not(2) list.set-intros(1))
```

Actually it is not possible to remover every $F T$ and $F F$: if the formula is equal to true or false, we can not remove it.
inductive no-T-F-symb-except-toplevel where
no-T-F-symb-except-toplevel-true [simp]: no-T-F-symb-except-toplevel FT |
no-T-F-symb-except-toplevel-false[simp]: no-T-F-symb-except-toplevel FF |
noTrue-no-T-F-symb-except-toplevel $[$ simp $]$: no-T-F-symb $\varphi \Longrightarrow$ no-T-F-symb-except-toplevel φ
lemma no-T-F-symb-except-toplevel-bool:
fixes $x::{ }^{\prime} v$
shows no-T-F-symb-except-toplevel (F Var x)
by simp
lemma no-T-F-symb-except-toplevel-not-decom:
$\varphi \neq F T \Longrightarrow \varphi \neq F F \Longrightarrow$ no-T-F-symb-except-toplevel (FNot φ)
by simp
lemma no-T-F-symb-except-toplevel-bin-decom:
fixes $\varphi \psi$:: 'v propo
assumes $\varphi \neq F T$ and $\varphi \neq F F$ and $\psi \neq F T$ and $\psi \neq F F$
and $c: c \in$ binary-connectives
shows no-T-F-symb-except-toplevel (conn c $[\varphi, \psi]$)
by (metis (no-types, lifting) assms c conn.simps(4) list.discI noTrue-no-T-F-symb-except-toplevel wf-conn-no-T-F-symb-iff no-T-F-symb-fnot set-ConsD wf-conn-binary wf-conn-helper-facts(1) wf-conn-list-decomp(1,2))
lemma no-T-F-symb-except-toplevel-if-is-a-true-false:
fixes $l::$ ' v propo list and $c::$ ' v connective
assumes corr: wf-conn cl
and $F T \in$ set $l \vee F F \in$ set l
shows \neg no- T-F-symb-except-toplevel (conn c l)
by (metis assms empty-iff no-T-F-symb-except-toplevel.simps wf-conn-no-T-F-symb-iff set-empty wf-conn-list(1,2))
lemma no-T-F-symb-except-top-level-false-example[simp]:
fixes $\varphi \psi::{ }^{\prime} v$ propo
assumes $\varphi=F T \vee \psi=F T \vee \varphi=F F \vee \psi=F F$
shows
\neg no-T-F-symb-except-toplevel (FAnd $\varphi \psi$)
\neg no-T-F-symb-except-toplevel (FOr $\varphi \psi$)
\neg no-T-F-symb-except-toplevel (FImp $\varphi \psi$)
\neg no-T-F-symb-except-toplevel (FEq $\varphi \psi)$
using assms no-T-F-symb-except-toplevel-if-is-a-true-false unfolding binary-connectives-def
by (metis (no-types) conn.simps(5-8) insert-iff list.simps(14-15) wf-conn-helper-facts(5-8))+
lemma no-T-F-symb-except-top-level-false-not[simp]:
fixes $\varphi \psi::$ 'v propo
assumes $\varphi=F T \vee \varphi=F F$
shows

```
    \negno-T-F-symb-except-toplevel (FNot \varphi)
by (simp add: assms no-T-F-symb-except-toplevel.simps)
```

This is the local extension of no-T-F-symb-except-toplevel.
definition no-T-F-except-top-level where
no-T-F-except-top-level \equiv all-subformula-st no-T-F-symb-except-toplevel
This is another property we will use. While this version might seem to be the one we want to prove, it is not since $F T$ can not be reduced.

```
definition no-T-F where
no-T-F \equivall-subformula-st no-T-F-symb
lemma no-T-F-except-top-level-false:
    fixes l::'v propo list and c:: 'v connective
    assumes wf-conn cl
    and FT\in set l\veeFF\in set l
    shows \negno-T-F-except-top-level (conn c l)
    by (simp add: all-subformula-st-decomp assms no-T-F-except-top-level-def
        no-T-F-symb-except-toplevel-if-is-a-true-false)
lemma no-T-F-except-top-level-false-example[simp]:
    fixes }\varphi\psi :: 'v propo
    assumes }\varphi=FT\vee\psi=FT\vee\varphi=FF\vee\psi=F
    shows
        \negno-T-F-except-top-level (FAnd \varphi \psi)
        \negno-T-F-except-top-level (FOr \varphi \psi)
        \negno-T-F-except-top-level (FEq \varphi \psi)
        \negno-T-F-except-top-level (FImp \varphi \psi)
    by (metis all-subformula-st-test-symb-true-phi assms no-T-F-except-top-level-def
        no-T-F-symb-except-top-level-false-example)+
```

lemma no-T-F-symb-except-toplevel-no-T-F-symb:
no-T-F-symb-except-toplevel $\varphi \Longrightarrow \varphi \neq F F \Longrightarrow \varphi \neq F T \Longrightarrow$ no-T-F-symb φ
by (induct rule: no-T-F-symb-except-toplevel.induct, auto)

The two following lemmas give the precise link between the two definitions.

```
lemma no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb:
    no-T-F-except-top-level }\varphi\Longrightarrow\varphi\not=FF\Longrightarrow\varphi\not=FT\Longrightarrow no-T-F
    unfolding no-T-F-except-top-level-def no-T-F-def apply (induct \varphi)
    using no-T-F-symb-fnot by fastforce+
lemma no-T-F-no-T-F-except-top-level:
    no-T-F \varphi \Longrightarrow no-T-F-except-top-level }
    unfolding no-T-F-except-top-level-def no-T-F-def
    unfolding all-subformula-st-def by auto
lemma no-T-F-except-top-level-simp[simp]: no-T-F-except-top-level FF no-T-F-except-top-level FT
    unfolding no-T-F-except-top-level-def by auto
lemma no-T-F-no-T-F-except-top-level'}[\mathrm{ simp ]:
    no-T-F-except-top-level }\varphi\longleftrightarrow(\varphi=FF\vee\varphi=FT\vee no-T-F \varphi
    using no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb no-T-F-no-T-F-except-top-level
    by auto
```

```
lemma no-T-F-bin-decomp[simp]:
    assumes c:c\in binary-connectives
    shows no-T-F (conn c [\varphi,\psi]) \longleftrightarrow(no-T-F \varphi\wedge no-T-F\psi)
proof -
    have wf:wf-conn c[\varphi,\psi] using c by auto
    then have no-T-F (conn c[\varphi,\psi])\longleftrightarrow(no-T-F-symb (connc[\varphi,\psi])\wedge no-T-F \varphi^no-T-F \psi)
        by (simp add: all-subformula-st-decomp no-T-F-def)
    then show no-T-F (conn c [\varphi,\psi])\longleftrightarrow(no-T-F \varphi^ no-T-F \psi)
        using c wf all-subformula-st-decomp list.discI no-T-F-def no-T-F-symb-except-toplevel-bin-decom
            no-T-F-symb-except-toplevel-no-T-F-symb no-T-F-symb-false(1,2) wf-conn-helper-facts(2,3)
            wf-conn-list(1,2) by metis
qed
lemma no-T-F-bin-decomp-expanded[simp]:
    assumes c:c=CAnd \veec=COr\veec=CEq\veec=CImp
    shows no-T-F (conn c[\varphi,\psi])\longleftrightarrow(no-T-F \varphi^ no-T-F\psi)
    using no-T-F-bin-decomp assms unfolding binary-connectives-def by blast
lemma no-T-F-comp-expanded-explicit[simp]:
    fixes }\varphi\psi:: 'v prop
    shows
        no-T-F (FAnd \varphi\psi)\longleftrightarrow(no-T-F \varphi^no-T-F \psi)
        no-T-F (FOr \varphi\psi) \longleftrightarrow(no-T-F \varphi^no-T-F\psi)
        no-T-F (FEq \varphi\psi) \longleftrightarrow(no-T-F \varphi^ no-T-F \psi)
        no-T-F (FImp \varphi \psi)\longleftrightarrow(no-T-F \varphi ^ no-T-F \psi)
    using conn.simps(5-8) no-T-F-bin-decomp-expanded by (metis (no-types))+
lemma no-T-F-comp-not[simp]:
    fixes }\varphi\psi :: 'v prop
    shows no-T-F (FNot \varphi) \longleftrightarrow no-T-F \varphi
    by (metis all-subformula-st-decomp-explicit(3) all-subformula-st-test-symb-true-phi no-T-F-def
        no-T-F-symb-false(1,2) no-T-F-symb-fnot-imp)
lemma no-T-F-decomp:
    fixes }\varphi\psi:: 'v prop
    assumes \varphi: no-T-F (FAnd \varphi \psi)\vee no-T-F (FOr }\varphi\psi)\vee no-T-F (FEq \varphi \psi)\vee no-T-F (FImp \varphi \psi
    shows no-T-F \psi and no-T-F \varphi
    using assms by auto
lemma no-T-F-decomp-not:
    fixes \varphi :: 'v propo
    assumes \varphi: no-T-F (FNot \varphi)
    shows no-T-F \varphi
    using assms by auto
lemma no-T-F-symb-except-toplevel-step-exists:
    fixes }\varphi\psi :: 'v prop
    assumes no-equiv \varphi and no-imp \varphi
    shows }\psi\preceq\varphi\Longrightarrow\neg\mathrm{ no-T-F-symb-except-toplevel }\psi\Longrightarrow\exists\mp@subsup{\psi}{}{\prime}.\mathrm{ elimTB }\psi\mp@subsup{\psi}{}{\prime
proof (induct \psi rule: propo-induct-arity)
    case (nullary }\mp@subsup{\varphi}{}{\prime}x\mathrm{ )
    then have False using no-T-F-symb-except-toplevel-true no-T-F-symb-except-toplevel-false by auto
    then show ?case by blast
next
    case (unary \psi)
    then have \psi=FF\vee\psi=FT using no-T-F-symb-except-toplevel-not-decom by blast
```

```
    then show ?case using ElimTB5 ElimTB6 by blast
next
    case (binary \varphi' \psi1 \psi2)
    note IH1 = this(1) and IH2 = this(2) and \varphi' = this(3) and F\varphi=this(4) and n=this(5)
    {
    assume }\mp@subsup{\varphi}{}{\prime}=FImp \psi1 \psi2 \vee \varphi ' = FEq \psi1 \psi2
    then have False using n F\varphi subformula-all-subformula-st assms
        by (metis (no-types) no-equiv-eq(1) no-equiv-def no-imp-Imp(1) no-imp-def)
    then have ?case by blast
    }
    moreover {
    assume }\mp@subsup{\varphi}{}{\prime}:\mp@subsup{\varphi}{}{\prime}=\mathrm{ FAnd }\psi1\psi2\vee\mp@subsup{\varphi}{}{\prime}=FOr \psi1 \psi2
    then have \psi1=FT\vee \psi2 =FT\vee \psi1 = FF\vee \psi2 = FF
        using no-T-F-symb-except-toplevel-bin-decom conn.simps(5,6) n unfolding binary-connectives-def
        by fastforce+
    then have ?case using elimTB.intros \varphi' by blast
    }
    ultimately show ?case using \varphi' by blast
qed
lemma no-T-F-except-top-level-rew:
    fixes \varphi :: 'v propo
    assumes noTB: \neg no-T-F-except-top-level }\varphi\mathrm{ and no-equiv: no-equiv }\varphi\mathrm{ and no-imp: no-imp }
    shows }\exists\psi\mp@subsup{\psi}{}{\prime}.\psi\preceq\varphi\wedge elimTB\psi\mp@subsup{\psi}{}{\prime
proof -
    have test-symb-false-nullary: }\forallx. no-T-F-symb-except-toplevel (FF:: 'v propo
        ^ no-T-F-symb-except-toplevel FT ^ no-T-F-symb-except-toplevel (FVar (x:: 'v)) by auto
    moreover {
        fix c:: 'v connective and l:: 'v propo list and \psi :: 'v propo
        have H: elimTB (conn c l) \psi\Longrightarrow \negno-T-F-symb-except-toplevel (conn c l)
            by (cases conn c l rule: elimTB.cases, auto)
    }
    moreover {
        fix }x:: '
        have H': no-T-F-except-top-level FT no-T-F-except-top-level FF
            no-T-F-except-top-level (FVar x)
            by (auto simp: no-T-F-except-top-level-def test-symb-false-nullary)
    }
    moreover {
        fix }
        have }\psi\preceq\varphi\Longrightarrow \neg no-T-F-symb-except-toplevel \psi\Longrightarrow\exists\mp@subsup{\psi}{}{\prime}. elimTB \psi \psi
            using no-T-F-symb-except-toplevel-step-exists no-equiv no-imp by auto
    }
    ultimately show ?thesis
    using no-test-symb-step-exists noTB unfolding no-T-F-except-top-level-def by blast
qed
lemma elimTB-inv:
    fixes }\varphi\psi :: 'v prop
    assumes full (propo-rew-step elimTB) \varphi\psi
    and no-equiv }\varphi\mathrm{ and no-imp }
    shows no-equiv \psi and no-imp \psi
proof -
    {
        fix }\varphi\psi :: 'v prop
        have}H\mathrm{ : elimTB }\psi>\mathrm{ no-equiv }\varphi\Longrightarrow\mathrm{ no-equiv }
```

```
        by (induct \varphi \psi rule: elimTB.induct, auto)
}
then show no-equiv \psi
    using full-propo-rew-step-inv-stay-conn[of elimTB no-equiv-symb \varphi \psi]
        no-equiv-symb-conn-characterization assms unfolding no-equiv-def by metis
next
    {
        fix }\varphi\psi :: 'v prop
        have H: elimTB \varphi \psi\Longrightarrow no-imp \varphi\Longrightarrow no-imp }
        by (induct }\varphi\psi\mathrm{ rule: elimTB.induct, auto)
}
then show no-imp \psi
    using full-propo-rew-step-inv-stay-conn[of elimTB no-imp-symb }\varphi\psi]\mathrm{ assms
        no-imp-symb-conn-characterization unfolding no-imp-def by metis
qed
lemma elimTB-full-propo-rew-step:
    fixes }\varphi\psi :: 'v prop
    assumes no-equiv }\varphi\mathrm{ and no-imp }\varphi\mathrm{ and full (propo-rew-step elimTB) }\varphi
    shows no-T-F-except-top-level \psi
    using full-propo-rew-step-subformula no-T-F-except-top-level-rew assms elimTB-inv by fastforce
```


1.5.4 PushNeg

Push the negation inside the formula, until the litteral.
inductive pushNeg where
PushNeg1[simp]: pushNeg (FNot $($ FAnd $\varphi \psi))($ FOr $(F N o t \varphi)(F N o t \psi))$
PushNeg2[simp]: pushNeg (FNot $($ FOr $\varphi \psi))($ FAnd $(F N o t \varphi)(F N o t \psi)) \mid$
PushNeg3[simp]: pushNeg (FNot (FNot φ)) φ
lemma pushNeg-transformation-consistent:

```
A\modelsFNot (FAnd \varphi\psi)\longleftrightarrowA\models(FOr (FNot \varphi) (FNot \psi))
A\modelsFNot (FOr \varphi \psi) \longleftrightarrowA\models(FAnd (FNot \varphi) (FNot \psi))
A\modelsFNot (FNot \varphi) \longleftrightarrowA\models\varphi
    by auto
```

lemma pushNeg-explicit: pushNeg $\varphi \psi \Longrightarrow \forall A . A \models \varphi \longleftrightarrow A \models \psi$
by (induct $\varphi \psi$ rule: pushNeg.induct, auto)
lemma pushNeg-consistent: preserve-models pushNeg
unfolding preserve-models-def by (simp add: pushNeg-explicit)
lemma pushNeg-lifted-consistant:
preserve-models (full (propo-rew-step pushNeg))
by (simp add: pushNeg-consistent)
fun simple where
simple $F T=$ True
simple $F F=$ True
simple (FVar -) = True
simple - = False

```
lemma simple-decomp:
    simple \(\varphi \longleftrightarrow(\varphi=F T \vee \varphi=F F \vee(\exists x . \varphi=F \operatorname{Var} x))\)
    by (cases \(\varphi\) ) auto
lemma subformula-conn-decomp-simple:
    fixes \(\varphi \psi\) :: 'v propo
    assumes \(s\) : simple \(\psi\)
    shows \(\varphi \preceq\) FNot \(\psi \longleftrightarrow(\varphi=\) FNot \(\psi \vee \varphi=\psi)\)
proof -
    have \(\varphi \preceq \operatorname{conn} \operatorname{CNot}[\psi] \longleftrightarrow(\varphi=\operatorname{conn} \operatorname{CNot}[\psi] \vee(\exists \psi \in \operatorname{set}[\psi] . \varphi \preceq \psi))\)
        using subformula-conn-decomp wf-conn-helper-facts(1) by metis
    then show \(\varphi \preceq F N o t \psi \longleftrightarrow(\varphi=F N o t \psi \vee \varphi=\psi)\) using \(s\) by (auto simp: simple-decomp)
qed
lemma subformula-conn-decomp-explicit[simp]:
    fixes \(\varphi\) :: 'v propo and \(x::{ }^{\prime} v\)
    shows
        \(\varphi \preceq F N o t F T \longleftrightarrow(\varphi=F N o t F T \vee \varphi=F T)\)
        \(\varphi \preceq F N o t F F \longleftrightarrow(\varphi=\) FNot \(F F \vee \varphi=F F)\)
        \(\varphi \preceq F N o t(F \operatorname{Var} x) \longleftrightarrow(\varphi=F N o t(F \operatorname{Var} x) \vee \varphi=F \operatorname{Var} x)\)
    by (auto simp: subformula-conn-decomp-simple)
fun simple-not-symb where
simple-not-symb \((\) FNot \(\varphi)=(\) simple \(\varphi) \mid\)
simple-not-symb - = True
definition simple-not where
simple-not \(=\) all-subformula-st simple-not-symb
declare simple-not-def[simp]
lemma simple-not-Not[simp]:
    \(\neg\) simple-not \((F N o t(F A n d \varphi \psi))\)
    \(\neg\) simple-not \((F N o t(F O r \varphi \psi))\)
    by auto
lemma simple-not-step-exists:
    fixes \(\varphi \psi\) :: 'v propo
    assumes no-equiv \(\varphi\) and no-imp \(\varphi\)
    shows \(\psi \preceq \varphi \Longrightarrow \neg\) simple-not-symb \(\psi \Longrightarrow \exists \psi^{\prime}\). pushNeg \(\psi \psi^{\prime}\)
    apply (induct \(\psi\), auto)
    apply (rename-tac \(\psi\), case-tac \(\psi\), auto intro: pushNeg.intros)
    by (metis \(\operatorname{assms}(1,2)\) no-imp- \(\operatorname{Imp}(1)\) no-equiv-eq(1) no-imp-def no-equiv-def
        subformula-in-subformula-not subformula-all-subformula-st) +
lemma simple-not-rew:
    fixes \(\varphi\) :: 'v propo
    assumes noTB: \(\neg\) simple-not \(\varphi\) and no-equiv: no-equiv \(\varphi\) and no-imp: no-imp \(\varphi\)
    shows \(\exists \psi \psi^{\prime} . \psi \preceq \varphi \wedge\) pushNeg \(\psi \psi^{\prime}\)
proof -
    have \(\forall x\). simple-not-symb \((F F::\) 'v propo \() \wedge\) simple-not-symb \(F T \wedge\) simple-not-symb \((F \operatorname{Var}(x:: ~ ' v))\)
        by auto
    moreover \{
        fix \(c::\) ' \(v\) connective and \(l::\) 'v propo list and \(\psi::\) 'v propo
        have \(H\) : pushNeg (conn cl) \(\psi \Longrightarrow\) asimple-not-symb (conn cl)
            by (cases conn c l rule: pushNeg.cases) auto
```

```
}
moreover {
    fix }x:: '
    have H': simple-not FT simple-not FF simple-not (FVar x)
        by simp-all
}
moreover {
    fix \psi :: 'v propo
    have }\psi\preceq\varphi\Longrightarrow\neg\mathrm{ simple-not-symb }\psi\Longrightarrow\exists\mp@subsup{\psi}{}{\prime}\mathrm{ . pushNeg }\psi\mp@subsup{\psi}{}{\prime
        using simple-not-step-exists no-equiv no-imp by blast
}
ultimately show ?thesis using no-test-symb-step-exists noTB unfolding simple-not-def by blast
qed
lemma no-T-F-except-top-level-pushNeg1:
    no-T-F-except-top-level (FNot (FAnd \varphi \psi)) \Longrightarrow no-T-F-except-top-level (FOr (FNot \varphi) (FNot \psi))
using no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb no-T-F-comp-not no-T-F-decomp (1)
    no-T-F-decomp(2) no-T-F-no-T-F-except-top-level by (metis no-T-F-comp-expanded-explicit(2)
        propo.distinct(5,17))
lemma no-T-F-except-top-level-pushNeg2:
    no-T-F-except-top-level (FNot (FOr }\varphi\psi))\Longrightarrow\mathrm{ no-T-F-except-top-level (FAnd (FNot }\varphi)(FNot \psi)
    by auto
lemma no-T-F-symb-pushNeg:
    no-T-F-symb (FOr (FNot \varphi') (FNot }\mp@subsup{\psi}{}{\prime
    no-T-F-symb (FAnd (FNot \varphi') (FNot \psi'))
    no-T-F-symb (FNot (FNot \varphi'))
    by auto
lemma propo-rew-step-pushNeg-no-T-F-symb:
    propo-rew-step pushNeg }\varphi\psi\Longrightarrow\mathrm{ no-T-F-except-top-level }\varphi\Longrightarrow\mathrm{ no-T-F-symb }\varphi\Longrightarrow\mathrm{ no-T-F-symb }
    apply (induct rule: propo-rew-step.induct)
    apply (cases rule: pushNeg.cases)
    apply simp-all
    apply (metis no-T-F-symb-pushNeg(1))
    apply (metis no-T-F-symb-pushNeg(2))
    apply (simp, metis all-subformula-st-test-symb-true-phi no-T-F-def)
proof -
    fix }\varphi\mp@subsup{\varphi}{}{\prime}:: 'a propo and c:: 'a connective and \xi \xi':: 'a propo lis
    assume rel: propo-rew-step pushNeg \varphi \varphi'
    and IH: no-T-F \varphi \Longrightarrow no-T-F-symb \varphi \Longrightarrow no-T-F-symb \varphi'
    and wf:wf-conn c(\xi@ @ # \xi')
    and n:connc(\xi@\varphi#\mp@subsup{\xi}{}{\prime})=FF\vee\operatorname{conn}c(\xi@\varphi#\mp@subsup{\xi}{}{\prime})=FT\veeno-T-F(connc(\xi@\varphi#\mp@subsup{\xi}{}{\prime}))
    and x:c\not=CF\wedgec\not=CT^\varphi\not=FF\wedge\varphi\not=FT\wedge(\forall\psi\in set \xi\cup set \xi'. }\psi\not=FF\wedge\psi\not=FT
    then have c\not=CF^c\not=CF^wf-conn c(\xi@ \varphi' # \xi')
    using wf-conn-no-arity-change-helper wf-conn-no-arity-change by metis
    moreover have n': no-T-F (conn c(\xi@ @ # '')) using n by (simp add:wf wf-conn-list(1,Q))
    moreover
    {
        have no-T-F \varphi
        by (metis Un-iff all-subformula-st-decomp list.set-intros(1) n' wf no-T-F-def set-append)
    moreover then have no-T-F-symb \varphi
        by (simp add: all-subformula-st-test-symb-true-phi no-T-F-def)
    ultimately have }\mp@subsup{\varphi}{}{\prime}\not=FF\wedge\mp@subsup{\varphi}{}{\prime}\not=F
        using IH no-T-F-symb-false(1) no-T-F-symb-false(2) by blast
```

```
        then have }\forall\psi\in\operatorname{set}(\xi@\mp@subsup{\varphi}{}{\prime}#\mp@subsup{\xi}{}{\prime}).\psi\not=FF\wedge\psi\not=FT\mathrm{ using }x\mathrm{ by auto
    }
    ultimately show no-T-F-symb (conn c (\xi@ \varphi' # ' ')) by (simp add: x)
qed
lemma propo-rew-step-pushNeg-no-T-F:
    propo-rew-step pushNeg \varphi\psi\Longrightarrow no-T-F \varphi\Longrightarrow no-T-F \psi
proof (induct rule: propo-rew-step.induct)
    case global-rel
    then show ?case
        by (metis (no-types, lifting) no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb
            no-T-F-def no-T-F-except-top-level-pushNeg1 no-T-F-except-top-level-pushNeg2
            no-T-F-no-T-F-except-top-level all-subformula-st-decomp-explicit(3) pushNeg.simps
            simple.simps(1,2,5,6))
next
    case (propo-rew-one-step-lift \varphi \varphi ' c \xi \xi')
    note rel = this(1) and IH = this(2) and wf = this(3) and no-T-F = this(4)
    moreover have wf':wf-conn c(\xi@ \varphi' # \xi')
    using wf-conn-no-arity-change wf-conn-no-arity-change-helper wf by metis
    ultimately show no-T-F (conn c (\xi@ \varphi' # ' '))
        using all-subformula-st-test-symb-true-phi
        by (fastforce simp: no-T-F-def all-subformula-st-decomp wf wf')
qed
```

lemma pushNeg-inv:
fixes $\varphi \psi::{ }^{\prime} v$ propo
assumes full (propo-rew-step pushNeg) $\varphi \psi$
and no-equiv φ and no-imp φ and no-T-F-except-top-level φ
shows no-equiv ψ and no-imp ψ and no-T-F-except-top-level ψ
proof -
\{
fix $\varphi \psi$:: 'v propo
assume rel: propo-rew-step pushNeg $\varphi \psi$
and no: no-T-F-except-top-level φ
then have no-T-F-except-top-level ψ
proof -
\{
assume $\varphi=F T \vee \varphi=F F$
from rel this have False
apply (induct rule: propo-rew-step.induct)
using pushNeg.cases apply blast
using wf-conn-list(1) wf-conn-list(2) by auto
then have no-T-F-except-top-level ψ by blast
\}
moreover \{
assume $\varphi \neq F T \wedge \varphi \neq F F$
then have no-T-F φ
by (metis no no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
then have no-T-F ψ
using propo-rew-step-pushNeg-no-T-F rel by auto
then have no-T-F-except-top-level ψ by (simp add: no-T-F-no-T-F-except-top-level)
\}
ultimately show no-T-F-except-top-level ψ by metis
qed
\}

```
moreover {
    fix c:: 'v connective and \xi \xi' :: 'v propo list and \zeta \zeta' :: 'v propo
    assume rel: propo-rew-step pushNeg \zeta \zeta'
    and incl: }\zeta\preceq
    and corr:wf-conn c(\xi@\zeta# \xi')
    and no-T-F: no-T-F-symb-except-toplevel (conn c (\xi@\zeta# ' )
    and n: no-T-F-symb-except-toplevel \zeta'
    have no-T-F-symb-except-toplevel (conn c (\xi@ ''# ''))
    proof
        have p:no-T-F-symb (conn c (\xi@\zeta# \xi})
            using corr wf-conn-list(1) wf-conn-list(2) no-T-F-symb-except-toplevel-no-T-F-symb no-T-F
            by blast
        have l: \forall\varphi\inset (\xi@\zeta# @ '). }\varphi\not=FT\wedge\varphi\not=F
            using corr wf-conn-no-T-F-symb-iff p by blast
        from rel incl have \zeta'
            apply (induction \zeta \zeta' rule: propo-rew-step.induct)
            apply (cases rule: pushNeg.cases, auto)
            by (metis assms(4) no-T-F-symb-except-top-level-false-not no-T-F-except-top-level-def
                    all-subformula-st-test-symb-true-phi subformula-in-subformula-not
                subformula-all-subformula-st append-is-Nil-conv list.distinct(1)
                wf-conn-no-arity-change-helper wf-conn-list(1,2) wf-conn-no-arity-change)+
        then have }\forall\varphi\in\operatorname{set}(\xi@\mp@subsup{\zeta}{}{\prime}#\mp@subsup{\xi}{}{\prime}).\varphi\not=FT\wedge\varphi\not=FF\mathrm{ using l by auto
        moreover have c\not=CT^c\not=CF using corr by auto
        ultimately show no-T-F-symb (conn c (\xi @ \zeta'# ''))
            by (metis corr no-T-F-symb-comp wf-conn-no-arity-change wf-conn-no-arity-change-helper)
    qed
}
ultimately show no-T-F-except-top-level \psi
    using full-propo-rew-step-inv-stay-with-inc[of pushNeg no-T-F-symb-except-toplevel \varphi] assms
        subformula-refl unfolding no-T-F-except-top-level-def full-unfold by metis
next
    {
    fix }\varphi\psi :: 'v prop
    have H: pushNeg }\varphi\psi\Longrightarrow\mathrm{ no-equiv }\varphi\Longrightarrow\mathrm{ no-equiv }
        by (induct \varphi \psi rule: pushNeg.induct, auto)
    }
    then show no-equiv \psi
    using full-propo-rew-step-inv-stay-conn[of pushNeg no-equiv-symb \varphi \psi]
    no-equiv-symb-conn-characterization assms unfolding no-equiv-def full-unfold by metis
next
    {
    fix }\varphi\psi :: 'v prop
    have H: pushNeg \varphi \psi\Longrightarrow no-imp \varphi \Longrightarrow no-imp }
        by (induct }\varphi\psi\mathrm{ rule: pushNeg.induct, auto)
}
then show no-imp \psi
    using full-propo-rew-step-inv-stay-conn[of pushNeg no-imp-symb \varphi \psi] assms
        no-imp-symb-conn-characterization unfolding no-imp-def full-unfold by metis
qed
lemma pushNeg-full-propo-rew-step:
    fixes }\varphi\psi \:: 'v prop
    assumes
        no-equiv }\varphi\mathrm{ and
        no-imp \varphi and
```

full (propo-rew-step pushNeg) $\varphi \psi$ and
no-T-F-except-top-level φ
shows simple-not ψ
using assms full-propo-rew-step-subformula pushNeg-inv(1,2) simple-not-rew by blast

1.5.5 Push Inside

```
inductive push-conn-inside \(::\) 'v connective \(\Rightarrow\) 'v connective \(\Rightarrow\) 'v propo \(\Rightarrow\) 'v propo \(\Rightarrow\) bool
    for \(c c^{\prime}::{ }^{\prime} v\) connective where
push-conn-inside-l[simp]: \(c=C A n d \vee c=C O r \Longrightarrow c^{\prime}=C A n d \vee c^{\prime}=C O r\)
    \(\Longrightarrow\) push-conn-inside \(c c^{\prime}\left(\right.\) conn \(c\left[\right.\) conn \(\left.\left.c^{\prime}[\varphi 1, \varphi 2], \psi\right]\right)\)
    (conn \(c^{\prime}[\) conn \(c[\varphi 1, \psi]\), conn \(\left.c[\varphi 2, \psi]]\right)\)
push-conn-inside-r[simp]: \(c=C A n d \vee c=C O r \Longrightarrow c^{\prime}=C A n d \vee c^{\prime}=C O r\)
    \(\Longrightarrow\) push-conn-inside \(c c^{\prime}\left(\right.\) conn \(c\left[\psi\right.\), conn \(\left.\left.c^{\prime}\left[\varphi 1, \varphi_{2}\right]\right]\right)\)
        (conn \(c^{\prime}[\operatorname{conn} c[\psi, \varphi 1]\), conn \(\left.c[\psi, \varphi 2]]\right)\)
```

lemma push-conn-inside-explicit: push-conn-inside c c' $\varphi \psi \Longrightarrow \forall A . A \models \varphi \longleftrightarrow A \models \psi$
by (induct $\varphi \psi$ rule: push-conn-inside.induct, auto)
lemma push-conn-inside-consistent: preserve-models (push-conn-inside c c')
unfolding preserve-models-def by (simp add: push-conn-inside-explicit)
lemma propo-rew-step-push-conn-inside $[$ simp $]$:
\neg propo-rew-step (push-conn-inside c c^{\prime}) FT $\psi \neg$ propo-rew-step (push-conn-inside c c ${ }^{\prime}$) FF ψ
proof -
\{
\{
fix $\varphi \psi$
have push-conn-inside c $c^{\prime} \varphi \psi \Longrightarrow \varphi=F T \vee \varphi=F F \Longrightarrow$ False
by (induct rule: push-conn-inside.induct, auto)
\} note $H=$ this
fix φ
have propo-rew-step (push-conn-inside c c^{\prime}) $\varphi \psi \Longrightarrow \varphi=F T \vee \varphi=F F \Longrightarrow$ False
apply (induct rule: propo-rew-step.induct, auto simp: wf-conn-list(1) wf-conn-list(2))
using H by blast +
\}
then show
\neg propo-rew-step (push-conn-inside c c') FT ψ
\neg propo-rew-step (push-conn-inside c c c^{\prime}) FF ψ by blast+
qed
inductive not-c-in-c'-symb:: 'v connective \Rightarrow 'v connective \Rightarrow 'v propo \Rightarrow bool for $c c^{\prime}$ where
not-c-in-c'-symb-l[simp]: wf-conn $c\left[\operatorname{conn} c^{\prime}\left[\varphi, \varphi^{\prime}\right], \psi\right] \Longrightarrow$ wf-conn $c^{\prime}\left[\varphi, \varphi^{\prime}\right]$
\Longrightarrow not-c-in-c'-symb $c c^{\prime}\left(\right.$ conn $\left.c\left[\operatorname{conn} c^{\prime}\left[\varphi, \varphi^{\prime}\right], \psi\right]\right) \mid$
not-c-in-c'-symb-r[simp $]$: wf-conn $c\left[\psi, \operatorname{conn} c^{\prime}\left[\varphi, \varphi^{\prime}\right]\right] \Longrightarrow w f$-conn $c^{\prime}\left[\varphi, \varphi^{\prime}\right]$
\Longrightarrow not-c-in- c^{\prime}-symb $c c^{\prime}\left(\right.$ conn $c\left[\psi\right.$, conn $\left.\left.c^{\prime}\left[\varphi, \varphi^{\prime}\right]\right]\right)$
abbreviation c-in- c^{\prime}-symb $с c^{\prime} \varphi \equiv \neg$ not- c-in- c^{\prime}-symb $с$ c $c^{\prime} \varphi$
lemma c-in- c^{\prime}-symb-simp:
not-c-in-c'-symb c c $c^{\prime} \xi \Longrightarrow \xi=F F \vee \xi=F T \vee \xi=F \operatorname{Var} x \vee \xi=F N o t F F \vee \xi=F N o t F T$
$\vee \xi=$ FNot $(F$ Var $x) \Longrightarrow$ False
apply (induct rule: not-c-in-c'-symb.induct, auto simp: wf-conn.simps wf-conn-list(1-3))
using conn-inj-not(2) wf-conn-binary unfolding binary-connectives-def by fastforce+

```
lemma c-in-c'-symb-simp'[simp]:
    \negnot-c-in-c'-symb cc c' FF
    ~not-c-in-c'-symb c c' FT
    \negnot-c-in-c'-symb c c'(FVar x)
    \negnot-c-in-c'-symb c c'(FNot FF)
    \negnot-c-in-c'-symb c c'(FNot FT)
    \negot-c-in-c'-symb c c'(FNot (FVar x))
    using c-in-c'-symb-simp by metis+
definition c-in-c'-only where
c-in-c'-only c c' \equivall-subformula-st (c-in-c'-symb c c')
lemma c-in-c'-only-simp[simp]:
    c-in-c'-only c c' FF
    c-in-c'-only c c' FT
    c-in-c'-only c c'(FVar x)
    c-in-c'-only c c'(FNot FF)
    c-in-c'-only c c'(FNot FT)
    c-in-c'-only c c c'(FNot (FVar x))
    unfolding c-in-c'-only-def by auto
```

lemma not-c-in-c'-symb-commute:
not-c-in-c'-symb c $c^{\prime} \xi \Longrightarrow w f-\operatorname{conn} c[\varphi, \psi] \Longrightarrow \xi=\operatorname{conn} c[\varphi, \psi]$
\Longrightarrow not-c-in-c'-symb c $c^{\prime}($ conn $c[\psi, \varphi])$
proof (induct rule: not-c-in-c'-symb.induct)
case (not-c-in-c'-symb-r $\varphi^{\prime} \varphi^{\prime \prime} \psi^{\prime}$) note $H=$ this
then have $\psi: \psi=$ conn $c^{\prime}\left[\varphi^{\prime \prime}, \psi^{\prime}\right]$ using conn-inj by auto
have wf-conn $c\left[\operatorname{conn} c^{\prime}\left[\varphi^{\prime \prime}, \psi^{\prime}\right], \varphi\right]$
using $H(1)$ wf-conn-no-arity-change length-Cons by metis
then show not-c-in-c'-symb $c c^{\prime}($ conn $c[\psi, \varphi])$
unfolding ψ using not-c-in-c'-symb.intros(1) H by auto
next
case (not-c-in-c'-symb-l $\varphi^{\prime} \varphi^{\prime \prime} \psi^{\prime}$) note $H=$ this
then have $\varphi=\operatorname{conn} c^{\prime}\left[\varphi^{\prime}, \varphi^{\prime \prime}\right]$ using conn-inj by auto
moreover have wf-conn $c\left[\psi^{\prime}\right.$, conn $\left.c^{\prime}\left[\varphi^{\prime}, \varphi^{\prime \prime}\right]\right]$
using H (1) wf-conn-no-arity-change length-Cons by metis
ultimately show not-c-in-c'-symb c $c^{\prime}(\operatorname{conn} c[\psi, \varphi])$
using not-c-in-c'-symb.intros(2) conn-inj not-c-in-c'-symb-l.hyps
not-c-in-c'-symb-l.prems $(1,2)$ by blast
qed
lemma not-c-in-c'-symb-commute':
wf-conn $c[\varphi, \psi] \Longrightarrow c$-in-c'-symb $c c^{\prime}(\operatorname{conn} c[\varphi, \psi]) \longleftrightarrow c$-in-c'-symb c $c^{\prime}($ conn $c[\psi, \varphi])$
using not-c-in-c'-symb-commute wf-conn-no-arity-change by (metis length-Cons)
lemma not-c-in-c'-comm:
assumes $w f: w f-\operatorname{conn} c[\varphi, \psi]$
shows c-in- c^{\prime}-only $c c^{\prime}($ conn $c[\varphi, \psi]) \longleftrightarrow c$-in-c'-only $c c^{\prime}($ conn $c[\psi, \varphi])($ is ? $A \longleftrightarrow$?B)
proof -
have ? $A \longleftrightarrow\left(c-i n-c^{\prime}\right.$-symb $c c^{\prime}(\operatorname{conn} c[\varphi, \psi])$
$\wedge\left(\forall \xi \in \operatorname{set}[\varphi, \psi]\right.$. all-subformula-st (c-in-c'-symb c c c^{\prime}) $\left.\left.\xi\right)\right)$
using all-subformula-st-decomp wf unfolding c-in-c'-only-def by fastforce
also have $\ldots \longleftrightarrow\left(c\right.$-in- c^{\prime}-symb $c c^{\prime}(\operatorname{conn} c[\psi, \varphi])$

```
                        \wedge ( \forall \xi \in \operatorname { s e t } [ \psi , \varphi ] . a l l - s u b f o r m u l a - s t ~ ( c - i n - c ' - s y m b ~ c ~ c ' ) ~ \xi ) ) ~
        using not-c-in-c'-symb-commute' wf by auto
    also
        have wf-conn c [\psi,\varphi] using wf-conn-no-arity-change wf by (metis length-Cons)
    then have (c-in-c'-symb c c'}(\operatorname{conn}c[\psi,\varphi]
                \wedge(\forall\xi\in\operatorname{set [\psi,\varphi]. all-subformula-st (c-in-c'-symb c c')}\xi))
                \longleftrightarrow?B
        using all-subformula-st-decomp unfolding c-in-c'-only-def by fastforce
    finally show ?thesis.
qed
lemma not-c-in-c'-simp[simp]:
    fixes \varphi1 \varphi2 \psi :: 'v propo and x :: 'v
    shows
    c-in-c'-symb c c' FT
    c-in-c'-symb c c' FF
    c-in-c'-symb c c'(FVar x)
    wf-conn c[conn c'[\varphi1, \varphi2],\psi]\Longrightarrowwf-conn c' [\varphi1, \varphi2]
        \Longrightarrow c-in-c'-only c c'(conn c[conn c'[\varphi1, \varphi2],\psi])
    apply (simp-all add: c-in-c'-only-def)
    using all-subformula-st-test-symb-true-phi not-c-in-c'-symb-l by blast
lemma c-in-c'-symb-not[simp]:
    fixes c c' :: 'v connective and \psi :: 'v propo
    shows c-in-c'-symb c c'(FNot \psi)
proof -
    {
        fix }\xi::= 'v prop
        have not-c-in-c'-symb c c'(FNot }\psi)\Longrightarrow\mathrm{ False
            apply (induct FNot \psi rule: not-c-in-c'-symb.induct)
            using conn-inj-not(2) by blast+
    }
    then show ?thesis by auto
qed
lemma c-in-c'-symb-step-exists:
    fixes }\varphi:: 'v prop
    assumes c:c=CAnd\veec=COr and c
    shows }\psi\preceq\varphi\Longrightarrow\negc\mathrm{ -in-c'-symb c c'}\psi\Longrightarrow\exists\mp@subsup{\psi}{}{\prime}\mathrm{ . push-conn-inside c c' }
    apply (induct \psi rule: propo-induct-arity)
    apply auto[2]
proof -
    fix \psi1 \psi2 \varphi':: 'v propo
    assume IH\psi1:\psi1\preceq\varphi\Longrightarrow \c-in-c'-symb c c'}\psi1\LongrightarrowEx(push-conn-inside c c' \psi1)
```



```
    and }\mp@subsup{\varphi}{}{\prime}:\mp@subsup{\varphi}{}{\prime}=FAnd \psi1 \psi2\vee \varphi ' = FOr \psi1 \psi2\vee \varphi ' = FImp \psi1 \psi2 \vee \varphi ' = FEq \psi1 \psi2,
    and in\varphi: \varphi}\mp@subsup{\varphi}{}{\prime}\preceq\varphi\mathrm{ and n0: }\negc\mathrm{ -in-c'-symb c c c }\mp@subsup{\varphi}{}{\prime
    then have n: not-c-in-c'-symb c c' }\mp@subsup{c}{}{\prime}\mathrm{ by auto
    {
    assume \varphi':}\mp@subsup{\varphi}{}{\prime}=\mathrm{ conn c [ %1, %2]
    obtain ab where \psi1= conn c'[a,b]\vee\psi2=\operatorname{conn c}\mp@subsup{c}{}{\prime}[a,b]
        using n \varphi' apply (induct rule: not-c-in-c'-symb.induct)
        using c by force+
    then have Ex (push-conn-inside c c' }\mp@subsup{\varphi}{}{\prime}\mathrm{ )
        unfolding \varphi' apply auto
        using push-conn-inside.intros(1) c c' apply blast
```

```
    using push-conn-inside.intros(2) c c' by blast
}
    moreover {
    assume \mp@subsup{\varphi}{}{\prime}:\mp@subsup{\varphi}{}{\prime}\not=\operatorname{conn c [\psi1, \psi2]}
```



```
                \veeconn c[conn ca [\psi1', \psi2', \varphi2 ] = \varphi\vee c-in-c'-symb c ca \varphi
        by (metis not-c-in-c'-symb.cases)
    then have Ex (push-conn-inside c c' }\mp@subsup{\varphi}{}{\prime}\mathrm{ )
        by (metis (no-types) c c' n push-conn-inside-l push-conn-inside-r)
    }
    ultimately show Ex (push-conn-inside c c' \varphi') by blast
qed
lemma c-in-c'-symb-rew:
    fixes \varphi :: 'v propo
    assumes noTB: }\negc-in-c'-only c c' \varphi
    and c:c=CAnd \veec=COr and c': c'=CAnd\vee c'=COr
    shows }\exists\psi\mp@subsup{\psi}{}{\prime}.\psi\preceq\varphi\wedge push-conn-inside c c c \psi \psi \psi'
proof -
    have test-symb-false-nullary:
        \forall.c-in-c'-symb c c'(FF:: 'v propo) }\wedgec-in-\mp@subsup{c}{}{\prime}\mathrm{ -symb c c' FT
        \wedge-in-c'-symb cc c'(FVar (x:: 'v))
    by auto
    moreover {
    fix }x:: '
    have H':c-in-c'-symb c c' FT c-in-c'-symb c c' FF c-in-c'-symb c c' (FVar x)
        by simp+
    }
    moreover {
    fix \psi :: 'v propo
    have }\psi\preceq\varphi\Longrightarrow\negc\mathrm{ -in-c'-symb c c'}\psi\Longrightarrow\exists\mp@subsup{\psi}{}{\prime}\mathrm{ . push-conn-inside c c'}\psi\mp@subsup{\psi}{}{\prime
        by (auto simp: assms(2) c' c-in-c'-symb-step-exists)
    }
    ultimately show ?thesis using noTB no-test-symb-step-exists[of c-in-c'-symb c c']
    unfolding c-in-c'-only-def by metis
qed
lemma push-conn-insidec-in-c'-symb-no-T-F:
    fixes }\varphi\psi:: 'v prop
    shows propo-rew-step (push-conn-inside c c') }\varphi\psi\Longrightarrowno-T-F \varphi\Longrightarrowno-T-F \psi
proof (induct rule: propo-rew-step.induct)
    case (global-rel \varphi\psi)
    then show no-T-F \psi
        by (cases rule: push-conn-inside.cases, auto)
next
    case (propo-rew-one-step-lift \varphi \varphi' c \xi \xi')
    note rel = this(1) and IH = this(2) and wf = this(3) and no-T-F = this(4)
    have no-T-F \varphi
        using wf no-T-F no-T-F-def subformula-into-subformula subformula-all-subformula-st
        subformula-refl by (metis (no-types) in-set-conv-decomp)
    then have \varphi': no-T-F \varphi' using IH by blast
    have }\forall\zeta\in\operatorname{set (\xi@\varphi# @).no-T-F \zeta by (metis wf no-T-F no-T-F-def all-subformula-st-decomp)
    then have n: }\forall\zeta\in\operatorname{set}(\xi@\mp@subsup{\varphi}{}{\prime}#\mp@subsup{\xi}{}{\prime}).no-T-F\zeta\mathrm{ using }\mp@subsup{\varphi}{}{\prime}\mathrm{ by auto
    then have }\mp@subsup{n}{}{\prime}:\forall\zeta\in\operatorname{set}(\xi@\mp@subsup{\varphi}{}{\prime}#\mp@subsup{\xi}{}{\prime}).\zeta\not=FF\wedge\zeta\not=F
```

```
using \varphi' by (metis no-T-F-symb-false(1) no-T-F-symb-false(2) no-T-F-def
all-subformula-st-test-symb-true-phi)
have wf':wf-conn c(\xi@ @ # % ')
    using wf wf-conn-no-arity-change by (metis wf-conn-no-arity-change-helper)
{
fix }x:: '
    assume c=CT\veec=CF\veec=CVar x
    then have False using wf by auto
    then have no-T-F (conn c (\xi@ \varphi' # ' ')) by blast
}
moreover {
    assume c: c = CNot
    then have }\xi=|]\mp@subsup{\xi}{}{\prime}=|\mathrm{ using wf by auto
    then have no-T-F (conn c(\xi@ \varphi' # ''))
        using c by (metis }\mp@subsup{\varphi}{}{\prime}\mathrm{ conn.simps(4) no-T-F-symb-false(1,2) no-T-F-symb-fnot no-T-F-def
        all-subformula-st-decomp-explicit(3) all-subformula-st-test-symb-true-phi self-append-conv2)
    }
moreover {
    assume c:c\in binary-connectives
```



```
    then have no-T-F (conn c(\xi@ \varphi # # \xi'))
        by (metis all-subformula-st-decomp-imp wf' n no-T-F-def)
}
ultimately show no-T-F (conn c (\xi@ \varphi' # '')) using connective-cases-arity by auto
qed
```

lemma simple-propo-rew-step-push-conn-inside-inv:
propo-rew-step (push-conn-inside c c^{\prime}) $\varphi \psi \Longrightarrow$ simple $\varphi \Longrightarrow$ simple ψ
apply (induct rule: propo-rew-step.induct)
apply (rename-tac φ, case-tac φ, auto simp: push-conn-inside.simps)[]
by (metis append-is-Nil-conv list.distinct(1) simple.elims(2) wf-conn-list(1-3))
lemma simple-propo-rew-step-inv-push-conn-inside-simple-not:
fixes $c c^{\prime}::{ }^{\prime} v$ connective and $\varphi \psi::$ ' v propo
shows propo-rew-step (push-conn-inside c c $\left.c^{\prime}\right) \varphi \Longrightarrow$ simple-not $\varphi \Longrightarrow$ simple-not ψ
proof (induct rule: propo-rew-step.induct)
case (global-rel $\varphi \psi$)
then show ?case by (cases φ, auto simp: push-conn-inside.simps)
next
case (propo-rew-one-step-lift $\varphi \varphi^{\prime}$ ca $\xi \xi^{\prime}$) note rew $=$ this(1) and $I H=$ this(2) and $w f=$ this(3)
and simple $=$ this(4)
show ?case
proof (cases ca rule: connective-cases-arity)
case nullary
then show ?thesis using propo-rew-one-step-lift by auto
next
case binary note $c a=$ this
obtain $a b$ where $a b: \xi$ @ $\varphi^{\prime} \# \xi^{\prime}=[a, b]$
using wf ca list-length2-decomp wf-conn-bin-list-length
by (metis (no-types) wf-conn-no-arity-change-helper)
have $\forall \zeta \in \operatorname{set}\left(\xi @ \varphi \# \xi^{\prime}\right)$. simple-not ζ
by (metis wf all-subformula-st-decomp simple simple-not-def)
then have $\forall \zeta \in \operatorname{set}\left(\xi @ \varphi^{\prime} \# \xi^{\prime}\right)$. simple-not ζ using $I H$ by simp
moreover have simple-not-symb (conn ca (ξ @ $\left.\varphi^{\prime} \# \xi^{\prime}\right)$) using $c a$
by (metis ab conn.simps(5-8) helper-fact simple-not-symb.simps(5) simple-not-symb.simps(6) simple-not-symb.simps(7) simple-not-symb.simps(8))
ultimately show ?thesis
by (simp add: ab all-subformula-st-decomp ca)
next
case unary
then show ?thesis using rew simple-propo-rew-step-push-conn-inside-inv[OF rew] IH local.wf simple by auto qed
qed
lemma propo-rew-step-push-conn-inside-simple-not:
fixes $\varphi \varphi^{\prime}:: ' v$ propo and $\xi \xi^{\prime}::{ }^{\prime} v$ propo list and $c::$ 'v connective
assumes
propo-rew-step (push-conn-inside cc c^{\prime}) $\varphi \varphi^{\prime}$ and
$w f-c o n n c\left(\xi @ \varphi \# \xi^{\prime}\right)$ and
simple-not-symb (conn c $\left(\xi\right.$ @ $\left.\varphi \xi^{\prime}\right)$) and
simple-not-symb φ^{\prime}
shows simple-not-symb (conn c $\left(\xi @ \varphi^{\prime} \# \xi^{\prime}\right)$)
using assms
proof (induction rule: propo-rew-step.induct)
print-cases
case (global-rel)
then show ?case
by (metis conn.simps(12,17) list.discI push-conn-inside.cases simple-not-symb.elims(3)
wf-conn-helper-facts(5) wf-conn-list(2) wf-conn-list(8) wf-conn-no-arity-change wf-conn-no-arity-change-helper)
next
case (propo-rew-one-step-lift $\varphi \varphi^{\prime} c^{\prime} \chi s \chi s^{\prime}$) note tel $=$ this(1) and $w f=$ this(2) and $I H=$ this(3) and $w f^{\prime}=$ this(4) and simple $=$ this(5) and simple $=$ this(6)
then show ?case
proof (cases c' rule: connective-cases-arity)
case nullary
then show? ?thesis using wf simple simple' by auto
next
case binary note $c=$ this(1)
have corr${ }^{\prime}:$ wf-conn $c\left(\xi @ \operatorname{conn} c^{\prime}\left(\chi s @ \varphi^{\prime} \# \chi s^{\prime}\right) \# \xi^{\prime}\right)$
using wf wf-conn-no-arity-change
by (metis wf' wf-conn-no-arity-change-helper)
then show? thesis
using c propo-rew-one-step-lift wf
by (metis conn.simps(17) connective.distinct(37) propo-rew-step-subformula-imp
push-conn-inside.cases simple-not-symb.elims(3) wf-conn.simps wf-conn-list(2,8))
next
case unary
then have empty: $\chi s=[] \chi s^{\prime}=[]$ using wf by auto
then show ?thesis using simple unary simple' wf wf'
by (metis connective.distinct(37) connective.distinct(39) propo-rew-step-subformula-imp push-conn-inside.cases simple-not-symb.elims(3) tel wf-conn-list(8) wf-conn-no-arity-change wf-conn-no-arity-change-helper)
qed
qed
lemma push-conn-inside-not-true-false:
push-conn-inside c c $c^{\prime} \varphi \psi \Longrightarrow \psi \neq F T \wedge \psi \neq F F$

```
by (induct rule: push-conn-inside.induct, auto)
lemma push-conn-inside-inv:
    fixes }\varphi\psi :: 'v prop
    assumes full (propo-rew-step (push-conn-inside c c')) \varphi\psi
    and no-equiv \varphi and no-imp \varphi and no-T-F-except-top-level }\varphi\mathrm{ and simple-not }
    shows no-equiv \psi and no-imp \psi and no-T-F-except-top-level }\psi\mathrm{ and simple-not }
proof -
    {
            fix }\varphi\psi :: 'v prop
            have H: push-conn-inside c c' }\varphi\psi\Longrightarrow\mathrm{ all-subformula-st simple-not-symb }
                \Longrightarrow \text { all-subformula-st simple-not-symb } \psi
                by (induct \varphi \psi rule: push-conn-inside.induct, auto)
            } note H= this
    fix }\varphi\psi:: 'v prop
    have H: propo-rew-step (push-conn-inside c c') \varphi\psi\Longrightarrow all-subformula-st simple-not-symb }
        \Longrightarrow \text { all-subformula-st simple-not-symb } \psi
        apply (induct \varphi \psi rule: propo-rew-step.induct)
        using H apply simp
        proof (rename-tac \varphi \varphi' ca \psis \psis', case-tac ca rule: connective-cases-arity)
            fix }\varphi\mp@subsup{\varphi}{}{\prime}:: 'v propo and c:: 'v connective and \xi \xi':: 'v propo lis
            and x:: 'v
            assume wf-conn c(\xi@ @ # \xi')
            and c=CT\vee c=CF\vee c=CVar x
            then have }\xi@\varphi#\mp@subsup{\xi}{}{\prime}=[] by aut
            then have False by auto
            then show all-subformula-st simple-not-symb (conn c (\xi@ \mp@subsup{\varphi}{}{\prime}#\mp@subsup{\xi}{}{\prime}))\mathrm{ by blast}
            next
            fix }\varphi\mp@subsup{\varphi}{}{\prime}:: 'v propo and ca:: 'v connective and \xi \xi':: 'v propo lis
            and x :: 'v
            assume rel: propo-rew-step (push-conn-inside c c') \varphi \varphi'
            and \varphi-\varphi': all-subformula-st simple-not-symb }\varphi\Longrightarrow\mathrm{ all-subformula-st simple-not-symb }\mp@subsup{\varphi}{}{\prime
            and corr:wf-conn ca (\xi @ \varphi # \xi')
            and n: all-subformula-st simple-not-symb (conn ca (\xi@ @ # \xi'))
            and c:ca=CNot
            have empty: }\xi=[]\mp@subsup{\xi}{}{\prime}=[] using c corr by aut
            then have simple-not:all-subformula-st simple-not-symb (FNot \varphi) using corr c n by auto
            then have simple }
                using all-subformula-st-test-symb-true-phi simple-not-symb.simps(1) by blast
            then have simple \varphi'
                using rel simple-propo-rew-step-push-conn-inside-inv by blast
            then show all-subformula-st simple-not-symb (conn ca (\xi@ \varphi' # \xi')) using c empty
                    by (metis simple-not \varphi-\varphi' append-Nil conn.simps(4) all-subformula-st-decomp-explicit(3)
                    simple-not-symb.simps(1))
next
fix }\varphi\mp@subsup{\varphi}{}{\prime}::'v propo and ca :: 'v connective and \xi \xi' :: 'v propo lis
and x :: 'v
assume rel: propo-rew-step (push-conn-inside c c') \varphi \varphi'
and n\varphi: all-subformula-st simple-not-symb \varphi\Longrightarrow all-subformula-st simple-not-symb \varphi'
and corr:wf-conn ca (\xi @ \varphi # \xi')
and n: all-subformula-st simple-not-symb (conn ca (\xi@ @# \xi'))
and c:ca\in binary-connectives
```

```
        have all-subformula-st simple-not-symb }
            using n c corr all-subformula-st-decomp by fastforce
            then have \varphi': all-subformula-st simple-not-symb }\mp@subsup{\varphi}{}{\prime}\mathrm{ using n}\\mathrm{ b blast
            obtain ab where ab: [a,b]=(\xi@ @ # \xi')
            using corr c list-length2-decomp wf-conn-bin-list-length by metis
            then have }\xi@\mp@subsup{\varphi}{}{\prime}#\mp@subsup{\xi}{}{\prime}=[a,\mp@subsup{\varphi}{}{\prime}]\vee(\xi@\mp@subsup{\varphi}{}{\prime}#\mp@subsup{\xi}{}{\prime})=[\mp@subsup{\varphi}{}{\prime},b
            using ab by (metis (no-types, hide-lams) append-Cons append-Nil append-Nil2
                append-is-Nil-conv butlast.simps(2) butlast-append list.sel(3) tl-append2)
            moreover
            {
            fix \chi :: 'v propo
            have wf':wf-conn ca [a,b]
                using ab corr by presburger
            have all-subformula-st simple-not-symb (conn ca [a,b])
                using ab n by presburger
            then have all-subformula-st simple-not-symb \chi\vee\chi}\not=\operatorname{set}(\xi@\mp@subsup{\varphi}{}{\prime}#\mp@subsup{\xi}{}{\prime}
                using wf'by (metis (no-types) \varphi' all-subformula-st-decomp calculation insert-iff
                    list.set(2))
            }
            then have }\forall\varphi.\varphi\in\operatorname{set}(\xi@\mp@subsup{\varphi}{}{\prime}#\mp@subsup{\xi}{}{\prime})\longrightarrow\mathrm{ all-subformula-st simple-not-symb }
                by (metis (no-types))
            moreover have simple-not-symb (conn ca (\xi@ \varphi # # \xi'))
                using ab conn-inj-not(1) corr wf-conn-list-decomp(4)wf-conn-no-arity-change
                not-Cons-self2 self-append-conv2 simple-not-symb.elims(3) by (metis (no-types) c
                calculation(1) wf-conn-binary)
            moreover have wf-conn ca (\xi@ \varphi # 伎) using c calculation(1) by auto
            ultimately show all-subformula-st simple-not-symb (conn ca (\xi@ \varphi' # \xi'))
            by (metis all-subformula-st-decomp-imp)
    qed
}
moreover {
    fix ca :: 'v connective and \xi \xi' :: 'v propo list and }\varphi\mp@subsup{\varphi}{}{\prime}:: 'v prop
    have propo-rew-step (push-conn-inside c c') \varphi \varphi' \Longrightarrowwf-conn ca (\xi@ @ # \xi')
            \Longrightarrow \text { simple-not-symb (conn ca ( ( @ ¢ \# '')) > simple-not-symb } \varphi ^ { \prime }
             simple-not-symb (conn ca (\xi@ \varphi' # ''))
            by (metis append-self-conv2 conn.simps(4) conn-inj-not(1) simple-not-symb.elims(3)
            simple-not-symb.simps(1) simple-propo-rew-step-push-conn-inside-inv
            wf-conn-no-arity-change-helper wf-conn-list-decomp(4) wf-conn-no-arity-change)
}
ultimately show simple-not \psi
    using full-propo-rew-step-inv-stay'[of push-conn-inside c c' simple-not-symb] assms
    unfolding no-T-F-except-top-level-def simple-not-def full-unfold by metis
next
{
    fix }\varphi\psi :: 'v prop
    have H: propo-rew-step (push-conn-inside c c') }\varphi\psi\Longrightarrow no-T-F-except-top-level \varphi
        \Longrightarrow n o - T - F - e x c e p t - t o p - l e v e l ~ \psi ~
        proof -
            assume rel: propo-rew-step (push-conn-inside c c') \varphi\psi
            and no-T-F-except-top-level \varphi
            then have no-T-F \varphi\vee\varphi=FF\vee \varphi=FT
                by (metis no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
            moreover {
                assume \varphi =FF\vee\varphi=FT
                then have False using rel propo-rew-step-push-conn-inside by blast
```

```
                then have no-T-F-except-top-level \psi by blast
            }
            moreover {
            assume no-T-F \varphi\wedge\varphi\not=FF\wedge\varphi\not=FT
            then have no-T-F \psi using rel push-conn-insidec-in-c'-symb-no-T-F by blast
            then have no-T-F-except-top-level \psi using no-T-F-no-T-F-except-top-level by blast
        }
        ultimately show no-T-F-except-top-level \psi by blast
    qed
}
moreover {
    fix ca :: 'v connective and \xi \xi' :: 'v propo list and }\varphi\mp@subsup{\varphi}{}{\prime}:: 'v prop
    assume rel: propo-rew-step (push-conn-inside c c') \varphi \varphi'
    assume corr:wf-conn ca (\xi @ \varphi# \xi')
    then have c:ca\not=CT^ca\not=CF by auto
    assume no-T-F: no-T-F-symb-except-toplevel (conn ca (\xi@ @# \xi'))
    have no-T-F-symb-except-toplevel (conn ca (\xi@ }\mp@subsup{\varphi}{}{\prime}#\mp@subsup{\xi}{}{\prime})\mathrm{ )
    proof
        have c: ca\not=CT ^ ca\not=CF using corr by auto
        have }\zeta:\forall\zeta\in\operatorname{set}(\xi@\varphi#\mp@subsup{\xi}{}{\prime}).\zeta\not=FT\wedge\zeta\not=F
            using corr no-T-F no-T-F-symb-except-toplevel-if-is-a-true-false by blast
        then have }\varphi\not=FT\wedge\varphi\not=FF\mathrm{ by auto
        from rel this have }\mp@subsup{\varphi}{}{\prime}\not=FT\wedge\mp@subsup{\varphi}{}{\prime}\not=F
            apply (induct rule: propo-rew-step.induct)
            by (metis append-is-Nil-conv conn.simps(2) conn-inj list.distinct(1)
                wf-conn-helper-facts(3) wf-conn-list(1) wf-conn-no-arity-change
                wf-conn-no-arity-change-helper push-conn-inside-not-true-false)+
        then have }\forall\zeta\in\operatorname{set}(\xi@\mp@subsup{\varphi}{}{\prime}#\mp@subsup{\xi}{}{\prime}).\zeta\not=FT\wedge\zeta\not=FF\mathrm{ using }\zeta\mathrm{ by auto
        moreover have wf-conn ca (\xi@ @' # \xi')
            using corr wf-conn-no-arity-change by (metis wf-conn-no-arity-change-helper)
        ultimately show no-T-F-symb (conn ca (\xi@ @'# ' ')) using no-T-F-symb.intros c by metis
    qed
}
ultimately show no-T-F-except-top-level \psi
    using full-propo-rew-step-inv-stay'[of push-conn-inside c c' no-T-F-symb-except-toplevel]
    assms unfolding no-T-F-except-top-level-def full-unfold by metis
next
    {
    fix }\varphi\psi :: 'v prop
    have H: push-conn-inside c c' }\varphi\psi\Longrightarrow\mathrm{ no-equiv }\varphi\Longrightarrow\mathrm{ no-equiv }
        by (induct }\varphi\psi\mathrm{ rule: push-conn-inside.induct, auto)
}
then show no-equiv \psi
    using full-propo-rew-step-inv-stay-conn[of push-conn-inside c c' no-equiv-symb] assms
    no-equiv-symb-conn-characterization unfolding no-equiv-def by metis
```

```
next
```

next
\{
\{
fix $\varphi \psi::$ 'v propo
fix $\varphi \psi::$ 'v propo
have H : push-conn-inside $c c^{\prime} \varphi \psi \Longrightarrow$ no-imp $\varphi \Longrightarrow$ no-imp ψ
have H : push-conn-inside $c c^{\prime} \varphi \psi \Longrightarrow$ no-imp $\varphi \Longrightarrow$ no-imp ψ
by (induct $\varphi \psi$ rule: push-conn-inside.induct, auto)
by (induct $\varphi \psi$ rule: push-conn-inside.induct, auto)
\}
\}
then show no-imp ψ
then show no-imp ψ
using full-propo-rew-step-inv-stay-conn[of push-conn-inside c c' no-imp-symb] assms
using full-propo-rew-step-inv-stay-conn[of push-conn-inside c c' no-imp-symb] assms
no-imp-symb-conn-characterization unfolding no-imp-def by metis

```
    no-imp-symb-conn-characterization unfolding no-imp-def by metis
```

```
lemma push-conn-inside-full-propo-rew-step:
    fixes }\varphi\psi :: 'v prop
    assumes
    no-equiv }\varphi\mathrm{ and
    no-imp \varphi and
    full (propo-rew-step (push-conn-inside c c}\))\varphi\psi and
    no-T-F-except-top-level }\varphi\mathrm{ and
    simple-not }\varphi\mathrm{ and
    c=CAnd \veec=COr and
    c'}=CAnd\vee\mp@subsup{c}{}{\prime}=CO
shows c-in-c'-only c c' }
using c-in-c'-symb-rew assms full-propo-rew-step-subformula by blast
```


Only one type of connective in the formula (+ not)

inductive only-c-inside-symb $::$ 'v connective \Rightarrow 'v propo \Rightarrow bool for $c::$ 'v connective where simple-only-c-inside[simp]: simple $\varphi \Longrightarrow$ only-c-inside-symb c φ | simple-cnot-only-c-inside $[$ simp $]$: simple $\varphi \Longrightarrow$ only-c-inside-symb c (FNot φ) |
only-c-inside-into-only-c-inside: wf-conn cl\Longrightarrow only-c-inside-symb c (conn cl)
lemma only-c-inside-symb-simp[simp]:
only-c-inside-symb c FF only-c-inside-symb c FT only-c-inside-symb c (FVar x) by auto
definition only-c-inside where only-c-inside $c=$ all-subformula-st (only-c-inside-symb c)
lemma only-c-inside-symb-decomp:
only-c-inside-symb c $\psi \longleftrightarrow$ (simple ψ

$$
\vee\left(\exists \varphi^{\prime} \cdot \psi=F N o t \varphi^{\prime} \wedge \text { simple } \varphi^{\prime}\right)
$$

$\vee(\exists l . \psi=\operatorname{conn} c l \wedge w f-c o n n c l))$
by (auto simp: only-c-inside-symb.intros(3)) (induct rule: only-c-inside-symb.induct, auto)
lemma only-c-inside-symb-decomp-not[simp]:
fixes $c::$ ' v connective
assumes $c: c \neq C N o t$
shows only-c-inside-symb c $(F N o t \psi) \longleftrightarrow$ simple ψ
apply (auto simp: only-c-inside-symb.intros(3))
by (induct FNot ψ rule: only-c-inside-symb.induct, auto simp: wf-conn-list(8) c)
lemma only-c-inside-decomp-not[simp]:
assumes $c: c \neq C N o t$
shows only-c-inside $c($ FNot $\psi) \longleftrightarrow$ simple ψ
by (metis (no-types, hide-lams) all-subformula-st-def all-subformula-st-test-symb-true-phi c only-c-inside-def only-c-inside-symb-decomp-not simple-only-c-inside subformula-conn-decomp-simple)
lemma only-c-inside-decomp:
only-c-inside $с \varphi \longleftrightarrow$

$$
\left(\forall \psi \cdot \psi \preceq \varphi \longrightarrow \left(\text { simple } \psi \vee\left(\exists \varphi^{\prime} . \psi=\text { FNot } \varphi^{\prime} \wedge \text { simple } \varphi^{\prime}\right)\right.\right.
$$

$\vee(\exists l . \psi=\operatorname{conn} c l \wedge w f-c o n n c l)))$
unfolding only-c-inside-def by (auto simp: all-subformula-st-def only-c-inside-symb-decomp)

```
lemma only-c-inside-c-c'-false:
```



```
    assumes cc':c\not= c' and c:c=CAnd \veec=COr and c': c' = CAnd \vee c' = COr
    and only:only-c-inside c \varphi and incl: conn c'l}\preceq\preceq\varphi and wf:wf-conn c'
    shows False
proof -
    let ? }\psi=\mathrm{ conn c'l
    have simple ? \psi \vee (\exists \varphi '. ? \psi = FNot \mp@subsup{\varphi}{}{\prime}\wedge simple \varphi }\mp@subsup{\varphi}{}{\prime})\vee(\existsl.?\psi=\operatorname{conn c l ^wf-conn c l)
        using only-c-inside-decomp only incl by blast
    moreover have }\neg\mathrm{ simple ?*
        using wf simple-decomp by (metis c' connective.distinct(19) connective.distinct(7,9,21,29,31)
            wf-conn-list(1-3))
        moreover
        {
            fix }\mp@subsup{\varphi}{}{\prime
            have ?\psi}\not=F\mathrm{ FNot }\mp@subsup{\varphi}{}{\prime}\mathrm{ using c' conn-inj-not(1) wf by blast
        }
        ultimately obtain l :: 'v propo list where ? \psi = conn cl ^ wf-conn c l by metis
        then have }c=\mp@subsup{c}{}{\prime}\mathrm{ using conn-inj wf by metis
        then show False using cc' by auto
qed
lemma only-c-inside-implies-c-in-c'-symb:
    assumes }\delta:c\not=\mp@subsup{c}{}{\prime}\mathrm{ and c:c=CAnd }\veec=COr and c': c'=CAnd \vee c'=CO
    shows only-c-inside c \varphi\Longrightarrowc-in-c'-symb c c' }
    apply (rule ccontr)
    apply (cases rule: not-c-in-c'-symb.cases, auto)
    by (metis \delta c c' connective.distinct(37,39) list.distinct(1) only-c-inside-c-c'-false
    subformula-in-binary-conn(1,2) wf-conn.simps)+
lemma c-in-c'-symb-decomp-level1:
    fixes l :: 'v propo list and c c' ca :: 'v connective
    shows wf-conn ca l\Longrightarrowca\not=c\Longrightarrowc-in-c'-symb c c'(conn ca l)
proof -
    have not-c-in-c'-symb c c'(conn ca l) \Longrightarrow wf-conn cal \Longrightarrowca=c
        by (induct conn ca l rule: not-c-in-c'-symb.induct, auto simp: conn-inj)
    then show wf-conn ca l\Longrightarrowca\not=c\Longrightarrowc-in-c'-symb c c'(conn ca l) by blast
qed
lemma only-c-inside-implies-c-in-c'-only:
    assumes }\delta:c\not=\mp@subsup{c}{}{\prime}\mathrm{ and c:c=CAnd }\veec=COr and c': c'=CAnd \vee c'=CO
    shows only-c-inside c \varphi \Longrightarrowc-in-c'-only c c' }
    unfolding c-in-c'-only-def all-subformula-st-def
    using only-c-inside-implies-c-in-c'-symb
    by (metis all-subformula-st-def assms(1) c c' only-c-inside-def subformula-trans)
lemma c-in-c'-symb-c-implies-only-c-inside:
    assumes }\delta:c=CAnd\veec=COr c'=CAnd \vee c'=COr c\not=c' and wf:wf-conn c [\varphi,\psi]
    and inv: no-equiv (conn c l) no-imp (conn c l) simple-not (conn c l)
    shows wf-conn c l \Longrightarrowc-in-c'-only c c'(conn c l) \Longrightarrow(\forall\psi\in set l. only-c-inside c \psi)
using inv
proof (induct conn c l arbitrary: l rule: propo-induct-arity)
    case (nullary x)
```

```
    then show ?case by (auto simp: wf-conn-list assms)
next
    case (unary \varphi la)
    then have c=CNot \wedgela = [\varphi] by (metis (no-types) wf-conn-list(8))
    then show ?case using assms(2) assms(1) by blast
next
    case (binary \varphi1 \varphi2)
    note IH\varphi1 = this(1) and IH\varphi2 = this(2) and \varphi = this(3) and only = this(5) and wf = this(4)
    and no-equiv = this(6) and no-imp = this(7) and simple-not = this(8)
then have l:l=[\varphi1, \varphi2] by (meson wf-conn-list(4-7))
let ? }\varphi=\operatorname{conn cl
obtain c1 l1 c2 l2 where \varphi1: \varphi1 = conn c1 l1 and wf p1:wf-conn c1 l1
    and \varphi2: \varphi2 = conn c2 l2 and wf ب2: wf-conn c2 l2 using exists-c-conn by metis
then have c-in-only\varphi 1: c-in-c'-only c c'(conn c1 l1) and c-in-c'-only c c'(conn c2 l2)
    using only l unfolding c-in-c'-only-def using assms(1) by auto
have inc\varphi1: \varphi1 \preceq? 
    using \varphi1 \varphi2 \varphi local.wf by (metis conn.simps(5-8) helper-fact subformula-in-binary-conn(1,2))+
have c1-eq: c1 f= CEq and c2-eq: c2 #= CEq
    unfolding no-equiv-def using inc\varphi1 inc\varphi2 by (metis \varphi1 \varphi2 wf \varphi1 wf\varphi2 assms(1) no-equiv
        no-equiv-eq(1) no-equiv-symb.elims(3) no-equiv-symb-conn-characterization wf-conn-list(4,5)
        no-equiv-def subformula-all-subformula-st)+
have c1-imp: c1 }\not=C\mathrm{ CImp and c2-imp: c2 }=\mathrm{ CImp
    using no-imp by (metis \varphi1 \varphi2 all-subformula-st-decomp-explicit-imp(2,3) assms(1)
        conn.simps(5,6) l no-imp-Imp(1) no-imp-symb.elims(3) no-imp-symb-conn-characterization
        wf\varphi1 wf\varphi2 all-subformula-st-decomp no-imp-symb-conn-characterization)+
have c1c: c1 = c'
    proof
        assume c1c: c1 = c'
        then obtain \xi1 \xi2 where l1:l1=[\xi1, \xi2]
            by (metis assms(2) connective.distinct(37,39) helper-fact wf \varphi1 wf-conn.simps
                wf-conn-list-decomp(1-3))
        have c-in-c'-only c c'(conn c [conn c'l1, \varphi2]) using c1c l only \varphi1 by auto
        moreover have not-c-in-c'-symb c c' (conn c[conn c'l1, \varphi2])
            using l1 \varphi1 c1c l local.wf not-c-in-c'-symb-l wf \varphi1 by blast
        ultimately show False using \varphi1 c1c l l1 local.wf not-c-in-c'-simp(4)wf\varphi1 by blast
    qed
then have ( }\varphi1=\mathrm{ conn c l1 ^wf-conn c l1) }\vee(\exists\psi1.\varphi1=FNot \psi1)\vee simple \varphi
    by (metis \varphi1 assms(1-3) c1-eq c1-imp simple.elims(3) wf \varphi1 wf-conn-list(4)wf-conn-list(5-7))
moreover {
    assume \varphi1 = conn c l1 ^wf-conn cl1
    then have only-c-inside c \varphi1
        by (metis IH\varphi1 \varphi1 all-subformula-st-decomp-imp inc\varphi1 no-equiv no-equiv-def no-imp no-imp-def
                c-in-only\varphi1 only-c-inside-def only-c-inside-into-only-c-inside simple-not simple-not-def
                subformula-all-subformula-st)
}
moreover {
    assume \exists\psi1. \varphi1 = FNot \psi1
    then obtain \psi1 where \varphi1 = FNot \psi1 by metis
    then have only-c-inside c \varphi1
        by (metis all-subformula-st-def assms(1) connective.distinct(37,39) inc\varphi1
            only-c-inside-decomp-not simple-not simple-not-def simple-not-symb.simps(1))
}
moreover {
    assume simple \varphi1
```

```
    then have only-c-inside c \varphi1
    by (metis all-subformula-st-decomp-explicit(3) assms(1) connective.distinct(37,39)
        only-c-inside-decomp-not only-c-inside-def)
}
ultimately have only-c-inside\varphi1: only-c-inside c \varphi1 by metis
have c-in-only\varphi2: c-in-c'-only c c'(conn c2 l2)
    using only l \varphi2 wf \varphi2 assms unfolding c-in-c'-only-def by auto
have c2c: c2 f c'
    proof
        assume c2c: c2 = c '
        then obtain \xi1 \xi2 where l2: l2 = [\xi1, \xi2]
        by (metis assms(2) wf \varphi2 wf-conn.simps connective.distinct(7,9,19,21,29,31,37,39))
        then have c-in-c'-symb c c'(conn c [\varphi1, conn c' l2])
            using c2c l only \varphi2 all-subformula-st-test-symb-true-phi unfolding c-in-c'-only-def by auto
        moreover have not-c-in-c'-symb c c'(conn c [\varphi1, conn c' l2])
            using assms(1) c2c l2 not-c-in-c'-symb-r wf\varphi2 wf-conn-helper-facts(5,6) by metis
        ultimately show False by auto
    qed
then have ( }\varphi2=\mathrm{ conn c l2 ^ wf-conn c l2) }\vee(\exists\psi2. \varphi2 = FNot \psi2) \vee simple \varphi2
    using c2-eq by (metis \varphi2 assms(1-3) c2-eq c2-imp simple.elims(3) wf\varphi2 wf-conn-list(4-7))
moreover {
    assume \varphi2 = conn c l2 ^ wf-conn c l2
    then have only-c-inside c \varphi2
        by (metis IH\varphi2 \varphi2 all-subformula-st-decomp inc\varphi2 no-equiv no-equiv-def no-imp no-imp-def
            c-in-only\varphi2 only-c-inside-def only-c-inside-into-only-c-inside simple-not simple-not-def
            subformula-all-subformula-st)
}
moreover {
    assume }\exists\psi2.,\varphi2=FNot \psi2
    then obtain \psi2 where \varphi2 = FNot \psi2 by metis
    then have only-c-inside c \varphi2
        by (metis all-subformula-st-def assms(1-3) connective.distinct(38,40) inc\varphi2
            only-c-inside-decomp-not simple-not simple-not-def simple-not-symb.simps(1))
}
moreover {
    assume simple \varphi2
    then have only-c-inside c \varphi2
        by (metis all-subformula-st-decomp-explicit(3) assms(1) connective.distinct(37,39)
        only-c-inside-decomp-not only-c-inside-def)
    }
    ultimately have only-c-inside\varphi2: only-c-inside c \varphi2 by metis
    show ?case using l only-c-inside\varphi1 only-c-inside\varphi2 by auto
qed
```


Push Conjunction

```
definition pushConj where pushConj \(=\) push-conn-inside CAnd COr
lemma pushConj-consistent: preserve-models pushConj
unfolding pushConj-def by (simp add: push-conn-inside-consistent)
definition and-in-or-symb where and-in-or-symb \(=c\)-in-c'-symb CAnd COr
definition and-in-or-only where
and-in-or-only \(=\) all-subformula-st ( \(\left(\right.\) c-in-c \({ }^{\prime}\)-symb CAnd COr)
```

```
lemma pushConj-inv:
    fixes }\varphi\psi :: 'v prop
    assumes full (propo-rew-step pushConj) }\varphi
    and no-equiv }\varphi\mathrm{ and no-imp }\varphi\mathrm{ and no-T-F-except-top-level }\varphi\mathrm{ and simple-not }
    shows no-equiv }\psi\mathrm{ and no-imp }\psi\mathrm{ and no-T-F-except-top-level }\psi\mathrm{ and simple-not }
    using push-conn-inside-inv assms unfolding pushConj-def by metis+
lemma pushConj-full-propo-rew-step:
    fixes }\varphi\psi :: 'v prop
    assumes
        no-equiv }\varphi\mathrm{ and
        no-imp \varphi and
        full (propo-rew-step pushConj) \varphi\psi and
        no-T-F-except-top-level \varphi and
        simple-not \varphi
    shows and-in-or-only \psi
    using assms push-conn-inside-full-propo-rew-step
    unfolding pushConj-def and-in-or-only-def c-in-c'-only-def by (metis (no-types))
```


Push Disjunction

```
definition pushDisj where pushDisj \(=\) push-conn-inside COr CAnd
lemma pushDisj-consistent: preserve-models pushDisj
unfolding pushDisj-def by (simp add: push-conn-inside-consistent)
definition or-in-and-symb where or-in-and-symb \(=c\)-in-c'-symb COr CAnd
definition or-in-and-only where
or-in-and-only \(=\) all-subformula-st ( \(c\)-in-c'-symb COr CAnd \()\)
lemma not-or-in-and-only-or-and[simp]:
\(\sim_{o r-i n-a n d-o n l y}\left(F O r(F A n d \psi 1 \psi 2) \varphi^{\prime}\right)\)
unfolding or-in-and-only-def
by (metis all-subformula-st-test-symb-true-phi conn.simps(5-6) not-c-in-c'-symb-l wf-conn-helper-facts(5) wf-conn-helper-facts(6))
lemma pushDisj-inv:
fixes \(\varphi \psi\) :: 'v propo
assumes full (propo-rew-step pushDisj) \(\varphi \psi\)
and no-equiv \(\varphi\) and no-imp \(\varphi\) and no-T-F-except-top-level \(\varphi\) and simple-not \(\varphi\) shows no-equiv \(\psi\) and no-imp \(\psi\) and no-T-F-except-top-level \(\psi\) and simple-not \(\psi\) using push-conn-inside-inv assms unfolding pushDisj-def by metis+
lemma pushDisj-full-propo-rew-step:
fixes \(\varphi \psi::\) 'v propo
assumes
no-equiv \(\varphi\) and
no-imp \(\varphi\) and
full (propo-rew-step pushDisj) \(\varphi \psi\) and
no-T-F-except-top-level \(\varphi\) and simple-not \(\varphi\)
shows or-in-and-only \(\psi\)
```

using assms push-conn-inside-full-propo-rew-step
unfolding pushDisj-def or-in-and-only-def c-in-c'-only-def by (metis (no-types))

1.6 The Full Transformations

1.6.1 Abstract Definition

The normal form is a super group of groups
inductive grouped-by $::$ 'a connective \Rightarrow 'a propo \Rightarrow bool for c where
simple-is-grouped $[$ simp $]$: simple $\varphi \Longrightarrow$ grouped-by c φ |
simple-not-is-grouped $[$ simp $]$: simple $\varphi \Longrightarrow$ grouped-by c (FNot φ) |
connected-is-group $[$ simp $]$: grouped-by c $\varphi \Longrightarrow$ grouped-by c $\psi \Longrightarrow w f$-conn $c[\varphi, \psi]$
\Longrightarrow grouped-by $c($ conn $c[\varphi, \psi])$
lemma simple-clause[simp]:
grouped-by c FT
grouped-by c FF
grouped-by c (FVar x)
grouped-by c (FNot FT)
grouped-by c (FNot FF)
grouped-by c (FNot (FVar x))
by $\operatorname{simp}+$
lemma only-c-inside-symb-c-eq-c':
only-c-inside-symb $c\left(\right.$ conn $\left.c^{\prime}[\varphi 1, \varphi 2]\right) \Longrightarrow c^{\prime}=C A n d \vee c^{\prime}=C O r \Longrightarrow$ wf-conn $c^{\prime}[\varphi 1, \varphi 2]$ $\Longrightarrow c^{\prime}=c$
by (induct conn $c^{\prime}[\varphi 1, \varphi 2]$ rule: only-c-inside-symb.induct, auto simp: conn-inj)

```
lemma only-c-inside-c-eq-c':
    only-c-inside c (conn c' [\varphi1, \varphi2]) \Longrightarrow c' = CAnd \vee c' = COr \Longrightarrow wf-conn c' [\varphi1,\varphi2] \Longrightarrowc=c'
    unfolding only-c-inside-def all-subformula-st-def using only-c-inside-symb-c-eq-c' subformula-refl
    by blast
lemma only-c-inside-imp-grouped-by:
    assumes c:c\not=CNot and c': c'=CAnd \vee c'=COr
    shows only-c-inside c \varphi\Longrightarrow grouped-by c \varphi (is ?O \varphi \Longrightarrow?G \varphi)
proof (induct \varphi rule: propo-induct-arity)
    case (nullary \varphi x)
    then show ?G \varphi by auto
next
    case (unary \psi)
    then show ?G (FNot \psi) by (auto simp: c)
next
    case (binary \varphi \varphi1 \varphiR)
    note IH\varphi1 = this(1) and IH\varphi2 = this(2) and \varphi = this(3) and only = this(4)
    have \varphi-conn: }\varphi=\operatorname{conn}c[\varphi1,\varphi2] and wf:wf-conn c[\varphi1, \varphi2
        proof -
        obtain c>" l" where }\varphi-\mp@subsup{c}{}{\prime\prime}:\varphi=\operatorname{conn}\mp@subsup{c}{}{\prime\prime}\mp@subsup{l}{}{\prime\prime}\mathrm{ and wf:wf-conn c" l"
            using exists-c-conn by metis
        then have l':}\mp@subsup{l}{}{\prime\prime}=[\varphi1,\varphi2] using \varphi by (metis wf-conn-list(4-7))
        have only-c-inside-symb c (conn c" [\varphi1, \varphi2])
            using only all-subformula-st-test-symb-true-phi
            unfolding only-c-inside-def \varphi-c'" l" by metis
        then have c}=\mp@subsup{c}{}{\prime\prime
```

by (metis $\varphi \varphi$ - $c^{\prime \prime}$ conn-inj conn-inj-not(2) $l^{\prime \prime}$ list.distinct(1) list.inject wf only-c-inside-symb.cases simple.simps(5-8))
then show $\varphi=\operatorname{conn} c[\varphi 1, \varphi 2]$ and $w f-\operatorname{conn} c[\varphi 1, \varphi 2]$ using $\varphi-c^{\prime \prime}$ wf $l^{\prime \prime}$ by auto qed
have grouped-by c $\varphi 1$ using wf $\operatorname{IH} \varphi 1$ IH φ 2 φ-conn only φ unfolding only-c-inside-def by auto
moreover have grouped-by c $\varphi 2$
using wf φ IH $\varphi 1$ IH $\varphi 2$-conn only unfolding only-c-inside-def by auto
ultimately show ? $G \varphi$ using φ-conn connected-is-group local.wf by blast
qed
lemma grouped-by-false:
grouped-by $c\left(\right.$ conn $\left.c^{\prime}[\varphi, \psi]\right) \Longrightarrow c \neq c^{\prime} \Longrightarrow$ wf-conn $c^{\prime}[\varphi, \psi] \Longrightarrow$ False
apply (induct conn $c^{\prime}[\varphi, \psi]$ rule: grouped-by.induct)
apply (auto simp: simple-decomp wf-conn-list, auto simp: conn-inj)
by (metis list.distinct(1) list.sel(3) wf-conn-list(8))+
Then the CNF form is a conjunction of clauses: every clause is in CNF form and two formulas in CNF form can be related by an and.
inductive super-grouped-by:: 'a connective \Rightarrow 'a connective $\Rightarrow{ }^{\prime} a$ propo \Rightarrow bool for $c c^{\prime}$ where grouped-is-super-grouped $[$ simp $]$: grouped-by $с \varphi \Longrightarrow$ super-grouped-by c c' $\varphi \mid$ connected-is-super-group: super-grouped-by $с c^{\prime} \varphi \Longrightarrow$ super-grouped-by c $c^{\prime} \psi \Longrightarrow$ wf-conn $c[\varphi, \psi]$
\Longrightarrow super-grouped-by $c c^{\prime}\left(\right.$ conn $\left.c^{\prime}[\varphi, \psi]\right)$
lemma simple-cnf[simp]:
super-grouped-by c $c^{\prime} F T$
super-grouped-by c c $c^{\prime} F F$
super-grouped-by c $c^{\prime}(F \operatorname{Var} x)$
super-grouped-by c c $c^{\prime}(F N o t ~ F T)$
super-grouped-by c c' (FNot FF)
super-grouped-by c c c^{\prime} (FNot (FVar $\left.x\right)$)
by auto
lemma c-in-c'-only-super-grouped-by:
assumes $c: c=C A n d \vee c=C O r$ and $c^{\prime}: c^{\prime}=C A n d \vee c^{\prime}=C O r$ and $c c^{\prime}: c \neq c^{\prime}$
shows no-equiv $\varphi \Longrightarrow$ no-imp $\varphi \Longrightarrow$ simple-not $\varphi \Longrightarrow c$-in-c'-only c $c^{\prime} \varphi$
\Longrightarrow super-grouped-by c c $c^{\prime} \varphi$
(is ?NE $\varphi \Longrightarrow$?NI $\varphi \Longrightarrow$? SN $\varphi \Longrightarrow$? $C \varphi \Longrightarrow$?S φ)
proof (induct φ rule: propo-induct-arity)
case (nullary φ)
then show ? $S \varphi$ by auto
next
case (unary φ)
then have simple-not-symb (FNot φ)
using all-subformula-st-test-symb-true-phi unfolding simple-not-def by blast
then have $\varphi=F T \vee \varphi=F F \vee(\exists x . \varphi=F \operatorname{Var} x)$ by (cases φ, auto)
then show ? S (FNot φ) by auto

next

case (binary $\varphi \varphi 1 \quad \varphi$ 2)
note $\operatorname{IH} \varphi 1=$ this(1) and $\operatorname{IH} \varphi 2=$ this(2) and no-equiv $=$ this(4) and no-imp $=$ this(5)
and simpleN $=$ this(6) and c-in-c'-only $=$ this(7) and $\varphi^{\prime}=$ this(3)
\{
assume $\varphi=F \operatorname{Imp} \varphi 1 \varphi 2 \vee \varphi=F E q \varphi 1 \varphi 2$
then have False using no-equiv no-imp by auto
then have ? $S \varphi$ by auto
\}

```
moreover {
    assume \varphi: \varphi= conn c}\mp@subsup{c}{}{\prime}[\varphi1,\varphi2]^wf-conn c' [\varphi1, \varphi2]
    have c-in-c'-only:c-in-c'-only c c' \varphi1 ^c-in-c'-only c c' \varphi2 ^c-in-c'-symb c c' \varphi
        using c-in-c'-only \varphi' unfolding c-in-c'-only-def by auto
    have super-grouped-by c c' \varphi1 using \varphi c' no-equiv no-imp simpleN IH\varphi1 c-in-c'-only by auto
    moreover have super-grouped-by c c' }\varphi\mathrm{ 2
        using \varphi c' no-equiv no-imp simpleN IH\varphi2 c-in-c'-only by auto
    ultimately have ?S \varphi
        using super-grouped-by.intros(2) \varphi by (metis c wf-conn-helper-facts(5,6))
}
moreover {
    assume \varphi: \varphi= conn c[\varphi1,\varphi2]^wf-conn c [\varphi1,\varphi2]
    then have only-c-inside c \varphi1 ^only-c-inside c \varphi2
        using c-in-c'-symb-c-implies-only-c-inside c c' c-in-c'-only list.set-intros(1)
                wf-conn-helper-facts(5,6) no-equiv no-imp simpleN last-ConsL last-ConsR last-in-set
                list.distinct(1) by (metis (no-types, hide-lams) cc')
    then have only-c-inside c (conn c[\varphi1, \varphi2])
        unfolding only-c-inside-def using }
        by (simp add: only-c-inside-into-only-c-inside all-subformula-st-decomp)
    then have grouped-by c \varphi using \varphi only-c-inside-imp-grouped-by c by blast
    then have ?S }\varphi\mathrm{ using super-grouped-by.intros(1) by metis
}
ultimately show ?S \varphi by (metis }\mp@subsup{\varphi}{}{\prime}c\mp@subsup{c}{}{\prime}c\mp@subsup{c}{}{\prime}\operatorname{conn.simps(5,6) wf-conn-helper-facts(5,6))
qed
```


1.6.2 Conjunctive Normal Form

Definition

definition is-conj-with-TF where is-conj-with-TF $==$ super-grouped-by COr CAnd
lemma or-in-and-only-conjunction-in-disj:
shows no-equiv $\varphi \Longrightarrow$ no-imp $\varphi \Longrightarrow$ simple-not $\varphi \Longrightarrow$ or-in-and-only $\varphi \Longrightarrow$ is-conj-with-TF φ
using c-in-c'-only-super-grouped-by
unfolding is-conj-with-TF-def or-in-and-only-def c-in-c'-only-def
by (simp add: c-in-c'-only-def c-in-c'-only-super-grouped-by)
definition is-cnf where
is-cnf $\varphi \equiv$ is-conj-with-TF $\varphi \wedge$ no-T-F-except-top-level φ

Full CNF transformation

The full1 CNF transformation consists simply in chaining all the transformation defined before.

```
definition cnf-rew where cnf-rew =
    (full (propo-rew-step elim-equiv)) OO
    (full (propo-rew-step elim-imp)) OO
    (full (propo-rew-step elimTB)) OO
    (full (propo-rew-step pushNeg)) OO
    (full (propo-rew-step pushDisj))
lemma cnf-rew-equivalent: preserve-models cnf-rew
    by (simp add: cnf-rew-def elimEquv-lifted-consistant elim-imp-lifted-consistant elimTB-consistent
        preserve-models-OO pushDisj-consistent pushNeg-lifted-consistant)
```

lemma cnf-rew-is-cnf: cnf-rew $\varphi \varphi^{\prime} \Longrightarrow i s-c n f \varphi^{\prime}$

```
    apply (unfold cnf-rew-def OO-def)
    apply auto
proof -
    fix }\varphi\varphiEq\varphiImp \varphiTB \varphiNeg \varphiDisj :: 'v propo
    assume Eq: full (propo-rew-step elim-equiv) }\varphi\varphiE
    then have no-equiv: no-equiv }\varphiEq\mathrm{ using no-equiv-full-propo-rew-step-elim-equiv by blast
    assume Imp: full (propo-rew-step elim-imp) \varphiEq \varphiImp
    then have no-imp: no-imp \varphiImp using no-imp-full-propo-rew-step-elim-imp by blast
    have no-imp-inv: no-equiv \varphiImp using no-equiv Imp elim-imp-inv by blast
    assume TB: full (propo-rew-step elimTB) \varphiImp \varphiTB
    then have noTB: no-T-F-except-top-level }\varphiT
    using no-imp-inv no-imp elimTB-full-propo-rew-step by blast
    have noTB-inv: no-equiv }\varphi\mathrm{ TB no-imp }\varphiTB\mathrm{ using elimTB-inv TB no-imp no-imp-inv by blast+
    assume Neg: full (propo-rew-step pushNeg) \varphiTB \varphiNeg
    then have noNeg: simple-not \varphiNeg
    using noTB-inv noTB pushNeg-full-propo-rew-step by blast
    have noNeg-inv: no-equiv \varphiNeg no-imp \varphiNeg no-T-F-except-top-level \varphiNeg
    using pushNeg-inv Neg noTB noTB-inv by blast+
    assume Disj: full (propo-rew-step pushDisj) \varphiNeg \varphiDisj
    then have no-Disj: or-in-and-only \varphiDisj
    using noNeg-inv noNeg pushDisj-full-propo-rew-step by blast
    have noDisj-inv: no-equiv \varphiDisj no-imp \varphiDisj no-T-F-except-top-level \varphiDisj
        simple-not \varphiDisj
    using pushDisj-inv Disj noNeg noNeg-inv by blast+
    moreover have is-conj-with-TF \varphiDisj
    using or-in-and-only-conjunction-in-disj noDisj-inv no-Disj by blast
    ultimately show is-cnf \varphiDisj unfolding is-cnf-def by blast
qed
```


1.6.3 Disjunctive Normal Form

Definition

definition is-disj-with-TF where is-disj-with-TF \equiv super-grouped-by CAnd COr
lemma and-in-or-only-conjunction-in-disj:
shows no-equiv $\varphi \Longrightarrow$ no-imp $\varphi \Longrightarrow$ simple-not $\varphi \Longrightarrow$ and-in-or-only $\varphi \Longrightarrow$ is-disj-with-TF φ
using c-in-c'-only-super-grouped-by
unfolding is-disj-with-TF-def and-in-or-only-def c-in-c'-only-def
by (simp add: c-in-c'-only-def c-in-c'-only-super-grouped-by)
definition is-dnf :: 'a propo \Rightarrow bool where
is-dnf $\varphi \longleftrightarrow$ is-disj-with-TF $\varphi \wedge$ no-T-F-except-top-level φ

Full DNF transform

The full DNF transformation consists simply in chaining all the transformation defined before.
definition dnf-rew where dnf-rew \equiv
(full (propo-rew-step elim-equiv)) OO
(full (propo-rew-step elim-imp)) OO
(full (propo-rew-step elimTB)) OO
(full (propo-rew-step pushNeg)) OO
(full (propo-rew-step pushConj))
lemma dnf-rew-consistent: preserve-models dnf-rew
by (simp add: dnf-rew-def elimEquv-lifted-consistant elim-imp-lifted-consistant elimTB-consistent preserve-models-OO pushConj-consistent pushNeg-lifted-consistant)
theorem dnf-transformation-correction:
$d n f$-rew $\varphi \varphi^{\prime} \Longrightarrow i s$-dnf φ^{\prime}
apply (unfold dnf-rew-def OO-def)
by (meson and-in-or-only-conjunction-in-disj elimTB-full-propo-rew-step elimTB-inv(1, 2)
elim-imp-inv is-dnf-def no-equiv-full-propo-rew-step-elim-equiv
no-imp-full-propo-rew-step-elim-imp pushConj-full-propo-rew-step pushConj-inv(1-4)
pushNeg-full-propo-rew-step pushNeg-inv(1-3))

1.7 More aggressive simplifications: Removing true and false at the beginning

1.7.1 Transformation

We should remove $F T$ and $F F$ at the beginning and not in the middle of the algorithm. To do this, we have to use more rules (one for each connective):

```
inductive elimTBFull where
ElimTBFull1[simp]: elimTBFull (FAnd \(\varphi\) FT) \(\varphi \mid\)
ElimTBFull1'[simp]: elimTBFull (FAnd FT \(\varphi\) ) \(\varphi \mid\)
ElimTBFull2[simp]: elimTBFull (FAnd \(\varphi\) FF) FF |
ElimTBFull2'[simp]: elimTBFull (FAnd FF \(\varphi\) ) FF|
ElimTBFull3[simp]: elimTBFull (FOr \(\varphi\) FT) FT |
ElimTBFull3'[simp]: elimTBFull (FOr FT \(\varphi\) ) FT |
ElimTBFull4 [simp]: elimTBFull \((\) FOr \(\varphi\) FF) \(\varphi \mid\)
ElimTBFull4' \([\) simp \(]:\) elimTBFull (FOr FF \(\varphi\) ) \(\varphi \mid\)
ElimTBFull5[simp]: elimTBFull (FNot FT) FF |
ElimTBFull5 \({ }^{\prime}[\) simp \(]\) : elimTBFull (FNot FF) FT |
ElimTBFull6-l[simp]: elimTBFull (FImp FT \(\varphi\) ) \(\varphi \mid\)
ElimTBFull6-l'[simp]: elimTBFull (FImp FF \(\varphi\) ) FT
ElimTBFull6-r[simp]: elimTBFull (FImp \(\varphi\) FT) FT
ElimTBFull6-r \({ }^{\prime}[\) simp \(]:\) elimTBFull \((\) FImp \(\varphi\) FF) \((\) FNot \(\varphi) \mid\)
ElimTBFull'-l[simp]: elimTBFull \((F E q F T \varphi) \varphi \mid\)
ElimTBFull7-l' \([\) simp \(]\) : elimTBFull (FEq FF \(\varphi\) ) (FNot \(\varphi\) ) |
ElimTBFull\%-r[simp]: elimTBFull \((F E q \varphi F T) \varphi \mid\)
ElimTBFull'\%-r'[simp]: elimTBFull \((\) FEq \(\varphi\) FF) \((\) FNot \(\varphi)\)
The transformation is still consistent.
```

```
lemma elimTBFull-consistent: preserve-models elimTBFull
```

lemma elimTBFull-consistent: preserve-models elimTBFull
proof -
proof -
{
{
fix }\varphi\psi:: 'b prop
fix }\varphi\psi:: 'b prop
have elimTBFull }\varphi\psi\Longrightarrow\forallA.A\models\varphi\longleftrightarrow\mp@code{A\models\psi

```
    have elimTBFull }\varphi\psi\Longrightarrow\forallA.A\models\varphi\longleftrightarrow\mp@code{A\models\psi
```

```
        by (induct-tac rule: elimTBFull.inducts, auto)
    }
    then show ?thesis using preserve-models-def by auto
qed
```

Contrary to the theorem no-T-F-symb-except-toplevel-step-exists, we do not need the assumption no-equiv φ and no-imp φ, since our transformation is more general.
lemma no-T-F-symb-except-toplevel-step-exists':
fixes $\varphi::$ 'v propo
shows $\psi \preceq \varphi \Longrightarrow \neg$ no-T-F-symb-except-toplevel $\psi \Longrightarrow \exists \psi^{\prime}$. elimTBFull $\psi \psi^{\prime}$
proof (induct ψ rule: propo-induct-arity)
case (nullary φ^{\prime})
then have False using no-T-F-symb-except-toplevel-true no-T-F-symb-except-toplevel-false by auto
then show Ex (elimTBFull φ^{\prime}) by blast
next
case (unary ψ)
then have $\psi=F F \vee \psi=F T$ using no-T-F-symb-except-toplevel-not-decom by blast
then show Ex (elimTBFull $(F N o t \psi)$) using ElimTBFull5 ElimTBFull5' by blast
next
case (binary $\varphi^{\prime} \psi 1 \psi 2$)
then have $\psi 1=F T \vee \psi 2=F T \vee \psi 1=F F \vee \psi 2=F F$
by (metis binary-connectives-def conn.simps (5-8) insertI1 insert-commute no-T-F-symb-except-toplevel-bin-decom binary-hyps(3))
then show Ex (elimTBFull φ^{\prime}) using elimTBFull.intros binary.hyps(3) by blast qed

The same applies here. We do not need the assumption, but the deep link between \neg no-T-F-except-top-level φ and the existence of a rewriting step, still exists.

```
lemma no-T-F-except-top-level-rew':
    fixes \varphi :: 'v propo
    assumes noTB: ᄀno-T-F-except-top-level \varphi
    shows }\exists\psi\mp@subsup{\psi}{}{\prime}.\psi\preceq\varphi^\mathrm{ elimTBFull }\psi\mp@subsup{\psi}{}{\prime
proof -
    have test-symb-false-nullary:
        \forallx. no-T-F-symb-except-toplevel (FF:: 'v propo) ^ no-T-F-symb-except-toplevel FT
            ^ no-T-F-symb-except-toplevel (FVar (x:: 'v))
        by auto
    moreover {
        fix c:: 'v connective and l::'v propo list and \psi :: 'v propo
        have H: elimTBFull (conn c l) \psi\Longrightarrow \negno-T-F-symb-except-toplevel (conn c l)
            by (cases conn c l rule: elimTBFull.cases) auto
    }
    ultimately show ?thesis
        using no-test-symb-step-exists[of no-T-F-symb-except-toplevel }\varphi\mathrm{ elimTBFull] noTB
        no-T-F-symb-except-toplevel-step-exists' unfolding no-T-F-except-top-level-def by metis
qed
```

lemma elimTBFull-full-propo-rew-step:
fixes $\varphi \psi$:: 'v propo
assumes full (propo-rew-step elimTBFull) $\varphi \psi$
shows no-T-F-except-top-level ψ
using full-propo-rew-step-subformula no-T-F-except-top-level-rew' assms by fastforce

1.7.2 More invariants

As the aim is to use the transformation as the first transformation, we have to show some more invariants for elim-equiv and elim-imp. For the other transformation, we have already proven it.

```
lemma propo-rew-step-ElimEquiv-no-T-F: propo-rew-step elim-equiv \(\varphi \Longrightarrow\) no-T-F \(\varphi \Longrightarrow\) no-T-F \(\psi\)
proof (induct rule: propo-rew-step.induct)
    fix \(\varphi^{\prime}::\) 'v propo and \(\psi^{\prime}::\) 'v propo
    assume a1: no-T-F \(\varphi^{\prime}\)
    assume a2: elim-equiv \(\varphi^{\prime} \psi^{\prime}\)
    have \(\forall x 0 x 1\). ( \(\neg\) elim-equiv ( \(x 1\) :: 'v propo) \(x 0 \vee(\exists v 2 v 3\) va v5 v6 v7. \(x 1=F E q v 2 v 3\)
    \(\wedge x 0=\) FAnd \(\left(\right.\) FImp \(\left.\left.\left.v_{4} v 5\right)(F I m p v 6 v 7) \wedge v 2=v_{4} \wedge v_{4}=v 7 \wedge v 3=v 5 \wedge v 3=v 6\right)\right)\)
    \(=(\neg\) elim-equiv \(x 1 x 0 \vee(\exists v 2 v 3 v 4 v 5 v 6 v 7 . x 1=F E q v 2 v 3\)
    \(\wedge x 0=\) FAnd \((\) FImp v4 v5) \((\) FImp v6 v7) \(\wedge v 2=v 4 \wedge v 4=v 7 \wedge v 3=v 5 \wedge v 3=v 6))\)
    by meson
    then have \(\forall p\) pa. \(\urcorner\) elim-equiv ( \(p::{ }^{\prime} v\) propo) \(p a \vee(\exists p b p c\) pd pe pf pg. \(p=F E q p b p c\)
    \(\wedge p a=\) FAnd \((\) FImp pd pe) \((\) FImp pf pg \() \wedge p b=p d \wedge p d=p g \wedge p c=p e \wedge p c=p f)\)
    using elim-equiv.cases by force
    then show no-T-F \(\psi^{\prime}\) using a1 a2 by fastforce
next
    fix \(\varphi \varphi^{\prime}::{ }^{\prime} v\) propo and \(\xi \xi^{\prime}::\) 'v propo list and \(c:: ' v\) connective
    assume rel: propo-rew-step elim-equiv \(\varphi \varphi^{\prime}\)
    and \(I H: n o-T-F \varphi \Longrightarrow\) no-T-F \(\varphi^{\prime}\)
    and corr: wf-conn c( \(\xi\) @ \(\left.\varphi \xi^{\prime}\right)\)
    and no-T-F: no-T-F (conn c ( \(\xi\) @ \(\varphi \xi^{\prime}\) ))
    \{
        assume c: \(c=C N o t\)
        then have empty: \(\xi=[] \xi^{\prime}=\square\) using corr by auto
        then have no-T-F \(\varphi\) using no-T-F c no-T-F-decomp-not by auto
        then have no-T-F (conn \(c\left(\xi\right.\) @ \(\left.\left.\varphi^{\prime} \# \xi^{\prime}\right)\right)\) using \(c\) empty no-T-F-comp-not IH by auto
    \}
    moreover \{
    assume \(c: c \in\) binary-connectives
    obtain \(a b\) where \(a b: \xi @ \varphi \# \xi^{\prime}=[a, b]\)
        using corr c list-length2-decomp wf-conn-bin-list-length by metis
    then have \(\varphi: \varphi=a \vee \varphi=b\)
        by (metis append.simps(1) append-is-Nil-conv list.distinct(1) list.sel(3) nth-Cons-0
            tl-append2)
    have \(\zeta: \forall \zeta \in \operatorname{set}(\xi @ \varphi \# \xi\) ). no-T-F \(\zeta\)
        using no-T-F unfolding no-T-F-def using corr all-subformula-st-decomp by blast
    then have \(\varphi^{\prime}\) : no-T-F \(\varphi^{\prime}\) using ab IH \(\varphi\) by auto
    have \(l^{\prime}: \xi\) @ \(\varphi^{\prime} \# \xi^{\prime}=\left[\varphi^{\prime}, b\right] \vee \xi @ \varphi^{\prime} \# \xi^{\prime}=[a, \varphi]\)
        by (metis (no-types, hide-lams) ab append-Cons append-Nil append-Nil2 butlast.simps(2)
        butlast-append list.distinct(1) list.sel(3))
    then have \(\forall \zeta \in \operatorname{set}\left(\xi @ \varphi^{\prime} \# \xi^{\prime}\right.\) ). no-T-F \(\zeta\) using \(\zeta \varphi^{\prime}\) ab by fastforce
    moreover
    have \(\forall \zeta \in \operatorname{set}\left(\xi @ \varphi \# \xi^{\prime}\right) . \zeta \neq F T \wedge \zeta \neq F F\)
        using \(\zeta\) corr no-T-F no-T-F-except-top-level-false no-T-F-no-T-F-except-top-level by blast
    then have no-T-F-symb (conn \(c\left(\xi\right.\) @ \(\left.\varphi^{\prime} \# \xi^{\prime}\right)\) )
        by (metis \(\varphi^{\prime} l^{\prime}\) ab all-subformula-st-test-symb-true-phi c list.distinct(1)
            list.set-intros (1,2) no-T-F-symb-except-toplevel-bin-decom
            no-T-F-symb-except-toplevel-no-T-F-symb no-T-F-symb-false(1,2) no-T-F-def wf-conn-binary
            wf-conn-list( 1,2 ))
    ultimately have no-T-F (conn c( \(\xi\) @ \(\left.\varphi^{\prime} \# \xi^{\prime}\right)\) )
```

```
        by (metis l' all-subformula-st-decomp-imp c no-T-F-def wf-conn-binary)
    }
    moreover {
    fix }
    assume c=CVar x \vee c=CF\vee c=CT
    then have False using corr by auto
    then have no-T-F (conn c (\xi@ \varphi}#\mp@subsup{\varphi}{}{\prime}))\mathrm{ by auto
    }
    ultimately show no-T-F (conn c (\xi@ \varphi' # ' ')) using corr wf-conn.cases by metis
qed
lemma elim-equiv-inv':
    fixes }\varphi\psi :: 'v prop
    assumes full (propo-rew-step elim-equiv) \varphi\psi and no-T-F-except-top-level }
    shows no-T-F-except-top-level \psi
proof -
    {
        fix }\varphi\psi :: 'v prop
    have propo-rew-step elim-equiv }\varphi\psi\Longrightarrow\mathrm{ no-T-F-except-top-level }
        \Longrightarrow n o - T - F - e x c e p t - t o p - l e v e l ~ \psi ~
        proof -
            assume rel: propo-rew-step elim-equiv \varphi\psi
            and no: no-T-F-except-top-level \varphi
            {
            assume }\varphi=FT\vee\varphi=F
                        from rel this have False
                        apply (induct rule: propo-rew-step.induct, auto simp: wf-conn-list(1,2))
                    using elim-equiv.simps by blast+
                        then have no-T-F-except-top-level }\psi\mathrm{ by blast
            }
            moreover {
                    assume }\varphi\not=FT\wedge\varphi\not=F
                    then have no-T-F \varphi
                        by (metis no no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
                    then have no-T-F \psi using propo-rew-step-ElimEquiv-no-T-F rel by blast
                    then have no-T-F-except-top-level }\psi\mathrm{ by (simp add: no-T-F-no-T-F-except-top-level)
            }
            ultimately show no-T-F-except-top-level \psi by metis
        qed
    }
    moreover {
        fix c::'v connective and \xi \xi' :: 'v propo list and \zeta \zeta' :: 'v propo
        assume rel: propo-rew-step elim-equiv \zeta \zeta'
        and incl: \zeta\preceq\varphi
        and corr:wf-conn c(\xi@\zeta# ')
        and no-T-F: no-T-F-symb-except-toplevel (conn c (\xi@ @# '})
        and n: no-T-F-symb-except-toplevel \zeta'
        have no-T-F-symb-except-toplevel (conn c (\xi@ @'# \xi'))
        proof
            have p:no-T-F-symb (conn c (\xi@\zeta##'))
            using corr wf-conn-list(1) wf-conn-list(2) no-T-F-symb-except-toplevel-no-T-F-symb no-T-F
            by blast
            have l: }\forall\varphi\in\operatorname{set}(\xi@\zeta#\mp@subsup{\xi}{}{\prime}).\varphi\not=FT\wedge\varphi\not=F
            using corr wf-conn-no-T-F-symb-iff p by blast
            from rel incl have }\mp@subsup{\zeta}{}{\prime}\not=FT\wedge\mp@subsup{\zeta}{}{\prime}\not=F
            apply (induction \zeta \zeta' rule: propo-rew-step.induct)
```

```
        apply (cases rule: elim-equiv.cases, auto simp: elim-equiv.simps)
        by (metis append-is-Nil-conv list.distinct wf-conn-list(1,2) wf-conn-no-arity-change
            wf-conn-no-arity-change-helper)+
        then have }\forall\varphi\in\operatorname{set}(\xi@\mp@subsup{\zeta}{}{\prime}#\mp@subsup{\xi}{}{\prime}).\varphi\not=FT\wedge\varphi\not=FF\mathrm{ using l by auto
        moreover have c\not=CT^c\not=CF using corr by auto
        ultimately show no-T-F-symb (conn c (\xi@ \zeta'# \xi'))
            by (metis corr wf-conn-no-arity-change wf-conn-no-arity-change-helper no-T-F-symb-comp)
    qed
}
ultimately show no-T-F-except-top-level \psi
    using full-propo-rew-step-inv-stay-with-inc[of elim-equiv no-T-F-symb-except-toplevel \varphi]
        assms subformula-refl unfolding no-T-F-except-top-level-def by metis
qed
```

```
lemma propo-rew-step-ElimImp-no-T-F: propo-rew-step elim-imp \(\varphi \psi\) no-T-F \(\varphi \Longrightarrow\) no-T-F \(\psi\)
proof (induct rule: propo-rew-step.induct)
    case (global-rel \(\varphi^{\prime} \psi^{\prime}\) )
    then show no-T-F \(\psi^{\prime}\)
    using elim-imp.cases no-T-F-comp-not no-T-F-decomp(1,2)
    by (metis no-T-F-comp-expanded-explicit(2))
next
    case (propo-rew-one-step-lift \(\varphi \varphi^{\prime}\) c \(\xi \xi^{\prime}\) )
    note rel \(=\) this(1) and \(I H=\) this(2) and corr \(=\) this(3) and no-T-F \(=\) this(4)
    \{
    assume \(c: c=C N o t\)
    then have empty: \(\xi=[] \xi^{\prime}=[]\) using corr by auto
    then have no-T-F \(\varphi\) using no-T-F c no-T-F-decomp-not by auto
    then have no-T-F (conn \(c\left(\xi @ \varphi^{\prime} \# \xi^{\prime}\right)\) ) using \(c\) empty no-T-F-comp-not IH by auto
    \}
    moreover \{
    assume \(c: c \in\) binary-connectives
    then obtain \(a b\) where \(a b: \xi @ \varphi \# \xi^{\prime}=[a, b]\)
        using corr list-length2-decomp wf-conn-bin-list-length by metis
    then have \(\varphi: \varphi=a \vee \varphi=b\)
        by (metis append-self-conv2 wf-conn-list-decomp(4) wf-conn-unary list.discI list.sel(3)
            nth-Cons-0 tl-append2)
    have \(\zeta: \forall \zeta \in \operatorname{set}\left(\xi @ \varphi \# \xi^{\prime}\right)\).no-T-F \(\zeta\) using ab c propo-rew-one-step-lift.prems by auto
    then have \(\varphi^{\prime}: n o-T-F \varphi^{\prime}\)
        using ab IH \(\varphi\) corr no-T-F no-T-F-def all-subformula-st-decomp-explicit by auto
    have \(\chi: \xi @ \varphi^{\prime} \# \xi^{\prime}=\left[\varphi^{\prime}, b\right] \vee \xi @ \varphi^{\prime} \# \xi^{\prime}=\left[a, \varphi^{\prime}\right]\)
        by (metis (no-types, hide-lams) ab append-Cons append-Nil append-Nil2 butlast.simps(2)
        butlast-append list.distinct(1) list.sel(3))
    then have \(\forall \zeta \in \operatorname{set}\left(\xi @ \varphi^{\prime} \# \xi^{\prime}\right)\). no-T-F \(\zeta\) using \(\zeta \varphi^{\prime} a b\) by fastforce
    moreover
        have no-T-F (last ( \(\xi\) @ \(\left.\varphi^{\prime} \# \xi^{\prime}\right)\) ) by (simp add: calculation)
        then have no-T-F-symb (conn c ( \(\xi\) @ \(\left.\varphi^{\prime} \# \xi^{\prime}\right)\) )
            by (metis \(\chi \varphi^{\prime} \zeta\) ab all-subformula-st-test-symb-true-phi c last.simps list.distinct(1)
                list.set-intros(1) no-T-F-bin-decomp no-T-F-def)
    ultimately have no-T-F (conn \(c\left(\xi\right.\) @ \(\left.\varphi^{\prime} \# \xi^{\prime}\right)\) ) using \(c \chi\) by fastforce
\}
moreover \{
    fix \(x\)
    assume \(c=C\) Var \(x \vee c=C F \vee c=C T\)
    then have False using corr by auto
```

then have no-T-F (conn $\left.c\left(\xi @ \varphi^{\prime} \# \xi^{\prime}\right)\right)$ by auto
\}
ultimately show no-T-F (conn $\left.c\left(\xi @ \varphi^{\prime} \# \xi^{\prime}\right)\right)$ using corr wf-conn.cases by blast qed
lemma elim-imp-inv':
fixes $\varphi \psi$:: 'v propo
assumes full (propo-rew-step elim-imp) $\varphi \psi$ and no-T-F-except-top-level φ
showsno-T-F-except-top-level ψ
proof -
\{
fix $\varphi \psi::$ 'v propo
have H : elim-imp $\varphi \psi \Longrightarrow$ no-T-F-except-top-level $\varphi \Longrightarrow$ no-T-F-except-top-level ψ
by (induct $\varphi \psi$ rule: elim-imp.induct, auto)
\} note $H=$ this
fix $\varphi \psi$:: 'v propo
have propo-rew-step elim-imp $\varphi \psi \Longrightarrow$ no-T-F-except-top-level $\varphi \Longrightarrow$ no-T-F-except-top-level ψ proof -
assume rel: propo-rew-step elim-imp $\varphi \psi$
and no: no-T-F-except-top-level φ \{
assume $\varphi=F T \vee \varphi=F F$
from rel this have False
apply (induct rule: propo-rew-step.induct)
by (cases rule: elim-imp.cases, auto simp: wf-conn-list(1,2))
then have no-T-F-except-top-level ψ by blast
\}
moreover \{
assume $\varphi \neq F T \wedge \varphi \neq F F$
then have no-T-F φ
by (metis no no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
then have no-T-F ψ
using rel propo-rew-step-ElimImp-no-T-F by blast
then have no-T-F-except-top-level ψ by (simp add: no-T-F-no-T-F-except-top-level)
\}
ultimately show no-T-F-except-top-level ψ by metis
qed
\}
moreover \{
fix $c::{ }^{\prime} v$ connective and $\xi \xi^{\prime}::$ 'v propo list and $\zeta \zeta^{\prime}::$ 'v propo
assume rel: propo-rew-step elim-imp $\zeta \zeta^{\prime}$
and incl: $\zeta \preceq \varphi$
and corr: wf-conn c $\left(\xi\right.$ @ $\left.\zeta \# \xi^{\prime}\right)$
and no-T-F: no-T-F-symb-except-toplevel (conn c (ξ @ $\left.\zeta \# \xi^{\prime}\right)$)
and n : no- T-F-symb-except-toplevel ζ^{\prime}
have no-T-F-symb-except-toplevel (conn c (ξ @ $\zeta^{\prime} \# \xi^{\prime}$))
proof
have p : no-T-F-symb (conn $\left.c\left(\xi @ \zeta \# \xi^{\prime}\right)\right)$
by (simp add: corr no-T-F no-T-F-symb-except-toplevel-no-T-F-symb wf-conn-list(1,2))
have $l: \forall \varphi \in \operatorname{set}\left(\xi @ \zeta \# \xi^{\prime}\right) . \varphi \neq F T \wedge \varphi \neq F F$
using corr wf-conn-no-T-F-symb-iff p by blast
from rel incl have $\zeta^{\prime} \neq F T \wedge \zeta^{\prime} \neq F F$
apply (induction $\zeta \zeta^{\prime}$ rule: propo-rew-step.induct)

```
            apply (cases rule: elim-imp.cases, auto)
            using wf-conn-list(1,2) wf-conn-no-arity-change wf-conn-no-arity-change-helper
            by (metis append-is-Nil-conv list.distinct(1))+
        then have }\forall\varphi\in\operatorname{set}(\xi@\mp@subsup{\zeta}{}{\prime}#\mp@subsup{\xi}{}{\prime}).\varphi\not=FT\wedge\varphi\not=FF\mathrm{ using l by auto
        moreover have c\not=CT^c\not=CF using corr by auto
        ultimately show no-T-F-symb (conn c (\xi@ ''# ''))
            using corr wf-conn-no-arity-change no-T-F-symb-comp
            by (metis wf-conn-no-arity-change-helper)
        qed
}
ultimately show no-T-F-except-top-level \psi
    using full-propo-rew-step-inv-stay-with-inc[of elim-imp no-T-F-symb-except-toplevel }\varphi\mathrm{ ]
    assms subformula-refl unfolding no-T-F-except-top-level-def by metis
qed
```


1.7.3 The new CNF and DNF transformation

The transformation is the same as before, but the order is not the same.

```
definition dnf-rew' :: 'a propo }=>\mp@subsup{|}{}{\prime}\mathrm{ 'a propo }=>\mathrm{ bool where
dnf-rew' =
    (full (propo-rew-step elimTBFull)) OO
    (full (propo-rew-step elim-equiv)) OO
    (full (propo-rew-step elim-imp)) OO
    (full (propo-rew-step pushNeg)) OO
    (full (propo-rew-step pushConj))
lemma dnf-rew'-consistent: preserve-models dnf-rew'
    by (simp add: dnf-rew'-def elimEquv-lifted-consistant elim-imp-lifted-consistant
        elimTBFull-consistent preserve-models-OO pushConj-consistent pushNeg-lifted-consistant)
theorem cnf-transformation-correction:
    dnf-rew'}\varphi\mp@subsup{\varphi}{}{\prime}\Longrightarrowis-dnf \mp@subsup{\varphi}{}{\prime
    unfolding dnf-rew'-def OO-def
    by (meson and-in-or-only-conjunction-in-disj elimTBFull-full-propo-rew-step elim-equiv-inv'
        elim-imp-inv elim-imp-inv' is-dnf-def no-equiv-full-propo-rew-step-elim-equiv
        no-imp-full-propo-rew-step-elim-imp pushConj-full-propo-rew-step pushConj-inv(1-4)
        pushNeg-full-propo-rew-step pushNeg-inv(1-3))
```

Given all the lemmas before the CNF transformation is easy to prove:
definition cnf-rew' $::$ ' a propo \Rightarrow 'a propo \Rightarrow bool where
$c n f$-rew ${ }^{\prime}=$
(full (propo-rew-step elimTBFull)) OO
(full (propo-rew-step elim-equiv)) OO
(full (propo-rew-step elim-imp)) OO
(full (propo-rew-step pushNeg)) OO
(full (propo-rew-step pushDisj))
lemma cnf-rew'-consistent: preserve-models cnf-rew'
by (simp add: cnf-rew'-def elimEquv-lifted-consistant elim-imp-lifted-consistant elimTBFull-consistent preserve-models-OO pushDisj-consistent pushNeg-lifted-consistant)
theorem cnf $^{\prime}$-transformation-correction:
$c n f-r e w^{\prime} \varphi \varphi^{\prime} \Longrightarrow i s-c n f \varphi^{\prime}$
unfolding cnf-rew'-def OO-def
by (meson elimTBFull-full-propo-rew-step elim-equiv-inv' elim-imp-inv elim-imp-inv' is-cnf-def
no-equiv-full-propo-rew-step-elim-equiv no-imp-full-propo-rew-step-elim-imp or-in-and-only-conjunction-in-disj pushDisj-full-propo-rew-step pushDisj-inv(1-4) pushNeg-full-propo-rew-step pushNeg-inv(1) pushNeg-inv(2) pushNeg-inv(3))

end

theory Prop-Logic-Multiset
imports Nested-Multisets-Ordinals.Multiset-More Prop-Normalisation
Entailment-Definition.Partial-Herbrand-Interpretation
begin

1.8 Link with Multiset Version

1.8.1 Transformation to Multiset

fun mset-of-conj :: 'a propo \Rightarrow 'a literal multiset where mset-of-conj $($ FOr $\varphi \psi)=$ mset-of-conj $\varphi+$ mset-of-conj $\psi \mid$ mset-of-conj $($ FVar $v)=\{\#$ Pos $v \#\} \mid$ mset-of-conj $($ FNot $(F \operatorname{Var} v))=\{\#$ Neg $v \#\} \mid$ mset-of-conj FF $=\{\#\}$
fun mset-of-formula :: 'a propo \Rightarrow 'a literal multiset set where
mset-of-formula $(F A n d \varphi \psi)=$ mset-of-formula $\varphi \cup$ mset-of-formula $\psi \mid$
mset-of-formula $($ FOr $\varphi \psi)=\{$ mset-of-conj $(F O r \varphi \psi)\} \mid$
mset-of-formula $(F \operatorname{Var} \psi)=\{$ mset-of-conj $(F \operatorname{Var} \psi)\} \mid$
mset-of-formula $($ FNot $\psi)=\{$ mset-of-conj $($ FNot $\psi)\} \mid$
mset-of-formula $F F=\{\{\#\}\} \mid$
mset-of-formula $F T=\{ \}$

1.8.2 Equisatisfiability of the two Versions

lemma is-conj-with-TF-FNot:

```
    is-conj-with-TF (FNot \varphi) \longleftrightarrow (\existsv.\varphi=FVar v\vee\varphi=FF\vee 
    unfolding is-conj-with-TF-def apply (rule iffI)
    apply (induction FNot }\varphi\mathrm{ rule: super-grouped-by.induct)
    apply (induction FNot \varphi rule: grouped-by.induct)
        apply simp
        apply (cases \varphi; simp)
    apply auto
    done
```

lemma grouped-by-COr-FNot:
grouped-by COr $(F N o t \varphi) \longleftrightarrow(\exists v . \varphi=F \operatorname{Var} v \vee \varphi=F F \vee \varphi=F T)$
unfolding is-conj-with-TF-def apply (rule iffI)
apply (induction FNot φ rule: grouped-by.induct)
apply simp
apply (cases φ; simp)
apply auto
done
lemma
shows no-T-F-FF[simp]: $\neg n o-T-F F F$ and
no-T-F-FT[simp]: $\neg n o-T-F F T$
unfolding no-T-F-def all-subformula-st-def by auto
lemma grouped-by-CAnd-FAnd:
grouped-by CAnd $($ FAnd $\varphi 1 \varphi 2) \longleftrightarrow$ grouped-by CAnd $\varphi 1 \wedge$ grouped-by CAnd $\varphi \mathcal{2}$

```
apply (rule iffI)
apply (induction FAnd \varphi1 \varphi2 rule: grouped-by.induct)
using connected-is-group[of CAnd \varphi1 \varphi2] by auto
lemma grouped-by-COr-FOr:
    grouped-by COr (FOr \varphi1 \varphi2) \longleftrightarrow grouped-by COr \varphi1 ^ grouped-by COr \varphi2
    apply (rule iffI)
    apply (induction FOr \varphi1 \varphi2 rule: grouped-by.induct)
    using connected-is-group[of COr \varphi1 \varphi2] by auto
lemma grouped-by-COr-FAnd[simp]: \neg grouped-by COr (FAnd \varphi1 \varphiQ)
    apply clarify
    apply (induction FAnd \varphi1 \varphi2 rule: grouped-by.induct)
    apply auto
done
lemma grouped-by-COr-FEq[simp]: ᄀ grouped-by COr (FEq \varphi1 \varphi2)
    apply clarify
    apply (induction FEq \varphi1 \varphi2 rule: grouped-by.induct)
    apply auto
done
lemma [simp]: \neggrouped-by COr (FImp }\varphi\psi
    apply clarify
    by (induction FImp \varphi \psi rule: grouped-by.induct) simp-all
lemma [simp]: ᄀ is-conj-with-TF (FImp \varphi \psi)
    unfolding is-conj-with-TF-def apply clarify
    by (induction FImp }\varphi\psi\mathrm{ rule: super-grouped-by.induct) simp-all
lemma [simp]: ᄀ is-conj-with-TF (FEq \varphi \psi)
    unfolding is-conj-with-TF-def apply clarify
    by (induction FEq \varphi \psi rule: super-grouped-by.induct) simp-all
lemma is-conj-with-TF-Fand:
    is-conj-with-TF (FAnd \varphi1 \varphi2) \Longrightarrow is-conj-with-TF \varphi1 ^ is-conj-with-TF \varphi2
    unfolding is-conj-with-TF-def
    apply (induction FAnd \varphi1 \varphi2 rule: super-grouped-by.induct)
    apply (auto simp: grouped-by-CAnd-FAnd intro: grouped-is-super-grouped)[]
    apply auto[]
    done
lemma is-conj-with-TF-FOr:
    is-conj-with-TF (FOr \varphi1 \varphiZ) \Longrightarrowgrouped-by COr \varphi1 ^ grouped-by COr \varphi\mathcal{Z}
    unfolding is-conj-with-TF-def
    apply (induction FOr \varphi1 \varphi2 rule: super-grouped-by.induct)
    apply (auto simp: grouped-by-COr-FOr)[]
    apply auto[]
    done
lemma grouped-by-COr-mset-of-formula:
    grouped-by COr }\varphi\Longrightarrow\mathrm{ mset-of-formula }\varphi=(\mathrm{ if }\varphi=FT then {} else {mset-of-conj \varphi}), 
    by (induction \varphi) (auto simp add: grouped-by-COr-FNot)
```

When a formula is in CNF form, then there is equisatisfiability between the multiset version
and the CNF form. Remark that the definition for the entailment are slightly different: (\models) uses a function assigning True or False, while $(\models s)$ uses a set where being in the list means entailment of a literal.

```
theorem cnf-eval-true-clss:
    fixes \(\varphi\) :: 'v propo
    assumes is-cnf \(\varphi\)
    shows eval \(A \varphi \longleftrightarrow\) Partial-Herbrand-Interpretation.true-clss \((\{\operatorname{Pos} v \mid v . A v\} \cup\{\) Neg \(v \mid v . \neg A v\})\)
        (mset-of-formula \(\varphi\) )
    using assms
proof (induction \(\varphi\) )
    case FF
    then show? ?ase by auto
next
    case \(F T\)
    then show ?case by auto
next
    case (FVar v)
    then show ?case by auto
next
    case (FAnd \(\varphi \psi\) )
    then show? ?ase
        unfolding is-cnf-def by (auto simp: is-conj-with-TF-FNot dest: is-conj-with-TF-Fand
        dest!: is-conj-with-TF-FOr)
next
    case (FOr \(\varphi \psi\) )
    then have [simp]: mset-of-formula \(\varphi=\{\) mset-of-conj \(\varphi\}\) mset-of-formula \(\psi=\{\) mset-of-conj \(\psi\}\)
        unfolding is-cnf-def by (auto dest!:is-conj-with-TF-FOr simp: grouped-by-COr-mset-of-formula
            split: if-splits)
    have is-conj-with-TF \(\varphi\) is-conj-with-TF \(\psi\)
        using FOr (3) unfolding is-cnf-def no-T-F-def
        by (metis grouped-is-super-grouped is-conj-with-TF-FOr is-conj-with-TF-def) +
    then show ?case using FOr
        unfolding is-cnf-def by simp
next
    case (FImp \(\varphi \psi\) )
    then show? case
        unfolding is-cnf-def by auto
next
    case (FEq \(\varphi \psi\) )
    then show? case
        unfolding is-cnf-def by auto
next
    case (FNot \(\varphi\) )
    then show ?case
        unfolding is-cnf-def by (auto simp: is-conj-with-TF-FNot)
qed
function formula-of-mset :: 'a clause \(\Rightarrow\) 'a propo where
    〈formula-of-mset \(\varphi=\)
        (if \(\varphi=\{\#\}\) then \(F F\)
        else
            let \(v=(\) SOME \(v . v \in \# \varphi)\);
                        \(v^{\prime}=(\) if is-pos \(v\) then FVar (atm-of v) else FNot (FVar (atm-of v))) in
                if remove1-mset \(v \varphi=\{\#\}\) then \(v^{\prime}\)
                else FOr \(v^{\prime}(\) formula-of-mset (remove1-mset \(\left.v \varphi)\right)\) )
```

```
    by auto
termination
    apply (relation <measure size>)
    apply (auto simp: size-mset-remove1-mset-le-iff)
    by (meson multiset-nonemptyE someI-ex)
lemma formula-of-mset-empty[simp]:〈formula-of-mset {#} = FF`
    by (auto simp: Let-def)
lemma formula-of-mset-empty-iff[iff]:\formula-of-mset }\varphi=FF\longleftrightarrow\varphi={#}
    by (induction \varphi) (auto simp: Let-def)
declare formula-of-mset.simps[simp del]
function formula-of-msets :: 'a literal multiset set = 'a propo where
    formula-of-msets \varphis=
        (if \varphis={}\vee infinite \varphis then FT
            else
                let v=(SOME v.v\in\varphis);
                    v}=\mathrm{ formula-of-mset v in
            if \varphis-{v}={} then v}\mp@subsup{v}{}{\prime
            else FAnd v' (formula-of-msets (\varphis-{v})))
    by auto
termination
    apply (relation <measure card`)
    apply (auto simp: some-in-eq)
    by (metis all-not-in-conv card-gt-0-iff diff-less lessI)
declare formula-of-msets.simps[simp del]
lemma remove1-mset-empty-iff:
    <remove1-mset v \varphi ={#}\longleftrightarrow(\varphi={#}\vee \varphi={#v#})>
    using remove1-mset-eqE by force
definition fun-of-set where
    <fun-of-set A x = (if Pos }x\inA\mathrm{ then True else if Neg }x\inA\mathrm{ then False else undefined)〉
lemma grouped-by-COr-formula-of-mset:<grouped-by COr (formula-of-mset \varphi)\
proof (induction〈size \varphi> arbitrary: }\varphi\mathrm{ )
    case 0
    then show ?case by (subst formula-of-mset.simps) (auto simp: Let-def)
next
    case (Suc n) note IH = this(1) and s=this(2)
    then have <n= size (remove1-mset (SOME v.v\in#\varphi) \varphi)\rangle if \langle\varphi\not={#}>
        using that by (auto simp: size-Diff-singleton-if some-in-eq)
    then show ?case
    using IH[of <remove1-mset (SOME v.v \in# \varphi) \varphi\rangle]
    by(subst formula-of-mset.simps) (auto simp: Let-def grouped-by-COr-FOr)
qed
lemma no-T-F-formula-of-mset:<no-T-F (formula-of-mset \varphi)\rangle if <formula-of-mset \varphi\not=FF\rangle for \varphi
    using that
proof (induction <size \varphi\ arbitrary: }\varphi\mathrm{ )
    case 0
    then show ?case by (subst formula-of-mset.simps) (auto simp: Let-def no-T-F-def
        all-subformula-st-def)
next
```

```
    case (Suc n) note IH = this(1) and s=this(2) and FF = this(3)
    then have <n= size (remove1-mset (SOME v.v\in# \varphi) \varphi)\rangle if <\varphi # {#}>
    using that by (auto simp: size-Diff-singleton-if some-in-eq)
    moreover have <no-T-F (FVar (atm-of (SOME v.v \in# \varphi)))\rangle
    by (auto simp: no-T-F-def)
    ultimately show ?case
    using IH[of <remove1-mset (SOME v.v \in# \varphi) \varphi\rangle] FF
    by(subst formula-of-mset.simps) (auto simp: Let-def grouped-by-COr-FOr)
qed
lemma mset-of-conj-formula-of-mset[simp]:〈mset-of-conj(formula-of-mset }\varphi)=\varphi\rangle\mathrm{ for }
proof (induction\size \varphi\ arbitrary: }\varphi\mathrm{ )
    case 0
    then show ?case by (subst formula-of-mset.simps) (auto simp: Let-def no-T-F-def
        all-subformula-st-def)
next
    case (Suc n) note IH = this(1) and s=this(2)
    then have <n= size (remove1-mset (SOME v.v\in# \varphi) \varphi)\rangle if \langle\varphi\not={#}>
        using that by (auto simp: size-Diff-singleton-if some-in-eq)
    moreover have <no-T-F (FVar (atm-of (SOME v.v \in# \varphi)))\rangle
    by (auto simp: no-T-F-def)
    ultimately show ?case
        using IH[of \langleremove1-mset (SOME v.v\in# \varphi) \varphi\rangle]
    by(subst formula-of-mset.simps) (auto simp: some-in-eq Let-def grouped-by-COr-FOr remove1-mset-empty-iff)
qed
lemma mset-of-formula-formula-of-mset [simp]: <mset-of-formula (formula-of-mset \varphi)={\varphi}> for \varphi
proof (induction\size \varphi> arbitrary: }\varphi\mathrm{ )
    case 0
    then show ?case by (subst formula-of-mset.simps) (auto simp: Let-def no-T-F-def
        all-subformula-st-def)
next
    case (Suc n) note IH = this(1) and s=this(2)
    then have <n= size (remove1-mset (SOME v.v\in# \varphi) \varphi)\rangle if \langle\varphi\not={#}>
        using that by (auto simp: size-Diff-singleton-if some-in-eq)
    moreover have <no-T-F (FVar (atm-of (SOME v.v\in# \varphi)))\rangle
    by (auto simp: no-T-F-def)
    ultimately show ?case
        using IH[of <remove1-mset (SOME v.v\in# \varphi) \varphi\rangle]
    by(subst formula-of-mset.simps) (auto simp: some-in-eq Let-def grouped-by-COr-FOr remove1-mset-empty-iff)
qed
lemma formula－of－mset－is－cnf：〈is－cnf（formula－of－mset \(\varphi\) ）〉
by（auto simp：is－cnf－def is－conj－with－TF－def grouped－by－COr－formula－of－mset no－T－F－formula－of－mset intro！：grouped－is－super－grouped）
lemma eval－clss－iff：
assumes 〈consistent－interp \(A\) ）and 〈total－over－set \(A\) UNIV〉
shows 〈eval（fun－of－set A）（formula－of－mset \(\varphi\) ）\(\longleftrightarrow\) Partial－Herbrand－Interpretation．true－clss \(A\{\varphi\}\) ）
apply（subst cnf－eval－true－clss［OF formula－of－mset－is－cnf］）
using assms
apply（auto simp add：true－cls－def fun－of－set－def consistent－interp－def total－over－set－def）
apply（case－tac L）
by（fastforce simp add：true－cls－def fun－of－set－def consistent－interp－def total－over－set－def）＋
lemma is－conj－with－TF－Fand－iff：
```

is-conj-with-TF $(F A n d \varphi 1 \varphi 2) \longleftrightarrow$ is-conj-with-TF $\varphi 1 \wedge i s$-conj-with-TF $\varphi 2$
unfolding is-conj-with-TF-def by (subst super-grouped-by.simps) auto
lemma is-CNF-Fand:
$\langle i s-c n f(F A n d \varphi \psi) \longleftrightarrow(i s-c n f \varphi \wedge n o-T-F \varphi) \wedge i s-c n f \psi \wedge n o-T-F \psi\rangle$
by (auto simp: is-cnf-def is-conj-with-TF-Fand-iff)
lemma no-T-F-formula-of-mset-iff: \langle no-T-F (formula-of-mset φ) $\longleftrightarrow \varphi \neq\{\#\}$
proof (induction 〈size φ 〉 arbitrary: φ)
case 0
then show? case by (subst formula-of-mset.simps) (auto simp: Let-def no-T-F-def
all-subformula-st-def)
next
case (Suc n) note $I H=$ this(1) and $s=$ this(2)
then have $\langle n=$ size (remove1-mset (SOME $v . v \in \# \varphi) \varphi$) \rangle if $\langle\varphi \neq\{\#\}\rangle$
using that by (auto simp: size-Diff-singleton-if some-in-eq)
moreover have $\langle n o-T-F(F \operatorname{Var}(a t m-o f(S O M E v . v \in \# \varphi))$) 〉
by (auto simp: no-T-F-def)
ultimately show ?case
using $I H[$ of 〈remove1-mset (SOME v. v $\in \# \varphi) \varphi\rangle]$
by (subst formula-of-mset.simps) (auto simp: some-in-eq Let-def grouped-by-COr-FOr remove1-mset-empty-iff)
qed
lemma no-T-F-formula-of-msets:
assumes \langle finite $\varphi\rangle$ and $\langle\{\#\} \notin \varphi\rangle$ and $\langle\varphi \neq\{ \}\rangle$
shows 〈no-T-F (formula-of-msets (φ))〉
using assms apply (induction 〈card φ 〉 arbitrary: φ)
subgoal by (subst formula-of-msets.simps) (auto simp: no-T-F-def all-subformula-st-def)[]
subgoal
apply (subst formula-of-msets.simps)
apply (auto split: simp: Let-def formula-of-mset-is-cnf is-CNF-Fand
no-T-F-formula-of-mset-iff some-in-eq)
apply (metis (mono-tags, lifting) some-eq-ex)
done
done
lemma is-cnf-formula-of-msets:
assumes \langle finite $\varphi\rangle$ and $\langle\{\#\} \notin \varphi\rangle$
shows 〈is-cnf (formula-of-msets φ) 〉
using assms apply (induction 〈card φ 〉 arbitrary: φ)
subgoal by (subst formula-of-msets.simps) (auto simp: is-cnf-def is-conj-with-TF-def)[]
subgoal
apply (subst formula-of-msets.simps)
apply (auto split: simp: Let-def formula-of-mset-is-cnf is-CNF-Fand
no-T-F-formula-of-mset-iff some-in-eq intro: no-T-F-formula-of-msets)
apply (metis (mono-tags, lifting) some-eq-ex)
done
done
lemma mset－of－formula－formula－of－msets：
assumes 〈finite φ 〉
shows $\langle m s e t-o f-f o r m u l a(f o r m u l a-o f-m s e t s ~ \varphi)=\varphi\rangle$
using assms apply（induction 〈card φ 〉 arbitrary：φ ）
subgoal by（subst formula－of－msets．simps）（auto simp：is－cnf－def is－conj－with－TF－def）［］
subgoal
apply（subst formula－of－msets．simps）

```
    apply (auto split: simp: Let-def formula-of-mset-is-cnf is-CNF-Fand
        no-T-F-formula-of-mset-iff some-in-eq intro: no-T-F-formula-of-msets)
    done
done
```


lemma

```
assumes 〈consistent-interp \(A\rangle\) and 〈total-over-set \(A U N I V\rangle\) and \(\langle f i n i t e ~ \varphi\rangle\) and \(\langle\{\#\} \notin \varphi\rangle\)
    shows <eval (fun-of-set A) (formula-of-msets \varphi) \longleftrightarrow Partial-Herbrand-Interpretation.true-clss A \varphi>
    apply (subst cnf-eval-true-clss[OF is-cnf-formula-of-msets[OF assms(3-4)]])
    using assms(3) unfolding mset-of-formula-formula-of-msets[OF assms(3)]
    by (induction \varphi)
    (use eval-clss-iff[OF assms(1,2)] in <simp-all add:cnf-eval-true-clss formula-of-mset-is-cnf`)
end
theory Prop-Resolution
imports Entailment-Definition.Partial-Herbrand-Interpretation
    Weidenbach-Book-Base.WB-List-More
    Weidenbach-Book-Base.Wellfounded-More
```

begin

Chapter 2

Resolution-based techniques

This chapter contains the formalisation of resolution and superposition.

2.1 Resolution

2.1.1 Simplification Rules

```
inductive simplify :: 'v clause-set = 'v clause-set => bool for N N:: 'v clause set where
tautology-deletion:
    add-mset (Pos P) (add-mset (Neg P) A) \inN\Longrightarrow simplify N(N - {add-mset (Pos P) (add-mset
(Neg P) A)})|
condensation:
    add-mset L (add-mset L A) }\inN\Longrightarrow\mathrm{ simplify N (N - {add-mset L (add-mset L A)} }\cup{\mathrm{ add-mset L
A}) |
subsumption:
    A\inN\LongrightarrowA\subset#B\LongrightarrowB\inN\Longrightarrow simplify N(N-{B})
lemma simplify-preserve-models':
    fixes N N':: 'v clause-set
    assumes simplify N N'
    and total-over-m I N
    shows I\modelss N'\longrightarrowI\modelssN
    using assms
proof (induct rule: simplify.induct)
    case (tautology-deletion P A)
    then have I\models add-mset (Pos P) (add-mset (Neg P)A)
        by (fastforce dest: mk-disjoint-insert)
    then show ?case by (metis Un-Diff-cancel2 true-clss-singleton true-clss-union)
next
    case (condensation A P)
    then show ?case
        by (fastforce dest: mk-disjoint-insert)
next
    case (subsumption A B)
    have }A\not=B\mathrm{ using subsumption.hyps(2) by auto
    then have }I\modelssN-{B}\LongrightarrowI\modelsA\mathrm{ using }\langleA\inN`\mathrm{ by (simp add: true-clss-def)
    moreover have }I\modelsA\LongrightarrowI\modelsB\mathrm{ using }\A<#B\rangle\mathrm{ by auto
    ultimately show ?case by (metis insert-Diff-single true-clss-insert)
qed
lemma simplify-preserve-models:
```

```
    fixes N N':: 'v clause-set
    assumes simplify N N'
    and total-over-m I N
    shows}I\modelssN\longrightarrowI\modelss\mp@subsup{N}{}{\prime
    using assms apply (induct rule: simplify.induct)
    using true-clss-def by fastforce+
lemma simplify-preserve-models'":
    fixes N N' ::'v clause-set
    assumes simplify N N'
    and total-over-m I N'
    shows }I\modelssN\longrightarrowI\modelss\mp@subsup{N}{}{\prime
    using assms apply (induct rule: simplify.induct)
    using true-clss-def by fastforce+
lemma simplify-preserve-models-eq:
    fixes N N'::'v clause-set
    assumes simplify N N'
    and total-over-m I N
    shows }I\modelssN\longleftrightarrowI\modelss\mp@subsup{N}{}{\prime
    using simplify-preserve-models simplify-preserve-models' assms by blast
lemma simplify-preserves-finite:
    assumes simplify \psi \psi'
    shows finite }\psi\longleftrightarrow\mathrm{ finite }\mp@subsup{\psi}{}{\prime
    using assms by (induct rule: simplify.induct, auto simp add: remove-def)
lemma rtranclp-simplify-preserves-finite:
    assumes rtranclp simplify \psi \psi'
    shows finite }\psi\longleftrightarrow\mathrm{ finite }\mp@subsup{\psi}{}{\prime
    using assms by (induct rule: rtranclp-induct) (auto simp add: simplify-preserves-finite)
lemma simplify-atms-of-ms:
    assumes simplify \psi \psi'
    shows atms-of-ms \psi' \subseteqatms-of-ms \psi
    using assms unfolding atms-of-ms-def
proof (induct rule: simplify.induct)
    case (tautology-deletion A P)
    then show ?case by auto
next
    case (condensation P A)
    moreover have A+{#P#}+{#P#}\in\psi\Longrightarrow\existsx\in\psi.atm-of P\inatm-of' set-mset x
        by (metis Un-iff atms-of-def atms-of-plus atms-of-singleton insert-iff)
    ultimately show ?case by (auto simp add: atms-of-def)
next
    case (subsumption A P)
    then show ?case by auto
qed
lemma rtranclp-simplify-atms-of-ms:
    assumes rtranclp simplify \psi \psi'
    shows atms-of-ms \psi' \subseteqatms-of-ms \psi
    using assms apply (induct rule: rtranclp-induct)
    apply (fastforce intro: simplify-atms-of-ms)
    using simplify-atms-of-ms by blast
```

lemma factoring-imp-simplify:
assumes $\{\# L, L \#\}+C \in N$
shows $\exists N^{\prime}$. simplify $N N^{\prime}$
proof -
have add-mset L (add-mset $L C) \in N$ using assms by (simp add: add.commute union-lcomm)
from condensation $[$ OF this] show ?thesis by blast
qed

2.1.2 Unconstrained Resolution

type-synonym ' v uncon-state $=$ 'v clause-set
inductive uncon-res $::$ 'v uncon-state \Rightarrow 'v uncon-state \Rightarrow bool where
resolution:

```
{#Pos p#} + C E N\Longrightarrow {#Neg p#} + D\inN\Longrightarrow(add-mset (Pos p) C, add-mset (Neg P) D)\not\in
already-used
        uncon-res N(N\cup{C+D})|
factoring: {#L#}+{#L#}+C\inN\Longrightarrowuncon-res N(insert (add-mset L C)N)
lemma uncon-res-increasing:
assumes uncon-res S S' and \psi}\in
shows }\psi\in\mp@subsup{S}{}{\prime
using assms by (induct rule: uncon-res.induct) auto
lemma rtranclp-uncon-inference-increasing:
assumes rtranclp uncon-res S S' and \psi \inS
shows }\psi\in\mp@subsup{S}{}{\prime
using assms by (induct rule: rtranclp-induct) (auto simp add: uncon-res-increasing)
```


Subsumption

definition subsumes :: 'a literal multiset \Rightarrow 'a literal multiset \Rightarrow bool where
subsumes $\chi \chi^{\prime} \longleftrightarrow$
(\forall I. total-over-m $I\left\{\chi^{\prime}\right\} \longrightarrow$ total-over-m $I\{\chi\}$)
$\wedge\left(\forall I\right.$. total-over-m $\left.I\{\chi\} \longrightarrow I \vDash \chi \longrightarrow I \models \chi^{\prime}\right)$
lemma subsumes-refl[simp]:
subsumes $\chi \chi$
unfolding subsumes-def by auto
lemma subsumes-subsumption:
assumes subsumes $D \chi$
and $C \subset \# D$ and \neg tautology χ
shows subsumes $C \chi$ unfolding subsumes-def
using assms subsumption-total-over-m subsumption-chained unfolding subsumes-def by (blast intro!: subset-mset.less-imp-le)
lemma subsumes-tautology:
assumes subsumes (add-mset (Pos P) (add-mset (Neg P) C)) χ
shows tautology χ
using assms unfolding subsumes-def by (auto simp add: tautology-def)

2.1.3 Inference Rule

type-synonym 'v state $=$ 'v clause-set $\times\left({ }^{\prime} v\right.$ clause \times 'v clause $)$ set
inductive inference-clause $::$ ' v state \Rightarrow 'v clause $\times\left({ }^{\prime} v\right.$ clause \times 'v clause $)$ set \Rightarrow bool
(infix $\Rightarrow_{\text {Res }} 100$) where
resolution:
$\{\#$ Pos $p \#\}+C \in N \Longrightarrow\{\# N e g p \#\}+D \in N \Longrightarrow(\{\#$ Pos $p \#\}+C,\{\# N e g p \#\}+D) \notin$ already-used
\Longrightarrow inference-clause $(N$, already-used $)(C+D$, already-used $\cup\{(\{\#$ Pos $p \#\}+C,\{\#$ Neg $p \#\}+$ D) \}) |
factoring: $\{\# L, L \#\}+C \in N \Longrightarrow$ inference-clause $(N$, already-used) $(C+\{\# L \#\}$, already-used)
inductive inference $::$ ' v state \Rightarrow 'v state \Rightarrow bool where
inference-step: inference-clause S (clause, already-used)
\Longrightarrow inference $S($ fst $S \cup\{$ clause $\}$, already-used $)$
abbreviation already-used-inv
:: 'a literal multiset set \times ('a literal multiset \times 'a literal multiset) set \Rightarrow bool where already-used-inv state \equiv

```
(}\forall(A,B)\in\mathrm{ snd state. }\exists\textrm{p}\mathrm{ . Pos }p\in#A\wedgeNeg p\in#B
((\exists\chi\infst state. subsumes \chi ((A-{#Pos p#})+(B - {#Neg p#})))
    \vee ~ t a u t o l o g y ~ ( ( A ~ - ~ \{ \# P o s ~ p \# \} ) ~ + ~ ( B ~ - ~ \{ \# N e g ~ p \# \} ) ) ) )
```

lemma inference-clause-preserves-already-used-inv:
assumes inference-clause $S S^{\prime}$
and already-used-inv S
shows already-used-inv $\left(\right.$ fst $S \cup\left\{\right.$ fst $\left.S^{\prime}\right\}$, snd $\left.S^{\prime}\right)$
using assms apply (induct rule: inference-clause.induct)
by fastforce+
lemma inference-preserves-already-used-inv:
assumes inference $S S^{\prime}$
and already-used-inv S
shows already-used-inv S^{\prime}
using assms
proof (induct rule: inference.induct)
case (inference-step S clause already-used)
then show ?case using inference-clause-preserves-already-used-inv[of S (clause, already-used)] by simp qed
lemma rtranclp-inference-preserves-already-used-inv:
assumes rtranclp inference $S S^{\prime}$
and already-used-inv S
shows already-used-inv S^{\prime}
using assms apply (induct rule: rtranclp-induct, simp)
using inference-preserves-already-used-inv unfolding tautology-def by fast
lemma subsumes-condensation:
assumes subsumes $(C+\{\# L \#\}+\{\# L \#\}) D$
shows subsumes $(C+\{\# L \#\}) D$
using assms unfolding subsumes-def by simp
lemma simplify-preserves-already-used-inv:
assumes simplify $N N^{\prime}$
and already-used-inv (N, already-used)
shows already-used-inv (N^{\prime}, already-used)
using assms
proof (induct rule: simplify.induct)
case (condensation C L)
then show? case
using subsumes-condensation by simp fast
next
\{
fix $a::$ ' a and $A::$ ' a set and P
have $(\exists x \in$ Set.remove a $A . P x) \longleftrightarrow(\exists x \in A . x \neq a \wedge P x)$ by auto
\} note ex-member-remove $=$ this
\{
fix a a0 $:: ~ ' v$ clause and $A::$ ' v clause-set and y
assume $a \in A$ and $a 0 \subset \# a$
then have $(\exists x \in A$. subsumes $x y) \longleftrightarrow($ subsumes a $y \vee(\exists x \in A . x \neq a \wedge$ subsumes $x y))$ by auto
$\}$ note $t t 2=t h i s$
case (subsumption $A B$) note $A=$ this(1) and $A B=$ this(2) and $B=$ this(3) and inv $=$ this(4)
show ? case
proof (standard, standard)
fix $x a b$
assume $x: x \in \operatorname{snd}(N-\{B\}$, already-used) and [simp]: $x=(a, b)$
obtain p where p : Pos $p \in \# a \wedge \operatorname{Neg} p \in \# b$ and
$q:(\exists \chi \in N$. subsumes $\chi(a-\{\#$ Pos $p \#\}+(b-\{\#$ Neg $p \#\})))$
\vee tautology $(a-\{\#$ Pos $p \#\}+(b-\{\#$ Neg $p \#\}))$
using inv x by fastforce
consider (taut) tautology ($a-\{\#$ Pos $p \#\}+(b-\{\#$ Neg $p \#\})) \mid$
$(\chi) \chi$ where $\chi \in N$ subsumes $\chi(a-\{\# \operatorname{Pos} p \#\}+(b-\{\# N e g ~ p \#\}))$ \neg tautology $(a-\{\#$ Pos $p \#\}+(b-\{\#$ Neg $p \#\}))$
using q by auto
then show
\exists p. Pos $p \in \# a \wedge \operatorname{Neg} p \in \# b$
$\wedge((\exists \chi \in f$ st $(N-\{B\}$, already-used $)$. subsumes $\chi(a-\{\#$ Pos $p \#\}+(b-\{\# N e g ~ p \#\})))$
\vee tautology $(a-\{\#$ Pos $p \#\}+(b-\{\#$ Neg $p \#\})))$
proof cases
case taut
then show ?thesis using p by auto
next
case χ note $H=$ this
show ?thesis using $p A A B B$ subsumes-subsumption $[O F-A B H(3)] H(1,2)$ by fastforce qed
qed
next
case (tautology-deletion P C)
then show ?case
proof clarify
fix $a b$
assume $a d d-m s e t(\operatorname{Pos} P)(a d d-m s e t(N e g P) C) \in N$
assume already-used-inv (N, already-used)
and $(a, b) \in \operatorname{snd}(N-\{a d d-m s e t(P o s P)(a d d-m s e t(N e g P) C)\}$, already-used)
then obtain p where
Pos $p \in \# a \wedge \operatorname{Neg} p \in \# b \wedge$
$((\exists \chi \in f s t(N \cup\{a d d-m s e t($ Pos $P)($ add-mset $(N e g P) C)\}$, already-used $)$.
subsumes $\chi(a-\{\#$ Pos $p \#\}+(b-\{\#$ Neg $p \#\})))$
\vee tautology $(a-\{\#$ Pos $p \#\}+(b-\{\#$ Neg $p \#\})))$
by fastforce
moreover have tautology (add-mset (Pos P) (add-mset (Neg P) C)) by auto

```
    ultimately show
    \exists}\mathrm{ . Pos p G#a^Neg p G# b^
    ((\exists\chi\infst (N - {add-mset (Pos P) (add-mset (Neg P) C)}, already-used).
        subsumes \chi (remove1-mset (Pos p) a + remove1-mset (Neg p) b)) \vee
        tautology (remove1-mset (Pos p) a + remove1-mset (Neg p) b))
    by (metis (no-types) Diff-iff Un-insert-right empty-iff fst-conv insertE subsumes-tautology
        sup-bot.right-neutral)
    qed
qed
lemma
    factoring-satisfiable: }I\models\mathrm{ add-mset L (add-mset L C) }\longleftrightarrowI\modelsadd-mset L C and
    resolution-satisfiable:
        consistent-interp I\LongrightarrowI\modelsadd-mset (Pos p)C\LongrightarrowI\modelsadd-mset (Neg p) D\LongrightarrowI\modelsC+D and
        factoring-same-vars:atms-of (add-mset L (add-mset L C)) =atms-of (add-mset L C)
    unfolding true-cls-def consistent-interp-def by (fastforce split: if-split-asm)+
lemma inference-increasing:
    assumes inference S S' and \psi\infstS
    shows }\psi\in\mp@subsup{f}{st}{}\mp@subsup{S}{}{\prime
    using assms by (induct rule: inference.induct, auto)
lemma rtranclp-inference-increasing:
    assumes rtranclp inference S S' and \psi \infst S
    shows }\psi\infst S
    using assms by (induct rule: rtranclp-induct, auto simp add: inference-increasing)
lemma inference-clause-already-used-increasing:
    assumes inference-clause S S'
    shows snd S\subseteq snd S'
    using assms by (induct rule:inference-clause.induct, auto)
lemma inference-already-used-increasing:
    assumes inference S S'
    shows snd S\subseteq snd S'
    using assms apply (induct rule:inference.induct)
    using inference-clause-already-used-increasing by fastforce
lemma inference-clause-preserve-models:
    fixes N N':: 'v clause-set
    assumes inference-clause T T'
    and total-over-m I (fst T)
    and consistent: consistent-interp I
    shows I\modelss fst T\longleftrightarrowI\modelss fst T\cup{fst T'}
    using assms apply (induct rule: inference-clause.induct)
    unfolding consistent-interp-def true-clss-def by auto force+
lemma inference-preserve-models:
    fixes N N'::'v clause-set
    assumes inference T T'
    and total-over-m I (fst T)
    and consistent: consistent-interp I
    shows}I\modelss\mathrm{ fst }T\longleftrightarrowI\modelss\mathrm{ fst T'
```

```
    using assms apply (induct rule: inference.induct)
    using inference-clause-preserve-models by fastforce
lemma inference-clause-preserves-atms-of-ms:
    assumes inference-clause S S'
    shows atms-of-ms (fst (fst S\cup{fst S'}, snd S'))\subseteqatms-of-ms (fst S)
    using assms by (induct rule: inference-clause.induct) (auto dest!: atms-of-atms-of-ms-mono)
lemma inference-preserves-atms-of-ms:
    fixes N N'::'v clause-set
    assumes inference T T'
    shows atms-of-ms (fst T')\subseteqatms-of-ms (fst T)
    using assms apply (induct rule: inference.induct)
    using inference-clause-preserves-atms-of-ms by fastforce
lemma inference-preserves-total:
    fixes N N'::'v clause-set
    assumes inference ( }N\mathrm{ , already-used) ( }\mp@subsup{N}{}{\prime}\mathrm{ , already-used')
    shows total-over-m I N\Longrightarrow total-over-m I N'
        using assms inference-preserves-atms-of-ms unfolding total-over-m-def total-over-set-def
        by fastforce
lemma rtranclp-inference-preserves-total:
    assumes rtranclp inference T T'
    shows total-over-m I (fst T) \Longrightarrow total-over-m I (fst T')
    using assms by (induct rule: rtranclp-induct, auto simp add: inference-preserves-total)
lemma rtranclp-inference-preserve-models:
    assumes rtranclp inference N N'
    and total-over-m I (fst N)
    and consistent: consistent-interp I
    shows }I\modelss\mathrm{ fst N}\longleftrightarrowI\modelss\mathrm{ fst N'
    using assms apply (induct rule: rtranclp-induct)
    apply (simp add: inference-preserve-models)
    using inference-preserve-models rtranclp-inference-preserves-total by blast
lemma inference-preserves-finite:
    assumes inference \psi \psi' and finite (fst \psi)
    shows finite (fst \psi')
    using assms by (induct rule: inference.induct, auto simp add: simplify-preserves-finite)
lemma inference-clause-preserves-finite-snd:
    assumes inference-clause \psi \psi' and finite (snd \psi)
    shows finite (snd \psi')
    using assms by (induct rule: inference-clause.induct, auto)
lemma inference-preserves-finite-snd:
    assumes inference \psi \psi' and finite (snd \psi)
    shows finite (snd \psi')
    using assms inference-clause-preserves-finite-snd by (induct rule: inference.induct, fastforce)
lemma rtranclp-inference-preserves-finite:
```

```
    assumes rtranclp inference \psi \psi' and finite (fst \psi)
    shows finite (fst \psi')
    using assms by (induct rule: rtranclp-induct)
    (auto simp add: simplify-preserves-finite inference-preserves-finite)
lemma consistent-interp-insert:
    assumes consistent-interp I
    and atm-of P # atm-of 'I
    shows consistent-interp (insert P I)
proof -
    have P: insert P I=I\cup{P} by auto
    show ?thesis unfolding P
    apply (rule consistent-interp-disjoint)
    using assms by (auto simp: image-iff)
qed
lemma simplify-clause-preserves-sat:
    assumes simp: simplify \psi \psi'
    and satisfiable }\mp@subsup{\psi}{}{\prime
    shows satisfiable \psi
    using assms
proof induction
    case (tautology-deletion P A) note AP = this(1) and sat = this(2)
    let ? A' = add-mset (Pos P) (add-mset (Neg P) A)
    let ? }\mp@subsup{\psi}{}{\prime}=\psi-{?\mp@subsup{A}{}{\prime}
    obtain I where
        I:I\modelss? ? }\mp@subsup{\psi}{}{\prime}\mathrm{ and
        cons: consistent-interp I and
        tot: total-over-m I ?\psi'
        using sat unfolding satisfiable-def by auto
    { assume Pos P}\inI\vee Neg P\in
        then have I\models?'A' by auto
        then have I\modelss\psi using I by (metis insert-Diff tautology-deletion.hyps true-clss-insert)
        then have ?case using cons tot by auto
    }
    moreover {
        assume Pos: Pos P}\not\inI\mathrm{ and Neg: Neg P #I
        then have consistent-interp ( I\cup{Pos P}) using cons by simp
        moreover have I'A:I\cup{Pos P} \models? 'A' by auto
        have {Pos P}\cupI\modelss \psi-{?A'}
            using \langleI\modelss \psi-{?A'}> true-clss-union-increase' by blast
        then have I\cup{Pos P}\modelss\psi
            by (metis (no-types) Un-empty-right Un-insert-left Un-insert-right I'A insert-Diff
                sup-bot.left-neutral tautology-deletion.hyps true-clss-insert)
    ultimately have ?case using satisfiable-carac' by blast
    }
    ultimately show ?case by blast
next
    case (condensation L A) note AL=this(1) and sat = this(2)
    let ? 'A' = add-mset L A
    let ?A = add-mset L (add-mset L A)
    have f3: simplify \psi (\psi-{?A}\cup{?A'})
        using AL simplify.condensation by blast
    obtain LL :: 'a literal set where
    f4:LL\modelss \psi - {?A} \cup{?A'}
        \wedge ~ c o n s i s t e n t - i n t e r p ~ L L ~
```

```
        ^ total-over-m LL (\psi-{?A}\cup{?A'})
    using sat by (meson satisfiable-def)
    have f5: insert (A+{#L#} + {#L#}) (\psi-{A+{#L#} +{#L#}})=\psi
    using AL by fastforce
    have atms-of (?A) = atms-of (?A)
    by simp
    then show ?case
    using f5 f4 f3 by (metis Un-insert-right add-mset-add-single atms-of-ms-insert satisfiable-carac
        simplify-preserve-models' sup-bot.right-neutral total-over-m-def)
next
    case (subsumption A B) note A=this(1) and AB=this(2) and B=this(3) and sat = this(4)
    let ? }\mp@subsup{\psi}{}{\prime}=\psi-{B
    obtain I where I: I\modelss? ? '' and cons: consistent-interp I and tot: total-over-m I ? \psi'
        using sat unfolding satisfiable-def by auto
    have}I\modelsA\mathrm{ using A I by (metis AB Diff-iff subset-mset.less-irrefl singletonD true-clss-def)
    then have I}\modelsB\mathrm{ using AB subset-mset.less-imp-le true-cls-mono-leD by blast
    then have I\modelss\psi using I by (metis insert-Diff-single true-clss-insert)
    then show ?case using cons satisfiable-carac' by blast
qed
lemma simplify-preserves-unsat:
    assumes inference }\psi\mp@subsup{\psi}{}{\prime
    shows satisfiable (fst \psi')}\longrightarrow\mathrm{ satisfiable (fst }\psi
    using assms apply (induct rule: inference.induct)
    using satisfiable-decreasing by (metis fst-conv)+
lemma inference-preserves-unsat:
    assumes inference** S S'
    shows satisfiable (fst S')}\longrightarrow satisfiable (fst S
    using assms apply (induct rule: rtranclp-induct)
    apply simp-all
    using simplify-preserves-unsat by blast
datatype 'v sem-tree = Node 'v 'v sem-tree 'v sem-tree| Leaf
fun sem-tree-size :: 'v sem-tree => nat where
sem-tree-size Leaf = 0 |
sem-tree-size (Node - ag ad) = 1 + sem-tree-size ag + sem-tree-size ad
lemma sem-tree-size[case-names bigger];
    (\bigwedgexs:: 'v sem-tree.(\ys:: 'v sem-tree. sem-tree-size ys < sem-tree-size xs \LongrightarrowP ys)\LongrightarrowP xs)
    P xs
    by (fact Nat.measure-induct-rule)
fun partial-interps :: 'v sem-tree }=>\mp@subsup{}{}{\prime}v vartial-interp # 'v clause-set => bool where
partial-interps Leaf I \psi = (\exists\chi.\negI\models\chi^\chi\in\psi^ total-over-m I {\chi})|
partial-interps (Node v ag ad) I \psi\longleftrightarrow
    (partial-interps ag (I\cup{Pos v})\psi^ partial-interps ad (I\cup{Neg v})\psi)
lemma simplify-preserve-partial-leaf:
    simplify N N' \Longrightarrow partial-interps Leaf I N \Longrightarrow partial-interps Leaf I N'
    apply (induct rule: simplify.induct)
        using union-lcomm apply auto[1]
        apply (simp)
```

apply (metis atms-of-remdups-mset remdups-mset-singleton-sum true-cls-add-mset union-single-eq-member) apply auto
by (metis atms-of-ms-emtpy-set subsumption-total-over-m total-over-m-def total-over-m-insert total-over-set-empty true-cls-mono-leD)
lemma simplify-preserve-partial-tree:
assumes simplify $N N^{\prime}$
and partial-interps t I N
shows partial-interps t I N^{\prime}
using assms apply (induct t arbitrary: I, simp)
using simplify-preserve-partial-leaf by metis
lemma inference-preserve-partial-tree:
assumes inference $S S^{\prime}$
and partial-interps t I (fst S)
shows partial-interps t (fst S^{\prime})
using assms apply (induct t arbitrary: I, simp-all)
by (meson inference-increasing)
lemma rtranclp-inference-preserve-partial-tree:
assumes rtranclp inference $N N^{\prime}$
and partial-interps $t I(f s t N)$
shows partial-interps t I (fst $\left.N^{\prime}\right)$
using assms apply (induct rule: rtranclp-induct, auto)
using inference-preserve-partial-tree by force

```
function build-sem-tree :: 'v :: linorder set \(\Rightarrow{ }^{\prime} v\) clause-set \(\Rightarrow{ }^{\prime} v\) sem-tree where
build-sem-tree atms \(\psi=\)
    (if atms \(=\{ \} \vee \neg\) finite atms
    then Leaf
    else Node (Min atms) (build-sem-tree (Set.remove (Min atms) atms) \(\psi\) )
        (build-sem-tree (Set.remove (Min atms) atms) \(\psi\) ))
by auto
termination
    apply (relation measure ( \(\lambda(A,-)\). card \(A)\), simp-all)
    apply (metis Min-in card-Diff1-less remove-def)+
done
declare build-sem-tree.induct[case-names tree]
lemma unsatisfiable-empty[simp]:
    \(\neg\) unsatisfiable \(\}\)
    unfolding satisfiable-def apply auto
    using consistent-interp-def unfolding total-over-m-def total-over-set-def atms-of-ms-def by blast
lemma partial-interps-build-sem-tree-atms-general:
    fixes \(\psi\) :: ' \(v::\) linorder clause-set and \(p::\) ' \(v\) literal list
    assumes unsat: unsatisfiable \(\psi\) and finite \(\psi\) and consistent-interp I
    and finite atms
    and atms-of-ms \(\psi=\) atms \(\cup\) atms-of-s \(I\) and atms \(\cap a t m s\)-of-s \(I=\{ \}\)
    shows partial-interps (build-sem-tree atms \(\psi\) ) I \(\psi\)
    using assms
proof (induct arbitrary: I rule: build-sem-tree.induct)
    case \((1\) atms \(\psi\) Ia) note \(I H 1=\) this(1) and \(I H 2=\) this(2) and unsat \(=\) this(3) and finite \(=\) this(4)
```

```
    and cons=this(5) and f=this(6) and un=this(7) and disj = this(8)
{
    assume atms: atms = {}
    then have atmsIa: atms-of-ms \psi = atms-of-s Ia using un by auto
    then have total-over-m Ia \psi unfolding total-over-m-def atmsIa by auto
    then have }\chi:\exists\chi\in\psi.\negIa\models
        using unsat cons unfolding true-clss-def satisfiable-def by auto
    then have build-sem-tree atms \psi = Leaf using atms by auto
    moreover
        have tot: }\Lambda\chi.\chi\in\psi\Longrightarrow\mathrm{ total-over-m Ia { }{
        unfolding total-over-m-def total-over-set-def atms-of-ms-def atms-of-s-def
        using atmsIa atms-of-ms-def by fastforce
    have partial-interps Leaf Ia \psi
        using \chi tot by (auto simp add: total-over-m-def total-over-set-def atms-of-ms-def)
    ultimately have ?case by metis
}
moreover {
    assume atms: atms }\not={
    have build-sem-tree atms \psi = Node (Min atms) (build-sem-tree (Set.remove (Min atms) atms) \psi)
        (build-sem-tree (Set.remove (Min atms) atms) \psi)
        using build-sem-tree.simps[of atms \psi] f atms by metis
    have consistent-interp (Ia \cup {Pos (Min atms)}) unfolding consistent-interp-def
        by (metis Int-iff Min-in Un-iff atm-of-uminus atms cons consistent-interp-def disj empty-iff
            f in-atms-of-s-decomp insert-iff literal.distinct(1) literal.exhaust-sel literal.sel(2)
            uminus-Neg uminus-Pos)
moreover have atms-of-ms \psi = Set.remove (Min atms) atms \cup atms-of-s (Ia \cup{Pos (Min atms)})
        using Min-in atms f un by fastforce
    moreover have disj':Set.remove (Min atms) atms \capatms-of-s (Ia \cup{Pos (Min atms)})={}
        by simp (metis disj disjoint-iff-not-equal member-remove)
    moreover have finite (Set.remove (Min atms) atms) using f by (simp add: remove-def)
    ultimately have subtree1: partial-interps (build-sem-tree (Set.remove (Min atms) atms) \psi)
        (Ia\cup{Pos (Min atms)})\psi
        using IH1[of Ia \cup {Pos(Min (atms))}] atms f unsat finite by metis
    have consistent-interp (Ia \cup{Neg (Min atms)}) unfolding consistent-interp-def
        by (metis Int-iff Min-in Un-iff atm-of-uminus atms cons consistent-interp-def disj empty-iff
        f in-atms-of-s-decomp insert-iff literal.distinct(1) literal.exhaust-sel literal.sel(2)
        uminus-Neg)
    moreover have atms-of-ms \psi = Set.remove (Min atms) atms \cup atms-of-s (Ia \cup {Neg (Min atms)})
        using <atms-of-ms \psi = Set.remove (Min atms) atms \cupatms-of-s (Ia \cup{Pos (Min atms)}) by
blast
    moreover have disj': Set.remove (Min atms) atms \capatms-of-s (Ia\cup{Neg (Min atms)})={}
        using disj by auto
    moreover have finite (Set.remove (Min atms) atms) using f by (simp add: remove-def)
    ultimately have subtree2: partial-interps (build-sem-tree (Set.remove (Min atms) atms) \psi)
        (Ia\cup{Neg(Min atms)})}
    using IH2[of Ia\cup{Neg(Min (atms))}] atms f unsat finite by metis
    then have ?case
    using IH1 subtree1 subtree2 f local.finite unsat atms by simp
}
ultimately show ?case by metis
qed
```

```
lemma partial-interps-build-sem-tree-atms:
    fixes \psi :: 'v :: linorder clause-set and p :: 'v literal list
    assumes unsat: unsatisfiable }\psi\mathrm{ and finite: finite }
    shows partial-interps (build-sem-tree (atms-of-ms \psi) \psi) {}\psi
proof -
    have consistent-interp {} unfolding consistent-interp-def by auto
    moreover have atms-of-ms \psi = atms-of-ms \psi\cup atms-of-s {} unfolding atms-of-s-def by auto
    moreover have atms-of-ms \psi\capatms-of-s {} = {} unfolding atms-of-s-def by auto
    moreover have finite (atms-of-ms \psi) unfolding atms-of-ms-def using finite by simp
    ultimately show partial-interps (build-sem-tree (atms-of-ms \psi) \psi) {} \psi
    using partial-interps-build-sem-tree-atms-general[of \psi {} atms-of-ms \psi] assms by metis
qed
lemma can-decrease-count:
    fixes }\mp@subsup{\psi}{}{\prime\prime}:: 'v clause-set \times ('v clause > 'v clause > 'v) se
    assumes count \chi L=n
    and}L\in#\chi\mathrm{ and }\chi\infst
    shows \exists\mp@subsup{\psi}{}{\prime}\mp@subsup{\chi}{}{\prime}.\mathrm{ .inference** }\psi\mp@subsup{\psi}{}{\prime}\wedge\mp@subsup{\chi}{}{\prime}\infst \mp@subsup{\psi}{}{\prime}\wedge(\forallL.L\in#\chi\longleftrightarrowL\in# \chi)
                ^count }\mp@subsup{\chi}{}{\prime}L=
                    \wedge(\forall\varphi.\varphi\infst \psi\longrightarrow\varphi\in fst \psi')
                \wedge(I\models\chi\longleftrightarrowI\models \chi}
                        \wedge(\forallI'. total-over-m I' {\chi} \longrightarrow total-over-m I' {\mp@subsup{\chi}{}{\prime}})
    using assms
proof (induct n arbitrary: \chi \psi)
    case 0
    then show ?case by (simp add: not-in-iff[symmetric])
next
    case (Suc n \chi)
    note IH = this(1) and count = this(2) and L = this(3) and \chi = this(4)
    {
        assume n=0
        then have inference** }\psi
        and}\chi\infst 
        and}\forallL.(L\in#\chi)\longleftrightarrow(L\in# \chi
        and count \chi L = (1::nat)
        and }\forall\varphi.\varphi\infst\psi\longrightarrow\varphi\infst
            by (auto simp add: count L \chi)
        then have ?case by metis
    }
    moreover {
        assume n>0
        then have }\existsC.\chi=C+{#L,L#
            by (metis Suc-inject union-mset-add-mset-right add-mset-add-single count-add-mset count-inI
                less-not-refl3 local.count mset-add zero-less-Suc)
    then obtain C where C: \chi = C + {#L,L#} by metis
    let ? }\mp@subsup{\chi}{}{\prime}=C+{#L#
    let ? }\mp@subsup{\psi}{}{\prime}=(\mathrm{ fst }\psi\cup{?\mp@subsup{\chi}{}{\prime}}\mathrm{ , snd }\psi
    have }\varphi:\forall\varphi\infst \psi.(\varphi\infst \psi\vee\varphi\not=? \ ) \longleftrightarrow \longleftrightarrow\varphi\infst? '\psi' unfolding C by aut
    have inf: inference \psi ? \psi'
            using C factoring \chi prod.collapse union-commute inference-step
            by (metis add-mset-add-single)
        moreover have count': count ? }\mp@subsup{\chi}{}{\prime}L=n\mathrm{ using C count by auto
        moreover have L\mp@subsup{\chi}{}{\prime}:L\in# ? \chi' by auto
        moreover have }\mp@subsup{\chi}{}{\prime}\mp@subsup{\psi}{}{\prime}:? ? \chi'\infst ? \psi '' by aut
```

```
    ultimately obtain }\mp@subsup{\psi}{}{\prime\prime}\mathrm{ and }\mp@subsup{\chi}{}{\prime\prime
    where
        inference** ? }\mp@subsup{\psi}{}{\prime}\mp@subsup{\psi}{}{\prime\prime}\mathrm{ and
        \alpha: }\mp@subsup{\chi}{}{\prime\prime}\infst\mp@subsup{\psi}{}{\prime\prime}\mathrm{ and
    \foralla. (La\in#? ? )})\longleftrightarrow(La\in# \mp@subsup{\chi}{}{\prime\prime})\mathrm{ and
    \beta: count \chi" L = (1::nat) and
    \varphi}:\forall\varphi.\varphi\infst?\mp@subsup{\psi}{}{\prime}\longrightarrow\varphi\infst \mp@subsup{\psi}{}{\prime\prime}\mathrm{ and
    I\chi:I\models? 埰\longleftrightarrowI\models 'l and
    tot:}\forall\mp@subsup{I}{}{\prime}.\mathrm{ total-over-m I' {?`}\mp@subsup{\chi}{}{\prime}}\longrightarrow\mathrm{ total-over-m I' {}\mp@subsup{\chi}{}{\prime\prime}
    using IH[of ? \chi ' ? ' \psi'] count' L }\mp@subsup{\chi}{}{\prime}\mp@subsup{\chi}{}{\prime}\mp@subsup{\psi}{}{\prime}\mathrm{ by blast
    then have inference** }\psi\mp@subsup{\psi}{}{\prime\prime
    and }\forallLa.(La\in# \chi)\longleftrightarrow(La\in# \chi')
    using inf unfolding C by auto
    moreover have }\forall\varphi.\varphi\infst\psi\longrightarrow\varphi\infst \psi'" using \varphi \varphi' by meti
    moreover have }I\models\chi\longleftrightarrowI\models\mp@subsup{\chi}{}{\prime\prime}\mathrm{ using I 
    moreover have }\forall\mp@subsup{I}{}{\prime}.\mathrm{ total-over-m }\mp@subsup{I}{}{\prime}{\chi}\longrightarrow\mathrm{ total-over-m I' {}\mp@subsup{|}{}{\prime\prime}
    using tot unfolding C total-over-m-def by auto
    ultimately have ?case using }\varphi\mp@subsup{\varphi}{}{\prime}\alpha\beta\mathrm{ by metis
}
ultimately show ?case by auto
qed
lemma can-decrease-tree-size:
    fixes \psi :: 'v state and tree :: 'v sem-tree
    assumes finite (fst \psi) and already-used-inv \psi
    and partial-interps tree I (fst \psi)
    shows \exists(tree':: 'v sem-tree) \psi'. inference** \psi \psi'^^ partial-interps tree' I (fst \psi')
            \wedge ( \text { sem-tree-size tree } { } ^ { \prime } < \text { sem-tree-size tree } \vee ~ s e m - t r e e - s i z e ~ t r e e ~ = 0 )
    using assms
proof (induct arbitrary: I rule: sem-tree-size)
    case (bigger xs I) note IH = this(1) and finite =this(2) and a-u-i=this(3) and part = this(4)
{
    assume sem-tree-size xs=0
    then have ?case using part by blast
    }
    moreover {
    assume sn0: sem-tree-size xs > 0
    obtain ag ad v where xs: xs = Node v ag ad using sn0 by (cases xs, auto)
    {
        assume sem-tree-size ag=0 and sem-tree-size ad = 0
        then have ag:ag= Leaf and ad: ad = Leaf by (cases ag, auto) (cases ad, auto)
        then obtain \chi \chi}\mp@subsup{}{}{\prime}\mathrm{ where
            \chi : \neg I \cup \{ \text { Pos v\} } \models \chi \text { and}
            tot\chi: total-over-m (I\cup{Pos v}){\chi} and
            \chi\psi:\chi\infst \psi and
            \chi ^ { \prime } : \neg I \cup \{ N e g v \} \models \chi ^ { \prime } \text { and}
            tot\mp@subsup{\chi}{}{\prime}: total-over-m}(I\cup{Negv}){\mp@subsup{\chi}{}{\prime}}\mathrm{ and
            \chi ^ { \prime } \psi : \chi ^ { \prime } \in f s t \psi
            using part unfolding xs by auto
        have Posv: Pos v ## \chi using \chi unfolding true-cls-def true-lit-def by auto
        have Negv: Neg v\not## \chi
        {
```

```
assume Neg\chi: Neg v\not##\chi
    have}\negI\models\chi\mathrm{ using }\chi\mathrm{ Posv unfolding true-cls-def true-lit-def by auto
    moreover have total-over-m I {\chi}
    using Posv Neg\chi atm-imp-pos-or-neg-lit tot\chi unfolding total-over-m-def total-over-set-def
    by fastforce
    ultimately have partial-interps Leaf I (fst \psi)
    and sem-tree-size Leaf < sem-tree-size xs
    and inference** \psi \psi
    unfolding xs by (auto simp add: \chi\psi)
}
moreover {
    assume Pos\chi: Pos v\not## \mp@subsup{\chi}{}{\prime}
    then have I\chi:\negI\models 自 using \mp@subsup{\chi}{}{\prime}\mathrm{ Posv unfolding true-cls-def true-lit-def by auto}
    moreover have total-over-m I {\mp@subsup{\chi}{}{\prime}}
        using Negv Pos\chi atm-imp-pos-or-neg-lit tot \chi'
        unfolding total-over-m-def total-over-set-def by fastforce
    ultimately have partial-interps Leaf I (fst \psi) and
        sem-tree-size Leaf < sem-tree-size xs and
        inference** \psi \psi
        using }\mp@subsup{\chi}{}{\prime}\psiI\chi\mathrm{ unfolding xs by auto
}
moreover {
    assume neg: Neg v\in# \chi and pos: Pos v\in# \chi
    then obtain }\mp@subsup{\psi}{}{\prime}\mp@subsup{\chi}{2}{2}\mathrm{ where inf: rtranclp inference }\psi\mp@subsup{\psi}{}{\prime}\mathrm{ and }\chi\mathrm{ 2incl: }\chi2\infst \mp@subsup{\psi}{}{\prime
        and \chi\chi2-incl: }\forallL.L\in#\chi\longleftrightarrowL\in# \chi2,
        and count\chi2: count \chi2 (Neg v)=1
        and \varphi:}\forall\varphi::'v literal multiset. \varphi\infst \psi\longrightarrow\varphi\infst \psi
        and}I\chi:I\models\chi\longleftrightarrowI\models\chi
        and tot-imp\chi: \forallI'. total-over-m I' {\chi} \longrightarrow total-over-m I' {\chi2}
        using can-decrease-count[of \chi Neg v count \chi (Neg v) \psiI] \chi\psi \chi'\psi by auto
    have }\mp@subsup{\chi}{}{\prime}\infst\mp@subsup{\psi}{}{\prime}\mathrm{ by (simp add: }\mp@subsup{\chi}{}{\prime}\psi\varphi
    with pos
    obtain \psi '/ \chi2 ' where
    inf': inference** *' \psi'
    and \chi2'-incl: }\chi\mp@subsup{2}{}{\prime}\in\mathrm{ fst }\mp@subsup{\psi}{}{\prime\prime
    and \chi'\chi2-incl: }\forallL::'v literal. (L\in# \chi')=(L\in# \chi2')
    and count\chi2': count \chi2'(Pos v)=(1::nat)
    and }\mp@subsup{\varphi}{}{\prime}:\forall\varphi::'v literal multiset. \varphi f fst \psi' \longrightarrow ب 揗t \psi''
    and I\mp@subsup{\chi}{}{\prime}:I\models \chi
    and tot-imp\chi': \forallI'. total-over-m I' {\chi'} \longrightarrow total-over-m I' {\chi2'}
    using can-decrease-count[of \mp@subsup{\chi}{}{\prime}Pos v count \mp@subsup{\chi}{}{\prime}(Posv)}\mp@subsup{\psi}{}{\prime}I] by aut
    define C where C:C=\chi2 - {#Neg v#}
    then have \chi2: \chi2 = C +{#Neg v#} and negC:Neg v\not\in#C and posC: Pos v\not\in#C
        using \chi\chi2-incl neg apply auto[]
        using C \chi\chi2-incl neg count\chi2 count-eq-zero-iff apply fastforce
    using C Posv \chi\chi2-incl in-diffD by fastforce
obtain C' where
    \chi2': \chi2' = C' + {#Pos v#} and
    pos\mp@subsup{C}{}{\prime}: Pos v\not\in# C' and
    neg\mp@subsup{C}{}{\prime}:Neg v\not\in# C'
    proof -
        assume a1: \bigwedgeC'. \llbracket\chi2' = C' + {#Pos v#}; Pos v\not\in# C';Neg v\not\in# C\rrbracket\Longrightarrow thesis
```

```
have f2: \(\bigwedge n\). \((n:: n a t)-n=0\)
    by \(\operatorname{simp}\)
have Neg \(v \notin \# \chi 2^{\prime}-\{\# \operatorname{Pos} v \#\}\)
    using Negv \(\chi^{\prime} \chi 2\)-incl by (auto simp: not-in-iff)
have count \(\{\#\) Pos \(v \#\}(\) Pos \(v)=1\)
by \(\operatorname{simp}\)
then show ?thesis
    by (metis \(\chi^{\prime} \chi 2\)-incl 〈Neg \(\left.v \notin \# \chi 2^{\prime}-\{\# \operatorname{Pos} v \#\}\right\rangle\) a1 count \(\chi\) 2' \(^{\prime}\) count-diff f2
        insert-DiffM2 less-numeral-extra(3) mem-Collect-eq pos set-mset-def)
qed
```

have already-used-inv ψ^{\prime}
using rtranclp-inference-preserves-already-used-inv[of $\psi \psi]$ a-u-i inf by blast
then have $a-u-i-\psi^{\prime \prime}:$ already-used-inv $\psi^{\prime \prime}$
using rtranclp-inference-preserves-already-used-inv a-u-i inf' unfolding tautology-def
by simp
have tot C : total-over-m $I\{C\}$
using tot-imp χ tot χ tot-over-m-remove[of I Pos v C] neg C pos C unfolding $\chi 2$
by (metis total-over-m-sum uminus-Neg uminus-of-uminus-id)
have tot C^{\prime} : total-over-m $I\left\{C^{\prime}\right\}$
using tot-imp χ^{\prime} tot χ^{\prime} total-over-m-sum tot-over-m-remove[of I Neg v C^{\prime}] neg C^{\prime} pos C^{\prime}
unfolding $\chi 2^{\prime}$ by (metis total-over-m-sum uminus-Neg)
have $\neg I \models C+C^{\prime}$
using $\chi I \chi \chi^{\prime} I \chi^{\prime}$ unfolding $\chi 2 \chi^{2}{ }^{\prime}$ true-cls-def by auto
then have part-I- $\psi^{\prime \prime \prime}:$ partial-interps Leaf $I\left(f s t \psi^{\prime \prime} \cup\left\{C+C^{\prime}\right\}\right)$
using tot C tot C^{\prime} by simp
(metis $\neg I \models C+C^{\prime}$ satms-of-ms-singleton total-over-m-def total-over-m-sum)
\{
assume $\left(\{\#\right.$ Pos $\left.v \#\}+C^{\prime},\{\# N e g v \#\}+C\right) \notin$ snd $\psi^{\prime \prime}$
then have inf ${ }^{\prime \prime}$: inference $\psi^{\prime \prime}\left(f s t \psi^{\prime \prime} \cup\left\{C+C^{\prime}\right\}\right.$, snd $\psi^{\prime \prime} \cup\left\{\left(\chi\right.\right.$ 2' $\left.\left.\left.^{\prime}, \chi 2\right)\right\}\right)$
using add.commute $\varphi^{\prime} \chi^{2 i n c l}\left\langle\chi^{2}{ }^{\prime} \in f s t \psi^{\prime \prime}\right\rangle$ unfolding $\chi 2 \chi^{2}{ }^{\prime}$
by (metis prod.collapse inference-step resolution)
have inference ${ }^{* *} \psi\left(\right.$ fst $\psi^{\prime \prime} \cup\left\{C+C^{\prime}\right\}$, snd $\left.\psi^{\prime \prime} \cup\left\{\left(\chi^{2}, \chi 2\right)\right\}\right)$
using inf inf ${ }^{\prime}$ inf ${ }^{\prime \prime}$ rtranclp-trans by auto
moreover have sem-tree-size Leaf < sem-tree-size xs unfolding xs by auto
ultimately have ?case using part-I- $\psi^{\prime \prime \prime}$ by (metis fst-conv)
\}
moreover \{
assume $a:\left(\{\#\right.$ Pos $\left.v \#\}+C^{\prime},\{\# N e g v \#\}+C\right) \in$ snd $\psi^{\prime \prime}$
then have $\left(\exists \chi \in\right.$ fst $\psi^{\prime \prime} .\left(\forall I\right.$. total-over-m $I\left\{C+C^{\prime}\right\} \longrightarrow$ total-over-m $\left.I\{\chi\}\right)$

$$
\left.\wedge\left(\forall I . \text { total-over-m } I\{\chi\} \longrightarrow I \models \chi \longrightarrow I \models C^{\prime}+C\right)\right)
$$

$$
\vee \text { tautology }\left(C^{\prime}+C\right)
$$

proof -

obtain p where p : Pos $p \in \#\left(\{\#\right.$ Pos $\left.v \#\}+C^{\prime}\right)$ and n : Neg $p \in \#(\{\# N e g v \#\}+C)$ and decomp: $\left(\left(\exists \chi \in f s t \psi^{\prime \prime}\right.\right.$.
(\forall I. total-over-m $I\left\{\left(\{\#\right.\right.$ Pos $\left.v \#\}+C^{\prime}\right)-\{\#$ Pos $p \#\}$
$+((\{\#$ Neg $v \#\}+C)-\{\# N e g p \#\})\}$
\longrightarrow total-over-m $I\{\chi\})$
$\wedge(\forall I$. total-over-m $I\{\chi\} \longrightarrow I \models \chi$
$\longrightarrow I \models\left(\{\#\right.$ Pos $\left.v \#\}+C^{\prime}\right)-\{\#$ Pos $p \#\}+((\{\#$ Neg $\left.v \#\}+C)-\{\# N e g p \#\})\right)$
)
\vee tautology $\left.\left(\left(\{\# \operatorname{Pos} v \#\}+C^{\prime}\right)-\{\# \operatorname{Pos} p \#\}+((\{\# N e g v \#\}+C)-\{\# N e g ~ p \#\})\right)\right)$
using a by (blast intro: allE[OF a-u-i- $\psi^{\prime \prime}[$ unfolded subsumes-def Ball-def],
of $\left(\{\#\right.$ Pos $v \#\}+C^{\prime},\{\#$ Neg $\left.\left.\left.v \#\}+C\right)\right]\right)$

```
            { assume p\not=v
                    then have Pos p\in# C'^Neg p\in#C using p n by force
                    then have ?thesis unfolding Bex-def by auto
            }
            moreover {
                assume p=v
                then have ?thesis using decomp by (metis add.commute add-diff-cancel-left')
            }
            ultimately show ?thesis by auto
            qed
        moreover {
            assume \exists\chi\infst \mp@subsup{\psi}{}{\prime\prime}.(\forallI. total-over-m I {C+C'} \longrightarrow total-over-m I {\chi})
            \wedge ( \forall I . ~ t o t a l - o v e r - m ~ I ~ \{ \chi \} \longrightarrow I \models \chi \longrightarrow I \models C ' + C )
            then obtain \vartheta}\mathrm{ where }\vartheta:\vartheta\infst\mp@subsup{\psi}{}{\prime\prime}\mathrm{ and
                tot-\vartheta-C\mp@subsup{C}{}{\prime}:\forallI.total-over-m I {C+C'}}\longrightarrow\mathrm{ total-over-m I {७} and
            \vartheta-inv: \forallI. total-over-m I {\vartheta}\longrightarrowI\models\vartheta\longrightarrow㐿准+C by blast
            have partial-interps Leaf I (fst \psi')
            using tot-\vartheta-C\mp@subsup{C}{}{\prime}\vartheta\vartheta\mathrm{ -inv totC tot C'^}\negI\modelsC+
            moreover have sem-tree-size Leaf < sem-tree-size xs unfolding xs by auto
            ultimately have ?case by (metis inf inf' rtranclp-trans)
        }
        moreover {
            assume tautC\mp@subsup{C}{}{\prime}: tautology ( }\mp@subsup{C}{}{\prime}+C
            have total-over-m I { ' ' }+C}\mathrm{ using totC tot C' total-over-m-sum by auto
            then have \negtautology ( }\mp@subsup{C}{}{\prime}+C
                using }\negI\modelsC+\mp@subsup{C}{}{\prime}\rangle\mathrm{ unfolding add.commute[of C C\ total-over-m-def
            unfolding tautology-def by auto
            then have False using tautCC' unfolding tautology-def by auto
        }
        ultimately have ?case by auto
    }
    ultimately have ?case by auto
}
    ultimately have ?case using part by (metis (no-types) sem-tree-size.simps(1))
}
moreover {
assume size-ag: sem-tree-size ag > 0
have sem-tree-size ag < sem-tree-size xs unfolding xs by auto
moreover have partial-interps ag (I\cup{Pos v})(fst \psi)
    and partad: partial-interps ad (I\cup{Neg v})(fst \psi)
    using part partial-interps.simps(2) unfolding xs by metis+
moreover have sem-tree-size ag < sem-tree-size xs \longrightarrow finite (fst \psi) \longrightarrow already-used-inv \psi
\longrightarrow ( ~ p a r t i a l - i n t e r p s ~ a g ~ ( I \cup \{ P o s ~ v \} ) ( f s t ~ \psi ) \longrightarrow
(\exists tree' }\mp@subsup{\psi}{}{\prime}\mathrm{ . inference** }\mp@subsup{\psi}{}{*}\mp@subsup{\psi}{}{\prime}\wedge\mathrm{ partial-interps tree }\mp@subsup{}{}{\prime}(I\cup{\mathrm{ Pos v}) (fst *')
    \wedge(sem-tree-size tree ' < sem-tree-size ag \vee sem-tree-size ag=0)))
    using IH by auto
    ultimately obtain \psi' :: 'v state and tree' :: 'v sem-tree where
    inf: inference** }\psi\mp@subsup{\psi}{}{\prime
    and part: partial-interps tree' (I\cup{Pos v}) (fst \psi')
    and size: sem-tree-size tree }\mp@subsup{}{}{\prime}< sem-tree-size ag \vee sem-tree-size ag=
    using finite part rtranclp.rtrancl-refl }a-u-i\mathrm{ by blast
    have partial-interps ad (I\cup{Neg v})(fst \psi')
    using rtranclp-inference-preserve-partial-tree inf partad by metis
    then have partial-interps (Node v tree' ad) I (fst \psi') using part by auto
    then have ?case using inf size size-ag part unfolding xs by fastforce
```

```
    }
    moreover {
        assume size-ad: sem-tree-size ad > 0
        have sem-tree-size ad < sem-tree-size xs unfolding xs by auto
        moreover have partag: partial-interps ag (I\cup{Pos v}) (fst \psi) and
        partial-interps ad (I\cup{Neg v})(fst \psi)
        using part partial-interps.simps(2) unfolding xs by metis+
        moreover have sem-tree-size ad < sem-tree-size xs \longrightarrow finite (fst \psi) \longrightarrowalready-used-inv \psi
        \longrightarrow ( \text { partial-interps ad (I \{ Neg v\}) (fst } \psi )
        \longrightarrow(\exists\mp@subsup{tree}{}{\prime}\mp@subsup{\psi}{}{\prime}. inference** \psi \psi'^ ^ partial-interps tree' (I \cup{Neg v}) (fst \psi')
            \wedge(sem-tree-size tree }\mp@subsup{}{}{\prime}<\mathrm{ sem-tree-size ad }\vee\mathrm{ sem-tree-size ad =0)))
        using IH by auto
        ultimately obtain \psi' :: 'v state and tree' :: 'v sem-tree where
        inf: inference** }\psi\mp@subsup{\psi}{}{\prime
        and part: partial-interps tree' (I { Neg v}) (fst \psi')
        and size: sem-tree-size tree }\mp@subsup{}{}{\prime}<\mathrm{ sem-tree-size ad }\vee\mathrm{ sem-tree-size ad =0
        using finite part rtranclp.rtrancl-refl a-u-i by blast
        have partial-interps ag (I\cup{Pos v})(fst \psi')
            using rtranclp-inference-preserve-partial-tree inf partag by metis
        then have partial-interps(Node v ag tree) I (fst \psi') using part by auto
        then have ?case using inf size size-ad unfolding xs by fastforce
    }
    ultimately have ?case by auto
}
ultimately show ?case by auto
qed
lemma inference-completeness-inv:
    fixes \psi :: 'v ::linorder state
    assumes
        unsat: \negsatisfiable (fst \psi) and
        finite: finite (fst \psi) and
        a-u-v: already-used-inv \psi
    shows }\exists\mp@subsup{\psi}{}{\prime}.(\mathrm{ inference** }\psi\mp@subsup{\psi}{}{\prime}\wedge{#}\in\mathrm{ fst }\mp@subsup{\psi}{}{\prime}
proof -
    obtain tree where partial-interps tree {} (fst \psi)
    using partial-interps-build-sem-tree-atms assms by metis
    then show ?thesis
    using unsat finite a-u-v
    proof (induct tree arbitrary: \psi rule: sem-tree-size)
        case (bigger tree \psi) note H= this
        {
            fix }
            assume tree: tree = Leaf
            obtain }\chi\mathrm{ where }\chi:\neg{}\vDash\chi\mathrm{ and tot }\chi\mathrm{ : total-over-m {} { 
                    using H unfolding tree by auto
            moreover have {#} = \chi
                using tot\chi unfolding total-over-m-def total-over-set-def by fastforce
            moreover have inference** }\psi\psi\mathrm{ by auto
            ultimately have ?case by metis
        }
        moreover {
            fix v tree1 tree2
            assume tree: tree = Node v tree1 tree2
            obtain
```

```
                tree}\mp@subsup{}{}{\prime}\mp@subsup{\psi}{}{\prime}\mathrm{ where inf: inference** }\psi\mp@subsup{\psi}{}{\prime}\mathrm{ and
                part': partial-interps tree' {} (fst \psi') and
                decrease: sem-tree-size tree' < sem-tree-size tree \vee sem-tree-size tree = 0
                    using can-decrease-tree-size[of \psi] H(2,4,5) unfolding tautology-def by meson
                have sem-tree-size tree' < sem-tree-size tree using decrease unfolding tree by auto
                moreover have finite (fst \psi') using rtranclp-inference-preserves-finite inf H(4) by metis
                moreover have unsatisfiable (fst \psi')
                    using inference-preserves-unsat inf bigger.prems(2) by blast
            moreover have already-used-inv \psi'
                    using H(5) inf rtranclp-inference-preserves-already-used-inv[of \psi \psi` by auto
            ultimately have ?case using inf rtranclp-trans part' H(1) by fastforce
        }
        ultimately show ?case by (cases tree, auto)
    qed
qed
lemma inference-completeness:
    fixes \psi :: 'v ::linorder state
    assumes unsat: \negsatisfiable (fst \psi)
    and finite: finite (fst \psi)
    and snd \psi={}
    shows }\exists\mp@subsup{\psi}{}{\prime}.(\mathrm{ rtranclp inference }\psi\mp@subsup{\psi}{}{\prime}\wedge{#}\infst \psi'
proof -
    have already-used-inv \psi unfolding assms by auto
    then show ?thesis using assms inference-completeness-inv by blast
qed
lemma inference-soundness:
    fixes \psi :: 'v ::linorder state
    assumes rtranclp inference \psi \psi' and {#} \in fst \psi'
    shows unsatisfiable (fst \psi)
    using assms by (meson rtranclp-inference-preserve-models satisfiable-def true-cls-empty
        true-clss-def)
lemma inference-soundness-and-completeness:
fixes \psi ::'v v:linorder state
assumes finite: finite (fst \psi)
and snd \psi = {}
shows }(\exists\mp@subsup{\psi}{}{\prime}\mathrm{ . (inference** }\psi\mp@subsup{\psi}{}{\prime}\wedge{#}\infst \psi'`))\longleftrightarrow unsatisfiable (fst \psi
    using assms inference-completeness inference-soundness by metis
```


2.1.4 Lemma about the Simplified State

```
abbreviation simplified \(\psi \equiv(\) no-step simplify \(\psi)\)
lemma simplified-count:
assumes simp: simplified \(\psi\) and \(\chi: \chi \in \psi\)
shows count \(\chi L \leq 1\)
proof -
\{
let ? \(\chi^{\prime}=\chi-\{\# L, L \#\}\)
assume count \(\chi L \geq 2\)
then have f1: count \((\chi-\{\# L, L \#\}+\{\# L, L \#\}) L=\) count \(\chi L\)
by \(\operatorname{simp}\)
then have \(L \in \# \chi-\{\# L \#\}\)
by (metis (no-types) add.left-neutral add-diff-cancel-left' count-union diff-diff-add
```

```
    have }\exists\mp@subsup{\psi}{}{\prime}\mathrm{ . simplify }\psi\mp@subsup{\psi}{}{\prime
        by (metis (no-types, hide-lams) \chi \chi' factoring-imp-simplify)
    then have False using simp by auto
    }
    then show ?thesis by arith
qed
lemma simplified-no-both:
    assumes simp: simplified }\psi\mathrm{ and }\chi:\chi\in
    shows \neg (L\in#\chi^-L\in# \chi)
proof (rule ccontr)
    assume }\neg\neg(L\in#\chi\wedge-L\in#\chi
    then have }L\in#\chi\wedge-L\in#\chi\mathrm{ by metis
    then obtain }\mp@subsup{\chi}{}{\prime}\mathrm{ where }\chi=add-mset (Pos (atm-of L)) (add-mset (Neg (atm-of L)) \chi'
        by (cases L) (auto dest!: multi-member-split simp: add-eq-conv-ex)
    then show False using \chi simp tautology-deletion by fast
qed
```

lemma add-mset-Neg-Pos-commute $[$ simp $]$:
add-mset (Neg P) (add-mset (Pos P) C) $=$ add-mset $($ Pos P) $(\operatorname{add-mset}(\operatorname{Neg} P) C)$
by (rule add-mset-commute)
lemma simplified-not-tautology:
assumes simplified $\{\psi\}$
shows ${ }^{\sim}$ tautology ψ
proof (rule ccontr)
assume ~ ?thesis
then obtain p where Pos $p \in \# \psi \wedge$ Neg $p \in \# \psi$ using tautology-decomp by metis
then obtain χ where $\psi=\chi+\{\#$ Pos $p \#\}+\{\#$ Neg $p \#\}$
by (auto dest!: multi-member-split simp: add-eq-conv-ex)
then have ${ }^{\sim}$ simplified $\{\psi\}$ by (auto intro: tautology-deletion)
then show False using assms by auto
qed
lemma simplified-remove:
assumes simplified $\{\psi\}$
shows simplified $\{\psi-\{\# l \#\}\}$
proof (rule ccontr)
assume $n s: \neg$ simplified $\{\psi-\{\# l \#\}\}$
\{
assume $l \notin \# \psi$
then have $\psi-\{\# l \#\}=\psi$ by simp
then have False using ns assms by auto
\}
moreover \{
assume $l \psi: l \in \# \psi$
have $A: \bigwedge A . A \in\{\psi-\{\# l \#\}\} \longleftrightarrow$ add-mset $l A \in\{\psi\}$ by (auto simp add: $l \psi$)
obtain l^{\prime} where $l^{\prime}:$ simplify $\{\psi-\{\# l \#\}\} l^{\prime}$ using ns by metis
then have $\exists l^{\prime}$. simplify $\{\psi\} l^{\prime}$
proof (induction rule: simplify.induct)
case (tautology-deletion P A)
then have $\{\#$ Neg $P \#\}+(\{\#$ Pos $P \#\}+(A+\{\# l \#\})) \in\{\psi\}$

```
                using A by auto
            then show ?thesis
                using simplified-no-both by fastforce
            next
            case (condensation L A)
            have add-mset l (add-mset L (add-mset L A )) \in{\psi}
                using condensation.hyps unfolding A by blast
            then have {#L,L#}+(A+{#l#})\in{\psi}
                by auto
            then show ?case
                using factoring-imp-simplify by blast
            next
                case (subsumption A B)
                then show ?case by blast
            qed
        then have False using assms(1) by blast
    }
    ultimately show False by auto
qed
lemma in-simplified-simplified:
    assumes simp: simplified \psi and incl: }\mp@subsup{\psi}{}{\prime}\subseteq
    shows simplified \psi'
proof (rule ccontr)
    assume ᄀ?thesis
    then obtain }\mp@subsup{\psi}{}{\prime\prime}\mathrm{ where simplify }\mp@subsup{\psi}{}{\prime}\mp@subsup{\psi}{}{\prime\prime}\mathrm{ by metis
        then have }\exists\mp@subsup{l}{}{\prime}\mathrm{ . simplify }\psi\mp@subsup{l}{}{\prime
            proof (induction rule: simplify.induct)
                case (tautology-deletion A P)
                then show ?thesis using simplify.tautology-deletion[of A P \psi incl by blast
        next
            case (condensation A L)
            then show ?case using simplify.condensation[of A L \psi] incl by blast
        next
            case (subsumption A B)
            then show ?case using simplify.subsumption[of A \psi B] incl by auto
        qed
    then show False using assms(1) by blast
qed
lemma simplified-in:
    assumes simplified }
    and}N\in
    shows simplified {N}
    using assms by (metis Set.set-insert empty-subsetI in-simplified-simplified insert-mono)
lemma subsumes-imp-formula:
    assumes }\psi\leq#
    shows {\psi}\modelsp\varphi
    unfolding true-clss-cls-def apply auto
    using assms true-cls-mono-leD by blast
lemma simplified-imp-distinct-mset-tauto:
    assumes simp: simplified \psi'
    shows distinct-mset-set }\mp@subsup{\psi}{}{\prime}\mathrm{ and }\forall\chi\in\mp@subsup{\psi}{}{\prime}\mathrm{ . ᄀtautology }
```

```
proof -
    show }\forall\chi\in\mp@subsup{\psi}{}{\prime}.\neg\mathrm{ tautology }
        using simp by (auto simp add: simplified-in simplified-not-tautology)
```

```
show distinct-mset-set \psi'
```

show distinct-mset-set \psi'
proof (rule ccontr)
proof (rule ccontr)
assume \neg?thesis
assume \neg?thesis
then obtain \chi where \chi\in\mp@subsup{\psi}{}{\prime}\mathrm{ and }\neg\mathrm{ distinct-mset }\chi\mathrm{ unfolding distinct-mset-set-def by auto}
then obtain \chi where \chi\in\mp@subsup{\psi}{}{\prime}\mathrm{ and }\neg\mathrm{ distinct-mset }\chi\mathrm{ unfolding distinct-mset-set-def by auto}
then obtain L where count \chi L\geq2
then obtain L where count \chi L\geq2
unfolding distinct-mset-def
unfolding distinct-mset-def
by (meson count-greater-eq-one-iff le-antisym simp simplified-count)
by (meson count-greater-eq-one-iff le-antisym simp simplified-count)
then show False by (metis Suc-1 {\chi\in '} not-less-eq-eq simp simplified-count)
then show False by (metis Suc-1 {\chi\in '} not-less-eq-eq simp simplified-count)
qed
qed
qed

```
qed
```

lemma simplified-no-more-full1-simplified:
assumes simplified ψ
shows \neg full1 simplify $\psi \psi^{\prime}$
using assms unfolding full1-def by (meson tranclpD)

2.1.5 Resolution and Invariants

inductive resolution $::$ 'v state $\Rightarrow{ }^{\prime} v$ state \Rightarrow bool where
full1-simp: full1 simplify $N N^{\prime} \Longrightarrow$ resolution (N, already-used) (N^{\prime}, already-used) | inferring: inference (N, already-used) $\left(N^{\prime}\right.$, already-used $) \Longrightarrow$ simplified N
\Longrightarrow full simplify $N^{\prime} N^{\prime \prime} \Longrightarrow$ resolution (N, already-used) ($N^{\prime \prime}$, already-used $)$

Invariants

lemma resolution-finite:

```
    assumes resolution \psi \psi' and finite (fst \psi)
    shows finite (fst \psi')
    using assms by (induct rule: resolution.induct)
        (auto simp add: full1-def full-def rtranclp-simplify-preserves-finite
                        dest: tranclp-into-rtranclp inference-preserves-finite)
```

lemma rtranclp-resolution-finite:
assumes resolution** $\psi \psi^{\prime}$ and finite (fst ψ)
shows finite (fst ψ^{\prime})
using assms by (induct rule: rtranclp-induct, auto simp add: resolution-finite)
lemma resolution-finite-snd:
assumes resolution $\psi \psi^{\prime}$ and finite (snd ψ)
shows finite (snd ψ^{\prime})
using assms apply (induct rule: resolution.induct, auto simp add: inference-preserves-finite-snd)
using inference-preserves-finite-snd snd-conv by metis
lemma rtranclp-resolution-finite-snd:
assumes resolution** $\psi \psi^{\prime}$ and finite (snd ψ)
shows finite (snd ψ^{\prime})
using assms by (induct rule: rtranclp-induct, auto simp add: resolution-finite-snd)
lemma resolution-always-simplified:
assumes resolution $\psi \psi^{\prime}$
shows simplified (fst ψ^{\prime})
using assms by (induct rule: resolution.induct)
(auto simp add: full1-def full-def)
lemma tranclp-resolution-always-simplified:
assumes tranclp resolution $\psi \psi^{\prime}$
shows simplified (fst ψ^{\prime})
using assms by (induct rule: tranclp.induct, auto simp add: resolution-always-simplified)
lemma resolution-atms-of:
assumes resolution $\psi \psi^{\prime}$ and finite ($f s t \psi$)
shows atms-of-ms $\left(f s t \psi^{\prime}\right) \subseteq a t m s-o f-m s(f s t ~ \psi)$
using assms apply (induct rule: resolution.induct)
apply (simp add: rtranclp-simplify-atms-of-ms tranclp-into-rtranclp full1-def)
by (metis (no-types, lifting) contra-subsetD fst-conv full-def
inference-preserves-atms-of-ms rtranclp-simplify-atms-of-ms subsetI)
lemma rtranclp-resolution-atms-of:
assumes resolution** $\psi \psi^{\prime}$ and finite (fst ψ)
shows atms-of-ms $\left(f s t \psi^{\prime}\right) \subseteq a t m s$-of-ms $(f s t \psi)$
using assms apply (induct rule: rtranclp-induct)
using resolution-atms-of rtranclp-resolution-finite by blast+
lemma resolution-include:
assumes res: resolution $\psi \psi^{\prime}$ and finite: finite $($ fst $\psi)$
shows $f s t \psi^{\prime} \subseteq$ simple-clss (atms-of-ms (fst $\left.\psi\right)$)
proof -
have finite': finite ($f s t \psi^{\prime}$) using local.finite res resolution-finite by blast
have simplified ($f s t \psi^{\prime}$) using res finite' resolution-always-simplified by blast
then have $f s t \psi^{\prime} \subseteq$ simple-clss (atms-of-ms $\left(\right.$ fst $\left.\left.\psi^{\prime}\right)\right)$
using simplified-in-simple-clss finite' simplified-imp-distinct-mset-tauto[of fst $\left.\psi^{\prime}\right]$ by auto
moreover have atms-of-ms (fst $\left.\psi^{\prime}\right) \subseteq$ atms-of-ms (fst ψ) using res finite resolution-atms-of $\left[o f ~ \psi \psi^{\prime}\right]$ by auto
ultimately show ?thesis by (meson atms-of-ms-finite local.finite order.trans rev-finite-subset simple-clss-mono)
qed
lemma rtranclp-resolution-include:
assumes res: tranclp resolution $\psi \psi^{\prime}$ and finite: finite (fst ψ)
shows $f s t \psi^{\prime} \subseteq$ simple-clss (atms-of-ms (fst $\left.\psi\right)$)
using assms apply (induct rule: tranclp.induct) apply (simp add: resolution-include)
by (meson simple-clss-mono order-trans resolution-include rtranclp-resolution-atms-of rtranclp-resolution-finite tranclp-into-rtranclp)
abbreviation already-used-all-simple
:: ('a literal multiset \times 'a literal multiset) set \Rightarrow 'a set \Rightarrow bool where
already-used-all-simple already-used vars \equiv
$(\forall(A, B) \in$ already-used. simplified $\{A\} \wedge$ simplified $\{B\} \wedge$ atms-of $A \subseteq$ vars \wedge atms-of $B \subseteq$ vars $)$
lemma already-used-all-simple-vars-incl:
assumes vars \subseteq vars ${ }^{\prime}$
shows already-used-all-simple a vars \Longrightarrow already-used-all-simple a vars'
using assms by fast
lemma inference-clause-preserves-already-used-all-simple:
assumes inference-clause $S S^{\prime}$
and already-used-all-simple (snd S) vars

```
    and simplified (fst S)
    and atms-of-ms (fst S)\subseteqvars
    shows already-used-all-simple (snd (fst S\cup{fst S'}, snd S')) vars
    using assms
proof (induct rule: inference-clause.induct)
    case (factoring L C N already-used)
    then show ?case by (simp add: simplified-in factoring-imp-simplify)
next
    case (resolution P C N D already-used) note H = this
    show ?case apply clarify
        proof -
            fix A B v
            assume (A,B) \in snd (fst ( N, already-used)
                \cup{fst }(C+D,\mathrm{ already-used }\cup{({#Pos P#} + C,{#Neg P#} + D)})}
                snd }(C+D\mathrm{ , already-used }\cup{({#Pos P#} +C,{#NegP#}+D)})
            then have }(A,B)\in\mathrm{ already-used }\vee(A,B)=({#PosP#}+C,{#NegP#}+D) by aut
            moreover {
            assume (A,B)\in already-used
            then have simplified {A}\wedge simplified {B} ^ atms-of A\subseteqvars }\wedge\mathrm{ atms-of B}\subseteq\mathrm{ vars
                using H(4) by auto
        }
        moreover {
            assume eq:}(A,B)=({#PosP#}+C,{#Neg P#}+D
            then have simplified {A} using simplified-in H(1,5) by auto
            moreover have simplified {B} using eq simplified-in H(2,5) by auto
            moreover have atms-of A\subseteqatms-of-ms N
                using eq H(1)
                using atms-of-atms-of-ms-mono[of A N] by auto
            moreover have atms-of B\subseteqatms-of-ms N
                using eq H(2) atms-of-atms-of-ms-mono[of B N] by auto
            ultimately have simplified {A} ^ simplified {B}\wedge atms-of A\subseteqvars ^atms-of B\subseteq vars
                    using H(6) by auto
        }
            ultimately show simplified {A}}\wedge simplified {B}\wedge atms-of A\subseteqvars \wedge atms-of B\subseteqvar
                by fast
        qed
qed
lemma inference-preserves-already-used-all-simple:
    assumes inference S S'
    and already-used-all-simple (snd S) vars
    and simplified (fst S)
    and atms-of-ms (fst S)\subseteqvars
    shows already-used-all-simple (snd S') vars
    using assms
proof (induct rule: inference.induct)
    case (inference-step S clause already-used)
    then show ?case
        using inference-clause-preserves-already-used-all-simple[of S (clause, already-used) vars]
        by auto
qed
lemma already-used-all-simple-inv:
    assumes resolution S S'
    and already-used-all-simple (snd S) vars
    and atms-of-ms (fst S)\subseteqvars
```

```
    shows already-used-all-simple (snd S') vars
    using assms
proof (induct rule: resolution.induct)
    case (full1-simp N N')
    then show?case by simp
next
    case (inferring N already-used N' already-used' N'')
    then show already-used-all-simple (snd ( }\mp@subsup{N}{}{\prime\prime}\mathrm{ , already-used')) vars
        using inference-preserves-already-used-all-simple[of (N, already-used)] by simp
qed
lemma rtranclp-already-used-all-simple-inv:
    assumes resolution** S S'
    and already-used-all-simple (snd S) vars
    and atms-of-ms (fst S)\subseteqvars
    and finite (fst S)
    shows already-used-all-simple (snd S') vars
    using assms
proof (induct rule: rtranclp-induct)
    case base
    then show ?case by simp
next
    case (step S' S') note infstar = this(1) and IH = this(3) and res = this(2) and
        already = this(4) and atms = this(5) and finite = this(6)
    have already-used-all-simple (snd S') vars using IH already atms finite by simp
    moreover have atms-of-ms (fst S')\subseteqatms-of-ms(fst S)
        by (simp add: infstar local.finite rtranclp-resolution-atms-of)
    then have atms-of-ms (fst S')\subseteqvars using atms by auto
    ultimately show ?case
        using already-used-all-simple-inv[OF res] by simp
qed
lemma inference-clause-simplified-already-used-subset:
    assumes inference-clause S S'
    and simplified (fst S)
    shows snd S \subset snd S'
    using assms apply (induct rule: inference-clause.induct)
    using factoring-imp-simplify apply (simp; blast)
    using factoring-imp-simplify by force
lemma inference-simplified-already-used-subset:
    assumes inference S S'
    and simplified (fst S)
    shows snd S\subset snd S'
    using assms apply (induct rule: inference.induct)
    by (metis inference-clause-simplified-already-used-subset snd-conv)
lemma resolution-simplified-already-used-subset:
    assumes resolution S S'
    and simplified (fst S)
    shows snd S\subset snd S'
    using assms apply (induct rule: resolution.induct, simp-all add: full1-def)
    apply (meson tranclpD)
    by (metis inference-simplified-already-used-subset fst-conv snd-conv)
lemma tranclp-resolution-simplified-already-used-subset:
```

assumes tranclp resolution $S S^{\prime}$
and simplified (fst S)
shows snd $S \subset$ snd S^{\prime}
using assms apply (induct rule: tranclp.induct)
using resolution-simplified-already-used-subset apply metis
by (meson tranclp-resolution-always-simplified resolution-simplified-already-used-subset less-trans)
abbreviation already-used-top vars \equiv simple-clss vars \times simple-clss vars
lemma already-used-all-simple-in-already-used-top:
assumes already-used-all-simple s vars and finite vars
shows $s \subseteq$ already-used-top vars
proof
fix x
assume $x-s: x \in s$
obtain $A B$ where x : $x=(A, B)$ by (cases x, auto)
then have simplified $\{A\}$ and atms-of $A \subseteq$ vars using assms(1) x-s by fastforce+
then have $A: A \in$ simple-clss vars
using simple-clss-mono[of atms-of A vars] x assms(2)
simplified-imp-distinct-mset-tauto[of \{A\}] distinct-mset-not-tautology-implies-in-simple-clss by fast
moreover have simplified $\{B\}$ and atms-of $B \subseteq$ vars using assms(1) $x-s x$ by fast +
then have $B: B \in$ simple-clss vars
using simplified-imp-distinct-mset-tauto[of $\{B\}]$
distinct-mset-not-tautology-implies-in-simple-clss simple-clss-mono[of atms-of B vars] x assms(2) by fast
ultimately show $x \in$ simple-clss vars \times simple-clss vars unfolding x by auto
qed
lemma already-used-top-finite:
assumes finite vars
shows finite (already-used-top vars)
using simple-clss-finite assms by auto
lemma already-used-top-increasing:
assumes var $\subseteq v a r^{\prime}$ and finite var'
shows already-used-top var \subseteq already-used-top var ${ }^{\prime}$
using assms simple-clss-mono by auto
lemma already-used-all-simple-finite:
fixes $s::$ ('a literal multiset \times 'a literal multiset) set and vars $::$ 'a set
assumes already-used-all-simple s vars and finite vars
shows finite s
using assms already-used-all-simple-in-already-used-top[OF assms(1)]
rev-finite-subset[OF already-used-top-finite[of vars]] by auto
abbreviation card-simple vars $\psi \equiv$ card (already-used-top vars $-\psi$)
lemma resolution-card-simple-decreasing:
assumes res: resolution $\psi \psi^{\prime}$
and a - u-s: already-used-all-simple (snd ψ) vars
and finite-v: finite vars
and finite-fst: finite (fst ψ)
and finite-snd: finite (snd ψ)
and simp: simplified (fst ψ)
and atms-of-ms $($ fst $\psi) \subseteq$ vars
shows card-simple vars $\left(\right.$ snd $\left.\psi^{\prime}\right)<$ card-simple vars $($ snd $\psi)$
proof -
let ?vars $=$ vars
let ?top $=$ simple-clss ?vars \times simple-clss ?vars
have 1: card-simple vars (snd $\psi)=$ card ?top - card $($ snd $\psi)$
using card-Diff-subset finite-snd already-used-all-simple-in-already-used-top[OF a-u-s]
finite-v by metis
have a-u-s': already-used-all-simple (snd ψ^{\prime}) vars
using already-used-all-simple-inv res a-u-s assms(7) by blast
have f : finite (snd ψ^{\prime}) using already-used-all-simple-finite $a-u-s^{\prime}$ finite- v by auto
have 2: card-simple vars $\left(\right.$ snd $\left.\psi^{\prime}\right)=$ card ?top - card $\left(\right.$ snd $\left.\psi^{\prime}\right)$
using card-Diff-subset[OF f] already-used-all-simple-in-already-used-top[OF a-u-s' finite-v]
by auto
have card (already-used-top vars) \geq card (snd ψ^{\prime})
using already-used-all-simple-in-already-used-top [OF a-u-s' finite-v]
card-mono[of already-used-top vars snd ψ '] already-used-top-finite $[O F$ finite-v] by metis
then show ?thesis
using psubset-card-mono[OF f resolution-simplified-already-used-subset[OF res simp]]
unfolding 12 by linarith
qed
lemma tranclp-resolution-card-simple-decreasing:
assumes tranclp resolution $\psi \psi^{\prime}$ and finite-fst: finite (fst ψ)
and already-used-all-simple (snd ψ) vars
and atms-of-ms $(f s t \psi) \subseteq$ vars
and finite-v: finite vars
and finite-snd: finite (snd ψ)
and simplified (fst ψ)
shows card-simple vars $\left(\right.$ snd $\left.\psi^{\prime}\right)<$ card-simple vars $($ snd $\psi)$
using assms
proof (induct rule: tranclp-induct)
case (base ψ^{\prime})
then show ?case by (simp add: resolution-card-simple-decreasing)
next
case $\left(\right.$ step $\left.\psi^{\prime} \psi^{\prime \prime}\right)$ note res $=$ this(1) and res' $=$ this(2) and $a-u-s=$ this(5) and atms $=$ this (6) and $f-v=$ this(7) and $f-f s t=$ this(4) and $H=$ this
then have card-simple vars $\left(\right.$ snd $\left.\psi^{\prime}\right)<$ card-simple vars $($ snd $\psi)$ by auto
moreover have $a-u-s^{\prime}:$ already-used-all-simple (snd ψ^{\prime}) vars
using rtranclp-already-used-all-simple-inv[OF tranclp-into-rtranclp[OF res] a-u-s atms f-fst] .
have finite (fst ψ^{\prime})
by (meson finite-fst res rtranclp-resolution-finite tranclp-into-rtranclp)
moreover have finite (snd ψ^{\prime}) using already-used-all-simple-finite $\left[O F a-u-s^{\prime} f-v\right]$.
moreover have simplified (fst ψ^{\prime}) using res tranclp-resolution-always-simplified by blast
moreover have atms-of-ms (fst $\left.\psi^{\prime}\right) \subseteq$ vars
by (meson atms f-fst order.trans res rtranclp-resolution-atms-of tranclp-into-rtranclp)
ultimately show ?case
using resolution-card-simple-decreasing $\left[\right.$ OF res' $\left.a-u-s^{\prime} f-v\right] f-v$
less-trans[of card-simple vars (snd $\psi^{\prime \prime}$) card-simple vars (snd ψ^{\prime})
card-simple vars (snd ψ)]
by blast
qed

```
lemma tranclp-resolution-card-simple-decreasing-2:
    assumes tranclp resolution \psi \psi'
    and finite-fst: finite (fst \psi)
    and empty-snd: snd \psi = {}
    and simplified (fst \psi)
    shows card-simple (atms-of-ms (fst \psi)) (snd \psi') < card-simple (atms-of-ms (fst \psi)) (snd \psi)
proof -
    let ?vars = atms-of-ms (fst \psi)
    have already-used-all-simple (snd \psi) ?vars unfolding empty-snd by auto
    moreover have atms-of-ms (fst \psi)\subseteq?vars by auto
    moreover have finite-v: finite ?vars using finite-fst by auto
    moreover have finite-snd: finite (snd \psi) unfolding empty-snd by auto
    ultimately show ?thesis
        using assms(1,2,4) tranclp-resolution-card-simple-decreasing[of \psi \psi'] by presburger
qed
```


Well-Foundness of the Relation

lemma wf-simplified-resolution:
assumes f-vars: finite vars
shows wf $\{(y::$ 'v:: linorder state, $x)$. (atms-of-ms $(f s t x) \subseteq$ vars \wedge simplified (fst $x)$
\wedge finite $($ snd $x) \wedge$ finite $($ fst $x) \wedge$ already-used-all-simple $($ snd $x)$ vars $) \wedge$ resolution $x y\}$
proof -
\{
fix $a b::$ ' $v::$ linorder state
assume $(b, a) \in\{(y, x)$. (atms-of-ms $(f s t x) \subseteq$ vars \wedge simplified $(f s t x) \wedge$ finite $($ snd $x)$
\wedge finite $($ fst $x) \wedge$ already-used-all-simple $($ snd $x)$ vars $) \wedge$ resolution $x y\}$

then have

atms-of-ms $(f s t a) \subseteq$ vars and
simp: simplified (fst a) and
finite (snd a) and
finite ($f s t a$) and
a-u-v: already-used-all-simple (snd a) vars and
res: resolution $a b$ by auto
have finite (already-used-top vars) using f-vars already-used-top-finite by blast
moreover have already-used-top vars \subseteq already-used-top vars by auto
moreover have snd $b \subseteq$ already-used-top vars
using already-used-all-simple-in-already-used-top[of snd b vars]
$a-u-v$ already-used-all-simple-inv $[O F$ res $]\langle$ finite $(f s t ~ a)\rangle\langle a t m s-o f-m s(f s t a) \subseteq$ vars〉 f-vars
by presburger
moreover have snd $a \subset$ snd b using resolution-simplified-already-used-subset[OF res simp].
ultimately have finite (already-used-top vars) \wedge already-used-top vars \subseteq already-used-top vars
\wedge snd $b \subseteq$ already-used-top vars \wedge snd $a \subset$ snd b by metis
\}
then show ?thesis using wf-bounded-set[of $\{(y:: ~ ' v:: ~ l i n o r d e r ~ s t a t e, ~ x) . ~$
(atms-of-ms (fst $x) \subseteq$ vars
\wedge simplified $(f s t x) \wedge$ finite $($ snd $x) \wedge$ finite $(f s t x) \wedge$ already-used-all-simple (snd x) vars)
\wedge resolution $x y\} \lambda$-. already-used-top vars snd] by auto
qed
lemma wf-simplified-resolution':
assumes f-vars: finite vars
shows wf $\{(y:: ~ ' v:: ~ l i n o r d e r ~ s t a t e, ~ x) . ~(a t m s-o f-m s ~(f s t ~ x) ~ \subseteq v a r s ~ \wedge ~ ᄀ s i m p l i f i e d ~(f s t ~ x) ~$
\wedge finite $($ snd $x) \wedge$ finite $($ fst $x) \wedge$ already-used-all-simple $($ snd $x)$ vars $) \wedge$ resolution $x y\}$
unfolding $w f$-def
apply (simp add: resolution-always-simplified)
by (metis (mono-tags, hide-lams) fst-conv resolution-always-simplified)

```
lemma wf-resolution:
    assumes f-vars: finite vars
    shows wf ({(y:: 'v:: linorder state, x). (atms-of-ms (fst x)\subseteqvars ^ simplified (fst x)
            ^finite (snd x) ^ finite (fst x) ^ already-used-all-simple (snd x) vars) ^ resolution x y}
    \cup \{ ( y , x ) . ( a t m s - o f - m s ~ ( f s t ~ x ) \subseteq v a r s ~ \wedge ~ ᄀ ~ s i m p l i f i e d ~ ( f s t ~ x ) ~ \wedge ~ f i n i t e ~ ( s n d ~ x ) ~ \wedge ~ f i n i t e ~ ( f s t ~ x )
        ^ already-used-all-simple (snd x) vars) ^ resolution x y}) (is wf (?R \cup ?S))
proof -
    have Domain ?R Int Range ?S = {} using resolution-always-simplified by auto blast
    then show wf (?R \cup?S)
        using wf-simplified-resolution[OF f-vars] wf-simplified-resolution'[OF f-vars] wf-Un[of ?R ?S]
        by fast
qed
lemma rtrancp-simplify-already-used-inv:
    assumes simplify** S S'
    and already-used-inv (S,N)
    shows already-used-inv ( }\mp@subsup{S}{}{\prime},N
    using assms apply induction
    using simplify-preserves-already-used-inv by fast+
lemma full1-simplify-already-used-inv:
    assumes full1 simplify S S'
    and already-used-inv (S,N)
    shows already-used-inv ( }\mp@subsup{S}{}{\prime},N
    using assms tranclp-into-rtranclp[of simplify S S] rtrancp-simplify-already-used-inv
    unfolding full1-def by fast
lemma full-simplify-already-used-inv:
    assumes full simplify S S'
    and already-used-inv (S,N)
    shows already-used-inv (S',N)
    using assms rtrancp-simplify-already-used-inv unfolding full-def by fast
lemma resolution-already-used-inv:
    assumes resolution S S'
    and already-used-inv S
    shows already-used-inv S'
    using assms
proof induction
    case (full1-simp N N' already-used)
    then show ?case using full1-simplify-already-used-inv by fast
next
    case (inferring N already-used N' already-used' N''\prime\prime) note inf = this(1) and full = this(3) and
        a-u-v = this(4)
    then show ?case
        using inference-preserves-already-used-inv[OF inf a-u-v] full-simplify-already-used-inv full
        by fast
qed
lemma rtranclp-resolution-already-used-inv:
    assumes resolution** S S'
    and already-used-inv S
    shows already-used-inv S'
    using assms apply induction
    using resolution-already-used-inv by fast+
```

lemma rtanclp-simplify-preserves-unsat:
assumes simplify** $\psi \psi^{\prime}$
shows satisfiable $\psi^{\prime} \longrightarrow$ satisfiable ψ
using assms apply induction
using simplify-clause-preserves-sat by blast+
lemma full1-simplify-preserves-unsat:
assumes full1 simplify $\psi \psi^{\prime}$
shows satisfiable $\psi^{\prime} \longrightarrow$ satisfiable ψ
using assms rtanclp-simplify-preserves-unsat $\left[\right.$ of $\left.\psi \psi^{\prime}\right]$ tranclp-into-rtranclp
unfolding full1-def by metis
lemma full-simplify-preserves-unsat:
assumes full simplify $\psi \psi^{\prime}$
shows satisfiable $\psi^{\prime} \longrightarrow$ satisfiable ψ
using assms rtanclp-simplify-preserves-unsat $\left[\right.$ of $\left.\psi \psi^{\prime}\right]$ unfolding full-def by metis
lemma resolution-preserves-unsat:
assumes resolution $\psi \psi^{\prime}$
shows satisfiable $\left(f s t \psi^{\prime}\right) \longrightarrow$ satisfiable $(f s t \psi)$
using assms apply (induct rule: resolution.induct)
using full1-simplify-preserves-unsat apply (metis fst-conv)
using full-simplify-preserves-unsat simplify-preserves-unsat by fastforce
lemma rtranclp-resolution-preserves-unsat:
assumes resolution ${ }^{* *} \psi \psi^{\prime}$
shows satisfiable $\left(f s t \psi^{\prime}\right) \longrightarrow$ satisfiable $($ fst $\psi)$
using assms apply induction
using resolution-preserves-unsat by fast+
lemma rtranclp-simplify-preserve-partial-tree:
assumes simplify ${ }^{* *} N N^{\prime}$
and partial-interps $t I N$
shows partial-interps t I N^{\prime}
using assms apply (induction, simp)
using simplify-preserve-partial-tree by metis
lemma full1-simplify-preserve-partial-tree:
assumes full1 simplify $N N^{\prime}$
and partial-interps $t I N$
shows partial-interps t I N^{\prime}
using assms rtranclp-simplify-preserve-partial-tree[of $\left.N N^{\prime} t I\right]$ tranclp-into-rtranclp unfolding full1-def by fast
lemma full-simplify-preserve-partial-tree:
assumes full simplify $N N^{\prime}$
and partial-interps $t I N$
shows partial-interps $t I N^{\prime}$
using assms rtranclp-simplify-preserve-partial-tree $\left[\right.$ of $\left.N N^{\prime} t I\right]$ tranclp-into-rtranclp unfolding full-def by fast
lemma resolution-preserve-partial-tree:
assumes resolution $S S^{\prime}$
and partial-interps $t I$ (fst S)
shows partial-interps $t I$ (fst $\left.S^{\prime}\right)$
using assms apply induction
using full1-simplify-preserve-partial-tree fst-conv apply metis
using full-simplify-preserve-partial-tree inference-preserve-partial-tree by fastforce
lemma rtranclp-resolution-preserve-partial-tree:
assumes resolution** $S S^{\prime}$
and partial-interps $t I$ (fst S)
shows partial-interps $t I\left(f\right.$ st $\left.S^{\prime}\right)$
using assms apply induction
using resolution-preserve-partial-tree by fast+
thm nat-less-induct nat.induct
lemma nat-ge-induct[case-names 0 Suc]:
assumes $P 0$
and $\bigwedge n .(\bigwedge m . m<$ Suc $n \Longrightarrow P m) \Longrightarrow P(S u c n)$
shows $P n$
using assms apply (induct rule: nat-less-induct)
by (rename-tac n, case-tac n) auto
lemma wf-always-more-step-False:
assumes $w f R$
shows $(\forall x . \exists z .(z, x) \in R) \Longrightarrow$ False
using assms unfolding wf-def by (meson Domain.DomainI assms wfE-min)
lemma finite-finite-mset-element-of-mset[simp]:
assumes finite N
shows finite $\{f \varphi L \mid \varphi L . \varphi \in N \wedge L \in \# \varphi \wedge P \varphi L\}$
using assms
proof (induction N rule: finite-induct)
case empty
show ?case by auto
next
case $($ insert $x N)$ note finite $=$ this(1) and $I H=$ this(3)
have $\{f \varphi L \mid \varphi L .(\varphi=x \vee \varphi \in N) \wedge L \in \# \varphi \wedge P \varphi L\} \subseteq\{f x L \mid L . L \in \# x \wedge P x L\}$
$\cup\{f \varphi L \mid \varphi L . \varphi \in N \wedge L \in \# \varphi \wedge P \varphi L\}$ by auto
moreover have finite $\{f x L \mid L . L \in \# x\}$ by auto
ultimately show ?case using IH finite-subset by fastforce
qed
definition sum-count-ge-2 :: 'a multiset set \Rightarrow nat (Ξ) where
sum-count-ge-2 \equiv folding.F $(\lambda \varphi .(+)($ sum-mset $\{\# \operatorname{count} \varphi L \mid L \in \# \varphi$. $2 \leq \operatorname{count} \varphi L \#\})) 0$
interpretation sum-count-ge-2:
folding $\lambda \varphi$. $(+)($ sum-mset $\{\#$ count $\varphi L \mid L \in \# \varphi$. $2 \leq \operatorname{count} \varphi L \#\}) 0$
rewrites
folding.F $(\lambda \varphi \cdot(+)($ sum-mset $\{\#$ count $\varphi L \mid L \in \# \varphi \cdot 2 \leq$ count $\varphi L \#\})) 0=$ sum-count-ge-2
proof -
show folding $(\lambda \varphi .(+)($ sum-mset (image-mset $(\operatorname{count} \varphi)\{\# L \in \# \varphi \cdot \mathcal{2} \leq \operatorname{count} \varphi L \#\}))$)
by standard auto
then interpret sum-count-ge-2:
folding $\lambda \varphi$. $(+)($ sum-mset $\{\#$ count $\varphi L \mid L \in \# \varphi$. $2 \leq$ count $\varphi L \#\}) 0$.
show folding. $F(\lambda \varphi .(+)($ sum-mset (image-mset (count $\varphi)\{\# L \in \# \varphi \cdot 2 \leq \operatorname{count} \varphi L \#\}))) 0$
= sum-count-ge-2 by (auto simp add: sum-count-ge-2-def)
qed

```
lemma finite-incl-le-setsum:
    finite \(\left(B::^{\prime}\right.\) a multiset set \() \Longrightarrow A \subseteq B \Longrightarrow \Xi A \leq \Xi B\)
proof (induction arbitrary:A rule: finite-induct)
    case empty
    then show? case by simp
next
    case (insert a \(F\) ) note finite \(=\) this(1) and \(a F=\) this(2) and \(I H=\operatorname{this}(3)\) and \(A F=\) this(4)
    show ?case
        proof (cases a \(\in A\) )
            assume \(a \notin A\)
            then have \(A \subseteq F\) using \(A F\) by auto
            then show ?case using \(I H[o f A]\) by (simp add: aF local.finite)
        next
            assume \(a A: a \in A\)
            then have \(A-\{a\} \subseteq F\) using \(A F\) by auto
            then have \(\Xi(A-\{a\}) \leq \Xi F\) using \(I H\) by blast
            then show ?case
                proof -
                    obtain \(n n ~:: ~ n a t ~ \Rightarrow n a t \Rightarrow\) nat where
                    \(\forall x 0 x 1 .(\exists v 2 . x 0=x 1+v 2)=(x 0=x 1+n n x 0 x 1)\)
                    by moura
                    then have \(\Xi F=\Xi(A-\{a\})+n n(\Xi F)(\Xi(A-\{a\}))\)
                        by (meson \(\left.{ }^{\boldsymbol{\Xi}}(A-\{a\}) \leq \Xi F\right\rangle\) le-iff-add)
                    then show ?thesis
                        by (metis (no-types) le-iff-add aA aF add.assoc finite.insertI finite-subset
                        insert.prems local.finite sum-count-ge-2.insert sum-count-ge-2.remove)
                qed
        qed
qed
lemma simplify-finite-measure-decrease:
    simplify \(N N^{\prime} \Longrightarrow\) finite \(N \Longrightarrow \operatorname{card} N^{\prime}+\Xi N^{\prime}<\operatorname{card} N+\Xi N\)
proof (induction rule: simplify.induct)
    case (tautology-deletion \(P\) A) note \(a n=\) this(1) and \(f i n=t h i s(2)\)
    let \(? N^{\prime}=N-\{a d d-m s e t(\) Pos \(P)(\) add-mset \((\) Neg \(P) A)\}\)
    have card ? \(N^{\prime}<\operatorname{card} N\)
        by (meson card-Diff1-less tautology-deletion.hyps tautology-deletion.prems)
    moreover have ? \(N^{\prime} \subseteq N\) by auto
    then have sum-count-ge-2 ? \(N^{\prime} \leq\) sum-count-ge-2 \(N\) using finite-incl-le-setsum \([O F\) fin \(]\) by blast
    ultimately show ?case by linarith
next
    case (condensation \(L A\) ) note \(A N=\) this(1) and fin \(=\) this(2)
    let \(? C^{\prime}=a d d\)-mset \(L A\)
    let ? \(C=\) add-mset \(L\) ? \(C^{\prime}\)
    let \(? N^{\prime}=N-\{? C\} \cup\left\{? C^{\prime}\right\}\)
    have card? \(N^{\prime} \leq\) card \(N\)
            using \(A N\) by (metis (no-types, lifting) Diff-subset Un-empty-right Un-insert-right card.remove
            card-insert-if card-mono fin finite-Diff order-refl)
    moreover have \(\Xi\left\{? C^{\prime}\right\}<\Xi\{? C\}\)
    proof -
        have mset-decomp:
            \(\{\# L a \in \# A .(L=L a \longrightarrow L a \in \# A) \wedge(L \neq L a \longrightarrow 2 \leq \operatorname{count} A L a) \#\}\)
                \(=\{\# L a \in \# A . L \neq L a \wedge 2 \leq\) count A La\#\} +
                    \(\{\# L a \in \# A . L=L a \wedge\) Suc \(0 \leq\) count \(A L \#\}\)
            by (auto simp: multiset-eq-iff ac-simps)
```

```
    have mset-decomp2: {# La \in# A. L\not=La\longrightarrow2\leq count A La#} =
        {# La\in# A.L\not=La^2 \leq count A La#} + replicate-mset (count A L)L
        by (auto simp: multiset-eq-iff)
    have *: (\sumx\in#B. if L=x then Suc (count A x) else count A x)\leq
        ( }\sumx\in#B\mathrm{ . if L = x then Suc (count (add-mset L A) x) else count (add-mset L A) x)
        for B
        by (auto intro!: sum-mset-mono)
    show ?thesis
        using *[of {#La\in# A.L\not=La^2 \leq count A La#}]
        by (auto simp: mset-decomp mset-decomp2 filter-mset-eq)
qed
have }\Xi?\mp@subsup{N}{}{\prime}<\Xi
    proof cases
        assume a1: ? C' }\in
        then show ?thesis
            proof -
                    have f2: \m M. insert (m::'a literal multiset) (M-{m})=M\cup{}\veem\not\inM
                        using Un-empty-right insert-Diff by blast
            have f3: \m M Ma. insert (m::'a literal multiset) M - insert m Ma = M - insert m Ma
                by simp
            then have f4:\bigwedgeMm.M - {m::'a literal multiset }}=\M\cup{}\veem\in
                using Diff-insert-absorb Un-empty-right by fastforce
            have f5: insert ?C N=N
                using f3 f2 Un-empty-right condensation.hyps insert-iff by fastforce
            have }\mM. insert (m::'a literal multiset) M=M\cup{}\veem\not\in
                using f3 f2 Un-empty-right add.right-neutral insert-iff by fastforce
                    then have \Xi(N-{?C})<\XiN
                    using f5 f4 by (metis Un-empty-right { }\Xi{?\mp@subsup{C}{}{\prime}}<\Xi{?C}
                        add.right-neutral add-diff-cancel-left' add-gr-0 diff-less fin finite.emptyI not-le
                        sum-count-ge-2.empty sum-count-ge-2.insert-remove trans-le-add2)
            then show ?thesis
                    using f3 f2 a1 by (metis (no-types) Un-empty-right Un-insert-right condensation.hyps
                        insert-iff multi-self-add-other-not-self)
        qed
    next
        assume ?C' }\mp@subsup{C}{}{\prime}\not\in
        have mset-decomp:
            {# La G# A. (L=La\longrightarrowSuc 0\leqcount A La)^(L\not=La\longrightarrow2\leq count A La)#}
            = {#La\in# A.L\not=La^2\leq count A La#} +
                    {# La\in# A.L=La^Suc 0 \leq count AL#}
                    by (auto simp: multiset-eq-iff ac-simps)
    have mset-decomp2: {# La \in# A. L\not=La\longrightarrow2 < count A La#} =
            {# La\in# A.L#La^2 \leq count A La#} + replicate-mset (count A L)L
            by (auto simp: multiset-eq-iff)
        show ?thesis
            using «\Xi{?C'}<\Xi{?C}> condensation.hyps fin
            sum-count-ge-2.remove[of-?C]\? C' ' }\not=N
            by (auto simp: mset-decomp mset-decomp2 filter-mset-eq)
    qed
    ultimately show ?case by linarith
next
    case (subsumption A B) note AN = this(1) and AB=this(2) and BN=this(3) and fin = this(4)
    have card (N - {B})<card N using BN by (meson card-Diff1-less subsumption.prems)
    moreover have \Xi (N-{B})\leq\XiN
    by (simp add: Diff-subset finite-incl-le-setsum subsumption.prems)
```

ultimately show ?case by linarith
qed
lemma simplify-terminates:
wf $\left\{\left(N^{\prime}, N\right)\right.$. finite $N \wedge$ simplify $\left.N N^{\prime}\right\}$
apply (rule wfP-if-measure[of finite simplify λN. card $N+\Xi N]$)
using simplify-finite-measure-decrease by blast
lemma wf-terminates:
assumes $w f r$
shows $\exists N^{\prime} .\left(N^{\prime}, N\right) \in r^{*} \wedge\left(\forall N^{\prime \prime} .\left(N^{\prime \prime}, N^{\prime}\right) \notin r\right)$
proof -
let ? $P=\lambda N .\left(\exists N^{\prime} .\left(N^{\prime}, N\right) \in r^{*} \wedge\left(\forall N^{\prime \prime} .\left(N^{\prime \prime}, N^{\prime}\right) \notin r\right)\right)$
have $\forall x .(\forall y .(y, x) \in r \longrightarrow ? P y) \longrightarrow ? P x$
proof clarify
fix x
assume $H: \forall y .(y, x) \in r \longrightarrow ? P y$
\{ assume $\exists y .(y, x) \in r$
then obtain y where $y:(y, x) \in r$ by blast
then have ?P y using H by blast then have ?P x using y by (meson rtrancl.rtrancl-into-rtrancl)
\}
moreover \{
assume $\neg(\exists y .(y, x) \in r)$
then have ?P x by auto
\}
ultimately show ?P x by blast
qed
moreover have $(\forall x .(\forall y .(y, x) \in r \longrightarrow ? P y) \longrightarrow ? P x) \longrightarrow$ All ? P
using assms unfolding wf-def by (rule allE)
ultimately have All?P by blast
then show ?P N by blast
qed
lemma rtranclp-simplify-terminates:
assumes fin: finite N
shows $\exists N^{\prime}$. simplify ${ }^{* *} N N^{\prime} \wedge$ simplified N^{\prime}
proof -
have $H:\left\{\left(N^{\prime}, N\right)\right.$. finite $N \wedge$ simplify $\left.N N^{\prime}\right\}=\left\{\left(N^{\prime}, N\right)\right.$. simplify $N N^{\prime} \wedge$ finite $\left.N\right\}$ by auto
then have $w f: w f\left\{\left(N^{\prime}, N\right)\right.$. simplify $N N^{\prime} \wedge$ finite $\left.N\right\}$
using simplify-terminates by (simp add: H)
obtain N^{\prime} where $N^{\prime}:\left(N^{\prime}, N\right) \in\{(b, a) \text {. simplify a } b \wedge \text { finite } a\}^{*}$ and more: $\forall N^{\prime \prime} .\left(N^{\prime \prime}, N^{\prime}\right) \notin\{(b, a)$. simplify a $b \wedge$ finite $a\}$
using Prop-Resolution.wf-terminates $[O F w f$, of $N]$ by blast
have 1: simplify** $N N^{\prime}$
using N^{\prime} by (induction rule: rtrancl.induct) auto
then have finite N^{\prime} using fin rtranclp-simplify-preserves-finite by blast
then have 2: $\forall N^{\prime \prime}$. \neg simplify $N^{\prime} N^{\prime \prime}$ using more by auto
show ?thesis using 12 by blast
qed
lemma finite-simplified-full1-simp:
assumes finite N
shows simplified $N \vee\left(\exists N^{\prime}\right.$. full1 simplify $\left.N N^{\prime}\right)$
using rtranclp-simplify-terminates[OF assms] unfolding full1-def by (metis Nitpick.rtranclp-unfold)
lemma finite-simplified-full-simp:
assumes finite N
shows $\exists N^{\prime}$. full simplify $N N^{\prime}$
using rtranclp-simplify-terminates[OF assms] unfolding full-def by metis
lemma can-decrease-tree-size-resolution:
fixes $\psi::$ 'v state and tree :: 'v sem-tree
assumes finite ($f s t \psi$) and already-used-inv ψ
and partial-interps tree $I($ fst $\psi)$
and simplified (fst ψ)
shows \exists (tree ${ }^{\prime}:$ 'v sem-tree) ψ^{\prime}. resolution** $\psi \psi^{\prime} \wedge$ partial-interps tree ${ }^{\prime} I\left(f s t \psi^{\prime}\right)$
\wedge (sem-tree-size tree ${ }^{\prime}<$ sem-tree-size tree \vee sem-tree-size tree $\left.=0\right)$
using assms
proof (induct arbitrary: I rule: sem-tree-size)
case (bigger xs I) note $I H=$ this(1) and finite $=$ this(2) and $a-u-i=$ this(3) and part $=$ this(4) and $\operatorname{simp}=$ this(5)
\{ assume sem-tree-size $x s=0$ then have ? case using part by blast
\}
moreover \{
assume sn0: sem-tree-size xs >0
obtain ag ad v where $x s: x s=$ Node $v a g$ ad using sn0 by (cases $x s$, auto) \{
assume sem-tree-size $a g=0 \wedge$ sem-tree-size $a d=0$
then have $a g: a g=$ Leaf and $a d: a d=$ Leaf by (cases ag, auto, cases ad, auto)
then obtain $\chi \chi^{\prime}$ where
$\chi: \neg I \cup\{$ Pos $v\} \vDash \chi$ and
tot χ : total-over-m $(I \cup\{$ Pos $v\})\{\chi\}$ and
$\chi \psi: \chi \in f_{s t} \psi$ and
$\chi^{\prime}: \neg I \cup\{$ Neg $v\} \models \chi^{\prime}$ and
tot χ^{\prime} : total-over- $m(I \cup\{N e g v\})\left\{\chi^{\prime}\right\}$ and $\chi^{\prime} \psi: \chi^{\prime} \in f s t \psi$
using part unfolding xs by auto
have Posv: Pos $v \notin \# \chi$ using χ unfolding true-cls-def true-lit-def by auto
have Negv: Neg $v \notin \# \chi^{\prime}$ using χ^{\prime} unfolding true-cls-def true-lit-def by auto
\{
assume Neg χ : Neg $v \notin \# \chi$
then have $\neg I \models \chi$ using χ Posv unfolding true-cls-def true-lit-def by auto
moreover have total-over-m $I\{\chi\}$
using Posv Neg χ atm-imp-pos-or-neg-lit tot χ unfolding total-over-m-def total-over-set-def by fastforce
ultimately have partial-interps Leaf I (fst ψ)
and sem-tree-size Leaf $<$ sem-tree-size xs
and resolution** $\psi \psi$
unfolding $x s$ by (auto simp add: $\chi \psi$)
\}
moreover \{
assume Pos χ : Pos $v \notin \# \chi^{\prime}$
then have $I \chi: \neg I \models \chi^{\prime}$ using χ^{\prime} Posv unfolding true-cls-def true-lit-def by auto
moreover have total-over-m $I\left\{\chi^{\prime}\right\}$
using Negv Pos χ atm-imp-pos-or-neg-lit tot χ^{\prime}

```
        unfolding total-over-m-def total-over-set-def by fastforce
    ultimately have partial-interps Leaf I (fst \psi)
    and sem-tree-size Leaf < sem-tree-size xs
    and resolution** }\psi
    using }\mp@subsup{\chi}{}{\prime}\psiI\chi\mathrm{ unfolding xs by auto
}
moreover {
    assume neg: Neg v\in# \chi and pos: Pos v\in# \chi'
    have count \chi (Neg v)=1
    using simplified-count[OF simp \chi\psi] neg
    by (simp add: dual-order.antisym)
have count \chi}\mp@subsup{\chi}{}{\prime}(\mathrm{ Pos v)}=
    using simplified-count[OF simp \chi}\mp@subsup{\chi}{}{\prime}\psi] po
    by (simp add: dual-order.antisym)
    obtain C where \chiC: \chi= add-mset (Neg v)C and negC:Neg v\not\in#C and posC: Pos v\not\in#
    by (metis (no-types,lifting) One-nat-def Posv <count \chi (Neg v) = 1>
        <count \chi}\mp@subsup{\chi}{}{\prime}(\mathrm{ Pos v) = 1> count-add-mset count-greater-eq-Suc-zero-iff insert-DiffM
        le-numeral-extra(2) nat.inject pos)
obtain C' where
    \chiC': }\mp@subsup{\chi}{}{\prime}=add-mset (Pos v) C' and
    posC': Pos v &# C' and
    neg\mp@subsup{C}{}{\prime}:Neg v &# C'
    by (metis (no-types, lifting) Negv One-nat-def {count \chi' (Pos v) = 1` count-add-mset
        count-eq-zero-iff mset-add nat.inject pos)
have tot \(C\) : total-over-m \(I\{C\}\)
using tot \(\chi\) tot-over-m-remove[of I Pos \(v C]\) neg \(C\) pos \(C\) unfolding \(\chi C\) by auto
have tot \(C^{\prime}\) : total-over-m \(I\left\{C^{\prime}\right\}\)
using tot \(\chi^{\prime}\) total-over-m-sum tot-over-m-remove[of I Neg v C \(]\) neg \(C^{\prime}\) pos \(C^{\prime}\)
unfolding \(\chi C^{\prime}\) by auto
have \(\neg I \models C+C^{\prime}\)
using \(\chi \chi^{\prime} \chi C \chi C^{\prime}\) by auto
then have part-I- \(\psi^{\prime \prime \prime}:\) partial-interps Leaf \(I\left(f s t \psi \cup\left\{C+C^{\prime}\right\}\right)\)
using \(\operatorname{tot} C\) tot \(C^{\prime} \triangleleft I \models C+C^{\prime}\) by (metis Un-insert-right insertI1
partial-interps.simps(1) total-over-m-sum)
\{
assume (add-mset (Pos v) \(C^{\prime}\), add-mset (Neg v) C) \(\notin\) snd \(\psi\)
then have inf \({ }^{\prime \prime}\) : inference \(\psi\left(\right.\) fst \(\psi \cup\left\{C+C^{\prime}\right\}\), snd \(\left.\psi \cup\left\{\left(\chi^{\prime}, \chi\right)\right\}\right)\)
by (metis \(\chi^{\prime} \psi \chi C \chi C^{\prime} \chi \psi\) add-mset-add-single inference-clause.resolution inference-step prod.collapse union-commute)
obtain \(N^{\prime}\) where full: full simplify (fst \(\left.\psi \cup\left\{C+C^{\prime}\right\}\right) N^{\prime}\)
by (metis finite-simplified-full-simp fst-conv inf \({ }^{\prime \prime}\) inference-preserves-finite local.finite)
have resolution \(\psi\left(N^{\prime}\right.\), snd \(\left.\psi \cup\left\{\left(\chi^{\prime}, \chi\right)\right\}\right)\)
using resolution.intros(2)[OF - simp full, of snd \(\psi\) snd \(\left.\psi \cup\left\{\left(\chi^{\prime}, \chi\right)\right\}\right] i n f^{\prime \prime}\)
by (metis surjective-pairing)
moreover have partial-interps Leaf I \(N^{\prime}\)
using full-simplify-preserve-partial-tree \(\left[O F\right.\) full part-I- \(\left.\psi^{\prime \prime \prime}\right]\).
moreover have sem-tree-size Leaf < sem-tree-size xs unfolding xs by auto
ultimately have ? case
by (metis (no-types) prod.sel(1) rtranclp.rtrancl-into-rtrancl rtranclp.rtrancl-refl)
\}
moreover \{
```

```
        assume a:({#Posv#}+C',{#Negv#} + C)\in snd \psi
        then have ( }\exists\chi\infst\psi.(\forallI.total-over-m I {C+C'} \longrightarrow total-over-m I {\chi}
            \wedge ( \forall I . ~ t o t a l - o v e r - m ~ I \{ \chi \} \longrightarrow I \vDash \chi \longrightarrow I \models C ' + C ) ) \vee ~ t a u t o l o g y ~ ( ~ C ' ~ + ~ C )
            proof -
            obtain p where p: Pos p \in# ({#Pos v#} + C')^Neg p \in# ({#Negv#} + C)
                \wedge((\exists\chi\infst \psi. (\forallI. total-over-m I {({#Pos v#} + C') - {#Pos p#} + (({#Neg v#}
+C)-{#Neg p#})}\longrightarrow total-over-m I {\chi})^(\forallI. total-over-m I {\chi}\longrightarrowI 
v#} + C') - {#Pos p#} + (({#Neg v#} + C) - {#Neg p#}))) \vee tautology (({#Pos v#} + C') -
{#Pos p#} + (({#Negv#} + C) - {#Neg p#})))
                using a by (blast intro: allE[OF a-u-i[unfolded subsumes-def Ball-def],
                    of ({#Pos v#} + C', {#Negv#}+C)])
            { assume p\not=v
                        then have Pos p\in# C'^Neg p\in#C using p by force
                then have ?thesis by auto
            }
            moreover {
                assume p=v
                then have ?thesis using p by (metis add.commute add-diff-cancel-left')
                }
                ultimately show ?thesis by auto
            qed
        moreover {
            assume \exists\chi fst \psi.(\forallI. total-over-m I {C+C'} \longrightarrow total-over-m I {\chi})
                \wedge ( \forall I . ~ t o t a l - o v e r - m ~ I ~ \{ \chi \} \longrightarrow I \models \chi \longrightarrow I \models C ' + C )
            then obtain \vartheta}\mathrm{ where
                \vartheta:\vartheta fst \psi and
                tot-\vartheta-CC':}\forallI. total-over-m I {C+C'} \longrightarrow total-over-m I {\vartheta} and
                \vartheta-inv: \forallI. total-over-m I {\vartheta}\longrightarrowI\models\vartheta\longrightarrow }\longrightarrow\models=\mp@subsup{C}{}{\prime}+C\mathrm{ by blast
            have partial-interps Leaf I (fst \psi)
                using tot-\vartheta-CC'\vartheta \vartheta \vartheta-inv totC totC' }\neg\negI\modelsC+C's total-over-m-sum by fastforce
            moreover have sem-tree-size Leaf < sem-tree-size xs unfolding xs by auto
            ultimately have ?case by blast
        }
            moreover {
                assume tautCC': tautology ( }\mp@subsup{C}{}{\prime}+C
            have total-over-m I { ' ' +C} using totC tot C' total-over-m-sum by auto
            then have \negtautology ( }\mp@subsup{C}{}{\prime}+C
                using}{\negI\modelsC+\mp@subsup{C}{}{\prime}`\mathrm{ unfolding add.commute[of C C ] total-over-m-def
                unfolding tautology-def by auto
            then have False using tautCC' unfolding tautology-def by auto
        }
            ultimately have ?case by auto
        }
        ultimately have ?case by auto
    }
    ultimately have ?case using part by (metis (no-types) sem-tree-size.simps(1))
}
moreover {
    assume size-ag: sem-tree-size ag > 0
    have sem-tree-size ag< sem-tree-size xs unfolding xs by auto
    moreover have partial-interps ag (I\cup{Pos v})(fst \psi)
    and partad: partial-interps ad (I\cup{Neg v})(fst \psi)
    using part partial-interps.simps(2) unfolding xs by metis+
    moreover
        have sem-tree-size ag< sem-tree-size xs \Longrightarrow finite (fst }\psi)\Longrightarrow\mathrm{ already-used-inv }
            \Longrightarrow \text { partial-interps ag (I \{ \{Posv\}) (fst } \psi ) \Longrightarrow \text { simplified (fst } \psi )
```

```
\Longrightarrow \exists \text { tree } ^ { \prime } \psi ^ { \prime } . \text { .resolution** } \psi \psi ^ { \prime } \wedge ~ p a r t i a l - i n t e r p s ~ t r e e ' ~ ( I \cup \{ P o s ~ v \} ) ~ ( f s t ~ \psi ' )
                \wedge(sem-tree-size tree' < sem-tree-size ag \vee sem-tree-size ag=0)
            using IH[of ag I \cup{Pos v}] by auto
        ultimately obtain \psi' ::'v state and tree' :: 'v sem-tree where
            inf: resolution** }\psi\mp@subsup{\psi}{}{\prime
            and part: partial-interps tree' (I \cup{Pos v})(fst \psi')
            and size: sem-tree-size tree }\mp@subsup{}{}{\prime}<\mathrm{ sem-tree-size ag }\vee sem-tree-size ag =0 
            using finite part rtranclp.rtrancl-refl a-u-i simp by blast
            have partial-interps ad (I\cup{Neg v}) (fst \psi')
            using rtranclp-resolution-preserve-partial-tree inf partad by fast
            then have partial-interps(Node v tree' ad) I (fst \psi') using part by auto
            then have ?case using inf size size-ag part unfolding xs by fastforce
    }
    moreover {
            assume size-ad: sem-tree-size ad > 0
            have sem-tree-size ad < sem-tree-size xs unfolding xs by auto
            moreover
            have
                partag: partial-interps ag (I\cup{Pos v}) (fst \psi) and
                partial-interps ad (I\cup{Neg v})(fst \psi)
                using part partial-interps.simps(2) unfolding xs by metis+
    moreover have sem-tree-size ad < sem-tree-size xs \longrightarrow finite (fst \psi)\longrightarrowalready-used-inv \psi
        \longrightarrow ( ~ p a r t i a l - i n t e r p s ~ a d ~ ( I \cup \{ N e g v \} ) ~ ( f s t ~ \psi ) \longrightarrow ~ s i m p l i f i e d ~ ( f s t ~ \psi )
        \longrightarrow ( \exists \text { tree } ^ { \prime } \psi ^ { \prime } . \text { resolution** } \psi \psi ^ { \prime } \wedge ~ p a r t i a l - i n t e r p s ~ t r e e ' ~ ( I \cup \{ N e g ~ v \} ) ~ ( f s t ~ \psi ' )
                ^(sem-tree-size tree' < sem-tree-size ad \vee sem-tree-size ad = 0)))
        using IH by blast
    ultimately obtain \psi' :: 'v state and tree' :: 'v sem-tree where
        inf: resolution** }\psi\mp@subsup{\psi}{}{\prime
        and part: partial-interps tree' (I \cup{Neg v})(fst \psi')
        and size: sem-tree-size tree' < sem-tree-size ad \vee sem-tree-size ad = 0
        using finite part rtranclp.rtrancl-refl a-u-i simp by blast
        have partial-interps ag (I\cup{Pos v})(fst \psi')
        using rtranclp-resolution-preserve-partial-tree inf partag by fast
    then have partial-interps (Node v ag tree') I (fst \psi') using part by auto
    then have ?case using inf size size-ad unfolding xs by fastforce
    }
    ultimately have ?case by auto
}
ultimately show ?case by auto
qed
lemma resolution-completeness-inv:
    fixes \psi :: 'v ::linorder state
    assumes
        unsat: \negsatisfiable (fst \psi) and
        finite: finite (fst \psi) and
        a-u-v: already-used-inv \psi
    shows \exists\exists\mp@subsup{\psi}{}{\prime}.(resolution**}\psi\mp@subsup{\psi}{}{\prime}\wedge{#}\infst \mp@subsup{\psi}{}{\prime}
proof -
    obtain tree where partial-interps tree {} (fst \psi)
        using partial-interps-build-sem-tree-atms assms by metis
    then show ?thesis
        using unsat finite a-u-v
        proof (induct tree arbitrary: \psi rule: sem-tree-size)
```

```
case (bigger tree \psi) note H= this
{
    fix \chi
    assume tree: tree = Leaf
    obtain }\chi\mathrm{ where }\chi:\neg{}\vDash\chi\mathrm{ and tot }\chi\mathrm{ : total-over-m {} { 
        using H unfolding tree by auto
    moreover have {#} = \chi
        using H atms-empty-iff-empty tot\chi
        unfolding true-cls-def total-over-m-def total-over-set-def by fastforce
    moreover have resolution** }\psi\psi\mathrm{ by auto
    ultimately have ?case by metis
}
moreover {
    fix v tree1 tree2
    assume tree: tree = Node v tree1 tree2
    obtain }\mp@subsup{\psi}{0}{}\mathrm{ where }\mp@subsup{\psi}{0}{}\mathrm{ : resolution** }\psi\mp@subsup{\psi}{0}{}\mathrm{ and simp: simplified (fst }\mp@subsup{\psi}{0}{}
        proof -
        { assume simplified (fst \psi)
            moreover have resolution** }\psi\psi\mathrm{ by auto
            ultimately have thesis using that by blast
        }
        moreover {
            assume }\neg\mathrm{ simplified (fst }\psi\mathrm{ )
            then have }\exists\mp@subsup{\psi}{}{\prime}\mathrm{ . full1 simplify (fst }\psi)\mp@subsup{\psi}{}{\prime
                by (metis Nitpick.rtranclp-unfold bigger.prems(3) full1-def
                rtranclp-simplify-terminates)
            then obtain N where full1 simplify (fst \psi) N by metis
            then have resolution }\psi(N,\mathrm{ snd }\psi
                    using resolution.intros(1)[of fst \psi N snd \psi] by auto
            moreover have simplified N
                    using <full1 simplify (fst \psi) N` unfolding full1-def by blast
            ultimately have ?thesis using that by force
        }
        ultimately show ?thesis by auto
    qed
    have p: partial-interps tree {} (fst }\mp@subsup{\psi}{0}{}
    and uns: unsatisfiable (fst \psi}\mp@subsup{\psi}{0}{}
    and f: finite (fst \psi }\mp@subsup{\psi}{0}{}
    and a-u-v: already-used-inv }\mp@subsup{\psi}{0}{
        using }\mp@subsup{\psi}{0}{}\mathrm{ bigger.prems(1) rtranclp-resolution-preserve-partial-tree apply blast
        using }\mp@subsup{\psi}{0}{}\mathrm{ bigger.prems(2) rtranclp-resolution-preserves-unsat apply blast
        using }\mp@subsup{\psi}{0}{}\mathrm{ bigger.prems(3) rtranclp-resolution-finite apply blast
        using rtranclp-resolution-already-used-inv[OF \psi bigger.prems(4)] by blast
    obtain tree' }\mp@subsup{\psi}{}{\prime}\mathrm{ where
        inf: resolution** }\mp@subsup{\psi}{0}{}\mp@subsup{\psi}{}{\prime}\mathrm{ and
        part': partial-interps tree' {} (fst \psi') and
        decrease: sem-tree-size tree' < sem-tree-size tree \vee sem-tree-size tree = 0
        using can-decrease-tree-size-resolution[OF f a-u-v p simp] unfolding tautology-def
        by meson
    have s: sem-tree-size tree' < sem-tree-size tree using decrease unfolding tree by auto
    have fin: finite (fst \psi')
        using f inf rtranclp-resolution-finite by blast
    have unsat: unsatisfiable (fst \psi')
        using rtranclp-resolution-preserves-unsat inf uns by metis
```

```
                have a-u-i': already-used-inv \psi'
                    using a-u-v inf rtranclp-resolution-already-used-inv[of \psi}\mp@subsup{\psi}{0}{\prime}\mp@subsup{\psi}{}{\prime}]\mathrm{ by auto
            have ?case
                using inf rtranclp-trans[of resolution] H(1)[OF s part' unsat fin a-u-i] \psi \psi by blast
        }
        ultimately show ?case by (cases tree, auto)
        qed
qed
lemma resolution-preserves-already-used-inv:
    assumes resolution S S'
    and already-used-inv S
    shows already-used-inv S'
    using assms
    apply (induct rule: resolution.induct)
    apply (rule full1-simplify-already-used-inv; simp)
    apply (rule full-simplify-already-used-inv, simp)
    apply (rule inference-preserves-already-used-inv, simp)
    apply blast
    done
lemma rtranclp-resolution-preserves-already-used-inv:
    assumes resolution** S S'
    and already-used-inv S
    shows already-used-inv S'
    using assms
    apply (induct rule: rtranclp-induct)
    apply simp
    using resolution-preserves-already-used-inv by fast
lemma resolution-completeness:
    fixes \psi :: 'v ::linorder state
    assumes unsat: \negsatisfiable (fst \psi)
    and finite: finite (fst \psi)
    and snd \psi = {}
    shows \exists \mp@subsup{\psi}{}{\prime}.(resolution** }\psi\mp@subsup{\psi}{}{\prime}\wedge{#}\infst \psi'
proof -
    have already-used-inv \psi unfolding assms by auto
    then show ?thesis using assms resolution-completeness-inv by blast
qed
lemma rtranclp-preserves-sat:
    assumes simplify** S S'
    and satisfiable S
    shows satisfiable S'
    using assms apply induction
    apply simp
    by (meson satisfiable-carac satisfiable-def simplify-preserve-models-eq)
lemma resolution-preserves-sat:
    assumes resolution S S'
    and satisfiable (fst S)
    shows satisfiable (fst S')
    using assms apply (induction rule: resolution.induct)
    using rtranclp-preserves-sat tranclp-into-rtranclp unfolding full1-def apply fastforce
    by (metis fst-conv full-def inference-preserve-models rtranclp-preserves-sat
```

```
    satisfiable-carac' satisfiable-def)
lemma rtranclp-resolution-preserves-sat:
    assumes resolution** S S'
    and satisfiable (fst S)
    shows satisfiable (fst S')
    using assms apply (induction rule: rtranclp-induct)
    apply simp
    using resolution-preserves-sat by blast
lemma resolution-soundness:
    fixes }\psi::'v v::linorder stat
    assumes resolution** }\psi\mp@subsup{\psi}{}{\prime}\mathrm{ and {#} & fst *'
    shows unsatisfiable (fst \psi)
    using assms by (meson rtranclp-resolution-preserves-sat satisfiable-def true-cls-empty
        true-clss-def)
lemma resolution-soundness-and-completeness:
fixes \psi :: 'v ::linorder state
assumes finite: finite (fst \psi)
and snd: snd \psi}={
shows }(\exists\mp@subsup{\psi}{}{\prime}.(\mathrm{ resolution** }\psi\mp@subsup{\psi}{}{\prime}\wedge{#}\infst \psi')) \longleftrightarrowunsatisfiable (fst \psi
    using assms resolution-completeness resolution-soundness by metis
lemma simplified-falsity:
    assumes simp: simplified \psi
    and {#} \in\psi
    shows \psi}={{#}
proof (rule ccontr)
    assume H: \neg ?thesis
    then obtain \chi where }\chi\in\psi\mathrm{ and }\chi\not={#}\mathrm{ using assms(2) by blast
    then have {#} \subset# \chi by (simp add: subset-mset.zero-less-iff-neq-zero)
    then have simplify \psi (\psi-{\chi})
        using simplify.subsumption[OF assms(2)<{#}\subset# \chi><\chi<\psi>] by blast
    then show False using simp by blast
qed
lemma simplify-falsity-in-preserved:
    assumes simplify \chis \chi < 's
    and {#} \in \chis
    shows {#}\in\chi\mp@subsup{s}{}{\prime}
    using assms
    by induction auto
lemma rtranclp-simplify-falsity-in-preserved:
    assumes simplify** \chis \chi\mp@subsup{s}{}{\prime}
    and {#} \in\chis
    shows {#} \in\chi 's'
    using assms
    by induction (auto intro: simplify-falsity-in-preserved)
lemma resolution-falsity-get-falsity-alone:
    assumes finite (fst \psi)
    shows }(\exists\mp@subsup{\psi}{}{\prime}.(\mathrm{ resolution** }\psi\mp@subsup{\psi}{}{\prime}\wedge{#}\infst \psi'))\longleftrightarrow(\existsa-u-v.resolution** \psi ({{#}},a-u-v)
        (is ?A \longleftrightarrow?B)
```

```
proof
    assume ?B
    then show ?A by auto
next
    assume ?A
    then obtain \chis a-u-v where \chis: resolution** \psi (\chis,a-u-v) and F:{#}\in\chis by auto
    { assume simplified \chis
    then have ?B using simplified-falsity[OF - F] \chis by blast
    }
    moreover {
    assume \neg simplified \chis
    then obtain \chi}\mp@subsup{s}{}{\prime}\mathrm{ where full1 simplify }\chis\chi\mp@subsup{s}{}{\prime
        by (metis \chis assms finite-simplified-full1-simp fst-conv rtranclp-resolution-finite)
    then have {#} \in\chi\mp@subsup{s}{}{\prime}
            unfolding full1-def by (meson F rtranclp-simplify-falsity-in-preserved
                tranclp-into-rtranclp)
    then have ? B
            by (metis \chis <full1 simplify \chis \chi 's` fst-conv full1-simp resolution-always-simplified
                rtranclp.rtrancl-into-rtrancl simplified-falsity)
    }
    ultimately show ?B by blast
qed
theorem resolution-soundness-and-completeness':
    fixes \psi :: 'v ::linorder state
    assumes
        finite: finite (fst \psi)and
        snd: snd \psi = {}
    shows (\existsa-u-v. (resolution** \psi ({{#}},a-u-v))) \longleftrightarrow unsatisfiable (fst \psi)
    using assms resolution-completeness resolution-soundness resolution-falsity-get-falsity-alone
    by metis
end
theory Prop-Superposition
imports Entailment-Definition.Partial-Herbrand-Interpretation Ordered-Resolution-Prover.Herbrand-Interpretation
begin
```


2.2 Superposition

```
no-notation Herbrand-Interpretation.true-cls(infix }\models50
notation Herbrand-Interpretation.true-cls(infix }\modelsh 50
no-notation Herbrand-Interpretation.true-clss (infix \modelss 50)
notation Herbrand-Interpretation.true-clss (infix }\modelshs 50
lemma herbrand-interp-iff-partial-interp-cls:
    S\modelshC\longleftrightarrow\longleftrightarrow {Pos P|P.P\inS}\cup{Neg P|P.P\not\inS}\modelsC
    unfolding Herbrand-Interpretation.true-cls-def Partial-Herbrand-Interpretation.true-cls-def
    by auto
lemma herbrand-consistent-interp:
    consistent-interp ({Pos P|P.P\inS}\cup{Neg P|P.P\not\inS})
    unfolding consistent-interp-def by auto
lemma herbrand-total-over-set:
```

```
    total-over-set ({Pos P|P.P\inS}\cup{Neg P|P.P\not\inS})T
    unfolding total-over-set-def by auto
lemma herbrand-total-over-m:
    total-over-m ({Pos P|P.P\inS}\cup{Neg P|P.P\not\inS})T
    unfolding total-over-m-def by (auto simp add: herbrand-total-over-set)
lemma herbrand-interp-iff-partial-interp-clss:
    S\modelshs C\longleftrightarrow < Pos P|P.P\inS}\cup{Neg P|P.P\not\inS}\modelssC
    unfolding true-clss-def Ball-def herbrand-interp-iff-partial-interp-cls
    Partial-Herbrand-Interpretation.true-clss-def by auto
definition clss-lt :: 'a::wellorder clause-set }=>\mathrm{ ' 'a clause }=>\mathrm{ ' 'a clause-set where
clss-lt N C = {D\inN.D<C}
notation (latex output)
    clss-lt (-<`bsup>-<`esup>)
locale selection =
    fixes S :: 'a clause =>'a clause
    assumes
        S-selects-subseteq: }\C.SC\leq#C an
        S-selects-neg-lits: \bigwedgeCL.L\in#SC\Longrightarrow is-neg L
locale ground-resolution-with-selection =
    selection S for S :: ('a :: wellorder) clause = 'a clause
begin
context
    fixes N :: 'a clause set
begin
```

We do not create an equivalent of δ, but we directly defined N_{C} by inlining the definition.

```
function
    production :: 'a clause }=>\mp@subsup{}{}{\prime}'a inter
where
    production C =
        {A.C\inN\wedgeC\not={#}\wedge Max-mset C=Pos A ^ count C (Pos A)\leq1
        \wedge\neg(\bigcupD\in{D.D<C}.production D) \modelshC\wedgeSC={#}}
    by auto
termination by (relation {(D,C). D<C}) (auto simp: wf-less-multiset)
declare production.simps[simp del]
definition interp :: 'a clause }=>\mathrm{ 'a interp where
    interp}C=(\bigcupD\in{D.D<C}.production D)
lemma production-unfold:
    production C = {A.C CN^C\not={#} ^Max-mset C=Pos A^ count C (Pos A) \leq 1 ^ ᄀ interp
C\modelshC^SC={#}}
    unfolding interp-def by (rule production.simps)
abbreviation productive }A\equiv(\mathrm{ production A}\not={}
abbreviation produces :: ' a clause = ' }a=>\mathrm{ bool where
    produces C A \equivproduction C = {A}
```

```
lemma producesD:
    produces C A\LongrightarrowC\inN^C\not={#}\wedge Pos A=Max-mset C ^ count C (Pos A)\leq1^
    \neg interp C\modelshC\wedgeSC={#}
    unfolding production-unfold by auto
lemma produces }CA\Longrightarrow\mathrm{ Pos }A\in#
    by (simp add: Max-in-lits producesD)
lemma interp'-def-in-set:
    interp C=(\bigcupD\in{D\inN.D<C}.production D)
    unfolding interp-def apply auto
    unfolding production-unfold apply auto
    done
lemma production-iff-produces:
    produces D A \longleftrightarrowA\in production D
    unfolding production-unfold by auto
definition Interp :: 'a clause }=>\mathrm{ ' 'a interp where
    Interp C = interp C \cup production C
lemma
    assumes produces C P
    shows Interp C\modelshC
    unfolding Interp-def assms using producesD[OF assms]
    by (metis Max-in-lits Un-insert-right insertI1 pos-literal-in-imp-true-cls)
definition INTERP :: 'a interp where
INTERP = (UD GN. production D)
lemma interp-subseteq-Interp[simp]: interp C \subseteqInterp C
    unfolding Interp-def by simp
lemma Interp-as-UNION: Interp C = (\bigcupD { {D. D\leqC}. production D)
    unfolding Interp-def interp-def less-eq-multiset-def by fast
lemma productive-not-empty: productive }C\LongrightarrowC\not={#
    unfolding production-unfold by auto
lemma productive-imp-produces-Max-literal: productive C \Longrightarrow produces C (atm-of (Max-mset C))
    unfolding production-unfold by (auto simp del: atm-of-Max-lit)
lemma productive-imp-produces-Max-atom: productive C\Longrightarrow produces C (Max (atms-of C))
    unfolding atms-of-def Max-atm-of-set-mset-commute[OF productive-not-empty]
    by (rule productive-imp-produces-Max-literal)
lemma produces-imp-Max-literal: produces C A \LongrightarrowA=atm-of (Max-mset C)
    by (metis Max-singleton insert-not-empty productive-imp-produces-Max-literal)
lemma produces-imp-Max-atom: produces C A\LongrightarrowA=Max (atms-of C)
    by (metis Max-singleton insert-not-empty productive-imp-produces-Max-atom)
lemma produces-imp-Pos-in-lits: produces C A\LongrightarrowPos A \in#C
    by (auto intro: Max-in-lits dest!: producesD)
```

lemma productive-in- N : productive $C \Longrightarrow C \in N$
unfolding production-unfold by auto
lemma produces-imp-atms-leq: produces $C A \Longrightarrow B \in$ atms-of $C \Longrightarrow B \leq A$ by (metis Max-ge finite-atms-of insert-not-empty productive-imp-produces-Max-atom singleton-inject)
lemma produces-imp-neg-notin-lits: produces $C A \Longrightarrow$ Neg $A \notin \# C$
by (rule pos-Max-imp-neg-notin) (auto dest: producesD)
lemma less-eq-imp-interp-subseteq-interp: $C \leq D \Longrightarrow \operatorname{interp} C \subseteq \operatorname{interp} D$
unfolding interp-def by auto (metis order.strict-trans2)
lemma less-eq-imp-interp-subseteq-Interp: $C \leq D \Longrightarrow \operatorname{interp} C \subseteq$ Interp D unfolding Interp-def using less-eq-imp-interp-subseteq-interp by blast
lemma less-imp-production-subseteq-interp: $C<D \Longrightarrow$ production $C \subseteq$ interp D unfolding interp-def by fast
lemma less-eq-imp-production-subseteq-Interp: $C \leq D \Longrightarrow$ production $C \subseteq$ Interp D unfolding Interp-def using less-imp-production-subseteq-interp by (metis le-imp-less-or-eq le-supI1 sup-ge2)
lemma less-imp-Interp-subseteq-interp: $C<D \Longrightarrow$ Interp $C \subseteq \operatorname{interp} D$
unfolding Interp-def
by (auto simp: less-eq-imp-interp-subseteq-interp less-imp-production-subseteq-interp)
lemma less-eq-imp-Interp-subseteq-Interp: $C \leq D \Longrightarrow$ Interp $C \subseteq$ Interp D
using less-imp-Interp-subseteq-interp
unfolding Interp-def by (metis le-imp-less-or-eq le-supI2 subset-refl sup-commute)
lemma false-Interp-to-true-interp-imp-less-multiset: $A \notin \operatorname{Interp} C \Longrightarrow A \in \operatorname{interp} D \Longrightarrow C<D$
using less-eq-imp-interp-subseteq-Interp not-less by blast
lemma false-interp-to-true-interp-imp-less-multiset: $A \notin \operatorname{interp} C \Longrightarrow A \in \operatorname{interp} D \Longrightarrow C<D$ using less-eq-imp-interp-subseteq-interp not-less by blast
lemma false-Interp-to-true-Interp-imp-less-multiset: $A \notin$ Interp $C \Longrightarrow A \in \operatorname{Interp} D \Longrightarrow C<D$ using less-eq-imp-Interp-subseteq-Interp not-less by blast
lemma false-interp-to-true-Interp-imp-le-multiset: $A \notin \operatorname{interp} C \Longrightarrow A \in \operatorname{Interp} D \Longrightarrow C \leq D$ using less-imp-Interp-subseteq-interp not-less by blast
lemma interp-subseteq-INTERP: interp $C \subseteq$ INTERP
unfolding interp-def INTERP-def by (auto simp: production-unfold)
lemma production-subseteq-INTERP: production $C \subseteq I N T E R P$
unfolding INTERP-def using production-unfold by blast
lemma Interp-subseteq-INTERP: Interp $C \subseteq$ INTERP
unfolding Interp-def by (auto intro!: interp-subseteq-INTERP production-subseteq-INTERP)
This lemma corresponds to theorem 2.7.7 page 77 of Weidenbach's book.
lemma produces-imp-in-interp:
assumes $a-i n-c$: Neg $A \in \# C$ and d : produces $D A$

```
    shows A\ininterp C
proof -
    from d have Max-mset D = Pos A
        using production-unfold by blast
    then have D<{#Neg A#}
        by (meson Max-pos-neg-less-multiset multi-member-last)
    moreover have {#Neg A#}\leqC
        by (rule subset-eq-imp-le-multiset) (rule mset-subset-eq-single[OF a-in-c])
    ultimately show ?thesis
        using d by (blast dest: less-eq-imp-interp-subseteq-interp less-imp-production-subseteq-interp)
qed
```



```
A
    by (auto dest: produces-imp-in-interp less-eq-imp-interp-subseteq-Interp)
lemma in-production-imp-produces: A \in production C\Longrightarrow produces C A
    by (metis insert-absorb productive-imp-produces-Max-atom singleton-insert-inj-eq')
lemma not-produces-imp-notin-production: \neg produces C A \Longrightarrow A & production C
    by (metis in-production-imp-produces)
lemma not-produces-imp-notin-interp: (\bigwedgeD. ᄀ produces D A)\LongrightarrowA\not\ininterp C
    unfolding interp-def by (fast intro!: in-production-imp-produces)
```

The results below corresponds to Lemma 3.4.

Nitpicking 0.1. If $D=D^{\prime}$ and D is productive, $I^{D} \subseteq I_{D^{\prime}}$ does not hold.
lemma true-Interp-imp-general:
assumes
c-le-d: $C \leq D$ and
$d-l t-d^{\prime}: D<D^{\prime}$ and
c-at- d : Interp $D \models h C$ and
subs: interp $D^{\prime} \subseteq(\bigcup C \in C C$. production $C)$
shows $(\bigcup C \in C C$. production $C) \models h C$
proof (cases $\exists A$. Pos $A \in \# C \wedge A \in \operatorname{Interp} D)$
case True
then obtain A where a-in-c: Pos $A \in \# C$ and a-at- $d: A \in \operatorname{Interp} D$
by blast
from $a-a t-d$ have $A \in \operatorname{interp} D^{\prime}$
using d-lt-d' less-imp-Interp-subseteq-interp by blast
then show ?thesis
using subs a-in-c by (blast dest: contra-subsetD)
next
case False
then obtain A where $a-i n-c:$ Neg $A \in \# C$ and $A \notin \operatorname{Interp} D$
using c-at-d unfolding true-cls-def by blast
then have $\wedge D^{\prime \prime}$. \neg produces $D^{\prime \prime} A$
using c-le-d neg-notin-Interp-not-produce by simp
then show? thesis
using a-in-c subs not-produces-imp-notin-production by auto
qed
lemma true-Interp-imp-interp: $C \leq D \Longrightarrow D<D^{\prime} \Longrightarrow$ Interp $D \models h C \Longrightarrow$ interp $D^{\prime} \models h C$
using interp-def true-Interp-imp-general by simp
lemma true-Interp-imp-Interp: $C \leq D \Longrightarrow D<D^{\prime} \Longrightarrow$ Interp $D \models h C \Longrightarrow$ Interp $D^{\prime} \models h C$ using Interp-as-UNION interp-subseteq-Interp true-Interp-imp-general by simp
lemma true-Interp-imp-INTERP: $C \leq D \Longrightarrow$ Interp $D \models h C \Longrightarrow$ INTERP $\models h C$
using INTERP-def interp-subseteq-INTERP
true-Interp-imp-general[OF - le-multiset-right-total $]$
by simp
lemma true-interp-imp-general:
assumes
c-le-d: $C \leq D$ and
$d-l t-d^{\prime}: D<D^{\prime}$ and
c-at-d: interp $D \models h C$ and
subs: interp $D^{\prime} \subseteq(\bigcup C \in C C$. production $C)$
shows $(\cup C \in C C$. production $C) \models h C$
proof (cases \exists. Pos $A \in \# C \wedge A \in \operatorname{interp} D$)
case True
then obtain A where a-in-c: Pos $A \in \# C$ and a-at- $d: A \in \operatorname{interp} D$ by blast
from a-at- d have $A \in \operatorname{interp} D^{\prime}$
using d-lt-d' less-eq-imp-interp-subseteq-interp[OF less-imp-le] by blast
then show ?thesis
using subs a-in-c by (blast dest: contra-subsetD)
next
case False
then obtain A where a-in-c: Neg $A \in \# C$ and $A \notin \operatorname{interp} D$ using c-at- d unfolding true-cls-def by blast
then have $\bigwedge D^{\prime \prime}$. \neg produces $D^{\prime \prime} A$ using c-le-d by (auto dest: produces-imp-in-interp less-eq-imp-interp-subseteq-interp)
then show ?thesis using a-in-c subs not-produces-imp-notin-production by auto
qed
This lemma corresponds to theorem 2.7.7 page 77 of Weidenbach's book. Here the strict maximality is important
lemma true-interp-imp-interp: $C \leq D \Longrightarrow D<D^{\prime} \Longrightarrow \operatorname{interp} D \models h C \Longrightarrow \operatorname{interp} D^{\prime} \models h C$ using interp-def true-interp-imp-general by simp
lemma true-interp-imp-Interp: $C \leq D \Longrightarrow D<D^{\prime} \Longrightarrow$ interp $D \models h C \Longrightarrow$ Interp $D^{\prime} \models h C$ using Interp-as-UNION interp-subseteq-Interp[of $\left.D^{\prime}\right]$ true-interp-imp-general by simp
lemma true-interp-imp-INTERP: $C \leq D \Longrightarrow$ interp $D \models h C \Longrightarrow$ INTERP $\models h C$
using INTERP-def interp-subseteq-INTERP true-interp-imp-general[OF - le-multiset-right-total] by simp
lemma productive-imp-false-interp: productive $C \Longrightarrow \neg$ interp $C \models h C$ unfolding production-unfold by auto

This lemma corresponds to theorem 2.7.7 page 77 of Weidenbach's book. Here the strict maximality is important
lemma cls-gt-double-pos-no-production:
assumes $D:\{\#$ Pos P, Pos $P \#\}<C$

```
        shows \negproduces C P
proof -
    let ?D = {#Pos P, Pos P#}
    note D' = D[unfolded less-multiset HO
    consider
        (P) count C (Pos P)\geq2
    |}(Q)Q\mathrm{ where }Q>Pos P and Q\in#
        using HOL.spec[OF HOL.conjunct2[OF D'],of Pos P] by (auto split: if-split-asm)
    then show ?thesis
        proof cases
            case Q
            have}Q\in\mathrm{ set-mset C
                using Q(2) by (auto split: if-split-asm)
                    then have Max-mset C>Pos P
                            using Q(1) Max-gr-iff by blast
                            then show ?thesis
                unfolding production-unfold by auto
        next
            case P
            then show ?thesis
                unfolding production-unfold by auto
            qed
qed
```

This lemma corresponds to theorem 2.7.7 page 77 of Weidenbach's book.

```
lemma
    assumes D:C+{#Neg P#}<D
    shows production D}\not={P
proof -
    note }\mp@subsup{D}{}{\prime}=D[\mathrm{ unfolded less-multiset }\mp@subsup{\mp@code{HO}}{O}{
    consider
            (P) Neg P G# D
    | (Q) Q where Q>Neg P and count D Q> count (C+{#Neg P#}) Q
        using HOL.spec[OF HOL.conjunct2[OF D], of Neg P] count-greater-zero-iff by fastforce
    then show ?thesis
        proof cases
            case Q
            have Q\in set-mset D
                using Q(2) gr-implies-not0 by fastforce
                    then have Max-mset D>Neg P
                    using Q(1) Max-gr-iff by blast
                then have Max-mset D>Pos P
                using less-trans[of Pos P Neg P Max-mset D] by auto
                then show ?thesis
                    unfolding production-unfold by auto
        next
                case P
                then have Max-mset D>Pos P
                        by (meson Max-ge finite-set-mset le-less-trans linorder-not-le pos-less-neg)
            then show ?thesis
                unfolding production-unfold by auto
        qed
qed
lemma in-interp-is-produced:
    assumes P}\inINTER
```

shows $\exists D . D+\{\#$ Pos $P \#\} \in N \wedge$ produces $(D+\{\#$ Pos $P \#\}) P$
using assms unfolding INTERP-def UN-iff production-iff-produces Ball-def
by (metis ground-resolution-with-selection.produces-imp-Pos-in-lits insert-DiffM2
ground-resolution-with-selection-axioms not-produces-imp-notin-production)
end
end

2.2.1 We can now define the rules of the calculus

inductive superposition-rules $::$ 'a clause \Rightarrow 'a clause \Rightarrow 'a clause \Rightarrow bool where factoring: superposition-rules $(C+\{\# \operatorname{Pos} P \#\}+\{\# \operatorname{Pos} P \#\}) B(C+\{\#$ Pos $P \#\}) \mid$ superposition-l: superposition-rules $\left(C_{1}+\left\{\#\right.\right.$ Pos P\#\}) $\left(C_{2}+\left\{\#\right.\right.$ Neg P\#\}) $\left(C_{1}+C_{2}\right)$
inductive superposition :: 'a clause-set \Rightarrow 'a clause-set \Rightarrow bool where
superposition: $A \in N \Longrightarrow B \in N \Longrightarrow$ superposition-rules $A B C$
\Longrightarrow superposition $N(N \cup\{C\})$
definition abstract-red :: 'a:: wellorder clause $\Rightarrow{ }^{\prime} a$ clause-set \Rightarrow bool where
abstract-red $C N=($ clss-lt $N C \models p C)$
lemma herbrand-true-clss-true-clss-cls-herbrand-true-clss:

assumes

$A B: A \models h s B$ and
$B C: B \models p C$
shows $A \models h C$
proof -
let $? I=\{$ Pos $P \mid P . P \in A\} \cup\{N e g P \mid P . P \notin A\}$
have B : ? $I \models s B$ using $A B$
by (auto simp add: herbrand-interp-iff-partial-interp-clss)
have $I H: \bigwedge I$. total-over-set I (atms-of $C) \Longrightarrow$ total-over-m I B consistent-interp I
$\Longrightarrow I \models s B \Longrightarrow I \models C$ using $B C$
by (auto simp add: true-clss-cls-def)
show ?thesis
unfolding herbrand-interp-iff-partial-interp-cls
by (auto intro: IH[of ? I] simp add: herbrand-total-over-set herbrand-total-over-m herbrand-consistent-interp B)
qed
lemma abstract-red-subset-mset-abstract-red:

assumes

abstr: abstract-red $C N$ and
$c-l t-d: C \subseteq \# D$
shows abstract-red $D N$
proof -
have $\{D \in N . D<C\} \subseteq\left\{D^{\prime} \in N . D^{\prime}<D\right\}$
using subset-eq-imp-le-multiset[OF c-lt-d]
by (metis (no-types, lifting) Collect-mono order.strict-trans2)
then show ?thesis
using abstr unfolding abstract-red-def clss-lt-def
by (metis (no-types, lifting) c-lt-d subset-mset.diff-add true-clss-cls-mono-r ${ }^{\prime}$
true-clss-cls-subset)
qed

```
lemma true-clss-cls-extended:
    assumes
        \(A \models p B\) and
    tot: total-over-m I A and
    cons: consistent-interp I and
    \(I-A: I \models s A\)
    shows \(I \models B\)
proof -
    let ? \(I=I \cup\{\) Pos \(P \mid P . P \in\) atms-of \(B \wedge P \notin\) atms-of-s \(I\}\)
    have consistent-interp ?I
        using cons unfolding consistent-interp-def atms-of-s-def atms-of-def
        apply (auto 15 simp add: image-iff)
    by (metis atm-of-uminus literal.sel(1))
    moreover have tot-I: total-over-m? \((A \cup\{B\})\)
    proof -
    obtain \(a a::\) 'a set \(\Rightarrow\) 'a literal set \(\Rightarrow\) ' \(a\) where
        f2: \(\forall x 0 x 1\). ( \(\exists \mathrm{v2}\). v2 \(\in x 0 \wedge\) Pos v2 \(\notin x 1 \wedge\) Neg v2 \(\notin x 1)\)
                \(\longleftrightarrow(\) aa \(x 0 x 1 \in x 0 \wedge \operatorname{Pos}(\) aa \(x 0 x 1) \notin x 1 \wedge \operatorname{Neg}(\) aa \(x 0 x 1) \notin x 1)\)
        by moura
    have \(\forall a\). \(a \notin\) atms-of-ms \(A \vee\) Pos \(a \in I \vee\) Neg \(a \in I\)
        using tot by (simp add: total-over-m-def total-over-set-def)
    then have aa (atms-of-ms \(A \cup\) atms-of-ms \(\{B\})(I \cup\{\) Pos \(a \mid a\). \(a \in\) atms-of \(B \wedge a \notin\) atms-of-s \(I\})\)
        \(\notin\) atms-of-ms \(A \cup\) atms-of-ms \(\{B\} \vee \operatorname{Pos}(a a(a t m s-o f-m s A \cup a t m s-o f-m s\{B\})\)
            \((I \cup\{\) Pos \(a \mid a . a \in\) atms-of \(B \wedge a \notin\) atms-of-s \(I\})) \in I\)
                            \(\cup\{\) Pos \(a \mid a . a \in\) atms-of \(B \wedge a \notin\) atms-of-s \(I\}\)
                \(\vee \operatorname{Neg}(a a(a t m s-o f-m s A \cup a t m s-o f-m s\{B\})\)
                    \((I \cup\{\) Pos \(a \mid a . a \in\) atms-of \(B \wedge a \notin\) atms-of-s \(I\})) \in I\)
                        \(\cup\{\) Pos \(a \mid a . a \in \operatorname{atms}\)-of \(B \wedge a \notin a t m s\)-of-s \(I\}\)
        by auto
    then have total-over-set \((I \cup\{\) Pos \(a \mid a . a \in\) atms-of \(B \wedge a \notin\) atms-of-s \(I\})\)
        (atms-of-ms \(A \cup\) atms-of-ms \(\{B\}\) )
        using f2 by (meson total-over-set-def)
    then show ?thesis
        by (simp add: total-over-m-def)
    qed
    moreover have ? \(I \models s A\)
    using \(I-A\) by auto
ultimately have 1 : ? \(I \models B\)
    using \(\langle A \models p B\rangle\) unfolding true-clss-cls-def by auto
    let \(? I^{\prime}=I \cup\{N e g P \mid P . P \in\) atms-of \(B \wedge P \notin\) atms-of-s \(I\}\)
    have consistent-interp? \(I^{\prime}\)
    using cons unfolding consistent-interp-def atms-of-s-def atms-of-def
    apply (auto 15 simp add: image-iff)
    by (metis atm-of-uminus literal.sel(2))
moreover have tot: total-over-m? \(I^{\prime}(A \cup\{B\})\)
    by (smt Un-iff in-atms-of-s-decomp mem-Collect-eq tot total-over-m-empty total-over-m-insert
        total-over-m-union total-over-set-def total-union)
    moreover have ? \(I^{\prime} \models s A\)
    using \(I-A\) by auto
ultimately have 2: ? \(I^{\prime} \models B\)
    using \(\langle A \models p B\rangle\) unfolding true-clss-cls-def by auto
define \(B B\) where
    \(\langle B B=\{P . P \in\) atms-of \(B \wedge P \notin\) atms-of-s \(I\}\rangle\)
have 1: \(\langle I \cup\) Pos ' \(B B \models B\rangle\)
```

using 1 unfolding $B B$-def by (simp add: setcompr-eq-image)
have 2: $\langle I \cup N e g$ ' $B B \models B\rangle$
using 2 unfolding $B B$-def by (simp add: setcompr-eq-image)
have \langle finite $B B\rangle$
unfolding $B B$-def by auto
then show ?thesis
using 12 apply (induction $B B$)
subgoal by auto
subgoal for $x B B$
using remove-literal-in-model-tautology[of $\langle I \cup P o s$ ' $B B\rangle]$
apply -
apply (rule ccontr)
apply (auto simp: Partial-Herbrand-Interpretation.true-cls-def total-over-set-def total-over-m-def atms-of-ms-def)

oops

lemma

assumes
$C P: \neg$ clss-lt $N(\{\# C \#\}+\{\# E \#\}) \models p\{\# C \#\}+\{\# N e g P \#\}$ and
clss-lt $N(\{\# C \#\}+\{\# E \#\}) \models p\{\# E \#\}+\{\# \operatorname{Pos} P \#\} \vee$ clss-lt $N(\{\# C \#\}+\{\# E \#\}) \models p$
$\{\# C \#\}+\{\# N e g P \#\}$
shows clss-lt $N(\{\# C \#\}+\{\# E \#\}) \models p\{\# E \#\}+\{\#$ Pos $P \#\}$

oops

locale ground-ordered-resolution-with-redundancy $=$
ground-resolution-with-selection +
fixes redundant :: ' $a:$:wellorder clause \Rightarrow ' a clause-set \Rightarrow bool
assumes
redundant-iff-abstract: redundant $A N \longleftrightarrow$ abstract-red $A N$
begin
definition saturated $::$ 'a clause-set \Rightarrow bool where
saturated $N \longleftrightarrow$
$(\forall A B C . A \in N \longrightarrow B \in N \longrightarrow \neg$ redundant $A N \longrightarrow \neg$ redundant $B N \longrightarrow$ superposition-rules $A B C \longrightarrow$ redundant $C N \vee C \in N$)
lemma (in -)
assumes $\langle A \models p C+E\rangle$
shows $\langle A \models p$ add-mset $L C \vee A \models p$ add-mset $(-L) E\rangle$
proof clarify
assume $\langle\neg A \models p$ add-mset $(-L) E\rangle$
then obtain I^{\prime} where
tot ${ }^{\prime}:\left\langle\right.$ total-over-m $\left.I^{\prime}(A \cup\{a d d-m s e t(-L) E\})\right\rangle$ and
cons': 〈consistent-interp $\left.I^{\prime}\right\rangle$ and
$I^{\prime}-A:\left\langle I^{\prime} \models s A\right\rangle$ and
$I^{\prime}-u L-E:\left\langle\neg I^{\prime} \models\right.$ add-mset $\left.(-L) E\right\rangle$
unfolding true-clss-cls-def by auto
have $\left\langle-L \notin I^{\prime}\right\rangle\left\langle\neg I^{\prime} \models E\right\rangle$ using $I^{\prime}-u L-E$ by auto
moreover have $\langle\mathrm{atm}$-of $L \in \mathrm{~atm}$-of ' I ' ’
using tot' unfolding total-over-m-def total-over-set-def
by (cases L) force+
ultimately have $\left\langle L \in I^{\prime}\right\rangle$
by (auto simp: image-iff atm-of-eq-atm-of)
show $\langle A \models p$ add-mset $L C\rangle$

```
    unfolding true-clss-cls-def
proof (intro allI impI conjI)
    fix I
    assume
        tot: <total-over-m I ( A { add-mset L C })> and
        cons: <consistent-interp I\rangle and
        I-A: <I\modelss A>
    let ?I =I\cup{Pos P|P.P\inatms-of E\wedgeP\not\inatms-of-s I}
    have in-C-pm-I: \L\in#C\LongrightarrowL\inI\vee-L\inI` for L
        using tot by (cases L) (force simp: total-over-m-def total-over-set-def atms-of-def)+
    have consistent-interp ?I
        using cons unfolding consistent-interp-def atms-of-s-def atms-of-def
        apply (auto 1 5 simp add: image-iff)
        by (metis atm-of-uminus literal.sel(1))
    moreover {
        have tot-I: total-over-m ?I ( }A\cup{E}
            using tot total-over-set-def total-union by force
        then have tot-I: total-over-m ?I (A\cup{C+E})
            using total-union[OF tot] by auto}
    moreover have ?I \modelss A
        using }I-A\mathrm{ by auto
    ultimately have 1:? }I\modelsC+
        using assms unfolding true-clss-cls-def by auto
    then show }\langleI\modelsadd-mset L C>
    unfolding Partial-Herbrand-Interpretation.true-cls-def
    apply (auto simp: true-cls-def dest: in-C-pm-I)
    oops
lemma
    assumes
        saturated: saturated N and
        finite: finite N and
        empty:}{#}\not\in
    shows INTERP N}\modelshs
proof (rule ccontr)
    let ?N NI = INTERP N
    assume \neg? ?thesis
    then have not-empty: {E\inN.\neg? NN\mathcal{I}\modelsh E}\not={}
        unfolding true-clss-def Ball-def by auto
    define D where D=Min {E\inN.\neg?NN\mathcal{I}\modelshE}
    have [simp]: D\inN
        unfolding D-def
        by (metis (mono-tags, lifting) Min-in not-empty finite mem-Collect-eq rev-finite-subset subsetI)
    have not-d-interp: }\neg\mathrm{ ? N}\mp@subsup{N}{\mathcal{I}}{}=h
        unfolding D-def
        by (metis (mono-tags, lifting) Min-in finite mem-Collect-eq not-empty rev-finite-subset subsetI)
```



```
        using finite D-def by auto
    obtain CL where D: D=C+{#L#} and LSD:L\in#SD\vee (SD={#}\wedge Max-mset D=L)
    proof (cases S D={#})
        case False
        then obtain L where L\in#S D
            using Max-in-lits by blast
        moreover {
            then have L\in#D
```

using S-selects-subseteq $[$ of $D]$ by auto
then have $D=(D-\{\# L \#\})+\{\# L \#\}$
by auto \}
ultimately show ?thesis using that by blast
next
let ? $L=$ Max-mset D
case True
moreover \{
have ? $L \in \# D$
by (metis (no-types, lifting) Max-in-lits $\langle D \in N\rangle$ empty)
then have $D=(D-\{\# ? L \#\})+\{\# ? L \#\}$
by auto \}
ultimately show ?thesis using that by blast
qed
have red: \neg redundant $D N$
proof (rule ccontr)
assume red[simplified]: $\sim \sim$ redundant $D N$
have $\forall E<D . E \in N \longrightarrow$? $N_{\mathcal{I}} \models h E$
using cls-not-D unfolding not-le[symmetric] by fastforce
then have? $N_{\mathcal{I}} \models h s$ clss-lt $N D$
unfolding clss-lt-def true-clss-def Ball-def by blast
then show False
using red not-d-interp unfolding abstract-red-def redundant-iff-abstract
using herbrand-true-clss-true-clss-cls-herbrand-true-clss by fast
qed

consider

(L) P where $L=\operatorname{Pos} P$ and $S D=\{\#\}$ and Max-mset $D=\operatorname{Pos} P$
| Lneg) P where $L=$ Neg P
using $L S D$ S-selects-neg-lits $[$ of $L D]$ by (cases L) auto
then show False
proof cases
case L note $P=$ this(1) and $S=$ this(2) and max $=$ this(3)
have count $D L>1$
proof (rule ccontr)
assume ~ ?thesis
then have count: count $D L=1$
unfolding D by (auto simp: not-in-iff)
have \neg ? $N_{\mathcal{I}} \models h D$
using not-d-interp true-interp-imp-INTERP ground-resolution-with-selection-axioms by blast
then have produces $N D P$
using not-empty empty finite $\langle D \in N\rangle$ count L
true-interp-imp-INTERP unfolding production-iff-produces unfolding production-unfold
by (auto simp add: max not-empty)
then have INTERP $N \models h D$
unfolding D
by (metis pos-literal-in-imp-true-cls produces-imp-Pos-in-lits
production-subseteq-INTERP singletonI subsetCE)
then show False
using not- d-interp by blast
qed
then have Pos $P \in \# C$
by (simp add: P D)
then obtain C^{\prime} where $C^{\prime}: D=C^{\prime}+\{\# \operatorname{Pos} P \#\}+\{\# \operatorname{Pos} P \#\}$
unfolding D by (metis (full-types) P insert-DiffM2)
have sup: superposition-rules $D D(D-\{\# L \#\})$
unfolding $C^{\prime} L$ by (auto simp add: superposition-rules.simps)
have $C^{\prime}+\{\#$ Pos $P \#\}<C^{\prime}+\{\#$ Pos P\#\} $+\{\#$ Pos $P \#\}$
by auto
moreover have $\neg ? N_{\mathcal{I}} \models h(D-\{\# L \#\})$
using not-d-interp unfolding $C^{\prime} L$ by auto
ultimately have $C^{\prime}+\{\# \operatorname{Pos} P \#\} \notin N$
using $C^{\prime} P$ cls-not- D by fastforce
have $D-\{\# L \#\}<D$
unfolding $C^{\prime} L$ by auto
have $c^{\prime}-p-p: C^{\prime}+\{\# \operatorname{Pos} P \#\}+\{\# \operatorname{Pos} P \#\}-\{\# \operatorname{Pos} P \#\}=C^{\prime}+\{\# \operatorname{Pos} P \#\}$ by auto
have redundant $\left(C^{\prime}+\{\# \operatorname{Pos} P \#\}\right) N$
using saturated red sup $\langle D \in N\rangle\left\langle C^{\prime}+\{\# \operatorname{Pos} P \#\} \notin N\right\rangle$ unfolding saturated-def $C^{\prime} L c^{\prime}-p-p$
by blast
moreover have $C^{\prime}+\{\#$ Pos $P \#\} \subseteq \# C^{\prime}+\{\#$ Pos $P \#\}+\{\#$ Pos $P \#\}$
by auto
ultimately show False
using red unfolding C^{\prime} redundant-iff-abstract by (blast dest:
abstract-red-subset-mset-abstract-red)
next
case Lneg note $L=$ this(1)
have $P: P \in ? N_{\mathcal{I}}$
using not-d-interp unfolding D true-cls-def L by (auto split: if-split-asm)
then obtain E where $D P N: E+\{\#$ Pos $P \#\} \in N$ and
prod: production $N(E+\{\#$ Pos $P \#\})=\{P\}$
using in-interp-is-produced by blast
have $\left\langle\neg ? N_{\mathcal{I}} \models h C\right\rangle$ using not- d-interp P unfolding D Lneg by auto
then have $u L-C:\langle P$ os $P \notin \# C\rangle$
using P unfolding Lneg by blast
have sup-EC: superposition-rules $(E+\{\# \operatorname{Pos} P \#\})(C+\{\# N e g P \#\})(E+C)$ using superposition-l by fast
then have superposition $N(N \cup\{E+C\})$
using $D P N\langle D \in N\rangle$ unfolding $D L$ by (auto simp add: superposition.simps)
have
PMax: Pos $P=$ Max-mset $(E+\{\#$ Pos $P \#\})$ and
count $(E+\{\#$ Pos $P \#\})($ Pos $P) \leq 1$ and
$S(E+\{\# \operatorname{Pos} P \#\})=\{\#\}$ and
$\neg \operatorname{interp} N(E+\{\#$ Pos $P \#\}) \models h E+\{\#$ Pos $P \#\}$
using prod unfolding production-unfold by auto
have Neg $P \notin \# E$
using prod produces-imp-neg-notin-lits by force
then have $\bigwedge y . y \in \#(E+\{\# \operatorname{Pos} P \#\}) \Longrightarrow$ count $(E+\{\#$ Pos $P \#\})($ Neg $P)<\operatorname{count}(C+\{\# N e g P \#\})(N e g P)$ using count-greater-zero-iff by fastforce
moreover have $\bigwedge y . y \in \#(E+\{\#$ Pos $P \#\}) \Longrightarrow y<N e g P$
using PMax by (metis DPN Max-less-iff empty finite-set-mset pos-less-neg set-mset-eq-empty-iff)
moreover have $E+\{\#$ Pos $P \#\} \neq C+\{\# N e g P \#\}$
using prod produces-imp-neg-notin-lits by force
ultimately have $E+\{\#$ Pos $P \#\}<C+\{\# N e g P \#\}$
unfolding less-multiset H_{O} by (metis count-greater-zero-iff less-iff-Suc-add zero-less-Suc)
have $c e-l t-d: C+E<D$
unfolding $D L$ by (simp add: < $\backslash y . y \in \# E+\{\#$ Pos $P \#\} \Longrightarrow y<N e g P>$ ex-gt-imp-less-multiset)
have $? N_{\mathcal{I}} \models h E+\{\#$ Pos $P \#\}$
using $\left\langle P \in ? N_{\mathcal{I}}\right\rangle$ by blast
have ? $N_{\mathcal{I}} \models h C+E \vee C+E \notin N$
using ce-lt-d cls-not-D unfolding D-def by fastforce
have Pos-P-C-E: Pos $P \notin \# C+E$
using $D\langle P \in$ ground-resolution-with-selection.INTERP $S N\rangle$
\langle count $(E+\{\#$ Pos $P \#\})($ Pos $P) \leq 1\rangle$ multi-member-skip not- d-interp
by (auto simp: not-in-iff)
then have $\bigwedge y . y \in \# C+E \Longrightarrow$ count $(C+E)($ Pos $P)<\operatorname{count}(E+\{\#$ Pos P\#\}) $($ Pos $P)$ using set-mset-def by fastforce
have \neg redundant $(C+E) N$
proof (rule ccontr)
assume red'[simplified]: \neg ?thesis
have abs: clss-lt $N(C+E) \models p C+E$
using redundant-iff-abstract red' unfolding abstract-red-def by auto
moreover
have $\langle c l s s-l t N(C+E) \subseteq$ clss-lt $N(E+\{\#$ Pos $P \#\})\rangle$
using ce-lt-d Pos-P-C-E uL-C apply (auto simp: clss-lt-def D L)
using Pos-P-C-E unfolding less-multiset H_{H}
apply (auto split: if-splits)
sorry
then have clss-lt $N(E+\{\#$ Pos $P \#\}) \models p E+\{\#$ Pos $P \#\} \vee$ clss-lt $N(C+\{\# N e g P \#\}) \models p C+\{\# N e g P \#\}$
proof clarify
assume CP: \neg clss-lt $N(C+\{\# N e g P \#\}) \models p C+\{\# N e g P \#\}$
\{ fix I
assume
total-over-m $I($ clss-lt $N(C+E) \cup\{E+\{\#$ Pos $P \#\}\})$ and
consistent-interp I and
$I \models s$ clss-lt $N(C+E)$
then have $I \models C+E$
using abs sorry
moreover have $\neg I \models C+\{\# N e g P \#\}$
using $C P$ unfolding true-clss-cls-def
sorry
ultimately have $I \models E+\{\# \operatorname{Pos} P \#\}$ by auto
\}
then show clss-lt $N(E+\{\# \operatorname{Pos} P \#\}) \models p E+\{\# \operatorname{Pos} P \#\}$
unfolding true-clss-cls-def sorry
qed
then have clss-lt $N(C+E) \models p E+\{\#$ Pos $P \#\} \vee$ clss-lt $N(C+E) \models p C+\{\# N e g P \#\}$
proof clarify
assume $C P: \neg$ clss-lt $N(C+E) \models p C+\{\# N e g P \#\}$
\{ fix I
assume
total-over-m $I($ clss-lt $N(C+E) \cup\{E+\{\#$ Pos $P \#\}\})$ and consistent-interp I and
$I \models s$ clss-lt $N(C+E)$
then have $I \models C+E$
using abs sorry
moreover have $\neg I \models C+\{\#$ Neg $P \#\}$
using $C P$ unfolding true-clss-cls-def
sorry
ultimately have $I \models E+\{\# \operatorname{Pos} P \#\}$ by auto

```
        }
        then show clss-lt N (C+E) \modelspE+{#Pos P#}
            unfolding true-clss-cls-def by auto
    qed
    moreover have clss-lt N (C+E)\subseteqclss-lt N(C+{#Neg P#})
        using ce-lt-d order.strict-trans2 unfolding clss-lt-def D L
        by (blast dest: less-imp-le)
    ultimately have redundant (C+{#Neg P#}) N\vee clss-lt N (C + E) \modelsp E + {#Pos P#}
        unfolding redundant-iff-abstract abstract-red-def using true-clss-cls-subset by blast
    show False
        sorry
    qed
    moreover have }\neg\mathrm{ redundant (E + {#Pos P#}) N
    sorry
    ultimately have CEN:C+E\inN
        using \langleD\inN\rangle\langleE+{#Pos P#}\inN\rangle saturated sup-EC red unfolding saturated-def D L
        by (metis union-commute)
    have CED:C+E\not=D
        using D ce-lt-d by auto
    have interp: ᄀINTERP N\modelshC+E
        sorry
    show False
        using cls-not-D[OF CEN CED interp] ce-lt-d unfolding INTERP-def less-eq-multiset-def by auto
    qed
qed
end
lemma tautology-is-redundant:
    assumes tautology C
    shows abstract-red C N
    using assms unfolding abstract-red-def true-clss-cls-def tautology-def by auto
lemma subsumed-is-redundant:
    assumes AB:A\subset# B
    and AN:A\inN
    shows abstract-red B N
proof -
    have A\inclss-lt N B using AN AB unfolding clss-lt-def
        by (auto dest: subset-eq-imp-le-multiset simp add: dual-order.order-iff-strict)
    then show ?thesis
        using AB unfolding abstract-red-def true-clss-cls-def Partial-Herbrand-Interpretation.true-clss-def
        by blast
qed
inductive redundant :: 'a clause }=>\mathrm{ 'a clause-set }=>\mathrm{ bool where
subsumption: }A\inN\LongrightarrowA\subset#B\Longrightarrow\mathrm{ redundant B N
lemma redundant-is-redundancy-criterion:
    fixes }A:: 'a :: wellorder clause and N :: ' a :: wellorder clause-set
    assumes redundant A N
    shows abstract-red A N
    using assms
proof (induction rule: redundant.induct)
    case (subsumption A B N)
```

then show ?case
using subsumed-is-redundant $[$ of $A N B]$ unfolding abstract-red-def clss-lt-def by auto qed
lemma redundant-mono:
redundant $A N \Longrightarrow A \subseteq \# B \Longrightarrow$ redundant $B N$ apply (induction rule: redundant.induct)
by (meson subset-mset.less-le-trans subsumption)
locale truc $=$
selection S for S :: nat clause \Rightarrow nat clause
begin
end
end

