Formalisation of Ground Resolution and CDCL in Isabelle/HOL

Mathias Fleury and Jasmin Blanchette

January 20, 2020

Contents

1 Normalisation

1.1 Logics

1.1.1 Definition and Abstraction
1.1.2 Properties of the Abstraction,
1.1.3 Subformulas and Properties oo
1.1.4 Positions e
1.2 Semantics over the Syntax oL o
1.3 Rewrite Systems and Properties 0oL
1.3.1 Lifting of Rewrite Rules
1.3.2 Consistency Preservation
1.3.3 Full Lifting
1.4 Transformation testing Lo
1.4.1 Definition and first Properties
1.4.2 Invariant conservation
1.5 Rewrite Rules
1.5.1 Elimination of the Equivalences
1.5.2 Eliminate Implication
1.5.3 Eliminate all the True and False in the formula
1.5.4 PushNeg. e
1.5.5 PushlInside
1.6 The Full Transformations
1.6.1 Abstract Definition
1.6.2 Conjunctive Normal Form
1.6.3 Disjunctive Normal Form
1.7 More aggressive simplifications: Removing true and false at the beginning
1.7.1 Transformation
1.7.2 DMore invariants L.
1.7.3 The new CNF and DNF transformation
1.8 Link with Multiset Version
1.8.1 Transformation to Multiset
1.8.2 Equisatisfiability of the two Versions
2 Resolution-based techniques
2.1 Resolution e
2.1.1 Simplification Rules oo
2.1.2 Unconstrained Resolution
2.1.3 Inference Rule
2.1.4 Lemma about the Simplified State
2.1.5 Resolution and Invariants

2.2 Superposition

2.2.1 We can now define the rules of the calculus

theory Prop-Logic
imports Main
begin

Chapter 1

Normalisation

We define here the normalisation from formula towards conjunctive and disjunctive normal
form, including normalisation towards multiset of multisets to represent CNF.

1.1 Logics

In this section we define the syntax of the formula and an abstraction over it to have simpler
proofs. After that we define some properties like subformula and rewriting.

1.1.1 Definition and Abstraction

The propositional logic is defined inductively. The type parameter is the type of the variables.

datatype v propo =
FT | FF | FVar 'v | FNot v propo | FAnd "v propo 'v propo | FOr v propo "v propo
| FImp v propo "v propo | FEq "v propo "v propo

We do not define any notation for the formula, to distinguish properly between the formulas
and Isabelle’s logic.

To ease the proofs, we will write the the formula on a homogeneous manner, namely a connecting
argument and a list of arguments.

datatype v connective = CT | CF | CVar 'v | CNot | CAnd | COr | CImp | CEq

abbreviation nullary-connective = {CF} U {CT} U {CVar z | z. True}
definition binary-connectives = {CAnd, COr, CImp, CEq}

We define our own induction principal: instead of distinguishing every constructor, we group
them by arity.

lemma propo-induct-arity|case-names nullary unary binary|:

fixes ¢ v 1 "v propo

assumes nullary: Ap 2. p = FFV ¢ = FT V o = FVarz = P ¢

and unary: Ay. P ¢p = P (FNot)

and binary: Ao ¥v1 ¥2. P ¢1 = P Y2 — ¢ = FAnd ¢¥1 Y2 V o = FOr ¢v1 ¥2 V ¢ = FImp 91
P2

Vo=FEquyl v2 = P ¢

shows P v

apply (induct rule: propo.induct)

using assms by metis+

The function conn is the interpretation of our representation (connective and list of arguments).
We define any thing that has no sense to be false

fun conn :: v connective = "v propo list = v propo where
conn CT [| = FT |

conn CF || = FF |

conn (CVar v) [| = FVar v |

conn CNot [p] = FNot ¢ |

conn CAnd (¢ # [¢]) = FAnd ¢ 9 |

conn COr (p # [V]) = FOr ¢ ¢ |

conn Clmp (¢ # []) = FImp ¢ 1) |

conn CEq (¢ # []) = FEq ¢ 1) |
conn - - = FF

We will often use case distinction, based on the arity of the ‘v connective, thus we define our
own splitting principle.

lemma connective-cases-arity[case-names nullary binary unaryl:
assumes nullary: Axz. c=CTV ¢=CFV ¢= CVarz = P
and binary: ¢ € binary-connectives = P
and unary: ¢ = CNot = P
shows P
using assms by (cases ¢) (auto simp: binary-connectives-def)

lemma connective-cases-arity-2[case-names nullary unary binary):
assumes nullary: ¢ € nullary-connective = P
and unary: ¢ = CNot = P
and binary: ¢ € binary-connectives = P
shows P
using assms by (cases ¢, auto simp add: binary-connectives-def)

Our previous definition is not necessary correct (connective and list of arguments), so we define
an inductive predicate.

inductive wf-conn :: 'v connective = "v propo list = bool for c¢ :: 'v connective where
wf-conn-nullary[simp]: (¢ = CT V ¢ = CF V ¢ = CVar v) = wf-conn ¢ [] |
wf-conn-unary[simp]: ¢ = CNot = wf-conn ¢ [¢] |
wf-conn-binary[simp|: ¢ € binary-connectives = wf-conn ¢ (¢ # ' # [])
thm wf-conn.induct
lemma wf-conn-induct[consumes 1, case-names CT CF CVar CNot COr CAnd CImp CEjq|:
assumes wf-conn ¢ z and

Av. ¢ = CT = P || and

Nv. ¢ = CF = P || and

Nv. ¢ = CVar v = P || and

A¢. ¢ = CNot = P [¢y] and

N Y. ¢ = COr = P [¢, ¢¥'] and

AY ' ¢ = CAnd = P [, ¢'] and

AY ' ¢ = Clmp = P [, ¢'] and

NG ', ¢ = CBq = P [,

shows P zx
using assms by induction (auto simp: binary-connectives-def)

1.1.2 Properties of the Abstraction

First we can define simplification rules.

lemma wf-conn-conn[simpl:

wf-conn CT | = conn CT | = FT

wf-conn CF |l = conn CF |l = FF

wf-conn (CVar z) | = conn (CVar z) | = FVar z
apply (simp-all add: wf-conn.simps)

unfolding binary-connectives-def by simp-all

lemma wf-conn-list-decomp|simpl:
wf-conn CT | +— | = |]
wf-conn CF 1 +— [=]
wf-conn (CVar z) [+— | =]
wf-conn CNot (§ @ o # &) «—= =[N =]
apply (simp-all add: wf-conn.simps)
unfolding binary-connectives-def apply simp-all
by (metis append-Nil append-is-Nil-conv list.distinct(1) list.sel(3) tl-append?2)

lemma wf-conn-list:
wf-conn ¢l = conn cl = FT +— (¢ = CT N1l =]])
wf-conn ¢l = conn ¢l = FF <— (¢ = CF Nl =)
wf-conn ¢l = conn ¢l = FVarz «— (¢ = CVaraz ANl =1))

wf-conn ¢ | = conn ¢l = FAnd a b <— (¢ = CAnd Nl = a # b # [])
wf-conn ¢l = conn cl=FOrab<— (c=COrNl=a#b#])
wf-conn ¢l = conncl=FEqab+— (c=CEqANl=a#b+#])
wf-conn ¢l = conn cl=FImp ab<+— (c=CImpANl=a#b#])
wf-conn ¢ | = conn ¢l = FNot a +— (¢ = CNot Al = a # [])

apply (induct 1 rule: wf-conn.induct)
unfolding binary-connectives-def by auto

In the binary connective cases, we will often decompose the list of arguments (of length 2) into
two elements.

lemma list-length2-decomp: length l = 2 = (3 a b. l = a # b #)
apply (induct 1, auto)
by (rename-tac 1, case-tac l, auto)

wf-conn for binary operators means that there are two arguments.

lemma wf-conn-bin-list-length:
fixes [:: 'v propo list
assumes conn: ¢ € binary-connectives
shows length | = 2 <— wf-conn ¢l
proof
assume length | = 2
then show wf-conn ¢ [using wf-conn-binary list-length2-decomp using conn by metis
next
assume wf-conn c |
then show length | = 2 (is ?P 1)
proof (cases rule: wf-conn.induct)
case wf-conn-nullary
then show ¢P [] using conn binary-connectives-def
using connective.distinct(11) connective.distinct(13) connective.distinct(9) by blast
next
fix ¢ = 'v propo
case wf-conn-unary
then show ?P [¢] using conn binary-connectives-def
using connective.distinct by blast

next
fix ¢ ¥": 'v propo
show ?P [¢, '] by auto
qed
qed

lemma wf-conn-not-list-length[iff]:
fixes | :: 'v propo list
shows wf-conn CNot | <— length | = 1
apply auto
apply (metis append-Nil connective.distinct(5,17,27) length-Cons list.size(3) wf-conn.simps
wf-conn-list-decomp(4))
by (simp add: length-Suc-conv wf-conn.simps)

Decomposing the Not into an element is moreover very useful.

lemma wf-conn-Not-decomp:
fixes [:: 'v propo list and a :: 'v
assumes corr: wf-conn CNot |
shows 3 a. [= [d]
by (metis (no-types, lifting) One-nat-def Suc-length-conv corr length-0-conv
wf-conn-not-list-length)

The wf-conn remains correct if the length of list does not change. This lemma is very useful
when we do one rewriting step

lemma wf-conn-no-arity-change:
length | = length I’ = wf-conn ¢ | <— wf-conn c I
proof —
{
fix [I
have length | = length I’ = wf-conn ¢ | = wf-conn c I’
apply (cases ¢ rule: wf-conn.induct, auto)
by (metis wf-conn-bin-list-length)
}
then show length | = length ' = wf-conn ¢ | = wf-conn ¢ I’ by metis
qed

lemma wf-conn-no-arity-change-helper:

length (§ @ @ # &) = length (§ @ @' #)
by auto

The injectivity of conn is useful to prove equality of the connectives and the lists.

lemma conn-inj-not:
assumes correct: wf-conn c 1
and conn: conn ¢l = FNot
shows ¢ = CNot and [= [¢}]
apply (cases ¢ 1 rule: wf-conn.cases)
using correct conn unfolding binary-connectives-def apply auto
apply (cases ¢ | rule: wf-conn.cases)
using correct conn unfolding binary-connectives-def by auto

lemma conn-inj:
fixes ¢ ca :: 'v connective and [s :: 'v propo list
assumes corr: wf-conn ca |
and corr’: wf-conn ¢ s

and eq: conn ca | = conn ¢ YPs
shows ca = ¢ A Pps =1
using corr
proof (cases ca | rule: wf-conn.cases)
case (wf-conn-nullary v)
then show ca = ¢ A ¥s = [using assms
by (metis conn.simps(1) conn.simps(2) conn.simps(3) wf-conn-list(1—3))
next
case (wf-conn-unary ')
then have *: FNot ¢’ = conn c s using conn-inj-not eq assms by auto
then have ¢ = ca by (metis conn-inj-not(1) corr’ wf-conn-unary(2))
moreover have ¢s = [using * conn-inj-not(2) corr’ wf-conn-unary(1) by force
ultimately show ca = ¢ A ¥s = [by auto
next
case (wf-conn-binary ¥’ ')
then show ca = ¢ A ¢¥s =1
using eq corr’ unfolding binary-connectives-def apply (cases ca, auto simp add: wf-conn-list)
using wf-conn-list(4—7) corr’ by metis+
qed

1.1.3 Subformulas and Properties

A characterization using sub-formulas is interesting for rewriting: we will define our relation on
the sub-term level, and then lift the rewriting on the term-level. So the rewriting takes place
on a subformula.

inductive subformula :: 'v propo = v propo = bool (infix < /5) for ¢ where
subformula-refl[simp]: ¢ < ¢ |
subformula-into-subformula: ¥ € set | = wf-conn ¢ l = ¢ XYY = ¢ X conn cl

On the subformula-into-subformula, we can see why we use our conn representation: one case
is enough to express the subformulas property instead of listing all the cases.

This is an example of a property related to subformulas.

lemma subformula-in-subformula-not:
shows b: FNot ¢ X ¢ = ¢ X ¢
apply (induct rule: subformula.induct)
using subformula-into-subformula wf-conn-unary subformula-refl list.set-intros(1) subformula-refl
by (fastforce intro: subformula-into-subformula)+

lemma subformula-in-binary-conn:
assumes conn: ¢ € binary-connectives
shows f < conn ¢ [f, g]
and g =< conn ¢ [f, g
proof —
have a: wf-conn ¢ (f# [g]) using conn wf-conn-binary binary-connectives-def by auto
moreover have b: f < f using subformula-refl by auto
ultimately show f < conn ¢ [f, g]
by (metis append-Nil in-set-conv-decomp subformula-into-subformula)
next
have a: wf-conn ¢ ([f] @ [g]) using conn wf-conn-binary binary-connectives-def by auto
moreover have b: ¢ < g using subformula-refl by auto
ultimately show g < conn ¢ [f, g] using subformula-into-subformula by force
qed

lemma subformula-trans:

Y=o 2= p XY’
apply (induct ' rule: subformula.inducts)
by (auto simp: subformula-into-subformula)

lemma subformula-leaf:
fixes ¢ ¢ 1 'v propo
assumes incl: ¢ 2 Y
and simple: v = FT V v = FF V ¢ = FVar x
shows ¢ = v
using incl simple
by (induct rule: subformula.induct, auto simp: wf-conn-list)

lemma subfurmula-not-incl-eq:
assumes @ =< conn c |
and wf-conn c I
and VY. ¥ € setl — = X ¢
shows ¢ = conn c |
using assms apply (induction conn c l rule: subformula.induct, auto)
using conn-inj by blast

lemma wf-subformula-conn-cases:
wf-conn ¢l = ¢ < conncl+— (p =connclV (Y. Y € set Il N p 2 P))
apply standard
using subfurmula-not-incl-eq apply metis
by (auto simp add: subformula-into-subformula)

lemma subformula-decomp-explicit|simp):

@ X FAnd Y ' +— (p = FAnd ¢ 'V ¢ 29 V ¢ 2 ') (is 2P FAnd)
o 2 FOr ' «— (p=FOr 'V o 29 Ve 29

¢ X FEqY ' «— (0= FEqy 'V o 24 Vo 29

¢ 2 FImp o ' «— (p = FImp Y 'V p ¢ V o 29

proof —
have wf-conn CAnd [, ¥'] by (simp add: binary-connectives-def)
then have ¢ < conn CAnd [, Y] +—
(¢ = conn CAnd [, '] V 3" " € set [,] A 9 = "))
using wf-subformula-conn-cases by metis
then show ?P FAnd by auto
next
have wf-conn COr [, ¥’] by (simp add: binary-connectives-def)
then have ¢ < conn COr [¢, '] +—
(¢ = conn COr [, 9] V (30" p7" € set [,] A g < $")
using wf-subformula-conn-cases by metis
then show ?P FOr by auto
next
have wf-conn CEq [, ¥] by (simp add: binary-connectives-def)
then have ¢ < conn CEq [¢, ¢'] +—
(¢ = conn CEq [, |V 3¢ " € set [¢, v] A p < 9")
using wf-subformula-conn-cases by metis
then show ?P FEq by auto
next
have wf-conn Clmp [, '] by (simp add: binary-connectives-def)
then have ¢ =< conn CImp [, ¢'] +—
(¢ = conn Clmp [1, ') V (30", " € set [, ¥] A o < ")
using wf-subformula-conn-cases by metis
then show ?P FImp by auto
qed

10

lemma wf-conn-helper-facts[iff]:
wf-conn CNot [y]
wf-conn CT |]
wf-conn CF]
wf-conn (CVar z)]
wf-conn CAnd [, 9]
wf-conn COr [p, Y]
wf-conn CImp [,)
wf-conn CEq [¢, V]
using wf-conn.intros unfolding binary-connectives-def by fastforce+

lemma exists-c-conn: 3 ¢ l. ¢ = conn ¢ I N wf-conn ¢ |
by (cases @) force+

lemma subformula-conn-decomp|simp]:

assumes wf: wf-conn c [

shows ¢ < conn ¢l +— (¢ = conn c 1V (3 Y€ setl. ¢ <)) (is ?A +— ?B)
proof (rule iffI)

fix &
have ¢ < £ = & = conn ¢ | = wf-conn ¢ | = YV x::'a propo€set l. = p <1 = ¢ = conn c |
apply (induct rule: subformula.induct)
apply simp
using conn-inj by blast
}
moreover assume ?A
ultimately show ?B using wf by metis
next
assume ?B
then show ¢ =< conn ¢ [using wf wf-subformula-conn-cases by blast
qed

lemma subformula-leaf-explicit|simp):
o I FT ¢— o =FT
@ R FF +— ¢ = FF
p 2 FVarz ¢— ¢ = Flarz
apply auto
using subformula-leaf by metis +

The variables inside the formula gives precisely the variables that are needed for the formula.

primrec vars-of-prop:: 'v propo = 'v set where
vars-of-prop FT = {} |

vars-of-prop FF = {} |

vars-of-prop (FVar z) = {z} |

vars-of-prop (FNot) = vars-of-prop ¢ |

vars-of-prop (FAnd ¢) = vars-of-prop ¢ U vars-of-prop ¥ |
vars-of-prop (FOr ¢) = vars-of-prop ¢ U vars-of-prop 1 |
vars-of-prop (FImp ¢ 1) = vars-of-prop ¢ U vars-of-prop 1 |
vars-of-prop (FEq ¢ 1) = vars-of-prop ¢ U vars-of-prop 9

lemma vars-of-prop-incl-conn:
fixes £ &' :: v propo list and 1 :: 'v propo and ¢ :: "v connective
assumes corr: wf-conn ¢ | and incl: i € set [
shows vars-of-prop ¥ C wvars-of-prop (conn c 1)

proof (cases ¢ rule: connective-cases-arity-2)

11

case nullary
then have Fulse using corr incl by auto
then show wvars-of-prop v C vars-of-prop (conn ¢ 1) by blast
next
case binary note ¢ = this
then obtain a b where ab: | = [a, b
using wf-conn-bin-list-length list-length2-decomp corr by metis
then have ¢y = a V ¥ = b using incl by auto
then show wvars-of-prop ¢ C vars-of-prop (conn c 1)
using ab ¢ unfolding binary-connectives-def by auto
next
case unary note ¢ = this
fix ¢ = v propo
have | = [¢)] using corr ¢ incl split-list by force
then show wvars-of-prop b C wvars-of-prop (conn c) using ¢ by auto
qed

The set of variables is compatible with the subformula order.

lemma subformula-vars-of-prop:
@ = 1 = wvars-of-prop ¢ C vars-of-prop ¥
apply (induct rule: subformula.induct)

apply simp
using vars-of-prop-incl-conn by blast

1.1.4 Positions

Instead of 1 or 2 we use L or R

datatype sign = L | R

We use nil instead of .

fun pos :: 'v propo = sign list set where
pos FF = {[]} |

pos FT = {[]} |
pos (FVar z) = {[]} |

pos (FAnd ¢ ¢) = {[[} U{ L # p| p. p€ pos o} U{ R # p | p. p€ pos ¢} |
pos (FOr ¢) = {[]} U{ L # p | p. p€ pos o} U{ R # p| p. p€ pos Y} |
pos (FEq o ¥) = {[[} U{ L # p | p. p€ pos o} U{ R # p | p. pe pos 1} |
pos (FImp ¢ ¢) = {[]} U{ L # p | p. p€ pos o} U{ R # p | p. p€ pos 1} |
pos (FNot) = {[|} U{ L # p | p. p€ pos ¢}

lemma finite-pos: finite (pos)
by (induct ¢, auto)

lemma finite-inj-comp-set:
fixes s :: 'v set
assumes finite: finite s
and inj: inj f
shows card ({fp |p. p € s}) = card s
using finite
proof (induct s rule: finite-induct)
show card {f p |p. p € {}} = card {} by auto
next
fix z :: 'v and s:: v set
assume f[: finite s and notin: © ¢ s
and IH: card {fp |p. p € s} = card s

12

have [finite {f p |p. p € insert z s} using f by auto

have notin”: fx ¢ {fp |p. p € s} using notin inj injD by fastforce

have {f p |p. p € insert x s} = insert (f z) {f p |p- p€ s} by auto

then have card {fp |p. p € insert x s} = 1 + card {fp |p. p € s}
using finite card-insert-disjoint f’ notin’ by auto

moreover have ... = card (insert x s) using notin f IH by auto
finally show card {f p |p. p € insert x s} = card (insert z s) .
qed

lemma cons-inject:
inj ((#))
by (meson injl list.inject)

lemma finite-insert-nil-cons:
finite s => card (insert | {L # p|p.p € s}) =1+ card {L # p |p. p € s}
using card-insert-disjoint by auto

lemma cord-not[simp):
card (pos (FNot)) = 1 + card (pos)
by (simp add: cons-inject finite-inj-comp-set finite-pos)

lemma card-seperate:
assumes finite s1 and finite s2
shows card ({L# plp.-p€ st} U{R# p|p. p € s2}) = card ({L # p |p. p € s1})
+ card({R # p |p. p € s2}) (is card (?LU?R) = card ?L + card ?R)
proof —
have finite ?L using assms by auto
moreover have finite R using assms by auto
moreover have ?L N ?R = {} by blast
ultimately show ?thesis using assms card-Un-disjoint by blast
qed

definition prop-size where prop-size ¢ = card (pos @)

lemma prop-size-vars-of-prop:
fixes ¢ :: v propo
shows card (vars-of-prop @) < prop-size ¢

unfolding prop-size-def apply (induct ¢, auto simp add: cons-inject finite-inj-comp-set finite-pos)
proof —
fix o1 2 :: 'v propo
assume [H1: card (vars-of-prop ¢1) < card (pos 1)
and [H2: card (vars-of-prop ¢2) < card (pos ¢2)
let 2L ={L # pl|p. p € pos p1}
let R ={R # p |p. p € pos 92}
have card (?L U ?R) = card ?L + card ?R
using card-seperate finite-pos by blast
moreover have ... = card (pos p1) + card (pos ¢2)
by (simp add: cons-inject finite-inj-comp-set finite-pos)
moreover have ... > card (vars-of-prop ¢1) + card (vars-of-prop ¢2) using IH1 IH2 by arith
then have ... > card (vars-of-prop 1 U wvars-of-prop ¢2) using card-Un-le le-trans by blast
ultimately
show card (vars-of-prop @1 U vars-of-prop ¢2)
card (vars-of-prop 1 U vars-of-prop ¢2) <
card (vars-of-prop @1 U vars-of-prop ¢2) <

< Suc (card (?L U ?R))
Suc (card (?L U ?R))
Suc (card (?L U ?R))

13

card (vars-of-prop @1 U vars-of-prop ¢2) < Suc (card (?L U ?R))
by auto
qed

value pos (FImp (FAnd (FVar P) (FVar Q)) (FOr (FVar P) (FVar @Q)))

inductive path-to :: sign list = "v propo = "v propo = bool where

path-to-refi[introl: path-to [| ¢ ¢ |

path-to-l: c€binary-connectives V ¢ = CNot = wf-conn ¢ (p#1) = path-to p ¢ p'—>
path-to (L#p) (conn ¢ (p#1)) ¢’ |

path-to-r: c€binary-connectives => wf-conn ¢ (Y##[]) = path-to p ¢ ¢' =

path-to (R#tp) (conn ¢ (v#p#]])) ¢’

There is a deep link between subformulas and pathes: a (correct) path leads to a subformula
and a subformula is associated to a given path.

lemma path-to-subformula:
path-top o o' = o' 2 ¢
apply (induct rule: path-to.induct)
apply simp
apply (metis list.set-intros(1) subformula-into-subformula)
using subformula-trans subformula-in-binary-conn(2) by metis

lemma subformula-path-exists:
fixes ¢ ¢":: 'v propo
shows ¢’ < ¢ = I p. path-to p ¢ ¢’
proof (induct rule: subformula.induct)
case subformula-refi
have path-to [] ¢’ ¢’ by auto
then show 3 p. path-to p ¢’ ' by metis
next
case (subformula-into-subformula ¢ [c)
note wf = this(2) and TH = this(4) and ¢ = this(1)
then obtain p where p: path-to p ¢ ¢’ by metis
{
fixz: v
assume ¢ = CT V ¢= CF V ¢ = CVarx
then have Fulse using subformula-into-subformula by auto
then have 3 p. path-to p (conn ¢ 1) ¢’ by blast
}
moreover {
assume c: ¢ = CNot
then have [= [¢)] using wf ¥ wf-conn-Not-decomp by fastforce
then have path-to (L # p) (conn ¢ 1) ¢’ by (metis ¢ wf-conn-unary p path-to-l)
then have Jp. path-to p (conn ¢ 1) ¢’ by blast
}
moreover {
assume c: c€ binary-connectives
obtain a b where ab: [a, b] = [using subformula-into-subformula ¢ wf-conn-bin-list-length
list-length2-decomp by metis
then have a = ¢ V b = ¢ using ¥ by auto
then have path-to (L # p) (conn ¢ 1) ¢’V path-to (R # p) (conn ¢ l) ¢’ using c path-to-1
path-to-r p ab by (metis wf-conn-binary)
then have 3 p. path-to p (conn ¢ 1) ¢’ by blast
}
ultimately show Jp. path-to p (conn ¢ l) ¢’ using connective-cases-arity by metis
qed

14

fun replace-at :: sign list = "v propo = v propo = v propo where
replace-at || - ¢ = ¢ |

replace-at (L # 1) (FAnd ¢ ¢') ¥ = FAnd (replace-at | ¢) ¢’
replace-at (R # 1) (FAnd ¢ ¢') v = FAnd ¢ (replace-at 1 ¢’) |
replace-at (L # 1) (FOr ¢ ¢’) ¢ = FOr (replace-at | ¢ ¢) ¢’ |
replace-at (R # 1) (FOr ¢ ¢') v» = FOr ¢ (replace-at | ¢’) |
replace-at (L # 1) (FEq ¢ ¢') ¢ = FEq (replace-at 1 ¢) ¢’
replace-at (R # 1) (FEq ¢ ¢') v» = FEq ¢ (replace-at | ¢’) |
replace-at (L # 1) (FImp ¢ ') ¥ = FImp (replace-at | p) ¢l
replace-at (R # 1) (FImp ¢ ') v» = FImp ¢ (replace-at | ¢’) |
replace-at (L # 1) (FNot ¢) ¢ = FNot (replace-at | ¢ 1)

1.2 Semantics over the Syntax

Given the syntax defined above, we define a semantics, by defining an evaluation function eval.
This function is the bridge between the logic as we define it here and the built-in logic of Isabelle.

fun eval :: ("v = bool) = v propo = bool (infix = 50) where
A= FT = True |

A = FF = Fulse |

Al FVarv=(Av) |

A= FNot ¢ = (~(AE) |

A | FAnd o1 92 = (AFp1 A Ag2) |

A FOr o1 2 = (AFp1 V AEp2) |

A= Flmp ¢1 2 = (AFp1 — AEeps) |

A= FEq o1 92 = (AEpr «— A =)

definition evalf (infix =f 50) where
evalf pp = (VA. AEp — AE)

The deduction rule is in the book. And the proof looks like to the one of the book.

theorem deduction-theorem:
¢ =f ¢ = (VA A= Flmp ¢ 1)
proof
assume H: ¢ =f ¢
{
fix A
have A = FImp ¢ 9
proof (cases A = @)
case True
then have A | ¢ using H unfolding evalf-def by metis
then show A = FImp ¢ ¢ by auto
next
case Fulse
then show A = Fimp ¢ ¢ by auto
qed
}
then show V A. A = FImp ¢ ¢ by blast
next
assume A: VA. A |E Flmp ¢ 9
show ¢ |=f v
proof (rule ccontr)

assume - ¢ E=f 9
then obtain A where A | ¢ and — A | v using evalf-def by metis

15

then have = A = FImp ¢ ¢ by auto
then show Fulse using A by blast
qged
qed

A shorter proof:

lemma ¢ =f ¢ «+— (VA. A= FImp ¢)
by (simp add: evalf-def)

definition same-over-set:: ('v = bool) =("v = bool) = "v set = bool where
same-over-set A B S = (Vc¢eS. A c= Bc)

If two mapping A and B have the same value over the variables, then the same formula are
satisfiable.

lemma same-over-set-eval:
assumes same-over-set A B (vars-of-prop ¢)
shows A = p+«— BEy
using assms unfolding same-over-set-def by (induct o, auto)

end
theory Prop-Abstract- Transformation
imports Prop-Logic Weidenbach-Book-Base. Wellfounded-More

begin

This file is devoted to abstract properties of the transformations, like consistency preservation
and lifting from terms to proposition.

1.3 Rewrite Systems and Properties

1.3.1 Lifting of Rewrite Rules

We can lift a rewrite relation r over a fulll formula: the relation r works on terms, while
propo-rew-step works on formulas.
inductive propo-rew-step :: ('v propo = v propo = bool) = v propo = "v propo = bool
for r :: 'v propo = v propo = bool where
global-rel: T ¢ v => propo-rew-step r ¢ V|
propo-rew-one-step-lift: propo-rew-step r ¢ @' => wf-conn ¢ (Ys Q @ # ps’)
= propo-rew-step T (conn ¢ (Ys Q ¢ # 1s”)) (conn ¢ (Vs Q p'# Ps’))

Here is a more precise link between the lifting and the subformulas: if a rewriting takes place
between ¢ and ¢’, then there are two subformulas 1) in ¢ and 1’ in ', 1)’ is the result of the
rewriting of r on .

This lemma is only a health condition:

lemma propo-rew-step-subformula-imp:
shows propo-rew-step r ¢ @' = I Y P v o AP ' ' AT Y’
apply (induct rule: propo-rew-step.induct)
using subformula.simps subformula-into-subformula apply blast
using wf-conn-no-arity-change subformula-into-subformula wf-conn-no-arity-change-helper
in-set-conv-decomp by metis

The converse is moreover true: if there is a 1 and ', then every formula ¢ containing 1, can
be rewritten into a formula ¢’, such that it contains .

16

lemma propo-rew-step-subformula-rec:
fixes ¢ ¥’ ¢ = "v propo
shows ¢ < o = r ¢ ' = (I’ Y’ <X ¢’ A propo-rew-step r ¢ @)
proof (induct ¢ rule: subformula.induct)
case subformula-refl
then have propo-rew-step r 1 1’ using propo-rew-step.intros by auto
moreover have 1)’ < v’ using Prop-Logic.subformula-refl by auto
ultimately show J¢’. ' = o’ A propo-rew-step r 1 ¢’ by fastforce
next
case (subformula-into-subformula ¥'"' 1 ¢)
note IH = this(4) and r = this(5) and ¢ = this(1) and wf = this(2) and incl = this(3)
then obtain ¢’ where x: ¢’ < ¢’ A propo-rew-step r "' ¢’ by metis
moreover obtain £ £’ :: 'v propo list where
Il =& Q" # & using List.split-list 1" by metis
ultimately have propo-rew-step r (conn ¢ 1) (conn ¢ (£ @ ¢’ # &)
using propo-rew-step.intros(2) wf by metis
moreover have ¢’ < conn ¢ (£ Q ¢’ # &)
using wf * wf-conn-no-arity-change Prop-Logic.subformula-into-subformula
by (metis (no-types) in-set-conv-decomp | wf-conn-no-arity-change-helper)
ultimately show J¢’. ¢’ < ¢’ A propo-rew-step r (conn c 1) ¢’ by metis
qed

lemma propo-rew-step-subformula:

By Y.y 2o A rp) «— (' propo-rew-step r ¢ ¢’
using propo-rew-step-subformula-imp propo-rew-step-subformula-rec by metis+

lemma consistency-decompose-into-list:
assumes wf: wf-conn c | and wf’: wf-conn c I’
and same: Vn. AEIl!n+— (AEU!n)
shows A = conn ¢l +— A |= conn c I’
proof (cases ¢ rule: connective-cases-arity-2)
case nullary
then show (A | conn ¢ 1) +— (A | conn ¢ l') using wf wf’ by auto
next
case unary note ¢ = this
then obtain « where I: [= [a] using wf-conn-Not-decomp wf by metis
obtain o’ where [I’ = [a/] using wf-conn-Not-decomp wf' ¢ by metis
have A | a «— A = o' using [I’ by (metis nth-Cons-0 same)
then show A | conn ¢l +— A = conn ¢ I’ using [I’ ¢ by auto
next
case binary note ¢ = this
then obtain a b where I: | = [a, 0]
using wf-conn-bin-list-length list-length2-decomp wf by metis
obtain a’ b’ where " I’ = [a’, b/
using wf-conn-bin-list-length list-length2-decomp wf’ ¢ by metis

have p: A a<— AEd AEbI— AED
using [I’ same by (metis diff-Suc-1 nth-Cons’ nat.distinct(2))+
show A | conncl+— A= conncl’
using wf ¢ p unfolding binary-connectives-def I I’ by auto
qed

Relation between propo-rew-step and the rewriting we have seen before: propo-rew-step r ¢ '
means that we rewrite ¢ inside ¢ (ie at a path p) into .

lemma propo-rew-step-rewrite:
fixes ¢ ¢’ :: 'v propo and r :: 'v propo = v propo = bool

17

assumes propo-rew-step v p @’
shows 3¢ ' p. r ¢ ' A path-to p ¢ ¥ A replace-at p o ' = '
using assms
proof (induct rule: propo-rew-step.induct)
case(global-rel ¢ 1)
moreover have path-to [| ¢ ¢ by auto
moreover have replace-at [| ¢ ¥ = 1 by auto
ultimately show Zcase by metis
next
case (propo-rew-one-step-lift ¢ @' c £ £') note rel = this(1) and IHO = this(2) and corr = this(3)
obtain ¢ ¢’ p where IH: r v 1)’ A path-to p ¢ ¢ A replace-at p ¢ ' = ¢’ using IHO by metis

{
fix z :: v
assume ¢c = CT V¢c=CFV c= CVarz
then have Fulse using corr by auto
then have 3¢ ¢/ p. r ¢ ' A path-to p (conn ¢ (€Q (p # &) ¥
A replace-at p (conn ¢ (€6 (¢ # £))) o' = conn ¢ (€6 (o' # £1)
by fast
}
moreover {
assume c: ¢ = CNot
then have empty: £ =[] {'=[] using corr by auto
have path-to (L#p) (conn ¢ (£Q (¢ # &) ¥
using ¢ empty [H wf-conn-unary path-to-l by fastforce
moreover have replace-at (L#p) (conn ¢ (£Q (@ # £'))) ¥’ = conn ¢ (£Q (¢’ # &)
using ¢ empty IH by auto
ultimately have 3¢ ¢’ p. v ¢ ¥’ A path-to p (conn ¢ (£Q (o # &) ¥
A replace-at p (conn ¢ (€0 (¢ # £))) o' = conm ¢ (€8 (o' # £1)
using IH by metis
}
moreover {
assume c: ¢ € binary-connectives
have length (£Q ¢ # &') = 2 using wf-conn-bin-list-length corr ¢ by metis
then have length £ + length £’ = 1 by auto
then have ld: (length £ = 1 A length £’ = 0) V (length £ = 0 A length £’ = 1) by arith
obtain a b where ab: (§=[] A '=[b]) V (€=[a] A £'=]])
using ld by (case-tac &, case-tac &', auto)
{
assume @: E=[] A £'=[b)
have path-to (L#p) (conn ¢ (£Q (¢ # £))) ¢
using ¢ ¢ IH ab corr by (simp add: path-to-I)
moreover have replace-at (L#p) (conn ¢ (£Q (¢ # £'))) ¥’ = conn ¢ (€Q (¢’ # &)
using ¢ IH ab ¢ unfolding binary-connectives-def by auto
ultimately have 3¢ o' p. 7 ¢ ' A path-to p (conn ¢ (£Q (¢ # £'))) ¢
A replace-at p (conn ¢ (EQ (¢ # &) ' = conn ¢ (£Q (¢’ # &)
using IH by metis
}
moreover {
assume @: {=[a] £'=|]
then have path-to (R#p) (conn ¢ (§Q (¢ # &) ¥
using ¢ IH corr path-to-r corr ¢ by (simp add: path-to-r)
moreover have replace-at (R#p) (conn ¢ (£Q (¢ # £'))) ¥’ = conn ¢ (£Q (¢’ # &)
using ¢ IH ab ¢ unfolding binary-connectives-def by auto
ultimately have ?case using IH by metis

}

18

ultimately have ?case using ab by blast
}
ultimately show ?case using connective-cases-arity by blast
qed

1.3.2 Consistency Preservation
We define preserve-models: it means that a relation preserves consistency.

definition preserve-models where
preserve-models r <— Vo . r pp — (VA. A E ¢ +— A=)

lemma propo-rew-step-preservers-val-explicit:
propo-rew-step T @ 1) = preserve-models 1 => propo-rew-step r ¢ v = (VA. A ¢ +— AFY)
unfolding preserve-models-def
proof (induction rule: propo-rew-step.induct)
case global-rel
then show Zcase by simp
next
case (propo-rew-one-step-lift ¢ ¢’ ¢ £ £') note rel = this(1) and wf = this(2)
and IH = this(3)[OF this(4) this(1)] and consistent = this(4)
{
fix A
from /H haveVn. (AE Qe # &) In)=(AE Qe #¢)!n)
by (metis (mono-tags, hide-lams) list-update-length nth-Cons-0 nth-append-length-plus
nth-list-update-neq)
then have (A connc (EQ p # ') = (A E conn ¢ (£ Q @' # &)
by (meson consistency-decompose-into-list wf wf-conn-no-arity-change-helper
wf-conn-no-arity-change)

}
then show VA. A= connc (£ Qo # &) +— A connc (£ Q¢ # &) by auto
qed

lemma propo-rew-step-preservers-val':
assumes preserve-models T
shows preserve-models (propo-rew-step)
using assms by (simp add: preserve-models-def propo-rew-step-preservers-val-explicit)

lemma preserve-models-OO[intro):
preserve-models f = preserve-models g = preserve-models (f OO g)
unfolding preserve-models-def by auto

lemma star-consistency-preservation-explicit:
assumes (propo-rew-step r)"*x ¢ 1 and preserve-models
shows VA. A p+— A9y
using assms by (induct rule: rtranclp-induct)
(auto simp add: propo-rew-step-preservers-val-explicit)

lemma star-consistency-preservation:

preserve-models 1 => preserve-models (propo-rew-step)~ xx
by (simp add: star-consistency-preservation-explicit preserve-models-def)

19

1.3.3 Full Lifting

In the previous a relation was lifted to a formula, now we define the relation such it is applied
as long as possible. The definition is thus simply: it can be derived and nothing more can be
derived.

lemma full-ropo-rew-step-preservers-val[simp]:
preserve-models 1 = preserve-models (full (propo-rew-step r))
by (metis full-def preserve-models-def star-consistency-preservation)

lemma full-propo-rew-step-subformula:

full (propo-rew-step) @' p = =(F Y Y. Y 2 p A r YY)
unfolding full-def using propo-rew-step-subformula-rec by metis

1.4 Transformation testing
1.4.1 Definition and first Properties

To prove correctness of our transformation, we create a all-subformula-st predicate. It tests
recursively all subformulas. At each step, the actual formula is tested. The aim of this test-symb
function is to test locally some properties of the formulas (i.e. at the level of the connective or
at first level). This allows a clause description between the rewrite relation and the test-symb

definition all-subformula-st :: ('a propo = bool) = 'a propo = bool where
all-subformula-st test-symb ¢ = V. ¢ < ¢ — test-symb ¢

lemma test-symb-imp-all-subformula-st[simp]:
test-symb FT = all-subformula-st test-symb FT
test-symb FF = all-subformula-st test-symb FF
test-symb (FVar x) = all-subformula-st test-symb (FVar x)
unfolding all-subformula-st-def using subformula-leaf by metis+

lemma all-subformula-st-test-symb-true-phi:
all-subformula-st test-symb ¢ = test-symb
unfolding all-subformula-st-def by auto

lemma all-subformula-st-decomp-imp:
wf-conn ¢ | = (test-symb (conn c 1) A (V€ set l. all-subformula-st test-symb ¢))
= all-subformula-st test-symb (conn c 1)
unfolding all-subformula-st-def by auto

To ease the finding of proofs, we give some explicit theorem about the decomposition.

lemma all-subformula-st-decomp-rec:
all-subformula-st test-symb (conn ¢ 1) = wf-conn c |
= (test-symb (conn c 1) A (Y€ set . all-subformula-st test-symb ¢))
unfolding all-subformula-st-def by auto

lemma all-subformula-st-decomp:
fixes ¢ :: 'v connective and | :: "v propo list
assumes wf-conn c |
shows all-subformula-st test-symb (conn c 1)
+—— (test-symb (conn c 1) N (Y€ set l. all-subformula-st test-symb ¢))
using assms all-subformula-st-decomp-rec all-subformula-st-decomp-imp by metis

20

lemma helper-fact: ¢ € binary-connectives «— (¢ = COr V ¢ = CAnd V ¢ = CEq V ¢ = ClImp)
unfolding binary-connectives-def by auto
lemma all-subformula-st-decomp-explicit[simp]:
fixes ¢ ¢ 1 'v propo
shows all-subformula-st test-symb (FAnd ¢ 1)
> (test-symb (FAnd ¢) A all-subformula-st test-symb ¢ A all-subformula-st test-symb 1))
and all-subformula-st test-symb (FOr ¢ 1)
+— (test-symb (FOr ¢) A all-subformula-st test-symb ¢ A all-subformula-st test-symb 1)
and all-subformula-st test-symb (FNot ¢)
< (test-symb (FNot ¢) A all-subformula-st test-symb)
and all-subformula-st test-symb (FEq ¢)
> (test-symb (FEq ¢ ¥) N all-subformula-st test-symb ¢ A all-subformula-st test-symb 1)
and all-subformula-st test-symb (FImp @ 1)
<« (test-symb (FImp ¢) A all-subformula-st test-symb @ A all-subformula-st test-symb 1))
proof —
have all-subformula-st test-symb (FAnd ¢) +— all-subformula-st test-symb (conn CAnd [p, ¢])
by auto
moreover have ... «—test-symb (conn CAnd [, Y])AN(VEE set [p,). all-subformula-st test-symb

£)
using all-subformula-st-decomp wf-conn-helper-facts(5) by metis
finally show all-subformula-st test-symb (FAnd ¢)
<« (test-symb (FAnd ¢ 1) A all-subformula-st test-symb ¢ A all-subformula-st test-symb 1)
by simp

have all-subformula-st test-symb (FOr ¢) «— all-subformula-st test-symb (conn COr [, ¥])
by auto

moreover have ...<—
(test-symb (conn COr [p, ¥]) N (VEE set [p, ¥]. all-subformula-st test-symb §))
using all-subformula-st-decomp wf-conn-helper-facts(6) by metis

finally show all-subformula-st test-symb (FOr ¢ 1)
+— (test-symb (FOr ¢ 1) A all-subformula-st test-symb ¢ A all-subformula-st test-symb 1)
by simp

have all-subformula-st test-symb (FEq ¢ ¢) «— all-subformula-st test-symb (conn CEq [p, ¥])
by auto

moreover have ...
+— (test-symb (conn CEq [p, ¥]) N (VEE set [p, ¥]. all-subformula-st test-symb §))
using all-subformula-st-decomp wf-conn-helper-facts(8) by metis

finally show all-subformula-st test-symb (FEq ¢ 1)
+— (test-symb (FEq ¢ ¥) A all-subformula-st test-symb o A all-subformula-st test-symb 1)
by simp

have all-subformula-st test-symb (FImp ¢ ¢) <— all-subformula-st test-symb (conn CImp [p, ¥])
by auto

moreover have ...
+— (test-symb (conn CImp [p, ¥]) A (VEE set [p, ¥]. all-subformula-st test-symb §))
using all-subformula-st-decomp wf-conn-helper-facts(7) by metis

finally show all-subformula-st test-symb (FImp ¢)
> (test-symb (FImp ¢) A all-subformula-st test-symb ¢ A all-subformula-st test-symb 1)
by simp

have all-subformula-st test-symb (FNot @) «— all-subformula-st test-symb (conn CNot [¢])
by auto

moreover have ... = (test-symb (conn CNot [p]) A (VEE set [p]. all-subformula-st test-symb &))
using all-subformula-st-decomp wf-conn-helper-facts(1) by metis

finally show all-subformula-st test-symb (FNot)

21

> (test-symb (FNot @) A all-subformula-st test-symb) by simp
qed

As all-subformula-st tests recursively, the function is true on every subformula.

lemma subformula-all-subformula-st:
¥ =X ¢ = all-subformula-st test-symb ¢ = all-subformula-st test-symb
by (induct rule: subformula.induct, auto simp add: all-subformula-st-decomp)

The following theorem mno-test-symb-step-exists shows the link between the test-symb function
and the corresponding rewrite relation r: if we assume that if every time test-symb is true, then
a r can be applied, finally as long as = all-subformula-st test-symb ¢, then something can be
rewritten in .

lemma no-test-symb-step-exists:
fixes r:: "v propo = v propo = bool and test-symb:: v propo = bool and z :: v
and ¢ :: 'v propo
assumes
test-symb-false-nullary: ¥V z. test-symb FF A test-symb FT A test-symb (FVar x) and
Vo' o' <o — (otest-symb ') — (3 . r ¢’) and
= all-subformula-st test-symb ¢
shows 3¢ . o A r) Y’
using assms
proof (induct ¢ rule: propo-induct-arity)
case (nullary ¢ x)
then show 3¢ . v <o A rp ¢’
using wf-conn-nullary test-symb-false-nullary by fastforce
next
case (unary ¢) note IH = this(1)[OF this(2)] and r = this(2) and nst = this(3) and subf =
this(4)
from r IH nst have H: - all-subformula-st test-symb ¢ = . b < o A (Y’ r P)
by (metis subformula-in-subformula-not subformula-refl subformula-trans)
{
assume n: —test-symb (FNot)
obtain ¢ where r (FNot ¢) ¢ using subformula-refl r n nst by blast
moreover have FNot ¢ < FNot ¢ using subformula-refl by auto
ultimately have 3 ¢’. ¢ < FNot o A r v ¢’ by metis
}
moreover {
assume n: test-symb (FNot @)
then have — all-subformula-st test-symb ¢
using all-subformula-st-decomp-explicit(3) nst subf by blast
then have 3¢ ¢ ¢ X FNot o A1) 2’
using H subformula-in-subformula-not subformula-refl subformula-trans by blast
}

ultimately show 3¢ 1’ ¢p < FNot © A r 1 1)’ by blast
next
case (binary ¢ p1 p2)
note IHp1-0 = this(1)[OF this(4)] and IHp2-0 = this(2)[OF this(4)] and r = this(4)
and ¢ = this(3) and le = this(5) and nst = this(6)

obtain ¢ :: v connective where
¢ (c=CAnd vV ¢ = COr VvV ¢ = ClImp V ¢ = CEq) A conn ¢ [pl, 2] = ¢
using ¢ by fastforce

then have corr: wf-conn c [p1, ¢2] using wf-conn.simps unfolding binary-connectives-def by auto
have inc: p1 = ¢ 2 <X ¢ using binary-connectives-def ¢ subformula-in-binary-conn by blast+

22

from r IHp1-0 have IHp1: — all-subformula-st test-symb o1 = Fp ' o < 1 A rp '
using inc(1) subformula-trans le by blast

from r THp2-0 have IHp2: — all-subformula-st test-symb 2 = F1p. p X 2 A (Y’ r o)
using inc(2) subformula-trans le by blast

have cases: —test-symb ¢ V —all-subformula-st test-symb @1 V —all-subformula-st test-symb p2
using c nst by auto

show Y Y. R p AT’
using IHp1 IHp2 subformula-trans inc subformula-refl cases le by blast

qed

1.4.2 Invariant conservation

If two rewrite relation are independant (or at least independant enough), then the property
characterizing the first relation all-subformula-st test-symb remains true. The next show the
same property, with changes in the assumptions.

The assumption V¢’ . o' < & — r ') — all-subformula-st test-symb o' — all-subformula-st
test-symb 1 means that rewriting with r does not mess up the property we want to preserve
locally.

The previous assumption is not enough to go from r to propo-rew-step r: we have to add
the assumption that rewriting inside does not mess up the term: Ve € ¢ £ o' p < & —
propo-rew-step r ¢ @' — wf-conn ¢ (§ Q ¢ # &) — test-symb (conn ¢ (£ Q@ ¢ # &) —
test-symb @’ — test-symb (conn ¢ (£ @Q ' # &)

Invariant while lifting of the Rewriting Relation

The condition ¢ =< @ (that will by used with ® = ¢ most of the time) is here to ensure that the
recursive conditions on ¢ will moreover hold for the subterm we are rewriting. For example if
there is no equivalence symbol in ®, we do not have to care about equivalence symbols in the
two previous assumptions.

lemma propo-rew-step-inv-stay':
fixes r:: "v propo = v propo = bool and test-symb:: v propo = bool and z :: v
and ¢ ¢ ®:: v propo
assumes H: V' 1. o/ X & — r ¢’ b — all-subformula-st test-symb o’
— all-subformula-st test-symb 1
and H": V(c:: 'v connective) € ¢ £ p'. p = & — propo-rew-step r ¢ ¢’
— wf-conn ¢ (€ Q ¢ # £') —> test-symb (conn ¢ (£ Q@ @ # £')) —> test-symb '
— test-symb (conn ¢ (£ @ ¢’ # ¢')) and
propo-rew-step r ¢ ¥ and
p = ® and
all-subformula-st test-symb @
shows all-subformula-st test-symb 1
using assms(3—95)
proof (induct rule: propo-rew-step.induct)
case global-rel
then show ?case using H by simp
next
case (propo-rew-one-step-lift ¢ @' ¢ £ £')
note rel = this(1) and ¢ = this(2) and corr = this(3) and ® = this(4) and nst = this(5)
have sq¢: ¢ < &
using @ corr subformula-into-subformula subformula-refl subformula-trans
by (metis in-set-conv-decomp)
from corr have V ¢. ¢ € set (£ Q ¢ # &') — all-subformula-st test-symb ¥

23

using all-subformula-st-decomp nst by blast
then have *: V. ¢ € set (£ Q ¢’ # &) — all-subformula-st test-symb 1) using ¢ sq by fastforce
then have test-symb ¢’ using all-subformula-st-test-symb-true-phi by auto
moreover from corr nst have test-symb (conn ¢ (£ @ ¢ # &)
using all-subformula-st-decomp by blast
ultimately have test-symb: test-symb (conn ¢ (£ Q ¢’ # &) using H' sq corr rel by blast

have wf-conn ¢ (£ Q@ ¢’ # &)
by (metis wf-conn-no-arity-change-helper corr wf-conn-no-arity-change)
then show all-subformula-st test-symb (conn ¢ (£ @ ¢’ # £'))
using * test-symb by (metis all-subformula-st-decomp)
qed

The need for ¢ < ® is not always necessary, hence we moreover have a version without inclusion.

lemma propo-rew-step-inv-stay:

fixes r:: 'v propo = v propo = bool and test-symb:: v propo = bool and z :: v

and ¢ 9 :: 'v propo

assumes
H: Yo' Y. r o' ¢ — all-subformula-st test-symb o' — all-subformula-st test-symb 1 and
H'" ¥ (¢:: "v connective) £ ¢ &' @' wf-conn ¢ (€ Q p # &) — test-symb (conn ¢ (£ Q@ @ # &)

— test-symb ¢’ — test-symb (conn ¢ (£ Q ¢’ # £’)) and

propo-rew-step r ¢ ¥ and
all-subformula-st test-symb ¢

shows all-subformula-st test-symb

using propo-rew-step-inv-stay’[of ¢ r test-symb ¢ V] assms subformula-refl by metis

The lemmas can be lifted to propo-rew-step r¥ instead of propo-rew-step

Invariant after all Rewriting

lemma full-propo-rew-step-inv-stay-with-inc:
fixes r:: 'v propo = v propo = bool and test-symb:: v propo = bool and z :: v
and ¢ v :: 'v propo
assumes
H:Y . propo-rew-step r ¢ 1 — all-subformula-st test-symb ¢
— all-subformula-st test-symb 1 and
H': ¥ (c:: "v connective) € ¢ £’ ¢'. ¢ = & — propo-rew-step r ¢ '
— wf-conn ¢ (§ Q ¢ # &) —> test-symb (conn ¢ (£ Q@ ¢ # &) — test-symb ¢’
— test-symb (conn ¢ (£ @ ¢’ # &£')) and
¢ = ® and
full: full (propo-rew-step r) ¢ 1 and
init: all-subformula-st test-symb ¢
shows all-subformula-st test-symb
using assms unfolding full-def
proof —
have rel: (propo-rew-step m)** ¢ 1
using full unfolding full-def by auto
then show all-subformula-st test-symb 1)
using init
proof (induct rule: rtranclp-induct)
case base
then show all-subformula-st test-symb ¢ by blast
next
case (step b ¢) note star = this(1) and IH = this(3) and one = this(2) and all = this(4)
then have all-subformula-st test-symb b by metis
then show all-subformula-st test-symb ¢ using propo-rew-step-inv-stay’ H H' rel one by auto

24

qed
qed

lemma full-propo-rew-step-inv-stay’:
fixes r:: 'v propo = v propo = bool and test-symb:: v propo = bool and z :: v
and ¢ v :: 'v propo
assumes
H:Y . propo-rew-step v ¢ v — all-subformula-st test-symb ¢
— all-subformula-st test-symb 1 and
H" ¥ (¢:: 'v connective) & o &' ¢'. propo-rew-step r ¢ ' — wf-conn ¢ (£ Q p # &)
— test-symb (conn ¢ (£ Q ¢ # &) — test-symb o’ — test-symb (conn ¢ (€ Q ¢’ # ¢’)) and
full: full (propo-rew-step r) ¢ 1 and
init: all-subformula-st test-symb o
shows all-subformula-st test-symb
using full-propo-rew-step-inv-stay-with-inc|of r test-symb | assms subformula-refl by metis

lemma full-propo-rew-step-inv-stay:
fixes r:: 'v propo = v propo = bool and test-symb:: v propo = bool and z :: v
and ¢ v :: "v propo
assumes
H:Yp . r oY — all-subformula-st test-symb ¢ — all-subformula-st test-symb 1 and
H': ¥ (c:: "v connective) € ¢ £’ ' wf-conn ¢ (£ Q @ # £') — test-symb (conn ¢ (£ Q ¢ # &)
— test-symb @’ — test-symb (conn ¢ (£ Q ¢’ # £’)) and
full: full (propo-rew-step r) ¢ 1 and
init: all-subformula-st test-symb o
shows all-subformula-st test-symb
unfolding full-def
proof —
have rel: (propo-rew-step r) " *x ¢ 1
using full unfolding full-def by auto
then show all-subformula-st test-symb 1)
using init
proof (induct rule: rtranclp-induct)
case base
then show all-subformula-st test-symb ¢ by blast
next
case (step b ¢)
note star = this(1) and IH = this(3) and one = this(2) and all = this(4)
then have all-subformula-st test-symb b by metis
then show all-subformula-st test-symb c
using propo-rew-step-inv-stay subformula-refl H H' rel one by auto
qed
qed

lemma full-propo-rew-step-inv-stay-conn:
fixes r:: 'v propo = v propo = bool and test-symb:: v propo = bool and z :: v
and ¢ v :: "v propo
assumes
H: Yo . r ¢y — all-subformula-st test-symb o — all-subformula-st test-symb 1 and
H': ¥ (c:: "v connective) 1 l'. wf-conn ¢ | — wf-conn ¢ 1’
— (test-symb (conn ¢) +— test-symb (conn ¢ l’)) and
full: full (propo-rew-step r) ¢ ¥ and
init: all-subformula-st test-symb ¢
shows all-subformula-st test-symb 1
proof —

25

have A(c:: 'v connective) & ¢ €' p’. wf-conn ¢ (£ Q ¢ # &)
= test-symb (conn ¢ (£ Q ¢ # £')) = test-symb ¢’ => test-symb (conn ¢ (£ Q@ ¢’ # &)
using H' by (metis wf-conn-no-arity-change-helper wf-conn-no-arity-change)
then show all-subformula-st test-symb 1)
using H full init full-propo-rew-step-inv-stay by blast
qed

end

theory Prop-Normalisation

imports Prop-Logic Prop-Abstract-Transformation Nested-Multisets-Ordinals. Multiset-More
begin

Given the previous definition about abstract rewriting and theorem about them, we now have
the detailed rule making the transformation into CNF/DNF.

1.5 Rewrite Rules

The idea of Christoph Weidenbach’s book is to remove gradually the operators: first equivalen-
cies, then implication, after that the unused true/false and finally the reorganizing the or/and.
We will prove each transformation seperately.

1.5.1 Elimination of the Equivalences

The first transformation consists in removing every equivalence symbol.

inductive elim-equiv :: 'v propo = v propo = bool where
elim-equiv[simp|: elim-equiv (FEq ¢ 1) (FAnd (FImp ¢) (FImp ¢ ¢))

lemma elim-equiv-transformation-consistent:
A= FEq o ¢ +— A |= FAnd (FImp ¢) (FImp ¢ @)
by auto

lemma elim-equiv-explicit: elim-equiv ¢ v = VA. AE p+— AE1¢
by (induct rule: elim-equiv.induct, auto)

lemma elim-equiv-consistent: preserve-models elim-equiv
unfolding preserve-models-def by (simp add: elim-equiv-explicit)

lemma elimFEquu-lifted-consistant:
preserve-models (full (propo-rew-step elim-equiv))
by (simp add: elim-equiv-consistent)

This function ensures that there is no equivalencies left in the formula tested by no-equiv-symb.

fun no-equiv-symb :: v propo = bool where
no-equiv-symb (FEq - -) = False |
no-equiv-symb - = True

Given the definition of no-equiv-symb, it does not depend on the formula, but only on the
connective used.

lemma no-equiv-symb-conn-characterization|simpl:
fixes c¢ :: 'v connective and [:: 'v propo list
assumes wf: wf-conn cl
shows no-equiv-symb (conn c 1) +— ¢ # CEq

26

by (metis connective.distinct(13,25,35,483) wf no-equiv-symb.elims(3) no-equiv-symb.simps(1)
wf-conn.cases wf-conn-list(6))

definition no-equiv where no-equiv = all-subformula-st no-equiv-symb

lemma no-equiv-eq[simp):
fixes ¢ v 1 'v propo
shows
—no-equiv (FEq ¢)
no-equiv F'T
no-equiv F'F
using no-equiv-symb.simps(1) all-subformula-st-test-symb-true-phi unfolding no-equiv-def by auto

The following lemma helps to reconstruct no-equiv expressions: this representation is easier to
use than the set definition.

lemma all-subformula-st-decomp-explicit-no-equiv[iff]:
fixes ¢ v :: "v propo
shows
no-equiv (FNot ¢) «— no-equiv ¢
no-equiv (FAnd ¢ 1) «+— (no-equiv ¢ N\ no-equiv)
no-equiv (FOr ¢ 1) +— (no-equiv ¢ A no-equiv 1)
no-equiv (FImp ¢) <— (no-equiv ¢ A\ no-equiv)
by (auto simp: no-equiv-def)

A theorem to show the link between the rewrite relation elim-equiv and the function no-equiv-symb.
This theorem is one of the assumption we need to characterize the transformation.

lemma no-equiv-elim-equiv-step:
fixes ¢ :: 'v propo
assumes no-equiv: T No-equiv Y
shows 3¢ ¢’ ¥ < o A elim-equiv ¥ 1’
proof —
have test-symb-false-nullary:
Y z::'v. no-equiv-symb FF A no-equiv-symb FT A no-equiv-symb (FVar x)
unfolding no-equiv-def by auto
moreover {
fix c:: 'v connective and [:: "v propo list and v :: 'v propo
assume al: elim-equiv (conn ¢ 1) ¢
have Ap pa. = elim-equiv (p::'v propo) pa V = no-equiv-symb p
using elim-equiv.cases no-equiv-symb.simps(1) by blast
then have elim-equiv (conn ¢ 1) ¥ = —no-equiv-symb (conn c l) using al by metis
}
moreover have H'": V. —elim-equiv FT ¢ Y. —elim-equiv FF ¢ ¥ x. —elim-equiv (FVar x) ¢
using elim-equiv.cases by auto
moreover have Ap. = no-equiv-symb o = F1). elim-equiv v ¥
by (case-tac ¢, auto simp: elim-equiv.simps)
then have Ay’ ¢’ <X ¢ = —no-equiv-symb ' = 1. elim-equiv p' 1 by force
ultimately show ?thesis
using no-test-symb-step-exists no-equiv test-symb-false-nullary unfolding no-equiv-def by blast
qed

Given all the previous theorem and the characterization, once we have rewritten everything,
there is no equivalence symbol any more.

lemma no-equiv-full-propo-rew-step-elim-equiv:
full (propo-rew-step elim-equiv) ¢ ¥ = no-equiv
using full-propo-rew-step-subformula no-equiv-elim-equiv-step by blast

27

1.5.2 Eliminate Implication

After that, we can eliminate the implication symbols.

inductive elim-imp :: v propo = 'v propo = bool where
[simp]: elim-imp (FImp ¢ ¢) (FOr (FNot @) 1)

lemma elim-imp-transformation-consistent:
Al Flmp ¢ ¢ «— A | FOr (FNot ¢) ¢
by auto

lemma elim-imp-explicit: elim-imp ¢ v = VA AE p+— AEY
by (induct ¢ ¢ rule: elim-imp.induct, auto)

lemma elim-imp-consistent: preserve-models elim-imp
unfolding preserve-models-def by (simp add: elim-imp-explicit)

lemma elim-imp-lifted-consistant:
preserve-models (full (propo-rew-step elim-imp))
by (simp add: elim-imp-consistent)

fun no-imp-symb where
no-imp-symb (FImp - -) = False |
no-imp-symb - = True

lemma no-imp-symb-conn-characterization:
wf-conn ¢ | = no-imp-symb (conn ¢ 1) +— ¢ # Clmp
by (induction rule: wf-conn-induct) auto

definition no-imp where no-imp = all-subformula-st no-imp-symb
declare no-imp-def|[simp]

lemma no-imp-Imp[simp]:
—no-imp (FImp ¢)
no-imp FT
no-imp FF
unfolding no-imp-def by auto

lemma all-subformula-st-decomp-explicit-imp|[simp):
fixes ¢ ¢ 1 'v propo
shows
no-imp (FNot @) <— no-imp ¢
no-imp (FAnd ¢ ¥) <— (no-imp © A no-imp)
no-imp (FOr ¢ ¥) <— (no-imp ¢ N\ no-imp)
by auto

Invariant of the elim-imp transformation

lemma elim-imp-no-equiv:
elim-imp @ ¥ = no-equiv p = nNo-equiv VP
by (induct ¢ ¢ rule: elim-imp.induct, auto)

lemma elim-imp-inv:
fixes ¢ 9 :: "v propo
assumes full (propo-rew-step elim-imp) ¢ 1 and no-equiv @
shows no-equiv
using full-propo-rew-step-inv-stay-conn[of elim-imp no-equiv-symb @] assms elim-imp-no-equiv

28

no-equiv-symb-conn-characterization unfolding no-equiv-def by metis

lemma no-no-imp-elim-imp-step-exists:
fixes ¢ :: v propo
assumes no-equiv: T No-1mp @
shows 3¢ ' ¥ < © A elim-imp 1 '
proof —
have test-symb-false-nullary: ¥V z. no-imp-symb FF A no-imp-symb FT A no-imp-symb (FVar (x:: 'v))
by auto
moreover {
fix c:: "v connective and [:: 'v propo list and 1) :: "v propo
have H: elim-imp (conn c 1) ¥ = —no-imp-symb (conn c 1)
by (auto elim: elim-imp.cases)
}
moreover
have H”: V. —elim-imp FT ¢ V. —elim-imp FF ¢ ¥ z. —elim-imp (FVar z) ¢
by (auto elim: elim-imp.cases)+
moreover
have Ap. = no-imp-symb ¢ = . elim-imp © ¢
by (case-tac) (force simp: elim-imp.simps)+
then have Ay’ ¢’ < ¢ = —no-imp-symb ¢’ = 3 . elim-imp ¢’ ¥ by force
ultimately show ?thesis
using no-test-symb-step-exists no-equiv test-symb-false-nullary unfolding no-imp-def by blast
qed

lemma no-imp-full-propo-rew-step-elim-imp: full (propo-rew-step elim-imp) ¢ ¥ = no-imp ¥
using full-propo-rew-step-subformula no-no-imp-elim-imp-step-exists by blast

1.5.3 Eliminate all the True and False in the formula

Contrary to the book, we have to give the transformation and the “commutative” transforma-
tion. The latter is implicit in the book.

inductive elimTB where
ElimTB1: elimTB (FAnd ¢ FT) ¢ |
ElimTB1": elimTB (FAnd FT ¢) ¢ |

ElimTB2: elimTB (FAnd ¢ FF) FF |
ElimTB2": elimTB (FAnd FF) FF |

ElimTB3: elimTB (FOr ¢ FT) FT |
ElimTB3": elimTB (FOr FT ¢) FT |

ElimTB/: elimTB (FOr ¢ FF) ¢ |
ElimTB4" elimTB (FOr FF ¢) ¢ |

ElimTB5: elimTB (FNot FT) FF' |
ElimTB6: elimTB (FNot FF) FT
lemma elimTB-consistent: preserve-models elimTB
proof —
fix ¢ ¢ 'b propo

have elimTB ¢ v = VA. A E p +— A |E ¢ by (induction rule: elimTB.inducts) auto
}

29

then show ?thesis using preserve-models-def by auto
qed

inductive no-T-F-symb :: 'v propo = bool where
no-T-F-symb-comp: ¢ # CF = ¢ # CT = wf-conn cl = (Vp € set l. p # FT N p # FF)
= no-T-F-symb (conn c)

lemma wf-conn-no-T-F-symb-iff [simp]:
wf-conn ¢ s =
no-T-F-symb (conn ¢ s) «— (¢ # CF A ¢ # CT N (Vy€set ¢s. ip # FF N # FT))
unfolding no-T-F-symb.simps apply (cases c)
using wf-conn-list(1) apply fastforce
using wf-conn-list(2) apply fastforce
using wf-conn-list(3) apply fastforce
apply (metis (no-types, hide-lams) conn-inj connective.distinct(5,17))
using conn-inj apply blast+
done

lemma wf-conn-no-T-F-symb-iff-explicit[simp]:
no-T-F-symb (FAnd ¢) «— (Vx € set [p, ¥]. x # FF N x # FT)
no-T-F-symb (FOr ¢) «— (Vx € set [@, ¥]. x # FF N x # FT)
no-T-F-symb (FEq ¢ ¢) +— (Vx € set [p,). x # FF AN x # FT)
no-T-F-symb (FImp ¢) +— (Vx € set [p, ¥]. x # FF AN x # FT)
apply (metis conn.simps(36) conn.simps(37) conn.simps(5) propo.distinct(19)
wf-conn-helper-facts(5) wf-conn-no-T-F-symb-iff)
apply (metis conn.simps(36) conn.simps(87) conn.simps(6) propo.distinct(22)
wf-conn-helper-facts(6) wf-conn-no-T-F-symb-iff)
using wf-conn-no-T-F-symb-iff apply fastforce
by (metis conn.simps(36) conn.simps(87) conn.simps(7) propo.distinct(23) wf-conn-helper-facts(7)
wf-conn-no-T-F-symb-iff)

lemma no-T-F-symb-false[simp]:
fixes ¢ :: 'v connective
shows
—no-T-F-symb (FT :: 'v propo)
—no-T-F-symb (FF :: 'v propo)
by (metis (no-types) conn.simps(1,2) wf-conn-no-T-F-symb-iff wf-conn-nullary)+

lemma no-T-F-symb-bool[simp]:
fixes z :: v
shows no-T-F-symb (FVar x)
using no-T-F-symb-comp wf-conn-nullary by (metis connective.distinct(3, 15) conn.simps(8)
empty-iff list.set(1))

lemma no-T-F-symb-fnot-imp:
—no-T-F-symb (FNot ¢) = ¢ = FT V ¢ = FF
proof (rule ccontr)
assume n: - no-T-F-symb (FNot ¢)
assume - (¢ = FT V ¢ = FF)
then have V' € set [¢]. ¢'A2FT N ¢'#AFF by auto
moreover have wf-conn CNot [p] by simp
ultimately have no-T-F-symb (FNot)
using no-T-F-symb.intros by (metis conn.simps(4) connective.distinct(5,17))

30

then show Fulse using n by blast
qed

lemma no-T-F-symb-fnot[simp):
no-T-F-symb (FNot ¢) <— =(p = FT V ¢ = FF)
using no-T-F-symb.simps no-T-F-symb-fnot-imp by (metis conn-inj-not(2) list.set-intros(1))

Actually it is not possible to remover every FT and FF: if the formula is equal to true or false,
we can not remove it.

inductive no-T-F-symb-except-toplevel where

no-T-F-symb-except-toplevel-true[simp]: no-T-F-symb-except-toplevel FT |
no-T-F-symb-except-toplevel-false[simp]: no-T-F-symb-except-toplevel FF |

no True-no-T-F-symb-except-toplevel[simp]: no-T-F-symb ¢ => no-T-F-symb-except-toplevel ¢

lemma no-T-F-symb-except-toplevel-bool:
fixes z :: v
shows no-T-F-symb-except-toplevel (FVar x)

by simp

lemma no-T-F-symb-except-toplevel-not-decom:
¢ # FT = ¢ # FF = no-T-F-symb-except-toplevel (FNot ¢)
by simp

lemma no-T-F-symb-except-toplevel-bin-decom:

fixes ¢ v 1 'v propo

assumes ¢ # FT and ¢ # FF and ¢ # FT and ¢ # FF

and c: c€ binary-connectives

shows no-T-F-symb-except-toplevel (conn c [¢, 1))

by (metis (no-types, lifting) assms ¢ conn.simps(4) list.discI noTrue-no-T-F-symb-except-toplevel
wf-conn-no-T-F-symb-iff no-T-F-symb-fnot set-ConsD wf-conn-binary wf-conn-helper-facts(1)
wf-conn-list-decomp(1,2))

lemma no-T-F-symb-except-toplevel-if-is-a-true-false:
fixes [:: 'v propo list and ¢ :: "v connective
assumes corr: wf-conn c |
and FT € setlV FF € setl
shows —no-T-F-symb-except-toplevel (conn ¢ 1)
by (metis assms empty-iff no-T-F-symb-except-toplevel.simps wf-conn-no-T-F-symb-iff set-empty
wf-conn-list(1,2))

lemma no-T-F-symb-except-top-level-false-example[simp]:
fixes ¢ v :: "v propo
assumes ¢ = FT' V¢ =FTV ¢ =FF V¢ =FF
shows
= no-T-F-symb-except-toplevel (FAnd ¢ 1)
= no-T-F-symb-except-toplevel (FOr ¢ 1)
= no-T-F-symb-except-toplevel (FImp ¢ 1)
= no-T-F-symb-except-toplevel (FEq ¢ 1))
using assms no-T-F-symb-except-toplevel-if-is-a-true-false unfolding binary-connectives-def
by (metis (no-types) conn.simps(5—38) insert-iff list.simps(14—15) wf-conn-helper-facts(5—8))+

lemma no-T-F-symb-except-top-level-false-not[simp):
fixes ¢ v :: "v propo
assumes ¢ = FT V ¢ = FF
shows

31

= no-T-F-symb-except-toplevel (FNot o)
by (simp add: assms no-T-F-symb-except-toplevel.simps)

This is the local extension of no-T-F-symb-except-toplevel.

definition no-T-F-except-top-level where
no-T-F-except-top-level = all-subformula-st no-T-F-symb-except-toplevel

This is another property we will use. While this version might seem to be the one we want to
prove, it is not since F'T can not be reduced.

definition no-T-F where
no-T-F = all-subformula-st no-T-F-symb

lemma no-T-F-except-top-level-false:
fixes | :: 'v propo list and ¢ :: 'v connective
assumes wf-conn c |
and FT € setlV FF € setl
shows —no-T-F-except-top-level (conn c 1)
by (simp add: all-subformula-st-decomp assms no-T-F-except-top-level-def
no-T-F-symb-except-toplevel-if-is-a-true-false)

lemma no-T-F-except-top-level-false-example[simpl:

fixes ¢ v :: 'v propo

assumes ¢ = FT' V¢ =FTV ¢ =FF V ¢y = FF

shows
—no-T-F-except-top-level (FAnd ¢)
—no-T-F-except-top-level (FOr ¢)
—no-T-F-except-top-level (FEq ¢ 1))
—no-T-F-except-top-level (FImp ¢ 1)

by (metis all-subformula-st-test-symb-true-phi assms no-T-F-except-top-level-def
no-T-F-symb-except-top-level-false-example)+

lemma no-T-F-symb-except-toplevel-no-T-F-symb:
no-T-F-symb-except-toplevel ¢ = ¢ # FF = ¢ # FT = no-T-F-symb ¢
by (induct rule: no-T-F-symb-except-toplevel.induct, auto)

The two following lemmas give the precise link between the two definitions.

lemma no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb:
no-T-F-except-top-level p => ¢ # FF = ¢ # FT = no-T-F ¢
unfolding no-T-F-except-top-level-def no-T-F-def apply (induct ¢)
using no-T-F-symb-fnot by fastforce+

lemma no-T-F-no-T-F-except-top-level:
no-T-F ¢ = no-T-F-except-top-level ¢
unfolding no-T-F-except-top-level-def no-T-F-def
unfolding all-subformula-st-def by auto

lemma no-T-F-except-top-level-simp[simp]: no-T-F-except-top-level FF no-T-F-except-top-level FT
unfolding no-T-F-except-top-level-def by auto

lemma no-T-F-no-T-F-except-top-level [simp]:
no-T-F-except-top-level ¢ +— (¢ = FF V ¢ = FT V no-T-F ¢)
using no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb no-T-F-no-T-F-except-top-level
by auto

32

lemma no-T-F-bin-decomp|simp]:
assumes c: ¢ € binary-connectives
shows no-T-F (conn ¢ [p, ¥]) +— (no-T-F ¢ A no-T-F 1)
proof —
have wf: wf-conn ¢ [p,] using ¢ by auto
then have no-T-F (conn ¢ [p, ¢]) <— (no-T-F-symb (conn c [¢, Y]) A no-T-F ¢ A no-T-F 1)
by (simp add: all-subformula-st-decomp no-T-F-def)
then show no-T-F (conn ¢ [p, ¥]) +— (no-T-F ¢ A no-T-F 1))
using ¢ wf all-subformula-st-decomp list.discl no-T-F-def no-T-F-symb-ezxcept-toplevel-bin-decom
no-T-F-symb-except-toplevel-no-T-F-symb no-T-F-symb-false(1,2) wf-conn-helper-facts(2,3)
wf-conn-list(1,2) by metis
qed

lemma no-T-F-bin-decomp-expanded|simp]:
assumes c: ¢ = CAnd V ¢ = COr vV ¢ = CEqV ¢ = Clmp
shows no-T-F (conn ¢ [p, ¥]) +— (no-T-F ¢ A no-T-F)
using no-T-F-bin-decomp assms unfolding binary-connectives-def by blast

lemma no-T-F-comp-expanded-explicitsimp]:

fixes ¢ ¢ :: 'v propo

shows
no-T-F (FAnd ¢ ¢) <— (no-T-F ¢ A no-T-F 1))
no-T-F (FOr ¢ ¢) <— (no-T-F ¢ A no-T-F)
no-T-F (FEq ¢) <«— (no-T-F ¢ A no-T-F 1))
no-T-F (FImp ¢) <— (no-T-F ¢ A no-T-F 1))

using conn.simps(5—38) no-T-F-bin-decomp-expanded by (metis (no-types))+

lemma no-T-F-comp-not|simp]:
fixes ¢ v 1 "v propo
shows no-T-F (FNot) <— no-T-F ¢
by (metis all-subformula-st-decomp-explicit(3) all-subformula-st-test-symb-true-phi no-T-F-def
no-T-F-symb-false(1,2) no-T-F-symb-fnot-imp)

lemma no-T-F-decomp:
fixes ¢ v 1 "v propo
assumes ¢: no-T-F (FAnd ¢ ¢¥) V no-T-F (FOr ¢ ¢) V no-T-F (FEq ¢ 1) V no-T-F (FImp ¢)
shows no-T-F ¢ and no-T-F ¢
using assms by auto

lemma no-T-F-decomp-not:
fixes ¢ :: v propo
assumes @: no-T-F (FNot ¢)
shows no-T-F ¢
using assms by auto

lemma no-T-F-symb-except-toplevel-step-exists:
fixes ¢ ¢ 1 'v propo
assumes no-equiv ¢ and no-imp ¢
shows 1) < ¢ = — no-T-F-symb-excepi-toplevel v = ', elimTB) 1’
proof (induct v rule: propo-induct-arity)
case (nullary ¢’)
then have Fulse using no-T-F-symb-except-toplevel-true no-T-F-symb-except-toplevel-false by auto
then show ?Zcase by blast
next
case (unary)
then have ¢y = FF V ¢y = FT using no-T-F-symb-except-toplevel-not-decom by blast

33

then show ?case using ElimTBS5 ElimTB6 by blast
next
case (binary @' 1 ¥2)
note IH! = this(1) and IH2 = this(2) and ¢’ = this(3) and Fo = this(4) and n = this(5)
{
assume o' = FImp 1 2 V @' = FEq 1 2
then have Fulse using n Fy subformula-all-subformula-st assms
by (metis (no-types) no-equiv-eq(1) no-equiv-def no-imp-Imp(1) no-imp-def)
then have ?case by blast
}
moreover {
assume ¢ o' = FAnd ¥1 %2 V @' = FOr 1 2
then have v1 = FT V¢Y2 = FT V1 = FF V 2 = FF
using no-T-F-symb-except-toplevel-bin-decom conn.simps(5,6) n unfolding binary-connectives-def
by fastforce+
then have ?case using elimTB.intros ¢’ by blast
}
ultimately show ?case using ¢’ by blast
qed

lemma no-T-F-except-top-level-rew:
fixes ¢ :: 'v propo
assumes noTB: - no-T-F-except-top-level ¢ and no-equiv: no-equiv ¢ and no-imp: no-imp @
shows 3¢ . ¢ < o A elimTB ¢ ¢’
proof —
have test-symb-false-nullary: ¥V x. no-T-F-symb-except-toplevel (FF:: "v propo)
A no-T-F-symb-except-toplevel FT A no-T-F-symb-except-toplevel (F'Var (z:: 'v)) by auto
moreover {
fix c:: 'v connective and [:: 'v propo list and 1 :: "v propo
have H: elimTB (conn ¢ 1) ¢p = —no-T-F-symb-except-toplevel (conn c 1)
by (cases conn c [rule: elimTB.cases, auto)
}

moreover {
fixz v
have H': no-T-F-except-top-level FT no-T-F-except-top-level FF
no-T-F-except-top-level (FVar x)
by (auto simp: no-T-F-except-top-level-def test-symb-false-nullary)

}

moreover {
fix ¥
have ¢ < ¢ = — no-T-F-symb-except-toplevel 1p = ', elimTB 1 1’
using no-T-F-symb-except-toplevel-step-exists no-equiv no-imp by auto
}

ultimately show ?thesis
using no-test-symb-step-exists noTB unfolding no-T-F-except-top-level-def by blast
qed

lemma elimTB-inv:
fixes ¢ ¢ 1 'v propo
assumes full (propo-rew-step elimTB) o 1
and no-equiv ¢ and no-imp ¢
shows no-equiv v and no-imp
proof —
{
fix ¢ ¢ 2 "v propo
have H: elimTB ¢ ¥ = no-equiv ¢ =—> no-equiv

34

by (induct ¢ ¢ rule: elimTB.induct, auto)
}
then show no-equiv
using full-propo-rew-step-inv-stay-conn|of elimTB no-equiv-symb ¢]
no-equiv-symb-conn-characterization assms unfolding no-equiv-def by metis
next
{
fix ¢ ¢ 2 "v propo
have H: elimTB ¢ v = no-imp ¢ = no-imp ¢
by (induct ¢ @ rule: elimTB.induct, auto)
}

then show no-imp ¢
using full-propo-rew-step-inv-stay-conn|of elimTB no-imp-symb ¢] assms
no-imp-symb-conn-characterization unfolding no-imp-def by metis
qed

lemma elimTB-full-propo-rew-step:
fixes ¢ v :: "v propo
assumes no-equiv ¢ and no-imp ¢ and full (propo-rew-step elimTB) ¢ 1)
shows no-T-F-except-top-level i
using full-propo-rew-step-subformula no-T-F-except-top-level-rew assms elimTB-inv by fastforce

1.5.4 PushNeg

Push the negation inside the formula, until the litteral.

inductive pushNeg where

PushNegl[simp]: pushNeg (FNot (FAnd ¢ 1)) (FOr (FNot @) (FNot v)) |
PushNeg2|[simp|: pushNeg (FNot (FOr ¢ 1)) (FAnd (FNot @) (FNot v)) |
PushNeg3|[simp|: pushNeg (FNot (FNot ¢)) ¢

lemma pushNeg-transformation-consistent:
A |= FNot (FAnd ¢ ¢) <— A |= (FOr (FNot ¢) (FNot 1))
A = FNot (FOr ¢ ¢) <— A |= (FAnd (FNot ¢) (FNot 1))
A = FNot (FNot) +— A ¢

by auto

lemma pushNeg-explicit: pushNeg o v = VA. A E o +— AE Y
by (induct ¢ ¢ rule: pushNeg.induct, auto)

lemma pushNeg-consistent: preserve-models pushNeg
unfolding preserve-models-def by (simp add: pushNeg-explicit)

lemma pushNeg-lifted-consistant:
preserve-models (full (propo-rew-step pushNeg))
by (simp add: pushNeg-consistent)

fun simple where
stimple FT = True |
simple FF = True |
simple (FVar -) = True |
simple - = False

35

lemma simple-decomp:
simple o «+— (¢ = FT V ¢ = FF V (32. ¢ = FVar z))
by (cases @) auto

lemma subformula-conn-decomp-simple:

fixes ¢ ¢ 1 'v propo

assumes s: simple v

shows ¢ <X FNot ¢ «— (¢ = FNot ¢ V ¢ = 1))
proof —

have ¢ < conn CNot [¢)] <— (¢ = conn CNot [p] V (3 Y€ set [¢]. ¢ <)

using subformula-conn-decomp wf-conn-helper-facts(1) by metis

then show ¢ < FNot) «+— (p = FNot ¢ V ¢ = 1) using s by (auto simp: simple-decomp)

qed

lemma subformula-conn-decomp-explicit[simp]:
fixes ¢ :: ‘v propo and = :: v
shows
@ = FNot FT <— (p = FNot FT V ¢ = FT)
@ X FNot FF +— (¢ = FNot FF V ¢ = FF)
¢ = FNot (FVar z) +— (¢ = FNot (FVar z) V ¢ = FVar x)
by (auto simp: subformula-conn-decomp-simple)

fun simple-not-symb where
simple-not-symb (FNot @) = (simple) |
simple-not-symb - = True

definition simple-not where
simple-not = all-subformula-st simple-not-symb
declare simple-not-def[simp)

lemma simple-not-Not[simp]:
— simple-not (FNot (FAnd ¢ 1))
- simple-not (FNot (FOr ¢ 1))
by auto

lemma simple-not-step-exists:
fixes ¢ v 1 'v propo
assumes no-equiv ¢ and no-imp ¢
shows 1) < ¢ = — simple-not-symb b = I1)'. pushNeg 1) 1)’
apply (induct), auto)
apply (rename-tac ¥, case-tac 1, auto intro: pushNeg.intros)
by (metis assms(1,2) no-imp-Imp(1) no-equiv-eq(1) no-imp-def no-equiv-def
subformula-in-subformula-not subformula-all-subformula-st)+

lemma simple-not-rew:
fixes ¢ :: v propo
assumes noTB: - simple-not ¢ and no-equiv: no-equiv ¢ and no-imp: no-imp
shows 3¢ ¢’ ¢ < © A pushNeg ¢ ¢’
proof —
have V z. simple-not-symb (FF:: 'v propo) A simple-not-symb FT A simple-not-symb (FVar (z:: 'v))
by auto
moreover {
fix c:: "v connective and [:: 'v propo list and 1) :: "v propo
have H: pushNeg (conn c l) ©» = —simple-not-symb (conn c 1)
by (cases conn c | rule: pushNeg.cases) auto

36

}

moreover {
fix z v
have H': simple-not FT simple-not FF simple-not (FVar x)
by simp-all
}

moreover {
fix 1 :: 'v propo
have ¢ < ¢ = — simple-not-symb 1 = I’. pushNeg ¢ 1’
using simple-not-step-exists no-equiv no-imp by blast
}

ultimately show ?thesis using no-test-symb-step-exists noTB unfolding simple-not-def by blast
qed

lemma no-T-F-except-top-level-pushNeg1 :
no-T-F-except-top-level (FNot (FAnd ¢ 1)) = no-T-F-except-top-level (FOr (FNot @) (FNot 1))
using no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb no-T-F-comp-not no-T-F-decomp(1)
no-T-F-decomp(2) no-T-F-no-T-F-except-top-level by (metis no-T-F-comp-expanded-explicit(2)
propo.distinct(5,17))

lemma no-T-F-except-top-level-pushNeg2:
no-T-F-except-top-level (FNot (FOr ¢ 1)) = no-T-F-except-top-level (FAnd (FNot @) (FNot 1))
by auto

lemma no-T-F-symb-pushNeg:
no-T-F-symb (FOr (FNot ¢') (FNot ¢'))
no-T-F-symb (FAnd (FNot ¢') (FNot "))
no-T-F-symb (FNot (FNot ¢'))
by auto

lemma propo-rew-step-pushNeg-no-T-F-symb:
propo-rew-step pushNeg ¢ 1 = no-T-F-except-top-level ¢ = no-T-F-symb ¢ = no-T-F-symb
apply (induct rule: propo-rew-step.induct)
apply (cases rule: pushNeg.cases)
apply simp-all
apply (metis no-T-F-symb-pushNeg(1))
apply (metis no-T-F-symb-pushNeg(2))
apply (simp, metis all-subformula-st-test-symb-true-phi no-T-F-def)
proof —
fix ¢ ©":: 'a propo and c:: 'a connective and £ £":: 'a propo list
assume rel: propo-rew-step pushNeg @ o’
and IH: no-T-F ¢ = no-T-F-symb ¢ = no-T-F-symb ¢’
and wf: wf-conn ¢ (£ Q ¢ # &)
and n: connc (EQ o # &) =FF V connc (EQ o # &)= FT V no-T-F (conn ¢ (£ Q ¢ # ')
and 2: ¢c £ CFANc#CTNp# FFANp# FT NNV € set EUset &9+ FF AN # FT)
then have ¢ # CF A ¢ # CF N\ wf-conn ¢ (£ Q ¢’ # &)
using wf-conn-no-arity-change-helper wf-conn-no-arity-change by metis
moreover have n’ no-T-F (conn ¢ (£ Q ¢ # ') using n by (simp add: wf wf-conn-list(1,2))
moreover
{
have no-T-F ¢
by (metis Un-iff all-subformula-st-decomyp list.set-intros(1) n’ wf no-T-F-def set-append)
moreover then have no-T-F-symb ¢
by (simp add: all-subformula-st-test-symb-true-phi no-T-F-def)
ultimately have ¢’ # FF A @' # FT
using IH no-T-F-symb-false(1) no-T-F-symb-false(2) by blast

37

then have Ve set (£ Q ¢’ # £). o # FF N ¢ # FT using z by auto
}
ultimately show no-T-F-symb (conn ¢ (£ @ ¢’ # £')) by (simp add: x)
qed

lemma propo-rew-step-pushNeg-no-T-F':
propo-rew-step pushNeg ¢ v = no-T-F o = no-T-F
proof (induct rule: propo-rew-step.induct)
case global-rel
then show ?case
by (metis (no-types, lifting) no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb
no-T-F-def no-T-F-except-top-level-pushNegl no-T-F-except-top-level-pushNeg2
no-T-F-no-T-F-except-top-level all-subformula-st-decomp-explicit(3) pushNeg.simps
simple.simps(1,2,5,6))
next
case (propo-rew-one-step-lift ¢ ' ¢ € £’)
note rel = this(1) and IH = this(2) and wf = this(3) and no-T-F = this(4)
moreover have wf’: wf-conn ¢ (£ Q ¢’ # &)
using wf-conn-no-arity-change wf-conn-no-arity-change-helper wf by metis
ultimately show no-T-F (conn ¢ (£ Q ¢’ # ')
using all-subformula-st-test-symb-true-phi
by (fastforce simp: no-T-F-def all-subformula-st-decomp wf wf’)
qed

lemma pushNeg-inv:
fixes ¢ v :: "v propo
assumes full (propo-rew-step pushNeg) ¢ ¥
and no-equiv ¢ and no-imp ¢ and no-T-F-except-top-level
shows no-equiv v and no-imp ¥ and no-T-F-except-top-level
proof —
{
fix ¢ ¢ 1 "v propo
assume rel: propo-rew-step pushNeg ¢
and no: no-T-F-except-top-level
then have no-T-F-except-top-level 1)
proof —
{
assume ¢ = FT V ¢ = FF
from rel this have Fualse
apply (induct rule: propo-rew-step.induct)
using pushNeg.cases apply blast
using wf-conn-list(1) wf-conn-list(2) by auto
then have no-T-F-except-top-level 1) by blast
}
moreover {
assume ¢ # FT N ¢ # FF
then have no-T-F ¢
by (metis no no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
then have no-T-F ¢
using propo-rew-step-pushNeg-no-T-F rel by auto
then have no-T-F-except-top-level ¢ by (simp add: no-T-F-no-T-F-except-top-level)
}
ultimately show no-T-F-except-top-level 1) by metis
qed

38

moreover {
fix ¢ :: 'v connective and £ £’ :: "v propo list and ¢ ' :: 'v propo
assume rel: propo-rew-step pushNeg ¢ ¢’
and incl: (2 ¢
and corr: wf-conn ¢ (£ @ ¢ # &)
and no-T-F: no-T-F-symb-except-toplevel (conn ¢ (€ Q ¢ # &)
and n: no-T-F-symb-except-toplevel ('
have no-T-F-symb-except-toplevel (conn ¢ (£ Q (' # &)
proof
have p: no-T-F-symb (conn ¢ (£ @ { # ¢'))
using corr wf-conn-list(1) wf-conn-list(2) no-T-F-symb-except-toplevel-no-T-F-symb no-T-F
by blast
have I: Vyoeset (EQ (# E. ¢p 2 FT AN p # FF
using corr wf-conn-no-T-F-symb-iff p by blast
from rel incl have ('AFT N('AFF
apply (induction ¢ ' rule: propo-rew-step.induct)
apply (cases rule: pushNeg.cases, auto)
by (metis assms(4) no-T-F-symb-except-top-level-false-not no-T-F-except-top-level-def
all-subformula-st-test-symb-true-phi subformula-in-subformula-not
subformula-all-subformula-st append-is-Nil-conv list.distinct(1)
wf-conn-no-arity-change-helper wf-conn-list(1,2) wf-conn-no-arity-change)+
then have Vo € set (€ Q (' # &'). ¢ # FT N ¢ # FF using [by auto
moreover have ¢ # CT A ¢ # CF using corr by auto
ultimately show no-T-F-symb (conn ¢ (£ @ (' # ¢£'))
by (metis corr no-T-F-symb-comp wf-conn-no-arity-change wf-conn-no-arity-change-helper)
qed
}
ultimately show no-T-F-except-top-level i
using full-propo-rew-step-inv-stay-with-inc[of pushNeg no-T-F-symb-except-toplevel] assms
subformula-refl unfolding no-T-F-except-top-level-def full-unfold by metis
next
{
fix ¢ ¢ 1 "v propo
have H: pushNeg ¢) = no-equiv ¢ = no-equiv 1
by (induct ¢ 1 rule: pushNeg.induct, auto)
}

then show no-equiv ¥
using full-propo-rew-step-inv-stay-conn[of pushNeg no-equiv-symb ¢ 1|
no-equiv-symb-conn-characterization assms unfolding no-equiv-def full-unfold by metis
next
{
fix ¢ ¢ 2 'v propo
have H: pushNeg ¢ v = no-imp ¢ =—> no-imp ¢
by (induct ¢ ¢ rule: pushNeg.induct, auto)
}

then show no-imp ¥
using full-propo-rew-step-inv-stay-conn|of pushNeg no-imp-symb ¢] assms
no-imp-symb-conn-characterization unfolding no-imp-def full-unfold by metis
qed

lemma pushNeg-full-propo-rew-step:
fixes ¢ v :: 'v propo
assumes
no-equiv ¢ and
no-imp ¢ and

39

full (propo-rew-step pushNeg) ¢ 1 and
no-T-F-except-top-level ¢
shows simple-not
using assms full-propo-rew-step-subformula pushNeg-inv(1,2) simple-not-rew by blast

1.5.5 Push Inside

inductive push-conn-inside :: 'v connective = v connective = v propo = v propo = bool

for ¢ ¢": 'v connective where
push-conn-inside-l[simp]: ¢ = CAnd V ¢ = COr = ¢’ = CAnd V ¢’ = COr

= push-conn-inside ¢ ¢’ (conn ¢ [conn ¢’ [p1, ©2], P])

(conn ¢’ [conn ¢ [¢1, 1], conn ¢ [p2, ¥]]) |

push-conn-inside-r[simp]: ¢ = CAnd V ¢ = COr = ¢’ = CAnd V ¢’ = COr

= push-conn-inside ¢ ¢’ (conn ¢ [, conn ¢’ [p1, p2]])

(conn ¢’ [conn ¢ [¢, p1], conn ¢ [, ©2]])

lemma push-conn-inside-explicit: push-conn-inside ¢ ¢’ p v = VA. AEp +— A=y
by (induct ¢ ¥ rule: push-conn-inside.induct, auto)

lemma push-conn-inside-consistent: preserve-models (push-conn-inside ¢ c’)
unfolding preserve-models-def by (simp add: push-conn-inside-explicit)

lemma propo-rew-step-push-conn-inside[simp]:
—propo-rew-step (push-conn-inside ¢ ¢') FT 1 —propo-rew-step (push-conn-inside ¢ ¢') FF 1
proof —
{
{

fix o ¢
have push-conn-inside ¢ ¢’ ¢ v = ¢ = FT V ¢ = FF = False

by (induct rule: push-conn-inside.induct, auto)
} note H = this
fix ¢
have propo-rew-step (push-conn-inside ¢ ¢’) ¢ » = ¢ = FT V ¢ = FF = Fulse
apply (induct rule: propo-rew-step.induct, auto simp: wf-conn-list(1) wf-conn-list(2))
using H by blast+
}
then show
—propo-rew-step (push-conn-inside ¢ ¢') FT 1)
—propo-rew-step (push-conn-inside ¢ ¢’) FF 1 by blast+
qed

inductive not-c-in-c’-symb:: 'v connective = 'v connective = 'v propo = bool for ¢ ¢’ where
not-c-in-c’-symb-1[simp): wf conn ¢ [conn ¢’ [@, '], Y] = wf-conn ¢’ [p, ¢

= not-c-in-c¢’-symb ¢ ¢’ (conn ¢ [conn ¢’ [¢, @], ¥]) |
not-c-in-c’-symb-r[simpl: wf conn ¢ [P, conn ¢’ [p, ¢'|] = wf-conn ¢’ [p, ¢

= not-c-in-c’-symb ¢ ¢’ (conn ¢ [, conn ¢’ [, ©']])

abbreviation c-in-c’-symb ¢ ¢’ ¢ = —not-c-in-c¢’-symb ¢ ¢’ ¢
lemma c-in-c’-symb-simp:
not-c-in-c’-symb c ¢' { = £ =FF NV E=FT V(= FVarzV £ = FNot FF Vv £ = FNot FT

V & = FNot (FVar x)=> False
apply (induct rule: not-c-in-c’-symb.induct, auto simp: wf-conn.simps wf-conn-list(1—3))

40

using conn-inj-not(2) wf-conn-binary unfolding binary-connectives-def by fastforce+

lemma c-in-c’-symb-simp'[simp]:
—not-c-in-c’-symb ¢ ¢’ FF
—not-c-in-c’-symb ¢ ¢’ FT
—not-c-in-c’-symb ¢ ¢’ (FVar x)
—not-c-in-c’-symb ¢ ¢’ (FNot FF)
—not-c-in-c’-symb ¢ ¢’ (FNot FT)
—not-c-in-c¢’-symb ¢ ¢’ (FNot (FVar x))
using c-in-c’-symb-simp by metis+

definition c-in-c’-only where
c-in-c’-only ¢ ¢’ = all-subformula-st (c-in-c’-symb ¢ ¢’)

lemma c-in-c’-only-simp[simpl:
c-in-c’-only ¢ ¢’ FF
c-in-c’-only ¢ ¢’ FT
c-in-c’-only ¢ ¢’ (FVar z)
c-in-c’-only ¢ ¢’ (FNot FF)
c-in-c’-only ¢ ¢’ (FNot F'T)
c-in-c’-only ¢ ¢’ (FNot (FVar z))
unfolding c-in-c’-only-def by auto

lemma not-c-in-c’-symb-commute:
not-c-in-c’-symb ¢ ¢’ & = wf-conn ¢ [¢, Y] = & = conn ¢ [p, Y]
= not-c-in-c¢’-symb ¢ ¢’ (conn ¢ [, ¢])
proof (induct rule: not-c-in-c’-symb.induct)
case (not-c-in-c’-symb-r ' ¢’ ') note H = this
then have ¢: ¢ = conn ¢’ [p”, Y] using conn-inj by auto
have wf-conn ¢ [conn ¢’ [¢", V],]
using H (1) wf-conn-no-arity-change length-Cons by metis
then show not-c-in-c’-symb ¢ ¢’ (conn ¢ [, ¢])
unfolding 1 using not-c-in-c’-symb.intros(1) H by auto
next
case (not-c-in-c’-symb-1 ¢’ ¢" ') note H = this
then have ¢ = conn ¢’ [¢’, ¢"] using conn-inj by auto
moreover have wf-conn ¢ [/, conn ¢’ [p’, "]
using H (1) wf-conn-no-arity-change length-Cons by metis
ultimately show not-c-in-c’-symb ¢ ¢’ (conn ¢ [, ¢])
using not-c-in-c’-symb.intros(2) conn-inj not-c-in-c’-symb-l.hyps
not-c-in-c’-symb-l.prems(1,2) by blast
qed

lemma not-c-in-c’-symb-commute’:
wf-conn ¢ [p, Y] = c-in-c’-symb ¢ ¢’ (conn ¢ [p, ¢Y]) +— c-in-c’-symb ¢ ¢’ (conn ¢ [V, ¢])
using not-c-in-c¢’-symb-commute wf-conn-no-arity-change by (metis length-Cons)

lemma not-c-in-c’-comm:

assumes wf: wf-conn ¢ [p, V]

shows c-in-c’-only ¢ ¢’ (conn ¢ [p,]) +— c-in-c’-only ¢ ¢’ (conn ¢ [, ¢]) (is A +— ?B)
proof —

have ?A +— (c-in-c’-symb ¢ ¢’ (conn ¢ [p, ¥])

A (V€ € set [, ¢). all-subformula-st (c-in-c¢’-symb ¢ ¢’) €))
using all-subformula-st-decomp wf unfolding c-in-c’-only-def by fastforce
also have ... +— (c-in-c’-symb c ¢’ (conn ¢ [¢, ¢])

41

A (V€ € set [, ¢]. all-subformula-st (c-in-¢’-symb ¢ ¢’) €))
using not-c-in-c’-symb-commute’ wf by auto
also
have wf-conn ¢ [, ¢| using wf-conn-no-arity-change wf by (metis length-Cons)
then have (c-in-c¢’-symb ¢ ¢’ (conn ¢ [¢, ¢])
A (V€ € set [, ¢]. all-subformula-st (c-in-c’-symb ¢ ¢’) €))
+— B
using all-subformula-st-decomp unfolding c-in-c’-only-def by fastforce
finally show ?thesis .
qed

lemma not-c-in-c’-simp|simp|:
fixes p1 2 1) :: "v propo and z :: v
shows
c-in-c¢’-symb ¢ ¢/ FT
c-in-c’-symb ¢ ¢’ FF
c-in-c¢’-symb ¢ ¢’ (FVar x)
wf-conn ¢ [conn ¢’ [p1, 2], Y] = wf-conn ¢’ [p1, p2]
= - c-in-c’-only ¢ ¢’ (conn c [conn ¢’ [p1, 2], V])
apply (simp-all add: c-in-c’-only-def)
using all-subformula-st-test-symb-true-phi not-c-in-c’-symb-1 by blast

lemma c-in-c’-symb-not[simp]:
fixes ¢ ¢’ :: 'v connective and ¢ :: 'v propo
shows c-in-c¢’-symb ¢ ¢’ (FNot)
proof —
{
fix £ :: 'v propo
have not-c-in-c’-symb ¢ ¢’ (FNot 1) = False
apply (induct FNot ¢ rule: not-c-in-c’-symb.induct)
using conn-inj-not(2) by blast+
}
then show ?thesis by auto
qed

lemma c-in-c’-symb-step-exists:
fixes ¢ :: 'v propo
assumes c¢: ¢ = CAnd V ¢ = COr and ¢": ¢/ = CAnd vV ¢’ = COr
shows 1) < ¢ = = c-in-c’-symb ¢ ¢’ v = I'. push-conn-inside ¢ ¢’ P '
apply (induct ¢ rule: propo-induct-arity)
apply auto[2]
proof —
fix 1 ¥2 o": v propo
assume [HY1: 1 < o = = c-in-¢’-symb ¢ ¢’ Y1 = Ezx (push-conn-inside ¢ ¢’ ¢1)
and THY2: 1 <X ¢ = = c-in-c’-symb ¢ ¢’ Y1 = Ex (push-conn-inside ¢ ¢’ 1)
and ¢" ¢’ = FAnd Y1 2 V ¢’ = FOr o1 Y2 V @' = FImp 1 v2 V ¢’ = FEq ¢1 ¥2
and iny: ¢’ < ¢ and n0: —c-in-c’-symb c ¢’ p’
then have n: not-c-in-c’-symb ¢ ¢’ ¢’ by auto
{
assume " ¢’ = conn ¢ [Y1, V2]
obtain a b where ¢¥1 = conn ¢’ [a, b] V ©2 = conn ¢’ [a, b
using n ¢’ apply (induct rule: not-c-in-c’-symb.induct)
using c by force+
then have Fz (push-conn-inside ¢ ¢’ @)
unfolding ¢’ apply auto
using push-conn-inside.intros(1) ¢ ¢’ apply blast

42

using push-conn-inside.intros(2) ¢ ¢’ by blast
}
moreover {
assume ¢" ¢’ #£ conn ¢ Y1, 2]
have Vi ¢ ca. 3pl 1 Y2 1" 2" ¢2'. conn (c::'v connective) [pl1, conn ca [p1, 2] = ¢
V conn ¢ [conn ca [W1', 2], p2'] = ¢ V c-in-c’-symb ¢ ca ¢
by (metis not-c-in-c’-symb. cases)
then have Ex (push-conn-inside ¢ ¢’ @)
by (metis (no-types) ¢ ¢’ n push-conn-inside-l push-conn-inside-r)
}

ultimately show Ez (push-conn-inside ¢ ¢’ ¢’) by blast
qed

lemma c-in-c’-symb-rew:
fixes ¢ :: v propo
assumes noTB: —c-in-c’-only ¢ ¢’ ¢
and ¢: ¢ = CAnd V ¢ = COr and c¢": ¢/ = CAnd VvV ¢’ = COr
shows 39 ¥’ 1 < o A push-conn-inside c ¢’ 1 1’
proof —
have test-symb-false-nullary:
Vz. c-in-c’-symb ¢ ¢’ (FF:: 'v propo) A c-in-c’-symb ¢ ¢’ FT
A c-in-c’-symb ¢ ¢’ (FVar (z:: 'v))
by auto
moreover {
fixz: v
have H': c-in-c’-symb ¢ ¢’ FT c-in-¢’-symb ¢ ¢’ FF c-in-c¢’-symb ¢ ¢’ (FVar x)
by simp+
}

moreover {
fix v :: v propo
have) < ¢ = = c-in-c¢’-symb ¢ ¢’ = IY'. push-conn-inside ¢ ¢’ P P’
by (auto simp: assms(2) ¢’ c-in-c'-symb-step-exists)
}

ultimately show ?thesis using noTB no-test-symb-step-exists[of c-in-c¢’-symb ¢ ¢’]
unfolding c-in-c’-only-def by metis
qed

lemma push-conn-insidec-in-c’-symb-no-T-F:
fixes ¢ v :: "v propo
shows propo-rew-step (push-conn-inside ¢ ¢') ¢ ¥ = no-T-F ¢ = no-T-F
proof (induct rule: propo-rew-step.induct)
case (global-rel p)
then show no-T-F
by (cases rule: push-conn-inside.cases, auto)
next
case (propo-rew-one-step-lift ¢ ¢’ ¢ € £’)
note rel = this(1) and IH = this(2) and wf = this(3) and no-T-F = this(4)
have no-T-F ¢
using wf no-T-F no-T-F-def subformula-into-subformula subformula-all-subformula-st
subformula-refl by (metis (no-types) in-set-conv-decomp)
then have ¢ no-T-F ¢’ using IH by blast

have V(€ set (€ Q@ ¢ # £). no-T-F ¢ by (metis wf no-T-F no-T-F-def all-subformula-st-decomp)

then have n: V(€ set (£ Q ¢’ # ¢&'). no-T-F (using ¢’ by auto
then have n: V(¢ € set ((Q ' # . (# FFAN(#FT

43

using ¢’ by (metis no-T-F-symb-false(1) no-T-F-symb-false(2) no-T-F-def
all-subformula-st-test-symb-true-phi)

have wf”: wf-conn ¢ (£ Q ¢’ # &)
using wf wf-conn-no-arity-change by (metis wf-conn-no-arity-change-helper)
{
fix z:: v
assume ¢ = CT V¢ = CF V ¢ = CVarzx
then have Fulse using wf by auto
then have no-T-F (conn ¢ (£ Q ¢’ # £')) by blast
}
moreover {
assume c: ¢ = CNot
then have ¢ = [| ¢/ = [] using wf by auto
then have no-T-F (conn ¢ (§ Q ¢’ # &)
using ¢ by (metis ¢’ conn.simps(4) no-T-F-symb-false(1,2) no-T-F-symb-fnot no-T-F-def
all-subformula-st-decomp-explicit(3) all-subformula-st-test-symb-true-phi self-append-conv2)
}
moreover {
assume c: ¢ € binary-connectives
then have no-T-F-symb (conn ¢ (£ Q ¢’ # ¢£')) using wf’' n’ no-T-F-symb.simps by fastforce
then have no-T-F (conn ¢ (£ Q ¢’ # &)
by (metis all-subformula-st-decomp-imp wf’ n no-T-F-def)
}

ultimately show no-T-F (conn ¢ (£ @ @' # £)) using connective-cases-arity by auto
qed

lemma simple-propo-rew-step-push-conn-inside-inv:
propo-rew-step (push-conn-inside ¢ ¢’) ¢ 1 = simple ¢ = simple
apply (induct rule: propo-rew-step.induct)
apply (rename-tac @, case-tac p, auto simp: push-conn-inside.simps)]|
by (metis append-is-Nil-conv list.distinct(1) simple.elims(2) wf-conn-list(1—3))

lemma simple-propo-rew-step-inv-push-conn-inside-simple-not:
fixes ¢ ¢’ :: "v connective and @ ¢ :: v propo
shows propo-rew-step (push-conn-inside c ¢') ¢ » = simple-not ¢ = simple-not
proof (induct rule: propo-rew-step.induct)
case (global-rel ¢ 1)
then show Zcase by (cases p, auto simp: push-conn-inside.simps)
next
case (propo-rew-one-step-lift ¢ ¢’ ca € ') note rew = this(1) and IH = this(2) and wf = this(3)
and simple = this(4)
show ?Zcase
proof (cases ca rule: connective-cases-arity)
case nullary
then show ?thesis using propo-rew-one-step-lift by auto
next
case binary note ca = this
obtain a b where ab: £ Q ¢’ # ¢’ = [a, b]
using wf ca list-length2-decomp wf-conn-bin-list-length
by (metis (no-types) wf-conn-no-arity-change-helper)
have V(€ set (£ Q ¢ # £'). simple-not
by (metis wf all-subformula-st-decomp simple simple-not-def)
then have V(€ set (£ Q o’ # £’). simple-not ¢ using IH by simp

44

moreover have simple-not-symb (conn ca (£ @ ¢’ # £')) using ca
by (metis ab conn.simps(5—8) helper-fact simple-not-symb.simps(5) simple-not-symb.simps(6)
simple-not-symb.simps(7) simple-not-symb.simps(8))
ultimately show ?Zthesis
by (simp add: ab all-subformula-st-decomp ca)
next
case unary
then show Zthesis
using rew simple-propo-rew-step-push-conn-inside-inv| OF rew] IH local.wf simple by auto
qed
qed

lemma propo-rew-step-push-conn-inside-simple-not:
fixes ¢ ¢’ :: 'v propo and £ £’ :: 'v propo list and c :: "v connective
assumes
propo-rew-step (push-conn-inside ¢ ¢') ¢ ¢’ and
wf-conn ¢ (€ Q@ ¢ # ¢') and
simple-not-symb (conn ¢ (£ Q ¢ # ¢’)) and
simple-not-symb o’
shows simple-not-symb (conn ¢ (£ Q ¢’ # ¢£'))
using assms
proof (induction rule: propo-rew-step.induct)
print-cases
case (global-rel)
then show ?case
by (metis conn.simps(12,17) list.discI push-conn-inside.cases simple-not-symb.elims(3)
wf-conn-helper-facts(5) wf-conn-list(2) wf-conn-list(8) wf-conn-no-arity-change
wf-conn-no-arity-change-helper)
next
case (propo-rew-one-step-lift ¢ @' ¢’ xs xs’) note tel = this(1) and wf = this(2) and
IH = this(8) and wf’ = this(4) and simple’ = this(5) and simple = this(6)
then show ?case
proof (cases ¢’ rule: connective-cases-arity)
case nullary
then show ?thesis using wf simple simple’ by auto
next
case binary note ¢ = this(1)
have corr’: wf-conn ¢ (£ Q conn ¢’ (xs Q@ o' # xs) # &)
using wf wf-conn-no-arity-change
by (metis wf’ wf-conn-no-arity-change-helper)
then show ?thesis
using ¢ propo-rew-one-step-lift wf
by (metis conn.simps(17) connective.distinct(37) propo-rew-step-subformula-imp
push-conn-inside.cases simple-not-symb.elims(3) wf-conn.simps wf-conn-list(2,8))
next
case unary
then have empty: xs =[] xs’ = [| using wf by auto
then show ?thesis using simple unary simple’ wf wf’
by (metis connective.distinct(37) connective.distinct(39) propo-rew-step-subformula-imp
push-conn-inside.cases simple-not-symb.elims(3) tel wf-conn-list(8)
wf-conn-no-arity-change wf-conn-no-arity-change-helper)
qed
qed

lemma push-conn-inside-not-true-false:
push-conn-inside ¢ ¢’ ¢ p = ¢ # FT N # FF

45

by (induct rule: push-conn-inside.induct, auto)

lemma push-conn-inside-inv:
fixes ¢ ¢ :: 'v propo
assumes full (propo-rew-step (push-conn-inside ¢ c¢’)) ¢ 9
and no-equiv ¢ and no-imp ¢ and no-T-F-except-top-level ¢ and simple-not
shows no-equiv ¥ and no-imp ¢ and no-T-F-except-top-level ¢ and simple-not
proof —

{
{
fix ¢ ¢ :: "v propo
have H: push-conn-inside ¢ ¢’ ¢ ¥ = all-subformula-st simple-not-symb
= all-subformula-st simple-not-symb
by (induct ¢ ¥ rule: push-conn-inside.induct, auto)
} note H = this

fix ¢ ¢ 1 "v propo
have H: propo-rew-step (push-conn-inside ¢ ¢’) ¢ 1 = all-subformula-st simple-not-symb ¢
= all-subformula-st simple-not-symb
apply (induct ¢ ¥ rule: propo-rew-step.induct)
using H apply simp
proof (rename-tac ¢ ¢’ ca s ¥s’, case-tac ca rule: connective-cases-arity)
fix ¢ ¢’ :: 'v propo and c:: v connective and £ £’ v propo list
and z:: v
assume wf-conn ¢ (£ Q ¢ #)
and ¢c=CTVc¢=CFVc=CVarz
then have £ Q ¢ # ¢’ =[] by auto
then have Fulse by auto
then show all-subformula-st simple-not-symb (conn ¢ (€ Q@ ¢’ # £’)) by blast
next
fix ¢ ' :: 'v propo and ca:: "v connective and & £":: v propo list
and z :: v
assume rel: propo-rew-step (push-conn-inside ¢ ¢’) ¢ '
and @-¢": all-subformula-st simple-not-symb ¢ = all-subformula-st simple-not-symb '
and corr: wf-conn ca (£ Q ¢ # &)
and n: all-subformula-st simple-not-symb (conn ca (£ Q @ # £'))
and c: ca = CNot

have empty: £ =[] ¢/ =[] using ¢ corr by auto
then have simple-not:all-subformula-st simple-not-symb (FNot ¢) using corr ¢ n by auto
then have simple ¢
using all-subformula-st-test-symb-true-phi simple-not-symb.simps(1) by blast
then have simple ¢’
using rel simple-propo-rew-step-push-conn-inside-inv by blast
then show all-subformula-st simple-not-symb (conn ca (§ @ ¢’ # ¢')) using ¢ empty
by (metis simple-not - append-Nil conn.simps(4) all-subformula-st-decomp-explicit(3)
simple-not-symb.simps(1))
next
fix ¢ ¢’ :: 'v propo and ca :: 'v connective and £ £’ :: v propo list
and z :: v
assume rel: propo-rew-step (push-conn-inside ¢ ¢’) ¢ @’
and ny: all-subformula-st simple-not-symb ¢ = all-subformula-st simple-not-symb o’
and corr: wf-conn ca (£ Q ¢ # £')
and n: all-subformula-st simple-not-symb (conn ca (£ Q ¢ # ')
and c: ca € binary-connectives

46

have all-subformula-st simple-not-symb ¢
using n ¢ corr all-subformula-st-decomp by fastforce
then have ¢ all-subformula-st simple-not-symb ¢’ using np by blast
obtain a b where ab: [a, b] = (£ Q ¢ #)
using corr ¢ list-length2-decomp wf-conn-bin-list-length by metis
then have { @ ¢’ # {'=[a, | V (£ Q @' # &) = [¢', U]
using ab by (metis (no-types, hide-lams) append-Cons append-Nil append-Nil2
append-is-Nil-conv butlast.simps(2) butlast-append list.sel(3) tl-append2)
moreover
{
fix x :: "v propo
have wf’: wf-conn ca [a, b]
using ab corr by presburger
have all-subformula-st simple-not-symb (conn ca [a, b))
using ab n by presburger
then have all-subformula-st simple-not-symb x V x ¢ set (£ @ ¢’ # &)
using wf’ by (metis (no-types) ¢’ all-subformula-st-decomp calculation insert-iff
list.set(2))

then have V. ¢ € set (£ Q ¢’ # £') — all-subformula-st simple-not-symb ¢
by (metis (no-types))

moreover have simple-not-symb (conn ca (£ @ ¢’ # &)
using ab conn-inj-not(1) corr wf-conn-list-decomp(4) wf-conn-no-arity-change
not-Cons-self2 self-append-conv2 simple-not-symb.elims(3) by (metis (no-types) ¢
calculation(1) wf-conn-binary)
moreover have wf-conn ca (¢ Q@ ¢’ # ') using c¢ calculation(1) by auto
ultimately show all-subformula-st simple-not-symb (conn ca (§ Q ¢’ # £'))
by (metis all-subformula-st-decomp-imp)
qed
}
moreover {
fix ca :: 'v connective and £ £’ :: 'v propo list and ¢ ¢’ :: "v propo
have propo-rew-step (push-conn-inside ¢ ¢’) ¢ @' = wf-conn ca (§ Q ¢ # &)
= simple-not-symb (conn ca (£ Q ¢ # &')) = simple-not-symb ¢’
= simple-not-symb (conn ca (£ Q @’ # £’))
by (metis append-self-conv2 conn.simps(4) conn-inj-not(1) simple-not-symb.elims(3)
stmple-not-symb.simps(1) simple-propo-rew-step-push-conn-inside-inv
wf-conn-no-arity-change-helper wf-conn-list-decomp(4) wf-conn-no-arity-change)
}
ultimately show simple-not ¢
using full-propo-rew-step-inv-stay’|of push-conn-inside ¢ ¢’ simple-not-symb] assms
unfolding no-T-F-except-top-level-def simple-not-def full-unfold by metis
next
{
fix ¢ ¢ :: 'v propo
have H: propo-rew-step (push-conn-inside ¢ ¢') ¢ 1 = no-T-F-except-top-level ¢
= no-T-F-except-top-level
proof —
assume rel: propo-rew-step (push-conn-inside ¢ ¢’) o
and no-T-F-except-top-level ¢
then have no-T-F ¢V ¢ = FF V ¢ = FT
by (metis no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
moreover {
assume ¢ = FFV ¢ = FT
then have Fulse using rel propo-rew-step-push-conn-inside by blast

47

then have no-T-F-except-top-level 1) by blast
}
moreover {
assume no-T-F o A p # FF N ¢ # FT
then have no-T-F 1 using rel push-conn-insidec-in-c’-symb-no-T-F by blast
then have no-T-F-except-top-level 1 using no-T-F-no-T-F-except-top-level by blast
}
ultimately show no-T-F-except-top-level v by blast
qed
}
moreover {
fix ca :: 'v connective and £ £’ :: 'v propo list and ¢ ¢’ :: "v propo
assume rel: propo-rew-step (push-conn-inside ¢ ¢') ¢ @’
assume corr: wf-conn ca (§ Q ¢ # &)
then have c¢: ca # CT A ca # CF by auto
assume no-T-F: no-T-F-symb-except-toplevel (conn ca (£ Q ¢ # £'))
have no-T-F-symb-except-toplevel (conn ca (£ @ ¢’ # &)
proof
have c¢: ca # CT A ca # CF using corr by auto
have (: V(e set (£ Q o # &'). (#FT N ¢ # FF
using corr no-T-F no-T-F-symb-except-toplevel-if-is-a-true-false by blast
then have ¢ # FT A ¢ # FF by auto
from rel this have ¢’ # FT A ¢’ # FF
apply (induct rule: propo-rew-step.induct)
by (metis append-is-Nil-conv conn.simps(2) conn-inj list.distinct(1)
wf-conn-helper-facts(3) wf-conn-list(1) wf-conn-no-arity-change
wf-conn-no-arity-change-helper push-conn-inside-not-true-false)+
then have V(€ set (£ Q@ ¢’ # £'). (# FT A (# FF using ¢ by auto
moreover have wf-conn ca (§ Q@ ¢’ # &)
using corr wf-conn-no-arity-change by (metis wf-conn-no-arity-change-helper)
ultimately show no-T-F-symb (conn ca (€ Q ¢’ # £')) using no-T-F-symb.intros ¢ by metis
qed
}
ultimately show no-T-F-except-top-level i
using full-propo-rew-step-inv-stay’|of push-conn-inside ¢ ¢’ no-T-F-symb-except-toplevel]
assms unfolding no-T-F-except-top-level-def full-unfold by metis

next

{
fix ¢ ¢ :: 'v propo
have H: push-conn-inside ¢ ¢’ ¢ 1) = no-equiv p = no-equiv ¥
by (induct ¢ ¥ rule: push-conn-inside.induct, auto)
}

then show no-equiv ¥
using full-propo-rew-step-inv-stay-conn|of push-conn-inside ¢ ¢’ no-equiv-symb] assms
no-equiv-symb-conn-characterization unfolding no-equiv-def by metis

next

{
fix ¢ ¢ :: 'v propo
have H: push-conn-inside c ¢’ ¢ 1 = no-imp o = no-imp Y
by (induct ¢ ¥ rule: push-conn-inside.induct, auto)
}

then show no-imp ¢

using full-propo-rew-step-inv-stay-conn|of push-conn-inside ¢ ¢’ no-imp-symb] assms
no-imp-symb-conn-characterization unfolding no-imp-def by metis

48

qed

lemma push-conn-inside-full-propo-rew-step:

fixes ¢ v :: 'v propo

assumes
no-equiv ¢ and
no-imp ¢ and
full (propo-rew-step (push-conn-inside ¢ ¢’)) ¢ ¥ and
no-T-F-except-top-level ¢ and
simple-not p and
¢ = CAnd V ¢ = COr and
¢’ = CAnd v ¢’ = COr

shows c-in-c’-only ¢ ¢’

using c-in-c’-symb-rew assms full-propo-rew-step-subformula by blast

Only one type of connective in the formula (+ not)

inductive only-c-inside-symb :: "v connective = "v propo = bool for ¢ :: 'v connective where
simple-only-c-inside[simp]: simple ¢ => only-c-inside-symb ¢ ¢ |
simple-cnot-only-c-inside[simp]: simple ¢ = only-c-inside-symb ¢ (FNot ¢) |
only-c-inside-into-only-c-inside: wf-conn ¢ | = only-c-inside-symb ¢ (conn c 1)

lemma only-c-inside-symb-simp|simpl:
only-c-inside-symb ¢ FF only-c-inside-symb ¢ FT only-c-inside-symb ¢ (FVar x) by auto

definition only-c-inside where only-c-inside ¢ = all-subformula-st (only-c-inside-symb c)

lemma only-c-inside-symb-decomp:
only-c-inside-symb ¢ 1 <— (simple)
V (3 ¢’ = FNot o' N simple)
vV (3. ¢ = conn ¢l A wf-conn ¢ 1))
by (auto simp: only-c-inside-symb.intros(3)) (induct rule: only-c-inside-symb.induct, auto)

lemma only-c-inside-symb-decomp-not|simp]:
fixes ¢ :: 'v connective
assumes c: ¢ # CNot
shows only-c-inside-symb ¢ (FNot ¢) +— simple ¢
apply (auto simp: only-c-inside-symb.intros(3))
by (induct FNot v rule: only-c-inside-symb.induct, auto simp: wf-conn-list(8) c)

lemma only-c-inside-decomp-not[simp]:
assumes c: ¢ # CNot
shows only-c-inside ¢ (FNot ¢) +— simple ¢
by (metis (no-types, hide-lams) all-subformula-st-def all-subformula-st-test-symb-true-phi c
only-c-inside-def only-c-inside-symb-decomp-not simple-only-c-inside
subformula-conn-decomp-simple)

lemma only-c-inside-decomp:
only-c-inside ¢ @ +—
(Vp. ¢ <o — (simple p V (3 ¢’ p = FNot ¢’ A simple)
V (3. ¢ = conn ¢l A wf-conn ¢ l)))
unfolding only-c-inside-def by (auto simp: all-subformula-st-def only-c-inside-symb-decomp)

49

lemma only-c-inside-c-c'-false:
fixes c ¢’ :: "v connective and [:: 'v propo list and ¢ :: 'v propo
assumes cc”: ¢ # ¢’ and ¢: ¢ = CAnd V ¢ = COr and ¢ ¢’ = CAnd V ¢’ = COr
and only: only-c-inside ¢ ¢ and incl: conn ¢’ | < ¢ and wf: wf-conn ¢’
shows Fulse
proof —
let 1) = conn ¢’
have simple 2 V (3 ¢’ 20 = FNot ¢’ A simple ¢') V (1. %3 = conn ¢ I A wf-conn ¢ 1)
using only-c-inside-decomp only incl by blast
moreover have — simple %1
using wf simple-decomp by (metis ¢’ connective.distinct(19) connective.distinct(7,9,21,29,31)
wf-conn-list(1—3))
moreover
{
fix ¢’
have ?1¢) # FNot ¢’ using ¢’ conn-inj-not(1) wf by blast
}
ultimately obtain [:: ‘v propo list where ?1¢) = conn c | A wf-conn c | by metis
then have ¢ = ¢’ using conn-inj wf by metis
then show Fualse using cc’ by auto
qed

lemma only-c-inside-implies-c-in-c’-symb:
assumes §: ¢ # ¢’ and ¢: ¢ = CAnd V ¢ = COr and ¢ ¢/’ = CAnd V ¢’ = COr
shows only-c-inside ¢ ¢ = c-in-c’-symb ¢ ¢’ ¢
apply (rule ccontr)
apply (cases rule: not-c-in-c’-symb.cases, auto)
by (metis § ¢ ¢’ connective.distinct(37,39) list.distinct(1) only-c-inside-c-c’-false
subformula-in-binary-conn(1,2) wf-conn.simps)—+

lemma c-in-c’-symb-decomp-levell :

fixes [:: "v propo list and c ¢’ ca :: 'v connective

shows wf-conn ca | = ca # ¢ = c-in-¢’-symb ¢ ¢’ (conn ca 1)
proof —

have not-c-in-c’-symb ¢ ¢’ (conn ca l) = wf-conn ca l = ca = ¢

by (induct conn ca l rule: not-c-in-c’-symb.induct, auto simp: conn-inyj)

then show wf-conn ca | = ca # ¢ = c-in-c’-symb ¢ ¢’ (conn ca l) by blast

qed

lemma only-c-inside-implies-c-in-c’-only:
assumes §: ¢ # ¢’and ¢: ¢ = CAnd V ¢ = COr and ¢”: ¢/’ = CAnd vV ¢/ = COr
shows only-c-inside ¢ p = c-in-c’-only c ¢’ ¢
unfolding c-in-c’-only-def all-subformula-st-def
using only-c-inside-implies-c-in-c’-symb
by (metis all-subformula-st-def assms(1) ¢ ¢’ only-c-inside-def subformula-trans)

lemma c-in-c’-symb-c-implies-only-c-inside:
assumes 0: ¢ = CAnd V ¢ = COr ¢/’ = CAnd V ¢’ = COr ¢ # ¢’ and wf: wf-conn ¢ [p, Y]
and inv: no-equiv (conn c 1) no-imp (conn ¢ 1) simple-not (conn ¢ 1)
shows wf-conn ¢ | = c-in-c’-only ¢ ¢’ (conn ¢ 1) = (VYE set . only-c-inside c V)
using inv
proof (induct conn c I arbitrary: [rule: propo-induct-arity)
case (nullary z)

50

then show Zcase by (auto simp: wf-conn-list assms)
next
case (unary ¢ la)
then have ¢ = CNot A la = [p] by (metis (no-types) wf-conn-list(8))
then show ?Zcase using assms(2) assms(1) by blast
next
case (binary ¢1 ¢2)
note IHp! = this(1) and IHp?2 = this(2) and ¢ = this(3) and only = this(5) and wf = this(4)
and no-equiv = this(6) and no-imp = this(7) and simple-not = this(8)
then have [: | = [p1, 2] by (meson wf-conn-list(4—17))
let 9o = conn cl

obtain c1 1 ¢2 12 where p1: p1 = conn c1 l1 and wfpl: wf-conn cl 1
and p2: p2 = conn c2 12 and wfp2: wf-conn c2 12 using ezists-c-conn by metis
then have c-in-onlypl1: c-in-c’-only ¢ ¢’ (conn c1 1) and c-in-c¢’-only ¢ ¢’ (conn c¢2 12)
using only [unfolding c-in-c’-only-def using assms(1) by auto
have incpl: 1 < ?p and incp2: p2 = %p
using ¢1 ¢2 ¢ local.wf by (metis conn.simps(5—8) helper-fact subformula-in-binary-conn(1,2))+

have cl-eq: ¢1 # CEq and c¢2-eq: c2 # CEq
unfolding no-equiv-def using incpl incp2 by (metis p1 2 wfpl wfp2 assms(1) no-equiv
no-equiv-eq(1) no-equiv-symb.elims(8) no-equiv-symb-conn-characterization wf-conn-list(4,5)
no-equiv-def subformula-all-subformula-st)+
have ci1-imp: c1 # Clmp and c2-imp: c2 # Clmp
using no-imp by (metis p1 p2 all-subformula-st-decomp-explicit-imp(2,3) assms(1)
conn.simps(5,6) 1 no-imp-Imp(1) no-imp-symb.elims(3) no-imp-symb-conn-characterization
wfpl wfp?2 all-subformula-st-decomp no-imp-symb-conn-characterization)—+
have clc: ¢l # ¢’
proof
assume clc: ¢l = ¢’
then obtain £1 £2 where 11: 11 = [£1, £2]
by (metis assms(2) connective.distinct(37,39) helper-fact wfpl wf-conn.simps
wf-conn-list-decomp(1—3))
have c-in-c’-only ¢ ¢’ (conn ¢ [conn ¢’ I1, ¢2]) using clc | only @1 by auto
moreover have not-c-in-c¢’-symb ¢ ¢’ (conn ¢ [conn ¢' l1, v2])
using 11 @1 clc I local.wf not-c-in-c’-symb-l wfp1 by blast
ultimately show Fulse using @1 clc 111 local.wf not-c-in-c¢’-simp(4) wfpl by blast
qed
then have (p1 = conn c l1 A wf-conn ¢ 1) V (3¢1. o1 = FNot ¥1) V simple o1
by (metis @1 assms(1—3) cl-eq c1-imp simple.elims(3) wfel wf-conn-list(4) wf-conn-list(5—7))
moreover {
assume @1 = conn c 1 N\ wf-conn c 1
then have only-c-inside ¢ 1
by (metis IHp1 1 all-subformula-st-decomp-imp incel no-equiv no-equiv-def no-imp no-imp-def
c-in-onlyp1 only-c-inside-def only-c-inside-into-only-c-inside simple-not simple-not-def
subformula-all-subformula-st)
}
moreover {
assume JY1. p1 = FNot ¢¥1
then obtain 1 where ¢1 = FNot ¥1 by metis
then have only-c-inside ¢ 1
by (metis all-subformula-st-def assms(1) connective.distinct(37,39) incpl
only-c-inside-decomp-not simple-not simple-not-def simple-not-symb.simps(1))
}
moreover {
assume simple p1

o1

then have only-c-inside ¢ 1
by (metis all-subformula-st-decomp-explicit(3) assms(1) connective.distinct(37,39)
only-c-inside-decomp-not only-c-inside-def)

}

ultimately have only-c-insidep1: only-c-inside ¢ ¢1 by metis

have c-in-onlyp2: c-in-c’-only ¢ ¢’ (conn ¢2 12)
using only | 02 wf?2 assms unfolding c-in-c’-only-def by auto
have c2c: c2 # ¢’
proof
assume c2c: ¢2 = ¢’
then obtain 1 £2 where 12: 12 = [1, £2]
by (metis assms(2) wfe2 wf-conn.simps connective.distinct(7,9,19,21,29,31,37,39))
then have c-in-c’-symb ¢ ¢’ (conn ¢ [p1, conn ¢’ 12])
using c2c | only ©2 all-subformula-st-test-symb-true-phi unfolding c-in-c’-only-def by auto
moreover have not-c-in-c’-symb ¢ ¢’ (conn ¢ [p1, conn ¢’ 12])
using assms(1) c2c¢ 12 not-c-in-c'-symb-r wfp2 wf-conn-helper-facts(5,6) by metis
ultimately show Fulse by auto
ged
then have (p2 = conn ¢ 12 A wf-conn ¢ 12) V (392. 92 = FNot ¢¥2) V simple 2
using c2-eq by (metis 2 assms(1—38) c2-eq c2-imp simple.elims(3) wfp2 wf-conn-list(4—7))
moreover {
assume @2 = conn c 2 N wf-conn ¢ 12
then have only-c-inside c p2
by (metis IHp2 p2 all-subformula-st-decomp incp2 no-equiv no-equiv-def no-imp no-imp-def
c-in-onlyp2 only-c-inside-def only-c-inside-into-only-c-inside simple-not simple-not-def
subformula-all-subformula-st)
}
moreover {
assume 3¢ 2. p2 = FNot 2
then obtain 2 where ¢2 = FNot ¥2 by metis
then have only-c-inside ¢ ¢2
by (metis all-subformula-st-def assms(1—38) connective.distinct(38,40) incp?2
only-c-inside-decomp-not simple-not simple-not-def simple-not-symb.simps(1))
}
moreover {
assume simple p2
then have only-c-inside ¢ p2
by (metis all-subformula-st-decomp-explicit(3) assms(1) connective.distinct(37,39)
only-c-inside-decomp-not only-c-inside-def)

ultimately have only-c-insidep2: only-c-inside ¢ 2 by metis

show ?case using [only-c-insidep1 only-c-insidep2 by auto
qed

Push Conjunction
definition pushConj where pushConj = push-conn-inside CAnd COr

lemma pushConj-consistent: preserve-models pushConj
unfolding pushConj-def by (simp add: push-conn-inside-consistent)

definition and-in-or-symb where and-in-or-symb = c-in-c’-symb CAnd COr

definition and-in-or-only where
and-in-or-only = all-subformula-st (c-in-c’-symb CAnd COr)

52

lemma pushConj-inv:
fixes ¢ v :: "v propo
assumes full (propo-rew-step pushConj) ¢ 1
and no-equiv ¢ and no-imp ¢ and no-T-F-except-top-level ¢ and simple-not
shows no-equiv ¥ and no-imp ¢ and no-T-F-except-top-level ¢ and simple-not
using push-conn-inside-inv assms unfolding pushConj-def by metis+

lemma pushConj-full-propo-rew-step:
fixes ¢ v :: 'v propo
assumes
no-equiv and
no-imp ¢ and
full (propo-rew-step pushConj) ¢ v and
no-T-F-except-top-level ¢ and
simple-not ¢
shows and-in-or-only ¢
using assms push-conn-inside-full-propo-rew-step
unfolding pushConj-def and-in-or-only-def c-in-c’-only-def by (metis (no-types))

Push Disjunction

definition pushDisj where pushDisj = push-conn-inside COr CAnd

lemma pushDisj-consistent: preserve-models pushDisj
unfolding pushDisj-def by (simp add: push-conn-inside-consistent)

definition or-in-and-symb where or-in-and-symb = c-in-c’-symb COr CAnd

definition or-in-and-only where
or-in-and-only = all-subformula-st (c-in-c’-symb COr CAnd)

lemma not-or-in-and-only-or-and[simp|:
~or-in-and-only (FOr (FAnd ¢1 ¢2) ¢’)
unfolding or-in-and-only-def
by (metis all-subformula-st-test-symb-true-phi conn.simps(5—6) not-c-in-c’-symb-1
wf-conn-helper-facts(5) wf-conn-helper-facts(6))

lemma pushDisj-inv:
fixes ¢ 9 :: "v propo
assumes full (propo-rew-step pushDisj) ¢
and no-equiv ¢ and no-imp ¢ and no-T-F-except-top-level ¢ and simple-not
shows no-equiv ¥ and no-imp 1 and no-T-F-except-top-level ¢ and simple-not
using push-conn-inside-inv assms unfolding pushDisj-def by metis+

lemma pushDisj-full-propo-rew-step:

fixes ¢ v 1 'v propo

assumes
no-equiv ¢ and
no-imp p and
full (propo-rew-step pushDisj) ¢ ¢ and
no-T-F-except-top-level ¢ and
simple-not ¢

shows or-in-and-only

93

using assms push-conn-inside-full-propo-rew-step
unfolding pushDisj-def or-in-and-only-def c-in-c’-only-def by (metis (no-types))

1.6 The Full Transformations

1.6.1 Abstract Definition

The normal form is a super group of groups

inductive grouped-by :: 'a connective = 'a propo = bool for ¢ where

simple-is-grouped[simp|: simple ¢ = grouped-by c ¢ |

simple-not-is-grouped[simp]: simple ¢ = grouped-by ¢ (FNot ¢) |

connected-is-group[simpl: grouped-by ¢ ¢ => grouped-by ¢ ¥ => wf-conn ¢ [p, Y]
= grouped-by ¢ (conn ¢ [p, V])

lemma simple-clause[simp]:
grouped-by ¢ FT
grouped-by ¢ FF
grouped-by ¢ (FVar z)
grouped-by ¢ (FNot FT)
grouped-by ¢ (FNot FF)
grouped-by ¢ (FNot (FVar z))
by simp+

lemma only-c-inside-symb-c-eq-c:
only-c-inside-symb ¢ (conn ¢’ [pl, p2]) = ¢’ = CAnd V ¢/ = COr = wf-conn ¢’ [p1, p2]
= c¢'=c
by (induct conn ¢’ [p1, ¢2] rule: only-c-inside-symb.induct, auto simp: conn-inj)

lemma only-c-inside-c-eq-c”:
only-c-inside ¢ (conn ¢’ [p1, p2]) = ¢’ = CAnd V ¢’ = COr = wf-conn ¢’ [p1, 2] = ¢ = ¢’
unfolding only-c-inside-def all-subformula-st-def using only-c-inside-symb-c-eq-c’ subformula-refl
by blast

lemma only-c-inside-imp-grouped-by:
assumes c: ¢ # CNot and c¢”: ¢/ = CAnd V ¢’ = COr
shows only-c-inside ¢ ¢ = grouped-by ¢ ¢ (is 70 p = ?G ¢)
proof (induct ¢ rule: propo-induct-arity)
case (nullary ¢ x)
then show ?G ¢ by auto
next
case (unary)
then show ?G (FNot i) by (auto simp: c)
next
case (binary ¢ 1 p2)
note IHp! = this(1) and IHp2 = this(2) and ¢ = this(3) and only = this(4)
have p-conn: ¢ = conn ¢ [p1, p2] and wf: wf-conn ¢ [p1, p2]
proof —
obtain ¢ where ¢-c’: o = conn ¢” 1" and wf: wf-conn c
using ezxists-c-conn by metis
then have [": " = [p1, ¢2] using ¢ by (metis wf-conn-list(4—7))
have only-c-inside-symb ¢ (conn ¢"' [p1, ©2])
using only all-subformula-st-test-symb-true-phi
unfolding only-c-inside-def p-c'' 1" by metis
then have ¢ = ¢”

2 l/l 1 l/l

o4

by (metis ¢ o-¢'’ conn-inj conn-inj-not(2) 1" list.distinct(1) list.inject wf
only-c-inside-symb.cases simple.simps(5—8))
then show ¢ = conn ¢ [p1, 2] and wf-conn ¢ [p1, p2] using p-c¢”" wf 1" by auto

qed
have grouped-by ¢ p1 using wf IHp1 IHp2 @-conn only ¢ unfolding only-c-inside-def by auto
moreover have grouped-by c p2

using wf ¢ IHpl IHp?2 p-conn only unfolding only-c-inside-def by auto
ultimately show ?G ¢ using p-conn connected-is-group local.wf by blast

qed

lemma grouped-by-false:
grouped-by ¢ (conn ¢’ [p, ¢¥]) = ¢ # ¢/ = wf-conn ¢’ [¢,] = False
apply (induct conn ¢’ [p,] rule: grouped-by.induct)
apply (auto simp: simple-decomp wf-conn-list, auto simp: conn-inj)
by (metis list.distinct(1) list.sel(3) wf-conn-list(8))+

Then the CNF form is a conjunction of clauses: every clause is in CNF form and two formulas
in CNF form can be related by an and.

inductive super-grouped-by:: ‘a connective = 'a connective = 'a propo = bool for ¢ ¢’ where

grouped-is-super-grouped|[simpl: grouped-by ¢ ¢ => super-grouped-by c ¢’ ¢ |

connected-is-super-group: super-grouped-by ¢ ¢’ ¢ = super-grouped-by ¢ ¢’ v = wf-conn ¢ [p, V)
= super-grouped-by ¢ ¢’ (conn ¢’ [p, V])

lemma simple-cnf[simp):
super-grouped-by ¢ ¢’ FT
super-grouped-by c ¢’ FF

super-grouped-by ¢ ¢’ (FVar x)
super-grouped-by ¢ ¢’ (FNot FT)
super-grouped-by ¢ ¢’ (FNot FF)
super-grouped-by ¢ ¢’ (FNot (FVar x))

by auto

lemma c-in-c’-only-super-grouped-by:
assumes ¢: ¢ = CAnd V ¢ = COr and ¢”: ¢/ = CAnd V ¢’ = COr and cc’s ¢ # ¢’
shows no-equiv ¢ = no-imp ¢ = simple-not ¢ = c-in-c’-only ¢ ¢’ ¢
= super-grouped-by ¢ ¢’ ¢
(is PNE ¢ = ?NI ¢ = 25N p = 72C ¢ = 25)
proof (induct ¢ rule: propo-induct-arity)
case (nullary ¢ x)
then show %S ¢ by auto
next
case (unary ¢)
then have simple-not-symb (FNot)
using all-subformula-st-test-symb-true-phi unfolding simple-not-def by blast
then have ¢ = FT V ¢ = FF V (3 2. ¢ = FVar z) by (cases ¢, auto)
then show ¢S (FNot ¢) by auto
next
case (binary ¢ p1 p2)
note [Hp! = this(1) and IHp?2 = this(2) and no-equiv = this(4) and no-imp = this(5)
and simpleN = this(6) and c-in-c’-only = this(7) and ¢’ = this(3)
{
assume ¢ = FImp o1 92 V ¢ = FEq p1 p2
then have Fulse using no-equiv no-imp by auto
then have 75 ¢ by auto

}

95

moreover {
assume @: p = conn ¢’ [pl, p2] A wf-conn ¢’ [pl, p2]
have c-in-c’-only: c-in-c’-only c ¢’ p1 N c-in-c’-only ¢ ¢’ 2 A c-in-c’-symb c ¢’ ¢
using c-in-c’-only ¢’ unfolding c-in-c’-only-def by auto
have super-grouped-by ¢ ¢’ p1 using ¢ ¢’ no-equiv no-imp simpleN IHp1 c-in-c’-only by auto
moreover have super-grouped-by ¢ ¢’ 2
using ¢ ¢’ no-equiv no-imp simpleN IHp2 c-in-c’-only by auto
ultimately have ¢S ¢
using super-grouped-by.intros(2) ¢ by (metis ¢ wf-conn-helper-facts(5,6))
}

moreover {
assume @: p = conn ¢ [pl, p2] A wf-conn ¢ [pl, 2]
then have only-c-inside ¢ 1 A only-c-inside ¢ p2
using c-in-c’-symb-c-implies-only-c-inside ¢ ¢’ c-in-c’-only list.set-intros(1)
wf-conn-helper-facts(5,6) no-equiv no-imp simpleN last-ConsL last-ConsR last-in-set
list.distinct(1) by (metis (no-types, hide-lams) cc’)
then have only-c-inside ¢ (conn ¢ [p1, ©2])
unfolding only-c-inside-def using ¢
by (simp add: only-c-inside-into-only-c-inside all-subformula-st-decomp)
then have grouped-by ¢ ¢ using ¢ only-c-inside-imp-grouped-by c by blast
then have %5 ¢ using super-grouped-by.intros(1) by metis
}
ultimately show 25 ¢ by (metis ¢’ ¢ ¢’ cc’ conn.simps(5,6) wf-conn-helper-facts(5,6))
qged

1.6.2 Conjunctive Normal Form
Definition

definition is-conj-with-TF where is-conj-with-TF == super-grouped-by COr CAnd

lemma or-in-and-only-conjunction-in-disj:
shows no-equiv ¢ = no-imp ¢ = simple-not ¢ = or-in-and-only ¢ = is-conj-with-TF ¢
using c-in-c’-only-super-grouped-by
unfolding is-conj-with-TF-def or-in-and-only-def c-in-c’-only-def
by (simp add: c-in-c’-only-def c-in-c'-only-super-grouped-by)

definition is-cnf where
is-enf @ = is-conj-with-TF ¢ A no-T-F-except-top-level ¢

Full CNF transformation

The fulll CNF transformation consists simply in chaining all the transformation defined before.

definition cnf-rew where cnf-rew =

(full (propo-rew-step elim-equiv)) OO
(full (propo-rew-step elim-imp)) OO
(full (propo-rew-step elimTB)) OO
(full (propo-rew-step pushNeg)) OO
(full (propo-rew-step pushDisj))

lemma cnf-rew-equivalent: preserve-models cnf-rew

by (simp add: cnf-rew-def elimEquuv-lifted-consistant elim-imp-lifted-consistant elimTB-consistent
preserve-models-O0 pushDisj-consistent pushNeg-lifted-consistant)

lemma cnf-rew-is-cnf: cnf-rew ¢ o' = is-cnf @’

56

apply (unfold cnf-rew-def OO-def)
apply auto
proof —
fix ¢ wEq pImp ¢ TB @Neg pDisj :: 'v propo
assume Eq: full (propo-rew-step elim-equiv) ¢ pEq
then have no-equiv: no-equiv pEq using no-equiv-full-propo-rew-step-elim-equiv by blast

assume Imp: full (propo-rew-step elim-imp) @Eq pImp
then have no-imp: no-imp @Imp using no-imp-full-propo-rew-step-elim-imp by blast
have no-imp-inv: no-equiv pImp using no-equiv Imp elim-imp-inv by blast

assume TB: full (propo-rew-step elimTB) ¢Imp ¢ TB
then have noTB: no-T-F-except-top-level ¢ TB
using no-imp-inv no-imp elimTB-full-propo-rew-step by blast
have noTB-inv: no-equiv ¢ TB no-imp ¢ TB using elimTB-inv TB no-imp no-imp-inv by blast+

assume Neg: full (propo-rew-step pushNeg) ¢ TB pNeg

then have noNeg: simple-not ¢Neg
using noTB-inv noTB pushNeg-full-propo-rew-step by blast

have noNeg-inv: no-equiv p Neg no-imp ¢Neg no-T-F-except-top-level pNeg
using pushNeg-inv Neg noTB noTB-inv by blast+

assume Disj: full (propo-rew-step pushDisj) ¢Neg pDisj

then have no-Disj: or-in-and-only ¢ Disj
using noNeg-inv noNeg pushDisj-full-propo-rew-step by blast

have noDisj-inv: no-equiv @ Disj no-imp pDisj no-T-F-except-top-level ¢ Disj
simple-not pDisj

using pushDisj-inv Disj noNeg noNeg-inv by blast+

moreover have is-conj-with-TF pDisj
using or-in-and-only-conjunction-in-disj noDisj-inv no-Disj by blast
ultimately show is-cnf ¢Disj unfolding is-cnf-def by blast
qed

1.6.3 Disjunctive Normal Form

Definition

definition is-disj-with-TF where is-disj-with-TF = super-grouped-by CAnd COr

lemma and-in-or-only-conjunction-in-disj:
shows no-equiv ¢ = no-imp ¢ = simple-not ¢ = and-in-or-only p = is-disj-with-TF ¢
using c-in-c’-only-super-grouped-by

unfolding is-disj-with-TF-def and-in-or-only-def c-in-c’-only-def
by (simp add: c-in-c’-only-def c-in-c’-only-super-grouped-by)

definition is-dnf :: ‘a propo = bool where

is-dnf @ <— is-disj-with-TF ¢ A no-T-F-except-top-level ¢

Full DNF transform

The fulll DNF transformation consists simply in chaining all the transformation defined before.

definition dnf-rew where dnf-rew =
(full (propo-rew-step elim-equiv)) OO
(full (propo-rew-step elim-imp)) OO
(full (propo-rew-step elimTB)) OO

57

(full (propo-rew-step pushNeg)) OO
(full (propo-rew-step pushConj))

lemma dnf-rew-consistent: preserve-models dnf-rew
by (simp add: dnf-rew-def elimEquu-lifted-consistant elim-imp-lifted-consistant elimTB-consistent
preserve-models-O0 pushConj-consistent pushNeg-lifted-consistant)

theorem dnf-transformation-correction:
dnf-rew @ ¢’ = is-dnf ¢’
apply (unfold dnf-rew-def OO-def)
by (meson and-in-or-only-conjunction-in-disj elimTB-full-propo-rew-step elimTB-inv(1,2)
elim-imp-inv is-dnf-def no-equiv-full-propo-rew-step-elim-equiv
no-imp-full-propo-rew-step-elim-imp pushConj-full-propo-rew-step pushConj-inv(1—4)
pushNeg-full-propo-rew-step pushNeg-inv(1—3))

1.7 More aggressive simplifications: Removing true and false at
the beginning

1.7.1 Transformation

We should remove F'T and FF' at the beginning and not in the middle of the algorithm. To do
this, we have to use more rules (one for each connective):

inductive elimTBFull where
ElimTBFulll [simp]: elimTBFull (FAnd ¢ FT) ¢ |
ElimTBFulll [simp]: elimTBFull (FAnd FT) ¢ |

ElimTBFull2[simp): elimTBFull (FAnd ¢ FF) FF |
ElimTBFull2'[simp]: elimTBFull (FAnd FF ¢) FF |

ElimTBFull3[simp]: elimTBFull (FOr ¢ FT) FT |
ElimTBFull3'[simp): elimTBFull (FOr FT ¢) FT |

ElimTBFull{[simp]: elimTBFull (FOr ¢ FF) ¢ |
ElimTBFull{'[simp]: elimTBFull (FOr FF ¢) ¢ |

ElimTBFull5[simp): elimTBFull (FNot FT) FF |
ElimTBFull5 [simp): elimTBFull (FNot FF) FT |

ElimTBFull6-1[simp]: elimTBFull (FImp FT ¢) ¢ |
ElimTBFull6-1"[simp): elimTBFull (FImp FF ¢) FT |
ElimTBFull6-r[simp]: elimTBFull (FImp ¢ FT) FT |
ElimTBFull6-r'[simp]: elimTBFull (FImp ¢ FF) (FNot @) |

ElimTBFull7-l[simp]: elimTBFull (FEq FT ¢) ¢ |
Elim TBFull7-1'[simp]: elimTBFull (FEq FF ¢) (FNot) |
ElimTBFull7-r[simp]: elimTBFull (FEq ¢ FT) ¢ |
ElimTBFull7-r'[simp]: elimTBFull (FEq ¢ FF) (FNot)

The transformation is still consistent.

lemma elimTBFull-consistent: preserve-models elimTBFull
proof —

{

fix ¢ :: ‘b propo
have elimTBFull p ¢ = VA . AE o +— A1

o8

by (induct-tac rule: elimTBFull.inducts, auto)
}
then show ?thesis using preserve-models-def by auto
qed

Contrary to the theorem no-T-F-symb-except-toplevel-step-exists, we do not need the assumption
no-equiv ¢ and no-imp , since our transformation is more general.

lemma no-T-F-symb-except-toplevel-step-exists”:
fixes ¢ :: 'v propo
shows 1) < ¢ = = no-T-F-symb-except-toplevel 1p = Fv)’. elimTBFull ¢)’
proof (induct ¢ rule: propo-induct-arity)
case (nullary ¢')
then have Fulse using no-T-F-symb-except-toplevel-true no-T-F-symb-except-toplevel-false by auto
then show Ex (elimTBFull ¢") by blast
next
case (unary)
then have ¢y = FF V ¢ = FT using no-T-F-symb-except-toplevel-not-decom by blast
then show Ex (elimTBFull (FNot 1)) using ElimTBFull5 ElimTBFull5’ by blast
next
case (binary ¢’ ¥1 ¥2)
then have ¢ = FT V 2 = FT V 11 = FF V 2 = FF
by (metis binary-connectives-def conn.simps(5—8) insertll insert-commute
no-T-F-symb-except-toplevel-bin-decom binary.hyps(3))
then show Ex (elimTBFull ¢') using elimTBFull.intros binary.hyps(3) by blast
qed

The same applies here. We do not need the assumption, but the deep link between — no-T-F-except-top-level
o and the existence of a rewriting step, still exists.

lemma no-T-F-except-top-level-rew’:
fixes ¢ :: 'v propo
assumes noTB: - no-T-F-except-top-level ¢
shows 39 ¥’ ¢ < v A elimTBFull ¢ 1’
proof —
have test-symb-false-nullary:
Y x. no-T-F-symb-except-toplevel (FF:: v propo) A no-T-F-symb-except-toplevel FT
A no-T-F-symb-except-toplevel (FVar (z:: 'v))
by auto
moreover {
fix c:: 'v connective and [:: "v propo list and v :: 'v propo
have H: elimTBFull (conn ¢ l) ¥ = —no-T-F-symb-except-toplevel (conn c I)
by (cases conn ¢ I rule: elimTBFull.cases) auto
}
ultimately show ?thesis
using no-test-symb-step-exists|of no-T-F-symb-except-toplevel ¢ elimTBFull] noTB
no-T-F-symb-ezcept-toplevel-step-exists’ unfolding no-T-F-except-top-level-def by metis
qed

lemma elimTBFull-full-propo-rew-step:
fixes ¢ v 1 "v propo
assumes full (propo-rew-step elimTBFull) ¢ 1
shows no-T-F-except-top-level i
using full-propo-rew-step-subformula no-T-F-except-top-level-rew’ assms by fastforce

99

1.7.2 More invariants

As the aim is to use the transformation as the first transformation, we have to show some more
invariants for elim-equiv and elim-imp. For the other transformation, we have already proven
it.

lemma propo-rew-step- ElimEquiv-no-T-F: propo-rew-step elim-equiv ¢ ¥ = no-T-F ¢ = no-T-F ¢
proof (induct rule: propo-rew-step.induct)
fix ¢’ :: v propo and ¢’ :: "v propo
assume al: no-T-F ¢’
assume a2: elim-equiv @' ¢’
have V0 z1. (= elim-equiv (21 :: 'v propo) z0 V (Fv2 v3 v4 v5 v6 v7. x1 = FEq v2 v8
A 20 = FAnd (FImp v4 v5) (FImp v6 v7) A v2 = v AN vf = v7 AN v8 = v5 A v3 = v6))
= (= elim-equiv z1 0 V (v2 v3 v4 v5 v6 v7. x1 = FEq v2 v3
A 20 = FAnd (FImp v4 v5) (FImp v6 v7) A v2 = v AN v = 07 AN v8 = v5 A 93 = v6))
by meson
then have Vp pa. = elim-equiv (p :: "v propo) pa V (I pb pc pd pe pf pg. p = FEq pb pc
A pa = FAnd (FImp pd pe) (FImp pf pg) A pb = pd A pd = pg A pc = pe A pc = pf)
using elim-equiv.cases by force
then show no-T-F ' using al a2 by fastforce
next
fix ¢ ¢’ :: 'v propo and £ &' :: 'v propo list and ¢ :: 'v connective
assume rel: propo-rew-step elim-equiv ¢ o’
and IH: no-T-F ¢ = no-T-F ¢’
and corr: wf-conn ¢ (£ Q ¢ # &)
and no-T-F: no-T-F (conn ¢ (£ Q@ ¢ # ')
{
assume c: ¢ = CNot
then have empty: £ = [| £/ = [] using corr by auto
then have no-T-F ¢ using no-T-F ¢ no-T-F-decomp-not by auto
then have no-T-F (conn ¢ (£ Q ¢’ # &')) using ¢ empty no-T-F-comp-not IH by auto
}
moreover {
assume c: ¢ € binary-connectives
obtain a b where ab: £ Q ¢ # ¢’ = [a, 0]
using corr c list-length2-decomp wf-conn-bin-list-length by metis
then have p: p = aV p =10
by (metis append.simps(1) append-is-Nil-conv list.distinct(1) list.sel(3) nth-Cons-0
tl-append?)
have (: V(€ set (€ Q o # &'). no-T-F ¢
using no-T-F unfolding no-T-F-def using corr all-subformula-st-decomp by blast

then have ¢” no-T-F ¢’ using ab IH ¢ by auto
have I € @ o' # €' = [, b] V € @ o # €' = [a,]
by (metis (no-types, hide-lams) ab append-Cons append-Nil append-Nil2 butlast.simps(2)
butlast-append list.distinct(1) list.sel(3))
then have V(€ set (£ Q@ ¢’ # &'). no-T-F ¢ using ¢ ¢’ ab by fastforce
moreover
have V(€ set (EQ o # &'). (£ FT N # FF
using ¢ corr no-T-F no-T-F-except-top-level-false no-T-F-no-T-F-except-top-level by blast
then have no-T-F-symb (conn ¢ (£ Q ¢’ # &)
by (metis ¢’ 1" ab all-subformula-st-test-symb-true-phi ¢ list.distinct(1)
list.set-intros(1,2) no-T-F-symb-except-toplevel-bin-decom
no-T-F-symb-except-toplevel-no-T-F-symb no-T-F-symb-false(1,2) no-T-F-def wf-conn-binary
wf-conn-list(1,2))
ultimately have no-T-F (conn ¢ (£ Q @' # ¢£'))

60

by (metis I’ all-subformula-st-decomp-imp ¢ no-T-F-def wf-conn-binary)
}
moreover {
fix z
assume ¢ = CVarxzV ¢ = CF V ¢ = CT
then have Fulse using corr by auto
then have no-T-F (conn ¢ (£ Q ¢’ # &) by auto
}
ultimately show no-T-F (conn ¢ (£ @Q ¢’ # £)) using corr wf-conn.cases by metis
qed

lemma elim-equiv-inv’:
fixes ¢ v :: "v propo
assumes full (propo-rew-step elim-equiv) ¢ ¥ and no-T-F-except-top-level ¢
shows no-T-F-except-top-level i
proof —
{
fix ¢ ¢ :: 'v propo
have propo-rew-step elim-equiv ¢ v = no-T-F-except-top-level ¢
= no-T-F-except-top-level 1
proof —
assume rel: propo-rew-step elim-equiv ¢ 1)
and no: no-T-F-except-top-level
{
assume ¢ = FT V ¢ = FF
from rel this have Fualse
apply (induct rule: propo-rew-step.induct, auto simp: wf-conn-list(1,2))
using elim-equiv.simps by blast+
then have no-T-F-except-top-level 1) by blast
}
moreover {
assume ¢ # FT N ¢ # FF
then have no-T-F ¢
by (metis no no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
then have no-T-F 1 using propo-rew-step-ElimFEquiv-no-T-F rel by blast
then have no-T-F-except-top-level ¢ by (simp add: no-T-F-no-T-F-except-top-level)
}
ultimately show no-T-F-except-top-level 1) by metis
qed
}
moreover {
fix ¢ 1 'v connective and £ £’ :: "v propo list and ¢ (' :: v propo
assume rel: propo-rew-step elim-equiv ¢ '
and incl: (X ¢
and corr: wf-conn ¢ (£ Q@ ¢ # &)
and no-T-F: no-T-F-symb-except-toplevel (conn ¢ (£ Q ¢ # &)
and n: no-T-F-symb-except-toplevel ¢’
have no-T-F-symb-except-toplevel (conn ¢ (£ @ " # &)
proof
have p: no-T-F-symb (conn ¢ (£ Q@ { # ¢£'))
using corr wf-conn-list(1) wf-conn-list(2) no-T-F-symb-except-toplevel-no-T-F-symb no-T-F
by blast
have [: Vypeset (§EQ (# E'). ¢ # FT N ¢ # FF
using corr wf-conn-no-T-F-symb-iff p by blast
from rel incl have ('AFT N('#AFF
apply (induction ¢ ¢’ rule: propo-rew-step.induct)

61

apply (cases rule: elim-equiv.cases, auto simp: elim-equiv.simps)
by (metis append-is-Nil-conv list.distinct wf-conn-list(1,2) wf-conn-no-arity-change
wf-conn-no-arity-change-helper)+
then have Vo € set (€ Q (' # £'). p £ FT A ¢ # FF using [by auto
moreover have ¢ # CT A ¢ # CF using corr by auto
ultimately show no-T-F-symb (conn ¢ (£ @ (' # ')
by (metis corr wf-conn-no-arity-change wf-conn-no-arity-change-helper no-T-F-symb-comp)
qed
}
ultimately show no-T-F-except-top-level
using full-propo-rew-step-inv-stay-with-inclof elim-equiv no-T-F-symb-except-toplevel ¢
assms subformula-refl unfolding no-T-F-except-top-level-def by metis
qed

lemma propo-rew-step-ElimImp-no-T-F: propo-rew-step elim-imp ¢ b = no-T-F ¢ = no-T-F 9
proof (induct rule: propo-rew-step.induct)
case (global-rel ¢’ 1))
then show no-T-F v’
using elim-imp.cases no-T-F-comp-not no-T-F-decomp(1,2)
by (metis no-T-F-comp-expanded-explicit(2))
next
case (propo-rew-one-step-lift ¢ ¢’ ¢ £ &'
note rel = this(1) and IH = this(2) and corr = this(3) and no-T-F = this(4)
{
assume c: ¢ = CNot
then have empty: £ =[] £’ = [] using corr by auto
then have no-T-F ¢ using no-T-F ¢ no-T-F-decomp-not by auto
then have no-T-F (conn ¢ (£ @Q ¢’ # &')) using ¢ empty no-T-F-comp-not IH by auto
}
moreover {
assume c: ¢ € binary-connectives
then obtain a b where ab: £ Q@ ¢ # &' = [a, }]
using corr list-length2-decomp wf-conn-bin-list-length by metis
then have p: p =aV p =1
by (metis append-self-conv2 wf-conn-list-decomp(4) wf-conn-unary list.discI list.sel(3)
nth-Cons-0 tl-append?2)
have (: V(€ set (£ @ ¢ # £'). no-T-F (using ab ¢ propo-rew-one-step-lift.prems by auto

then have ¢”: no-T-F ¢’
using ab IH ¢ corr no-T-F no-T-F-def all-subformula-st-decomp-explicit by auto
have x: £ @ " # &' = [p',] VEQ " # ' = [a, ¢
by (metis (no-types, hide-lams) ab append-Cons append-Nil append-Nil2 butlast.simps(2)
butlast-append list.distinct(1) list.sel(3))
then have V(€ set (€ Q ¢’ # ¢&'). no-T-F ¢ using ¢ ¢’ ab by fastforce
moreover
have no-T-F (last (£ Q ¢’ # £')) by (simp add: calculation)
then have no-T-F-symb (conn ¢ (£ Q ¢’ # ¢£'))
by (metis x ¢’ ¢ ab all-subformula-st-test-symb-true-phi c¢ last.simps list.distinct(1)
list.set-intros(1) no-T-F-bin-decomp no-T-F-def)
ultimately have no-T-F (conn ¢ (£ Q ¢’ # £’)) using ¢ x by fastforce
}
moreover {
fix z
assume ¢ = CVarz V c= CFV ¢=CT
then have Fulse using corr by auto

62

then have no-T-F (conn ¢ (£ Q ¢’ # &')) by auto
}
ultimately show no-T-F (conn ¢ (§ Q ¢’ # £’)) using corr wf-conn.cases by blast
qed

lemma elim-imp-inv'”:
fixes ¢ v :: "v propo
assumes full (propo-rew-step elim-imp) ¢ 1 and no-T-F-except-top-level ¢
showsno-T-F-except-top-level 1

proof —

{
{
fix ¢ ¢ 2 "v propo
have H: elim-imp ¢ v = no-T-F-except-top-level ¢ = no-T-F-except-top-level
by (induct ¢ ¢ rule: elim-imp.induct, auto)
} note H = this
fix ¢ ¢ :: 'v propo
have propo-rew-step elim-imp ¢ v = no-T-F-except-top-level p => mno-T-F-except-top-level 1)
proof —
assume rel: propo-rew-step elim-imp @
and no: no-T-F-except-top-level
{
assume ¢ = FT V ¢ = FF
from rel this have Fulse
apply (induct rule: propo-rew-step.induct)
by (cases rule: elim-imp.cases, auto simp: wf-conn-list(1,2))
then have no-T-F-except-top-level 1) by blast
}
moreover {
assume ¢ # FT N ¢ # FF
then have no-T-F ¢
by (metis no no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
then have no-T-F ¢
using rel propo-rew-step-ElimImp-no-T-F by blast
then have no-T-F-except-top-level ¢ by (simp add: no-T-F-no-T-F-except-top-level)
}
ultimately show no-T-F-except-top-level 1) by metis
qed
}
moreover {
fix ¢ 1 'v connective and £ &' :: 'v propo list and ¢ (' :: v propo
assume rel: propo-rew-step elim-imp ¢ ¢’
and incl: (X ¢
and corr: wf-conn ¢ (£ Q@ ¢ # &)
and no-T-F: no-T-F-symb-except-toplevel (conn ¢ (£ Q ¢ # &)
and n: no-T-F-symb-except-toplevel ¢’
have no-T-F-symb-except-toplevel (conn ¢ (£ @ " # &)
proof
have p: no-T-F-symb (conn ¢ (£ Q@ (# ¢£'))
by (simp add: corr no-T-F no-T-F-symb-except-toplevel-no-T-F-symb wf-conn-list(1,2))

have [: Vypeset (EQ (# E'). ¢ # FT N p # FF
using corr wf-conn-no-T-F-symb-iff p by blast
from rel incl have ('AFT N('#AFF
apply (induction ¢ ¢’ rule: propo-rew-step.induct)

63

apply (cases rule: elim-imp.cases, auto)
using wf-conn-list(1,2) wf-conn-no-arity-change wf-conn-no-arity-change-helper
by (metis append-is-Nil-conv list.distinct(1))+
then have Vyeset (£ @Q (' # £'). ¢ # FT A ¢ # FF using | by auto
moreover have ¢ # CT A ¢ # CF using corr by auto
ultimately show no-T-F-symb (conn ¢ (£ @ (' #)
using corr wf-conn-no-arity-change no-T-F-symb-comp
by (metis wf-conn-no-arity-change-helper)
qed
}
ultimately show no-T-F-except-top-level
using full-propo-rew-step-inv-stay-with-inc|of elim-imp no-T-F-symb-except-toplevel)
assms subformula-refl unfolding no-T-F-except-top-level-def by metis
qed

1.7.3 The new CNF and DNF transformation

The transformation is the same as before, but the order is not the same.

definition dnf-rew’ :: 'a propo = 'a propo = bool where
dnf-rew’ =

(full (propo-rew-step elimTBFull)) OO

(full (propo-rew-step elim-equiv)) OO

(full (propo-rew-step elim-imp)) OO

(full (propo-rew-step pushNeg)) OO

(full (propo-rew-step pushConj))

lemma dnf-rew’-consistent: preserve-models dnf-rew’
by (simp add: dnf-rew’-def elimEquuv-lifted-consistant elim-imp-lifted-consistant
elimTBPFull-consistent preserve-models-O0 pushConj-consistent pushNeg-lifted-consistant)

theorem cnf-transformation-correction:
dnf-rew’ p ¢’ = is-dnf ¢’
unfolding dnf-rew’-def OO-def
by (meson and-in-or-only-conjunction-in-disj elim TBFull-full-propo-rew-step elim-equiv-inv’
elim-imp-inv elim-imp-inv’ is-dnf-def no-equiv-full-propo-rew-step-elim-equiv
no-imp-full-propo-rew-step-elim-imp pushConj-full-propo-rew-step pushConj-inv(1—4)
pushNeg-full-propo-rew-step pushNeg-inv(1—3))

Given all the lemmas before the CNF transformation is easy to prove:

definition cnf-rew’ :: ‘a propo = 'a propo = bool where
cnf-rew’ =

(full (propo-rew-step elimTBFull)) OO

(full (propo-rew-step elim-equiv)) OO

(full (propo-rew-step elim-imp)) OO

(full (propo-rew-step pushNeg)) OO

(full (propo-rew-step pushDisj))

lemma cnf-rew’-consistent: preserve-models cnf-rew’
by (simp add: enf-rew’-def elimEquu-lifted-consistant elim-imp-lifted-consistant
elimTBFull-consistent preserve-models-OO0 pushDisj-consistent pushNeg-lifted-consistant)

theorem cnf’-transformation-correction:
enf-rew’ o o' = is-enf @’
unfolding cnf-rew’-def OO-def
by (meson elimTBFull-full-propo-rew-step elim-equiv-inv’ elim-imp-inv elim-imp-inv’ is-cnf-def

64

no-equiv-full-propo-rew-step-elim-equiv no-imp-full-propo-rew-step-elim-imp
or-in-and-only-conjunction-in-disj pushDisj-full-propo-rew-step pushDisj-inv(1—4)
pushNeg-full-propo-rew-step pushNeg-inv(1) pushNeg-inv(2) pushNeg-inv(8))

end

theory Prop-Logic-Multiset

imports Nested-Multisets-Ordinals. Multiset-More Prop-Normalisation
Entailment-Definition. Partial- Herbrand-Interpretation

begin

1.8 Link with Multiset Version

1.8.1 Transformation to Multiset

fun mset-of-conj :: 'a propo = ’a literal multiset where
mset-of-conj (FOr ¢ 1) = mset-of-conj ¢ + mset-of-conj 1 |
mset-of-conj (FVar v) = {# Pos v #} |

mset-of-conj (FNot (FVar v)) = {# Neg v #} |

mset-of-conj FF = {#}

fun mset-of-formula :: 'a propo = 'a literal multiset set where
mset-of-formula (FAnd ¢ 1) = mset-of-formula ¢ U mset-of-formula 1 |
mset-of-formula (FOr ¢) = {mset-of-conj (FOr ¢ 1)} |
mset-of-formula (FVar) = {mset-of-conj (FVar)} |

mset-of-formula (FNot ¢) = {mset-of-conj (FNot ¢)} |

mset-of-formula FF = {{#}} |

mset-of-formula FT = {}

1.8.2 Equisatisfiability of the two Versions

lemma is-conj-with- TF-FNot:
is-conj-with-TF (FNot ¢) +— (3v. ¢ = FVar vV ¢ = FF V ¢ = FT)
unfolding is-conj-with-TF-def apply (rule iffT)
apply (induction FNot ¢ rule: super-grouped-by.induct)
apply (induction FNot ¢ rule: grouped-by.induct)
apply simp
apply (cases ¢; simp)
apply auto
done

lemma grouped-by-COr-FNot:
grouped-by COr (FNot) +— (3v. p = FVarvV ¢ = FF V ¢ = FT)
unfolding is-conj-with-TF-def apply (rule iffT)
apply (induction FNot ¢ rule: grouped-by.induct)
apply simp
apply (cases p; simp)
apply auto
done

lemma
shows no-T-F-FF|[simp|: —-no-T-F FF and
no-T-F-FT|[simp|: =-no-T-F FT
unfolding no-T-F-def all-subformula-st-def by auto

lemma grouped-by-CAnd-FAnd:
grouped-by CAnd (FAnd @1 ¢2) «— grouped-by CAnd 1 A grouped-by CAnd o2

65

apply (rule iffI)
apply (induction FAnd o1 @2 rule: grouped-by.induct)
using connected-is-grouplof CAnd p1 ¢2] by auto

lemma grouped-by-COr-FOr:
grouped-by COr (FOr o1 ¢2) <— grouped-by COr ¢1 A grouped-by COr o2
apply (rule iffT)
apply (induction FOr ¢1 ¢2 rule: grouped-by.induct)
using connected-is-grouplof COr 1 ¢2] by auto

lemma grouped-by-COr-FAnd[simp|: = grouped-by COr (FAnd @1 ¢2)
apply clarify
apply (induction FAnd o1 ¢2 rule: grouped-by.induct)
apply auto
done

lemma grouped-by-COr-FEq[simp|: — grouped-by COr (FEq ¢1 ¢2)
apply clarify
apply (induction FEq @1 @2 rule: grouped-by.induct)
apply auto
done

lemma [simp]: —grouped-by COr (FImp ¢ 1)

apply clarify
by (induction FImp ¢ 1 rule: grouped-by.induct) simp-all

lemma [simp|: = is-conj-with-TF (FImp ¢ 1)
unfolding is-conj-with-TF-def apply clarify
by (induction FImp ¢ 1 rule: super-grouped-by.induct) simp-all

lemma [simp]: — is-conj-with-TF (FEq ¢)
unfolding is-conj-with-TF-def apply clarify
by (induction FEq ¢ 1 rule: super-grouped-by.induct) simp-all

lemma is-conj-with-TF-Fand:
is-conj-with-TF (FAnd 1 ¢2) = is-conj-with-TF p1 N is-conj-with-TF @2
unfolding is-conj-with-TF-def
apply (induction FAnd 1 o2 rule: super-grouped-by.induct)
apply (auto simp: grouped-by-CAnd-FAnd intro: grouped-is-super-grouped)|]
apply auto[]
done

lemma is-conj-with-TF-FOr:
is-conj-with-TF (FOr ¢1 ¢2) = grouped-by COr p1 A grouped-by COr ¢2
unfolding is-conj-with- TF-def
apply (induction FOr 1 ¢2 rule: super-grouped-by.induct)
apply (auto simp: grouped-by-COr-FOr)|]
apply auto]
done

lemma grouped-by- COr-mset-of-formula:
grouped-by COr ¢ = mset-of-formula ¢ = (if ¢ = FT then {} else {mset-of-conj ¢})
by (induction ¢) (auto simp add: grouped-by-COr-FNot)

When a formula is in CNF form, then there is equisatisfiability between the multiset version

66

and the CNF form. Remark that the definition for the entailment are slightly different: (=)
uses a function assigning True or False, while (}=s) uses a set where being in the list means
entailment of a literal.

theorem cnf-eval-true-clss:
fixes ¢ :: 'v propo
assumes is-cnf ¢
shows eval A ¢ <— Partial-Herbrand-Interpretation.true-clss ({Pos v|v. A v} U {Neg v|v. = A v})
(mset-of-formula v)
using assms
proof (induction ¢)
case FF
then show ?Zcase by auto
next
case FT
then show ?case by auto
next
case (FVar v)
then show ?Zcase by auto
next
case (FAnd ¢)
then show ?case
unfolding is-cnf-def by (auto simp: is-conj-with-TF-FNot dest: is-conj-with-TF-Fand
dest!: is-conj-with-TF-FOr)
next
case (FOr ¢)
then have [simp]: mset-of-formula ¢ = {mset-of-conj ¢} mset-of-formula p = {mset-of-conj ¥}
unfolding is-cnf-def by (auto dest!:is-conj-with-TF-FOr simp: grouped-by-COr-mset-of-formula
split: if-splits)
have is-conj-with-TF ¢ is-conj-with-TF
using FOr(3) unfolding is-cnf-def no-T-F-def
by (metis grouped-is-super-grouped is-conj-with- TF-FOr is-conj-with- TF-def)+
then show ?case using FOr
unfolding is-cnf-def by simp
next
case (FImp ¢ 1)
then show ?case
unfolding is-cnf-def by auto
next
case (FEq ¢)
then show ?case
unfolding is-cnf-def by auto
next
case (F'Not ¢)
then show ?case
unfolding is-cnf-def by (auto simp: is-conj-with-TF-FNot)
qed

function formula-of-mset :: 'a clause = 'a propo where
(formula-of-mset @ =

(if ¢ = {#} then FF

else
let v = (SOME v. v €# ©);

v’ = (if is-pos v then FVar (atm-of v) else FNot (FVar (atm-of v))) in

if removel-mset v ¢ = {#} then v’
else FOr v’ (formula-of-mset (removel-mset v ¢))))

67

by auto
termination
apply (relation (measure size))
apply (auto simp: size-mset-removel-mset-le-iff)
by (meson multiset-nonemptyE somel-ex)

lemma formula-of-mset-empty[simp|: formula-of-mset {#} = FF»
by (auto simp: Let-def)

lemma formula-of-mset-empty-iff [iff]: formula-of-mset ¢ = FF +— ¢ = {#}
by (induction ¢) (auto simp: Let-def)

declare formula-of-mset.simps[simp del]

function formula-of-msets :: 'a literal multiset set = 'a propo where
(formula-of-msets ps =
(if ps ={} V infinite ps then FT
else
let v=(SOME v. v € ps);
v’ = formula-of-mset v in
if ps — {v} = {} then v’
else FAnd v’ (formula-of-msets (¢s — {v})))
by auto
termination
apply (relation (measure card))
apply (auto simp: some-in-eq)
by (metis all-not-in-conv card-gt-0-iff diff-less lessI)

declare formula-of-msets.simps[simp del]

lemma removel-mset-empty-iff:

(removel-mset v o = {#} «— (p = {#} V ¢ = {#v#})
using removel-mset-eqE by force

definition fun-of-set where
(fun-of-set A © = (if Pos x € A then True else if Neg z € A then False else undefined))

lemma grouped-by-COr-formula-of-mset: <grouped-by COr (formula-of-mset @)
proof (induction (size @) arbitrary: o)
case ()
then show Zcase by (subst formula-of-mset.simps) (auto simp: Let-def)
next
case (Suc n) note IH = this(1) and s = this(2)
then have (< = size (removel-mset (SOME v. v €# ¢) o) if @ # {#}
using that by (auto simp: size-Diff-singleton-if some-in-eq)
then show ?case
using IH|[of (removel-mset (SOME v. v €# @) @]
by (subst formula-of-mset.simps) (auto simp: Let-def grouped-by-COr-FOr)
qed
lemma no-T-F-formula-of-mset: (no-T-F (formula-of-mset @) if (formula-of-mset ¢ # FF) for ¢
using that
proof (induction (size @) arbitrary: ¢)
case (
then show Zcase by (subst formula-of-mset.simps) (auto simp: Let-def no-T-F-def
all-subformula-st-def)
next

68

case (Suc n) note IH = this(1) and s = this(2) and FF = this(3)
then have (n = size (removel-mset (SOMFE v. v €# ¢) o) if o # {#)b
using that by (auto simp: size-Diff-singleton-if some-in-eq)
moreover have no-T-F (FVar (atm-of (SOME v. v €# ¢)))
by (auto simp: no-T-F-def)
ultimately show Zcase
using IH|[of (removel-mset (SOME v. v €# ¢) ¢] FF
by (subst formula-of-mset.simps) (auto simp: Let-def grouped-by-COr-FOr)
qed

lemma mset-of-conj-formula-of-mset[simp]: (mset-of-conj(formula-of-mset p) =) for ¢
proof (induction (size @) arbitrary: o)
case ()
then show ?Zcase by (subst formula-of-mset.simps) (auto simp: Let-def no-T-F-def
all-subformula-st-def)
next
case (Suc n) note IH = this(1) and s = this(2)
then have (n = size (removel-mset (SOMFE v. v €# ¢) o) if «p # {#}b
using that by (auto simp: size-Diff-singleton-if some-in-eq)
moreover have no-T-F (FVar (atm-of (SOME v. v €# ¢)))
by (auto simp: no-T-F-def)
ultimately show ?Zcase
using IH|[of (removel-mset (SOME v. v €# ¢) @]
by (subst formula-of-mset.simps) (auto simp: some-in-eq Let-def grouped-by-COr-FOr removel-mset-empty-iff)
qed

lemma mset-of-formula-formula-of-mset [simp]: <mset-of-formula (formula-of-mset p) = {p} for ¢
proof (induction (size @) arbitrary: ¢)
case ()
then show ?Zcase by (subst formula-of-mset.simps) (auto simp: Let-def no-T-F-def
all-subformula-st-def)
next
case (Suc n) note IH = this(1) and s = this(2)
then have (n = size (removel-mset (SOMFE v. v €# ¢) @) if «p # {#Db
using that by (auto simp: size-Diff-singleton-if some-in-eq)
moreover have no-T-F (FVar (atm-of (SOME v. v €# ¢)))
by (auto simp: no-T-F-def)
ultimately show ?Zcase
using IH|[of (removel-mset (SOME v. v €# ¢) @]
by (subst formula-of-mset.simps) (auto simp: some-in-eq Let-def grouped-by-COr-FOr removel-mset-empty-iff)
qed

lemma formula-of-mset-is-cnf: <is-cnf (formula-of-mset)
by (auto simp: is-cnf-def is-conj-with- TF-def grouped-by-COr-formula-of-mset no-T-F-formula-of-mset
intro!: grouped-is-super-grouped)

lemma eval-clss-iff:
assumes (consistent-interp A and <total-over-set A UNIV)
shows (eval (fun-of-set A) (formula-of-mset p) <— Partial-Herbrand-Interpretation.true-clss A {¢}
apply (subst enf-eval-true-clss|OF formula-of-mset-is-cnf])
using assms
apply (auto simp add: true-cls-def fun-of-set-def consistent-interp-def total-over-set-def)
apply (case-tac L)
by (fastforce simp add: true-cls-def fun-of-set-def consistent-interp-def total-over-set-def)+

lemma is-conj-with- TF-Fand-iff:

69

is-conj-with-TF (FAnd @1 ¢2) «+— is-conj-with-TF @1 A is-conj-with-TF p2
unfolding is-conj-with-TF-def by (subst super-grouped-by.simps) auto

lemma is-CNF-Fand:
ts-enf (FAnd ¢) «— (is-enf © A no-T-F @) A is-enf © A no-T-F
by (auto simp: is-cnf-def is-conj-with- TF-Fand-iff)

lemma no-T-F-formula-of-mset-iff: <no-T-F (formula-of-mset ¢) «— ¢ # {#}h
proof (induction (size @) arbitrary: ¢)
case (
then show Zcase by (subst formula-of-mset.simps) (auto simp: Let-def no-T-F-def
all-subformula-st-def)
next
case (Suc n) note IH = this(1) and s = this(2)
then have (n = size (removel-mset (SOME v. v €# @) @) if «p # {#}
using that by (auto simp: size-Diff-singleton-if some-in-eq)
moreover have no-T-F (FVar (atm-of (SOME v. v €# ¢)))
by (auto simp: no-T-F-def)
ultimately show ?Zcase
using IH|[of (removel-mset (SOME v. v €# @) @]
by (subst formula-of-mset.simps) (auto simp: some-in-eq Let-def grouped-by-COr-FOr removel-mset-empty-iff)
qed

lemma no-T-F-formula-of-msets:
assumes (finite) and {#} ¢ ¢ and «p # {}p
shows (no-T-F (formula-of-msets (¢))
using assms apply (induction (card @ arbitrary: @)
subgoal by (subst formula-of-msets.simps) (auto simp: no-T-F-def all-subformula-st-def)|]
subgoal
apply (subst formula-of-msets.simps)
apply (auto split: simp: Let-def formula-of-mset-is-cnf is-CNF-Fand
no-T-F-formula-of-mset-iff some-in-eq)
apply (metis (mono-tags, lifting) some-eg-ex)
done
done

lemma is-cnf-formula-of-msets:
assumes (finite @) and {#} ¢ v
shows (is-cnf (formula-of-msets ¢))
using assms apply (induction (card) arbitrary:)
subgoal by (subst formula-of-msets.simps) (auto simp: is-cnf-def is-conj-with-TF-def)][]
subgoal
apply (subst formula-of-msets.simps)
apply (auto split: simp: Let-def formula-of-mset-is-cnf is-CNF-Fand
no-T-F-formula-of-mset-iff some-in-eq intro: no-T-F-formula-of-msets)
apply (metis (mono-tags, lifting) some-eq-ex)
done
done

lemma mset-of-formula-formula-of-msets:
assumes (finite @)
shows (mset-of-formula (formula-of-msets @) =
using assms apply (induction (card @ arbitrary: @)
subgoal by (subst formula-of-msets.simps) (auto simp: is-cnf-def is-conj-with-TF-def)|[]
subgoal
apply (subst formula-of-msets.simps)

70

apply (auto split: simp: Let-def formula-of-mset-is-cnf is-CNF-Fand
no-T-F-formula-of-mset-iff some-in-eq intro: no-T-F-formula-of-msets)
done
done

lemma
assumes (consistent-interp A and (total-over-set A UNIV) and «finite ¢) and {#} ¢ o
shows ceval (fun-of-set A) (formula-of-msets p) «— Partial-Herbrand-Interpretation.true-clss A ¢)
apply (subst enf-eval-true-clss|OF is-cnf-formula-of-msets|OF assms(3—4)]])
using assms(3) unfolding mset-of-formula-formula-of-msets|OF assms(3)]
by (induction v)
(use eval-clss-iff [OF assms(1,2)] in (simp-all add: cnf-eval-true-clss formula-of-mset-is-cnf)

end

theory Prop-Resolution

imports Entailment-Definition. Partial-Herbrand-Interpretation
Weidenbach-Book-Base. WB-List-More
Weidenbach-Book-Base. Wellfounded-More

begin

71

72

Chapter 2

Resolution-based techniques

This chapter contains the formalisation of resolution and superposition.

2.1 Resolution

2.1.1 Simplification Rules

inductive simplify :: 'v clause-set = 'v clause-set = bool for N :: 'v clause set where
tautology-deletion:

add-mset (Pos P) (add-mset (Neg P) A) € N = simplify N (N — {add-mset (Pos P) (add-mset
(Neg P) A)})|
condensation:

add-mset L (add-mset L A) € N = simplify N (N — {add-mset L (add-mset L A)} U {add-mset L
Ay |
subsumption:

Ae N= AC# B= B e N = simplify N (N — {B})

lemma simplify-preserve-models’:

fixes N N’ :: 'v clause-set

assumes simplify N N’

and total-over-m I N

shows [Es N' — I =s N

using assms
proof (induct rule: simplify.induct)

case (tautology-deletion P A)

then have I = add-mset (Pos P) (add-mset (Neg P) A)

by (fastforce dest: mk-disjoint-insert)

then show ?Zcase by (metis Un-Diff-cancel2 true-clss-singleton true-clss-union)
next

case (condensation A P)

then show ?case

by (fastforce dest: mk-disjoint-insert)

next

case (subsumption A B)

have A # B using subsumption.hyps(2) by auto

then have I =s N — {B} = I = A using (A € N) by (simp add: true-clss-def)

moreover have] = A = I |= B using (A <# B> by auto

ultimately show ?case by (metis insert-Diff-single true-clss-insert)
qed

lemma simplify-preserve-models:

73

fixes N N’ :: v clause-set

assumes simplify N N’

and total-over-m I N

shows I Es N — [s N/

using assms apply (induct rule: simplify.induct)
using true-clss-def by fastforce+

lemma simplify-preserve-models’”:
fixes N N’ :: 'v clause-set
assumes simplify N N’
and total-over-m I N’
shows I Es N — [Es N/
using assms apply (induct rule: simplify.induct)
using true-clss-def by fastforce+

lemma simplify-preserve-models-eq:
fixes N N’ :: v clause-set
assumes simplify N N’
and total-over-m I N
shows [=s N «— [Es N’/
using simplify-preserve-models simplify-preserve-models’ assms by blast

lemma simplify-preserves-finite:

assumes simplify 1 1’

shows finite 1 <— finite ¢’

using assms by (induct rule: simplify.induct, auto simp add: remove-def)

lemma rtranclp-simplify-preserves-finite:

assumes rtranclp simplify ¢ ¢’

shows finite 1 <— finite ¢’

using assms by (induct rule: rtranclp-induct) (auto simp add: simplify-preserves-finite)

lemma simplify-atms-of-ms:
assumes simplify 1 1’
shows atms-of-ms ' C atms-of-ms
using assms unfolding atms-of-ms-def
proof (induct rule: simplify.induct)
case (tautology-deletion A P)
then show ?Zcase by auto
next
case (condensation P A)
moreover have A + {#P#} + {#P#} € v = Jx€1). atm-of P € atm-of * set-mset x
by (metis Un-iff atms-of-def atms-of-plus atms-of-singleton insert-iff)
ultimately show ?case by (auto simp add: atms-of-def)
next
case (subsumption A P)
then show ?Zcase by auto
qed

lemma rtranclp-simplify-atms-of-ms:
assumes rtranclp simplify ¥ ¢’
shows atms-of-ms ' C atms-of-ms
using assms apply (induct rule: rtranclp-induct)
apply (fastforce intro: simplify-atms-of-ms)
using simplify-atms-of-ms by blast

74

lemma factoring-imp-simplify:
assumes {#L, L#} + C € N
shows I N'. simplify N N’
proof —
have add-mset L (add-mset L C) € N using assms by (simp add: add.commute union-lcomm)
from condensation[OF this| show ?thesis by blast
qed

2.1.2 Unconstrained Resolution

type-synonym ‘v uncon-state = v clause-set

inductive uncon-res :: 'v uncon-state = 'v uncon-state = bool where
resolution:
{#Pos p#} + C € N = {#Neg p#} + D € N = (add-mset (Pos p) C, add-mset (Neg P) D) ¢
already-used
= uncon-res N (N U {C + D}) |
factoring: {#L#} + {#L#} + C € N = uncon-res N (insert (add-mset L C) N)

lemma uncon-res-increasing:
assumes uncon-res S S’ and ¥ € S
shows 1) € S’

using assms by (induct rule: uncon-res.induct) auto

lemma rtranclp-uncon-inference-increasing:
assumes rtranclp uncon-res S S’ and ¢ € S
shows ¢ € S’

using assms by (induct rule: rtranclp-induct) (auto simp add: uncon-res-increasing)

Subsumption

definition subsumes :: 'a literal multiset = 'a literal multiset = bool where
subsumes x x' +—

(V1. total-over-m I {x'} — total-over-m I {x})

A (V1. total-over-m I {x} — I =x — I E X))

lemma subsumes-refl[simp):
subsumes x x
unfolding subsumes-def by auto

lemma subsumes-subsumption:
assumes subsumes D x
and C C# D and —tautology x
shows subsumes C y unfolding subsumes-def
using assms subsumption-total-over-m subsumption-chained unfolding subsumes-def
by (blast intro!: subset-mset.less-imp-le)

lemma subsumes-tautology:
assumes subsumes (add-mset (Pos P) (add-mset (Neg P) C)) x

shows tautology x
using assms unfolding subsumes-def by (auto simp add: tautology-def)

2.1.3 Inference Rule

type-synonym 'v state = 'v clause-set x ("v clause x 'v clause) set

75

inductive inference-clause :: 'v state = 'v clause x (v clause x v clause) set = bool

(infix =Res 100) where
resolution:

{#Pos p#} + C € N = {#Neg p#} + D € N = ({#Pos p#} + C, {#Neg p#} + D) ¢
already-used

= inference-clause (N, already-used) (C + D, already-used U {({#Pos p#} + C, {#Neg p#} +

D)}) |
factoring: {#L, L#} + C € N = inference-clause (N, already-used) (C + {#L#}, already-used)

inductive inference :: 'v state = 'v state = bool where
inference-step: inference-clause S (clause, already-used)
= inference S (fst S U {clause}, already-used)

abbreviation already-used-inv
i Ya literal multiset set x ('a literal multiset x 'a literal multiset) set = bool where
already-used-inv state =
(V(A, B) € snd state. Ap. Posp €# A N Neg p €# B A
((3x € fst state. subsumes x ((A — {#Pos p#}) + (B — {#Neg p#})))
V tautology ((A — {#Pos p#}) + (B — {#Neg p#1}))))

lemma inference-clause-preserves-already-used-inv:
assumes inference-clause S S’
and already-used-inv S
shows already-used-inv (fst S U {fst S'}, snd S")
using assms apply (induct rule: inference-clause.induct)
by fastforce+

lemma inference-preserves-already-used-inv:

assumes inference S S’

and already-used-inv S

shows already-used-inv S’

using assms
proof (induct rule: inference.induct)

case (inference-step S clause already-used)

then show ?case

using inference-clause-preserves-already-used-inv]of S (clause, already-used)] by simp

qed

lemma rtranclp-inference-preserves-already-used-inv:
assumes riranclp inference S S’
and already-used-inv S
shows already-used-inv S’
using assms apply (induct rule: rtranclp-induct, simp)
using inference-preserves-already-used-inv unfolding tautology-def by fast

lemma subsumes-condensation:
assumes subsumes (C + {#L#} + {#L#}) D
shows subsumes (C + {#L#}) D
using assms unfolding subsumes-def by simp

lemma simplify-preserves-already-used-inv:
assumes simplify N N’
and already-used-inv (N, already-used)
shows already-used-inv (N’ already-used)

76

using assms
proof (induct rule: simplify.induct)
case (condensation C L)
then show ?case
using subsumes-condensation by simp fast
next
{
fix a:: ‘a and A :: 'a set and P
have (x € Set.remove a A. P z) +— (x € A. © # a A\ P) by auto
} note ez-member-remove = this
{
fix a a0 :: "v clause and A :: 'v clause-set and y
assume a € A and a0 C# a
then have (3z € A. subsumes z y) <— (subsumes a y V (3z € A. © # a N subsumes x y))
by auto
} note 2 = this
case (subsumption A B) note A = this(1) and AB = this(2) and B = this(3) and inv = this(4)
show ?Zcase
proof (standard, standard)
fixzab
assume z: ¢ € snd (N — {B}, already-used) and [simp]: x = (a, b)
obtain p where p: Pos p €# a A Neg p €# b and
¢: (IXEN. subsumes x (a — {#Pos p#} + (b — {#Neg p#})))
V tautology (a — {#Pos p#) + (b — (#Neg p#)))
using inv z by fastforce
consider (taut) tautology (a — {#Pos p#} + (b — {#Neg p#})) |
(x) x where x € N subsumes x (a — {#Pos p#} + (b — {#Neg p#}))
—tautology (a — {#Pos p#} + (b — {#Neg p#}))
using ¢ by auto
then show
Jp. Posp €# a N Negp €# b
A ((3xefst (N — {B}, already-used). subsumes x (a — {#Pos p#} + (b — {#Neg p#})))
V tautology (a — {#Pos p#} + (b — {#Neg p#})))
proof cases
case taut
then show ?thesis using p by auto
next
case x note H = this
show ?thesis using p A AB B subsumes-subsumption|OF - AB H(3)] H(1,2) by fastforce
qed
qed
next
case (tautology-deletion P C)
then show ?case
proof clarify
fix a b
assume add-mset (Pos P) (add-mset (Neg P) C) € N
assume already-used-inv (N, already-used)
and (a, b) € snd (N — {add-mset (Pos P) (add-mset (Neg P) C)}, already-used)
then obtain p where
Posp e# a N Negp €# b A
((3xefst (N U {add-mset (Pos P) (add-mset (Neg P) C)}, already-used).
subsumes x (a — {#Pos p#} + (b — {#Neg p#}))
V tautology (a — {#Pos p#} + (b — {#Neg p#})))
by fastforce
moreover have tautology (add-mset (Pos P) (add-mset (Neg P) C)) by auto

77

ultimately show

dp. Posp €# a N Negp €# b A

((3xefst (N — {add-mset (Pos P) (add-mset (Neg P) C)}, already-used).
subsumes x (removel-mset (Pos p) a + removel-mset (Neg p) b)) V
tautology (removel-mset (Pos p) a + removel-mset (Neg p) b))

by (metis (no-types) Diff-iff Un-insert-right empty-iff fst-conv insertE subsumes-tautology
sup-bot.right-neutral)

qed
qed

lemma
factoring-satisfiable: I |= add-mset L (add-mset L C) «— I |= add-mset L C' and
resolution-satisfiable:
consistent-interp I => I = add-mset (Pos p) C = I |= add-mset (Negp) D = I = C + D and
factoring-same-vars: atms-of (add-mset L (add-mset L C)) = atms-of (add-mset L C')
unfolding true-cls-def consistent-interp-def by (fastforce split: if-split-asm)+

lemma inference-increasing:
assumes inference S S’ and ¢ € fst S
shows) € fst S’
using assms by (induct rule: inference.induct, auto)

lemma rtranclp-inference-increasing:
assumes rtranclp inference S S’ and ¢ € fst S
shows 1) € fst S’
using assms by (induct rule: rtranclp-induct, auto simp add: inference-increasing)

lemma inference-clause-already-used-increasing:
assumes inference-clause S S’
shows snd S C snd S’
using assms by (induct rule:inference-clause.induct, auto)

lemma inference-already-used-increasing:
assumes inference S S’
shows snd S C snd S’
using assms apply (induct rule:inference.induct)
using inference-clause-already-used-increasing by fastforce

lemma inference-clause-preserve-models:
fixes N N’ :: 'v clause-set
assumes inference-clause T T’
and total-over-m I (fst T)
and consistent: consistent-interp I
shows I =s fst T +— I s fst T U {fst T}
using assms apply (induct rule: inference-clause.induct)
unfolding consistent-interp-def true-clss-def by auto force+

lemma inference-preserve-models:
fixes N N’ :: 'v clause-set
assumes inference T T’
and total-over-m I (fst T)
and consistent: consistent-interp I
shows I =s fst T +— I s fst T/

78

using assms apply (induct rule: inference.induct)
using inference-clause-preserve-models by fastforce

lemma inference-clause-preserves-atms-of-ms:
assumes inference-clause S S’
shows atms-of-ms (fst (fst S U {fst S'}, snd S’)) C atms-of-ms (fst S)
using assms by (induct rule: inference-clause.induct) (auto dest!: atms-of-atms-of-ms-mono)

lemma inference-preserves-atms-of-ms:
fixes N N’ :: 'v clause-set
assumes inference T T’
shows atms-of-ms (fst T') C atms-of-ms (fst T)
using assms apply (induct rule: inference.induct)
using inference-clause-preserves-atms-of-ms by fastforce

lemma inference-preserves-total:
fixes N N’ :: v clause-set
assumes inference (N, already-used) (N’ already-used’)
shows total-over-m I N = total-over-m I N’
using assms inference-preserves-atms-of-ms unfolding total-over-m-def total-over-set-def
by fastforce

lemma rtranclp-inference-preserves-total:
assumes rtranclp inference T T’
shows total-over-m I (fst T) = total-over-m I (fst T")
using assms by (induct rule: rtranclp-induct, auto simp add: inference-preserves-total)

lemma rtranclp-inference-preserve-models:
assumes rtranclp inference N N’
and total-over-m I (fst N)
and consistent: consistent-interp I
shows [=s fst N «— I |=s fst N/
using assms apply (induct rule: rtranclp-induct)
apply (simp add: inference-preserve-models)
using inference-preserve-models rtranclp-inference-preserves-total by blast

lemma inference-preserves-finite:
assumes inference ¢ ¥’ and finite (fst)
shows finite (fst ")
using assms by (induct rule: inference.induct, auto simp add: simplify-preserves-finite)

lemma inference-clause-preserves-finite-snd:
assumes inference-clause 1 ¥’ and finite (snd 1)
shows finite (snd 1)
using assms by (induct rule: inference-clause.induct, auto)

lemma inference-preserves-finite-snd:
assumes inference 1 ' and finite (snd)
shows finite (snd ')

using assms inference-clause-preserves-finite-snd by (induct rule: inference.induct, fastforce)

lemma rtranclp-inference-preserves-finite:

79

assumes rtranclp inference 1 ¢’ and finite (fst)
shows finite (fst ')
using assms by (induct rule: rtranclp-induct)
(auto simp add: simplify-preserves-finite inference-preserves-finite)

lemma consistent-interp-insert:
assumes consistent-interp I
and atm-of P ¢ atm-of ‘I
shows consistent-interp (insert P I)
proof —
have P: insert P I = I U {P} by auto
show ?thesis unfolding P
apply (rule consistent-interp-disjoint)
using assms by (auto simp: image-iff)
qed

lemma simplify-clause-preserves-sat:
assumes simp: simplify ¥ 1’
and satisfiable v’
shows satisfiable ¥
using assms
proof induction
case (tautology-deletion P A) note AP = this(1) and sat = this(2)
let ?A’ = add-mset (Pos P) (add-mset (Neg P) A)
let 24’ = — {247}
obtain I where
I: I Es 71" and
cons: consistent-interp I and
tot: total-over-m I %v’
using sat unfolding satisfiable-def by auto
{ assume Pos P € IV Neg P € I
then have I = 24’ by auto
then have I s v using I by (metis insert-Diff tautology-deletion.hyps true-clss-insert)
then have ?case using cons tot by auto
}
moreover {
assume Pos: Pos P ¢ I and Neg: Neg P ¢ I
then have consistent-interp (I U {Pos P}) using cons by simp
moreover have I'A: I U {Pos P} = ?A’ by auto
have {Pos P} U I Esyp — {?A'}
using (I f=s ¢ — {?A'} true-clss-union-increase’ by blast
then have I U {Pos P} [=s 9
by (metis (no-types) Un-empty-right Un-insert-left Un-insert-right I'A insert-Diff
sup-bot.left-neutral tautology-deletion.hyps true-clss-insert)
ultimately have ?case using satisfiable-carac’ by blast
}
ultimately show Zcase by blast
next
case (condensation L A) note AL = this(1) and sat = this(2)
let A’ = add-mset L A
let ?A = add-mset L (add-mset L A)
have f3: simplify ¢ (¢ — {?A} U {?A"})
using AL simplify.condensation by blast
obtain LL :: 'a literal set where
f4: LL Es o — {24} U {?4"}

A consistent-interp LL

80

A total-over-m LL (¢ — {2A} U {?4'})
using sat by (meson satisfiable-def)
have f5: insert (A + {#L#} + (#L#)) (6 — {4 + (#L#} + (#L#H) = v
using AL by fastforce
have atms-of (?A’) = atms-of (?A)
by simp
then show ?case
using f5 f4 f3 by (metis Un-insert-right add-mset-add-single atms-of-ms-insert satisfiable-carac
simplify-preserve-models’ sup-bot.right-neutral total-over-m-def)
next
case (subsumption A B) note A = this(1) and AB = this(2) and B = this(3) and sat = this(4)
let 24’ = ¢ — {B}
obtain [where I: [|=s 710" and cons: consistent-interp I and tot: total-over-m I 24’
using sat unfolding satisfiable-def by auto
have I = A using A I by (metis AB Diff-iff subset-mset.less-irrefl singletonD true-clss-def)
then have I = B using AB subset-mset.less-imp-le true-cls-mono-leD by blast
then have I =s ¢ using I by (metis insert-Diff-single true-clss-insert)
then show ?case using cons satisfiable-carac’ by blast
qed

lemma simplify-preserves-unsat:
assumes inference 1 1’
shows satisfiable (fst ©') — satisfiable (fst)
using assms apply (induct rule: inference.induct)
using satisfiable-decreasing by (metis fst-conv)+

lemma inference-preserves-unsat:
assumes inference** S S’
shows satisfiable (fst S') — satisfiable (fst S)
using assms apply (induct rule: rtranclp-induct)
apply simp-all
using simplify-preserves-unsat by blast

datatype v sem-tree = Node v 'v sem-tree "v sem-tree | Leaf

fun sem-tree-size :: 'v sem-tree = nat where
sem-tree-size Leaf = 0 |
sem-tree-size (Node - ag ad) = 1 + sem-tlree-size ag + sem-tree-size ad

lemma sem-tree-size|case-names bigger]:
(Azs:: 'v sem-tree. (\ys:: 'v sem-tree. sem-tree-size ys < sem-tree-size s —> P ys) = P xs)
— P s
by (fact Nat.measure-induct-rule)

fun partial-interps :: 'v sem-tree = v partial-interp = v clause-set = bool where
partial-interps Leaf I v = (Ax. = I E x A x € ¥ A total-over-m I {x}) |
partial-interps (Node v ag ad) I ¢ +—

(partial-interps ag (I U {Pos v}) ¢ A partial-interps ad (IU {Neg v}) v)

lemma simplify-preserve-partial-leaf:
simplify N N' = partial-interps Leaf I N = partial-interps Leaf I N'
apply (induct rule: simplify.induct)
using union-lcomm apply auto|1]
apply (simp)

81

apply (metis atms-of-remdups-mset remdups-mset-singleton-sum true-cls-add-mset union-single-eq-member)

apply auto

by (metis atms-of-ms-emipy-set subsumption-total-over-m total-over-m-def total-over-m-insert
total-over-set-empty true-cls-mono-leD)

lemma simplify-preserve-partial-tree:
assumes simplify N N’
and partial-interps t I N
shows partial-interps t I N’
using assms apply (induct t arbitrary: I, simp)
using simplify-preserve-partial-leaf by metis

lemma inference-preserve-partial-tree:
assumes inference S S’
and partial-interps t I (fst S)
shows partial-interps t I (fst S’)
using assms apply (induct t arbitrary: I, simp-all)
by (meson inference-increasing)

lemma rtranclp-inference-preserve-partial-tree:
assumes rtranclp inference N N’
and partial-interps t I (fst N)
shows partial-interps t I (fst N')
using assms apply (induct rule: rtranclp-induct, auto)
using inference-preserve-partial-tree by force

"y i linorder set = 'v clause-set = 'v sem-tree where

function build-sem-tree ::
build-sem-tree atms 1 =
(if atms = {} V = finite atms
then Leaf
else Node (Min atms) (build-sem-tree (Set.remove (Min atms) atms) 1)
(build-sem-tree (Set.remove (Min atms) atms) 1))
by auto
termination
apply (relation measure (A(A, -). card A), simp-all)
apply (metis Min-in card-Diff1-less remove-def)+
done
declare build-sem-tree.induct[case-names tree]

lemma unsatisfiable-empty|[simp):
—unsatisfiable {}
unfolding satisfiable-def apply auto
using consistent-interp-def unfolding total-over-m-def total-over-set-def atms-of-ms-def by blast

lemma partial-interps-build-sem-tree-atms-general:
fixes v :: v :: linorder clause-set and p :: 'v literal list
assumes unsat: unsatisfiable 1 and finite ¢» and consistent-interp I
and finite atms
and atms-of-ms ¢ = atms U atms-of-s I and atms N atms-of-s I = {}
shows partial-interps (build-sem-tree atms) I 9
using assms
proof (induct arbitrary: I rule: build-sem-tree.induct)
case (1 atms ¢ Ia) note IHI! = this(1) and IH2 = this(2) and unsat = this(3) and finite = this(4)

82

and cons = this(5) and f = this(6) and un = this(7) and disj = this(8)
{
assume atms: atms = {}
then have atmsla: atms-of-ms ¥ = atms-of-s Ia using un by auto
then have total-over-m Ia v unfolding total-over-m-def atmsla by auto
then have x: Ix € ¥. -~ Ia E x
using unsat cons unfolding true-clss-def satisfiable-def by auto
then have build-sem-tree atms ¢ = Leaf using atms by auto
moreover
have tot: Ax. x € ¥ = total-over-m Ia {x}
unfolding total-over-m-def total-over-set-def atms-of-ms-def atms-of-s-def
using atmsla atms-of-ms-def by fastforce
have partial-interps Leaf Ia o
using y tot by (auto simp add: total-over-m-def total-over-set-def atms-of-ms-def)

ultimately have ?case by metis
}
moreover {
assume atms: atms # {}
have build-sem-tree atms 1 = Node (Min atms) (build-sem-tree (Set.remove (Min atms) atms) 1)
(build-sem-tree (Set.remove (Min atms) atms) 1)
using build-sem-tree.simps|of atms] f atms by metis

have consistent-interp (Ia U {Pos (Min atms)}) unfolding consistent-interp-def
by (metis Int-iff Min-in Un-iff atm-of-uminus atms cons consistent-interp-def disj empty-iff
[in-atms-of-s-decomp insert-iff literal.distinct(1) literal.exhaust-sel literal.sel(2)
uminus-Neg uminus-Pos)
moreover have atms-of-ms 1 = Set.remove (Min atms) atms U atms-of-s (Ia U {Pos (Min atms)})
using Min-in atms f un by fastforce
moreover have disj": Set.remove (Min atms) atms N atms-of-s (Ia U {Pos (Min atms)}) = {}
by simp (metis disj disjoint-iff-not-equal member-remove)
moreover have finite (Set.remove (Min atms) atms) using f by (simp add: remove-def)
ultimately have subtreel: partial-interps (build-sem-tree (Set.remove (Min atms) atms))
(Ia U {Pos (Min atms)}) 9
using IHI[of Ia U {Pos (Min (atms))}] atms f unsat finite by metis

have consistent-interp (Ia U {Neg (Min atms)}) unfolding consistent-interp-def
by (metis Int-iff Min-in Un-iff atm-of-uminus atms cons consistent-interp-def disj empty-iff
f in-atms-of-s-decomp insert-iff literal.distinct(1) literal.exhaust-sel literal.sel(2)
uminus-Neg)
moreover have atms-of-ms 1 = Set.remove (Min atms) atms U atms-of-s (Ia U {Neg (Min atms)})
using (atms-of-ms ¢ = Set.remove (Min atms) atms U atms-of-s (Ia U {Pos (Min atms)})> by
blast

moreover have disj". Set.remove (Min atms) atms N atms-of-s (Ia U {Neg (Min atms)}) = {}
using disj by auto
moreover have finite (Set.remove (Min atms) atms) using f by (simp add: remove-def)
ultimately have subtree2: partial-interps (build-sem-tree (Set.remove (Min atms) atms))
(Ia U {Neg (Min atms)}) v
using TH2|of Ia U {Neg (Min (atms))}] atms f unsat finite by metis

then have ?case
using IH1 subtreel subtree2 f local.finite unsat atms by simp
}

ultimately show ?case by metis
qed

83

lemma partial-interps-build-sem-tree-atms:
fixes 1 :: v :: linorder clause-set and p :: 'v literal list
assumes unsat: unsatisfiable 1) and finite: finite v
shows partial-interps (build-sem-tree (atms-of-ms) ¥) {} ¢
proof —
have consistent-interp {} unfolding consistent-interp-def by auto
moreover have atms-of-ms ¢ = atms-of-ms ¢ U atms-of-s {} unfolding atms-of-s-def by auto
moreover have atms-of-ms ¢ N atms-of-s {} = {} unfolding atms-of-s-def by auto
moreover have finite (atms-of-ms 1) unfolding atms-of-ms-def using finite by simp
ultimately show partial-interps (build-sem-tree (atms-of-ms)) {} ¥
using partial-interps-build-sem-tree-atms-general[of ¥ {} atms-of-ms] assms by metis
qed

lemma can-decrease-count:
fixes ¥' :: 'v clause-set x ('v clause x 'v clause X 'v) set
assumes count x L = n
and L €# x and x € fst ¢
shows 3¢’ x'. inference*™ Y ' AN x' € fst ' N (VL. L €# x «— L €# x')
A count x' L = 1
ANNep. o€ fsth — p € fst ')
ANIEx«—ITEX)
A (V1. total-over-m I’ {x} — total-over-m I' {x'})
using assms
proof (induct n arbitrary: x V)
case ()
then show ?Zcase by (simp add: not-in-iff [symmetric])
next
case (Suc n x)
note TH = this(1) and count = this(2) and L = this(8) and x = this(4)
{
assume n = 0
then have inference™™ 1
and x € fst ¢
and VL. (L €# x) «— (L €# x)
and count x L = (1::nat)
and V. ¢ € fst v — p € fst ¢
by (auto simp add: count L x)
then have ?case by metis
}
moreover {
assume n > 0
then have 3C. x = C + {#L, L#}
by (metis Suc-inject union-mset-add-mset-right add-mset-add-single count-add-mset count-inl
less-not-refl3 local.count mset-add zero-less-Suc)
then obtain C where C: x = C + {#L, L#} by metis
let ?x' = C +{#L#}
let 29" = (fst ¥ U {?x'}, snd)
have p: Vp € fst . (p € fst Y V o # ?2x) +— p € fst ?¢0' unfolding C by auto
have inf: inference ¢ 1)’
using C factoring x prod.collapse union-commute inference-step
by (metis add-mset-add-single)
moreover have count’: count ?x’ L = n using C count by auto
moreover have Ly L €# ?x’ by auto
moreover have y": 7y’ € fst 7’ by auto

84

ultimately obtain v’ and Y’/
where
inference** %1’ ¢’ and
a: x" € fst " and
YV La. (La €# ?x') <— (La €# x") and
B: count x"" L = (1::nat) and
p V. @ € fst 7' — @ € fst ' and
I: I E ?x'+— I E x"and
tot: V I'. total-over-m I' {?x'} — total-over-m I’ {x'"}
using IH[of ?x' %] count’ Lx' x' by blast

then have inference** 1 ¢
and V La. (La €# x) +— (La €# x")
using inf unfolding C by auto
moreover have V. p € fst ¢ — ¢ € fst o' using ¢ ¢’ by metis
moreover have [= y «— I E x" using I'x unfolding true-cls-def C' by auto
moreover have V I'. total-over-m I’ {x} — total-over-m I' {x''}
using tot unfolding C total-over-m-def by auto

ultimately have ?case using ¢ o’ a § by metis

}

ultimately show ?Zcase by auto

qed

lemma can-decrease-tree-size:
fixes ¢ :: 'v state and tree :: "v sem-tree
assumes finite (fst 1) and already-used-inv v
and partial-interps tree I (fst ¥)
shows 3 (tree”: 'v sem-tree) ', inference** 1 ¢’ A partial-interps tree’ I (fst ¢)
A (sem-tree-size tree’ < sem-tree-size tree V' sem-tree-size tree = 0)
using assms
proof (induct arbitrary: I rule: sem-tree-size)
case (bigger xs I) note IH = this(1) and finite = this(2) and a-u-i = this(3) and part = this(4)

{

assume sem-tree-size rs = 0
then have ?case using part by blast

}

moreover {
assume snl: sem-tree-size Ts > 0
obtain ag ad v where zs: zs = Node v ag ad using sn0 by (cases zs, auto)
{
assume sem-tree-size ag = 0 and sem-tree-size ad = 0
then have ag: ag = Leaf and ad: ad = Leaf by (cases ag, auto) (cases ad, auto)

then obtain y x’ where

x: = I U {Pos v} E x and

totx: total-over-m (I U {Pos v}) {x} and

XW: x € fst ¢ and

X't = I U{Neg v} |E x' and

totx”: total-over-m (I U {Neg v}) {x'} and

XV x' € fst ¥

using part unfolding xs by auto
have Posv: Pos v ¢# x using x unfolding true-cls-def true-lit-def by auto
have Negv: Neg v ¢# x’ using X' unfolding true-cls-def true-lit-def by auto

{

85

assume Negy: Neg v ¢# x
have — I |= x using x Posv unfolding true-cls-def true-lit-def by auto
moreover have total-over-m I {x}
using Posv Negx atm-imp-pos-or-neg-lit toty unfolding total-over-m-def total-over-set-def
by fastforce
ultimately have partial-interps Leaf I (fst 1)
and sem-tree-size Leaf < sem-tree-size xs
and inference** ¢ 1
unfolding zs by (auto simp add: x)
}
moreover {
assume Posy: Pos v ¢4 x'
then have I'y: = I | x/ using x’ Posv unfolding true-cls-def true-lit-def by auto
moreover have total-over-m I {x'}
using Negv Posy atm-imp-pos-or-neg-lit totx’
unfolding total-over-m-def total-over-set-def by fastforce
ultimately have partial-interps Leaf I (fst 1) and
sem-tree-size Leaf < sem-tree-size xs and
inference®* 1
using x4 Iy unfolding zs by auto
}
moreover {
assume neg: Neg v €# x and pos: Pos v €# '
then obtain ¢’ x2 where inf: ritranclp inference ¢ ' and x2incl: x2 € fst ¢’
and yx2-incl: VL. L €# x <— L €# x2
and countx?2: count x2 (Neg v) = 1
and ¢: YV p::'v literal multiset. ¢ € fst v — ¢ € fst ¢’
and Ix: I Ex+— 1T E x2
and tot-impx: V I'. total-over-m I' {x} — total-over-m I’ {x2}
using can-decrease-count[of x Neg v count x (Neg v) v I] x¢b x" by auto

have x’ € fst ¥’ by (simp add: x" @)

with pos

obtain '’ 2’ where

inf’ inference** ')"’

and x2'-incl: x2' € fst ¢"

and y'x2-incl: V L::"v literal. (L €# x") = (L €# x2)

and countx2’: count x2' (Pos v) = (1:nat)

and ¢ V::'v literal multiset. ¢ € fst ' — ¢ € fst "

and I " I =Ex'+— I E x2'

and tot-impx”: V I'. total-over-m I’ {x'} — total-over-m I' {x2'}
using can-decrease-count[of x' Pos v count x' (Pos v) ¢’ I] by auto

define C where C: C' = x2 — {#Neg v#}

then have x2: x2 = C + {#Neg v#} and negC: Neg v ¢# C and posC: Pos v ¢# C
using xx2-incl neg apply autol]
using C yx2-incl neg countx 2 count-eq-zero-iff apply fastforce
using C Posv xx2-incl in-diffD by fastforce

obtain C'’ where
x2" x2' = C' + {#Pos v#} and
posC'’: Pos v ¢# C’ and
negC": Neg v ¢# C’
proof —
assume al: NC'. [x2' = C' + {#Pos v#}; Pos v ¢# C'; Neg v ¢# C'] = thesis

86

have f2: An. (n:nat) — n =10
by simp
have Neg v ¢# x2' — {#Pos v#}
using Negv x'x2-incl by (auto simp: not-in-iff)
have count {#Pos v#} (Pos v) = 1
by simp
then show ?thesis
by (metis x'x2-incl <Neg v ¢# x2' — {#Pos v#} al countx2’ count-diff {2
insert-Diff M2 less-numeral-extra(3) mem-Collect-eq pos set-mset-def)
qed

have already-used-inv 1’
using rtranclp-inference-preserves-already-used-inv[of ¥ '] a-u-i inf by blast

then have a-u-i-¢)'": already-used-inv "'
using rtranclp-inference-preserves-already-used-inv a-u-i inf’ unfolding tautology-def
by simp

have totC: total-over-m I {C}
using tot-impy totx tot-over-m-removelof I Pos v C] negC posC unfolding x2
by (metis total-over-m-sum uminus-Neg uminus-of-uminus-id)
have totC": total-over-m I {C'}
using tot-impy’ totx’ total-over-m-sum tot-over-m-remove[of I Neg v C'] negC’ posC’
unfolding x 2’ by (metis total-over-m-sum uminus-Neg)
have - I = C + C’
using x Ix x’ Iy’ unfolding x2 x2' true-cls-def by auto
then have part-I-""": partial-interps Leaf I (fst "' U {C + C'})
using totC totC’ by simp
(metis <~ I = C 4+ C% atms-of-ms-singleton total-over-m-def total-over-m-sum)

assume ({#Pos v#} + C', {#Neg v#} + C) ¢ snd "'
then have inf'": inference ' (fst v'" U {C + C'}, snd " U {(x2’, x2)})
using add.commute @’ x2incl <x2' € fst ¢'» unfolding x2 x2'
by (metis prod.collapse inference-step resolution)
have inference** ¢ (fst " U {C + C'}, snd " U {(x2’, x2)})
using inf inf’ inf’" rtranclp-trans by auto
moreover have sem-tree-size Leaf < sem-tree-size xs unfolding zs by auto
ultimately have ?case using part-I-)"" by (metis fst-conv)

}

moreover {
assume a: ({#Pos v#} + C', {#Neg v#} + C) € snd "
then have (I x € fst ©'. (V1. total-over-m I {C+C'} — total-over-m I {x})
A (V1. total-over-m I {x} — I =Ex — I E C'+ (C))
V tautology (C' + C)
proof —
obtain p where p: Pos p €# ({#Pos v#} + C’) and
n: Neg p €# ({#Neg v#} + C) and
decomp: (I xEfst .
(VI. total-over-m I {({#Pos v#} + C') — {#Pos p#}
+ (({#Neg v#} + C) — {#Neg p#})}
— total-over-m I {x})
A (V1. total-over-m I {x} — I E x
— Il ({#Pos vit} + C') — {#Pos p#} + ({(#Neg vt} + C) — {#Neg p#})

)
V tautology (({#Pos v#} + C') — {#Pos p#} + ({#Neg v#} + C) — {#Neg p#})))

using a by (blast intro: allE[OF a-u-i-)"'[unfolded subsumes-def Ball-def],
of ({#Pos v#} + C’', {#Neg v#} + C)))

87

{ assume p £ v
then have Pos p €# C' N\ Neg p €# C using p n by force
then have ?thesis unfolding Bez-def by auto
}
moreover {
assume p = v
then have ?thesis using decomp by (metis add.commute add-diff-cancel-left’)
}
ultimately show ?thesis by auto
qed
moreover {
assume Jx € fst ¢’ (V1. total-over-m I {C+C'} — total-over-m I {x})
A (V1. total-over-m I {x} — I =Ex —I1E C'+ ()
then obtain ¢ where ¥: 9 € fst ¥' and
tot-9-CC": Y 1. total-over-m I {C+C’} — total-over-m I {9} and
P-inv: Y 1. total-over-m I {9} — I =9 — I = C' 4+ C by blast
have partial-interps Leaf I (fst 1"
using tot--CC’ 9 9-inv totC totC’ «—~ I = C + C" total-over-m-sum by fastforce
moreover have sem-tree-size Leaf < sem-tree-size rs unfolding zs by auto
ultimately have ?case by (metis inf inf’ rtranclp-trans)
}
moreover {
assume tautCC": tautology (C' + C)
have total-over-m I {C'+C} using totC totC’ total-over-m-sum by auto
then have —tautology (C' + C)
using (-~ I = C + C" unfolding add.commute[of C C'] total-over-m-def
unfolding tautology-def by auto
then have Fulse using tautCC’ unfolding tautology-def by auto

}

ultimately have ?case by auto

}

ultimately have ?case by auto

ultimately have ?case using part by (metis (no-types) sem-tree-size.simps(1))
}
moreover {
assume size-ag: sem-tree-size ag > 0
have sem-tree-size ag < sem-tree-size xs unfolding zs by auto
moreover have partial-interps ag (I U {Pos v}) (fst 1)
and partad: partial-interps ad (I U {Neg v}) (fst)
using part partial-interps.simps(2) unfolding xs by metis+
moreover have sem-tree-size ag < sem-tree-size s — finite (fst ¥) — already-used-inv 1
— (partial-interps ag (I U {Pos v}) (fst) —
(Ftree’ V', inference** ¢ ' A partial-interps tree’ (I U {Pos v}) (fst)
A (sem-tree-size tree’ < sem-tree-size ag V' sem-tree-size ag = 0)))
using /H by auto
ultimately obtain ¢’ :: ‘v state and tree’ :: 'v sem-tree where
inf: inference** 1 1’
and part: partial-interps tree’ (I U {Pos v}) (fst ¥)
and size: sem-tree-size tree’ < sem-tree-size ag V sem-tree-size ag = 0
using finite part rtranclp.rtrancl-refl a-u-i by blast

have partial-interps ad (I U {Neg v}) (fst ')

using rtranclp-inference-preserve-partial-tree inf partad by metis
then have partial-interps (Node v tree’ ad) I (fst ¢’) using part by auto
then have Zcase using inf size size-ag part unfolding zs by fastforce

88

}

moreover {

assume size-ad: sem-tree-size ad > 0

have sem-tree-size ad < sem-tree-size xs unfolding zs by auto

moreover have partag: partial-interps ag (I U {Pos v}) (fst ¢) and
partial-interps ad (I U {Neg v}) (fst)
using part partial-interps.simps(2) unfolding zs by metis+

moreover have sem-tree-size ad < sem-tree-size xs — finite (fst 1) — already-used-inv
— (partial-interps ad (I U {Neg v}) (fst)
— (Ftree’ Y'. inference™ 1 ' A partial-interps tree’ (I U {Neg v}) (fst ')

A (sem-tree-size tree’ < sem-tree-size ad V sem-tree-size ad = 0)))

using IH by auto

ultimately obtain ¢’ :: ‘v state and tree’ :: ‘v sem-tree where
inf: inference®* 1 1’
and part: partial-interps tree’ (I U {Neg v}) (fst ¥”)
and size: sem-tree-size tree’ < sem-tree-size ad V sem-tree-size ad = 0
using finite part rtranclp.rtrancl-refl a-u-i by blast

have partial-interps ag (I U {Pos v}) (fst ¢')

using rtranclp-inference-preserve-partial-tree inf partag by metis
then have partial-interps (Node v ag tree’) I (fst ¢') using part by auto
then have ?case using inf size size-ad unfolding zs by fastforce

ultimately have ?case by auto
}
ultimately show ?case by auto
qed

lemma inference-completeness-inv:
fixes ¢ :: v :linorder state
assumes
unsat: —satisfiable (fst) and
finite: finite (fst ¢) and
a-u-v: already-used-inv
shows 3. (inference™ ¢ ' A {#} € fst ')
proof —
obtain tree where partial-interps tree {} (fst ¥)
using partial-interps-build-sem-tree-atms assms by metis
then show ?thesis
using unsat finite a-u-v
proof (induct tree arbitrary: 1 rule: sem-tree-size)
case (bigger tree 1)) note H = this
{
fix x
assume tree: tree = Leaf
obtain y where x: = {} | x and toty: total-over-m {} {x} and x: x € fst ¢
using H unfolding tree by auto
moreover have {#} = x
using totx unfolding total-over-m-def total-over-set-def by fastforce
moreover have inference** 1 ¢ by auto
ultimately have ?case by metis
}
moreover {
fix v treel tree2
assume tree: tree = Node v treel tree2
obtain

89

tree’)’ where inf: inference** 1 1’ and
part”: partial-interps tree’ {} (fst ¢') and
decrease: sem-tree-size tree’ < sem-tree-size tree \V sem-tree-size tree = 0
using can-decrease-tree-size[of] H(2,4,5) unfolding tautology-def by meson
have sem-tree-size tree’ < sem-tree-size tree using decrease unfolding tree by auto
moreover have finite (fst 1) using rtranclp-inference-preserves-finite inf H(4) by metis
moreover have unsatisfiable (fst 1)
using inference-preserves-unsat inf bigger.prems(2) by blast
moreover have already-used-inv 1’
using H(5) inf rtranclp-inference-preserves-already-used-inv[of ¥ '] by auto
ultimately have ?case using inf rtranclp-trans part’ H(1) by fastforce
}
ultimately show ?case by (cases tree, auto)
qged
qed

lemma inference-completeness:
fixes v :: 'v ::linorder state
assumes unsat: —satisfiable (fst 1)
and finite: finite (fst 1)

and snd ¥ = {}
shows 34’ (rtranclp inference ¥ ' A {#} € fst ¥)
proof —

have already-used-inv 1) unfolding assms by auto
then show ?thesis using assms inference-completeness-inv by blast
qed

lemma inference-soundness:
fixes ¢ :: v :linorder state
assumes rtranclp inference 1 ' and {#} € fst ¢’
shows unsatisfiable (fst 1)
using assms by (meson rtranclp-inference-preserve-models satisfiable-def true-cls-empty
true-clss-def)

lemma inference-soundness-and-completeness:

fixes 1 :: v ::linorder state

assumes finite: finite (fst ¥)

and snd ¢ = {}

shows (3¢, (inference*™ o ' A {#} € fst ¥')) +— unsatisfiable (fst)
using assms inference-completeness inference-soundness by metis

2.1.4 Lemma about the Simplified State

abbreviation simplified 1 = (no-step simplify)

lemma simplified-count:
assumes simp: simplified ¢» and x: x € ¥
shows count x L < 1
proof —
{
let ?x' = x — {#L, L#}
assume count x L > 2
then have f1: count (x — {#L, L#} + {#L, L#}) L = count x L
by simp
then have L €# x — {#L#}
by (metis (no-types) add.left-neutral add-diff-cancel-left’ count-union diff-diff-add

90

diff-single-trivial insert-Diff M mem-Collect-eq multi-member-this not-gr0 set-mset-def)
then have y”: {#L, L#} + %' = x
using f1 in-diffD insert-DiffM by fastforce

have 3. simplify ¥ ¢’
by (metis (no-types, hide-lams) x x' factoring-imp-simplify)
then have Fulse using simp by auto
}
then show ?thesis by arith
qed

lemma simplified-no-both:
assumes simp: simplified ¢ and x: x € ¥
shows - (L €# x N —L €# x)
proof (rule ccontr)
assume = (L €# x A — L €# x)
then have L €# x A — L €# x by metis
then obtain y’' where y = add-mset (Pos (atm-of L)) (add-mset (Neg (atm-of L)) x’)
by (cases L) (auto dest!: multi-member-split simp: add-eq-conv-ex)
then show Fualse using x simp tautology-deletion by fast
qed

lemma add-mset-Neg-Pos-commute[simp:
add-mset (Neg P) (add-mset (Pos P) C) = add-mset (Pos P) (add-mset (Neg P) C)
by (rule add-mset-commute)

lemma simplified-not-tautology:
assumes simplified {1}
shows ~tautology ¢

proof (rule ccontr)
assume "~ ?thesis
then obtain p where Pos p €# ¥ A Neg p €# 1 using tautology-decomp by metis
then obtain x where ¢ = x + {#Pos p#} + {#Neg p#}

by (auto dest!: multi-member-split simp: add-eq-conv-ex)

then have ~ simplified {¢} by (auto intro: tautology-deletion)
then show Fualse using assms by auto

qed

lemma simplified-remove:
assumes simplified {1y}
shows simplified {1 — {#1#}}
proof (rule ccontr)
assume ns: - simplified {1p — {#I#}}
{
assume [¢# ¢
then have ¢y — {#I#} = ¢ by simp
then have Fulse using ns assms by auto
}
moreover {
assume [: | €# 1)
have A: NA. A € {¢ — {#I#}} «— add-mset | A € {¢} by (auto simp add: l))
obtain !’ where " simplify {¢ — {#I#}} I’ using ns by metis
then have 31’ simplify {} U
proof (induction rule: simplify.induct)
case (tautology-deletion P A)
then have {#Neg P#} + ({#Pos P#} + (A + {#1#})) € {v}

91

using A by auto
then show ?thesis
using simplified-no-both by fastforce
next
case (condensation L A)
have add-mset | (add-mset L (add-mset L A)) € {¢}
using condensation.hyps unfolding A by blast
then have {#L, L#} + (4 + {#I#}) € {¢}
by auto
then show ?case
using factoring-imp-simplify by blast
next
case (subsumption A B)
then show ?case by blast
qed
then have Fulse using assms(1) by blast
}
ultimately show False by auto
qed

lemma in-simplified-simplified:
assumes simp: simplified ¢ and incl: 1’ C 1
shows simplified 1)’
proof (rule ccontr)
assume — ?Zthesis
then obtain ' where simplify 1’ 1" by metis
then have 31’ simplify ¢ 1’
proof (induction rule: simplify.induct)
case (tautology-deletion A P)
then show %thesis using simplify.tautology-deletion[of A P 1] incl by blast
next
case (condensation A L)
then show ?Zcase using simplify.condensation[of A L] incl by blast
next
case (subsumption A B)
then show Zcase using simplify.subsumption|of A 1 B] incl by auto
qed
then show Fulse using assms(1) by blast
qed

lemma simplified-in:
assumes simplified 1
and N € ¢
shows simplified {N}
using assms by (metis Set.set-insert empty-subsetl in-simplified-simplified insert-mono)

lemma subsumes-imp-formula:
assumes ¢ <# ¢
shows {¢} =p ¢
unfolding true-clss-cls-def apply auto
using assms true-cls-mono-leD by blast

lemma simplified-imp-distinct-mset-tauto:

assumes simp: simplified 1’
shows distinct-mset-set 1’ and VY x € ¥’. ~tautology x

92

proof —
show YV x € ¥’ —tautology x
using simp by (auto simp add: simplified-in simplified-not-tautology)

show distinct-mset-set 1’
proof (rule ccontr)
assume — ?thesis
then obtain y where y € ¢’ and —distinct-mset x unfolding distinct-mset-set-def by auto
then obtain L where count y L > 2
unfolding distinct-mset-def
by (meson count-greater-eq-one-iff le-antisym simp simplified-count)
then show False by (metis Suc-1 «x € ¥’ not-less-eq-eq simp simplified-count)
qed
qed

lemma simplified-no-more-fulll-simplified:
assumes simplified 1
shows —fulll simplify ¢ 1’
using assms unfolding fulll-def by (meson tranclpD)

2.1.5 Resolution and Invariants

inductive resolution :: 'v state = v state = bool where
fulll-simp: fulll simplify N N’ = resolution (N, already-used) (N', already-used) |
inferring: inference (N, already-used) (N', already-used’) = simplified N

= full simplify N' N' = resolution (N, already-used) (N, already-used’)

Invariants

lemma resolution-finite:
assumes resolution ¥ ¢’ and finite (fst 1)
shows finite (fst ")
using assms by (induct rule: resolution.induct)
(auto simp add: fulll-def full-def rtranclp-simplify-preserves-finite
dest: tranclp-into-rtranclp inference-preserves-finite)

lemma rtranclp-resolution-finite:
assumes resolution™™ 1 ¢’ and finite (fst 1)
shows finite (fst ')
using assms by (induct rule: rtranclp-induct, auto simp add: resolution-finite)

lemma resolution-finite-snd:
assumes resolution © ¢’ and finite (snd 1)
shows finite (snd 1)
using assms apply (induct rule: resolution.induct, auto simp add: inference-preserves-finite-snd)
using inference-preserves-finite-snd snd-conv by metis

lemma rtranclp-resolution-finite-snd:
assumes resolution™™ ¢ ¢’ and finite (snd)
shows finite (snd ')
using assms by (induct rule: rtranclp-induct, auto simp add: resolution-finite-snd)

lemma resolution-always-simplified:

assumes resolution 1 1’

shows simplified (fst 1)

using assms by (induct rule: resolution.induct)

93

(auto simp add: fulll-def full-def)

lemma tranclp-resolution-always-simplified:
assumes tranclp resolution 1 '
shows simplified (fst 1)
using assms by (induct rule: tranclp.induct, auto simp add: resolution-always-simplified)

lemma resolution-atms-of:
assumes resolution ¢ ¥’ and finite (fst)
shows atms-of-ms (fst ') C atms-of-ms (fst 1)
using assms apply (induct rule: resolution.induct)
apply(simp add: rtranclp-simplify-atms-of-ms tranclp-into-rtranclp fulll-def)
by (metis (no-types, lifting) contra-subsetD fst-conv full-def
inference-preserves-atms-of-ms rtranclp-simplify-atms-of-ms subsetl)

lemma rtranclp-resolution-atms-of:
assumes resolution™ i ¢’ and finite (fst 1)
shows atms-of-ms (fst ') C atms-of-ms (fst 1)
using assms apply (induct rule: rtranclp-induct)
using resolution-atms-of rtranclp-resolution-finite by blast+

lemma resolution-include:
assumes res: resolution 1 ¢’ and finite: finite (fst)
shows fst 1)’ C simple-clss (atms-of-ms (fst 1))
proof —
have finite”: finite (fst 1) using local.finite res resolution-finite by blast
have simplified (fst ¢') using res finite’ resolution-always-simplified by blast
then have fst ' C simple-clss (atms-of-ms (fst 1'))
using simplified-in-simple-clss finite’ simplified-imp-distinct-mset-tauto[of fst '] by auto
moreover have atms-of-ms (fst ') C atms-of-ms (fst)
using res finite resolution-atms-of[of ¥ ¢’] by auto
ultimately show ?thesis by (meson atms-of-ms-finite local.finite order.trans rev-finite-subset
simple-clss-mono)
qed

lemma rtranclp-resolution-include:
assumes res: tranclp resolution ¥ ' and finite: finite (fst ¥)
shows fst 1)/ C simple-clss (atms-of-ms (fst 1))
using assms apply (induct rule: tranclp.induct)
apply (simp add: resolution-include)
by (meson simple-clss-mono order-trans resolution-include
rtranclp-resolution-atms-of rtranclp-resolution-finite tranclp-into-rtranclp)

abbreviation already-used-all-simple
i (Ya literal multiset x 'a literal multiset) set = 'a set = bool where
already-used-all-simple already-used vars =
(VY (A, B) € already-used. simplified {A} N simplified {B} A atms-of A C vars A atms-of B C wvars)

lemma already-used-all-simple-vars-incl:
assumes vars C vars’
shows already-used-all-simple a vars = already-used-all-simple a vars’
using assms by fast

lemma inference-clause-preserves-already-used-all-simple:

assumes inference-clause S S’
and already-used-all-simple (snd S) vars

94

and simplified (fst S)
and atms-of-ms (fst S) C vars
shows already-used-all-simple (snd (fst S U {fst S'}, snd S’)) vars
using assms
proof (induct rule: inference-clause.induct)
case (factoring L C N already-used)
then show Zcase by (simp add: simplified-in factoring-imp-simplify)
next
case (resolution P C' N D already-used) note H = this
show ?case apply clarify
proof —
fix A Bv
assume (A4, B) € snd (fst (N, already-used)
U {fst (C + D, already-used U {({#Pos P#} + C, {#Neg P#} + D)})},
snd (C + D, already-used U {({#Pos P#} + C, {#Neg P#} + D)}))
then have (A, B) € already-used vV (A, B) = ({#Pos P#} + C, {#Neg P#} + D) by auto
moreover {
assume (A, B) € already-used
then have simplified {A} A simplified {B} A atms-of A C vars A atms-of B C vars
using H(4) by auto
}
moreover {
assume eq: (4, B) = ({#Pos P#} + C, {#Neg P#} + D)
then have simplified {A} using simplified-in H(1,5) by auto
moreover have simplified { B} using eq simplified-in H(2,5) by auto
moreover have atms-of A C atms-of-ms N
using eq H(1)
using atms-of-atms-of-ms-monolof A N| by auto
moreover have atms-of B C atms-of-ms N
using eq H(2) atms-of-atms-of-ms-mono|of B N| by auto
ultimately have simplified {A} N simplified {B} A atms-of A C wvars A atms-of B C vars
using H(6) by auto
}

ultimately show simplified {A} A simplified {B} A atms-of A C vars A atms-of B C vars
by fast
qed
qed

lemma inference-preserves-already-used-all-simple:
assumes inference S S’
and already-used-all-simple (snd S) vars
and simplified (fst S)
and atms-of-ms (fst S) C vars
shows already-used-all-simple (snd S') vars
using assms
proof (induct rule: inference.induct)
case (inference-step S clause already-used)
then show ?case
using inference-clause-preserves-already-used-all-simple|of S (clause, already-used) vars]
by auto
qed

lemma already-used-all-simple-inv:
assumes resolution S S’
and already-used-all-simple (snd S) vars
and atms-of-ms (fst S) C vars

95

shows already-used-all-simple (snd S') vars

using assms
proof (induct rule: resolution.induct)

case (fulll-simp N N')

then show ?Zcase by simp
next

case (inferring N already-used N' already-used’ N'')

then show already-used-all-simple (snd (N'', already-used’)) vars

using inference-preserves-already-used-all-simple[of (N, already-used)] by simp

qed

lemma rtranclp-already-used-all-simple-inv:
assumes resolution** S S’
and already-used-all-simple (snd S) vars
and atms-of-ms (fst S) C vars
and finite (fst S)
shows already-used-all-simple (snd S') vars
using assms
proof (induct rule: rtranclp-induct)
case base
then show ?Zcase by simp
next
case (step S’ S") note infstar = this(1) and IH = this(3) and res = this(2) and
already = this(4) and atms = this(5) and finite = this(6)
have already-used-all-simple (snd S’) vars using IH already atms finite by simp
moreover have atms-of-ms (fst S’) C atms-of-ms (fst S)
by (simp add: infstar local.finite rtranclp-resolution-atms-of)
then have atms-of-ms (fst S’) C vars using atms by auto
ultimately show ?Zcase
using already-used-all-simple-inv[OF res] by simp
qed

lemma inference-clause-simplified-already-used-subset:
assumes inference-clause S S’
and simplified (fst S)
shows snd § C snd S’
using assms apply (induct rule: inference-clause.induct)
using factoring-imp-simplify apply (simp; blast)
using factoring-imp-simplify by force

lemma inference-simplified-already-used-subset:
assumes inference S S’
and simplified (fst S)
shows snd S C snd S’
using assms apply (induct rule: inference.induct)
by (metis inference-clause-simplified-already-used-subset snd-conv)

lemma resolution-simplified-already-used-subset:
assumes resolution S S’
and simplified (fst S)
shows snd S C snd S’
using assms apply (induct rule: resolution.induct, simp-all add: fulll-def)
apply (meson tranclpD)
by (metis inference-simplified-already-used-subset fst-conv snd-conv)

lemma tranclp-resolution-simplified-already-used-subset:

96

assumes tranclp resolution S S’

and simplified (fst S)

shows snd S C snd S’

using assms apply (induct rule: tranclp.induct)

using resolution-simplified-already-used-subset apply metis

by (meson tranclp-resolution-always-simplified resolution-simplified-already-used-subset
less-trans)

abbreviation already-used-top vars = simple-clss vars x simple-clss vars

lemma already-used-all-simple-in-already-used-top:
assumes already-used-all-simple s vars and finite vars
shows s C already-used-top vars
proof
fix z
assume z-s: * € S
obtain A B where z: z = (4, B) by (cases z, auto)
then have simplified {A} and atms-of A C vars using assms(1) z-s by fastforce+
then have A: A € simple-clss vars
using simple-clss-mono|of atms-of A vars] x assms(2)
simplified-imp-distinct-mset-tautolof {A}]
distinct-mset-not-tautology-implies-in-simple-clss by fast
moreover have simplified { B} and atms-of B C vars using assms(1) z-s © by fast+
then have B: B € simple-clss vars
using simplified-imp-distinct-mset-tauto[of {B}]
distinct-mset-not-tautology-implies-in-simple-clss
simple-clss-mono|of atms-of B vars| z assms(2) by fast
ultimately show z € simple-clss vars x simple-clss vars
unfolding = by auto
qed

lemma already-used-top-finite:
assumes finite vars
shows finite (already-used-top vars)
using simple-clss-finite assms by auto

lemma already-used-top-increasing:
assumes var C var’ and finite var’
shows already-used-top var C already-used-top var’
using assms simple-clss-mono by auto

lemma already-used-all-simple-finite:
fixes s :: (‘a literal multiset x 'a literal multiset) set and vars :: 'a set
assumes already-used-all-simple s vars and finite vars
shows finite s
using assms already-used-all-simple-in-already-used-top| OF assms(1)]
rev-finite-subset| OF already-used-top-finite[of vars]] by auto

abbreviation card-simple vars ¥ = card (already-used-top vars — 1)

lemma resolution-card-simple-decreasing:
assumes res: resolution 1 '
and a-u-s: already-used-all-simple (snd) vars
and finite-v: finite vars
and finite-fst: finite (fst ¥)
and finite-snd: finite (snd 1)

97

and simp: simplified (fst V)

and atms-of-ms (fst 1) C vars

shows card-simple vars (snd ') < card-simple vars (snd 1)

proof —

let Zvars = vars

let ?top = simple-clss ?vars x simple-clss ?vars

have 1: card-simple vars (snd) = card ?top — card (snd)
using card-Diff-subset finite-snd already-used-all-simple-in-already-used-top| OF a-u-s]
finite-v by metis

have a-u-s": already-used-all-simple (snd ') vars
using already-used-all-simple-inv res a-u-s assms(7) by blast

have f: finite (snd ') using already-used-all-simple-finite a-u-s’ finite-v by auto

have 2: card-simple vars (snd ') = card ?top — card (snd ¢’)
using card-Diff-subset[OF f] already-used-all-simple-in-already-used-top| OF a-u-s’ finite-v)
by auto

have card (already-used-top vars) > card (snd ¢
using already-used-all-simple-in-already-used-top| OF a-u-s’ finite-v)
card-mono|of already-used-top vars snd '] already-used-top-finite[OF finite-v] by metis

then show ?thesis
using psubset-card-mono[OF f resolution-simplified-already-used-subset| OF res simp)]
unfolding 1 2 by linarith

qed

lemma tranclp-resolution-card-simple-decreasing:
assumes tranclp resolution 1 ¥’ and finite-fst: finite (fst ¢)
and already-used-all-simple (snd) vars
and atms-of-ms (fst 1) C vars
and finite-v: finite vars
and finite-snd: finite (snd 1)
and simplified (fst)
shows card-simple vars (snd ') < card-simple vars (snd)
using assms
proof (induct rule: tranclp-induct)
case (base ¢’)
then show Zcase by (simp add: resolution-card-simple-decreasing)
next
case (step ¥’ ¢'") note res = this(1) and res’ = this(2) and a-u-s = this(5) and
atms = this(6) and f-v = this(7) and f-fst = this(4) and H = this
then have card-simple vars (snd ¢’) < card-simple vars (snd i) by auto
moreover have a-u-s”: already-used-all-simple (snd ') vars
using rtranclp-already-used-all-simple-inv[OF tranclp-into-rtranclp[OF res] a-u-s atms f-fst] .
have finite (fst ¥)
by (meson finite-fst res rtranclp-resolution-finite tranclp-into-rtranclp)
moreover have finite (snd ¢') using already-used-all-simple-finite[OF a-u-s’ f-v] .
moreover have simplified (fst 1)) using res tranclp-resolution-always-simplified by blast
moreover have atms-of-ms (fst ') C vars
by (meson atms f-fst order.trans res rtranclp-resolution-atms-of tranclp-into-rtranclp)
ultimately show ?Zcase
using resolution-card-simple-decreasing|OF res’ a-u-s’ f-v] f-v
less-trans|of card-simple vars (snd ©'") card-simple vars (snd)
card-simple vars (snd)]
by blast
qed

98

lemma tranclp-resolution-card-simple-decreasing-2:

assumes tranclp resolution 1 1’

and finite-fst: finite (fst 1)

and empty-snd: snd ¢ = {}

and simplified (fst ¢)

shows card-simple (atms-of-ms (fst ¥)) (snd ') < card-simple (atms-of-ms (fst ¥)) (snd ¥)
proof —

let Zvars = atms-of-ms (fst ¢)

have already-used-all-simple (snd) ?vars unfolding empty-snd by auto

moreover have atms-of-ms (fst 1) C %vars by auto

moreover have finite-v: finite ?vars using finite-fst by auto

moreover have finite-snd: finite (snd ¢) unfolding empty-snd by auto

ultimately show ?thesis

using assms(1,2,4) tranclp-resolution-card-simple-decreasing|of 1 ¢'] by presburger

qed

Well-Foundness of the Relation

lemma wf-simplified-resolution:
assumes f-vars: finite vars
shows wf {(y:: 'vi: linorder state, x). (atms-of-ms (fst) C vars A simplified (fst x)
A finite (snd) A finite (fst) A already-used-all-simple (snd x) vars) A resolution = y}
proof —
{
fix a b :: "vi:linorder state
assume (b, a) € {(y,). (atms-of-ms (fst) C vars A simplified (fst z) A finite (snd x)
A finite (fst x) A already-used-all-simple (snd z) vars) A resolution z y}
then have
atms-of-ms (fst a) C vars and
stmp: simplified (fst a) and
finite (snd a) and
finite (fst a) and
a-u-v: already-used-all-simple (snd a) vars and
res: resolution a b by auto
have finite (already-used-top vars) using f-vars already-used-top-finite by blast
moreover have already-used-top vars C already-used-top vars by auto
moreover have snd b C already-used-top vars
using already-used-all-simple-in-already-used-toplof snd b vars]
a-u-v already-used-all-simple-inv[OF res] (finite (fst a)) <atms-of-ms (fst a) C vars> f-vars
by presburger
moreover have snd a C snd b using resolution-simplified-already-used-subset| OF res simp] .
ultimately have finite (already-used-top vars) A already-used-top vars C already-used-top vars
A snd b C already-used-top vars A\ snd a C snd b by metis
}

then show %thesis using wf-bounded-set[of {(y:: 'v:: linorder state, x).
(atms-of-ms (fst x) C vars
A simplified (fst x) A finite (snd z) A finite (fst)\ already-used-all-simple (snd x) vars)
A resolution x y} A-. already-used-top vars snd) by auto
qed

lemma wf-simplified-resolution’:
assumes f-vars: finite vars
shows wf {(y:: 'vi: linorder state,). (atms-of-ms (fst x) C vars N —simplified (fst x)
A finite (snd) A finite (fst) A already-used-all-simple (snd x) vars) A resolution y}
unfolding wf-def
apply (simp add: resolution-always-simplified)

99

by (metis (mono-tags, hide-lams) fst-conv resolution-always-simplified)

lemma wf-resolution:
assumes f-vars: finite vars
shows wf ({(y:: "vi: linorder state,). (atms-of-ms (fst z) C vars A simplified (fst x)
A finite (snd) A finite (fst) A already-used-all-simple (snd x) vars) A resolution z y}
U {(y, x). (atms-of-ms (fst £) C vars A = simplified (fst) A finite (snd z) A finite (fst z)
A already-used-all-simple (snd) vars) A resolution z y}) (is wf (R U 29))
proof —
have Domain ?R Int Range 2S5 = {} using resolution-always-simplified by auto blast
then show wf (7R U 25)
using wf-simplified-resolution| OF f-vars| wf-simplified-resolution’|OF f-vars|] wf-Un[of ?R 25]
by fast
qed

lemma rtrancp-simplify-already-used-inv:
assumes simplify** S S’
and already-used-inv (S, N)
shows already-used-inv (S’, N)
using assms apply induction
using simplify-preserves-already-used-inv by fast+

lemma fulll-simplify-already-used-inv:
assumes fulll simplify S S’
and already-used-inv (S, N)
shows already-used-inv (S’, N)
using assms tranclp-into-rtranclp|of simplify S S'] rtrancp-simplify-already-used-inv
unfolding fulll-def by fast

lemma full-simplify-already-used-inv:
assumes full simplify S S’
and already-used-inv (S, N)
shows already-used-inv (S', N)
using assms rtrancp-simplify-already-used-inv unfolding full-def by fast
lemma resolution-already-used-inv:
assumes resolution S S’
and already-used-inv S
shows already-used-inv S’
using assms
proof induction
case (fulll-simp N N’ already-used)
then show ?case using fulll-simplify-already-used-inv by fast
next
case (inferring N already-used N’ already-used’ N'"’) note inf = this(1) and full = this(3) and
a-u-v = this(4)
then show ?Zcase
using inference-preserves-already-used-inv[OF inf a-u-v] full-simplify-already-used-inv full
by fast
qed

lemma rtranclp-resolution-already-used-inv:
assumes resolution** S S’
and already-used-inv S
shows already-used-inv S’
using assms apply induction
using resolution-already-used-inv by fast+

100

lemma rtanclp-simplify-preserves-unsat:
assumes simplify** 1 1’
shows satisfiable 1) — satisfiable
using assms apply induction
using simplify-clause-preserves-sat by blast+

lemma fulll-simplify-preserves-unsat:
assumes fulll simplify ¥ ¢’
shows satisfiable 1) — satisfiable
using assms rtanclp-simplify-preserves-unsat|of ¥ '] tranclp-into-rtranclp
unfolding fulll-def by metis

lemma full-simplify-preserves-unsat:
assumes full simplify ¥ ¢’
shows satisfiable 1" — satisfiable ¢
using assms rtanclp-simplify-preserves-unsat[of 1 1’| unfolding full-def by metis

lemma resolution-preserves-unsat:
assumes resolution v 1’
shows satisfiable (fst ¥') — satisfiable (fst 1)
using assms apply (induct rule: resolution.induct)
using fulll-simplify-preserves-unsat apply (metis fst-conv)
using full-simplify-preserves-unsat simplify-preserves-unsat by fastforce

lemma rtranclp-resolution-preserves-unsat:
assumes resolution** 1) 1’
shows satisfiable (fst ') — satisfiable (fst)
using assms apply induction
using resolution-preserves-unsat by fast+

lemma rtranclp-simplify-preserve-partial-tree:
assumes simplify** N N’
and partial-interps t I N
shows partial-interps t I N’
using assms apply (induction, simp)
using simplify-preserve-partial-tree by metis

lemma fulll-simplify-preserve-partial-tree:
assumes fulll simplify N N’
and partial-interps t I N
shows partial-interps t I N’
using assms rtranclp-simplify-preserve-partial-tree[of N N’ t I] tranclp-into-rtranclp
unfolding fulll-def by fast

lemma full-simplify-preserve-partial-tree:
assumes full simplify N N’
and partial-interps t I N
shows partial-interps t I N’
using assms rtranclp-simplify-preserve-partial-tree[of N N’ t I] tranclp-into-rtranclp
unfolding full-def by fast

lemma resolution-preserve-partial-tree:
assumes resolution S S’
and partial-interps t I (fst S)
shows partial-interps t I (fst S”)

101

using assms apply induction
using fulll-simplify-preserve-partial-tree fst-conv apply metis
using full-simplify-preserve-partial-tree inference-preserve-partial-tree by fastforce

lemma rtranclp-resolution-preserve-partial-tree:
assumes resolution** S S’
and partial-interps t I (fst S)
shows partial-interps t I (fst S”)
using assms apply induction
using resolution-preserve-partial-tree by fast+
thm nat-less-induct nat.induct

lemma nat-ge-induct|case-names 0 Suc]:
assumes P 0
and An. (Am. m<Sucn = P m) = P (Suc n)
shows P n
using assms apply (induct rule: nat-less-induct)
by (rename-tac n, case-tac n) auto

lemma wf-always-more-step-False:
assumes wf R
shows (Vz. 3z. (2, x)€R) = False
using assms unfolding wf-def by (meson Domain.Domainl assms wfE-min)

lemma finite-finite-mset-element-of-mset[simp]:
assumes finite N
shows finite {f o L|p L.o € NANLeE# o NP p L}
using assms

proof (induction N rule: finite-induct)

case empty
show ?case by auto
next

case (insert © N) note finite = this(1) and IH = this(3)
have {f o L|lp L. (p =2V e N)ANLe# o NP Ly C{feL|L Le#zNPuzlL}
U{feLlpL e NANLE# APy L} by auto
moreover have finite {f z L | L. L €# z} by auto
ultimately show ?case using IH finite-subset by fastforce
qed

definition sum-count-ge-2 :: ‘a multiset set = nat (Z) where
sum-count-ge-2 = folding.F' (Ap. (+)(sum-mset {#count ¢ L |L €# ¢. 2 < count ¢ L#})) 0

interpretation sum-count-ge-2:
folding Ap. (4)(sum-mset {#count ¢ L |L €# ¢. 2 < count ¢ L#}) 0
rewrites
folding. F (Ap. (+)(sum-mset {#count ¢ L |L €# ¢. 2 < count ¢ L#})) 0 = sum-count-ge-2
proof —
show folding (Ap. (+) (sum-mset (image-mset (count @) {# L €# ¢. 2 < count ¢ L#})))
by standard auto
then interpret sum-count-ge-2:
folding Ap. (+)(sum-mset {#count ¢ L |L €# ¢. 2 < count ¢ L#}) 0 .
show folding.F' (A\p. (+) (sum-mset (image-mset (count @) {# L €# ¢. 2 < count ¢ L#}))) 0
= sum-count-ge-2 by (auto simp add: sum-count-ge-2-def)
qed

102

lemma finite-incl-le-setsum:
finite (B::'a multiset set) —= A C B=—E A < =
proof (induction arbitrary:A rule: finite-induct)
case empty
then show ?Zcase by simp
next
case (insert a F) note finite = this(1) and oF = this(2) and IH = this(3) and AF = this(4)
show Zcase
proof (cases a € A)
assume a ¢ A
then have A C F using AF by auto
then show ?case using IH[of A] by (simp add: aF local.finite)
next
assume aA: a € A
then have A — {a} C F using AF by auto
then have = (4 — {a}) < E F using IH by blast
then show ?case
proof —
obtain nn :: nat = nat = nat where
Va0 1. (3v2. 20 = 1 4+ v2) = (20 = 21 + nn z0 z1)
by moura
then have Z F == (A — {a}) + nn (E F) (E (A — {a}))
by (meson = (A — {a}) < E P le-iff-add)
then show ?thesis
by (metis (no-types) le-iff-add aA aF add.assoc finite.insertl finite-subset
insert.prems local.finite sum-count-ge-2.insert sum-count-ge-2.remove)
qed
qed
qed

1
Sy

lemma simplify-finite-measure-decrease:
simplify N N' = finite N = card N' + 2 N' < card N + E N
proof (induction rule: simplify.induct)
case (tautology-deletion P A) note an = this(1) and fin = this(2)
let N’ = N — {add-mset (Pos P) (add-mset (Neg P) A)}
have card N’ < card N
by (meson card-Diff1-less tautology-deletion.hyps tautology-deletion.prems)
moreover have ?N’ C N by auto
then have sum-count-ge-2 ?N’ < sum-count-ge-2 N using finite-incl-le-setsum|[OF fin] by blast
ultimately show ?case by linarith
next
case (condensation L A) note AN = this(1) and fin = this(2)
let ?C’ = add-mset L A
let ?C = add-mset L ?2C"’
let PN'= N — {?C} U {?C"}
have card ?N' < card N
using AN by (metis (no-types, lifting) Diff-subset Un-empty-right Un-insert-right card.remove
card-insert-if card-mono fin finite-Diff order-refl)
moreover have Z {?C'} < E {?C}
proof —
have mset-decomp:
{# Lae# A. (L=La — La €# A) AN (L # La — 2 < count A La)#}
= {# Lae# A. L +# La N 2 < count A La#} +
{# Lae# A. L = La A Suc 0 < count A L#}
by (auto simp: multiset-eq-iff ac-simps)

103

have mset-decomp2: {# La €# A. L # La — 2 < count A La#} =
{# La €# A. L # La N 2 < count A La#} + replicate-mset (count A L) L
by (auto simp: multiset-eq-iff)
have *: (3 z€#B. if L = x then Suc (count A z) else count A x) <
(> ze#B. if L = x then Suc (count (add-mset L A) z) else count (add-mset L A) x)
for B
by (auto intro!: sum-mset-mono)
show ?thesis
using *[of {#La €# A. L # La N 2 < count A La#}]
by (auto simp: mset-decomp mset-decomp?2 filter-mset-eq)
qged
have 2 ?N' < Z N
proof cases
assume al: ?C' € N
then show ?thesis
proof —
have f2: Am M. insert (m::'a literal multiset) (M — {m}) =M U{} vm¢M
using Un-empty-right insert-Diff by blast
have f3: Am M Ma. insert (m::'a literal multiset) M — insert m Ma = M — insert m Ma
by simp
then have f/: AM m. M — {m:'a literal multiset} = M U {} Vme M
using Diff-insert-absorb Un-empty-right by fastforce
have f5: insert 7C N = N
using f3 f2 Un-empty-right condensation.hyps insert-iff by fastforce
have Am M. insert (m::’a literal multiset) M = M U {} V. m ¢ M
using f3 f2 Un-empty-right add.right-neutral insert-iff by fastforce
then have = (N — {?C}) <E N
using f5 f4 by (metis Un-empty-right = {?C"} < 2 {?C}hH
add.right-neutral add-diff-cancel-left’ add-gr-0 diff-less fin finite.emptyl not-le
sum-count-ge-2.empty sum-count-ge-2.insert-remove trans-le-add2)
then show ?thesis
using f3 f2 al by (metis (no-types) Un-empty-right Un-insert-right condensation.hyps
insert-iff multi-self-add-other-not-self)
qed
next
assume ?C’' ¢ N

have mset-decomp:
{# La €# A. (L = La — Suc 0 < count A La) N (L # La — 2 < count A La)#}
= {# Lae# A. L+# La N 2 < count A La#} +
{# Lae# A. L= La A Suc 0 < count A L#}
by (auto simp: multiset-eq-iff ac-simps)
have mset-decomp2: {# La €# A. L # La — 2 < count A La#} =
{# La €# A. L # La N 2 < count A La#} + replicate-mset (count A L) L
by (auto simp: multiset-eq-iff)

show ?thesis
using = {?C'} < E {?2C} condensation.hyps fin
sum-count-ge-2.removelof - ?C] «?C" ¢ N»
by (auto simp: mset-decomp mset-decomp?2 filter-mset-eq)
qed
ultimately show ?case by linarith
next
case (subsumption A B) note AN = this(1) and AB = this(2) and BN = this(3) and fin = this(4)
have card (N — {B}) < card N using BN by (meson card-Diff1-less subsumption.prems)
moreover have = (N — {B}) <E N
by (simp add: Diff-subset finite-incl-le-setsum subsumption.prems)

104

ultimately show ?case by linarith
qed

lemma simplify-terminates:
wf {(N', N). finite N A simplify N N'}
apply (rule wfP-if-measure|of finite simplify AN. card N + = NJ)
using simplify-finite-measure-decrease by blast

lemma wf-terminates:
assumes wf r
shows IN'.(N', N)e r* AN (VN". (N", N)¢ r)
proof —
let P = AN. AN'(N', N)e r* N(¥YVN". (N", NY¢ r))
have Vz. Vy. (y,) € r — ?Py) — ?Px
proof clarify
fix z
assume H:Vy. (y,z) €r — %Py
{ assume Jy. (y,) € r
then obtain y where y: (y,) € r by blast
then have ?P y using H by blast
then have ?P z using y by (meson rtrancl.rtrancl-into-rtrancl)
}
moreover {
assume —~(3y. (y, ¥) € 1)
then have ?P z by auto
}
ultimately show ?P z by blast
qed
moreover have (Vz. (Vy. (y,z) € r — ¢Py) — ?Px) — All 7P
using assms unfolding wf-def by (rule allF)
ultimately have All ?P by blast
then show ?P N by blast
qed

lemma rtranclp-simplify-terminates:
assumes fin: finite N
shows A N'. simplify** N N’ A simplified N’
proof —
have H: {(N’, N). finite N A simplify N N’} = {(N’, N). simplify N N’ A finite N} by auto
then have wf: wf {(N', N). simplify N N' A finite N}
using simplify-terminates by (simp add: H)
obtain N’ where N”: (N', N)e {(b, a). simplify a b A finite a}* and
more: VN'". (N, N"¢ {(b, a). simplify a b A finite a}
using Prop-Resolution.wf-terminates| OF wf, of N] by blast
have 1: simplify** N N’
using N’ by (induction rule: rtrancl.induct) auto
then have finite N’ using fin rtranclp-simplify-preserves-finite by blast
then have 2: V N”. —simplify N’ N'' using more by auto

show ?thesis using 1 2 by blast
qed

lemma finite-simplified-fulll-simp:

assumes finite N
shows simplified N V (3 N'. fulll simplify N N')

105

using rtranclp-simplify-terminates| OF assms] unfolding fulll-def
by (metis Nitpick.rtranclp-unfold)

lemma finite-simplified-full-simp:
assumes finite N
shows I N'. full simplify N N’
using rtranclp-simplify-terminates| OF assms] unfolding full-def by metis

lemma can-decrease-tree-size-resolution:
fixes v :: v state and tree :: 'v sem-tree
assumes finite (fst 1) and already-used-inv v
and partial-interps tree I (fst)
and simplified (fst)
shows 3 (tree”: 'v sem-tree) ', resolution*™ ¢ ' A partial-interps tree’ I (fst 1’)
A (sem-tree-size tree’ < sem-tree-size tree V sem-tree-size tree =)
using assms
proof (induct arbitrary: I rule: sem-tree-size)
case (bigger xs I) note IH = this(1) and finite = this(2) and a-u-i = this(3) and part = this(4)
and simp = this(5)

{ assume sem-tree-size xs = 0
then have ?case using part by blast

}

moreover {
assume snl: sem-tree-size xs > 0
obtain ag ad v where zs: zs = Node v ag ad using sn0 by (cases zs, auto)
{
assume sem-tree-size ag = 0 N\ sem-tree-size ad = 0
then have ag: ag = Leaf and ad: ad = Leaf by (cases ag, auto, cases ad, auto)

then obtain y x’ where
x: = I U {Pos v} = x and
totx: total-over-m (I U {Pos v}) {x} and
X¥: x € fst ¢ and
X"t = I U{Neg v} | x'and
totx": total-over-m (I U {Neg v}) {x'} and x"¥: x' € fst ¢
using part unfolding zs by auto
have Posv: Pos v ¢4 x using x unfolding true-cls-def true-lit-def by auto
have Negv: Neg v ¢# x’ using x' unfolding true-cls-def true-lit-def by auto
{
assume Negy: Neg v ¢# x
then have - I | x using x Posv unfolding true-cls-def true-lit-def by auto
moreover have total-over-m I {x}
using Posv Negx atm-imp-pos-or-neg-lit toty unfolding total-over-m-def total-over-set-def
by fastforce
ultimately have partial-interps Leaf I (fst)
and sem-tree-size Leaf < sem-tree-size xs
and resolution®* i ¢
unfolding zs by (auto simp add: x)
}
moreover {
assume Posx: Pos v ¢# x'
then have Ix: = I = x’ using x’ Posv unfolding true-cls-def true-lit-def by auto
moreover have total-over-m I {x'}
using Negv Posy atm-imp-pos-or-neg-lit totx’

106

unfolding total-over-m-def total-over-set-def by fastforce
ultimately have partial-interps Leaf I (fst 1)
and sem-tree-size Leaf < sem-tree-size xs
and resolution™* 1 ¢
using x’tp Ix unfolding zs by auto
}
moreover {
assume neg: Neg v €# x and pos: Pos v €# x’
have count x (Neg v) = 1
using simplified-count[OF simp x| neg
by (simp add: dual-order.antisym)
have count x' (Pos v) = 1
using simplified-count[OF simp x)] pos
by (simp add: dual-order.antisym,)

obtain C where xC: x = add-mset (Neg v) C and negC: Neg v ¢# C and posC: Pos v ¢4

by (metis (no-types, lifting) One-nat-def Posv <count x (Neg v) = 1>
count x' (Pos v) = 1 count-add-mset count-greater-eq-Suc-zero-iff insert-Diff M
le-numeral-extra(2) nat.inject pos)

obtain C’/ where
xC'": x' = add-mset (Pos v) C' and
posC’: Pos v ¢# C' and
negC": Neg v ¢# C’
by (metis (no-types, lifting) Negv One-nat-def (count x' (Pos v) = 1) count-add-mset
count-eq-zero-iff mset-add nat.inject pos)

have totC: total-over-m I {C}
using totx tot-over-m-remove|of I Pos v C] negC posC unfolding x C' by auto
have totC": total-over-m I {C'}
using totx’ total-over-m-sum tot-over-m-remove[of I Neg v C'] negC’ posC’
unfolding x C’ by auto
have - I = C + C’
using y x’ xC xC’ by auto
then have part-I-)""": partial-interps Leaf I (fst v U {C + C'})
using totC totC’ <= I = C + C) by (metis Un-insert-right insertl1
partial-interps.simps(1) total-over-m-sum)
{

assume (add-mset (Pos v) C', add-mset (Neg v) C) ¢ snd
then have inf': inference 1 (fst ¢ U {C + C'}, snd ¥ U {(x’, x)})
by (metis x"v xC xC' x¥ add-mset-add-single inference-clause.resolution
inference-step prod.collapse union-commute)
obtain N’ where full: full simplify (fst v U {C + C'}) N’
by (metis finite-simplified-full-simp fst-conv inf" inference-preserves-finite
local.finite)
have resolution ¥ (N', snd v U {(x’, x)})
using resolution.intros(2)[OF - simp full, of snd ¥ snd ¥ U {(x’, x)}] inf”
by (metis surjective-pairing)
moreover have partial-interps Leaf I N'
using full-simplify-preserve-partial-tree| OF full part-I-p’""] .
moreover have sem-tree-size Leaf < sem-tree-size xs unfolding zs by auto
ultimately have ?case
by (metis (no-types) prod.sel(1) rtranclp.rtrancl-into-rtrancl rtranclp.rtrancl-refl)

moreover {

107

assume a: ({#Pos v#} + C’, {#Neg v#} + C) € snd ¢
then have (3 € fst ¢. (VI. total-over-m I {C+C'} — total-over-m I {x})
A (V1. total-over-m I {x} — I =x — I E C'+ (C)) V tautology (C' + C)
proof —
obtain p where p: Pos p €# ({#Pos v#} + C') A Neg p €# ({#Neg v#} + C)
AN((3xefst . (V1. total-over-m I {({#Pos v#} + C') — {#Pos p#} + (({#Neg v#}
+ C) — {#Neg p#})} — total-over-m I {x}) A (V1. total-over-m I {x} — I = x — I = ({#Pos
v} + C') — {#Pos p#} + ({#Neg v#} + C) — {#Neg p#}))) V tautology (({#Pos v#} + C') —
{#Pos p#} + (({#Neg v#} + C) — {#Neg p#})))
using a by (blast intro: allE[OF a-u-i[unfolded subsumes-def Ball-def],
of ({#Pos v#} + C', {#Neg v#} + C)])
{ assume p # v
then have Pos p €# C’' A Neg p €# C using p by force
then have ?thesis by auto
}
moreover {
assume p = v
then have ?thesis using p by (metis add.commute add-diff-cancel-left’)
}
ultimately show %thesis by auto
qed
moreover {
assume I x € fst . (V1. total-over-m I {C+C'} — total-over-m I {x})
A (V1. total-over-m I {x} — I =Ex —I1EC'+ ()
then obtain ¥ where
9: 9 € fst ¢ and
tot-0-CC" V I. total-over-m I {C+C'} — total-over-m I {9} and
¥-inv: V1. total-over-m I {9} — I =9 — I | C’ + C by blast
have partial-interps Leaf I (fst)
using tot-09-CC' 9 ¥-inv totC totC’ «—— I = C + C" total-over-m-sum by fastforce
moreover have sem-tree-size Leaf < sem-tree-size s unfolding xs by auto
ultimately have ?case by blast
}
moreover {
assume tautCC'": tautology (C' + C)
have total-over-m I {C'+C} using totC totC’ total-over-m-sum by auto
then have —tautology (C' + C)
using <= [= C 4+ C% unfolding add.commute[of C C'] total-over-m-def
unfolding tautology-def by auto
then have Fulse using tautCC’ unfolding tautology-def by auto

ultimately have ?case by auto
ultimately have ?case by auto

ultimately have ?case using part by (metis (no-types) sem-tree-size.simps(1))
}
moreover {
assume size-ag: sem-tree-size ag > 0
have sem-tree-size ag < sem-tree-size xs unfolding xs by auto
moreover have partial-interps ag (I U {Pos v}) (fst ¢)
and partad: partial-interps ad (I U {Neg v}) (fst)
using part partial-interps.simps(2) unfolding xs by metis+
moreover
have sem-tree-size ag < sem-tree-size s = finite (fst V) = already-used-inv 1
= partial-interps ag (I U {Pos v}) (fst ¢) = simplified (fst)

108

= Jtree’ ¢’ resolution™) ' A partial-interps tree’ (I U {Pos v}) (fst ¥’
A (sem-tree-size tree’ < sem-tree-size ag V sem-tree-size ag = 0)
using IH|[of ag I U {Pos v}] by auto
ultimately obtain v’ :: ‘v state and tree’ :: 'v sem-tree where
inf: resolution™* 1 1’
and part: partial-interps tree’ (I U {Pos v}) (fst ¥)
and size: sem-tree-size tree’ < sem-tree-size ag V sem-tree-size ag = 0
using finite part rtranclp.rtrancl-refl a-u-i simp by blast

have partial-interps ad (I U {Neg v}) (fst ")
using rtranclp-resolution-preserve-partial-tree inf partad by fast
then have partial-interps (Node v tree’ ad) I (fst ¢’) using part by auto
then have ?case using inf size size-ag part unfolding xs by fastforce
}
moreover {
assume size-ad: sem-tree-size ad > 0
have sem-tree-size ad < sem-tree-size xs unfolding zs by auto
moreover
have
partag: partial-interps ag (I U {Pos v}) (fst ¢) and
partial-interps ad (I U {Neg v}) (fst ¢)
using part partial-interps.simps(2) unfolding zs by metis+
moreover have sem-tree-size ad < sem-tree-size xs — finite (fst ¥) — already-used-inv 1)
— (partial-interps ad (I U {Neg v}) (fst ©) — simplified (fst)
— (T tree’ Y’. resolution™™ 1 ' A partial-interps tree’ (I U {Neg v}) (fst ¢")
A (sem-tree-size tree’ < sem-tree-size ad V sem-tree-size ad = 0)))
using IH by blast
ultimately obtain v’ :: 'v state and tree’ :: 'v sem-tree where
inf: resolution™™* 1 1)’
and part: partial-interps tree’ (I U {Neg v}) (fst ¢')
and size: sem-tree-size tree’ < sem-tree-size ad V sem-tree-size ad = 0
using finite part rtranclp.rtrancl-refl a-u-i simp by blast

have partial-interps ag (I U {Pos v}) (fst ¢')

using rtranclp-resolution-preserve-partial-tree inf partag by fast
then have partial-interps (Node v ag tree’) I (fst ¢') using part by auto
then have ?case using inf size size-ad unfolding zs by fastforce

}

ultimately have ?case by auto
}
ultimately show ?Zcase by auto
qed

lemma resolution-completeness-inv:
fixes ¢ :: v :linorder state
assumes
unsat: —satisfiable (fst) and
finite: finite (fst ¢) and
a-u-v: already-used-inv
shows Jv’. (resolution™™ 1 ' N {#} € fst ¢’)
proof —
obtain tree where partial-interps tree {} (fst ¢)
using partial-interps-build-sem-tree-atms assms by metis
then show ?thesis
using unsat finite a-u-v
proof (induct tree arbitrary: ¢ rule: sem-tree-size)

109

case (bigger tree 1)) note H = this
{
fix x
assume tree: tree = Leaf
obtain x where x: = {} E x and totx: total-over-m {} {x} and xv¢: x € fst ¢
using H unfolding tree by auto
moreover have {#} = x
using H atms-empty-iff-empty totx
unfolding true-cls-def total-over-m-def total-over-set-def by fastforce
moreover have resolution™* i 1 by auto
ultimately have ?case by metis
}
moreover {
fix v treel tree2
assume tree: tree = Node v treel tree2
obtain ¥y where 1g: resolution™* 1 1o and simp: simplified (fst 1o)
proof —
{ assume simplified (fst 1)
moreover have resolution™ v 1 by auto
ultimately have thesis using that by blast
}
moreover {
assume —simplified (fst 1)
then have 3¢’ fulll simplify (fst) ¢’
by (metis Nitpick.rtranclp-unfold bigger.prems(3) fulll-def
rtranclp-simplify-terminates)
then obtain N where fulll simplify (fst 1) N by metis
then have resolution ¥ (N, snd 1))
using resolution.intros(1)[of fst ¥ N snd 9] by auto
moreover have simplified N
using (fulll simplify (fst ¢) N> unfolding fulll-def by blast
ultimately have ?thesis using that by force
}
ultimately show ?%thesis by auto
qed

have p: partial-interps tree {} (fst 1)
and uns: unsatisfiable (fst 1)
and f: finite (fst o)
and a-u-v: already-used-inv g
using 1 bigger.prems(1) rtranclp-resolution-preserve-partial-tree apply blast
using g bigger.prems(2) rtranclp-resolution-preserves-unsat apply blast
using g bigger.prems(8) rtranclp-resolution-finite apply blast
using rtranclp-resolution-already-used-inv| OF 1o bigger.prems(4)] by blast
obtain tree’ 1)’ where
inf: resolution™™* g ¥’ and
part”: partial-interps tree’ {} (fst ¥’) and
decrease: sem-tree-size tree’ < sem-tree-size tree \V sem-tree-size tree = 0
using can-decrease-tree-size-resolution| OF f a-u-v p simp] unfolding tautology-def
by meson
have s: sem-tree-size tree’ < sem-tree-size tree using decrease unfolding tree by auto
have fin: finite (fst 1)
using f inf rtranclp-resolution-finite by blast
have unsat: unsatisfiable (fst 1)
using rtranclp-resolution-preserves-unsat inf uns by metis

110

have a-u-i’: already-used-inv 1’
using a-u-v inf rtranclp-resolution-already-used-inv[of 1o '] by auto
have ?case
using inf rtranclp-trans[of resolution] H(1)[OF s part’ unsat fin a-u-i’] 1o by blast
}

ultimately show ?case by (cases tree, auto)
qed
qed

lemma resolution-preserves-already-used-inv:
assumes resolution S S’
and already-used-inv S
shows already-used-inv S’
using assms
apply (induct rule: resolution.induct)
apply (rule fulll-simplify-already-used-inv; simp)
apply (rule full-simplify-already-used-inv, simp)
apply (rule inference-preserves-already-used-inv, simp)
apply blast
done

lemma rtranclp-resolution-preserves-already-used-inv:
assumes resolution** S S’
and already-used-inv S
shows already-used-inv S’
using assms
apply (induct rule: rtranclp-induct)
apply simp
using resolution-preserves-already-used-inv by fast

lemma resolution-completeness:
fixes v :: v ::linorder state
assumes unsat: —satisfiable (fst 1)
and finite: finite (fst)

and snd ¢ = {}
shows J¢’. (resolution™™ o ' N {#} € fst ¢’)
proof —

have already-used-inv ¢ unfolding assms by auto
then show ?thesis using assms resolution-completeness-inv by blast
qed

lemma rtranclp-preserves-sat:
assumes simplify*™ S S’
and satisfiable S
shows satisfiable S’
using assms apply induction
apply simp
by (meson satisfiable-carac satisfiable-def simplify-preserve-models-eq)

lemma resolution-preserves-sat:
assumes resolution S S’
and satisfiable (fst S)
shows satisfiable (fst S’)
using assms apply (induction rule: resolution.induct)
using riranclp-preserves-sat tranclp-into-rtranclp unfolding fulll-def apply fastforce
by (metis fst-conv full-def inference-preserve-models rtranclp-preserves-sat

111

satisfiable-carac’ satisfiable-def)

lemma rtranclp-resolution-preserves-sat:
assumes resolution** S S’
and satisfiable (fst S)
shows satisfiable (fst S")
using assms apply (induction rule: rtranclp-induct)
apply simp
using resolution-preserves-sat by blast

lemma resolution-soundness:
fixes v :: 'v ::linorder state
assumes resolution™ i ¢’ and {#} € fst ¢’
shows unsatisfiable (fst 1)
using assms by (meson rtranclp-resolution-preserves-sat satisfiable-def true-cls-empty
true-clss-def)

lemma resolution-soundness-and-completeness:

fixes ¢ :: ‘v :linorder state

assumes finite: finite (fst V)

and snd: snd v = {}

shows (3¢'. (resolution** 1 ' A {#} € fst ¥')) +— unsatisfiable (fst 1)
using assms resolution-completeness resolution-soundness by metis

lemma simplified-falsity:
assumes simp: simplified
and {#} € ¢
shows ¢ = {{#}}

proof (rule ccontr)
assume H: - ?thesis
then obtain y where x € ¥ and x # {#} using assms(2) by blast
then have {#} C# x by (simp add: subset-mset.zero-less-iff-neg-zero)
then have simplify ¥ (v — {x})

using simplify.subsumption|OF assms(2) {#} C# x> «x €] by blast

then show Fualse using simp by blast

qed

lemma simplify-falsity-in-preserved:
assumes simplify xs xs’
and {#} € xs
shows {#} € xs’
using assms
by induction auto

lemma rtranclp-simplify-falsity-in-preserved:
assumes simplify*™* xs xs’
and {#} € xs
shows {#} € xs’
using assms
by induction (auto intro: simplify-falsity-in-preserved)

lemma resolution-falsity-get-falsity-alone:
assumes finite (fst 1)
shows (3. (resolution*™ ¥ ' N {#} € fst ¥')) «— (3 a-u-v. resolution** p ({{#}}, a-u-v))
(is ?A +— ?B)

112

proof
assume ?B
then show ?A by auto
next
assume ?A
then obtain xs a-u-v where xs: resolution™ ¥ (xs, a-u-v) and F: {#} € xs by auto
{ assume simplified xs
then have ?B using simplified-falsity|OF - F] xs by blast
}
moreover {
assume — simplified xs
then obtain ys’ where fulll simplify xs xs'
by (metis xs assms finite-simplified-fulll-simp fst-conv rtranclp-resolution-finite)
then have {#} € xs’
unfolding fulll-def by (meson F rtranclp-simplify-falsity-in-preserved
tranclp-into-rtranclp)
then have ?B
by (metis xs fulll simplify xs xs fst-conv fulll-simp resolution-always-simplified
rtranclp.rtrancl-into-rtrancl simplified-falsity)
}

ultimately show ¢B by blast
qed

theorem resolution-soundness-and-completeness’:
fixes ¢ :: v :linorder state

assumes
finite: finite (fst v¥)and
snd: snd p = {}

shows (3 a-u-v. (resolution™™ 1 ({{#}}, a-u-v))) «— unsatisfiable (fst 1)
using assms resolution-completeness resolution-soundness resolution-falsity-get-falsity-alone
by metis

end

theory Prop-Superposition

imports Entailment-Definition. Partial- Herbrand-Interpretation Ordered-Resolution-Prover.Herbrand-Interpretation
begin

2.2 Superposition

no-notation Herbrand-Interpretation.true-cls (infix = 50)
notation Herbrand-Interpretation.true-cls (infix [=h 50)

no-notation Herbrand-Interpretation.true-clss (infix s 50)
notation Herbrand-Interpretation.true-clss (infix =hs 50)

lemma herbrand-interp-iff-partial-interp-cls:
S Eh C < {Pos P|P. PeS} U {Neg P|P. P¢S} E C
unfolding Herbrand-Interpretation.true-cls-def Partial-Herbrand-Interpretation.true-cls-def
by auto

lemma herbrand-consistent-interp:
consistent-interp ({Pos P|P. PeS} U {Neg P|P. P¢S})

unfolding consistent-interp-def by auto

lemma herbrand-total-over-set:

113

total-over-set ({Pos P|P. P€S} U {Neg P|P. P¢S}) T
unfolding total-over-set-def by auto

lemma herbrand-total-over-m:
total-over-m ({Pos P|P. P€S} U {Neg P|P. P¢S}) T
unfolding total-over-m-def by (auto simp add: herbrand-total-over-set)

lemma herbrand-interp-iff-partial-interp-clss:
S =hs C <— {Pos P|P. PeS} U {Neg P|P. P¢S} |=s C
unfolding true-clss-def Ball-def herbrand-interp-iff-partial-interp-cls
Partial-Herbrand-Interpretation.true-clss-def by auto

definition clss-lt :: 'a::wellorder clause-set = 'a clause = 'a clause-set where
clss-lt NC ={D € N.D < C}

notation (latex output)
clss-It (-<"bsup>-<"esup>)

locale selection =
fixes S :: ‘a clause = 'a clause
assumes
S-selects-subseteq: NC. S C <# C and
S-selects-neg-lits: NC L. L €e# S C = is-neg L

locale ground-resolution-with-selection =
selection S for S :: (‘a :: wellorder) clause = 'a clause
begin

context
fixes N :: ‘a clause set
begin

We do not create an equivalent of d, but we directly defined N¢ by inlining the definition.

function
production :: 'a clause = 'a interp
where
production C' =
{A4. C € N A C # {#} N Maz-mset C = Pos A N count C (Pos A) < 1
A= (UD € {D. D < C}. production D) Eh C N S C = {#}}
by auto
termination by (relation {(D, C). D < C}) (auto simp: wf-less-multiset)

declare production.simps|[simp del]

definition interp :: 'a clause = 'a interp where
interp C = (D € {D. D < C}. production D)

lemma production-unfold:

production C = {A. C € N AN C # {#} A Maz-mset C = Pos AN count C (Pos A) < 1 A — interp
CERCANSC={#}}

unfolding interp-def by (rule production.simps)
abbreviation productive A = (production A # {})

abbreviation produces :: 'a clause = 'a = bool where
produces C' A = production C = {A}

114

lemma producesD:
produces C A = C € N A C # {#} AN Pos A = Maz-mset C A count C' (Pos A) < 1 A
—interp C |=h C A S C = {#}
unfolding production-unfold by auto

lemma produces C A = Pos A €# C
by (simp add: Max-in-lits producesD)

lemma interp’-def-in-set:
interp C = (UD € {D € N. D < C}. production D)
unfolding interp-def apply auto
unfolding production-unfold apply auto
done

lemma production-iff-produces:
produces D A +— A € production D
unfolding production-unfold by auto

definition Interp :: 'a clause = ’'a interp where
Interp C' = interp C' U production C

lemma
assumes produces C' P
shows Interp C |=h C
unfolding Interp-def assms using producesD[OF assms]
by (metis Maz-in-lits Un-insert-right insertl1 pos-literal-in-imp-true-cls)

definition INTERP :: 'a interp where
INTERP = (UD €N. production D)

lemma interp-subseteq-Interp[simp): interp C C Interp C
unfolding Interp-def by simp

lemma Interp-as-UNION: Interp C = (D € {D. D < C}. production D)
unfolding Interp-def interp-def less-eq-multiset-def by fast

lemma productive-not-empty: productive C = C # {#}
unfolding production-unfold by auto

lemma productive-imp-produces-Maz-literal: productive C = produces C (atm-of (Maz-mset C))
unfolding production-unfold by (auto simp del: atm-of-Maz-lit)

lemma productive-imp-produces-Max-atom: productive C' = produces C (Mazx (atms-of C))
unfolding atms-of-def Maz-atm-of-set-mset-commute[OF productive-not-empty]

by (rule productive-imp-produces-Maz-literal)

lemma produces-imp-Maz-literal: produces C A = A = atm-of (Maz-mset C)
by (metis Maz-singleton insert-not-empty productive-imp-produces-Maz-literal)

lemma produces-imp-Maz-atom: produces C A = A = Maz (atms-of C)
by (metis Maz-singleton insert-not-empty productive-imp-produces-Max-atom)

lemma produces-imp-Pos-in-lits: produces C A = Pos A €# C
by (auto intro: Maz-in-lits dest!: producesD)

115

lemma productive-in-N: productive C = C € N
unfolding production-unfold by auto

lemma produces-imp-atms-leq: produces C A = B € atms-of C = B < A
by (metis Maz-ge finite-atms-of insert-not-empty productive-imp-produces-Maz-atom
singleton-inject)

lemma produces-imp-neg-notin-lits: produces C' A = Neg A ¢# C
by (rule pos-Maz-imp-neg-notin) (auto dest: producesD)

lemma less-eg-imp-interp-subseteg-interp: C < D = interp C' C interp D
unfolding interp-def by auto (metis order.strict-trans2)

lemma less-eq-imp-interp-subseteg-Interp: C < D = interp C' C Interp D
unfolding Interp-def using less-eq-imp-interp-subseteg-interp by blast

lemma less-imp-production-subseteq-interp: C < D = production C C interp D
unfolding interp-def by fast

lemma less-eq-imp-production-subseteq-Interp: C < D = production C C Interp D
unfolding Interp-def using less-imp-production-subseteg-interp
by (metis le-imp-less-or-eq le-supll sup-ge2)

lemma less-imp-Interp-subseteq-interp: C < D — Interp C' C interp D
unfolding Interp-def
by (auto simp: less-eq-imp-interp-subseteg-interp less-imp-production-subseteq-interp)

lemma less-eq-imp-Interp-subseteq-Interp: C < D = Interp C C Interp D
using less-imp-Interp-subseteq-interp
unfolding Interp-def by (metis le-imp-less-or-eq le-supI2 subset-refl sup-commute)

lemma false-Interp-to-true-interp-imp-less-multiset: A ¢ Interp C — A € interp D — C < D
using less-eq-imp-interp-subseteq-Interp not-less by blast

lemma false-interp-to-true-interp-imp-less-multiset: A ¢ interp C = A € interp D = C < D
using less-eq-imp-interp-subseteq-interp not-less by blast

lemma false-Interp-to-true-Interp-imp-less-multiset: A ¢ Interp C = A € Interp D = C < D
using less-eq-imp-Interp-subseteq-Interp not-less by blast

lemma false-interp-to-true-Interp-imp-le-multiset: A ¢ interp C = A € Interp D = C < D
using less-imp-Interp-subseteq-interp not-less by blast

lemma interp-subseteq-INTERP: interp C C INTERP
unfolding interp-def INTERP-def by (auto simp: production-unfold)

lemma production-subseteq-INTERP: production C C INTERP
unfolding INTERP-def using production-unfold by blast

lemma Interp-subseteq-INTERP: Interp C C INTERP
unfolding Interp-def by (auto introl: interp-subseteg-INTERP production-subseteq-INTERP)

This lemma corresponds to theorem 2.7.7 page 77 of Weidenbach’s book.

lemma produces-imp-in-interp:
assumes a-in-c: Neg A €# C and d: produces D A

116

shows A € interp C
proof —
from d have Max-mset D = Pos A
using production-unfold by blast
then have D < {#Neg A#}
by (meson Max-pos-neg-less-multiset multi-member-last)
moreover have {#Neg A#} < C
by (rule subset-eq-imp-le-multiset) (rule mset-subset-eq-single[OF a-in-c])
ultimately show ?thesis
using d by (blast dest: less-eq-imp-interp-subseteg-interp less-imp-production-subseteq-interp)
qed

lemma neg-notin-Interp-not-produce: Neg A €# C = A ¢ Interp D = C < D = — produces D"’
A
by (auto dest: produces-imp-in-interp less-eq-imp-interp-subseteg-Interp)

lemma in-production-imp-produces: A € production C = produces C' A
by (metis insert-absorb productive-imp-produces-Maz-atom singleton-insert-inj-eq’)

lemma not-produces-imp-notin-production: — produces C A = A ¢ production C
by (metis in-production-imp-produces)

lemma not-produces-imp-notin-interp: (\D. — produces D A) = A ¢ interp C
unfolding interp-def by (fast introl: in-production-imp-produces)

The results below corresponds to Lemma 3.4.

Nitpicking 0.1. If D = D’ and D is productive, I” C Ip/ does not hold.

lemma true-Interp-imp-general:
assumes
c-le-d: C < D and
d-lt-d"» D < D’ and
c-at-d: Interp D |=h C and
subs: interp D' C (I C € CC. production C')
shows (| C € CC. production C) Eh C
proof (cases 3A. Pos A €# C N A € Interp D)
case True
then obtain A where a-in-c: Pos A €# C and a-at-d: A € Interp D
by blast
from a-at-d have A € interp D’
using d-lt-d’ less-imp-Interp-subseteg-interp by blast
then show ?thesis
using subs a-in-c¢ by (blast dest: contra-subsetD)
next
case Fulse
then obtain A where a-in-c: Neg A €# C and A ¢ Interp D
using c-at-d unfolding true-cls-def by blast
then have AD'. = produces D" A
using c-le-d neg-notin-Interp-not-produce by simp
then show ?thesis
using a-in-c subs not-produces-imp-notin-production by auto
qed

lemma true-Interp-imp-interp: C < D = D < D' = Interp D Eh C = interp D' =h C

117

using interp-def true-Interp-imp-general by simp

lemma true-Interp-imp-Interp: C < D = D < D' = Interp D =h C = Interp D' =h C
using Interp-as-UNION interp-subseteq-Interp true-Interp-imp-general by simp

lemma true-Interp-imp-INTERP: C < D = Interp D Eh C = INTERP =h C
using INTERP-def interp-subseteq-INTERP
true-Interp-imp-general| OF - le-multiset-right-total)
by simp

lemma true-interp-imp-general:
assumes
c-le-d: C < D and
d-lt-d": D < D' and
c-at-d: interp D =h C and
subs: interp D' C (Y C € CC. production C')
shows (|J C € CC. production C) =h C
proof (cases 3A. Pos A €# C N A € interp D)
case True
then obtain A where a-in-c: Pos A €# C and a-at-d: A € interp D
by blast
from a-at-d have A € interp D’
using d-lt-d’ less-eq-imp-interp-subseteq-interp[OF less-imp-le] by blast
then show ?thesis
using subs a-in-c by (blast dest: contra-subsetD)
next
case Fulse
then obtain A where a-in-c: Neg A €# C and A ¢ interp D
using c-at-d unfolding true-cls-def by blast
then have AD”. - produces D" A
using c-le-d by (auto dest: produces-imp-in-interp less-eq-imp-interp-subseteq-interp)
then show ?thesis
using a-in-c subs not-produces-imp-notin-production by auto
qed

This lemma corresponds to theorem 2.7.7 page 77 of Weidenbach’s book. Here the strict maxi-
mality is important

lemma true-interp-imp-interp: ¢ < D = D < D' = interp D =h C = interp D' Eh C
using interp-def true-interp-imp-general by simp

lemma true-interp-imp-Interp: C < D = D < D' = interp D Eh C = Interp D' =h C
using Interp-as-UNION interp-subseteq-Interp|of D] true-interp-imp-general by simp

lemma true-interp-imp-INTERP: C < D = interp D =h C = INTERP Eh C
using INTERP-def interp-subseteq-INTERP
true-interp-imp-general|OF - le-multiset-right-total]
by simp

lemma productive-imp-false-interp: productive C = — interp C [=h C
unfolding production-unfold by auto

This lemma corresponds to theorem 2.7.7 page 77 of Weidenbach’s book. Here the strict maxi-
mality is important

lemma cls-gt-double-pos-no-production:
assumes D: {#Pos P, Pos P#} < C

118

shows —produces C P
proof —
let D = {#Pos P, Pos P#}
note D' = D[unfolded less-multisetr o]
consider
(P) count C (Pos P) > 2
| (Q) @ where Q > Pos P and Q €# C
using HOL.spec[OF HOL.conjunct2[OF D'], of Pos P] by (auto split: if-split-asm)
then show ?thesis
proof cases
case ()
have @Q € set-mset C
using Q(2) by (auto split: if-split-asm)
then have Maz-mset C' > Pos P
using Q(1) Max-gr-iff by blast
then show ?thesis
unfolding production-unfold by auto
next
case P
then show ?thesis
unfolding production-unfold by auto
qed
qed

This lemma corresponds to theorem 2.7.7 page 77 of Weidenbach’s book.

lemma
assumes D: C+{#Neg P#} < D
shows production D # {P}
proof —
note D' = D[unfolded less-multiset o]
consider
(P) Neg P €# D
| (Q) @ where @ > Neg P and count D Q > count (C + {#Neg P#}) Q
using HOL.spec[OF HOL.conjunct2[OF D’), of Neg P] count-greater-zero-iff by fastforce
then show ?thesis
proof cases
case ()
have Q € set-mset D
using Q(2) gr-implies-not0 by fastforce
then have Maz-mset D > Neg P
using Q(1) Max-gr-iff by blast
then have Maz-mset D > Pos P
using less-trans[of Pos P Neg P Max-mset D] by auto
then show ?thesis
unfolding production-unfold by auto
next
case P
then have Maz-mset D > Pos P
by (meson Maz-ge finite-set-mset le-less-trans linorder-not-le pos-less-neg)
then show ?thesis
unfolding production-unfold by auto
qed
qed

lemma in-interp-is-produced:
assumes P € INTERP

119

shows 3D. D +{#Pos P#} € N A produces (D +{#Pos P#}) P

using assms unfolding INTERP-def UN-iff production-iff-produces Ball-def

by (metis ground-resolution-with-selection.produces-imp-Pos-in-lits insert-Diff M2
ground-resolution-with-selection-axioms not-produces-imp-notin-production)

end
end

2.2.1 We can now define the rules of the calculus

inductive superposition-rules :: 'a clause = 'a clause = ’a clause = bool where
factoring: superposition-rules (C + {#Pos P#} + {#Pos P#}) B (C + {#Pos P#}) |
superposition-l: superposition-rules (C1 + {#Pos P#}) (Ca + {#Neg P#}) (C1+ Cs)

inductive superposition :: 'a clause-set = 'a clause-set = bool where
superposition: A € N = B € N = superposition-rules A B C
= superposition N (N U {C?})

definition abstract-red :: 'a::wellorder clause = 'a clause-set = bool where
abstract-red C N = (clss-it N C |=p C)

lemma herbrand-true-clss-true-clss-cls-herbrand-true-clss:
assumes
AB: A =hs B and
BC: BEp C
shows A =h C
proof —
let I = {Pos P |P. P € A} U{Neg P |P. P ¢ A}
have B: ?I |=s B using AB
by (auto simp add: herbrand-interp-iff-partial-interp-clss)

have IH: \I. total-over-set I (atms-of C) = total-over-m I B => consistent-interp I
= I s B= I = C using BC
by (auto simp add: true-clss-cls-def)

show ?thesis
unfolding herbrand-interp-iff-partial-interp-cls
by (auto intro: IH|of ?I] simp add: herbrand-total-over-set herbrand-total-over-m

herbrand-consistent-interp B)
qed

lemma abstract-red-subset-mset-abstract-red:
assumes
abstr: abstract-red C' N and
c-lt-d: C C# D
shows abstract-red D N
proof —
have {De N.D < C} C{D'e N. D' < D}
using subset-eq-imp-le-multiset| OF c-lt-d]
by (metis (no-types, lifting) Collect-mono order.strict-trans2)
then show ?thesis
using abstr unfolding abstract-red-def clss-lt-def
by (metis (no-types, lifting) c-lt-d subset-mset.diff-add true-clss-cls-mono-r'
true-clss-cls-subset)
qed

120

lemma true-clss-cls-extended:
assumes
A |Ep B and
tot: total-over-m I A and
cons: consistent-interp I and

AT =s A
shows I = B
proof —

let I = I U {Pos P|P. P € atms-of B A\ P ¢ atms-of-s I'}
have consistent-interp 21
using cons unfolding consistent-interp-def atms-of-s-def atms-of-def
apply (auto 1 5 simp add: image-iff)
by (metis atm-of-uminus literal.sel(1))
moreover have tot-I: total-over-m ?I (A U {B})
proof —
obtain aa :: ‘a set = ’a literal set = 'a where
f2: Va0 zl. (3v2. v2 € 20 A Pos v2 ¢ z1 N\ Neg v2 ¢ z1)
+— (aa 20 1 € 20 A Pos (aa 0 1) ¢ x1 A Neg (aa 20 z1) ¢ z1)
by moura
have Va. a ¢ atms-of-ms AV Posa € IV Nega € I
using tot by (simp add: total-over-m-def total-over-set-def)
then have aa (atms-of-ms A U atms-of-ms {B}) (I U {Pos a |a. a € atms-of B A\ a ¢ atms-of-s I})
¢ atms-of-ms A U atms-of-ms {B} V Pos (aa (atms-of-ms A U atms-of-ms {B})
(I U{Pos a |a. a € atms-of B A a ¢ atms-of-s I})) € I
U {Pos a |a. a € atms-of B A\ a ¢ atms-of-s I'}
V Neg (aa (atms-of-ms A U atms-of-ms {B})
(I U {Pos a|a. a € atms-of B A a ¢ atms-of-s I})) € I
U {Pos a |a. a € atms-of B A\ a ¢ atms-of-s I}
by auto
then have total-over-set (I U {Pos a |a. a € atms-of B A a & atms-of-s 1})
(atms-of-ms A U atms-of-ms {B})
using f2 by (meson total-over-set-def)
then show ?thesis
by (simp add: total-over-m-def)
qged
moreover have] s A
using I-A by auto
ultimately have 1: I = B
using (AEpB) unfolding true-clss-cls-def by auto

let ?2I' =1 U {Neg P|P. P € atms-of B A\ P ¢ atms-of-s I'}
have consistent-interp 1’
using cons unfolding consistent-interp-def atms-of-s-def atms-of-def
apply (auto 1 5 simp add: image-iff)
by (metis atm-of-uminus literal.sel(2))
moreover have tot: total-over-m ?I' (A U {B})
by (smt Un-iff in-atms-of-s-decomp mem-Collect-eq tot total-over-m-empty total-over-m-insert
total-over-m-union total-over-set-def total-union)
moreover have 7]’ =5 A
using I-A by auto
ultimately have 2: I’ = B
using (AEpB) unfolding true-clss-cls-def by auto
define BB where
(BB = {P. P € atms-of BN P ¢ atms-of-s I'h
have 1: I U Pos ‘BB E B

121

using ! unfolding BB-def by (simp add: setcompr-eg-image)
have 2: {1 U Neg ‘ BB E B

using 2 unfolding BB-def by (simp add: setcompr-eg-image)
have (finite BB)

unfolding BB-def by auto
then show ?thesis

using 1 2 apply (induction BB)

subgoal by auto

subgoal for = BB

using remove-literal-in-model-tautology[of (I U Pos ‘ BB)]

apply —

apply (rule ccontr)

apply (auto simp: Partial-Herbrand-Interpretation.true-cls-def total-over-set-def total-over-m-def

atms-of-ms-def)

oops
lemma
CP: — clss-it N ({#C#} + {#E#}) Fp {#C#} + {#Neg P#} and
clssilt N ((#C#) + (#E#)) bp (RE#) + (#Pos P#) V clsslt N (#0#) + (#E#)) E
[#C#) + (#Neg PH)
shows clss-lit N ({#C#} + {#FE#}) Ep {#E#} + {#Pos P#}

oops

locale ground-ordered-resolution-with-redundancy =
ground-resolution-with-selection +
fixes redundant :: 'a::wellorder clause = 'a clause-set = bool
assumes
redundant-iff-abstract: redundant A N <— abstract-red A N
begin

definition saturated :: 'a clause-set = bool where
saturated N +—
(WVABC. Ae N— Be N — —redundant A N — —redundant B N —
superposition-rules A B C — redundant C N vV C € N)
lemma (in —)
assumes A =p C + E»
shows (A =p add-mset L C V A =p add-mset (—L) E»
proof clarify
assume (- A Ep add-mset (— L) B
then obtain I’ where
tot”: «total-over-m I' (A U {add-mset (—L) E})) and
cons': (consistent-interp Iy and
I'-A: (I’ =s A and
I'-uL-E: —1' = add-mset (—L) E»
unfolding true-clss-cls-def by auto
have (— L¢ I" - I'E B
using I’-uL-E by auto
moreover have (atm-of L € atm-of ‘ I
using tot’ unfolding total-over-m-def total-over-set-def
by (cases L) force+
ultimately have (L € I
by (auto simp: image-iff atm-of-eq-atm-of)

show (A Ep add-mset L C)

122

unfolding true-clss-cls-def
proof (intro alll impI conjl)
fix I
assume
tot: total-over-m I (A U {add-mset L C}) and
cons: (consistent-interp > and
I-A: d =s A
let I =1 U {Pos P|P. P € atms-of E A P ¢ atms-of-s I}
have in-C-pm-I: (L e# C = Le IV —Le D for L
using tot by (cases L) (force simp: total-over-m-def total-over-set-def atms-of-def)+
have consistent-interp 21
using cons unfolding consistent-interp-def atms-of-s-def atms-of-def
apply (auto 1 5 simp add: image-iff)
by (metis atm-of-uminus literal.sel(1))
moreover {
have tot-I: total-over-m ¢I (A U {E})
using tot total-over-set-def total-union by force
then have tot-I: total-over-m ?I (A U {C+E})
using total-union|OF tot] by auto}
moreover have ? s A
using I-A by auto
ultimately have 1: 9] = C + E
using assms unfolding true-clss-cls-def by auto

then show (I = add-mset L C)
unfolding Partial-Herbrand-Interpretation.true-cls-def
apply (auto simp: true-cls-def dest: in-C-pm-I)
oops

lemma
assumes
saturated: saturated N and
finite: finite N and
empty: {#} ¢ N
shows INTERP N E=hs N
proof (rule ccontr)
let N7y = INTERP N
assume — ?Zthesis
then have not-empty: {E€N. =?Nz =h E} # {}
unfolding true-clss-def Ball-def by auto
define D where D = Min {E€N. -?Nz =h E}
have [simp]: D € N
unfolding D-def
by (metis (mono-tags, lifting) Min-in not-empty finite mem-Collect-eq rev-finite-subset subsetl)
have not-d-interp: ~¢Nz =h D
unfolding D-def
by (metis (mono-tags, lifting) Min-in finite mem-Collect-eq not-empty rev-finite-subset subsetl)
have cls-not-D: NA\E.E € N=—= E# D= -Nz =hE = D<E
using finite D-def by auto
obtain C' L where D: D = C + {#L#} and LSD: L €# S DV (S D = {#} N Maz-mset D = L)
proof (cases S D = {#})
case Fulse
then obtain L where L €¢# S D
using Mazx-in-lits by blast
moreover {
then have L €# D

123

using S-selects-subseteg[of D] by auto
then have D = (D — {#L#}) + {#L#}
by auto }
ultimately show ¢thesis using that by blast
next
let ?L = Max-mset D
case True
moreover {
have ?L €# D
by (metis (no-types, lifting) Max-in-lits <D € N) empty)
then have D = (D — {#?2L#}) + {#7L#}
by auto }
ultimately show ¢thesis using that by blast
ged
have red: —redundant D N
proof (rule ccontr)
assume red|[simplified]: ~~ redundant D N
have VE < D. E€ N — Nz =Eh E
using cls-not-D unfolding not-le[symmetric] by fastforce
then have ?Nz [=hs clss-lt N D
unfolding clss-lt-def true-clss-def Ball-def by blast
then show Fulse
using red not-d-interp unfolding abstract-red-def redundant-iff-abstract
using herbrand-true-clss-true-clss-cls-herbrand-true-clss by fast
qed

consider
(L) P where L = Pos P and S D = {#} and Max-mset D = Pos P
| (Lneg) P where L = Neg P
using LSD S-selects-neg-lits[of L D] by (cases L) auto
then show Fulse
proof cases
case L note P = this(1) and S = this(2) and maz = this(3)
have count D L > 1
proof (rule ccontr)
assume ~ ?thesis
then have count: count D L = 1
unfolding D by (auto simp: not-in-iff)
have —-YNzE=h D
using not-d-interp true-interp-imp-INTERP ground-resolution-with-selection-axioms
by blast
then have produces N D P
using not-empty empty finite <D € N) count L
true-interp-imp-INTERP unfolding production-iff-produces unfolding production-unfold
by (auto simp add: maz not-empty)
then have INTERP N |=h D
unfolding D
by (metis pos-literal-in-imp-true-cls produces-imp-Pos-in-lits
production-subseteq-INTERP singletonl subsetCE)
then show Fulse
using not-d-interp by blast
qed
then have Pos P €# C
by (simp add: P D)
then obtain C’ where C:D = C' + {#Pos P#} + {#Pos P#}
unfolding D by (metis (full-types) P insert-DiffM2)

124

have sup: superposition-rules D D (D — {#L#})
unfolding C' L by (auto simp add: superposition-rules.simps)
have C' + {#Pos P#} < C'+ {#Pos P#} + {#Pos P#}
by auto
moreover have ~?Nz =h (D — {#L#})
using not-d-interp unfolding C' L by auto
ultimately have C’ + {#Pos P#} ¢ N
using C’ P cls-not-D by fastforce
have D — {#L#} < D
unfolding C' L by auto
have c¢’-p-p: C' + {#Pos P#} + {#Pos P#} — {#Pos P#} = C' + {#Pos P#}
by auto
have redundant (C' + {#Pos P#}) N
using saturated red sup <D € Ny(C' 4+ {#Pos P#} ¢ N) unfolding saturated-def C' L ¢'-p-p
by blast
moreover have C’' + {#Pos P#} C# C'+ {#Pos P#} + {#Pos P#}
by auto
ultimately show Fulse
using red unfolding C’ redundant-iff-abstract by (blast dest:
abstract-red-subset-mset-abstract-red)
next
case Lneg note L = this(1)
have P: P € ?N7
using not-d-interp unfolding D true-cls-def L by (auto split: if-split-asm)
then obtain F where
DPN: E + {#Pos P#} € N and
prod: production N (E + {#Pos P#}) = {P}
using in-interp-is-produced by blast
have - Nz =h O)
using not-d-interp P unfolding D Lneg by auto
then have uL-C: (Pos P ¢4 C)
using P unfolding Lneg by blast

have sup-EC: superposition-rules (E + {#Pos P#}) (C + {#Neg P#}) (E + C)
using superposition-l by fast
then have superposition N (N U {E+C?})
using DPN (D € N) unfolding D L by (auto simp add: superposition.simps)
have
PMaz: Pos P = Max-mset (E + {#Pos P#}) and
count (E + {#Pos P#}) (Pos P) < 1 and
S (E + {#Pos P#}) = {#} and
—interp N (E + {#Pos P#}) Eh E + {#Pos P#}
using prod unfolding production-unfold by auto
have Neg P ¢# E
using prod produces-imp-neg-notin-lits by force
then have Ay. y €# (E + {#Pos P#}) =
count (E + {#Pos P#}) (Neg P) < count (C + {#Neg P#}) (Neg P)
using count-greater-zero-iff by fastforce
moreover have A\y. y €# (E + {#Pos P#}) = y < Neg P
using PMaz by (metis DPN Max-less-iff empty finite-set-mset pos-less-neg
set-mset-eq-empty-iff)
moreover have E + {#Pos P#} # C + {#Neg P#}
using prod produces-imp-neg-notin-lits by force
ultimately have F + {#Pos P#} < C + {#Neg P#}
unfolding less-multiset o by (metis count-greater-zero-iff less-iff-Suc-add zero-less-Suc)
have ce-lt-d: C + E < D

125

unfolding D L by (simp add: (\y. y €# E + {#Pos P#} = y < Neg P) ex-gt-imp-less-multiset)
have ?Nz Eh E + {#Pos P#}
using (P € ?Np> by blast
have Nz =h C+EV C+E ¢ N
using ce-lt-d cls-not-D unfolding D-def by fastforce
have Pos-P-C-E: Pos P ¢# C+E
using D (P € ground-resolution-with-selection.INTERP S N)
count (E + {#Pos P#}) (Pos P) < 1) multi-member-skip not-d-interp
by (auto simp: not-in-iff)
then have Ay. y €# C+E = count (C+E) (Pos P) < count (E + {#Pos P#}) (Pos P)
using set-mset-def by fastforce
have —redundant (C + E) N
proof (rule ccontr)
assume red [simplified]: = ?thesis
have abs: clss-lt N (C + E) Ep C + E
using redundant-iff-abstract red’ unfolding abstract-red-def by auto
moreover
have <clss-lt N (C + E) C clss-lt N (E + {#Pos P#})
using ce-lt-d Pos-P-C-E uL-C apply (auto simp: clss-lt-def D L)

using Pos-P-C-E unfolding less-multisetgo
apply (auto split: if-splits)
sorry
then have clss-it N (E + {#Pos P#}) =p E + {#Pos P#} V
clss-It N (C + {#Neg P#}) Ep C + {#Neg P#}
proof clarify
assume CP: = clss-lt N (C + {#Neg P#}) =p C + {#Neg P#}
{fix I
assume
total-over-m I (clss-lt N (C' + E) U {E + {#Pos P#}}) and
consistent-interp I and
I Esclss-lt N (C + E)
then have I = C + E
using abs sorry
moreover have - I |= C' + {#Neg P#}
using CP unfolding true-clss-cls-def
sorry
ultimately have I = E + {#Pos P#} by auto
}
then show ciss-it N (E + {#Pos P#}) Ep E + {#Pos P#}
unfolding true-clss-cls-def sorry
qed
then have ciss-it N (C + E) Ep E + {#Pos P#} V clss-lt N (C + E) =p C + {#Neg P#}
proof clarify
assume CP: = clss-lt N (C + E) E=p C + {#Neg P#}
{fixI
assume
total-over-m I (clss-lt N (C' + E) U {E + {#Pos P#}}) and
consistent-interp I and
I Esclss-lt N (C + E)
then have [= C + FE
using abs sorry
moreover have - [= C + {#Neg P#}
using CP unfolding true-clss-cls-def
sorry
ultimately have I = E + {#Pos P#} by auto

126

}
then show clss-it N (C + E) Ep E + {#Pos P#}

unfolding true-clss-cls-def by auto
qed
moreover have clss-lt N (C + E) C clss-it N (C + {#Neg P#})
using ce-lt-d order.strict-trans2 unfolding clss-lt-def D L
by (blast dest: less-imp-le)
ultimately have redundant (C + {#Neg P#}) N V clss-lt N (C + E) Ep E + {#Pos P#}
unfolding redundant-iff-abstract abstract-red-def using true-clss-cls-subset by blast
show Fulse

sorry
qed
moreover have — redundant (E + {#Pos P#}) N
sorry
ultimately have CEN: C + E € N
using (DEN) (E + {#Pos P#}eN) saturated sup-EC red unfolding saturated-def D L
by (metis union-commaute)
have CED: C + E # D
using D ce-lt-d by auto
have interp: -~ INTERP N =h C + E
sorry
show Fulse
using cls-not-D[OF CEN CED interp| ce-lt-d unfolding INTERP-def less-eq-multiset-def by auto
qged
qed

end

lemma tautology-is-redundant:
assumes tautology C
shows abstract-red C N
using assms unfolding abstract-red-def true-clss-cls-def tautology-def by auto

lemma subsumed-is-redundant:
assumes AB: A C# B
and AN: A€ N
shows abstract-red B N
proof —
have A € clss-lt N B using AN AB unfolding clss-lt-def
by (auto dest: subset-eg-imp-le-multiset simp add: dual-order.order-iff-strict)
then show ?thesis
using AB unfolding abstract-red-def true-clss-cls-def Partial-Herbrand-Interpretation.true-clss-def
by blast
qed

inductive redundant :: 'a clause = ’a clause-set = bool where
subsumption: A € N = A C# B = redundant B N

lemma redundant-is-redundancy-criterion:
fixes A :: ‘a :: wellorder clause and N :: 'a :: wellorder clause-set
assumes redundant A N
shows abstract-red A N
using assms
proof (induction rule: redundant.induct)
case (subsumption A B N)

127

then show ?case
using subsumed-is-redundant[of A N B] unfolding abstract-red-def clss-lt-def by auto
qed

lemma redundant-mono:
redundant A N =— A C# B = redundant B N
apply (induction rule: redundant.induct)
by (meson subset-mset.less-le-trans subsumption)
locale truc =
selection S for S :: nat clause = nat clause
begin

end

end

128

	Normalisation
	Logics
	Definition and Abstraction
	Properties of the Abstraction
	Subformulas and Properties
	Positions

	Semantics over the Syntax
	Rewrite Systems and Properties
	Lifting of Rewrite Rules
	Consistency Preservation
	Full Lifting

	Transformation testing
	Definition and first Properties
	Invariant conservation

	Rewrite Rules
	Elimination of the Equivalences
	Eliminate Implication
	Eliminate all the True and False in the formula
	PushNeg
	Push Inside

	The Full Transformations
	Abstract Definition
	Conjunctive Normal Form
	Disjunctive Normal Form

	More aggressive simplifications: Removing true and false at the beginning
	Transformation
	More invariants
	The new CNF and DNF transformation

	Link with Multiset Version
	Transformation to Multiset
	Equisatisfiability of the two Versions

	Resolution-based techniques
	Resolution
	Simplification Rules
	Unconstrained Resolution
	Inference Rule
	Lemma about the Simplified State
	Resolution and Invariants

	Superposition
	We can now define the rules of the calculus

