theory CDCL_W_Incremental
imports CDCL_W_Full
begin
section ‹Incremental SAT solving›
locale state⇩W_adding_init_clause_no_state =
state⇩W_no_state
state_eq
state
trail init_clss learned_clss conflicting
cons_trail tl_trail add_learned_cls remove_cls
update_conflicting
init_state
for
state_eq :: "'st ⇒ 'st ⇒ bool" (infix "∼" 50) and
state :: "'st ⇒ ('v, 'v clause) ann_lits × 'v clauses × 'v clauses × 'v clause option ×
'b" and
trail :: "'st ⇒ ('v, 'v clause) ann_lits" and
init_clss :: "'st ⇒ 'v clauses" and
learned_clss :: "'st ⇒ 'v clauses" and
conflicting :: "'st ⇒ 'v clause option" and
cons_trail :: "('v, 'v clause) ann_lit ⇒ 'st ⇒ 'st" and
tl_trail :: "'st ⇒ 'st" and
add_learned_cls :: "'v clause ⇒ 'st ⇒ 'st" and
remove_cls :: "'v clause ⇒ 'st ⇒ 'st" and
update_conflicting :: "'v clause option ⇒ 'st ⇒ 'st" and
init_state :: "'v clauses ⇒ 'st" +
fixes
add_init_cls :: "'v clause ⇒ 'st ⇒ 'st"
assumes
add_init_cls:
"state st = (M, N, U, S') ⟹
state (add_init_cls C st) = (M, {#C#} + N, U, S')"
locale state⇩W_adding_init_clause_ops =
state⇩W_adding_init_clause_no_state
state_eq
state
trail init_clss learned_clss conflicting
cons_trail tl_trail add_learned_cls remove_cls update_conflicting
init_state
add_init_cls
for
state_eq :: "'st ⇒ 'st ⇒ bool" (infix "∼" 50) and
state :: "'st ⇒ ('v, 'v clause) ann_lits × 'v clauses × 'v clauses × 'v clause option ×
'b" and
trail :: "'st ⇒ ('v, 'v clause) ann_lits" and
init_clss :: "'st ⇒ 'v clauses" and
learned_clss :: "'st ⇒ 'v clauses" and
conflicting :: "'st ⇒ 'v clause option" and
cons_trail :: "('v, 'v clause) ann_lit ⇒ 'st ⇒ 'st" and
tl_trail :: "'st ⇒ 'st" and
add_learned_cls :: "'v clause ⇒ 'st ⇒ 'st" and
remove_cls :: "'v clause ⇒ 'st ⇒ 'st" and
update_conflicting :: "'v clause option ⇒ 'st ⇒ 'st" and
init_state :: "'v clauses ⇒ 'st" and
add_init_cls :: "'v clause ⇒ 'st ⇒ 'st" +
assumes
state_prop[simp]:
‹state S = (trail S, init_clss S, learned_clss S, conflicting S, additional_info S)›
locale state⇩W_adding_init_clause =
state⇩W_adding_init_clause_ops
state_eq
state
trail init_clss learned_clss conflicting
cons_trail tl_trail add_learned_cls remove_cls update_conflicting
init_state add_init_cls
for
state_eq :: "'st ⇒ 'st ⇒ bool" (infix "∼" 50) and
state :: "'st ⇒ ('v, 'v clause) ann_lits × 'v clauses × 'v clauses × 'v clause option ×
'b" and
trail :: "'st ⇒ ('v, 'v clause) ann_lits" and
init_clss :: "'st ⇒ 'v clauses" and
learned_clss :: "'st ⇒ 'v clauses" and
conflicting :: "'st ⇒ 'v clause option" and
cons_trail :: "('v, 'v clause) ann_lit ⇒ 'st ⇒ 'st" and
tl_trail :: "'st ⇒ 'st" and
add_learned_cls :: "'v clause ⇒ 'st ⇒ 'st" and
remove_cls :: "'v clause ⇒ 'st ⇒ 'st" and
update_conflicting :: "'v clause option ⇒ 'st ⇒ 'st" and
init_state :: "'v clauses ⇒ 'st" and
add_init_cls :: "'v clause ⇒ 'st ⇒ 'st"
begin
sublocale state⇩W
by unfold_locales auto
lemma
trail_add_init_cls[simp]:
"trail (add_init_cls C st) = trail st" and
init_clss_add_init_cls[simp]:
"init_clss (add_init_cls C st) = {#C#} + init_clss st"
and
learned_clss_add_init_cls[simp]:
"learned_clss (add_init_cls C st) = learned_clss st" and
conflicting_add_init_cls[simp]:
"conflicting (add_init_cls C st) = conflicting st"
using add_init_cls[of st _ _ _ _ C] by (cases "state st"; auto; fail)+
lemma clauses_add_init_cls[simp]:
"clauses (add_init_cls N S) = {#N#} + init_clss S + learned_clss S"
unfolding clauses_def by auto
lemma reduce_trail_to_add_init_cls[simp]:
"trail (reduce_trail_to F (add_init_cls C S)) = trail (reduce_trail_to F S)"
by (rule trail_eq_reduce_trail_to_eq) auto
lemma conflicting_add_init_cls_iff_conflicting[simp]:
"conflicting (add_init_cls C S) = None ⟷ conflicting S = None"
by fastforce+
end
locale conflict_driven_clause_learning_with_adding_init_clause⇩W =
state⇩W_adding_init_clause
state_eq
state
trail init_clss learned_clss conflicting
cons_trail tl_trail add_learned_cls remove_cls update_conflicting
init_state
add_init_cls
for
state_eq :: "'st ⇒ 'st ⇒ bool" (infix "∼" 50) and
state :: "'st ⇒ ('v, 'v clause) ann_lits × 'v clauses × 'v clauses × 'v clause option ×
'b" and
trail :: "'st ⇒ ('v, 'v clause) ann_lits" and
init_clss :: "'st ⇒ 'v clauses" and
learned_clss :: "'st ⇒ 'v clauses" and
conflicting :: "'st ⇒ 'v clause option" and
cons_trail :: "('v, 'v clause) ann_lit ⇒ 'st ⇒ 'st" and
tl_trail :: "'st ⇒ 'st" and
add_learned_cls :: "'v clause ⇒ 'st ⇒ 'st" and
remove_cls :: "'v clause ⇒ 'st ⇒ 'st" and
update_conflicting :: "'v clause option ⇒ 'st ⇒ 'st" and
init_state :: "'v clauses ⇒ 'st" and
add_init_cls :: "'v clause ⇒ 'st ⇒ 'st"
begin
sublocale conflict_driven_clause_learning⇩W
by unfold_locales
text ‹This invariant holds all the invariant related to the strategy. See the structural invariant
in @{term cdcl⇩W_all_struct_inv}›
text ‹When we add a new clause, we reduce the trail until we get to tho first literal included in C.
Then we can mark the conflict.›
fun cut_trail_wrt_clause where
"cut_trail_wrt_clause C [] S = S" |
"cut_trail_wrt_clause C (Decided L # M) S =
(if -L ∈# C then S
else cut_trail_wrt_clause C M (tl_trail S))" |
"cut_trail_wrt_clause C (Propagated L _ # M) S =
(if -L ∈# C then S
else cut_trail_wrt_clause C M (tl_trail S))"
definition add_new_clause_and_update :: "'v clause ⇒ 'st ⇒ 'st" where
"add_new_clause_and_update C S =
(if trail S ⊨as CNot C
then update_conflicting (Some C) (add_init_cls C
(cut_trail_wrt_clause C (trail S) S))
else add_init_cls C S)"
lemma init_clss_cut_trail_wrt_clause[simp]:
"init_clss (cut_trail_wrt_clause C M S) = init_clss S"
by (induction rule: cut_trail_wrt_clause.induct) auto
lemma learned_clss_cut_trail_wrt_clause[simp]:
"learned_clss (cut_trail_wrt_clause C M S) = learned_clss S"
by (induction rule: cut_trail_wrt_clause.induct) auto
lemma conflicting_clss_cut_trail_wrt_clause[simp]:
"conflicting (cut_trail_wrt_clause C M S) = conflicting S"
by (induction rule: cut_trail_wrt_clause.induct) auto
lemma trail_cut_trail_wrt_clause:
"∃M. trail S = M @ trail (cut_trail_wrt_clause C (trail S) S)"
proof (induction "trail S" arbitrary: S rule: ann_lit_list_induct)
case Nil
then show ?case by simp
next
case (Decided L M) note IH = this(1)[of "tl_trail S"] and M = this(2)[symmetric]
then show ?case using Cons_eq_appendI by fastforce+
next
case (Propagated L l M) note IH = this(1)[of "tl_trail S"] and M = this(2)[symmetric]
then show ?case using Cons_eq_appendI by fastforce+
qed
lemma n_dup_no_dup_trail_cut_trail_wrt_clause[simp]:
assumes n_d: "no_dup (trail T)"
shows "no_dup (trail (cut_trail_wrt_clause C (trail T) T))"
proof -
obtain M where
M: "trail T = M @ trail (cut_trail_wrt_clause C (trail T) T)"
using trail_cut_trail_wrt_clause[of T C] by auto
show ?thesis
using n_d unfolding arg_cong[OF M, of no_dup] by (auto simp: no_dup_def)
qed
lemma cut_trail_wrt_clause_backtrack_lvl_length_decided:
assumes
"backtrack_lvl T = count_decided (trail T)"
shows
"backtrack_lvl (cut_trail_wrt_clause C (trail T) T) =
count_decided (trail (cut_trail_wrt_clause C (trail T) T))"
using assms
proof (induction "trail T" arbitrary:T rule: ann_lit_list_induct)
case Nil
then show ?case by simp
next
case (Decided L M) note IH = this(1)[of "tl_trail T"] and M = this(2)[symmetric]
and bt = this(3)
then show ?case by auto
next
case (Propagated L l M) note IH = this(1)[of "tl_trail T"] and M = this(2)[symmetric] and
bt = this(3)
then show ?case by auto
qed
lemma cut_trail_wrt_clause_CNot_trail:
assumes "trail T ⊨as CNot C"
shows
"(trail ((cut_trail_wrt_clause C (trail T) T))) ⊨as CNot C"
using assms
proof (induction "trail T" arbitrary: T rule: ann_lit_list_induct)
case Nil
then show ?case by simp
next
case (Decided L M) note IH = this(1)[of "tl_trail T"] and M = this(2)[symmetric]
and bt = this(3)
show ?case
proof (cases "count C (-L) = 0")
case False
then show ?thesis
using IH M bt by (auto simp: true_annots_true_cls)
next
case True
obtain mma :: "'v clause" where
f6: "(mma ∈ {{#- l#} |l. l ∈# C} ⟶ M ⊨a mma) ⟶ M ⊨as {{#- l#} |l. l ∈# C}"
using true_annots_def by blast
have "mma ∈ {{#- l#} |l. l ∈# C} ⟶ trail T ⊨a mma"
using CNot_def M bt by (metis (no_types) true_annots_def)
then have "M ⊨as {{#- l#} |l. l ∈# C}"
using f6 True M bt by (force simp: count_eq_zero_iff)
then show ?thesis
using IH true_annots_true_cls M by (auto simp: CNot_def)
qed
next
case (Propagated L l M) note IH = this(1)[of "tl_trail T"] and M = this(2)[symmetric] and bt = this(3)
show ?case
proof (cases "count C (-L) = 0")
case False
then show ?thesis
using IH M bt by (auto simp: true_annots_true_cls)
next
case True
obtain mma :: "'v clause" where
f6: "(mma ∈ {{#- l#} |l. l ∈# C} ⟶ M ⊨a mma) ⟶ M ⊨as {{#- l#} |l. l ∈# C}"
using true_annots_def by blast
have "mma ∈ {{#- l#} |l. l ∈# C} ⟶ trail T ⊨a mma"
using CNot_def M bt by (metis (no_types) true_annots_def)
then have "M ⊨as {{#- l#} |l. l ∈# C}"
using f6 True M bt by (force simp: count_eq_zero_iff)
then show ?thesis
using IH true_annots_true_cls M by (auto simp: CNot_def)
qed
qed
lemma cut_trail_wrt_clause_hd_trail_in_or_empty_trail:
"((∀L ∈#C. -L ∉ lits_of_l (trail T)) ∧ trail (cut_trail_wrt_clause C (trail T) T) = [])
∨ (-lit_of (hd (trail (cut_trail_wrt_clause C (trail T) T))) ∈# C
∧ length (trail (cut_trail_wrt_clause C (trail T) T)) ≥ 1)"
proof (induction "trail T" arbitrary:T rule: ann_lit_list_induct)
case Nil
then show ?case by simp
next
case (Decided L M) note IH = this(1)[of "tl_trail T"] and M = this(2)[symmetric]
then show ?case by simp force
next
case (Propagated L l M) note IH = this(1)[of "tl_trail T"] and M = this(2)[symmetric]
then show ?case by simp force
qed
text ‹We can fully run @{term cdcl⇩W_restart_s} or add a clause. Remark that we use @{term cdcl⇩W_restart_s} to avoid
an explicit @{term skip}, @{term resolve}, and @{term backtrack} normalisation to get rid of the
conflict @{term C} if possible.›
inductive incremental_cdcl⇩W :: "'st ⇒ 'st ⇒ bool" for S where
add_confl:
"trail S ⊨asm init_clss S ⟹ distinct_mset C ⟹ conflicting S = None ⟹
trail S ⊨as CNot C ⟹
full cdcl⇩W_stgy
(update_conflicting (Some C)
(add_init_cls C (cut_trail_wrt_clause C (trail S) S))) T ⟹
incremental_cdcl⇩W S T" |
add_no_confl:
"trail S ⊨asm init_clss S ⟹ distinct_mset C ⟹ conflicting S = None ⟹
¬trail S ⊨as CNot C ⟹
full cdcl⇩W_stgy (add_init_cls C S) T ⟹
incremental_cdcl⇩W S T"
lemma cdcl⇩W_all_struct_inv_add_new_clause_and_update_cdcl⇩W_all_struct_inv:
assumes
inv_T: "cdcl⇩W_all_struct_inv T" and
tr_T_N[simp]: "trail T ⊨asm N" and
tr_C[simp]: "trail T ⊨as CNot C" and
[simp]: "distinct_mset C"
shows "cdcl⇩W_all_struct_inv (add_new_clause_and_update C T)" (is "cdcl⇩W_all_struct_inv ?T'")
proof -
let ?T = "update_conflicting (Some C)
(add_init_cls C (cut_trail_wrt_clause C (trail T) T))"
obtain M where
M: "trail T = M @ trail (cut_trail_wrt_clause C (trail T) T)"
using trail_cut_trail_wrt_clause[of T "C"] by blast
have H[dest]: "⋀x. x ∈ lits_of_l (trail (cut_trail_wrt_clause C (trail T) T)) ⟹
x ∈ lits_of_l (trail T)"
using inv_T arg_cong[OF M, of lits_of_l] by auto
have H'[dest]: "⋀x. x ∈ set (trail (cut_trail_wrt_clause C (trail T) T)) ⟹
x ∈ set (trail T)"
using inv_T arg_cong[OF M, of set] by auto
have H_proped:"⋀x. x ∈ set (get_all_mark_of_propagated (trail (cut_trail_wrt_clause C
(trail T) T))) ⟹ x ∈ set (get_all_mark_of_propagated (trail T))"
using inv_T arg_cong[OF M, of get_all_mark_of_propagated] by auto
have [simp]: "no_strange_atm ?T"
using inv_T unfolding cdcl⇩W_all_struct_inv_def no_strange_atm_def add_new_clause_and_update_def
cdcl⇩W_M_level_inv_def by (auto 20 1)
have M_lev: "cdcl⇩W_M_level_inv T"
using inv_T unfolding cdcl⇩W_all_struct_inv_def by blast
then have "no_dup (M @ trail (cut_trail_wrt_clause C (trail T) T))"
unfolding cdcl⇩W_M_level_inv_def unfolding M[symmetric] by auto
then have [simp]: "no_dup (trail (cut_trail_wrt_clause C (trail T) T))"
by (auto simp: no_dup_def)
have "consistent_interp (lits_of_l (M @ trail (cut_trail_wrt_clause C (trail T) T)))"
using M_lev unfolding cdcl⇩W_M_level_inv_def unfolding M[symmetric] by auto
then have [simp]: "consistent_interp (lits_of_l (trail (cut_trail_wrt_clause C
(trail T) T)))"
unfolding consistent_interp_def by auto
have [simp]: "cdcl⇩W_M_level_inv ?T"
using M_lev unfolding cdcl⇩W_M_level_inv_def
by (auto simp: M_lev cdcl⇩W_M_level_inv_def cut_trail_wrt_clause_backtrack_lvl_length_decided)
have [simp]: "⋀s. s ∈# learned_clss T ⟹ ¬tautology s"
using inv_T unfolding cdcl⇩W_all_struct_inv_def by auto
have "distinct_cdcl⇩W_state T"
using inv_T unfolding cdcl⇩W_all_struct_inv_def by auto
then have [simp]: "distinct_cdcl⇩W_state ?T"
unfolding distinct_cdcl⇩W_state_def by auto
have "cdcl⇩W_conflicting T"
using inv_T unfolding cdcl⇩W_all_struct_inv_def by auto
have "trail ?T ⊨as CNot C"
by (simp add: cut_trail_wrt_clause_CNot_trail)
then have [simp]: "cdcl⇩W_conflicting ?T"
unfolding cdcl⇩W_conflicting_def apply simp
by (metis M ‹cdcl⇩W_conflicting T› append_assoc cdcl⇩W_conflicting_decomp(2))
have
decomp_T: "all_decomposition_implies_m (clauses T) (get_all_ann_decomposition (trail T))"
using inv_T unfolding cdcl⇩W_all_struct_inv_def by auto
have "all_decomposition_implies_m (clauses ?T) (get_all_ann_decomposition (trail ?T))"
unfolding all_decomposition_implies_def
proof clarify
fix a b
assume "(a, b) ∈ set (get_all_ann_decomposition (trail ?T))"
from in_get_all_ann_decomposition_in_get_all_ann_decomposition_prepend[OF this, of M]
obtain b' where
"(a, b' @ b) ∈ set (get_all_ann_decomposition (trail T))"
using M by auto
then have "unmark_l a ∪ set_mset (clauses T) ⊨ps unmark_l (b' @ b)"
using decomp_T unfolding all_decomposition_implies_def by fastforce
then have "unmark_l a ∪ set_mset (clauses ?T) ⊨ps unmark_l (b' @ b)"
by (simp add: clauses_def)
then show "unmark_l a ∪ set_mset (clauses ?T) ⊨ps unmark_l b"
by (auto simp: image_Un)
qed
have [simp]: "cdcl⇩W_learned_clause ?T"
using inv_T unfolding cdcl⇩W_all_struct_inv_def cdcl⇩W_learned_clause_alt_def
by (auto dest!: H_proped simp: clauses_def)
show ?thesis
using ‹all_decomposition_implies_m (clauses ?T) (get_all_ann_decomposition (trail ?T))›
unfolding cdcl⇩W_all_struct_inv_def by (auto simp: add_new_clause_and_update_def)
qed
lemma cdcl⇩W_all_struct_inv_add_new_clause_and_update_cdcl⇩W_stgy_inv:
assumes
inv_s: "cdcl⇩W_stgy_invariant T" and
inv: "cdcl⇩W_all_struct_inv T" and
tr_T_N[simp]: "trail T ⊨asm N" and
tr_C[simp]: "trail T ⊨as CNot C" and
[simp]: "distinct_mset C"
shows "cdcl⇩W_stgy_invariant (add_new_clause_and_update C T)"
(is "cdcl⇩W_stgy_invariant ?T'")
proof -
have "cdcl⇩W_all_struct_inv ?T'"
using cdcl⇩W_all_struct_inv_add_new_clause_and_update_cdcl⇩W_all_struct_inv assms by blast
then have
no_dup_cut_T[simp]: "no_dup (trail (cut_trail_wrt_clause C (trail T) T))" and
n_d[simp]: "no_dup (trail T)"
using cdcl⇩W_M_level_inv_decomp(2) cdcl⇩W_all_struct_inv_def inv
n_dup_no_dup_trail_cut_trail_wrt_clause by blast+
then have "trail (add_new_clause_and_update C T) ⊨as CNot C"
by (simp add: add_new_clause_and_update_def cut_trail_wrt_clause_CNot_trail
cdcl⇩W_M_level_inv_def cdcl⇩W_all_struct_inv_def)
obtain MT where
MT: "trail T = MT @ trail (cut_trail_wrt_clause C (trail T) T)"
using trail_cut_trail_wrt_clause by blast
consider
(false) "∀L∈#C. - L ∉ lits_of_l (trail T)" and
"trail (cut_trail_wrt_clause C (trail T) T) = []" |
(not_false)
"- lit_of (hd (trail (cut_trail_wrt_clause C (trail T) T))) ∈# C" and
"1 ≤ length (trail (cut_trail_wrt_clause C (trail T) T))"
using cut_trail_wrt_clause_hd_trail_in_or_empty_trail[of "C" T] by auto
then show ?thesis
proof cases
case false note C = this(1) and empty_tr = this(2)
then have [simp]: "C = {#}"
by (simp add: in_CNot_implies_uminus(2) multiset_eqI)
show ?thesis
using empty_tr unfolding cdcl⇩W_stgy_invariant_def no_smaller_confl_def
cdcl⇩W_all_struct_inv_def by (auto simp: add_new_clause_and_update_def)
next
case not_false note C = this(1) and l = this(2)
let ?L = "- lit_of (hd (trail (cut_trail_wrt_clause C (trail T) T)))"
have L: "get_level (trail (cut_trail_wrt_clause C (trail T) T)) (-?L)
= count_decided (trail (cut_trail_wrt_clause C (trail T) T))"
apply (cases "trail (add_init_cls C
(cut_trail_wrt_clause C (trail T) T))";
cases "hd (trail (cut_trail_wrt_clause C (trail T) T))")
using l by (auto split: if_split_asm
simp:rev_swap[symmetric] add_new_clause_and_update_def)
have L': "count_decided(trail (cut_trail_wrt_clause C
(trail T) T))
= backtrack_lvl (cut_trail_wrt_clause C (trail T) T)"
using ‹cdcl⇩W_all_struct_inv ?T'› unfolding cdcl⇩W_all_struct_inv_def cdcl⇩W_M_level_inv_def
by (auto simp:add_new_clause_and_update_def)
have [simp]: "no_smaller_confl (update_conflicting (Some C)
(add_init_cls C (cut_trail_wrt_clause C (trail T) T)))"
unfolding no_smaller_confl_def
proof (clarify, goal_cases)
case (1 M K M' D)
then consider
(DC) "D = C"
| (D_T) "D ∈# clauses T"
by (auto simp: clauses_def split: if_split_asm)
then show False
proof cases
case D_T
have "no_smaller_confl T"
using inv_s unfolding cdcl⇩W_stgy_invariant_def by auto
have "trail T = (MT @ M') @ Decided K # M"
using MT 1(1) by auto
then show False
using D_T ‹no_smaller_confl T› 1(3) unfolding no_smaller_confl_def by blast
next
case DC note _[simp] = this
then have "atm_of (-?L) ∈ atm_of ` (lits_of_l M)"
using 1(3) C in_CNot_implies_uminus(2) by blast
moreover
have "lit_of (hd (M' @ Decided K # [])) = -?L"
using l 1(1)[symmetric] inv
by (cases M', cases "trail (add_init_cls C
(cut_trail_wrt_clause C (trail T) T))")
(auto dest!: arg_cong[of "_ # _" _ hd] simp: hd_append cdcl⇩W_all_struct_inv_def
cdcl⇩W_M_level_inv_def)
from arg_cong[OF this, of atm_of]
have "atm_of (-?L) ∈ atm_of ` (lits_of_l (M' @ Decided K # []))"
by (cases " (M' @ Decided K # [])") auto
moreover have "no_dup (trail (cut_trail_wrt_clause C (trail T) T))"
using ‹cdcl⇩W_all_struct_inv ?T'› unfolding cdcl⇩W_all_struct_inv_def
cdcl⇩W_M_level_inv_def by (auto simp: add_new_clause_and_update_def)
ultimately show False
unfolding 1(1)[simplified] by (auto simp: lits_of_def no_dup_def)
qed
qed
show ?thesis using L L' C
unfolding cdcl⇩W_stgy_invariant_def cdcl⇩W_all_struct_inv_def
by (auto simp: add_new_clause_and_update_def get_level_def count_decided_def intro: rev_bexI)
qed
qed
lemma incremental_cdcl⇩W_inv:
assumes
inc: "incremental_cdcl⇩W S T" and
inv: "cdcl⇩W_all_struct_inv S" and
s_inv: "cdcl⇩W_stgy_invariant S" and
learned_entailed: ‹cdcl⇩W_learned_clauses_entailed_by_init S›
shows
"cdcl⇩W_all_struct_inv T" and
"cdcl⇩W_stgy_invariant T" and
learned_entailed: ‹cdcl⇩W_learned_clauses_entailed_by_init T›
using inc
proof induction
case (add_confl C T)
let ?T = "(update_conflicting (Some C) (add_init_cls C
(cut_trail_wrt_clause C (trail S) S)))"
have inv': "cdcl⇩W_all_struct_inv ?T" and inv_s_T: "cdcl⇩W_stgy_invariant ?T"
using add_confl.hyps(1,2,4) add_new_clause_and_update_def
cdcl⇩W_all_struct_inv_add_new_clause_and_update_cdcl⇩W_all_struct_inv inv apply auto[1]
using add_confl.hyps(1,2,4) add_new_clause_and_update_def
cdcl⇩W_all_struct_inv_add_new_clause_and_update_cdcl⇩W_stgy_inv inv s_inv by auto
case 1 show ?case
by (metis add_confl.hyps(1,2,4,5) add_new_clause_and_update_def
cdcl⇩W_all_struct_inv_add_new_clause_and_update_cdcl⇩W_all_struct_inv
rtranclp_cdcl⇩W_all_struct_inv_inv rtranclp_cdcl⇩W_stgy_rtranclp_cdcl⇩W_restart full_def inv)
case 2 show ?case
by (metis inv_s_T add_confl.hyps(1,2,4,5) add_new_clause_and_update_def
cdcl⇩W_all_struct_inv_add_new_clause_and_update_cdcl⇩W_all_struct_inv full_def inv
rtranclp_cdcl⇩W_stgy_cdcl⇩W_stgy_invariant)
case 3 show ?case
using learned_entailed rtranclp_cdcl⇩W_learned_clauses_entailed[of ?T T] add_confl inv'
unfolding cdcl⇩W_all_struct_inv_def full_def
by (auto simp: cdcl⇩W_learned_clauses_entailed_by_init_def
dest!: rtranclp_cdcl⇩W_stgy_rtranclp_cdcl⇩W_restart)
next
case (add_no_confl C T)
have inv': "cdcl⇩W_all_struct_inv (add_init_cls C S)"
using inv ‹distinct_mset C› unfolding cdcl⇩W_all_struct_inv_def no_strange_atm_def
cdcl⇩W_M_level_inv_def distinct_cdcl⇩W_state_def cdcl⇩W_conflicting_def cdcl⇩W_learned_clause_alt_def
by (auto 9 1 simp: all_decomposition_implies_insert_single clauses_def)
case 1
show ?case
using inv' add_no_confl(5) unfolding full_def by (auto intro: rtranclp_cdcl⇩W_stgy_cdcl⇩W_all_struct_inv)
case 2
have nc: "∀M. (∃K i M'. trail S = M' @ Decided K # M) ⟶ ¬ M ⊨as CNot C"
using ‹¬ trail S ⊨as CNot C›
by (auto simp: true_annots_true_cls_def_iff_negation_in_model)
have "cdcl⇩W_stgy_invariant (add_init_cls C S)"
using s_inv ‹¬ trail S ⊨as CNot C› inv unfolding cdcl⇩W_stgy_invariant_def
no_smaller_confl_def eq_commute[of "_" "trail _"] cdcl⇩W_M_level_inv_def cdcl⇩W_all_struct_inv_def
by (auto simp: clauses_def nc)
then show ?case
by (metis ‹cdcl⇩W_all_struct_inv (add_init_cls C S)› add_no_confl.hyps(5) full_def
rtranclp_cdcl⇩W_stgy_cdcl⇩W_stgy_invariant)
case 3
have ‹cdcl⇩W_learned_clauses_entailed_by_init (add_init_cls C S)›
using learned_entailed by (auto simp: cdcl⇩W_learned_clauses_entailed_by_init_def)
then show ?case
using add_no_confl(5) learned_entailed rtranclp_cdcl⇩W_learned_clauses_entailed[of _ T] add_confl inv'
unfolding cdcl⇩W_all_struct_inv_def full_def
by (auto simp: cdcl⇩W_learned_clauses_entailed_by_init_def
dest!: rtranclp_cdcl⇩W_stgy_rtranclp_cdcl⇩W_restart)
qed
lemma rtranclp_incremental_cdcl⇩W_inv:
assumes
inc: "incremental_cdcl⇩W⇧*⇧* S T" and
inv: "cdcl⇩W_all_struct_inv S" and
s_inv: "cdcl⇩W_stgy_invariant S" and
learned_entailed: ‹cdcl⇩W_learned_clauses_entailed_by_init S›
shows
"cdcl⇩W_all_struct_inv T" and
"cdcl⇩W_stgy_invariant T" and
‹cdcl⇩W_learned_clauses_entailed_by_init T›
using inc apply induction
using inv apply simp
using s_inv apply simp
using learned_entailed apply simp
using incremental_cdcl⇩W_inv by blast+
lemma incremental_conclusive_state:
assumes
inc: "incremental_cdcl⇩W S T" and
inv: "cdcl⇩W_all_struct_inv S" and
s_inv: "cdcl⇩W_stgy_invariant S" and
learned_entailed: ‹cdcl⇩W_learned_clauses_entailed_by_init S›
shows "conflicting T = Some {#} ∧ unsatisfiable (set_mset (init_clss T))
∨ conflicting T = None ∧ trail T ⊨asm init_clss T ∧ satisfiable (set_mset (init_clss T))"
using inc
proof induction
case (add_confl C T) note tr = this(1) and dist = this(2) and conf = this(3) and C = this(4) and
full = this(5)
have "full cdcl⇩W_stgy T T"
using full unfolding full_def by auto
then show ?case
using C conf dist full incremental_cdcl⇩W.add_confl incremental_cdcl⇩W_inv
incremental_cdcl⇩W_inv inv learned_entailed
‹full cdcl⇩W_stgy T T› full_cdcl⇩W_stgy_inv_normal_form
s_inv tr by blast
next
case (add_no_confl C T) note tr = this(1) and dist = this(2) and conf = this(3) and C = this(4)
and full = this(5)
have "full cdcl⇩W_stgy T T"
using full unfolding full_def by auto
then show ?case
using ‹full cdcl⇩W_stgy T T› full_cdcl⇩W_stgy_inv_normal_form C conf dist full
incremental_cdcl⇩W.add_no_confl incremental_cdcl⇩W_inv inv learned_entailed
s_inv tr by blast
qed
lemma tranclp_incremental_correct:
assumes
inc: "incremental_cdcl⇩W⇧+⇧+ S T" and
inv: "cdcl⇩W_all_struct_inv S" and
s_inv: "cdcl⇩W_stgy_invariant S" and
learned_entailed: ‹cdcl⇩W_learned_clauses_entailed_by_init S›
shows "conflicting T = Some {#} ∧ unsatisfiable (set_mset (init_clss T))
∨ conflicting T = None ∧ trail T ⊨asm init_clss T ∧ satisfiable (set_mset (init_clss T))"
using inc apply induction
using assms incremental_conclusive_state apply blast
by (meson incremental_conclusive_state inv rtranclp_incremental_cdcl⇩W_inv s_inv
tranclp_into_rtranclp learned_entailed)
end
end