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theory DPLL-W

imports
Entailment-Definition. Partial- Herbrand-Interpretation
Entailment-Definition. Partial- Annotated- Herbrand-Interpretation
Weidenbach-Book-Base. Wellfounded-More

begin

0.1 Weidenbach’s DPLL
0.1.1 Rules

type-synonym ‘a dplly -ann-lit = (‘a, unit) ann-lit
type-synonym ‘a dplly -ann-lits = ('a, unit) ann-lits
type-synonym v dplly -state = "v dplly -ann-lits X v clauses

abbreviation trail :: "v dplly -state = "v dplly -ann-lits where
trail = fst

abbreviation clauses :: 'v dpllyy -state = 'v clauses where
clauses = snd

inductive dplly :: v dplly -state = v dplly -state = bool where

propagate: add-mset L C' €# clauses S = trail S |=as CNot C = undefined-lit (trail S) L

= dpllw S (Propagated L () # trail S, clauses S) |
decided: undefined-lit (trail S) L = atm-of L € atms-of-mm (clauses S)
= dpllw S (Decided L # trail S, clauses S) |

backtrack: backtrack-split (trail S) = (M', L # M) = is-decided L = D €# clauses S

= trail S [=as CNot D = dplly S (Propagated (— (lit-of L)) () # M, clauses S)

0.1.2 Invariants

lemma dpllyy -distinct-inv:
assumes dpllyy S S’
and no-dup (trail S)
shows no-dup (trail S')

{proof)

lemma dpllyy -consistent-interp-inv:
assumes dpllyy S S’
and consistent-interp (lits-of-1 (trail S))
and no-dup (trail S)



shows consistent-interp (lits-of-1 (trail S”))
{proof)

lemma dpllyy -vars-in-snd-inv:
assumes dplly S S’
and atm-of ¢ (lits-of-l (trail S)) C atms-of-mm (clauses S)
shows atm-of * (lits-of-1 (trail S’)) C atms-of-mm (clauses S”)

(proof)

lemma atms-of-ms-lit-of-atms-of : atms-of-ms (unmark ‘ c¢) = atm-of * lit-of ‘ ¢
(proof)

theorem 2.8.3 page 86 of Weidenbach’s book

lemma dpllyy -propagate-is-conclusion:
assumes dplly S S’
and all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
and atm-of ‘ lits-of-l (trail S) C atms-of-mm (clauses S)
shows all-decomposition-implies-m (clauses S”) (get-all-ann-decomposition (trail S'))

(proof)
theorem 2.8.4 page 86 of Weidenbach’s book

theorem dpliyy, -propagate-is-conclusion-of-decided:
assumes dplly S S’
and all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
and atm-of ‘ lits-of-l (trail S) C atms-of-mm (clauses S)
shows set-mset (clauses S') U {{#lit-of L#} |L. is-decided L N L € set (trail S)}
Eps unmark “ | (set < snd ‘ set (get-all-ann-decomposition (trail S')))

{proof)
theorem 2.8.5 page 86 of Weidenbach’s book

lemma only-propagated-vars-unsat:
assumes decided: Y x € set M. — is-decided x
and DN: D € N and D: M }=as CNot D
and inv: all-decomposition-implies N (get-all-ann-decomposition M)
and atm-incl: atm-of ¢ lits-of-1 M C atms-of-ms N
shows unsatisfiable N

(proof)

lemma dpllyy -same-clauses:
assumes dplly S S’
shows clauses S = clauses S’

(proof)

lemma rtranclp-dplly -inv:
assumes rtranclp dplly, S S’
and inv: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
and atm-incl: atm-of ¢ lits-of-1 (trail S) C atms-of-mm (clauses S)
and consistent-interp (lits-of-1 (trail S))
and no-dup (trail S)
shows all-decomposition-implies-m (clauses S”) (get-all-ann-decomposition (trail S'))
and atm-of ‘ lits-of-1 (trail S’) C atms-of-mm (clauses S”)
and clauses S = clauses S’
and consistent-interp (lits-of-1 (trail S’))
and no-dup (trail S’

{proof)



definition dpllyy -all-inv S =
(all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
A atm-of ¢ lits-of-l (trail S) C atms-of-mm (clauses S)
A consistent-interp (lits-of-l (trail S))
A no-dup (trail S))

lemma dplly -all-inv-dest[dest]:
assumes dplly -all-inv S
shows all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
and atm-of * lits-of-1 (trail S) C atms-of-mm (clauses S)
and consistent-interp (lits-of-1 (trail S)) A no-dup (trail S)
{proof)

lemma rtranclp-dpllyy -all-inv:
assumes rtranclp dplly S S’
and dplly -all-inv S
shows dpllyy -all-inv S’

(proof)

lemma dpliyy -all-inv:
assumes dplly S S’
and dplly -all-inv S
shows dplly -all-inv S’

(proof)

lemma rtranclp-dplly -inv-starting-from-0:
assumes rtranclp dplly S S’
and inv: trail S = |]
shows dplly -all-inv S’

(proof)

lemma dpllyy -can-do-step:
assumes consistent-interp (set M)
and distinct M
and atm-of ¢ (set M) C atms-of-mm N
shows rtranclp dplly ([], N) (map Decided M, N)
(proof)

definition conclusive-dplly-state (S:: 'v dplly -state) +—
(trail S =asm clauses S V ((V L € set (trail S). —is-decided L)
A (3 C €# clauses S. trail S |=as CNot C)))

theorem 2.8.7 page 87 of Weidenbach’s book

lemma dpllyy -strong-completeness:
assumes set M Esm N
and consistent-interp (set M)
and distinct M
and atm-of ¢ (set M) C atms-of-mm N
shows dpllyw** ([], N) (map Decided M, N)
and conclusive-dpllyy -state (map Decided M, N)

{proof)
theorem 2.8.6 page 86 of Weidenbach’s book

lemma dplly -sound:
assumes



rtranclp dplly ([, N) (M, N) and
vV S. ~dplly (M, N) S
shows M Easm N +— satisfiable (set-mset N) (is ?A «— ?B)

(proof)

0.1.3 Termination

definition dplly -mes M n =
map (Al. if is-decided | then 2 else (1::nat)) (rev M) Q@ replicate (n — length M) 3

lemma length-dplly -mes:
assumes length M < n
shows length (dplly -mes M n) = n
(proof)

lemma distinctcard-atm-of-lit-of-eq-length:
assumes no-dup S
shows card (atm-of * lits-of-l S) = length S
(proof)

lemma Cons-lexn-iff:
shows «(z # s, y # ys) € lezn R n +— (length (x # zs) = n A length (y # ys) = n A
((z,y) € RV (z =y A (s, ys) € lexn R (n — 1))))
(proof)
declare append-same-lexn[simp| prepend-same-lexn[simp] Cons-lexn-iff[simp)
declare lexn.simps(2)[simp del]

lemma dpllyy -card-decrease:
assumes
dpll: dplly S S’ and
[simp]: length (trail S') < card vars and
length (trail S) < card vars
shows
(dpllw -mes (trail S') (card vars), dplly -mes (trail S) (card vars)) € lexn less-than (card vars)

(proof)
theorem 2.8.8 page 87 of Weidenbach’s book

lemma dpllyy -card-decrease’:
assumes dpll: dplly, S S’
and atm-incl: atm-of ¢ lits-of-1 (trail S) C atms-of-mm (clauses S)
and no-dup: no-dup (trail S)
shows (dplly -mes (trail S’) (card (atms-of-mm (clauses S'))),
dplly -mes (trail S) (card (atms-of-mm (clauses S)))) € lex less-than

(proof)

lemma wf-lexn: wf (lexn {(a, b). (a::nat) < b} (card (atms-of-mm (clauses S))))
(proof)

lemma wf-dpllyy:
wf {(S7, S). dpllw-all-inv S A dpllyw S S'}
(proof)

lemma dpllyy -tranclp-star-commute:
{(87, 8). dplly-all-inv S A dplly S S}y = {(S, S). dplly-all-inv S A tranclp dplly S S’}
(is A = ?B)



(proof)

lemma wf-dplly -tranclp: wf {(S’, S). dpllw-all-inv S A dplly*+ S S’}
(proof)

lemma wf-dplly -plus:
wf {(S" ([J, N)| 8" dpliw™* ([], N) '} (is wf 7P)
(proof)

0.1.4 Final States

Proposition 2.8.1: final states are the normal forms of dplly,

lemma dpllyy -no-more-step-is-a-conclusive-state:
assumes V S’. ~dpllyy S S’
shows conclusive-dpllyy -state S

(proof)

lemma dpllyy -conclusive-state-correct:
assumes dplly** ([], N) (M, N) and conclusive-dplly -state (M, N)
shows M Easm N <— satisfiable (set-mset N) (is ?A «+— ?B)

(proof)

lemma dplly -trail-after-step1:
assumes <dpllyy S T)
shows
AK' M1 M2’ M2".
(rev (trail T) = rev (trail S) @ M2’ N M2' #[]) V
(rev (trail S) = M1 Q Decided (—K') # M2’ A
rev (trail T) = M1 Q Propagated K' () # M2 A
Suc (length M1) < length (trail S))
(proof)

lemma tranclp-dpllyy -trail-after-step:
assumes (dplly T+t S T
shows
GK' M1 M2 M2".
(rev (trail T) = rev (trail S) Q@ M2’ AN M2' #[]) V
(rev (trail S) = M1 Q@ Decided (—K') # M2' A
rev (trail T) = M1 Q Propagated K' () # M2 A Suc (length M1) < length (trail S))
(proof)

This theorem is an important (although rather obvious) property: the model induced by trails
are not repeated.

lemma tranclp-dplly -no-dup-trail:
assumes (dpllyy T S T) and (dplly -all-inv S
shows «set (trail S) # set (trail T)

(proof)

end

theory CDCL-W-Level

imports
Entailment-Definition. Partial- Annotated- Herbrand-Interpretation

begin



Level of literals and clauses

Getting the level of a variable, implies that the list has to be reversed. Here is the function
after reversing.

definition count-decided :: (v, 'b, 'm) annotated-lit list = nat where
count-decided | = length (filter is-decided )

definition get-level :: (v, 'm) ann-lits = 'v literal = nat where
get-level S L = length (filter is-decided (drop While (AS. atm-of (lit-of S) # atm-of L) S))

lemma get-level-uminus[simp): (get-level M (—L) = get-level M L
{proof)

lemma get-level-Neg-Pos: (get-level M (Neg L) = get-level M (Pos L))
{proof)

lemma count-decided-0-iff:
(count-decided M = 0 «— (VL € set M. —is-decided L)

{proof)

lemma
shows
count-decided-nil[simp]: (count-decided [] = 0) and
count-decided-cons[simpl:
(count-decided (a # M) = (if is-decided a then Suc (count-decided M) else count-decided M)> and
count-decided-append[simp]:
(count-decided (M @ M") = count-decided M + count-decided M"
(proof)

lemma atm-of-notin-get-level-eq-0[simpl:
assumes undefined-lit M L
shows get-level M L = 0

{proof)

lemma get-level-ge-0-atm-of-in:
assumes get-level M L > n
shows atm-of L € atm-of ‘ lits-of-1 M
(proof)

In get-level (resp. get-level), the beginning (resp. the end) can be skipped if the literal is not
in the beginning (resp. the end).
lemma get-level-skip[simp]:

assumes undefined-lit M L
shows get-level (M @ M') L = get-level M’ L

{proof)

If the literal is at the beginning, then the end can be skipped

lemma get-level-skip-end|simp]:
assumes defined-lit M L
shows get-level (M Q@ M') L = get-level M L + count-decided M’

{proof)

lemma get-level-skip-beginning|simp]:
assumes atm-of L' # atm-of (lit-of K)
shows get-level (K # M) L' = get-level M L’



{proof)

lemma get-level-take-beginning|simp]:
assumes atm-of L' = atm-of (lit-of K)
shows get-level (K # M) L' = count-decided (K # M)
(proof)

lemma get-level-cons-if :
(get-level (K # M) L' =
(if atm-of L' = atm-of (lit-of K) then count-decided (K # M) else get-level M L")
(proof)

lemma get-level-skip-beginning-not-decided|simp):
assumes undefined-lit S L
and V seset S. —is-decided s
shows get-level (M @Q S) L = get-level M L

{proof)

lemma get-level-skip-all-not-decided|simp):
fixes M
assumes VYV meset M. — is-decided m
shows get-level M L = 0

(proof)
the {#0::'a#} is there to ensures that the set is not empty.

definition get-mazimum-level :: ('a, 'b) ann-lits = 'a clause = nat
where
get-mazimum-level M D = Maz-mset ({#0#} + image-mset (get-level M) D)

lemma get-mazimum-level-ge-get-level:
L €# D = get-maximum-level M D > get-level M L

{proof)

lemma get-mazimum-level-empty[simpl:
get-mazimum-level M {#} = 0
(proof)

lemma get-mazimum-level-exists-lit-of-maz-level:

D # {#} = I Le# D. get-level M L = get-mazximum-level M D
(proof)

lemma get-mazimum-level-empty-list[simp):
get-maximum-level [| D = 0
{proof)

lemma get-mazimum-level-add-mset:
get-maximum-level M (add-mset L D) = maz (get-level M L) (get-mazimum-level M D)

{proof)

lemma get-level-append-if:
get-level (M @Q M) L = (if defined-lit M L then get-level M L + count-decided M’
else get-level M’ L)

(proof)

Do mot activate as [simp] rules. It breaks everything.

lemma get-mazimum-level-single:
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(get-mazimum-level M {#x#} = get-level M
(proof)

lemma get-maximum-level-plus:
get-mazimum-level M (D + D') = maz (get-mazimum-level M D) (get-maximum-level M D’)

{proof)

lemma get-mazimum-level-cong:
assumes V L €# D. get-level M L = get-level M' L
shows (get-mazimum-level M D = get-maximum-level M' D)

{proof)

lemma get-mazrimum-level-exists-lit:
assumes n: n > 0
and maz: get-maximum-level M D = n
shows 3L €#D. get-level M L = n

(proof)

lemma get-mazimum-level-skip-first[simp]:
assumes atm-of (lit-of K) ¢ atms-of D
shows get-mazimum-level (K # M) D = get-mazimum-level M D

{proof)

lemma get-mazimum-level-skip-beginning:
assumes DH: YV €# D. undefined-lit ¢
shows get-mazimum-level (¢ @ H) D = get-mazimum-level H D

(proof)

lemma get-mazrimum-level-D-single-propagated:
get-maximum-level [Propagated x21 x22] D = 0
(proof)

lemma get-mazimum-level-union-mset:
get-maximum-level M (A U# B) = get-maximum-level M (A + B)
(proof)

lemma count-decided-rev[simp]:
count-decided (rev M) = count-decided M

{proof)

lemma count-decided-ge-get-level:
count-decided M > get-level M L

{proof)

lemma count-decided-ge-get-maximum-level:
count-decided M > get-maximum-level M D

{proof)

lemma get-level-last-decided-ge:
(defined-lit (¢ @ [Decided K]|) L' = 0 < get-level (¢ Q [Decided K]) L"
(proof)

lemma get-mazimum-level-mono:
(D C# D' = get-maximum-level M D < get-mazimum-level M D"

{proof)
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fun get-all-mark-of-propagated where

get-all-mark-of-propagated [| =[] |

get-all-mark-of-propagated (Decided - # L) = get-all-mark-of-propagated L |
get-all-mark-of-propagated (Propagated - mark # L) = mark # get-all-mark-of-propagated L

lemma get-all-mark-of-propagated-append|[simp):
get-all-mark-of-propagated (A @ B) = get-all-mark-of-propagated A Q get-all-mark-of-propagated B
(proof)

lemma get-all-mark-of-propagated-tl-proped:

(M # || = is-proped (hd M) = get-all-mark-of-propagated (tl M) = tl (get-all-mark-of-propagated
M)

(proof)

Properties about the levels

lemma atm-lit-of-set-lits-of-I:
(AL atm-of (lit-of 1))  set zs = atm-of * lits-of-1 xs
{proof)

Before I try yet another time to prove that I can remove the assumption no-dup M: It does not
work. The problem is that get-level M K = Suc ¢ peaks the first occurrence of the literal K.
This is for example an issue for the trail replicate n (Decided K). An explicit counter-example
is below.

lemma le-count-decided-decomp:
assumes no-dup M)
shows (i < count-decided M +— (3¢ K ¢’. M = ¢ @Q Decided K # ¢’ A get-level M K = Suc i)
(is ?A +— ?B)

(proof)

The counter-example if the assumption no-dup M.

lemma
fixes K
defines (M = replicate 3 (Decided K))
defines (i = I»
assumes i < count-decided M <— (3¢ K ¢'. M = ¢ @Q Decided K # ¢’ A get-level M K = Suc i)
shows False

{proof)

lemma Suc-count-decided-gt-get-level:
(get-level M L < Suc (count-decided M)

(proof)

lemma get-level-neq-Suc-count-decided[simp]:
get-level M L # Suc (count-decided M)
(proof)

lemma length-get-all-ann-decomposition: ength (get-all-ann-decomposition M) = 1+ count-decided M)

{proof)

lemma get-mazimum-level-remove-non-max-lul:
(get-level M a < get-mazimum-level M D —>
get-maximum-level M (removel-mset a D) = get-mazimum-level M D)

{proof)
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lemma exists-lit-max-level-in-negate-ann-lits:
(negate-ann-lits M # {#} = 3 Le#negate-ann-lits M. get-level M L = count-decided M>
(proof)

end
theory CDCL-W

imports CDCL-W-Level Weidenbach-Book-Base. Wellfounded-More
begin
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Chapter 1

Weidenbach’s CDCL

The organisation of the development is the following:

e CDCL_W.thy contains the specification of the rules: the rules and the strategy are defined,
and we proof the correctness of CDCL.

e CDCL_W_Termination.thy contains the proof of termination, based on the book.

e CDCL_W_Merge.thy contains a variant of the calculus: some rules of the raw calculus are
always applied together (like the rules analysing the conflict and then backtracking). This
is useful for the refinement from NOT.

e CDCL_WNOT.thy proves the inclusion of Weidenbach’s version of CDCL in NOT’s version.
We use here the version defined in CDCL_W_Merge.thy. We need this, because NOT’s
backjump corresponds to multiple applications of three rules in Weidenbach’s calculus.
We show also the termination of the calculus without strategy. There are two differ-
ent refinement: on from NOT’s to Weidenbach’s CDCL and another to W’s CDCL with
strategy.

We have some variants build on the top of Weidenbach’s CDCL calculus:

e CDCL_W_Incremental.thy adds incrementality on the top of CDCL_W.thy. The way we
are doing it is not compatible with CDCL_W_Merge.thy, because we add conflicts and
the CDCL_W_Merge.thy cannot analyse conflicts added externally, since the conflict and
analyse are merged.

e CDCL_W_Restart.thy adds restart and forget while restarting. It is built on the top of
CDCL_W_Merge. thy.

1.1 Weidenbach’s CDCL with Multisets

declare upt.simps(2)[simp del]

1.1.1 The State

We will abstract the representation of clause and clauses via two locales. We here use multisets,
contrary to CDCL_W_Abstract_State.thy where we assume only the existence of a conversion
to the state.

15



locale statey -ops =

fixes
state :: 'st = ('v, 'v clause) ann-lits x v clauses X 'v clauses X v clause option X
b and

trail :: 'st = (v, 'v clause) ann-lits and
init-clss :: 'st = v clauses and
learned-clss :: 'st = v clauses and
conflicting :: 'st = v clause option and

cons-trail :: ("v, 'v clause) ann-lit = ‘st = ‘st and
tl-trail :: 'st = ‘st and

add-learned-cls 1 'v clause = 'st = 'st and
remove-cls :: 'v clause = ’st = st and
update-conflicting :: 'v clause option = 'st = ‘st and

init-state :: 'v clauses = 'st
begin

abbreviation hd-trail :: ‘st = ('v, "v clause) ann-lit where
hd-trail S = hd (trail S)

definition clauses :: 'st = v clauses where
clauses S = init-clss S + learned-clss S

abbreviation resolve-cls :: (‘a literal = 'a clause = 'a clause = 'a clause> where
resolve-cls L D' E = removel-mset (—L) D' U# removel-mset L E

abbreviation state-butlast :: ‘st = ('v, 'v clause) ann-lits x 'v clauses X "v clauses
x v clause option where
state-butlast S = (trail S, init-clss S, learned-clss S, conflicting S)

definition additional-info :: 'st = 'b where
additional-info S = (A(-, -, -, -, D). D) (state S)

end

We are using an abstract state to abstract away the detail of the implementation: we do not
need to know how the clauses are represented internally, we just need to know that they can be
converted to multisets.

Weidenbach state is a five-tuple composed of:

1. the trail is a list of decided literals;
2. the initial set of clauses (that is not changed during the whole calculus);
3. the learned clauses (clauses can be added or remove);

4. the conflicting clause (if any has been found so far).

Contrary to the original version, we have removed the maximum level of the trail, since the
information is redundant and required an additional invariant.

There are two different clause representation: one for the conflicting clause ('v clause, standing
for conflicting clause) and one for the initial and learned clauses (‘v clause, standing for clause).
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The representation of the clauses annotating literals in the trail is slightly different: being able
to convert it to 'v clause is enough (needed for function hd-trail below).

There are several axioms to state the independance of the different fields of the state: for
example, adding a clause to the learned clauses does not change the trail.

locale statey -no-state =
statey -ops
state
— functions about the state:
— getter:
trail init-clss learned-clss conflicting
— setter:
cons-trail tl-trail add-learned-cls remove-cls
update-conflicting

— Some specific states:

1nit-state

for

state-eq :: 'st = st = bool (infix ~ 50) and

state :: ‘st = (v, 'v clause) ann-lits x 'v clauses x v clauses x 'v clause option x
‘b and

trail :: 'st = ("v, 'v clause) ann-lits and

init-clss :: 'st = v clauses and

learned-clss :: 'st = v clauses and

conflicting :: 'st = v clause option and

cons-trail :: ("v, 'v clause) ann-lit = ‘st = ‘st and
tl-trail :: 'st = ‘st and

add-learned-cls :: 'v clause = st = 'st and
remove-cls :: 'v clause = 'st = st and
update-conflicting :: 'v clause option = 'st = ’st and

init-state :: "v clauses = 'st +

assumes
state-eq-ref[simp, introl: «S ~ S) and
state-eqg-sym: S ~ T <— T ~ 5 and
state-eq-trans: <S ~ T = T ~ U' = S ~ U and
state-eq-state: «S ~ T — state S = state T) and

cons-trail:
NS’ state st = (M, S') =
state (cons-trail L st) = (L # M, S’) and

tl-trail:
NS’ state st = (M, S') = state (tl-trail st) = (¢ M, S’) and

remove-cls:
NS’ state st = (M, N, U, S") =
state (remove-cls C st) =
(M, removeAll-mset C N, removeAll-mset C U, S') and

add-learned-cls:
NS’ state st = (M, N, U, S") =
state (add-learned-cls C st) = (M, N, {#C+#} + U, S’) and

update-conflicting:
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NS’ state st = (M, N, U, D, §') =
state (update-conflicting E st) = (M, N, U, E, S’) and

mnit-state:
state-butlast (init-state N) = ([], N, {#}, None) and

cons-trail-state-eq:
(S ~ 8" = cons-trail L S ~ cons-trail L S’ and

tl-trail-state-eq:
(8 ~ 8" = tl-trail S ~ tl-trail S" and

add-learned-cls-state-eq:
(S ~ 8" = add-learned-cls C S ~ add-learned-cls C S and

remove-cls-state-eq:
S ~ 8" = remove-cls C S ~ remove-cls C S and

update-conflicting-state-eq:
(S ~ S" = update-conflicting D S ~ update-conflicting D S and

tl-trail-add-learned-cls-commute:

(tl-trail (add-learned-cls C' T) ~ add-learned-cls C (tl-trail T)) and
tl-trail-update-conflicting:

(tl-trail (update-conflicting D T) ~ update-conflicting D (tl-trail T)) and

update-conflicting-update-conflicting:
(NDD'S§ 58" 5§~ 8 =
update-conflicting D (update-conflicting D' S) ~ update-conflicting D S" and
update-conflicting-itself:
(A\D S'. conflicting S" = D = update-conflicting D §' ~ S’

locale statey,y =
stateyy -no-state
state-eq state
— functions about the state:
— getter:
trail init-clss learned-clss conflicting
— setter:
cons-trail tl-trail add-learned-cls remove-cls
update-conflicting

— Some specific states:

init-state

for

state-eq :: ‘st = 'st = bool (infix ~ 50) and

state :: 'st = ('v, 'v clause) ann-lits X v clauses X 'v clauses X v clause option X
‘b and

trail ‘st = ('v, v clause) ann-lits and

init-clss :: 'st = v clauses and

learned-clss :: 'st = v clauses and

conflicting :: 'st = v clause option and

cons-trail = ("v, 'v clause) ann-lit = 'st = 'st and

tl-trail :: 'st = 'st and
add-learned-cls 1 'v clause = 'st = 'st and
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remove-cls :: 'v clause = 'st = ’'st and
update-conflicting :: 'v clause option = 'st = 'st and

init-state :: "v clauses = 'st +
assumes
state-prop[simp:
(state S = (trail S, init-clss S, learned-clss S, conflicting S, additional-info S)
begin

lemma
trail-cons-trail[simp]:
trail (cons-trail L st) = L # trail st and
trail-tl-trail[simp): tradl (tl-trail st) = ¢l (trail st) and
trail-add-learned-cls[simp]:
trail (add-learned-cls C st) = trail st and
trail-remove-cls[simp):
trail (remove-cls C st) = trail st and
trail-update-conflicting|simp): trail (update-conflicting E st) = trail st and

init-clss-cons-trail[simp):

init-clss (cons-trail M st) = init-clss st

and
indt-clss-tl-trail[ simp]:

ingt-clss (tl-trail st) = init-clss st and
init-clss-add-learned-cls[simp):

init-clss (add-learned-cls C st) = init-clss st and
init-clss-remove-cls[simpl:

init-clss (remove-cls C st) = removeAll-mset C (init-clss st) and
init-clss-update-conflicting| simpl:

indt-clss (update-conflicting E st) = init-clss st and

learned-clss-cons-trail[simp):

learned-clss (cons-trail M st) = learned-clss st and
learned-clss-tl-trail[ simp):

learned-clss (tl-trail st) = learned-clss st and
learned-clss-add-learned-cls[simp]:

learned-clss (add-learned-cls C st) = {#C#} + learned-clss st and
learned-clss-remove-cls|simp]:

learned-clss (remove-cls C st) = removeAll-mset C (learned-clss st) and
learned-clss-update-conflicting[ simp]:

learned-clss (update-conflicting E st) = learned-clss st and

conflicting-cons-trail|simp):

conflicting (cons-trail M st) = conflicting st and
conflicting-tl-trail[simp):

conflicting (tl-trail st) = conflicting st and
conflicting-add-learned-clssimp]:

conflicting (add-learned-cls C st) = conflicting st

and
conflicting-remove-cls|simp):

conflicting (remove-cls C st) = conflicting st and
conflicting-update-conflicting[simp):

conflicting (update-conflicting E st) = E and

init-state-trail[simp|: trail (init-state N) = [] and
init-state-clss[simp): init-clss (init-state N) = N and
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init-state-learned-clss[simp]: learned-clss (init-state N) = {#} and
init-state-conflicting[simp): conflicting (init-state N) = None

(proof)

lemma
shows
clauses-cons-trail[simp):
clauses (cons-trail M S) = clauses S and

clss-tl-trail[simp): clauses (tl-trail S) = clauses S and
clauses-add-learned-cls-unfolded:

clauses (add-learned-cls U S) = {#U#} + learned-clss S + init-clss S

and
clauses-update-conflicting[simp): clauses (update-conflicting D S) = clauses S and
clauses-remove-cls[simpl:

clauses (remove-cls C'S) = removeAll-mset C (clauses S) and
clauses-add-learned-cls[simp):

clauses (add-learned-cls C' S) = {#C#} + clauses S and
clauses-init-state[simp|: clauses (init-state N) = N

(proof)

lemma state-eq-trans”. S ~ S'=—= T ~ S'—= T ~ S

{proof)

abbreviation backtrack-lvl :: 'st = nat where
hacktrack-lvl S = count-decided (trail S)

named-theorems state-simp (contains all theorems of the form @Q{term «S ~ T = P S = P T}.
These theorems can cause a signefecant blow—up of the simp—space)

lemma

shows
state-eg-trail[state-simpl: S ~ T = trail S = trail T and
state-eq-init-clss[state-simp|: S ~ T = init-clss S = init-clss T and
state-eq-learned-clss|state-simp): S ~ T = learned-clss S = learned-clss T and
state-eq-conflicting[state-simp: S ~ T = conflicting S = conflicting T and
state-eq-clauses|state-simpl: S ~ T = clauses S = clauses T and
state-eg-undefined-lit[state-simp|: S ~ T = undefined-lit (trail S) L = undefined-lit (trail T') L and
state-eg-backtrack-ll[state-simp): S ~ T = backtrack-lvl S = backtrack-lvl T

(proof)

lemma state-eq-conflicting-None:
S ~ T = conflicting T = None = conflicting S = None

{proof)

We combine all simplification rules about (~) in a single list of theorems. While they are handy
as simplification rule as long as we are working on the state, they also cause a huge slow-down
in all other cases.

declare state-simp|[simp)

function reduce-trail-to :: 'a list = st = 'st where
reduce-trail-to 'S =

(if length (trail S) = length F V trail S =[] then S else reduce-trail-to F (tl-trail S))
(proof)

termination
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{proof)
declare reduce-trail-to.simps[simp del]

lemma reduce-trail-to-induct:
assumes
(N\F S. length (trail S) = length F = P F S) and
(NF S. traill S =[] = P F S and
(NF S. length (trail S) # length F = trail S # [| = P F (tl-trail S) = P F S
shows
(P FS

{proof)

lemma
shows
reduce-trail-to-Nil[simp]: trail S = [| = reduce-trail-to F' S = S and
reduce-trail-to-eq-length[simp|: length (trail S) = length F = reduce-trail-to FF S = S
(proof)

lemma reduce-trail-to-length-ne:
length (trail S) # length F = trail S # [| =
reduce-trail-to F' S = reduce-trail-to F (tl-trail S)

{proof)

lemma trail-reduce-trail-to-length-le:
assumes length F > length (trail S)
shows trail (reduce-trail-to F' S) = ||

{proof)

lemma trail-reduce-trail-to-Nil[simp]:
trail (reduce-trail-to [| S) = |
(proof)

lemma clauses-reduce-trail-to- Nil:
clauses (reduce-trail-to [| S) = clauses S

(proof)

lemma reduce-trail-to-skip-beginning:
assumes trail S = F'Q F
shows trail (reduce-trail-to F S) = F

(proof)

lemma clauses-reduce-trail-to[simpl:
clauses (reduce-trail-to F' S) = clauses S

{proof)

lemma conflicting-update-trail[simp]:
conflicting (reduce-trail-to F' S) = conflicting S
{proof)

lemma init-clss-update-trail[simp:
init-clss (reduce-trail-to F' S) = init-clss S

{proof)

lemma learned-clss-update-trail[simp):
learned-clss (reduce-trail-to F' S) = learned-clss S
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{proof)

lemma conflicting-reduce-trail-to[simp]:
conflicting (reduce-trail-to F'S) = None <— conflicting S = None

{proof)

lemma trail-eq-reduce-trail-to-eq:
trail S = trail T = trail (reduce-trail-to F S) = trail (reduce-trail-to F T
(proof)

lemma reduce-trail-to-trail-tl-trail-decomp[simp]:
trail S = F' @ Decided K # F = trail (reduce-trail-to F S) = F

{proof)

lemma reduce-trail-to-add-learned-cls[simp]:
trail (reduce-trail-to F (add-learned-cls C S)) = trail (reduce-trail-to F S)

{proof)

lemma reduce-trail-to-remove-learned-cls[simp]:
trail (reduce-trail-to F (remove-cls C' S)) = trail (reduce-trail-to F S)
(proof)

lemma reduce-trail-to-update-conflicting[simp]:
trail (reduce-trail-to F (update-conflicting C S)) = trail (reduce-trail-to F S)
(proof)

lemma reduce-trail-to-length:
length M = length M' = reduce-trail-to M S = reduce-trail-to M’ S

{proof)

lemma trail-reduce-trail-to-drop:
trail (reduce-trail-to F' S) =
(if length (trail S) > length F
then drop (length (trail S) — length F) (trail S)
else [])

{proof)

lemma in-get-all-ann-decomposition-trail-update-trail[simp):
assumes H: (L # M1, M2) € set (get-all-ann-decomposition (trail S))
shows trail (reduce-trail-to M1 S) = M1

(proof)

lemma reduce-trail-to-state-eq:
(S ~ 8" = length M = length M’ = reduce-trail-to M S ~ reduce-trail-to M’ S"
(proof)

lemma conflicting-cons-trail-conflicting[iff]:
conflicting (cons-trail L S) = None «— conflicting S = None
(proof)

lemma conflicting-add-learned-cls-conflicting[iff]:
conflicting (add-learned-cls C' S) = None <— conflicting S = None
(proof)

lemma reduce-trail-to-compow-ti-trail-le:
assumes ength M < length (trail M)
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shows (reduce-trail-to M M' = (tl-trail”" (length (trail M') — length M)) M"
(proof)

lemma reduce-trail-to-compow-tl-trail-eq:

dength M = length (trail M') = reduce-trail-to M M’ = (tl-trail™" (length (trail M') — length M))
M

{proof)

lemma reduce-trail-to-compow-tl-trail:

dength M < length (trail M') = reduce-trail-to M M’ = (tl-trail™" (length (trail M') — length M))
M

{proof)

lemma tl-trail-reduce-trail-to-cons:
dength (L # M) < length (trail M') = tl-trail (reduce-trail-to (L # M) M') = reduce-trail-to M M"
(proof)

lemma compow-ti-trail-add-learned-cls-swap:
(tl-trail =" n) (add-learned-cls D S) ~ add-learned-cls D ((tl-trail =" n) S)
(proof)

lemma reduce-trail-to-add-learned-cls-state-eq:
dength M < length (trail S) =
reduce-trail-to M (add-learned-cls D S) ~ add-learned-cls D (reduce-trail-to M S)
{proof)

lemma compow-ti-trail-update-conflicting-swap:
(tl-trail =" n) (update-conflicting D S) ~ update-conflicting D ((¢-trail =" n) S)
{proof)

lemma reduce-trail-to-update-conflicting-state-eq:
dength M < length (trail S) =
reduce-trail-to M (update-conflicting D S) ~ update-conflicting D (reduce-trail-to M S)
(proof)

lemma

additional-info-cons-trail|simp):

(additional-info (cons-trail L S) = additional-info S> and
additional-info-tl-trail[ simp]:

additional-info (tl-trail S) = additional-info S and
additional-info-add-learned-cls-unfolded:

additional-info (add-learned-cls U S) = additional-info S and
additional-info-update-conflicting[simp):

additional-info (update-conflicting D S) = additional-info S and
additional-info-remove-cls[simp]:

additional-info (remove-cls C' S) = additional-info S and
additional-info-add-learned-cls[simp]:

additional-info (add-learned-cls C' S) = additional-info S
(proof)

lemma additional-info-reduce-trail-to[simp]:
(additional-info (reduce-trail-to F' S) = additional-info S
(proof)

lemma reduce-trail-to:
state (reduce-trail-to F S) =
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((if length (trail S) > length F

then drop (length (trail S) — length F) (trail S)

else []), init-clss S, learned-clss S, conflicting S, additional-info S)
(proof)

end — end of statey locale

1.1.2 CDCL Rules

Because of the strategy we will later use, we distinguish propagate, conflict from the other rules

locale conflict-driven-clause-learningy =
stateyw,
state-eq
state
— functions for the state:
— access functions:
trail init-clss learned-clss conflicting
— changing state:
cons-trail tl-trail add-learned-cls remove-cls
update-conflicting

— get state:

init-state

for

state-eq :: 'st = st = bool (infix ~ 50) and

state :: ‘st = ('v, 'v clause) ann-lits X v clauses X 'v clauses X v clause option X
b and

trail :: 'st = (v, 'v clause) ann-lits and

init-clss :: 'st = v clauses and

learned-clss :: 'st = v clauses and

conflicting :: 'st = v clause option and

cons-trail :: ("v, 'v clause) ann-lit = ‘st = ‘st and
tl-trail :: 'st = ‘st and

add-learned-cls :: 'v clause = 'st = 'st and
remove-cls :: 'v clause = ‘st = ’'st and
update-conflicting :: 'v clause option = 'st = st and

init-state :: 'v clauses = st
begin

inductive propagate :: ‘st = 'st = bool for S :: 'st where
propagate-rule: conflicting S = None —>

E €# clauses § =

Le# F =

trail S =as CNot (E — {#L#}) =

undefined-lit (trail S) L =

T ~ cons-trail (Propagated L E) S =

propagate S T

inductive-cases propagateE: propagate S T
inductive conflict :: 'st = st = bool for S :: ‘st where

conflict-rule:
conflicting S = None —>
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D €+# clauses S =

trail S =as CNot D =

T ~ update-conflicting (Some D) S —
conflict S T

inductive-cases conflictE: conflict S T

inductive backtrack :: 'st = ‘st = bool for S :: 'st where
backtrack-rule:
conflicting S = Some (add-mset L D) =
(Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) =
get-level (trail S) L = backtrack-lvl S =
get-level (trail S) L = get-mazimum-level (trail S) (add-mset L D') =
get-mazximum-level (trail S) D' = i =
get-level (trail ) K =i+ 1 =
D/ C# D —
clauses S =pm add-mset L D' —>
T ~ cons-trail (Propagated L (add-mset L D))
(reduce-trail-to M1
(add-learned-cls (add-mset L D’)
(update-conflicting None S))) =
backtrack S T

inductive-cases backtrackE: backtrack S T

Here is the normal backtrack rule from Weidenbach’s book:

inductive simple-backtrack :: 'st = st = bool for S :: ‘st where
simple-backtrack-rule:
conflicting S = Some (add-mset L D) =
(Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) =
get-level (trail S) L = backtrack-lvl S =
get-level (trail S) L = get-mazimum-level (trail S) (add-mset L D) =
get-maximum-level (trail S) D = i =
get-level (trail ) K =i+ 1 =
T ~ cons-trail (Propagated L (add-mset L D))
(reduce-trail-to M1
(add-learned-cls (add-mset L D)
(update-conflicting None S))) =
simple-backtrack S T

inductive-cases simple-backtrackE: simple-backtrack S T

This is a generalised version of backtrack: It is general enough te also include OCDCL’s version.

inductive backtrackg :: ‘st = ‘st = bool for S :: ‘st where
backtrackg-rule:
conflicting S = Some (add-mset L D) =
(Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) =
get-level (trail S) L = backtrack-lvl S =
get-level (trail S) L = get-mazimum-level (trail S) (add-mset L D) =
get-maximum-level (trail S) D' = i =
get-level (trail ) K =i+ 1 =
D/ C# D —
T ~ cons-trail (Propagated L (add-mset L D))
(reduce-trail-to M1
(add-learned-cls (add-mset L D’)
(update-conflicting None S))) =
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backtrackg S T
inductive-cases backtrackgE: backtrackg S T

inductive decide :: ‘st = st = bool for S :: ‘st where
decide-rule:

conflicting S = None =

undefined-lit (trail S) L =

atm-of L € atms-of-mm (init-clss S) =

T ~ cons-trail (Decided L) S =

decide S T

inductive-cases decideE: decide S T

inductive skip :: 'st = ’st = bool for S :: 'st where
skip-rule:

trail S = Propagated L C' # M —

conflicting S = Some F —

—L ¢# E =

E#{#} =

T ~ tl-trail S =

skip S T

inductive-cases skipE: skip S T

get-mazimum-level (Propagated L (C + {#L#}) # M) D = k V k = 0 (that was in a previous
version of the book) is equivalent to get-mazimum-level (Propagated L (C + {#L#}) # M) D
= k, when the structural invariants holds.

inductive resolve :: ‘st = ‘st = bool for S :: ‘st where
resolve-rule: trail S # [| =
hd-trail S = Propagated L F —>
Le# F—=
conflicting S = Some D' =
—Le# D =
get-maximum-level (trail S) ((removel-mset (—L) D')) = backtrack-lvl S =
T ~ update-conflicting (Some (resolve-cls L D' E))
(tl-trail §) =
resolve S T

inductive-cases resolveE: resolve S T

Christoph’s version restricts restarts to the the case where M= N+ U. While it is possible to
implement this (by watching a clause), This is an unnecessary restriction.
inductive restart :: ‘st = ‘st = bool for S :: ‘st where
restart: state S = (M, N, U, None, S') =
U'C# U=
state T = ([], N, U’, None, S') =
restart S T

inductive-cases restartE: restart S T

We add the condition C' ¢# init-clss S, to maintain consistency even without the strategy.

inductive forget :: ‘st = ‘st = bool where
forget-rule:
conflicting S = None —>
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C €# learned-clss S =

=(trail S) Easm clauses S =

C ¢ set (get-all-mark-of-propagated (trail S)) =
C ¢# init-clss S =

removeAll-mset C' (clauses S) Epm C =

T ~ remove-cls C § =

forget S T

inductive-cases forgetE: forget S T

inductive cdcly -rf :: ‘st = 'st = bool for S :: 'st where
restart: restart S T == cdcly-rf S T |
forget: forget S T = cdcly-rf ST

inductive cdcly -bj :: 'st = st = bool where
skip: skip S S' = cdelw-bj S S’ |

resolve: resolve S S = cdcly-bj S S’ |
backtrack: backtrack S S’ = cdcly-bj S S’

inductive-cases cdcly -bjE: cdcly -bj S T

inductive cdclyy -0 :: ‘st = ‘st = bool for S :: ‘st where
decide: decide S 8" = cdcly-0 S S’ |
bj: cdely-bj S S' = cdelyy-0 S S’

inductive cdcly -restart :: 'st = ‘st = bool for S :: 'st where
propagate: propagate S S’ = cdcly -restart S S’ |

conflict: conflict S S' = cdcly -restart S S’ |

other: cdcly -0 S S = cdclyy -restart S S|

rf: cdcly-rf S 8" = cdcly -restart S S’

lemma rtranclp-propagate-is-rtranclp-cdclyy -restart:
propagate*™* S S’ = cdclyy -restart** S S’

{proof)

inductive cdcly :: ‘st = 'st = bool for S :: 'st where
W-propagate: propagate S S' = cdely S S’ |
W-conflict: conflict S 8" = cdely S S’ |

W-other: cdclyy-0 S S’ = cdelyy S S’

lemma cdclyy -cdclyy -restart:
cdelywy S T = cdclyy -restart S T

{proof)

lemma rtranclp-cdcly -cdclyy -restart:
cedelw** S T = cdclyy -restart™™ S T)

{proof)

lemma cdclyy -restart-all-rules-induct[consumes 1, case-names propagate conflict forget restart decide

skip resolve backtrack]:

fixes S :: /st

assumes
cdclyy -restart: cdclyy -restart S S’ and
propagate: \T. propagate S T — P S T and
conflict: NT. conflict ST = P S T and
forget: NT. forget ST — P S T and
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restart: NT. restart S T = P S T and

decide: ANT. decide ST = P S T and

skip: NT. skip ST — P S T and

resolve: NT. resolve S T = P S T and

backtrack: NT. backtrack ST = P S T
shows P § S’

{proof)

lemma cdclyy -restart-all-induct[consumes 1, case-names propagate conflict forget restart decide skip
resolve backtrack):
fixes S :: 'st
assumes

cdelyy -restart: cdelyy -restart S S’ and

propagateH: NC L T. conflicting S = None =
C €4 clauses S —
Le# C =
trail S F=as CNot (removel-mset L C) =
undefined-lit (trail S) L =
T ~ cons-trail (Propagated L C) S =
P S T and

conflictH: \D T. conflicting S = None —>
D €4 clauses S =
trail S =as CNot D =
T ~ update-conflicting (Some D) S =
P S T and

forgetH: \NC T. conflicting S = None —>
C €4 learned-clss S =
—(trail S) F=asm clauses S =
C ¢ set (get-all-mark-of-propagated (trail S)) =
C ¢# init-clss S =
removeAll-mset C (clauses S) Epm C =
T ~ remove-cls C § =
P ST and

restartH: AT U. conflicting S = None =
state T = ([], init-clss S, U, None, additional-info S) =
U C# learned-clss S —
P ST and

decideH: \NL T. conflicting S = None —>
undefined-lit (trail S) L =
atm-of L € atms-of-mm (init-clss S) =
T ~ cons-trail (Decided L) S =
P ST and

skipH: AL C' M E T.
trail S = Propagated L C' # M —
conflicting S = Some F —
—Lé¢# E= E#{#} =
T ~ tl-trail S =
P ST and

resolveH: NA\L EM D T.
trail S = Propagated L E # M —
Le# F =
hd-trail S = Propagated L F —>
conflicting S = Some D —>
—Le# D—
get-mazimum-level (trail S) ((removel-mset (—L) D)) = backtrack-lvl S =
T ~ update-conflicting

28



(Some (resolve-cls L D E)) (tl-trail S) =
P ST and
backtrackH: NL D K i M1 M2 T D'.
conflicting S = Some (add-mset L D) =
(Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) =
get-level (trail S) L = backtrack-lvl S =
get-level (trail S) L = get-mazimum-level (trail S) (add-mset L D') =
get-mazximum-level (trail S) D' = i =
get-level (trail S) K = i+1 =
D' C# D —
clauses S |=pm add-mset L D' —>
T ~ cons-trail (Propagated L (add-mset L D))
(reduce-trail-to M1
(add-learned-cls (add-mset L D’)
(update-conflicting None S))) =
PST
shows P § S5’

{proof)

lemma cdcly -o-induct[consumes 1, case-names decide skip resolve backtrack]:
fixes S :: ‘st
assumes cdclyy -restart: cdcly -0 S T and
decideH: NL T. conflicting S = None = undefined-lit (trail S) L
= atm-of L € atms-of-mm (init-clss S)
= T ~ cons-trail (Decided L) S
— P ST and
skipH: NL C' M E T.
trail S = Propagated L C' # M —
conflicting S = Some £ =
~L ¢# E= E # {#} =
T ~ tl-trail S =
P ST and
resolveH: NA\L EM D T.
trail S = Propagated L E # M —
Le# F =
hd-trail S = Propagated L F —>
conflicting S = Some D —>
—Le# D—
get-mazimum-level (trail S) ((removel-mset (—L) D)) = backtrack-lvl S =
T ~ update-conflicting
(Some (resolve-cls L D E)) (tl-trail ) =
P ST and
backtrackH: AL D K i M1 M2 T D'.
conflicting S = Some (add-mset L D) =
(Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) =
get-level (trail S) L = backtrack-lvl S —
get-level (trail S) L = get-mazimum-level (trail S) (add-mset L D') =
get-mazimum-level (trail S) D' = i =
get-level (trail S) K = i+1 =
D'C# D=
clauses S Epm add-mset L D' =
T ~ cons-trail (Propagated L (add-mset L D’))
(reduce-trail-to M1
(add-learned-cls (add-mset L D’)
(update-conflicting None S))) =
PST
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shows P S T
(proof)

lemma cdclyy -o-all-rules-induct[consumes 1, case-names decide backtrack skip resolve]:
fixes S T :: 'st
assumes
cdely -0 S T and
AT. decide ST = P S T and
NT. backtrack S T — P S T and
NT. skip ST = P S T and
NT. resolve ST = P ST
shows P S T

{proof)

lemma cdclyy -o-rule-cases[consumes 1, case-names decide backtrack skip resolve]:
fixes S T :: /st
assumes
cdely -0 S T and
decide S T =— P and
backtrack S T =—> P and
skip S T =— P and
resolve S T = P
shows P

(proof)

lemma backtrack-backtrackg:
(backtrack S T = backtrackg S T)

{proof)

lemma simple-backtrack-backtrackg:
(simple-backtrack S T = backtrackg S T

{proof)

1.1.3 Structural Invariants

Properties of the trail

We here establish that:

e the consistency of the trail;

e the fact that there is no duplicate in the trail.

Nitpicking 0.1. As one can see in the following proof, the properties of the levels are re-
quired to prove Item 1 page 94 of Weidenbach’s book. However, this point is only mentioned
later, and only in the proof of Item 7 page 95 of Weidenbach’s book.

lemma backtrack-lit-skiped:
assumes
L: get-level (trail S) L = backtrack-lvl S and
M1: (Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) and
no-dup: no-dup (trail S) and
lev-K: get-level (trail S) K =i + 1
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shows undefined-lit M1 L
(proof)

lemma cdclyy -restart-distinctinv-1:
assumes
cdelyy -restart S S’ and
n-d: no-dup (trail S)
shows no-dup (trail S')
(proof)

Item 1 page 94 of Weidenbach’s book

lemma cdclyy -restart-consistent-inv-2:
assumes
cdelyy -restart S S’ and
no-dup (trail S)
shows consistent-interp (lits-of-1 (trail S’))

(proof)

definition cdcly -M-level-inv :: ‘st = bool where
cdcly -M-level-inv S <—

consistent-interp (lits-of-1 (trail S))

A no-dup (trail S)

lemma cdclyy - M-level-inv-decomp:
assumes cdclyy-M-level-inv S
shows
consistent-interp (lits-of-1 (trail S)) and
no-dup (trail S)
(proof)

lemma cdclyy -restart-consistent-inv:
fixes S5’ :: 'st
assumes
cdclyy -restart S S’ and
cdelyy -M-level-inv S
shows cdclyy -M-level-inv S’
(proof)

lemma rtranclp-cdclyy -restart-consistent-inv:
assumes
cdelyy -restart™ S S’ and
cdelyy -M-level-inv S
shows cdclyy -M-level-inv S’

{proof)

lemma tranclp-cdclyy -restart-consistent-inv:
assumes
cdely -restarttt S S’ and
cdelyy -M-level-inv S
shows cdclyy -M-level-inv S’
(proof)

lemma cdcly -M-level-inv-S0-cdclyy -restart|simp]:

cdely -M-level-inv (init-state N)
{proof)
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lemma backtrack-ex-decomp:
assumes
M-1: no-dup (trail S) and
i-S: i < backtrack-lvl S
shows 3 K M1 M2. (Decided K # M1, M2) € set (get-all-ann-decomposition (trail S)) A
get-level (trail S) K = Suc i
(proof)

lemma backtrack-lvl-backtrack-decrease:
assumes nv: cdcly -M-level-inv S and bt: backtrack S T
shows backtrack-lvl T < backtrack-lvl S

{proof)

Compatibility with (~)

declare state-eg-trans[trans

lemma propagate-state-eq-compatible:
assumes
propa: propagate S T and
S5 8§ ~ §"and
TT" T ~ T'
shows propagate S’ T’
(proof)

lemma conflict-state-eq-compatible:
assumes
confl: conflict S T and
TT" T ~ T' and

S5 S ~ 8’
shows conflict S’ T"'
{proof)

lemma backtrack-state-eq-compatible:
assumes
bt: backtrack S T and
SS9’ 8 ~ S and
TT T ~ T’
shows backtrack S’ T’
(proof)

lemma decide-state-eq-compatible:
assumes
dec: decide S T and
S8 S ~ §"and
T T ~ T’
shows decide S’ T
(proof)

lemma skip-state-eq-compatible:
assumes
skip: skip S T and
S5 8 ~ §"and
TT" T ~ T'
shows skip S’ T’
(proof)
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lemma resolve-state-eq-compatible:
assumes
res: resolve S T and
TT" T ~ T’ and

588 ~ 8!
shows resolve S’ T’
(proof)

lemma forget-state-eq-compatible:
assumes
forget: forget S T and
S5 8 ~ §"and

TT" T ~ T'
shows forget S’ T’
(proof)
lemma cdclyy -restart-state-eq-compatible:
assumes
cdelyy-restart S T and —restart S T and
S~ S8
T~ T'
shows cdclyy-restart S’ T
(proof)
lemma cdclyy -bj-state-eq-compatible:
assumes
cdelw-bj S T
T~ T'
shows cdcly-bj S T’
(proof)
lemma tranclp-cdclyy -bj-state-eq-compatible:
assumes
cdely -bjt+ ST
S ~ §" and
T~ T'
shows cdclyy -bj™+ S’ T’
(proof)

lemma skip-unique:
skip ST — skip ST — T ~ T’
(proof)

lemma resolve-unique:
resolve S T = resolve S T' = T ~ T’

{proof)

The same holds for backtrack, but more invariants are needed.

Conservation of some Properties

lemma cdclyy -0-no-more-init-clss:
assumes
cdely -0 S S" and
inwv: cdely -M-level-inv S
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shows init-clss S = init-clss S’
(proof)

lemma tranclp-cdclyy -o-no-more-init-clss:
assumes
cdely -0t 8 S and
inv: cdelyy -M-level-inv S
shows init-clss S = init-clss S’

(proof)

lemma rtranclp-cdclyy -o-no-more-init-clss:
assumes
cdelyy-0** 8 8’ and
inv: cdelyy -M-level-inv S
shows init-clss S = init-clss S’
(proof)

lemma cdclyy -restart-init-clss:
assumes
cdelyy -restart S T
shows init-clss S = init-clss T

{proof)

lemma rtranclp-cdclyy -restart-init-clss:
cdelyy -restart™™ S T = init-clss S = init-clss T

{proof)

lemma tranclp-cdclyy -restart-init-clss:
cdelyy-restarttt S T = init-clss S = init-clss T

(proof)

Learned Clause

This invariant shows that:

e the learned clauses are entailed by the initial set of clauses.
e the conflicting clause is entailed by the initial set of clauses.

e the marks belong to the clauses. We could also restrict it to entailment by the clauses, to
allow forgetting this clauses.

definition (in stateyw -ops) reasons-in-clauses :: (st = bool) where
(reasons-in-clauses (S :: 'st) <—
(set (get-all-mark-of-propagated (trail S)) C set-mset (clauses S)))

definition (in statew -ops) cdely -learned-clause :: (st = bool) where
cdclyy -learned-clause (S :: 'st) +—

((VT. conflicting S = Some T — clauses S =pm T)

A reasons-in-clauses S)

lemma cdclyy -learned-clause-alt-def:
(edelyy -learned-clause (S :: 'st) +—
((V T. conflicting S = Some T — clauses S =pm T)
A set (get-all-mark-of-propagated (trail S)) C set-mset (clauses S)))
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{proof)

lemma reasons-in-clauses-init-state[simp|: (reasons-in-clauses (init-state N))

{proof)

Item 3 page 95 of Weidenbach’s book for the inital state and some additional structural prop-
erties about the trail.

lemma cdcly -learned-clause-SO-cdclyy -restart[simpl:
cdclyy -learned-clause (init-state N)

(proof)
Item 4 page 95 of Weidenbach’s book

lemma cdclyy -restart-learned-clss:
assumes
cdelyy -restart S S’ and
learned: cdclyy -learned-clause S and
lev-inv: cdclyy -M-level-inv S
shows cdclyy -learned-clause S’

{proof)

lemma rtranclp-cdclyy -restart-learned-clss:
assumes
cdelyy -restart** S S’ and
cdcly -M-level-inv S
cdclyy -learned-clause S
shows cdclyy -learned-clause S’

{proof)

lemma cdclyy -restart-reasons-in-clauses:
assumes
cdelyy -restart S S’ and
learned: reasons-in-clauses S
shows reasons-in-clauses S’

(proof)

lemma rtranclp-cdclyy -restart-reasons-in-clauses:
assumes
cdelyy -restart** S S’ and
learned: reasons-in-clauses S
shows reasons-in-clauses S’

{proof)

No alien atom in the state

This invariant means that all the literals are in the set of clauses. These properties are implicit
in Weidenbach’s book.

definition no-strange-atm S’ <—
(VY T. conflicting S" = Some T — atms-of T C atms-of-mm (init-clss S’))
A (Y L mark. Propagated L mark € set (trail S") — atms-of mark C atms-of-mm (init-clss S’))
A atms-of-mm (learned-clss S') C atms-of-mm (init-clss S”)
A atm-of ¢ (lits-of-l (trail S’)) C atms-of-mm (init-clss S”)

lemma no-strange-atm-decomp:
assumes no-strange-atm S
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shows conflicting S = Some T = atms-of T C atms-of-mm (init-clss S)

and (V L mark. Propagated L mark € set (trail S) — atms-of mark C atms-of-mm (init-clss S))
and atms-of-mm (learned-clss S) C atms-of-mm (init-clss S)

and atm-of ¢ (lits-of-1 (trail S)) C atms-of-mm (init-clss S)

(proof)

lemma no-strange-atm-S0 [simp]: no-strange-atm (init-state N)

(proof)

lemma propagate-no-strange-atm-inv:
assumes
propagate S T and
alien: no-strange-atm S
shows no-strange-atm T

{proof)

lemma atms-of-ms-learned-clss-restart-state-in-atms-of-ms-learned-clssI:
atms-of-mm (learned-clss S) C atms-of-mm (init-clss ) =
z € atms-of-mm (learned-clss T) =
learned-clss T C# learned-clss S —
z € atms-of-mm (init-clss S)

{proof)

lemma (in —) atms-of-subset-mset-mono: (D' C# D = atms-of D' C atms-of D

(proof)

lemma cdclyy -restart-no-strange-atm-explicit:

assumes
cdelyy -restart S S’ and
lev: cdclyy -M-level-inv S and
conf: ¥ T. conflicting S = Some T — atms-of T C atms-of-mm (init-clss S) and
decided: ¥ L mark. Propagated L mark € set (trail S)

— atms-of mark C atms-of-mm (init-clss S) and

learned: atms-of-mm (learned-clss S) C atms-of-mm (init-clss S) and
trail: atm-of ¢ (lits-of-1 (trail S)) C atms-of-mm (init-clss S)

shows
(VY T. confiicting S" = Some T — atms-of T C atms-of-mm (init-clss S’)) A
(V L mark. Propagated L mark € set (trail S') — atms-of mark C atms-of-mm (init-clss S')) A
atms-of-mm (learned-clss S’) C atms-of-mm (init-clss S') A
atm-of © (lits-of-1 (trail S')) C atms-of-mm (init-clss S”)
(is 2CS" AN PM S' AN 2U SN 2V S

(proof)

lemma cdclyy -restart-no-strange-atm-inv:
assumes cdclyy -restart S S’ and no-strange-atm S and cdclyy -M-level-inv S
shows no-strange-atm S’

{proof)

lemma rtranclp-cdclyy -restart-no-strange-atm-inv:
assumes cdclyy-restart** S S’ and no-strange-atm S and cdclyy -M-level-inv S
shows no-strange-atm S’

{proof)
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No Duplicates all Around

This invariant shows that there is no duplicate (no literal appearing twice in the formula). The
last part could be proven using the previous invariant also. Remark that we will show later
that there cannot be duplicate clause.

definition distinct-cdcly -state (S ::'st)
+— ((VT. conflicting S = Some T — distinct-mset T)
A distinct-mset-mset (learned-clss S)
A distinct-mset-mset (init-clss S)
A (V L mark. (Propagated L mark € set (trail S) — distinct-mset mark)))

lemma distinct-cdclyy -state-decomp:
assumes distinct-cdclyy -state S
shows
V T. conflicting S = Some T — distinct-mset T and
distinct-mset-mset (learned-clss S) and
distinct-mset-mset (init-clss S) and
Y L mark. (Propagated L mark € set (trail S) — distinct-mset mark)
{proof)

lemma distinct-cdclyy -state-decomp-2:
assumes distinct-cdcly -state S and conflicting S = Some T
shows distinct-mset T

{proof)

lemma distinct-cdely -state-S0-cdclyy -restart[simp):
distinct-mset-mset N = distinct-cdcly -state (init-state N)

{proof)

lemma distinct-cdclyy -state-inv:
assumes
cdelyy -restart S S’ and
lev-inv: cdcly -M-level-inv S and
distinct-cdclyy -state S
shows distinct-cdcelyy -state S’

(proof)

lemma rtanclp-distinct-cdclyy -state-inv:
assumes
cdelyy -restart™ S S’ and
cdelyy -M-level-inv S and
distinct-cdclyy -state S
shows distinct-cdclyy -state S’

{proof)

Conflicts and Annotations

This invariant shows that each mark contains a contradiction only related to the previously
defined variable.

abbreviation every-mark-is-a-conflict :: 'st = bool where
every-mark-is-a-conflict S =
V' L mark a b. a @ Propagated L mark # b = (trail S)

— (b l=as CNot (mark — {#L#}) N L €# mark)

definition cdclyy -conflicting :: 'st = bool where
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cdelyy -conflicting S <—
(V T. conflicting S = Some T — trail S |Eas CNot T) A every-mark-is-a-conflict S

lemma backtrack-atms-of-D-in-M1:
fixes S T :: 'stand D D’ :: ('v clausey and K L :: (v literal) and i :: nat and
M1 M2: (v, 'v clause) ann-lits
assumes
inv: no-dup (trail S) and
i get-mazimum-level (trail S) D' = { and
decomp: (Decided K # M1, M2)
€ set (get-all-ann-decomposition (trail S)) and
S-Wl: backtrack-ll S = get-maximum-level (trail S) (add-mset L D') and
S-confl: conflicting S = Some D and
lev-K: get-level (trail S) K = Suc i and
T: T ~ cons-trail K"
(reduce-trail-to M1
(add-learned-cls (add-mset L D’)
(update-conflicting None S))) and
confl: ¥V T. conflicting S = Some T — trail S =as CNot T and
D-D': «<D' C# D)
shows atms-of D' C atm-of * lits-of-l (tl (trail T))
(proof)

lemma distinct-atms-of-incl-not-in-other:
assumes
al: no-dup (M @ M') and
a2: atms-of D C atm-of ‘ lits-of-l M’ and
a8: x € atms-of D
shows = ¢ atm-of * lits-of-l M
(proof)

lemma backtrack-M1-CNot-D":
fixes S T :: ‘st and D D’ :: (v clause) and K L :: ('v literaly and 7 :: nat and
M1 M2: ('v, 'v clause) ann-lits
assumes
inv: no-dup (trail S) and
i get-mazimum-level (trail S) D' = { and
decomp: (Decided K # M1, M2)
€ set (get-all-ann-decomposition (trail S)) and
S-ll: backtrack-lvl S = get-mazimum-level (trail S) (add-mset L D) and
S-confl: conflicting S = Some D and
lev-K: get-level (trail S) K = Suc i and
T: T ~ cons-trail K"
(reduce-trail-to M1
(add-learned-cls (add-mset L D’)
(update-conflicting None S))) and
confl: ¥ T. conflicting S = Some T — trail S =as CNot T and
D-D'": «<D' C# D)
shows M1 =as CNot D’ and
atm-of (lit-of K'') = atm-of L = no-dup (trail T)
(proof)

Item 5 page 95 of Weidenbach’s book

lemma cdclyy -restart-propagate-is-conclusion:
assumes
cdelyy -restart S S’ and

38



inv: cdely -M-level-inv S and
decomp: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
learned: cdclyy -learned-clause S and
confl: ¥ T. conflicting S = Some T — trail S |=as CNot T and
alien: no-strange-atm S
shows all-decomposition-implies-m (clauses S”) (get-all-ann-decomposition (trail S"))

{proof)

lemma cdclyy -restart-propagate-is-false:

assumes
cdclyy -restart S S’ and
lev: cdcly -M-level-inv S and
learned: cdclyy -learned-clause S and
decomp: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
confl: ¥ T. conflicting S = Some T — trail S |=as CNot T and
alien: no-strange-atm S and
mark-confl: every-mark-is-a-conflict S

shows every-mark-is-a-conflict S’

(proof)

lemma cdclyy -conflicting-is-false:

assumes
cdelyy -restart S S’ and
M-lev: cdelyy -M-level-inv S and
confl-inv: ¥ T. conflicting S = Some T — trail S Fas CNot T and
decided-confl: ¥ L mark a b. a @ Propagated L mark # b = (trail S)

— (b l=as CNot (mark — {#L#}) N L €# mark) and

dist: distinct-cdclyy -state S

shows V T. conflicting S’ = Some T — trail S’ =as CNot T

(proof)

lemma cdclyy -conflicting-decomp:
assumes cdclyy -conflicting S
shows
YV T. conflicting S = Some T — trail S Eas CNot T and
YV L mark a b. a @ Propagated L mark # b = (trail S) —
(b Eas CNot (mark — {#L#}) N L €# mark)
(proof)

lemma cdclyy -conflicting-decomp2:
assumes cdclyy -conflicting S and conflicting S = Some T
shows trail S =as CNot T

{proof)

lemma cdclyy -conflicting-S0-cdclyy -restart[simp):
cdelw -conflicting (init-state N)
(proof)

definition cdclyy -learned-clauses-entailed-by-init where
(edelyy -learned-clauses-entailed-by-init S +— init-clss S |Epsm learned-clss S)

lemma cdclyy -learned-clauses-entailed-init[ simp]:
(cdclyy -learned-clauses-entailed-by-init (init-state N))

{proof)

lemma cdclyy -learned-clauses-entailed:
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assumes
cdelyy -restart: cdelyy -restart S S’ and
2: cdclyy -learned-clause S and
9: (cdclyy -learned-clauses-entailed-by-init S)
shows <cdcly -learned-clauses-entailed-by-init S
(proof)

lemma rtranclp-cdcly -learned-clauses-entailed:
assumes
cdclyy -restart: cdclyy -restart*™ S S’ and
2: cdelyy -learned-clause S and
4 cdely -M-level-inv S and
9: (cdclyy -learned-clauses-entailed-by-init S)
shows <(cdclyy -learned-clauses-entailed-by-init S”

{proof)

Putting all the Invariants Together

lemma cdclyy -restart-all-inv:
assumes
cdelyy -restart: cdelyy -restart S S’ and
. all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
: cdelyy -learned-clause S and
: cdclyy -M-level-inv S and
: no-strange-atm S and
: distinct-cdelyy -state S and
. cdclyy -conflicting S
shows
all-decomposition-implies-m (clauses S’) (get-all-ann-decomposition (trail S')) and
cdelyy -learned-clause S’ and
cdelyy -M-level-inv S’ and
no-strange-atm S’ and
distinct-cdelyy -state S’ and
cdclyy -conflicting S’

(proof)

o 3 CTR. DS =

lemma rtranclp-cdclyy -restart-all-inv:
assumes
cdclyy -restart: rtranclp cdely -restart S S’ and
. all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
: cdelyy -learned-clause S and
: cedely -M-level-inv S and
: no-strange-atm S and
: distinct-cdcelyy -state S and
. cdclyy -conflicting S
shows
all-decomposition-implies-m (clauses S') (get-all-ann-decomposition (trail S’)) and
cdelyy -learned-clause S’ and
cdelyy -M-level-inv S’ and
no-strange-atm S’ and
distinct-cdclyy -state S’ and
cdclyy -conflicting S’
(proof)

S 3 TrI. o~

lemma all-invariant-S0-cdclyy, -restart:
assumes distinct-mset-mset N
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shows
all-decomposition-implies-m (init-clss (init-state N))
(get-all-ann-decomposition (trail (init-state N))) and
cdclyy -learned-clause (init-state N) and
YV T. conflicting (init-state N) = Some T — (trail (init-state N))Eas CNot T and
no-strange-atm (init-state N) and
consistent-interp (lits-of-l (trail (init-state N))) and
YV L mark a b. a @ Propagated L mark # b = trail (init-state N) —
(b =as CNot (mark — {#L#}) A L €# mark) and
distinct-cdcly -state (init-state N)
(proof)

Item 6 page 95 of Weidenbach’s book

lemma cdclyy -only-propagated-vars-unsat:

assumes
decided: ¥V x € set M. — is-decided r and
DN: D €# clauses S and
D: M [=as CNot D and
inv: all-decomposition-implies-m (N + U) (get-all-ann-decomposition M) and
state: state S = (M, N, U, k, C) and
learned-cl: cdelyy -learned-clause S and
atm-incl: no-strange-atm S

shows unsatisfiable (set-mset (N + U))

(proof)
Item 5 page 95 of Weidenbach’s book

We have actually a much stronger theorem, namely all-decomposition-implies-propagated-lits-are-implied,
that show that the only choices we made are decided in the formula

lemma
assumes all-decomposition-implies-m N (get-all-ann-decomposition M)
and Vm € set M. —is-decided m
shows set-mset N Eps unmark-1 M

(proof)
Item 7 page 95 of Weidenbach’s book (part 1)

lemma conflict-with-false-implies-unsat:
assumes
cdclyy -restart: cdcly -restart S S’ and
lev: cdcly -M-level-inv S and
[simp]: conflicting S" = Some {#} and
learned: cdclyy -learned-clause S and
learned-entailed: <cdclyy -learned-clauses-entailed-by-init S
shows unsatisfiable (set-mset (clauses S))

{proof)
Item 7 page 95 of Weidenbach’s book (part 2)

lemma conflict-with-false-implies-terminated:
assumes cdcly -restart S S’ and conflicting S = Some {#}
shows Fulse

{proof)

No tautology is learned

This is a simple consequence of all we have shown previously. It is not strictly necessary, but
helps finding a better bound on the number of learned clauses.
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lemma learned-clss-are-not-tautologies:
assumes
cdelyy -restart S S’ and
lev: cdclyy -M-level-inv S and
conflicting: cdclyy -conflicting S and
no-tauto: V' s €# learned-clss S. —tautology s
shows Vs €# learned-clss S’. —tautology s

(proof)

definition final-cdcly -restart-state (S :: 'st)
> (trail S [=asm init-clss S
V (YL € set (trail S). —is-decided L) A
(3 C €# init-clss S. trail S F=as CNot C)))

definition termination-cdclyy -restart-state (S :: 'st)
> (trail S [=asm init-clss S
V (YL € atms-of-mm (init-clss S). L € atm-of * lits-of-1 (trail S))
A (3 C €# init-clss S. trail S F=as CNot C)))

1.1.4 CDCL Strong Completeness

lemma cdclyy -restart-can-do-step:
assumes
consistent-interp (set M) and
distinct M and
atm-of ¢ (set M) C atms-of-mm N
shows 3 5. rtranclp cdcly -restart (init-state N) S
A state-butlast S = (map (AL. Decided L) M, N, {#}, None)

{proof)
theorem 2.9.11 page 98 of Weidenbach’s book

lemma cdclyy -restart-strong-completeness:

assumes
MN: set M =sm N and
cons: consistent-interp (set M) and
dist: distinct M and
atm: atm-of ¢ (set M) C atms-of-mm N

obtains S where
state-butlast S = (map (AL. Decided L) M, N, {#}, None) and
rtranclp cdcly -restart (init-state N) S and
final-cdclyy -restart-state S

(proof)

1.1.5 Higher level strategy

The rules described previously do not necessary lead to a conclusive state. We have to add a
strategy:

e do propagate and conflict when possible;

e otherwise, do another rule (except forget and restart).
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Definition

lemma tranclp-conflict:
tranclp conflict S S" = conflict S S’

{proof)

lemma no-chained-conflict:
assumes conflict S S’ and conflict S’ S’
shows Fulse

{proof)

lemma tranclp-conflict-iff:
fulll conflict S S’ <— conflict S S’
(proof)

lemma no-conflict-after-conflict:
conflict S T = —conflict T U
(proof)

lemma no-propagate-after-conflict:
conflict S T = —propagate T U
(proof)

inductive cdcly -stgy :: ‘st = ‘st = bool for S :: ‘st where

conflict”: conflict S S' = cdcly -stgy S S |

propagate’: propagate S S' = cdely -stgy S S’ |

other’: no-step conflict S = no-step propagate S = cdcly -0 S S’ = cdcly -stgy S S’

lemma cdclyy -stgy-cdely: cdcly-stgy S T = cdcly S T

{proof)

lemma cdclyy -stgy-induct[consumes 1, case-names conflict propagate decide skip resolve backtrack):
assumes
(cdely -stgy S T) and
(AT. conflict ST = P T)» and
(AT. propagate S T = P T) and
(A\T. no-step conflict S = no-step propagate S —> decide S T = P T and
(AT. no-step conflict S = no-step propagate S — skip S T — P T)> and
(AT. no-step conflict S = no-step propagate S = resolve S T = P T) and
(AT. no-step conflict S = no-step propagate S = backtrack S T — P T>
shows
(P T

(proof)

lemma cdclyy -stgy-cases[consumes 1, case-names conflict propagate decide skip resolve backtrack]:
assumes
(cdcly -stgy S T) and
(conflict S T = P> and
(propagate S T —> P)> and
(no-step conflict S = no-step propagate S = decide S T — P> and
(no-step conflict S = no-step propagate S —> skip S T =— P> and
(no-step conflict S = no-step propagate S = resolve S T — P) and
(no-step conflict S = no-step propagate S = backtrack S T — P
shows
P

{proof)
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Invariants

lemma cdclyy -stgy-consistent-inv:
assumes cdcly -stgy S S’ and cdely -M-level-inv S
shows cdclyy -M-level-inv S’

{proof)

lemma rtranclp-cdclyy -stgy-consistent-inv:
assumes cdcly -stgy™™ S S’ and cdcly -M-level-inv S
shows cdclyy -M-level-inv S’

{proof)

lemma cdclyy -stgy-no-more-init-clss:
assumes cdclyy-stgy S S’
shows init-clss S = init-clss S’
(proof)

lemma rtranclp-cdclyy -stgy-no-more-init-clss:
assumes cdclyy -stgy** S S’
shows init-clss S = init-clss S’

{proof)

Literal of highest level in conflicting clauses

One important property of the cdclyy -restart with strategy is that, whenever a conflict takes
place, there is at least a literal of level k involved (except if we have derived the false clause).
The reason is that we apply conflicts before a decision is taken.

definition conflict-is-false-with-level :: 'st = bool where
conflict-is-false-with-level S =V D. conflicting S = Some D — D # {#}
— (3L €# D. get-level (trail S) L = backtrack-lvl S)

declare conflict-is-false-with-level-def[simp)

Literal of highest level in decided literals

definition mark-is-false-with-level :: 'st = bool where
mark-is-false-with-level S’ =
VD M1 M2 L. M1 @Q Propagated L D # M2 = trail S' — D — {#L#} # {#}
— (3L. L €# D A get-level (trail S') L = count-decided M1)

lemma backtrackyy, -rule:
assumes
confl: «conflicting S = Some (add-mset L D)) and
decomp: ((Decided K # M1, M2) € set (get-all-ann-decomposition (trail S))) and
lev-L: (get-level (trail S) L = backtrack-lvl S) and
maz-lev: (get-level (trail S) L = get-mazimum-level (trail S) (add-mset L D) and
maz-D: (get-mazimum-level (trail S) D = i) and
lev-K: <get-level (trail S) K = i + 1) and
T: (T ~ cons-trail (Propagated L (add-mset L D))
(reduce-trail-to M1
(add-learned-cls (add-mset L D)
(update-conflicting None S)))» and
lev-inv: cdcly -M-level-inv S and
conf: (cdcly -conflicting S» and
learned: (cdclyy -learned-clause S)
shows (backtrack S T)
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{proof)

lemma backtrack-no-decomp:

assumes
S: conflicting S = Some (add-mset L E) and
L: get-level (trail S) L = backtrack-lvl S and
D: get-mazimum-level (trail S) E < backtrack-lvl S and
bt: backtrack-ll S = get-mazimum-level (trail S) (add-mset L E) and
lev-inv: cdcly -M-level-inv S and
conf: (cdcly -conflicting S) and
learned: (cdclyy -learned-clause S)

shows 35'. cdelyy-0 S S' 38, backtrack S S’

(proof)

lemma no-analyse-backtrack-Ez-simple-backtrack:
assumes
bt: (backtrack S T) and
lev-inv: cdcly -M-level-inv S and
conf: (cdcly -conflicting S)» and
learned: <cdclyy -learned-clause S) and
no-dup: (distinct-cdclyy -state S) and
ns-s: (no-step skip S) and
ns-r: (no-step resolve S)
shows (Fz(simple-backtrack S))

(proof)

lemma trail-begins-with-decided-conflicting-exists-backtrack:
assumes
confl-k: (conflict-is-false-with-level S) and
conf: (cdcly -conflicting S» and
level-inv: <cdelyy -M-level-inv S) and
no-dup: (distinct-cdclyy -state S) and
learned: (cdclyy -learned-clause S) and
alien: (no-strange-atm S> and
tr-ne: (trail S # [» and
L’ <hd-trail S = Decided L' and
nempty: «C # {#} and
confl: conflicting S = Some C)
shows (Ez (backtrack S)) and (no-step skip S and (no-step resolve S

(proof)

lemma conflicting-no-false-can-do-step:

assumes
confl: <conflicting S = Some C) and
nempty: «C # {#} and
confl-k: (conflict-is-false-with-level S) and
conf: (cdcly -conflicting S) and
level-inv: <cdclyy -M-level-inv S) and
no-dup: (distinct-cdclyy -state S) and
learned: (cdclyy -learned-clause S) and
alien: (no-strange-atm S> and
termi: (no-step cdcly -stgy S)

shows Fulse

(proof)

lemma cdclyy -stgy-final-state-conclusive2:
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assumes
termi: no-step cdcly -stgy S and
decomp: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
learned: cdclyy -learned-clause S and
level-inv: cdclyy -M-level-inv S and
alien: no-strange-atm S and
no-dup: distinct-cdclyy -state S and
confl: cdclyy -conflicting S and
confl-k: conflict-is-false-with-level S
shows (conflicting S = Some {#} N unsatisfiable (set-mset (clauses S)))
V (conflicting S = None A trail S [=as set-mset (clauses S))

(proof)

lemma cdclyy -stgy-final-state-conclusive:
assumes
termi: no-step cdcly -stgy S and
decomp: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
learned: cdclyy -learned-clause S and
level-inv: cdclyy -M-level-inv S and
alien: no-strange-atm S and
no-dup: distinct-cdclyy -state S and
confl: cdcly -conflicting S and
confl-k: conflict-is-false-with-level S and
learned-entailed: <cdclyy -learned-clauses-entailed-by-init S
shows (conflicting S = Some {#} N unsatisfiable (set-mset (init-clss S)))
V (conflicting S = None A trail S |=as set-mset (init-clss S))
(proof)

lemma cdclyy -stgy-tranclp-cdclyy -restart:
cdcly -stgy S S’ = cdclyy -restart™ S S’

{proof)

lemma tranclp-cdclyy -stgy-tranclp-cdclyy -restart:
cdcly -stgytT S S' = cdcly -restartt™ S S’

{proof)

lemma rtranclp-cdclyy -stgy-rtranclp-cdcly -restart:
cdcly -stgy** S S' = cdelw -restart™ S S’

(proof)

lemma cdclyy -o-conflict-is-false-with-level-inv:

assumes
cdelyy-0 S S' and
lev: cdclyy -M-level-inv S and
confl-inv: conflict-is-false-with-level S and
n-d: distinct-cdclyy -state S and
conflicting: cdcly -conflicting S

shows conflict-is-false-with-level S’

{proof)

Strong completeness

lemma propagate-high-levelE:
assumes propagate S T
obtains M’ N’ U L C where
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state-butlast S = (M', N, U, None) and
state-butlast T = (Propagated L (C + {#L#}) # M', N', U, None) and
C + {#L#} €# local.clauses S and
M’ =as CNot C and
undefined-lit (trail S) L
(proof)

lemma cdclyy -propagate-conflict-completeness:
assumes
MN: set M |=s set-mset N and
cons: consistent-interp (set M) and
tot: total-over-m (set M) (set-mset N) and
lits-of-1 (trail S) C set M and
init-clss S = N and
propagate*™ S S’ and
learned-clss S = {#}
shows length (trail S) < length (trail S) A lits-of-l (trail S') C set M
{proof)

lemma
assumes propagate™™ S X
shows
rtranclp-propagate-init-clss: init-clss X = init-clss S and
rtranclp-propagate-learned-clss: learned-clss X = learned-clss S

(proof)

lemma cdclyy -stgy-strong-completeness-n:
assumes
MN: set M |=s set-mset N and
cons: consistent-interp (set M) and
tot: total-over-m (set M) (set-mset N) and
atm-incl: atm-of ¢ (set M) C atms-of-mm N and
distM: distinct M and
length: n < length M
shows
IM'S. length M' > n A
lits-of-l M' C set M A
no-dup M’ N\
state-butlast S = (M', N, {#}, None) A
cdelyy -stgy** (init-state N) S
(proof)

lemma cdclyy -stgy-strong-completeness':
assumes
MN: set M |=s set-mset N and
cons: consistent-interp (set M) and
tot: total-over-m (set M) (set-mset N) and
atm-incl: atm-of ¢ (set M) C atms-of-mm N and
distM: distinct M
shows
IM'S. lits-of-l M’ = set M A
state-butlast S = (M', N, {#}, None) A
cdely -stgy™* (init-state N) S
(proof)

theorem 2.9.11 page 98 of Weidenbach’s book (with strategy)
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lemma cdclyy -stgy-strong-completeness:
assumes
MN: set M =s set-mset N and
cons: consistent-interp (set M) and
tot: total-over-m (set M) (set-mset N) and
atm-incl: atm-of ¢ (set M) C atms-of-mm N and
distM: distinct M
shows
IM'kS.
lits-of-l M' = set M A
state-butlast S = (M', N, {#}, None) A
cdely -stgy™™* (init-state N) S A
final-cdclyy -restart-state S

(proof)

No conflict with only variables of level less than backtrack level

This invariant is stronger than the previous argument in the sense that it is a property about
all possible conflicts.

definition no-smaller-confl (S ::'st) =
(VMK M'D. trail S = M’ Q Decided K # M — D €# clauses S — - M =as CNot D)

lemma no-smaller-confl-init-sate[simp]:
no-smaller-confl (init-state N) (proof)

lemma cdclyy -0-no-smaller-confi-inv:

fixes S S’ :: 'st

assumes
cdelyy-0 S S' and
n-s: no-step conflict S and
lev: cdclyy -M-level-inv S and
mazx-lev: conflict-is-false-with-level S and
smaller: no-smaller-confl S

shows no-smaller-confl S’

{proof)

lemma conflict-no-smaller-confi-inv:
assumes conflict S S’
and no-smaller-confl S
shows no-smaller-confl S’

{proof)

lemma propagate-no-smaller-confl-inv:
assumes propagate: propagate S S’
and n-l: no-smaller-confl S
shows no-smaller-confl S’

(proof)

lemma cdclyy -stgy-no-smaller-confi:
assumes cdclyy-stgy S S’
and n-l: no-smaller-confl S
and conflict-is-false-with-level S
and cdclyy -M-level-inv S
shows no-smaller-confl S’

{proof)
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lemma conflict-conflict-is-false-with-level:
assumes
conflict: conflict S T and
smaller: no-smaller-confl S and
M-lev: cdcly -M-level-inv S
shows conflict-is-false-with-level T

(proof)

lemma cdclyy -stgy-ez-lit-of-max-level:

assumes
cdely -stgy S S’ and
n-l: no-smaller-confl S and
conflict-is-false-with-level S and
cdelyy -M-level-inv S and
distinct-cdclyy -state S and
cdclyy -conflicting S

shows conflict-is-false-with-level S’

(proof)

lemma rtranclp-cdclyy -stgy-no-smaller-confl-inv:

assumes
cdelyy -stgy** S S’ and
n-l: no-smaller-confl S and
cls-false: conflict-is-false-with-level S and
lev: cdcly -M-level-inv S and
dist: distinct-cdcly -state S and
conflicting: cdcly -conflicting S and
decomp: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
learned: cdclyy -learned-clause S and
alien: no-strange-atm S

shows no-smaller-confl 8" A\ conflict-is-false-with-level S’

{proof)

Final States are Conclusive

theorem 2.9.9 page 97 of Weidenbach’s book

lemma full-cdclyy -stgy-final-state-conclusive:
fixes S’ :: 'st
assumes full: full cdely -stgy (init-state N) S’
and no-d: distinct-mset-mset N
shows (conflicting S’ = Some {#} A unsatisfiable (set-mset (init-clss S')))
V (conflicting S’ = None A trail S’ |=asm init-clss S”)
(proof)

lemma cdclyy -o-fst-empty-conflicting-false:
assumes
cdely -0 S S" and
trail S =[] and
conflicting S # None
shows Fulse
(proof)

lemma cdclyy -stgy-fst-empty-conflicting-false:
assumes
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cdely -stgy S S’ and

trail S = [] and

conflicting S # None
shows Fulse

{proof)

lemma cdclyy -o-conflicting-is-false:
cdelw-0 S S" = conflicting S = Some {#} = False

(proof)

lemma cdclyy -stgy-conflicting-is-false:
cdely -stgy S 8" = conflicting S = Some {#} = Fulse
(proof)

lemma rtranclp-cdclyy -stgy-conflicting-is-false:
cdcly -stgy** S S' = conflicting S = Some {#} — S’ =8
(proof)

definition conflict-or-propagate :: 'st = 'st = bool where
conflict-or-propagate S T <— conflict S T V propagate S T

declare conflict-or-propagate-def[simp]

lemma conflict-or-propagate-intros:
conflict S T = conflict-or-propagate S T
propagate S T = conflict-or-propagate S T
(proof)

theorem 2.9.9 page 97 of Weidenbach’s book

lemma full-cdclyy -stgy-final-state-conclusive-from-init-state:
fixes S’ :: 'st
assumes full: full cdely -stgy (init-state N) S’
and no-d: distinct-mset-mset N
shows (conflicting S’ = Some {#} A unsatisfiable (set-mset N))
V (conflicting S’ = None A trail S’ =asm N A satisfiable (set-mset N))

(proof)

1.1.6 Structural Invariant

The condition that no learned clause is a tautology is overkill for the termination (in the sense
that the no-duplicate condition is enough), but it allows to reuse simple-clss.

The invariant contains all the structural invariants that holds,

definition cdclyy -all-struct-inv where

cdclyy -all-struct-inv S <—
no-strange-atm S A
cdelyy -M-level-inv S A
(Vs €4 learned-clss S. —tautology s) N
distinct-cdclyy -state S A
cdclyy -conflicting S A
all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) A
cdcly -learned-clause S

lemma cdclyy -all-struct-inv-inv:

assumes cdclyy-restart S S’ and cdclyy -all-struct-inv S
shows cdclyy -all-struct-inv S’
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{proof)

lemma rtranclp-cdclyy -all-struct-inv-inv:
assumes cdclyy-restart** S S’ and cdclyy -all-struct-inv S
shows cdclyy -all-struct-inv S’

{proof)

lemma cdclyy -stgy-cdclyy -all-struct-inv:
cdely -stgy S T = cdclyy -all-struct-inv S = cdcly -all-struct-inv T

{proof)

lemma rtranclp-cdclyy -stgy-cdclyy -all-struct-inv:
cdelyy -stgy™ S T = cdcly -all-struct-inv S = cdclyy -all-struct-inv T

(proof)

lemma beginning-not-decided-invert:
assumes A: M @ A = M’ @ Decided K # H and
nm: YV mée&set M. —is-decided m
shows 3M. A = M @ Decided K # H

(proof)

1.1.7 Strategy-Specific Invariant

definition cdclyy -stgy-invariant where
cdclyy -stgy-invariant S <—
conflict-is-false-with-level S
A no-smaller-confl S

lemma cdclyy -stgy-cdclyy -stgy-invariant:
assumes
cdclyy -restart: cdely -stgy S T and
nwv-s: cdcly -stgy-invariant S and
inv: cdelyy -all-struct-inv S
shows
cdclyy -stgy-invariant T

{proof)

lemma rtranclp-cdclyy -stgy-cdclyy -stgy-invariant:
assumes
cdelyy -restart: cdclyy -stgy** S T and
inv-s: cdcly -stgy-invariant S and
inv: cdelyy -all-struct-inv S
shows
cdclyy -stgy-invariant T

{proof)

lemma full-cdclyy -stgy-inv-normal-form:
assumes
Sfull: full cdely-stgy S T and
inv-s: cdcly -stgy-invariant S and
inv: cdely -all-struct-inv S and
learned-entailed: <cdclyy -learned-clauses-entailed-by-init S
shows conflicting T = Some {#} A unsatisfiable (set-mset (init-clss S))
V conflicting T = None A trail T =asm init-clss S A satisfiable (set-mset (init-clss S))
(proof)

o1



lemma full-cdclyy -stgy-inv-normal-form?2:
assumes
Sull: full cdely -stgy S T and
inv-s: cdclyy -stgy-invariant S and
inv: cdelyy -all-struct-inv S
shows conflicting T = Some {#} A unsatisfiable (set-mset (clauses T))
V conflicting T = None A satisfiable (set-mset (clauses T))

(proof)

1.1.8 Additional Invariant: No Smaller Propagation

definition no-smaller-propa :: /st = bool) where
no-smaller-propa (S ::'st) =
(VM KM'D L. trail S = M’ @Q Decided K # M — D + {#L#} €# clauses S — undefined-lit M
L
— =M [=as CNot D)

lemma propagated-cons-eq-append-decide-cons:
Propagated L E # Ms = M' Q Decided K # M +—
M'#[] AN Ms=tl M'Q Decided K # M A hd M’ = Propagated L E

(proof)

lemma in-get-all-mark-of-propagated-in-trail:
(C' € set (get-all-mark-of-propagated M) <— (3 L. Propagated L C € set M),
(proof)

lemma no-smaller-propa-tl:
assumes
(no-smaller-propa S) and
(trail S # []» and
(—is-decided(hd-trail S)) and
(trail U = tl (trail S)) and
(clauses U = clauses S)
shows
(no-smaller-propa U

{proof)

lemmas rulesk =
skipF resolveF backtrackE propagateE conflictE decideF restartF forgetE backtrackgF

lemma decide-no-smaller-step:
assumes dec: (decide S T) and smaller-propa: (no-smaller-propa S)» and
n-s: (no-step propagate S
shows (no-smaller-propa T)

(proof)

lemma no-smaller-propa-reduce-trail-to:
(no-smaller-propa S => no-smaller-propa (reduce-trail-to M1 S)»

{proof)

lemma backtrackg-no-smaller-propa:
assumes o: (backtrackg S T)» and smaller-propa: (no-smaller-propa S> and
n-d: (no-dup (trail S)> and
n-s: (no-step propagate S) and
tr-CNot: (rail S [=as CNot (the (conflicting S))
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shows (no-smaller-propa T)

(proof)

lemmas backtrack-no-smaller-propa = backtrackg-no-smaller-propa] OF backtrack-backtrackg]

lemma cdclyy -stgy-no-smaller-propa:
assumes
cdel: «cdelyy-stgy S T and
smaller-propa: <no-smaller-propa S> and
inv: <cdclyy -all-struct-inv S
shows (no-smaller-propa T)

{proof)

lemma rtranclp-cdclyy -stgy-no-smaller-propa:
assumes
cdel: <cdelyy -stgy™ S T) and
smaller-propa: (no-smaller-propa S) and
inv: (edelyy -all-struct-inv S
shows (no-smaller-propa T)

{proof)

lemma hd-trail-level-ge-1-length-gt-1:
fixes S :: 'st
defines M[symmetric, simp|: (M = trail
defines L[symmetric, simp]: <L = hd M>
assumes
smaller: (no-smaller-propa S) and
struct: <cdclyy -all-struct-inv S) and
dec: (count-decided M > 1) and
proped: <is-proped L
shows (size (mark-of L) > 1)

(proof)

1.1.9 More Invariants: Conflict is False if no decision

If the level is higher than 0, then the conflict is not empty.

definition conflict-non-zero-unless-level-0 :: (st = bool) where
(conflict-non-zero-unless-level-0 S +—
(conflicting S = Some {#} — count-decided (trail S) = 0)

definition no-false-clause:: (st = bool> where
(no-false-clause S «— (V C €# clauses S. C # {#})

lemma cdclyy -restart-no-false-clause:
assumes
cedelyy -restart S T
(no-false-clause S)
shows (no-false-clause T)

{proof)
The proofs work smoothly thanks to the side-conditions about levels of the rule resolve.

lemma cdclyy -restart-conflict-non-zero-unless-level-0:
assumes
cedelyy -restart S T
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(no-false-clause S)» and
cconflict-non-zero-unless-level-0 S)
shows (conflict-non-zero-unless-level-0 T)

{proof)

lemma rtranclp-cdclyy -restart-no-false-clause:
assumes
cedelyy -restart™ S T
(no-false-clause S)
shows (no-false-clause T)

{proof)

lemma rtranclp-cdclyy -restart-conflict-non-zero-unless-level-0:
assumes
cedelyy -restart™™ S T
(no-false-clause S> and
(conflict-non-zero-unless-level-0 S
shows (conflict-non-zero-unless-level-0 T)

(proof)

definition propagated-clauses-clauses :: 'st = bool where
(propagated-clauses-clauses S = V L K. Propagated L K € set (trail S) — K €# clauses S

lemma propagate-single-literal-clause-get-level-is-0:
assumes
smaller: (no-smaller-propa S) and
propa-tr: (Propagated L {#L#} € set (trail S)) and
n-d: (no-dup (trail S)> and
propa: (propagated-clauses-clauses S
shows (get-level (trail S) L = O

(proof)

Conflict Minimisation

Remove Literals of Level 0 lemma conflict-minimisation-level-0:
fixes S :: 'st
defines D[simp|: <D = the (conflicting S))
defines [simp]: (M = trail S
defines (D' = filter-mset (AL. get-level M L > 0) D
assumes
ns-s: (no-step skip S and
ns-r: (no-step resolve S) and
inv-s: cdcly -stgy-invariant S and
inv: cdelyy -all-struct-inv S and
conf: conflicting S # None) (conflicting S # Some {#}> and
M-nempty: <M ~= [
shows
clauses S Epm D' and
(— lit-of (hd M) €4 D"
(proof)

lemma literals-of-level0-entailed:
assumes
struct-invs: (cdclyy -all-struct-inv S» and
in-trail: <L € lits-of-1 (trail S)) and
lev: «get-level (trail S) L = O
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shows

(clauses S |Epm {#L#}H
(proof)

1.1.10 Some higher level use on the invariants

In later refinement we mostly us the group invariants and don’t try to be as specific as above.
The corresponding theorems are collected here.

lemma conflict-conflict-is-false-with-level-all-inv:
conflict S T =
no-smaller-confl § =
cdclyy -all-struct-inv S =
conflict-is-false-with-level T)

{proof)

lemma cdclyy -stgy-ez-lit-of-mazx-level-all-inv:
assumes
cdely -stgy S S’ and
n-l: no-smaller-confl S and
conflict-is-false-with-level S and
cdelyy -all-struct-inv S
shows conflict-is-false-with-level S’

{proof)

lemma cdclyy -o-conflict-is-false-with-level-inv-all-inv:
assumes
tedely -0 S T
cedelyy -all-struct-inv S)
(conflict-is-false-with-level S)
shows (conflict-is-false-with-level T)

(proof)

lemma no-step-cdclyy -total:
assumes
(no-step cdclyy S
(conflicting S = None)
(no-strange-atm S)
shows «total-over-m (lits-of-1 (trail S)) (set-mset (clauses S))»

(proof)

lemma cdclyy -Ex-cdclyy -stgy:
assumes
cedely S T
shows (Ez(cdely -stgy S)

(proof)

lemma no-step-skip-hd-in-conflicting:
assumes
nv-s: (cdclyy -stgy-invariant S) and
inv: (cdelyy -all-struct-inv S) and
ns: (no-step skip S> and
confl: «conflicting S # None) <conflicting S # Some {#}
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shows «—lit-of (hd (trail S)) €# the (conflicting S)
(proof)

lemma
fixes S
assumes
nss: (no-step skip S) and
nsr: (no-step resolve S> and
invs: <cdelyy -all-struct-inv S) and
stgy: <cdclyy -stgy-invariant S) and
confl: <conflicting S # None) and
confl’: «conflicting S # Some {#}
shows no-skip-no-resolve-single-highest-level:
(the (conflicting S) =
add-mset (—(lit-of (hd (trail S)))) {#L €4 the (conflicting S).
get-level (trail S) L < local.backtrack-lvl S#} (is ?A) and
no-skip-no-resolve-level-lvl-nonzero:
(0 < backtrack-lvl S» (is ¢B) and
no-skip-no-resolve-level-get-mazimum-Ivl-le:
(get-mazimum-level (trail S) (removel-mset (—(lit-of (hd (trail S)))) (the (conflicting S)))
< backtrack-lwl S (is ?C)
(proof)

end

end

theory CDCL-W-Termination
imports CDCL-W

begin

context conflict-driven-clause-learningyy
begin

1.1.11 Termination

No Relearning of a clause

Because of the conflict minimisation, this version is less clear than the version without: instead
of extracting the clause from the conflicting clause, we must take it from the clause used to
backjump; i.e., the annotation of the first literal of the trail.

We also prove below that no learned clause is subsumed by a (smaller) clause in the clause set.

lemma cdclyy -stgy-no-relearned-clause:
assumes
cdcl: backtrack S T) and
inv: (cdelyy -all-struct-inv S) and
smaller: (no-smaller-propa S
shows
(mark-of (hd-trail T) ¢4 clauses S)

(proof)

lemma cdclyy -stgy-no-relearned-larger-clause:
assumes
cdcel: <backtrack S T and
inv: <cdclyy -all-struct-inv S) and
smaller: (no-smaller-propa S) and
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smaller-conf: (mo-smaller-confl S) and
E-subset: <E C# mark-of (hd-trail T))
shows (F ¢# clauses S

(proof)

lemma cdclyy -stgy-no-relearned-highest-subres-clause:
assumes
cdel: <backtrack S T) and
inv: (cdclyy -all-struct-inv S) and
smaller: (no-smaller-propa S) and
smaller-conf: <no-smaller-confl S) and
E-subset: <mark-of (hd-trail T) = add-mset (lit-of (hd-trail T)) E)
shows (add-mset (— lit-of (hd-trail T)) E ¢# clauses S
(proof)

lemma cdclyy -stgy-distinct-mset:
assumes
cdcel: <cdely -stgy S T) and
inv: cdelyy -all-struct-inv S and
smaller: (no-smaller-propa S) and
dist: (distinct-mset (clauses S)
shows
(distinct-mset (clauses T')

(proof)

This is a more restrictive version of the previous theorem, but is a better bound for an imple-
mentation that does not do duplication removal (esp. as part of preprocessing).

lemma cdclyy -stgy-learned-distinct-mset:
assumes
cdcl: <cdelyy -stgy S T) and
inv: cdelyy -all-struct-inv S and
smaller: (no-smaller-propa S) and
dist: «distinct-mset (learned-clss S + remdups-mset (init-clss S))
shows
(distinct-mset (learned-clss T + remdups-mset (init-clss T)))

(proof)

lemma rtranclp-cdclyy -stgy-distinct-mset-clauses:
assumes
st: cdely -stgy™™ R S and
mvR: cdely -all-struct-inv R and
dist: distinct-mset (clauses R) and
no-smaller: (no-smaller-propa R)
shows distinct-mset (clauses S)

{proof)

lemma rtranclp-cdclyy -stgy-distinct-mset-learned-clauses:
assumes
st: cdely -stgy™™ R S and
inmvR: cdclyy -all-struct-inv R and
dist: distinct-mset (learned-clss R + remdups-mset (init-clss R)) and
no-smaller: (no-smaller-propa R)
shows distinct-mset (learned-clss S + remdups-mset (init-clss S))

{proof)
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lemma cdclyy -stgy-distinct-mset-clauses:
assumes
st: edclyy -stgy™* (init-state N) S and
no-duplicate-clause: distinct-mset N and
no-duplicate-in-clause: distinct-mset-mset N
shows distinct-mset (clauses S)

(proof)

lemma cdclyy -stgy-learned-distinct-mset-new:
assumes
cdel: «cdelyy-stgy S T) and
inv: cdelyy -all-struct-inv S and
smaller: (no-smaller-propa S) and
dist: «distinct-mset (learned-clss S — A))
shows (distinct-mset (learned-clss T — A)
(proof)

lemma rtranclp-cdclyy -stgy-distinct-mset-clauses-new-abs:
assumes
st: cdely -stgy™ R S and
mvR: cdcly -all-struct-inv R and
no-smaller: (no-smaller-propa R)> and
(distinct-mset (learned-clss R — A))
shows distinct-mset (learned-clss S — A)

{proof)

lemma rtranclp-cdclyy -stgy-distinct-mset-clauses-new:
assumes
st: cdely -stgy™ R S and
invR: cdelyy -all-struct-inv R and
no-smaller: (no-smaller-propa R)
shows distinct-mset (learned-clss S — learned-clss R)

{proof)

Decrease of a Measure

fun cdclyy -restart-measure where
cdclyy -restart-measure S =
[(3::nat) ~ (card (atms-of-mm (init-clss S))) — card (set-mset (learned-clss S)),
if conflicting S = None then 1 else 0,
if conflicting S = None then card (atms-of-mm (init-clss S)) — length (trail S)
else length (trail S)

]

lemma length-model-le-vars:
assumes
no-strange-atm S and
no-d: no-dup (trail S) and
finite (atms-of-mm (init-clss S))
shows length (trail S) < card (atms-of-mm (init-clss S))
(proof)

lemma length-model-le-vars-all-inv:

assumes cdclyy -all-struct-inv S
shows length (trail S) < card (atms-of-mm (init-clss S))
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{proof)

lemma learned-clss-less-upper-bound:
fixes S :: 'st
assumes
distinct-cdclyy -state S and
Vs €# learned-clss S. —tautology s
shows card(set-mset (learned-clss S)) < 3 7 card (atms-of-mm (learned-clss S))

(proof)

lemma cdclyy -restart-measure-decreasing:
fixes S :: /st
assumes
cdelyy -restart S S’ and
no-restart:
—(learned-clss S C# learned-clss S' A\ [| = trail S’ A conflicting S’ = None)
and
no-forget: learned-clss S C# learned-clss S’ and
no-relearn: \S’. backtrack S S’ = mark-of (hd-trail S’) ¢# learned-clss S
and
alien: no-strange-atm S and
M-level: cdcly -M-level-inv S and
no-taut: Vs €# learned-clss S. —tautology s and
no-dup: distinct-cdclyy -state S and
confl: cdcly -conflicting S
shows (cdcly -restart-measure S’, cdcly -restart-measure S) € lexn less-than 3

{proof)

lemma cdclyy -stgy-step-decreasing:
fixes S T :: 'st
assumes
cdel: «cdelyy-stgy S T) and
struct-inv: <cdclyy -all-struct-inv S) and
smaller: (no-smaller-propa S)
shows (cdcly -restart-measure T, cdcly -restart-measure S) € lexn less-than 3

(proof)

lemma empty-trail-no-smaller-propa: (trail R = [| = no-smaller-propa R)

(proof)

Roughly corresponds to theorem 2.9.15 page 100 of Weidenbach’s book but using a different
bound (the bound is below)

lemma tranclp-cdclyy -stgy-decreasing:
fixes RS T :: 'st
assumes cdcly -stgy™" R S and
tr: trail R = [] and
cdclyy -all-struct-inv R
shows (cdclyy -restart-measure S, cdcly -restart-measure R) € lexn less-than 3

{proof)

lemma tranclp-cdelyy -stgy-S0-decreasing:
fixes RS T :: 'st
assumes
pl: cdely -stgy™™ (init-state N) S and
no-dup: distinct-mset-mset N
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shows (cdcly -restart-measure S, cdcly -restart-measure (init-state N)) € lexn less-than 3
(proof)

lemma wf-tranclp-cdclyy -stgy:
wf {(S::'st, init-state N)| S N. distinct-mset-mset N A\ cdely -stgy™ ™ (init-state N) S}

{proof)

The following theorems is deeply linked with the strategy: It shows that a decision alone cannot
lead to a conflict. This is obvious but I expect this to be a major part of the proof that the
number of learnt clause cannot be larger that (2::'a)".

lemma no-conflict-after-decide:
assumes
dec: <decide S T) and
nv: (cdely -all-struct-inv T) and
smaller: (mo-smaller-propa T) and
smaller-confl: (mo-smaller-confl T)
shows (—conflict T U)

(proof)

abbreviation list-weight-propa-trail :: « ('v literal, 'v literal, 'v literal multiset) annotated-lit list = bool
list) where
dist-weight-propa-trail M = map is-proped M)

definition comp-list-weight-propa-trail :: (nat = (‘v literal, 'v literal, v literal multiset) annotated-lit
list = bool list) where
(comp-list-weight-propa-trail b M = replicate (b — length M) False Q list-weight-propa-trail M>

lemma comp-list-weight-propa-trail-append|simp]:
(comp-list-weight-propa-trail b (M Q@ M') =
comp-list-weight-propa-trail (b — length M') M @ list-weight-propa-trail M"
(proof)

lemma comp-list-weight-propa-trail-append-single[simp):
(comp-list-weight-propa-trail b (M Q [K]) =
comp-list-weight-propa-trail (b — 1) M Q [is-proped K]
(proof)

lemma comp-list-weight-propa-trail-cons[simp):
(comp-list-weight-propa-trail b (K # M') =
comp-list-weight-propa-trail (b — Suc (length M")) [| @Q is-proped K # list-weight-propa-trail M"
(proof)

fun of-list-weight :: (bool list = nat) where
(of-list-weight [| = O
| cof-list-weight (b # xzs) = (if b then 1 else 0) + 2 x of-list-weight xs

lemma of-list-weight-append|simp):
(of-list-weight (a Q b) = of-list-weight a + 2~ (length a) * of-list-weight b
(proof)

lemma of-list-weight-append-single[simpl:
(of-list-weight (a @ [b]) = of-list-weight a + 27 (length a) * (if b then 1 else 0))
(proof)

lemma of-list-weight-replicate- False[simp]: <of-list-weight (replicate n False) = 0)

60



{proof)

lemma of-list-weight-replicate- True[simp]: (of-list-weight (replicate n True) = 2°n — 1)

{proof)

lemma of-list-weight-le: <of-list-weight xs < 2 (length xs) — 1>

(proof)

lemma of-list-weight-lt: (of-list-weight xs < 27 (length xs)
(proof)

lemma [simp]: (of-list-weight (comp-list-weight-propa-trail n [|) = O
(proof)

abbreviation propa-weight

= mat = ('v literal, 'v literal, 'v literal multiset) annotated-lit list = nat)
where

(propa-weight n M = of-list-weight (comp-list-weight-propa-trail n M)

lemma length-comp-list-weight-propa-trail[simp]: (length (comp-list-weight-propa-trail a M) = maz (length
M) @
(proof)

lemma (in —)pow2-times-n:

Suca<n= 2% 2 (n— Suca)=(2:nat)” (n — a)
Suca<n= 27(n— Suca)* 2= (2:nat)” (n — a)
Suca<n= 27(n— Suca)*bx*x 2= (2:nat)” (n — a) * b
Suca <n= 27(n— Suca)x*(bx2)=(2:nat)” (n —a)* b
WSuca <n= 2"(n— Suca)*(2x*b)=(2:nat)” (n —a)* b
Suca<n= 2xbx 2 (n— Suca)=(2:nat)” (n — a) * b
Suca<n= 2x(bx 2 (n— Suca)) =(2:nat)” (n— a)xb
(proof)

lemma decide-propa-weight:
(decide S T => n > length (trail T) = propa-weight n (trail S) < propa-weight n (trail T)
(proof)

lemma propagate-propa-weight:
(propagate S T = n > length (trail T) => propa-weight n (trail S) < propa-weight n (trail T)
(proof)

The theorem below corresponds the bound of theorem 2.9.15 page 100 of Weidenbach’s book.
In the current version there is no proof of the bound.

The following proof contains an immense amount of stupid bookkeeping. The proof itself is
rather easy and Isabelle makes it extra-complicated.

Let’s consider the sequence S — ... — T. The bookkeping part:

1. We decompose it into its components f 0 — f1 — ... = fn.
2. Then we extract the backjumps out of it, which are at position nth-nj 0, nth-nj 1, ...

3. Then we extract the conflicts out of it, which are at position nth-confl 0, nth-confl 1, ...

Then the simple part:
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1. each backtrack increases propa-weight

2. but propa-weight is bounded by
bound.

Comments on the proof:

(2::a) card (atms-of-mm (init-clss S))

Therefore, we get the

e The main problem of the proof is the number of inductions in the bookkeeping part.

e The proof is actually by contradiction to make sure that enough backtrack step exists.

This could probably be avoided, but without change in the proof.

Comments on the bound:

e The proof is very very crude: Any propagation also decreases the bound. The lemma
[decide 2S ?T; cdely -all-struct-inv ¢T; no-smaller-propa ?T; no-smaller-confl ?T] =
= conflict ?T ?U above shows that a decision cannot lead immediately to a conflict.

e TODO: can a backtrack could be immediately followed by another conflict (if there are
several conflicts for the initial backtrack)? If not the bound can be divided by two.

lemma cdcl-pow2-n-learned-clauses:
assumes
cdel: <edely** S T) and
confl: (conflicting S = None) and
inv: <cdclyy -all-struct-inv S

shows (size (learned-clss T') < size (learned-clss S) + 2 ~ (card (atms-of-mm (init-clss S)))

(is - < - 4+ 2b)
(proof)

Application of the previous theorem to an initial state:

corollary cdcl-pow2-n-learned-clauses2:
assumes
cdel: <edely ™™ (init-state N) T) and
inv: <cdclyy -all-struct-inv (init-state N))
shows (size (learned-clss T) < 2 7 (card (atms-of-mm N)))

(proof)

end

end

1.2 Merging backjump rules

theory CDCL-W-Merge
imports CDCL-W
begin

Before showing that Weidenbach’s CDCL is included in NOT’s CDCL, we need to work on a
variant of Weidenbach’s calculus: NOT’s backjump assumes the existence of a clause that is
suitable to backjump. This clause is obtained in W’s CDCL by applying:

1. conflict-driven-clause-learningy .conflict to find the conflict
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2. the conflict is analysed by repetitive application of conflict-driven-clause-learningy .resolve
and conflict-driven-clause-learningyy . skip,

3. finally conflict-driven-clause-learningy .backtrack is used to backtrack.

We show that this new calculus has the same final states than Weidenbach’s CDCL if the
calculus starts in a state such that the invariant holds and no conflict has been found yet. The
latter condition holds for initial states.

1.2.1 Inclusion of the States

context conflict-driven-clause-learningw
begin

declare cdclyy -restart.introslintro] cdcly -bj.intros[intro] cdcly -o.intros|intro]
state-prop [simp del]

lemma backtrack-no-cdclyy -bj:
assumes cdcl: cdely-bj T U
shows —backtrack V' T

{proof)

skip-or-resolve corresponds to the analyze function in the code of MiniSAT.

inductive skip-or-resolve :: 'st = 'st = bool where
s-or-r-skip[intro]: skip S T = skip-or-resolve S T |
s-or-r-resolve[intro]: resolve S T = skip-or-resolve S T

lemma rtranclp-cdclyy -bj-skip-or-resolve-backtrack:
assumes cdcly -bj** S U
shows skip-or-resolve*™* S U V (3 T. skip-or-resolve*™* S T A backtrack T U)

{proof)

lemma rtranclp-skip-or-resolve-rtranclp-cdclyy -restart:
skip-or-resolve** S T = cdcly -restart*™ S T

{proof)

definition backjump-l-cond :: v clause = "v clause = 'v literal = 'st = 'st = bool where
backjump-l-cond = X\C C' L S T. True

lemma wf-skip-or-resolve:
wf {(T, S). skip-or-resolve S T}
(proof)

definition invyor :: ‘st = bool where
invyor = AS. no-dup (trail S)

declare invyor-def[simp]
end

context conflict-driven-clause-learningyy
begin
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1.2.2 More lemmas about Conflict, Propagate and Backjumping

Termination

lemma cdclyy -bj-measure:
assumes cdcly-bj S T
shows length (trail S) + (if conflicting S = None then 0 else 1)
> length (trail T) + (if conflicting T = None then 0 else 1)
(proof)

lemma wf-cdclyy -bj:
wf {(b,a). cdely-bj a b}
{proof)

lemma cdclyy -bj-exists-normal-form:
shows 3 T. full cdcly-bj S T

{proof)

lemma rtranclp-skip-state-decomp:

assumes skip*™* S T

shows
M. trail S = M Q trail T N (Y méeset M. —is-decided m)
init-clss S = init-clss T
learned-clss S = learned-clss T
backtrack-lvl S = backtrack-lvl T
conflicting S = conflicting T

(proof)

Analysing is confluent

lemma backtrack-reduce-trail-to-state-eq:
assumes
V-T: «(V ~ tl-trail T) and
decomp: ((Decided K # M1, M2) € set (get-all-ann-decomposition (trail V))
shows (reduce-trail-to M1 (add-learned-cls E (update-conflicting None V))
~ reduce-trail-to M1 (add-learned-cls E (update-conflicting None T)))

(proof)

lemma rtranclp-skip-backtrack-reduce-trail-to-state-eq:
assumes
V-T: skip*™ T V) and
decomp: (Decided K # M1, M2) € set (get-all-ann-decomposition (trail V'))
shows (reduce-trail-to M1 (add-learned-cls E (update-conflicting None T))
~ reduce-trail-to M1 (add-learned-cls E (update-conflicting None V'))

{proof)

Backjumping after skipping or jump directly lemma rtranclp-skip-backtrack-backtrack:
assumes
skip*™ S T and
backtrack T W and
cdelyy -all-struct-inv S
shows backtrack S W

{proof)

See also theorem rtranclp-skip-backtrack-backtrack

lemma rtranclp-skip-backtrack-backtrack-end:
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assumes
skip: skip™ S T and
bt: backtrack S W and
inv: cdelyy -all-struct-inv S
shows backtrack T W

{proof)

lemma cdclyy -bj-decomp-resolve-skip-and-bj:
assumes cdcly -b7** S T

shows (skip-or-resolve** S T
vV (3 U. skip-or-resolve™ S U A backtrack U T))

{proof)

1.2.3 CDCL with Merging

inductive cdcly -merge-restart :: 'st = 'st = bool where

fw-r-propagate: propagate S S’ = cdclyy -merge-restart S S’ |

fuw-r-conflict: conflict S T = full cdelw-bj T U = cdcly -merge-restart S U |
fw-r-decide: decide S S’ = cdcly -merge-restart S S|

fw-r-rf: cdely-rf S 8" = cdcly -merge-restart S S’

lemma rtranclp-cdclyy -bj-rtranclp-cdclyy -restart:
cdely -bj** S T = cdclyy -restart™ S T

{proof)

lemma cdcly -merge-restart-cdclyy -restart:
assumes cdcly -merge-restart S T
shows cdclyy -restart** S T

{proof)

lemma cdclyy -merge-restart-conflicting-true-or-no-step:
assumes cdcly -merge-restart S T
shows conflicting T = None V no-step cdclyy -restart T

{proof)

inductive cdcly -merge :: 'st = 'st = bool where

fw-propagate: propagate S S’ => cdely -merge S S’ |

fw-conflict: conflict S T = full cdely-bj T U = cdcly-merge S U |
fw-decide: decide S S’ = cdcly -merge S S’

fw-forget: forget S S’ = cdcly -merge S S’

lemma cdcly -merge-cdcly -merge-restart:
cdcly -merge S T = cdcly -merge-restart S T

{proof)

lemma rtranclp-cdclyy -merge-tranclp-cdcly -merge-restart:
cdely -merge™ S T = cdcly -merge-restart*™ S T

(proof)

lemma cdclyy -merge-rtranclp-cdclyy -restart:
cdely -merge S T = cdcly -restart** S T

{proof)

lemma rtranclp-cdcly -merge-rtranclp-cdclyy -restart:
cdcly -merge™ S T = cdclyy -restart™ S T

{proof)
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lemma cdclyy -all-struct-inv-tranclp-cdcly -merge-tranclp-cdcly -merge-cdclyy -all-struct-inv:
assumes
inv: cdelyy -all-struct-inv b
cdclyy-merge™™ b a
shows (AS T. cdely -all-struct-inv S A cdcly-merge S T)T+ b a
(proof)

lemma backtrack-is-fulll-cdclyy -bj:
assumes bt: backtrack S T
shows fulll cdely-bj S T

{proof)

lemma rtrancl-cdclyy -conflicting-true-cdclyy -merge-restart:
assumes cdclyy -restart™ S V and inv: cdcly -M-level-inv S and conflicting S = None
shows (cdcly -merge-restart*™ S V. A conflicting V = None)
V (3T U. cdelw-merge-restart™ S T A conflicting V- # None A conflict T U A cdcly-bj** U V)

{proof)

lemma no-step-cdcly -restart-no-step-cdcly -merge-restart:
no-step cdcly -restart S = no-step cdclyy -merge-restart S

{proof)

lemma no-step-cdclyy -merge-restart-no-step-cdclyy -restart:
assumes
conflicting S = None and
cdelyy -M-level-inv S and
no-step cdcly -merge-restart S
shows no-step cdcly -restart S

(proof)

lemma cdcly -merge-restart-no-step-cdclyy -bj:
assumes
cdcly -merge-restart S T
shows no-step cdcly -bj T

{proof)

lemma rtranclp-cdclyy -merge-restart-no-step-cdclyy -bj:
assumes
cdclyy -merge-restart™™ S T and
conflicting S = None
shows no-step cdcly -bj T
(proof)

If conflicting S # None, we cannot say anything.

Remark that this theorem does not say anything about well-foundedness: even if you know that
one relation is well-founded, it only states that the normal forms are shared.

lemma conflicting-true-full-cdcly -restart-iff-full-cdcly -merge:
assumes confl: conflicting S = None and lev: cdclyy -M-level-inv S
shows full cdcly -restart S 'V <— full cdcly -merge-restart S 'V

(proof)

lemma init-state-true-full-cdclyy -restart-iff-full-cdcly -merge:
shows full cdcly -restart (init-state N) V <— full cdcly -merge-restart (init-state N) V
(proof)
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1.2.4 CDCL with Merge and Strategy

The intermediate step

inductive cdcly-s’ :: ‘st = 'st = bool for S :: ‘st where

conflict”: conflict S S' = edcly-s’ S S’ |

propagate”: propagate S S' = cdcly-s" S S’ |

decide”: no-step conflict S = no-step propagate S = decide S S" = cdely-s’ S S’ |
bj": fulll cdcly-bj S 8" = cdcly-s' S S’

inductive-cases cdclyy-s'E: cdelyy-s' S T

lemma rtranclp-cdclyy -bj-fulll-cdelp-cdclyy -stgy:
cdely -bj** S 8" = cdclyy -stgy*™ S S’
(proof)

lemma cdclyy -s'-is-rtranclp-cdclyy -stgy:
cdely-s' S T = cdcly -stgy*™ S T
(proof)

lemma cdclyy -stgy-cdclyy -s'-no-step:
assumes cdcly -stgy S U and cdclyy -all-struct-inv S and no-step cdcly -bj U
shows cdclyy-s’ S U

{proof)

lemma rtranclp-cdclyy -stgy-connected-to-rtranclp-cdcly, -s”:
assumes cdcly -stgy™™ S U and inv: cdclyy -M-level-inv S
shows cdcly-s"* S UV (3T. cdcly-s"* S T A cdclw-bjt™™ T U A conflicting U # None)

{proof)

lemma n-step-cdclyy -stgy-iff-no-step-cdclyy -restart-cl-cdclyy -o:

assumes inv: cdclyy -all-struct-inv S

shows no-step cdcly-s’ S «— no-step cdcly-stgy S (is 25’ S +— 2C 5)
(proof)

lemma cdclyy -s’-tranclp-cdclyy -restart:
assumes cdclyy-s’ S S’ shows cdclyy -restart™ S S’

(proof)

lemma tranclp-cdclyy -s’-tranclp-cdclyy -restart:
cdelyy-s'TT S 8" = cdelyy -restartt™ S S’

{proof)

lemma rtranclp-cdclyy -s’-rtranclp-cdclyy -restart:
cdelyy-s™* S 8" = cdclyy -restart*™ S S’

(proof)
lemma full-cdclyy -stgy-iff-full-cdelyy -s":

assumes inv: cdclyy -all-struct-inv S
shows full cdcly -stgy S T <— full cdely-s' S T (is 25 +— 257)

(proof)
end

end
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Chapter 2

NOT’s CDCL and DPLL

theory CDCL-WNOT-Measure
imports Weidenbach-Book-Base. WB-List-More
begin

The organisation of the development is the following:

e CDCL_WNOT_Measure.thy contains the measure used to show the termination the core of
CDCL.

e CDCL_NOT.thy contains the specification of the rules: the rules are defined, and we proof
the correctness and termination for some strategies CDCL.

e DPLL_NOT.thy contains the DPLL calculus based on the CDCL version.

e DPLL_W.thy contains Weidenbach’s version of DPLL and the proof of equivalence between
the two DPLL versions.

2.1 Measure

This measure show the termination of the core of CDCL: each step improves the number of
literals we know for sure.

This measure can also be seen as the increasing lexicographic order: it is an order on bounded
sequences, when each element is bounded. The proof involves a measure like the one defined
here (the same?).

definition e :: nat = nat = nat list = nat where
pe sb M= (> i=0..<length M. M'i x b~ (s +i — length M))

lemma pc-Nil[simp):
pe sbll=0
{proof)

lemma pc-single]simp]:
pe sb[Ll=Lx*xb " (s — Suc0)
(proof)
lemma set-sum-atLeastLessThan-add:
> i=k..<k+(b:nat). fi) = O i=0..<b. f (k+ 1))
(proof)
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lemma set-sum-atLeastLess Than-Suc:
>i=1..<Sucj. fi) = (> i=0..<j. f (Suc 7))
(proof )

lemma pc-cons:
pe sO(L#EM)=L*xb " (s —1 —length M) + pc sb M
(proof)

lemma pc-append:

assumes s > length (MQM')

shows pc s b (MQM') = pe (s — length M) b M + pc s b M’
(proof)

lemma pc-cons-non-empty-inf:
assumes M-ge-1: Vicset M. (> 1 and M: M # []
shows puc s b M > b~ (s — length M)
{proof)

Copy of ~~/src/HOL/ex/NatSum.thy (but generalized to 0 < k)

lemma sum-of-powers: 0 < k = (k — 1) x (3_i=0..<n. ki) = k™n — (1::nat)

{proof)

In the degenerated cases, we only have the large inequality holds. In the other cases, the
following strict inequality holds:

lemma pc-bounded-non-degenerated:
fixes b ::nat
assumes
b > 0 and
M # [ and
M-le: Vi < length M. M'i < b and
s > length M
shows pc s b M < b7s
(proof)

In the degenerate case b = (0::’a), the list M is empty (since the list cannot contain any
element).

lemma pc-bounded:
fixes b :: nat
assumes
M-le: Vi < length M. M'i < b and
s > length M
b>0
shows pc sb M < b " s

(proof)
When b = 0, we cannot show that the measure is empty, since 07 = 1.

lemma pc-base-0:
assumes length M < s
shows puc s 0 M < M0
(proof)

lemma finite-bounded-pair-list:

fixes b :: nat
shows finite {(ys, xs). length zs < s A length ys < s A
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(Vi< length xs. xs | i < b) A (Vi< length ys. ys ! i < b)}
(proof)

definition vNOT :: nat = nat = (nat list X nat list) set where
vNOT s base = {(ys, xs). length xs < s A length ys < s A
(Vi< length xs. zs | i < base) A (Vi< length ys. ys ! i < base) A
(ys, zs) € lenlex less-than}

lemma finite-v NOT [simp]:
finite (WNOT s base)
(proof)

lemma acyclic-vNOT: acyclic (WNOT s base)
(proof)

lemma wf-vNOT: wf (vNOT s base)
{proof)

end

theory CDCL-NOT

imports
Weidenbach-Book-Base. WB-List-More
Weidenbach-Book-Base. Wellfounded-More
Entailment-Definition. Partial- Annotated- Herbrand-Interpretation
CDCL-WNOT-Measure

begin

2.2 NOT’s CDCL

2.2.1 Auxiliary Lemmas and Measure

We define here some more simplification rules, or rules that have been useful as help for some
tactic

lemma atms-of-uminus-lit-atm-of-lit-of :
atms-of {# —lit-of x. © €H# A#} = atm-of * (lit-of ¢ (set-mset A))
(proof)

lemma atms-of-ms-single-image-atm-of-lit-of :
(atms-of-ms (unmark-s A) = atm-of ¢ (lit-of * A)»

(proof)

2.2.2 Initial Definitions
The State

We define here an abstraction over operation on the state we are manipulating.

locale dpll-state-ops =
fixes

trail :: st = ('v, unit) ann-lits) and
clausesnyor (st = 'v clauses) and
prepend-trail :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail :: st ='st) and
add-clsyor 2 (v clause = 'st = st and
remove-clsyor :: ('v clause = st = 'st)
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begin

abbreviation stateyor :: (st = ('v, unit) ann-lit list X 'v clauses) where
(stateyor S = (trail S, clausesyor S)

end

NOT’s state is basically a pair composed of the trail (i.e. the candidate model) and the set of
clauses. We abstract this state to convert this state to other states. like Weidenbach’s five-tuple.

locale dpll-state =
dpll-state-ops
trail clausesyoT prepend-trail tl-trail add-clsyoT remove-clsyor — related to the state
for
trail 2 st = ('v, unit) ann-litsy and
clausesyor :: (st = "v clauses) and
prepend-tragl :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail :: st ='st) and
add-clsyor 2 v clause = 'st = 'st) and
remove-clsyor : (v clause = st = 'st) +
assumes
prepend-trail y o r:
(stateyor (prepend-trail L st) = (L # trail st, clausesyor st)) and
tl—tmilNOT:
(statey o (tl-trail st) = (tl (trail st), clausesyor st)) and
add-clsyor:
statexyor (add-clsyor C st) = (trail st, add-mset C (clausesyor st)) and
remove-clsyor:
statexyor (remove-clsyor C st) = (trail st, removeAll-mset C (clausesyor st))
begin
lemma
trail-prepend-trail[ simp):
(trail (prepend-trail L st) = L # trail st
and
trail-tl-trail y o r[simp): trail (tl-trail st) = tl (trail st)) and
trail-add-clsy or[simp]: (trail (add-clsyor C st) = trail sty and
trail-remove-clsy o [simp]: trail (remove-clsyor C st) = trail st) and

clauses-prepend-trail[simp):

(clausesyor (prepend-trail L st) = clausesyor st

and
clauses-tl-trail[simp]: (clausesyor (tl-trail st) = clausesyor st» and
clauses-add-clsy or|[simp]:

clausesyor (add-clsyor C st) = add-mset C (clausesyor st)) and
clauses-remove-cls y o r[simpl:

(clausesyor (remove-clsyor C st) = removeAll-mset C (clausesyor st)

{proof)

We define the following function doing the backtrack in the trail:

function reduce-trail-toyor :: (a list = 'st = sty where
(reduce-trail-toyor F S =
(if length (trail S) = length F V trail S = || then S else reduce-trail-tonor F (tl-trail S))

{proof)
termination (proof)

declare reduce-trail-ton or.simps[simp del]

Then we need several lemmas about the reduce-trail-toyor.
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lemma
shows
reduce-trail-ton o-Nil[simp]: «trail S = [| = reduce-trail-toyor F S = S) and
reduce-trail-ton o-eq-length[simp)]: length (trail S) = length F = reduce-trail-tonor F S = S

{proof)

lemma reduce-trail-ton or-length-ne[simp]:
dength (trail S) # length F = trail S # [| =
reduce-trail-toyor F S = reduce-trail-toyor F (tl-trail S)

{proof)

lemma trail-reduce-trail-toy o-length-le:
assumes (ength F > length (trail S)
shows «trail (reduce-trail-toxor F S) = [

{proof)

lemma trail-reduce-trail-ton o -Nil[simp:
(trail (reduce-trail-toxor [] S) = [

(proof)

lemma clauses-reduce-trail-ton o7 -Nil:
(clausesy ot (reduce-trail-tonor [| S) = clausesyor S

{proof)

lemma trail-reduce-trail-ton o -drop:
(trail (reduce-trail-toyor F S) =
(if length (trail S) > length F
then drop (length (trail S) — length F) (trail S)
else [])

(proof)

lemma reduce-trail-ton o -skip-beginning:
assumes (trail S = F' Q F)
shows «trail (reduce-trail-tonor F S) = F

(proof)

lemma reduce-trail-ton o -clauses[simpl:
(clausesyor (reduce-trail-tonor F S) = clausesyor S

{proof)

lemma trail-eq-reduce-trail-toy oT-€q:
(trail S = trail T = trail (reduce-trail-tonor F S) = trail (reduce-trail-tonor F T)
{proof)

lemma trail-reduce-trail-ton or-add-clsy or[simp):
mo-dup (trail S) =
trail (reduce-trail-toyor F (add-clsyor C S)) = trail (reduce-trail-toxor F S)
(proof)

lemma reduce-trail-ton or-trail-tl-trail-decomp[simp):
(trail S = F' @Q Decided K # F —
trail (reduce-trail-toyor F (ti-trail S)) = F»
(proof)

lemma reduce-trail-tox or-length:
dength M = length M' = reduce-trail-toyor M S = reduce-trail-toyor M’ S
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{proof)

abbreviation trail-weight where
(rail-weight S = map ((Al. 1 + length 1) o snd) (get-all-ann-decomposition (trail S))

As we are defining abstract states, the Isabelle equality about them is too strong: we want the
weaker equivalence stating that two states are equal if they cannot be distinguished, i.e. given
the getter trail and clausesyor do not distinguish them.

definition state-eqnor :: (st = ‘st = bool) (infix ~ 50) where
(S ~ T +— trail S = trail T A clausesyor S = clausesyor T

lemma state-eqyor-ref[intro, simp):
S~ 5

(proof)

lemma state-eqyor-sym:
S~T+—T~9
(proof)

lemma state-eqyor-trans:
S~T=T~U=S5S~0U
(proof)

lemma
shows
state-eqnor-trail: <S ~ T = trail S = trail T) and
state-eqnoT-clauses: (S ~ T = clausesyor S = clausesyor T)

(proof)
lemmas state-simpyor|[simp] = state-eqn or-trail state-eqnor-clauses

lemma reduce-trail-ton or-state-eqnor-compatible:
assumes ST: (S ~ T
shows (reduce-trail-toyor F S ~ reduce-trail-toyor F T)

(proof)

end — End on locale dpli-state.

Definition of the Transitions

Each possible is in its own locale.

locale propagate-ops =
dpll-state trail clausesyoT prepend-trail tl-trail add-clsyoT remove-clsyor
for
trail 2 st = ('v, unit) ann-litsy and
clausesnyor = (st = 'v clauses) and
prepend-trail :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail :: st ='st) and
add-clsyor 2 (v clause = 'st = st and
remove-clsyor : (v clause = st = 'st) +
fixes
propagate-conds :: «('v, unit) ann-lit = 'st = ‘st = bool
begin
inductive propagatenor :: (st = 'st = bool) where
propagaten orlintro): <add-mset L C €# clausesyor S = trail S |Eas CNot C
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= undefined-lit (trail S) L
= propagate-conds (Propagated L ()) S T
= T ~ prepend-trail (Propagated L ()) S
= propagateyor S T)
inductive-cases propagaten o E[elim]: (propagatenor S T

end

locale decide-ops =
dpll-state trail clausesyoT prepend-trail tl-trail add-clsyor remove-clsyor
for
trail 2 st = ('v, unit) ann-litsy and
clausesyor :: (st = v clauses) and
prepend-tragl :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail :: st ='st) and
add-clsyor 2 v clause = 'st = 'st) and
remove-clsyor : (v clause = st = 'st) +
fixes
decide-conds :: (st = 'st = bool)
begin
inductive decidenor :: (st = ‘st = bool) where
deciden or[intro:
(undefined-lit (trail S) L =
atm-of L € atms-of-mm (clausesyor S) =
T ~ prepend-trail (Decided L) S =
decide-conds S T —
decidenor S T

inductive-cases decideny o7 Elelim]: «decidenor S S
end

locale backjumping-ops =
dpll-state trail clausesyor prepend-trail tl-trail add-clsyor remove-clsyor
for
trail :: (st = ('v, unit) ann-lits) and
clausesyor :: (st = "v clauses) and
prepend-trail :: ('v, unit) ann-lit = st = 'st) and
tl-trail :: st ='st) and
add-clsyor (v clause = 'st = ‘st and
remove-clsyor : (v clause = 'st = 'str +
fixes
backjump-conds :: (v clause = "v clause = 'v literal = 'st = 'st = bool)
begin

inductive backjump where
(trail S = F' Q Decided K # F
T ~ prepend-trail (Propagated L ()) (reduce-trail-toyor F S)
C e# clausesyor S
trail S [=as CNot C
undefined-lit F' L
atm-of L € atms-of-mm (clausesyor S) U atm-of * (lits-of-1 (trail S))
clausesyor S Epm add-mset L C’
F Eas CNot C'
backjump-conds C C' L S T
= backjump S T»
inductive-cases backjumpFE: (backjump S T)

FRERLELY
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The condition atm-of L € atms-of-mm (clausesyor S) U atm-of * lits-of-1 (trail S) is not
implied by the the condition clausesyor S Epm add-mset L C' (no negation).

end

2.2.3 DPLL with Backjumping

locale dpll-with-backjumping-ops =
propagate-ops trail clausesyor prepend-trail ti-trail add-clsyor remove-clsyor propagate-conds +
decide-ops trail clausesyor prepend-trail tl-trail add-clsyor remove-clsyor decide-conds +
backjumping-ops trail clausesyor prepend-trail tl-trail add-clsyor remove-clsyor backjump-conds
for
trail :: (st = ('v, unit) ann-lits) and
clausesyor :: (st = "v clauses) and
prepend-trail :: (v, unit) ann-lit = 'st = ‘st and
tl-trail :: st ='st) and
add-clsyor : (v clause = 'st = ‘st and
remove-clsyor 1 (v clause = 'st = 'st) and
inv :: (st = bool) and
decide-conds :: (st = 'st = bool) and
backjump-conds :: (v clause = 'v clause = v literal = ’st = 'st = bool) and
propagate-conds :: «('v, unit) ann-lit = ‘st = ‘st = bool +
assumes
bj-can-jump:
(NSCF'KF L.
nv S =
trail S = F' Q Decided K # F —
C e# clausesyor S —
trail S |=as CNot C =
undefined-lit F [ —
atm-of L € atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-l (F' @ Decided K # F)) =
clausesyor S Epm add-mset L C' =
F l=as CNot C' =
—no-step backjump S) and
can-propagate-or-decide-or-backjump:
atm-of L € atms-of-mm (clausesyor S) =
undefined-lit (trail S) L =
satisfiable (set-mset (clausesyor S)) =
nv S =
no-dup (trail S) =
3T. decidexyor S T V propagatenor S T V backjump S T)
begin

We cannot add a like condition atms-of C' C atms-of-ms N to ensure that we can backjump
even if the last decision variable has disappeared from the set of clauses.

The part of the condition atm-of L € atm-of ‘ lits-of-l (F' @ Decided K # F') is important,
otherwise you are not sure that you can backtrack.

Definition

We define dpll with backjumping:

inductive dpll-bj :: st = ‘st = bool) for S :: ‘st where
bj-decidenoT: (decideyor S S’ = dpll-bj S S |
bj-propagaten oT: (propagatenor S S’ = dpll-bj S S |
bj-backjump: (backjump S S’ = dpll-bj S S’
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lemmas dpll-bj-induct = dpll-bj.induct|split-format(complete)]
thm dpll-bj-induct] OF dpll-with-backjumping-ops-azioms)
lemma dpli-bj-all-induct[consumes 2, case-names decidenoT propagatenor backjump):
fixes S T :: (st
assumes
(dpll-bj S T) and
nv S
(AL T. undefined-lit (trail S) L = atm-of L € atms-of-mm (clausesyor S)
= T ~ prepend-trail (Decided L) S
= P ST and
(ANC L T. add-mset L C €# clausesyor S = trail S =as CNot C = undefined-lit (trail S) L
= T ~ prepend-trail (Propagated L ()) S
= P ST and
ANCF' ' KFLC'T. C €# clausesyor S = F' Q@ Decided K # F [=as CNot C
= trail S = F' Q Decided K # F
= undefined-lit F' L
= atm-of L € atms-of-mm (clausesnor S) U atm-of ¢ (lits-of-1 (F' Q Decided K # F))
= clausesyor S Epm add-mset L C’
= F [as CNot C’
= T ~ prepend-trail (Propagated L ()) (reduce-trail-tonor F S)
= PSD
shows (P S T

(proof)

Basic properties

First, some better suited induction principle lemma dpll-bj-clauses:
assumes dpll-bj S T» and «nv S
shows (clausesyor S = clausesyor T)

{proof)

No duplicates in the trail lemma dpli-bj-no-dup:
assumes (dpll-bj S T» and «nv S
and «no-dup (trail S)
shows (no-dup (trail T)

{proof)

Valuations lemma dpli-bj-sat-iff:
assumes (dpll-bj S T» and «nv S
shows (I Esm clausesyor S «— I |Esm clausesyor T)

{proof)

Clauses lemma dpll-bj-atms-of-ms-clauses-inv:
assumes
(dpll-bj S T) and
nv S)
shows (atms-of-mm (clausesyor S) = atms-of-mm (clausesyor T))

{proof)

lemma dpll-bj-atms-in-trail:
assumes
(dpll-bj S T) and
tnv S) and
atm-of < (lits-of-1 (trail S)) C atms-of-mm (clausesyor S)
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shows (atm-of ¢ (lits-of-l (trail T)) C atms-of-mm (clausesyor S)
{proof)

lemma dpll-bj-atms-in-trail-in-set:
assumes (dpll-bj S Thand
anv S) and
(atms-of-mm (clausesyor S) C A and
atm-of ¢ (lits-of-1 (trail S)) C A
shows <atm-of ¢ (lits-of-l (trail T)) C A»
(proof)

lemma dpll-bj-all-decomposition-implies-inv:
assumes
(dpll-bj S T) and
inv: ¢nv S) and
decomp: (all-decomposition-implies-m (clausesyor S) (get-all-ann-decomposition (trail S))
shows (all-decomposition-implies-m (clausesyor T) (get-all-ann-decomposition (trail T))
{proof)

Termination

Using a proper measure lemma length-get-all-ann-decomposition-append-Decided:
dength (get-all-ann-decomposition (F' @Q Decided K # F)) =
length (get-all-ann-decomposition F)
+ length (get-all-ann-decomposition (Decided K # F))
- D
(proof)

lemma take-length-get-all-ann-decomposition-decided-sandwich:
(take (length (get-all-ann-decomposition F))
(map (f o snd) (rev (get-all-ann-decomposition (F' Q Decided K # F))))

map (f o snd) (rev (get-all-ann-decomposition F'))
)

(proof)

lemma length-get-all-ann-decomposition-length:
dength (get-all-ann-decomposition M) < 1 + length M)

{proof)

lemma length-in-get-all-ann-decomposition-bounded:
assumes i:(i € set (trail-weight S)
shows « < Suc (length (trail S))

(proof)
Well-foundedness The bounds are the following:

e 1 + card (atms-of-ms A): card (atms-of-ms A) is an upper bound on the length of the
list. As get-all-ann-decomposition appends an possibly empty couple at the end, adding
one is needed.

e 2 + card (atms-of-ms A): card (atms-of-ms A) is an upper bound on the number of
elements, where adding one is necessary for the same reason as for the bound on the list,
and one is needed to have a strict bound.
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abbreviation unassigned-lit :: <'b clause set = 'a list = nat) where
(unassigned-lit N M = card (atms-of-ms N) — length M>

lemma dpll-bj-trail-mes-increasing-prop:

fixes M :: (v, unit) ann-lits » and N :: (v clauses)
assumes

(dpll-bj S T) and

¢nv S) and

NA: (atms-of-mm (clausesyor S) C atms-of-ms A and
MA: <atm-of * lits-of-1 (trail S) C atms-of-ms A> and
n-d: <no-dup (trail S)» and
finite: (finite A)
shows (e (14card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T')
> pe (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight S))
(proof)

lemma dpll-bj-trail-mes-decreasing-prop:
assumes dpll: «dpll-bj S T» and nv: «nv S> and
N-A: «atms-of-mm (clausesyor S) C atms-of-ms A and
M-A: catm-of © lits-of-1 (trail S) C atms-of-ms A> and
nd: (no-dup (trail S)) and
fin-A: (finite A
shows «(2+-card (atms-of-ms A)) = (1+-card (atms-of-ms A))
— po (I+card (atms-of-ms A)) (2+-card (atms-of-ms A)) (trail-weight T)
< (2+card (atms-of-ms A)) ~ (1+card (atms-of-ms A))
— pe (14card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight S)
(proof)

lemma wf-dpll-bj:
assumes fin: (finite A
shows «wf {(T, S). dpll-bj S T
A atms-of-mm (clausesyor S) C atms-of-ms A A atm-of © lits-of-1 (trail S) C atms-of-ms A
A no-dup (trail S) A inv S
(is «wf 24))
(proof)

Alternative termination proof abbreviation DPLL-mesy where
(DPLL-mesw A M =
map (AL. if is-decided L then 2::nat else 1) (rev M) Q replicate (card A — length M) 3

lemma distinctcard-atm-of-lit-of-eq-length:
assumes no-dup S
shows card (atm-of * lits-of-1 S) = length S
(proof)

lemma dpll-bj-trail-mes-decreasing-less-than:

assumes dpll: «dpll-bj S T» and inv: «nv S> and
N-A: (atms-of-mm (clausesyor S) C atms-of-ms A and
M-A: catm-of  lits-of-1 (trail S) C atms-of-ms A> and
nd: (no-dup (trail S)) and
fin-A: (finite A

shows (DPLL-mesy (atms-of-ms A) (trail T'), DPLL-mesw (atms-of-ms A) (trail S)) €
lexn less-than (card ((atms-of-ms A)))

(proof)

lemma
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assumes fin[simp]: (finite A

shows «wf {(T, S). dpll-bj S T
A atms-of-mm (clausesyor S) C atms-of-ms A A atm-of  lits-of-1 (trail S) C atms-of-ms A
A no-dup (trail S) A inv Sh
(is «wf 2A))

(proof)

Normal Forms

We prove that given a normal form of DPLL, with some structural invariants, then either N is
satisfiable and the built valuation M is a model; or N is unsatisfiable.

Idea of the proof: We have to prove tat satisfiable N, = M |=as N and there is no remaining
step is incompatible.

1. The decide rule tells us that every variable in N has a value.
2. The assumption = M =as N implies that there is conflict.

3. There is at least one decision in the trail (otherwise, M would be a model of the set of
clauses N).

4. Now if we build the clause with all the decision literals of the trail, we can apply the
backjump rule.

The assumption are saying that we have a finite upper bound A for the literals, that we
cannot do any step V.S’. = dpll-bj S S’

theorem dpll-backjump-final-state:
fixes A :: (v clause sety and S T :: /st
assumes
(atms-of-mm (clausesyor S) C atms-of-ms A and
(atm-of ¢ lits-of-1 (trail S) C atms-of-ms A> and
(no-dup (trail S)» and
(finite A> and
inv: ¢nv S> and
n-d: (no-dup (trail S)> and
n-s: (no-step dpll-bj S> and
decomp: (all-decomposition-implies-m (clausesyor S) (get-all-ann-decomposition (trail S))
shows (unsatisfiable (set-mset (clausesyor S))
V (trail S [=asm clausesyor S A satisfiable (set-mset (clausesyor S)))

(proof)
end — End of the locale dpll-with-backjumping-ops.

locale dpll-with-backjumping =

dpll-with-backjumping-ops trail clausesyor prepend-trail tl-trail add-clsyor remove-clsyor inhv
decide-conds backjump-conds propagate-conds

for
trail :: (st = ('v, unit) ann-lits) and
clausesnyor : (st = 'v clauses) and
prepend-trail :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail = st ='st) and
add-clsyor 2 (v clause = 'st = st and
remove-clsyor 1 (v clause = 'st = 'st) and
inv :: (st = bool) and
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decide-conds :: ('st = 'st = bool) and
backjump-conds :: (v clause = "v clause = v literal = ’st = 'st = bool) and
propagate-conds :: «('v, unit) ann-lit = 'st = ‘st = bool
_|_
assumes dpll-bj-inv: <\AS T. dpll-bj S T = inv S = inv T»
begin

lemma rtranclp-dpli-bj-inv:
assumes «dpll-bj** S T)» and ¢nv S)
shows «nv T)

{proof)

lemma rtranclp-dpll-bj-no-dup:
assumes (dpll-bj** S T) and «nv S
and (no-dup (trail S)
shows (no-dup (trail T)

{proof)

lemma rtranclp-dpll-bj-atms-of-ms-clauses-inv:
assumes
(dpll-b5** § T) and ¢inv S)
shows (atms-of-mm (clausesyor S) = atms-of-mm (clausesyor T)

{proof)

lemma rtranclp-dpll-bj-atms-in-trail:
assumes
«dpll-b5** § T)» and
tnv Sy and
(atm-of ¢ (lits-of-1 (trail S)) C atms-of-mm (clausesyor S)
shows <atm-of ¢ (lits-of-l (trail T)) C atms-of-mm (clausesyor T)

{proof)

lemma rtranclp-dpll-bj-sat-iff:
assumes (dpll-bj** S T) and «nv S
shows (I Esm clausesyor S «— I |Esm clausesnor T)

{proof)

lemma rtranclp-dpll-bj-atms-in-trail-in-set:

assumes

(dpll-bj** S T)» and

nv S

(atms-of-mm (clausesyor S) C A and

(atm-of ¢ (lits-of-1 (trail S)) C A
shows (atm-of ¢ (lits-of-l (trail T)) C A
(proof)

lemma rtranclp-dpll-bj-all-decomposition-implies-inv:
assumes
«pll-bj** S T) and
tnv S
(all-decomposition-implies-m (clausesyor S) (get-all-ann-decomposition (trail S))
shows (all-decomposition-implies-m (clausesyor T) (get-all-ann-decomposition (trail T))

{proof)

lemma rtranclp-dpll-bj-inv-incl-dpll-bj-inv-trancl:
(T, S). dpll-bj*+ ST
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A atms-of-mm (clausesyor S) C atms-of-ms A A atm-of ¢ lits-of-l1 (trail S) C atms-of-ms A
A no-dup (trail S) A inv S}
C{(T, S). dpll-bj S T A atms-of-mm (clausesyor S) C atms-of-ms A
A atm-of ‘ lits-of-1 (trail S) C atms-of-ms A A no-dup (trail S) A inv S}
(is (?A C 2B™)
(proof)

lemma wf-tranclp-dpll-bj:
assumes fin: (finite A
shows «wf {(T, S). dpll-bjt+ S T
A atms-of-mm (clausesyor S) C atms-of-ms A A atm-of ¢ lits-of-1 (trail S) C atms-of-ms A
A no-dup (trail S) A inv S}
(proof)

lemma dpll-bj-sat-ext-iff:
(dpll-bj S T = inv S = I=sextm clausesyor S +— IEsextm clausesyor T)

{proof)

lemma rtranclp-dpll-bj-sat-ext-iff:
(dpll-bj** S T = inv S = Il=sextm clausesyor S +— IEsextm clausesyor T)

{proof)

theorem full-dpll-backjump-final-state:
fixes A :: v clause set) and S T :: sh
assumes
Jull: full dpll-bj S T) and
atms-S: (atms-of-mm (clausesyor S) C atms-of-ms A and
atms-trail: atm-of ‘ lits-of-1 (trail S) C atms-of-ms A> and
n-d: (no-dup (trail S)> and
(finite A and
inv: ¢nv ) and
decomp: (all-decomposition-implies-m (clausesyor S) (get-all-ann-decomposition (trail S))
shows (unsatisfiable (set-mset (clausesyor S))
V (trail T |Easm clausesyor S A satisfiable (set-mset (clausesyor S)))

(proof)

corollary full-dpll-backjump-final-state-from-init-state:
fixes A :: (v clause sety and S T :: /st
assumes
Sfull: full dpll-bj S T) and
(rail S = [» and
cclausesyor S = N» and
nv S
shows (unsatisfiable (set-mset N) V (trail T [=asm N A satisfiable (set-mset N))»
(proof)

lemma tranclp-dpll-bj-trail-mes-decreasing-prop:
assumes dpll: «dpll-bjT+ S T) and inv: ¢inv S) and
N-A: «atms-of-mm (clausesyor S) C atms-of-ms A and
M-A: atm-of * lits-of-l (trail S) C atms-of-ms A> and
n-d: <no-dup (trail S)) and
fin-A: (finite A
shows «(2+card (atms-of-ms A)) ~ (1+-card (atms-of-ms A))
— pe (14card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T')
< (24+-card (atms-of-ms A)) ~ (1+-card (atms-of-ms A))
— po (I+card (atms-of-ms A)) (2+-card (atms-of-ms A)) (trail-weight S)
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{proof)

end — End of the locale dpll-with-backjumping.

2.2.4 CDCL

In this section we will now define the conflict driven clause learning above DPLL: we first
introduce the rules learn and forget, and the add these rules to the DPLL calculus.

Learn and Forget

Learning adds a new clause where all the literals are already included in the clauses.

locale learn-ops =
dpll-state trail clausesyoT prepend-trail tl-trail add-clsyoT remove-clsyor
for
trail : st = ('v, unit) ann-litsy and
clausesnyor = (st = 'v clauses) and
prepend-trail :: «('v, unit) ann-lit = ‘st = ‘st and
tl-trail :: st ='st) and
add-clsyor 2 v clause = 'st = 'st) and
remove-clsyor : (v clause = st = 'st) +
fixes
learn-conds :: ('v clause = 'st = bool)
begin

inductive learn :: (st = 'st = bool) where
learny or-rule: clausesyor S FEpm C =
atms-of C' C atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-l (trail S)) =
learn-conds C S —
T ~ add-clsyor C S =
learn S T
inductive-cases learnyoTE: (learn S T)

lemma learn-uc-stable:
assumes (earn S T) and (no-dup (trail S)
shows (uc A B (trail-weight S) = pc A B (trail-weight T)
(proof)

end

Forget removes an information that can be deduced from the context (e.g. redundant clauses,
tautologies)

locale forget-ops =
dpll-state trail clausesyoT prepend-trail tl-trail add-clsyor remove-clsyor
for
trail 2 st = ('v, unit) ann-litsy and
clausesyor :: (st = v clauses) and
prepend-trail :: ('v, unit) ann-lit = ‘st = 'st) and
tl-trail :: st ='st) and
add-clsyor (v clause = 'st = ‘st and
remove-clsyor : (v clause = st = st +
fixes
forget-conds :: ('v clause = 'st = bool)
begin
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inductive forgetyor :: (st = 'st = bool) where
forgetnor:
(removeAll-mset C(clausesyor S) Epm C =
forget-conds C'S —
C €# clausesyor S =
T ~ remove-clsyor C S —

forgetnor S T
inductive-cases forgetyorE: (forgetyor S T)

lemma forget-pc-stable:
assumes (forgetyor S T)
shows (uc A B (trail-weight S) = pc A B (trail-weight T))
(proof)

end

locale learn-and-forgetyor =
learn-ops trail clausesyor prepend-trail ti-trail add-clsyor remove-clsyor learn-conds +
forget-ops trail clausesyor prepend-trail tl-trail add-clsyor remove-clsyor forget-conds
for
trail :: st = ('v, unit) ann-lits) and
clausesnyor : (st = 'v clauses) and
prepend-trail :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail = st ='st) and
add-clsyor 2 (v clause = 'st = st and
remove-clsyor 1 (v clause = 'st = 'st) and
learn-conds forget-conds :: 'v clause = 'st = bool
begin
inductive learn-and-forget yor :: (st = st = bool)
where
If-learn: dearn S T = learn-and-forgetyor S T |
lf-forget: forgetnor S T = learn-and-forgetnyor S T)
end

Definition of CDCL

locale conflict-driven-clause-learning-ops =
dpll-with-backjumping-ops trail clausesyor prepend-trail ti-trail add-clsy o remove-clsyor
inv decide-conds backjump-conds propagate-conds +
learn-and-forget y o trail clausesyor prepend-trail tl-trail add-clsyor remove-clsyor learn-conds
forget-conds
for
trail :: (st = ('v, unit) ann-lits) and
clausesyor :: (st = "v clauses) and
prepend-trail :: ('v, unit) ann-lit = st = 'st) and
tl-trail :: st ='st) and
add-clsyor : (v clause = 'st = ‘st and
remove-clsyor 1 (v clause = 'st = 'st) and
v :: st = bool) and
decide-conds :: (st = ‘st = bool) and
backjump-conds :: (v clause = 'v clause = 'v literal = 'st = 'st = bool) and
propagate-conds :: (v, unit) ann-lit = ‘st = st = bool> and
learn-conds forget-conds :: 'v clause = st = bool
begin

inductive cdclyor :: (st = 'st = bool) for S :: 'st where
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c-dpll-bj: «dpll-bj § §' = cdelyor S S |
c-learn: dearn S S' = cdclyor S S |
c-forgetyor: forgetnor S S’ = cdelyor S S

lemma cdclyor-all-induct|consumes 1, case-names dpll-bj learn forgetnor]:
fixes S T :: (st
assumes <cdclyor S T) and
dpll: <\\T. dpll-bj ST = P S T) and
learning:
(NC T. clausesyor S Epm C =
atms-of C' C atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-l (trail S)) =
T ~ add-clsyor C S —
P ST and
forgetting: (\NC T. removeAll-mset C (clausesyor S) Epm C =
C €4 clausesyor S =
T ~ remove-clsyor C S =

PST
shows (P S T
(proof)
lemma cdclyor-no-dup:
assumes
(edelyor S T) and
¢tnv S) and

(no-dup (trail S))
shows (no-dup (trail T)
(proof)

Consistency of the trail lemma cdclyor-consistent:
assumes
<CdClNOT S T) and
(nv S» and
(no-dup (trail S)
shows (consistent-interp (lits-of-1 (trail T))

{proof)

The subtle problem here is that tautologies can be removed, meaning that some variable can
disappear of the problem. It is also means that some variable of the trail might not be present
in the clauses anymore.

lemma cdcly o1 -atms-of-ms-clauses-decreasing:
assumes (cdclyor S Thand <nv S)
shows (atms-of-mm (clausesyor T) C atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-l (trail S))

{proof)

lemma cdcly o -atms-in-trail:
assumes (cdclyor S Thand <nv S)
and <atm-of ¢ (lits-of-l (trail S)) C atms-of-mm (clausesyor S)
shows (atm-of ¢ (lits-of-1 (trail T)) C atms-of-mm (clausesyor S))

{proof)

lemma cdcly oT-atms-in-trail-in-set:
assumes
tedelyor S T) and <inv S) and

(atms-of-mm (clausesyor S) C A and
atm-of ¢ (lits-of-1 (trail S)) C A»
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shows (atm-of ¢ (lits-of-l (trail T)) C A
{proof)

lemma cdcly or-all-decomposition-implies:
assumes (cdclyor S T) and dnv S) and
(all-decomposition-implies-m (clausesyor S) (get-all-ann-decomposition (trail S))
shows
(all-decomposition-implies-m (clausesyor T) (get-all-ann-decomposition (trail T)))

(proof)

Extension of models lemma cdclyor-bj-sat-ext-iff:
assumes (cdclyor S Thand ¢inv S)
shows J|=sextm clausesyor S «— IEsextm clausesyor T)

(proof)

end — End of the locale conflict-driven-clause-learning-ops.

CDCL with invariant

locale conflict-driven-clause-learning =
conflict-driven-clause-learning-ops +
assumes cdclyor-inv: (AS T. cdelyor S T = inv S = inv T
begin
sublocale dpli-with-backjumping
(proof)

lemma rtranclp-cdclyor-inv:
edelyor™ ST = inv S = inv T

{proof)

lemma rtranclp-cdcly or-no-dup:
assumes (cdclyor** S T) and <inv S
and (no-dup (trail S)
shows (no-dup (trail T)

{proof)

lemma rtranclp-cdcly or-trail-clauses-bound:
assumes
cdel: «cdelyor™ S T) and
inv: <nv S) and
atms-clauses-S: <atms-of-mm (clausesyor S) C A and
atms-trail-S: <atm-of ‘(lits-of-1 (trail S)) C A
shows (atm-of ¢ (lits-of-1 (trail T)) C A A atms-of-mm (clausesyor T) C A

{proof)

lemma rtranclp-cdcly or-all-decomposition-implies:
assumes (cdelyor™* S T) and ¢nv S and (no-dup (trail S)) and
(all-decomposition-implies-m (clausesyor S) (get-all-ann-decomposition (trail S))
shows
(all-decomposition-implies-m (clausesyor T) (get-all-ann-decomposition (trail T))
(proof)

lemma rtranclp-cdcly or-bj-sat-ext-iff
assumes (cdclyor** S Thand <inv S
shows (I[=sextm clausesyor S +— IE=sextm clausesyor T

{proof)
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definition cdclyor-NOT-all-inv where
edelyor-NOT-all-inv A S +— (finite A A inv S A atms-of-mm (clausesyor S) C atms-of-ms A
A atm-of * lits-of-l (trail S) C atms-of-ms A A no-dup (trail S))

lemma cdclyor-NOT-all-inv:
assumes <cdclyor** S T) and <cdclyor-NOT-all-inv A S
shows (cdelyor-NOT-all-inv A T)

(proof)

abbreviation learn-or-forget where
earn-or-forget S T = learn S T V forgetyor S T

lemma rtranclp-learn-or-forget-cdclyor:
dearn-or-forget*™ S T = cdclyor™ S T

{proof)

lemma learn-or-forget-dpll-uc:
assumes
I-f: dearn-or-forget*™™ S T) and
dpll: «dpll-bj T U)> and
mv: <cdelyor-NOT-all-inv A S
shows «(2+card (atms-of-ms A)) ~ (1+-card (atms-of-ms A))
— pc (1+card (atms-of-ms A)) (2+4card (atms-of-ms A)) (trail-weight U)
< (2+-card (atms-of-ms A)) ~ (1+card (atms-of-ms A))
— pe (14card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight S))
(is 2u U < ?u )
(proof)

lemma infinite-cdcly o-exists-learn-and-forget-infinite-chain:
assumes
(A\i. cdelnor (f i) (f(Suc i) and
inv: (cdclyor-NOT-all-inv A (f 0)
shows 3j. Vi>j. learn-or-forget (f ©) (f (Suc i))
(proof)

lemma wf-cdclyo-no-learn-and-forget-infinite-chain:
assumes
no-infinite-lf: <\f j. = (Vi>j. learn-or-forget (f i) (f (Suc i)))
shows wf {(T, S). cdclyor S T A cdelyor-NOT-all-inv A S}
(is «wf {(T, S). cdclyor S T A %inv SH)
(proof)

lemma inv-and-tranclp-cdcl-y or-tranclp-cdcly or-and-inv:

tedelyor™ S T A cdelyor-NOT-all-inv A S +— (AS T. cdelyor S T A cdclyor-NOT-all-inv A
STt ST

(is (PA N 71 «— 7B)
(proof)

lemma wf-tranclp-cdcly or-no-learn-and-forget-infinite-chain:
assumes
no-infinite-lf: <\f j. = (Vi>j. learn-or-forget (f i) (f (Suc )))
shows wf {(T, S). cdelyor™™ S T A cdelnor-NOT-all-inv A S}H
{proof)
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lemma cdclyor-final-state:
assumes
n-s: (no-step cdelyor S and
inv: <cdelyor-NOT-all-inv A S) and
decomp: (all-decomposition-implies-m (clausesyor S) (get-all-ann-decomposition (trail S))
shows (unsatisfiable (set-mset (clausesyor S))
V (trail S EEasm clausesyor S A satisfiable (set-mset (clausesyor S)))

(proof)

lemma full-cdcly or-final-state:
assumes
Sfull: <full cdelyor S T) and
inv: cdelyor-NOT-all-inv A S) and
n-d: (no-dup (trail S)> and
decomp: (all-decomposition-implies-m (clausesyor S) (get-all-ann-decomposition (trail S))
shows (unsatisfiable (set-mset (clausesyor T))
V (trail T [=asm clausesyor T A satisfiable (set-mset (clausesyor T)))

(proof)

end — End of the locale conflict-driven-clause-learning.

Termination

To prove termination we need to restrict learn and forget. Otherwise we could forget and relearn
the exact same clause over and over. A first idea is to forbid removing clauses that can be used
to backjump. This does not change the rules of the calculus. A second idea is to “merge”
backjump and learn: that way, though closer to implementation, needs a change of the rules,
since the backjump-rule learns the clause used to backjump.

Restricting learn and forget

locale conflict-driven-clause-learning-learning-before-backjump-only-distinct-learnt =

dpll-state trail clausesyor prepend-trail ti-trail add-clsyor remove-clsyor +

conflict-driven-clause-learning trail clausesyor prepend-trail tl-trail add-clsy or remove-clsyor
inv decide-conds backjump-conds propagate-conds

AC' S. distinct-mset C A —tautology C A learn-restrictions C' S A
(3FKAdF' C'L. trail S = F' Q Decided K # F N C = add-mset L C' N F =as CNot C’

A add-mset L C' ¢4 clausesyor S)

ANCS. ~(3F'"FKdL. trail S = F' Q Decided K # F N F [=as CNot (removel-mset L C))
A forget-restrictions C'S)
for
trail :: (st = ('v, unit) ann-lits) and
clausesyor :: (st = "v clauses) and
prepend-trail :: ('v, unit) ann-lit = st = 'st) and
tl-trail :: st ='st) and
add-clsyor : (v clause = 'st = ‘st and
remove-clsyor 1 (v clause = 'st = 'st) and
inv :: (st = bool) and
decide-conds :: (st = 'st = bool) and
backjump-conds :: (v clause = 'v clause = 'v literal = 'st = 'st = bool) and
propagate-conds :: (v, unit) ann-lit = ‘st = st = bool> and
learn-restrictions forget-restrictions :: ('v clause = 'st = bool)

begin

lemma cdclyor-learn-all-induct[consumes 1, case-names dpll-bj learn forgetyor]:
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fixes S T :: (st
assumes <cdclyor S T) and
dpll: <\\T. dpll-bj ST = P S T) and
learning:
(NCFKF' C'LT. clausesyor S FEpm C =
atms-of C' C atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-l (trail §)) =
distinct-mset C —>
= tautology C =
learn-restrictions C S =
trail S = F' Q Decided K # F —
C = add-mset L ' =
F =as CNot ' =
add-mset L C' ¢4 clausesyor S =
T ~ add-clsyor C S =
P ST and
forgetting: (\NC T. removeAll-mset C (clausesyor S) Epm C =
C €# clausesyor S =
—~(3F'FKL. trail S = F' Q Decided K # F N F [=as CNot (C — {#L#})) =
T ~ remove-clsyor C S —
forget-restrictions C' S —
PS
shows (P S T

{proof)

lemma rtranclp-cdclyor-inv:
edelyor™ S T = inv S = inv T)

{proof)

lemma learn-always-simple-clauses:
assumes
learn: (earn S T) and
n-d: <no-dup (trail S)
shows (set-mset (clausesyor T — clausesyor S)
C simple-clss (atms-of-mm (clausesyor S) U atm-of ¢ lits-of-1 (trail S))

(proof)

definition (conflicting-bj-clss S =
{C+{#L#} |C L. C+{#L#} €# clausesyor S A distinct-mset (C+{#L#})
A —tautology (C+{#L#})
AN (3F' K F. trail S = F' Q Decided K # F N F |=as CNot C')}

lemma conflicting-bj-clss-remove-clsy o [simp):
(conflicting-bj-clss (remove-clsyor C S) = conflicting-bj-clss S — {C}h
(proof)

lemma conflicting-bj-clss-remove-clsy o1 '[simp]:
(T ~ remove-clsyor C S = conflicting-bj-clss T = conflicting-bj-clss S — {C}h
(proof)

lemma conflicting-bj-clss-add-clsy or-state-eq:
assumes
T: (T ~ add-clsyor C'S) and
n-d: <no-dup (trail S)
shows (conflicting-bj-clss T
= conflicting-bj-clss S
U (if 3C L. C' = add-mset L C' A distinct-mset (add-mset L C) N —tautology (add-mset L C)
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NEFF' KdF. trail S = F' Q Decided K # F N F |=as CNot C)
then {C'} else {})
(proof)

lemma conflicting-bj-clss-add-clsyor:
(no-dup (trail S) =
conflicting-bj-clss (add-clsyor C'S)
= conflicting-bj-clss S
U (if 3C L. C' = C +{#L#}A distinct-mset (C+{#L#}) N —tautology (C+{#L#})
AN@BF' KdF. trail S = F' Q Decided K # F N F |=as CNot C)
then {C'} else {})

{proof)

lemma conflicting-bj-clss-incl-clauses:
(conflicting-bj-clss S C set-mset (clausesyor S)
(proof)

lemma finite-conflicting-bj-clss[simp):
(finite (conflicting-bj-clss S)
(proof)

lemma learn-conflicting-increasing:
(mo-dup (trail §) = learn S T = conflicting-bj-clss S C conflicting-bj-clss T

(proof)

abbreviation <conflicting-bj-clss-yet b S =
3 7 b — card (conflicting-bj-clss S)

abbreviation pj, :: (nat = ‘st = nat X nat) where
(g b S = (conflicting-bj-clss-yet b S, card (set-mset (clausesyor S)))

lemma do-not-forget-before-backtrack-rule-clause-learned-clause-untouched:
assumes (forgetyor S T)
shows (conflicting-bj-clss S = conflicting-bj-clss T»

(proof)

lemma forget-puy -decrease:
assumes forgetyor: (forgetyor S T
shows «(ur b T, pr, b S) € less-than <xlexx> less-than

(proof)

lemma set-condition-or-split:
{a. (a=0bdV Qa) AN Sa} = (if Sbthen {b} else {}) U {a. Qa A Sap
(proof)

lemma set-insert-neq:
(A # insert a A «— a ¢ A

{proof)

lemma learn-pr -decrease:
assumes learnST: dearn S T) and n-d: (no-dup (trail S)) and
A: catms-of-mm (clausesyor S) U atm-of * lits-of-1 (trail S) C A and
fin-A: (finite A
shows «(ur (card A) T, pr (card A) S) € less-than <xlexx> less-than)
(proof)
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We have to assume the following:

e inv S: the invariant holds in the inital state.

e A is a (finite finite A) superset of the literals in the trail atm-of ¢ lits-of-l (trail S) C
atms-of-ms A and in the clauses atms-of-mm (clausesyor S) C atms-of-ms A. This can
the the set of all the literals in the starting set of clauses.

e no-dup (trail S): no duplicate in the trail. This is invariant along the path.

definition pcpcor where
weper A T = ((2+card (atms-of-ms A)) — (1+card (atms-of-ms A))
— pe (14card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T'),
conflicting-bj-clss-yet (card (atms-of-ms A)) T, card (set-mset (clausesyor T)))
lemma cdclyor-decreasing-measure:
assumes
<CdClNOT S T) and
inv: ¢nv S> and
atm-clss: atms-of-mm (clausesyor S) C atms-of-ms A and
atm-lits: atm-of * lits-of-l (trail S) C atms-of-ms A> and
n-d: (no-dup (trail S)> and
fin-A: (finite A
shows <(,“fCDCL A T7 HCDCL A S)
€ less-than <xlexx> (less-than <xlexx> less-than)
{proof)

lemma wf-cdcly or-restricted-learning:

assumes (finite A

shows «wf {(T, 5).
(atms-of-mm (clausesyor S) C atms-of-ms A A atm-of * lits-of-l (trail S) C atms-of-ms A
A no-dup (trail S)
A inv S)
A cdelyor ST })

(proof)

definition uc’ :: (‘v clause set = st = nat) where
o' A T = pe (14card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T)

definition ucpcyr’ :: (v clause set = 'st = nat> where
(weper' AT =

((24card (atms-of-ms A)) = (14card (atms-of-ms A)) — uc’' A T) = (1+ 3 card (atms-of-ms A)) *
2

+ conflicting-bj-clss-yet (card (atms-of-ms A)) T * 2

+ card (set-mset (clausesyor T))

lemma cdcly or-decreasing-measure’:

assumes
cedelyor S Ty and
inv: dnv S) and
atms-clss: (atms-of-mm (clausesyor S) C atms-of-ms A and
atms-trail: atm-of ‘ lits-of-1 (trail S) C atms-of-ms A> and
n-d: (no-dup (trail S)> and
fin-A: (finite A

shows (ucpcr’ A T < pecpcr’ A S

(proof)
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lemma cdclyor-clauses-bound:
assumes
cedelyor S Ty and
dnv Sy and
(atms-of-mm (clausesyor S) C A and
(atm-of ‘(lits-of-1 (trail S)) C A and
n-d: (no-dup (trail S)> and
fin-A[simp]: (finite A
shows (set-mset (clausesyor T) C set-mset (clausesyor S) U simple-clss A)
(proof)

lemma rtranclp-cdclyor-clauses-bound:

assumes
cedelyor™™ S T) and
dnv Sy and
(atms-of-mm (clausesyor S) C A and
(atm-of ‘(lits-of-1 (trail S)) C A and
n-d: (no-dup (trail S)> and
finite: (finite A

shows (set-mset (clausesyor T) C set-mset (clausesyor S) U simple-clss A

{proof)

lemma rtranclp-cdcly o1 -card-clauses-bound:

assumes
(cdelyor™ S T) and
¢nv S and
(atms-of-mm (clausesyor S) € A and
(atm-of ‘(lits-of-1 (trail S)) C A> and
n-d: (no-dup (trail S)> and
finite: (finite A

shows (card (set-mset (clausesyor T)) < card (set-mset (clausesyor S)) + 3 = (card A)

{proof)

lemma rtranclp-cdclyoT-card-clauses-bound’:

assumes
<CdClNOT** S T) and
(nv > and
(atms-of-mm (clausesyor S) C A and
(atm-of ‘(lits-of-l (trail S)) C A and
n-d: (no-dup (trail S) and
finite: <finite A

shows «card {C|C. C €# clausesyor T A (tautology C Vv —distinct-mset C')}
< card {C|C. Ce# clausesnor S A (tautology C V —distinct-mset C)} + 3 ~ (card A)
(is ccard ?T < card 25 + )

(proof)

lemma rtranclp-cdcly or-card-simple-clauses-bound:
assumes
edelyor™ S T) and
(nv S and
NA: (atms-of-mm (clausesyor S) € A and
MA: «atm-of  (lits-of-1 (trail S)) C A> and
n-d: <no-dup (trail S) and
finite: (finite A)
shows (card (set-mset (clausesyor T))
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< card {C. C €# clausesyor S A (tautology C' V —distinct-mset C)} + 3 = (card A)»
(is ccard ?T < card 25 + )
{proof)

definition ucpcyr’-bound :: (v clause set = 'st = nat) where
(weper’-bound A S =
((2 + card (atms-of-ms A)) ~ (1 + card (atms-of-ms A))) * (1 + 3 ~ card (atms-of-ms A)) * 2
+ 2%3 ~ (card (atms-of-ms A))
+ card {C. C €# clausesyor S A (tautology C V —distinct-mset C)} + 3 ~ (card (atms-of-ms
A))

lemma pcper’-bound-reduce-trail-ton or[simp):
(weper-bound A (reduce-trail-toyor M S) = pcpcr’-bound A S

(proof)

lemma rtranclp-cdelyor-picpor’-bound-reduce-trail-toy or:
assumes
tedelyor™ S T) and
¢anv S) and
(atms-of-mm (clausesyor S) C atms-of-ms A and
atm-of ‘(lits-of-l (trail S)) C atms-of-ms A> and
n-d: no-dup (trail S)> and
finite: (finite (atms-of-ms A)) and
U: «U ~ reduce-trail-toyor M T)
shows (ucpcr’ A U < ucpcyr’-bound A S

(proof)

lemma rtranclp-cdelyor-pe por’-bound:

assumes
cedelyor™™ S T) and
¢tnv S) and
(atms-of-mm (clausesyor S) C atms-of-ms A and
atm-of ‘(lits-of-l (trail S)) C atms-of-ms A> and
n-d: (no-dup (trail S)> and
finite: (finite (atms-of-ms A))

shows <,uCDCL' AT < [I,CDCL/—bOU’ﬂ,d A S

(proof)

lemma rtranclp-uc pcr'-bound-decreasing:

assumes
cedelyor™™ S T) and
dnv Sy and
(atms-of-mm (clausesyor S) C atms-of-ms A and
atm-of ‘(lits-of-1 (trail S)) C atms-of-ms A and
n-d: (no-dup (trail S)> and
finite[simp]: finite (atms-of-ms A))

shows (ucpcr’-bound A T < pcpcr’-bound A S

(proof)

end — End of the locale conflict-driven-clause-learning-learning-before-backjump-only-distinct-learnt.

2.2.5 CDCL with Restarts

Definition

locale restart-ops =
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fixes
cdelyor = (st = st = bool) and
restart :: <'st = 'st = bool)
begin
inductive cdcly or-raw-restart :: st = 'st = bool) where
edelyor S T = cdclyor-raw-restart S T) |
trestart S T — cdclyor-raw-restart S T)

end

locale conflict-driven-clause-learning-with-restarts =
conflict-driven-clause-learning trail clausesyor prepend-trail tl-trail add-clsy o remove-clsyor
inv decide-conds backjump-conds propagate-conds learn-conds forget-conds
for
trail :: (st = ('v, unit) ann-lits) and
clausesyor :: /st = "v clauses) and
prepend-trail :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail :: st ='st) and
add-clsyor : (v clause = 'st = st and
remove-clsyor 1 (v clause = 'st = 'st) and
inv :: (st = bool and
decide-conds :: ('st = 'st = bool) and
backjump-conds :: (v clause = 'v clause = v literal = ’st = 'st = bool) and
propagate-conds :: (v, unit) ann-lit = ‘st = st = bool> and
learn-conds forget-conds :: (v clause = st = bool
begin

lemma cdcly or-iff-cdcl y o -raw-restart-no-restarts:
edelyor S T +— restart-ops.cdcly or-raw-restart cdclyor (M- -. False) S T
(is«?CST+— ?RST)

(proof)

lemma cdclyor-cdely or-raw-restart:
(edelyor S T = restart-ops.cdclyor-raw-restart cdclyor restart S T)

(proof)

end

Increasing restarts

Definition We define our increasing restart very abstractly: the predicate (called cdclyor)
does not have to be a CDCL calculus. We just need some assuptions to prove termination:

e a function f that is strictly monotonic. The first step is actually only used as a restart to
clean the state (e.g. to ensure that the trail is empty). Then we assume that (1::'a) < f
n for (1::'a) < n: it means that between two consecutive restarts, at least one step will
be done. This is necessary to avoid sequence. like: full — restart — full — ...

e a measure u: it should decrease under the assumptions bound-inv, whenever a cdclyor
or a restart is done. A parameter is given to u: for conflict- driven clause learning, it is
an upper-bound of the clauses. We are assuming that such a bound can be found after a
restart whenever the invariant holds.

e we also assume that the measure decrease after any cdclyor step.

e an invariant on the states cdclyor-inv that also holds after restarts.
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e it is not required that the measure decrease with respect to restarts, but the measure has
to be bound by some function p-bound taking the same parameter as p and the initial
state of the considered cdclyoT chain.

locale cdcly or-increasing-restarts-ops =
restart-ops cdclyor restart for
restart :: /st = 'st = bool) and
cdelyor = (st = st = booly +
fixes
f = (mat = nat) and
bound-inv :: ('bound = st = bool) and
w o (bound = st = nat) and
cdelyor-inv (st = bool) and
p-bound :: ('bound = 'st = nab)
assumes
f: «unbounded f» and
fge-1: (An. n>1 = fn # 0) and
bound-inv: \NA S T. cdelyor-inv S = bound-inv A § = cdclyor S T = bound-inv A T) and
cdelyor-measure: (NA S T. cdclyor-inv S = bound-inv A S = cdelyor ST = p AT <p
A Sy and
measure-bound2: \NA T U. cdelyor-inv T = bound-inv A T = cdclyor™ T U
= u A U < p-bound A T) and
measure-bound4: (NA T U. cdclyor-inv T = bound-inv A T = cdelyor™ T U
= p-bound A U < p-bound A T) and
cdelyor-restart-inv: (NA U V. edelyor-inv U = restart U V = bound-inv A U = bound-inv
AV
and
exists-bound: (AR S. cdclyor-inv R = restart R S = 3 A. bound-inv A S) and
cdelyor-inv: <\\S T. cdelyor-inv S = cdclyor S T = cdelyor-inv T) and
edelyor-inv-restart: (\S T. cdelyor-inv S = restart S T = cdelyor-inv T)
begin

lemma cdclyor-cdelyor-inv:
assumes
(edelyor™"n) S Ty and
tedelyor-inv S)
shows (cdclyor-inv T)

{proof)

lemma cdcly o7-bound-inv:
assumes
(edelyor™n) S T) and
cedelyor-inv S»
(bound-inv A S
shows (bound-inv A T)

{proof)

lemma rtranclp-cdclyor-cdelyor-inv:
assumes
cedelyor™ S T) and
(edelyor-inv S)
shows (cdclyor-inv T)

(proof)

lemma rtranclp-cdcly or-bound-inv:
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assumes
tedelyor™ S T) and
(bound-inv A S) and
cedelyor-inv S»

shows (bound-inv A T)

{proof)

lemma cdcly o1-comp-n-le:
assumes
(edelyor ™" (Suc n)) S T and
(bound-inv A S
(edelyor-inv S)
shows (u A T<puAS—m

(proof)

lemma wf-cdclyor:
wf {(T, S). cdelnor S T A cdelyor-inv S A bound-inv A S} (is «wf 24))

{proof)

lemma rtranclp-cdcly or-measure:
assumes
cedelyor™ S T) and
(bound-inv A Sy and
cedelyor-inv S»
shows (w A T<puAS

{proof)

lemma cdcly or-comp-bounded:
assumes
tbound-inv A S» and <cdelyor-inv S) and ¢m > 1+u A S
shows (—(cdclyor ~~m) S T

{proof)

e fn < m ensures that at least one step has been done.

inductive cdclyor-restart where
restart-step: ((cdclyor™ m) S T = m > fn = restart T U
= cdelyor-restart (S, n) (U, Suc n)) |
restart-full: fulll cdelyor S T = cdclyor-restart (S, n) (T, Suc n)

lemmas cdelyor-with-restart-induct = edcly or-restart.induct|split-format(complete),
OF cdcly or-increasing-restarts-ops-azioms]

lemma cdcly or-restart-cdel y o -raw-restart:
edelyor-restart S T = cdclyor-raw-restart™™ (fst S) (fst T)

(proof)

lemma cdcly o -with-restart-bound-inv:
assumes
cedelyor-restart S Ty and
(bound-inv A (fst S)» and
edelyor-inv (fst S)
shows bound-inv A (fst T)

{proof)
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lemma cdcly o-with-restart-cdcly o -inv:
assumes
cedelyor-restart S T) and
(cdelyor-inv (fst S)
shows (cdclyor-inv (fst T)

{proof)

lemma rtranclp-cdcly o -with-restart-cdcly o -inv:
assumes
cedelyor-restart™™ S T) and
edelyor-inv (fst S)
shows (cdclyor-inv (fst T)

{proof)

lemma rtranclp-cdcly o -with-restart-bound-inv:
assumes
cedelyor-restart™ S Ty and
edelyor-inv (fst S)) and
thound-inv A (fst S)
shows (hound-inv A (fst T)

{proof)

lemma cdcly op-with-restart-increasing-number:
tedelyor-restart ST =—> snd T = 1 + snd S

(proof)

end

locale cdclyor-increasing-restarts =
cdcl y or-increasing-restarts-ops restart cdclyor f bound-inv u cdely or-inv p-bound +
dpll-state trail clausesyoT prepend-trail tl-trail add-clsyoT remove-clsyor
for
trail :: st = ('v, unit) ann-lits) and
clausesyor : (st = 'v clauses) and
prepend-trail :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail :: st ='st) and
add-clsyor 2 (v clause = 'st = st and
remove-clsyor 1 (v clause = 'st = 'st) and
f = (mat = nat) and
restart :: /st = st = bool) and
bound-inv :: ('bound = 'st = bool> and
i i ‘bound = ‘st = naty and
cdelyor = (st = st = bool> and
cdelyor-inv = (st = bool) and
w-bound :: bound = 'st = nat) +
assumes
measure-bound: (NA T V n. cdclyor-inv T = bound-inv A T
= cdelyor-restart (T, n) (V, Sucn) = p A V < p-bound A T) and
cdel y o-raw-restart-p-bound:
tedelyor-restart (T, a) (V, b) = cdclyor-inv T = bound-inv A T
= p-bound A V < pu-bound A T)
begin

lemma rtranclp-cdcly or-raw-restart-p-bound:
edelyor-restart*™ (T, a) (V, b) = cdclyor-inv T = bound-inv A T
= p-bound A V < p-bound A T)

(proof)
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lemma cdcly o -raw-restart-measure-bound:
edelyor-restart (T, a) (V, b) = cdclyor-inv T = bound-inv A T
= pu AV < pu-bound A T)

{proof)

lemma rtranclp-cdcly or-raw-restart-measure-bound:
edelyor-restart™ (T, a) (V, b) = cdelyor-inv T = bound-inv A T
= pu AV < pu-bound A T)

{proof)

lemma wf-cdclyor-restart:
awf {(T, S). cdclyor-restart S T A cdelyor-inv (fst )} (is «wf 74)

(proof)

lemma cdcly or-restart-steps-bigger-than-bound:
assumes
(edelyor-restart S Ty and
thound-inv A (fst S)) and
(cdelyor-inv (fst S)) and
«f (snd S) > p-bound A (fst S)
shows (fulll cdelyor (fst S) (fst T)
{proof)

lemma rtranclp-cdcly o -with-inv-inv-rtranclp-cdcly oT:
assumes
inv: <cdelyor-inv S) and
binv: <bound-inv A S)
shows (AS T. cdelyor S T A cdclyor-inv S A bound-inv A S)** S T +— cdclyor™ S T)
(is (?A** S T «— ?B** S )
(proof)

lemma no-step-cdcly or-restart-no-step-cdclyor:
assumes
n-s: (no-step cdclyor-restart S) and
inv: <edelyor-inv (fst S) and
binv: <bound-inv A (fst S)
shows (no-step cdclyor (fst S)
(proof)

end

2.2.6 Merging backjump and learning

locale cdcly or-merge-bj-learn-ops =

decide-ops trail clausesyor prepend-trail tl-trail add-clsyor remove-clsyor decide-conds +
forget-ops trail clausesyor prepend-trail ti-trail add-clsyor remove-clsyor forget-conds +
propagate-ops trail clausesyor prepend-trail ti-trail add-clsyor remove-clsyor propagate-conds
for

trail :: (st = ("v, unit) ann-lits) and

clausesnyor : (st = 'v clauses) and

prepend-trail :: «('v, unit) ann-lit = ‘st = 'st) and

tl-trail :: st ='st) and

add-clsyor : (v clause = 'st = st and

remove-clsyor 1 (v clause = 'st = 'st) and

decide-conds :: (st = ‘st = bool) and
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propagate-conds :: (v, unit) ann-lit = ‘st = st = bool> and
forget-conds :: ('v clause = 'st = bool) +
fixes backjump-I-cond :: (v clause = v clause = 'v literal = 'st = 'st = bool)
begin

We have a new backjump that combines the backjumping on the trail and the learning of the
used clause (called C'"’ below)

inductive backjump-l where

backjump-l: (trail S = F' @ Decided K # F

T ~ prepend-trail (Propagated L ()) (reduce-trail-tonor F (add-clsyor C'S))
C €# clausesyor S

trail S =as CNot C

undefined-lit F' L

atm-of L € atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-1 (trail S))
clausesyor S Epm add-mset L C’

C" = add-mset L C’

F =as CNot C'

backjump-l-cond C C'L S T

backjump-1 S T)

FOERLELeLy

Avoid (meaningless) simplification in the theorem generated by inductive-cases:

declare reduce-trail-tony or-length-ne[simp del] Set. Un-iff[simp del] Set.insert-iff [simp del]
inductive-cases backjump-IlE: <backjump-1 S T)

thm backjump-IE

declare reduce-trail-ton or-length-ne[simp] Set. Un-iff [simp] Set.insert-iff [simp]

inductive cdclyor-merged-bj-learn :: (st = 'st = bool) for S :: ‘st where

cdely or-merged-bj-learn-deciden or: (decidenor S S’ = cdclyor-merged-bj-learn S S* |

cdely o -merged-bj-learn-propagaten or: <propagatenor S S’ = cdelyor-merged-bj-learn S S |
cdely o -merged-bj-learn-backjump-l: backjump-1 S S’ = cdelyor-merged-bj-learn S S* |

cdcl y or-merged-bj-learn-forget y or: (forgetyor S S' = cdclyor-merged-bj-learn S S

lemma cdcly or-merged-bj-learn-no-dup-inv:
(edely or-merged-bj-learn S T = no-dup (trail S) = no-dup (trail T)

{proof)

end

locale cdcly or-merge-bj-learn-proxy =
cdely or-merge-bj-learn-ops trail clausesyoT prepend-trail tl-trail add-clsyor remove-clsyor
decide-conds propagate-conds forget-conds
NC C'"L'S T. backjump-l-cond C C' L' S T
A distinct-mset C' N L' ¢# C' A —tautology (add-mset L' C)
for
trail :: (st = ('v, unit) ann-lits) and
clausesnyor : (st = 'v clauses) and
prepend-trail :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail :: st ='sty and
add-clsyor 2 (v clause = 'st = st and
remove-clsyor 1 (v clause = 'st = 'st) and
decide-conds :: ('st = 'st = bool) and
propagate-conds :: (v, unit) ann-lit = ‘st = st = bool> and
forget-conds :: ('v clause = 'st = bool) and
backjump-I-cond :: (v clause = v clause = 'v literal = 'st = 'st = bool) +
fixes
inv st = bool
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begin

abbreviation backjump-conds :: ('v clause = 'v clause = v literal = 'st = 'st = bool)

where
hackjump-conds = AC C' L' S T. distinct-mset C' N L' ¢# C' A —tautology (add-mset L' C')

sublocale backjumping-ops trail clausesyor prepend-trail tl-trail add-clsyor remove-clsyor
backjump-conds

(proof)

end

locale cdclyor-merge-bj-learn =
cdel y or-merge-bj-learn-prozy trail clausesyor prepend-trail ti-trail add-clsyor remove-clsyor
decide-conds propagate-conds forget-conds backjump-l-cond inv
for
trail 2 st = ('v, unit) ann-litsy and
clausesnyor (st = 'v clauses) and
prepend-tragl :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail :: st ='sty and
add-clsyor 2 (v clause = 'st = 'st) and
remove-clsyor :: ('v clause = st = 'st) and
decide-conds :: ('st = 'st = bool) and
propagate-conds :: (v, unit) ann-lit = ‘st = st = bool> and
forget-conds :: ('v clause = 'st = bool) and
backjump-l-cond :: v clause = v clause = v literal = 'st = 'st = bool) and
inv (st = bool) +
assumes
bj-merge-can-jump:
NS CF'KFL.
v S
trail S = F' Q Decided K # F
C €# clausesyor S
trail S |=as CNot C
undefined-lit F' L
atm-of L € atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-1 (F' @Q Decided K # F))
clausesyor S FEpm add-mset L C’
F f=as CNot C’
—no-step backjump-l S) and
cdel-merged-inv: <\\S T. cdelyor-merged-bj-learn S T = inv S = inv T) and
can-propagate-or-decide-or-backjump-I:
wtm-of L € atms-of-mm (clausesyor S) =
undefined-lit (trail S) L =
nv § =
satisfiable (set-mset (clausesyor S)) =
3T. decideyor S T V propagatenor S T V backjump-l S T)
begin

FEEELELy

lemma backjump-no-step-backjump-I:
thackjump S T = inv § = —no-step backjump-l S)

(proof)

lemma tautology-single-add:
(tautology (L + {#a#}) +— tautology L V —a €# L
(proof)
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lemma backjump-l-implies-exists-backjump:
assumes bj: <backjump-1 S T) and ¢nv $) and n-d: (no-dup (trail S)
shows J U. backjump S U)

(proof)

Without additional knowledge on backjump-I-cond, it is impossible to have the same invariant.

sublocale dpll-with-backjumping-ops trail clausesyor prepend-trail ti-trail add-clsyor remove-clsyor
inv decide-conds backjump-conds propagate-conds

(proof)

sublocale conflict-driven-clause-learning-ops trail clausesyor prepend-trail ti-trail add-clsyor
remove-clsyor inv decide-conds backjump-conds propagate-conds
AC -. distinct-mset C' N\ —tautology C)
forget-conds

{proof)

lemma backjump-Il-learn-backjump:
assumes bt: backjump-1 S T) and inv: ¢nv S
shows (3 C' L D. learn S (add-clsyor D S)
A D = add-mset L C’
A backjump (add-clsyor D S) T
A atms-of (add-mset L C') C atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-1 (trail S))»
(proof)

lemma backjump-Il-backjump-learn:

assumes bt: <backjump-1 S T) and inv: ¢nv S)

shows <3C’ L D S’. backjump S S’
A learn S’ T
A D = (add-mset L C")
AN T ~ add-clsyor D S’
A atms-of (add-mset L C') C atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-1 (trail S))
A clausesyor S Epm D)

(proof)

lemma cdcly or-merged-bj-learn-is-tranclp-cdcly or:
(cdelyor-merged-bj-learn S T = inv S = cdelyor™ S T

(proof)

lemma rtranclp-cdcly or-merged-bj-learn-is-rtranclp-cdcl y o r-and-inv:
(cdely or-merged-bj-learn™™ S T = inv § = cdclyor™ S T N inv T)

(proof)

lemma rtranclp-cdcly or-merged-bj-learn-is-rtranclp-cdelyor:
(cdcly or-merged-bj-learn** S T —> inv S = cdclyor™ S T)

{proof)

lemma rtranclp-cdcly or-merged-bj-learn-inv:
(cdcly or-merged-bj-learn™* S T = inv S = inv T)

(proof)

lemma rtranclp-cdcly or-merged-bj-learn-no-dup-inv:
edely or-merged-bj-learn** S T = no-dup (trail S) = no-dup (trail T)

{proof)

definition uc’:: (v clause set = ‘st = nat) where
o' AT = pe (14card (atms-of-ms A)) (2+-card (atms-of-ms A)) (trail-weight T)
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definition ucpcyp’-merged :: ('v clause set = ‘st = nat) where
(wepor’-merged A T =

((2+-card (atms-of-ms A)) ~ (1+4card (atms-of-ms A)) — pc' A T) x 2 + card (set-mset (clausesyor
7))

lemma cdcly or-decreasing-measure’:

assumes
(cdcly or-merged-bj-learn S T) and
inv: dnv S) and
atm-clss: atms-of-mm (clausesyor S) C atms-of-ms A and
atm-trail: «atm-of ¢ lits-of-l (trail S) C atms-of-ms A and
n-d: (no-dup (trail S)> and
fin-A: (finite A

shows (ucpcr’-merged A T < pcper’-merged A S

(proof)

lemma wf-cdcly o-merged-bj-learn:
assumes
fin-A: (finite A
shows «wf {(T, 5).
(inv S A atms-of-mm (clausesyor S) C atms-of-ms A A atm-of * lits-of-l (trail S) C atms-of-ms A
A no-dup (trail S))
A cdelyor-merged-bj-learn S T'h

(proof)

lemma in-atms-neg-defined: «x € atms-of C' = F E=as CNot C' = z € atm-of * lits-of-1 F

{proof)

lemma cdcly or-merged-bj-learn-atms-of-ms-clauses-decreasing:
assumes (cdclyor-merged-bj-learn S Thand ¢inv S)
shows <atms-of-mm (clausesyor T) C atms-of-mm (clausesyor S) U atm-of ¢ (lits-of-l (trail S))

{proof)

lemma cdcly or-merged-bj-learn-atms-in-trail-in-set:
assumes
(cdcly or-merged-bj-learn S T) and ¢nv S) and
(atms-of-mm (clausesyor S) C A and
atm-of < (lits-of-1 (trail S)) C A
shows <atm-of ¢ (lits-of-l (trail T)) C A»
(proof)

lemma rtranclp-cdcly or-merged-bj-learn-trail-clauses-bound:
assumes
cdcel: <cdely or-merged-bj-learn™™ S T) and
inv: tnv S) and
atms-clauses-S: <atms-of-mm (clausesyor S) C A and
atms-trail-S: <atm-of ‘(lits-of-1 (trail S)) C A
shows <atm-of ¢ (lits-of-1 (trail T)) C A A atms-of-mm (clausesyor T) C A

{proof)

lemma cdcly or-merged-bj-learn-trail-clauses-bound:
assumes
cdcel: <cdely or-merged-bj-learn S T) and
inwv: ¢nv S) and
atms-clauses-S: <atms-of-mm (clausesyor S) C A and
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atms-trail-S: atm-of ‘(lits-of-1 (trail S)) C A
shows (atm-of ¢ (lits-of-1 (trail T)) C A A atms-of-mm (clausesyor T) C A

(proof)

lemma tranclp-cdclyor-cdely or-tranclp:

assumes
(cdelyor-merged-bj-learn™ S T) and
nwv: tnv S) and
atm-clss: (atms-of-mm (clausesyor S) C atms-of-ms A and
atm-trail: «atm-of ‘ lits-of-l (trail S) C atms-of-ms A> and
n-d: <no-dup (trail S)> and
fin-A[simp]: (finite A

shows (T, S) € {(T, 9).
(inv S A atms-of-mm (clausesyor S) C atms-of-ms A A atm-of * lits-of-l (trail S) C atms-of-ms A
A no-dup (trail S))
A cdclyor-merged-bj-learn S T} (is - € 2P™))

{proof)

lemma wf-tranclp-cdcl y o r-merged-bj-learn:
assumes (finite A)
shows «wf {(T, 5).
(inv S A atms-of-mm (clausesyor S) C atms-of-ms A A atm-of * lits-of-l (trail S) C atms-of-ms A
A no-dup (trail S))
A cdelyor-merged-bj-learn™ ™ S T}

(proof)

lemma cdcly or-merged-bj-learn-final-state:
fixes A :: (v clause sety and S T :: /st
assumes
n-s: (no-step cdclyor-merged-bj-learn S and
atms-S: (atms-of-mm (clausesyor S) C atms-of-ms A and
atms-trail: atm-of ‘ lits-of-1 (trail S) C atms-of-ms A> and
n-d: (no-dup (trail S)> and
(finite A> and
inv: <inv S) and
decomp: (all-decomposition-implies-m (clausesyor S) (get-all-ann-decomposition (trail S))
shows (unsatisfiable (set-mset (clausesyor S))
V (trail S =asm clausesyor S A satisfiable (set-mset (clausesyor S)))

(proof)

lemma cdcly or-merged-bj-learn-all-decomposition-implies:
assumes (cdclyor-merged-bj-learn S T) and inv: (nv S
(all-decomposition-implies-m (clausesyor S) (get-all-ann-decomposition (trail S))
shows
(all-decomposition-implies-m (clausesyor T) (get-all-ann-decomposition (trail T))

(proof)

lemma rtranclp-cdcly or-merged-bj-learn-all-decomposition-implies:
assumes <(cdclyor-merged-bj-learn** S T) and inv: nv S
(all-decomposition-implies-m (clausesyor S) (get-all-ann-decomposition (trail S))
shows
(all-decomposition-implies-m (clausesyor T) (get-all-ann-decomposition (trail T))

{proof)

lemma full-cdcl o -merged-bj-learn-final-state:
fixes A :: (v clause sety and S T :: (st
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assumes

Sfull: <full cdcly or-merged-bj-learn S T) and

atms-S: atms-of-mm (clausesyor S) C atms-of-ms A and

atms-trail: (atm-of © lits-of-1 (trail S) C atms-of-ms A> and

n-d: no-dup (trail S)> and

(finite A> and

inv: ¢nv S» and

decomp: (all-decomposition-implies-m (clausesyor S) (get-all-ann-decomposition (trail S))
shows (unsatisfiable (set-mset (clausesyor T))

V (trail T [=asm clausesyor T A satisfiable (set-mset (clausesyor T)))

(proof)

end

2.2.7 Instantiations

In this section, we instantiate the previous locales to ensure that the assumption are not con-
tradictory.

locale cdcly o1 -with-backtrack-and-restarts =
conflict-driven-clause-learning-learning-before-backjump-only-distinct-learnt
trail clausesyoT prepend-trail tl-trail add-clsyoT remove-clsyor
inv decide-conds backjump-conds propagate-conds learn-restrictions forget-restrictions
for
trail 2 st = ('v, unit) ann-litsy and
clausesyor (st = 'v clauses) and
prepend-trail :: «('v, unit) ann-lit = ‘st = 'st) and
tl-trail :: st ='sty and
add-clsyor 2 (v clause = 'st = 'st) and
remove-clsyor :: ('v clause = st = 'st) and
inv :: (st = bool) and
decide-conds :: ('st = 'st = bool) and
backjump-conds :: (v clause = "v clause = 'v literal = 'st = 'st = bool> and
propagate-conds :: ('v, unit) ann-lit = st = ‘st = bool) and
learn-restrictions forget-restrictions :: v clause = 'st = bool
+
fixes f :: (nat = nab
assumes
unbounded: (unbounded f) and f-ge-1: (An. n > 1 = fn > 1) and
A

inv-restart:\S T. inv S = T ~ reduce-trail-toyor ([]:: a_lz'st) S = inv 1)
begin

lemma bound-inv-inv:
assumes
dnv Sy and
n-d: no-dup (trail S)> and
atms-clss-S-A: <atms-of-mm (clausesyor S) C atms-of-ms A and
atms-trail-S-A:atm-of ¢ lits-of-1 (trail S) C atms-of-ms A and

(finite A and
cdelyor: «edelyor S T
shows

(atms-of-mm (clausesyor T) C atms-of-ms A> and
(atm-of ¢ lits-of-1 (trail T) C atms-of-ms A> and
(finite A

(proof)
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sublocale cdclyor-increasing-restarts-ops AS T. T ~ reduce-trail-toyor ([J::'a list) S) edelyor f
AA S. atms-of-mm (clausesyor S) C atms-of-ms A A atm-of * lits-of-1 (trail S) C atms-of-ms A A
finite A
wepcor’ AS. inv S A no-dup (trail S)
pepoL'-bound
(proof)

lemma cdcly or-with-restart-ucpcr’-le-pc pcor’-bound:
assumes
cdelyor: (edelyor-restart (T, a) (V, b)) and
cdelyor-inv:
anv T
(no-dup (trail T)) and
bound-inv:
(atms-of-mm (clausesyor T) C atms-of-ms A
(atm-of ¢ lits-of-1 (trail T) C atms-of-ms A
(finite A
shows (ucpcr’' AV < ucpcr’-bound A T)
(proof)

lemma cdcly or-with-restart-uc pcr’-bound-le-pc p o 1. '-bound:
assumes
cdelyor: (edelyor-restart (T, a) (V, b)) and
cdelyor-inv:
anv Th
(no-dup (trail T)> and
bound-inv:
(atms-of-mm (clausesyor T) C atms-of-ms A
atm-of ‘ lits-of-l (trail T) C atms-of-ms A
(finite A
shows (ucpcyr’-bound A V < pucpcyr’-bound A T)

{proof)

sublocale cdclyor-increasing-restarts - - - - - -

/
AS T. T ~ reduce-trail-toyor ([J::'a list) S

AA S. atms-of-mm (clausesyor S) C atms-of-ms A
A atm-of * lits-of-l (trail S) C atms-of-ms A A finite A
pepcor’ cdelyor
AS. inv S A no-dup (trail S)
pepcer’-bound

{proof)

lemma cdcly or-restart-all-decomposition-implies:
assumes <cdclyor-restart S T) and
tnv (fst S) and
(no-dup (trail (fst S))
(all-decomposition-implies-m (clausesyor (fst S)) (get-all-ann-decomposition (trail (fst S)))

shows
(all-decomposition-implies-m (clausesyor (fst T)) (get-all-ann-decomposition (trail (fst T)))

(proof)
lemma rtranclp-cdcly or-restart-all-decomposition-implies:
assumes (cdclyor-restart*™ S T) and

inv: «nv (fst S) and
n-d: (no-dup (trail (fst S))» and

105



decomp:
(all-decomposition-implies-m (clausesyor (fst S)) (get-all-ann-decomposition (trail (fst S)))
shows
(all-decomposition-implies-m (clausesyor (fst T)) (get-all-ann-decomposition (trail (fst T)))

{proof)

lemma cdcly or-restart-sat-ext-iff:
assumes
st: <cdelyor-restart S T) and
n-d: mo-dup (trail (fst S))» and
inv: dnv (fst )
shows I E=sextm clausesyor (fst S) «— I [=sextm clausesyor (fst T)

{proof)

lemma rtranclp-cdcly or-restart-sat-ext-iff :
fixes S T :: ¢/st x nab
assumes
st: <cdelyor-restart™ S T) and
n-d: no-dup (trail (fst S))» and
inv: <nv (fst )
shows I Esextm clausesyor (fst S) <— I [Esextm clausesyor (fst T)

{proof)

theorem full-cdcly o1 -restart-backjump-final-state:
fixes A :: (v clause sety and S T :: (st
assumes
full: <full cdelyor-restart (S, n) (T, m) and
atms-S: (atms-of-mm (clausesyor S) C atms-of-ms A and
atms-trail: atm-of * lits-of-l (trail S) C atms-of-ms A> and
n-d: (no-dup (trail S)> and
fin-A[simp]: (finite A> and
inv: (inv S) and
decomp: (all-decomposition-implies-m (clausesyor S) (get-all-ann-decomposition (trail S))
shows (unsatisfiable (set-mset (clausesyor S))
V (lits-of-1 (trail T) =sextm clausesyor S A satisfiable (set-mset (clausesyor S)))
{proof)
end — End of the locale cdclyor-with-backtrack-and-restarts.

The restart does only reset the trail, contrary to Weidenbach’s version where forget and restart
are always combined. But there is a forget rule.

locale cdcly or-merge-bj-learn-with-backtrack-restarts =
cdcly or-merge-bj-learn trail clausesyor prepend-trail ti-trail add-clsyor remove-clsyor
decide-conds propagate-conds forget-conds
AC C'"L"S T. distinct-mset C' N L' ¢# C' A backjump-l-cond C C' L' S T» inv
for
trail 2 st = ('v, unit) ann-litsy and
clausesnyor : (st = 'v clauses) and
prepend-trail :: «('v, unit) ann-lit = ‘st = ‘st and
tl-trail :: st ='sty and
add-clsyor 2 (v clause = 'st = st and
remove-clsyor :: ('v clause = st = 'st) and
decide-conds :: ('st = 'st = bool) and
propagate-conds :: (v, unit) ann-lit = ‘st = st = bool> and
inv :: (st = bool) and
forget-conds :: ('v clause = 'st = bool) and
backjump-l-cond :: (v clause = "v clause = 'v literal = 'st = 'st = bool)
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+
fixes [ :: (nat = nab
assumes
unbounded: (unbounded f) and f-ge-1: (An. n > 1 = fn > 1) and
inv-restart:\S T. inv S = T ~ reduce-trail-tonor [| S = inv T)
begin

definition not-simplified-cls :: 'b clause multiset = 'b clauses

where
(not-simplified-cls A = {#C €# A. C ¢ simple-clss (atms-of-mm A)#}

lemma not-simplified-cls-tautology-distinct-mset:
(not-simplified-cls A = {#C €# A. tautology C V —distinct-mset C#}

(proof)

lemma simple-clss-or-not-simplified-cls:
assumes (atms-of-mm (clausesyor S) C atms-of-ms A and
w €# clausesyor S and <(finite A)
shows (& € simple-clss (atms-of-ms A) V x €# not-simplified-cls (clausesyor S)

(proof)

lemma cdcly or-merged-bj-learn-clauses-bound:

assumes
(cdcly or-merged-bj-learn S T) and
inv: <inv S) and
atms-clss: «atms-of-mm (clausesyor S) C atms-of-ms A and
atms-trail: atm-of ‘(lits-of-l (trail S)) C atms-of-ms A and
fin-A[simp]: (finite A

shows «set-mset (clausesyor T) C set-mset (not-simplified-cls (clausesyor 9))
U simple-clss (atms-of-ms A))

{proof)

lemma cdcly or-merged-bj-learn-not-simplified-decreasing:
assumes <(cdclyor-merged-bj-learn S T)
shows (not-simplified-cls (clausesyor T) C# not-simplified-cls (clausesyor S)

{proof)

lemma rtranclp-cdcly or-merged-bj-learn-not-simplified-decreasing:
assumes (cdclyor-merged-bj-learn** S T)
shows (not-simplified-cls (clausesyor T) C# not-simplified-cls (clausesyor S)

(proof)

lemma rtranclp-cdcly or-merged-bj-learn-clauses-bound:

assumes
(cdcly or-merged-bj-learn™* S T) and
(nv S and
(atms-of-mm (clausesyor S) C atms-of-ms A and
atm-of ‘(lits-of-l (trail S)) C atms-of-ms A> and
finite[simp]: (finite A

shows (set-mset (clausesyor T) C set-mset (not-simplified-cls (clausesyor S))
U simple-clss (atms-of-ms A))

{proof)

abbreviation ucpcyr’-bound where
(weper-bound A T = ((2+-card (atms-of-ms A)) = (1+card (atms-of-ms A))) * 2
+ card (set-mset (not-simplified-cls(clausesnor T)))
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+ 8 7 card (atms-of-ms A))

lemma rtranclp-cdcly or-merged-bj-learn-clauses-bound-card:
assumes
(cdcly or-merged-bj-learn™™ S T) and
¢tnv S) and
(atms-of-mm (clausesyor S) C atms-of-ms A> and
(atm-of ‘(lits-of-l (trail S)) C atms-of-ms A> and
finite: (finite A)
shows (ucpcr’-merged A T < pecpor’-bound A S)

(proof)

sublocale cdelyor-increasing-restarts-ops NS T. T ~ reduce-trail-toyor ([]::’a list) S
cdely or-merged-bj-learn f
AA S. atms-of-mm (clausesyor S) C atms-of-ms A
A atm-of ¢ lits-of-l (trail S) C atms-of-ms A A finite A
peper'-merged
AS. inv S A no-dup (trail S)
pepcer’-bound
(proof)

lemma cdclyor-restart-uc pcr'-merged-le-pc pco 1, '-bound:
assumes
<edelyor-restart T V)
tnv (fst T) and
(no-dup (trail (fst T))> and
(atms-of-mm (clausesyor (fst T)) C atms-of-ms A and
(atm-of ¢ lits-of-l (trail (fst T)) C atms-of-ms A> and
(finite A)
shows (ucpcor’-merged A (fst V) < peper’-bound A (fst T)
(proof)

lemma cdclyor-restart-uc por'-bound-le-puc po 1 '-bound:
assumes
cedelyor-restart T V) and
(no-dup (trail (fst T)) and
tnv (fst T) and

fin: (finite A»
shows (ucpor-bound A (fst V) < peper’-bound A (fst T)
(proof)
sublocale cdcly or-increasing-restarts - - - - - - f

AS T. T ~ reduce-trail-tonor ([]::'a list) S
AA S. atms-of-mm (clausesyor S) C atms-of-ms A
A atm-of * lits-of-1 (trail S) C atms-of-ms A A finite A>
wepcr'-merged cdely or-merged-bj-learn
AS. inv S A no-dup (trail S)
AA T. ((2+card (atms-of-ms A)) ~ (1+4card (atms-of-ms A))) * 2
+ card (set-mset (not-simplified-cls(clausesyor T)))
+ 8 7 card (atms-of-ms A)
(proof)

lemma true-clss-ext-decrease-right-insert: I |=sext insert C' (set-mset M) = I |=sextm M)

{proof)
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lemma true-clss-ext-decrease-add-implied:
assumes (M E=pm C)
shows (J|=sext insert C' (set-mset M) «— I=sextm M)

(proof)

lemma cdcly or-merged-bj-learn-bj-sat-ext-iff:
assumes (cdclyor-merged-bj-learn S T) and inv: ¢nv S)
shows J|=sextm clausesyor S «— IEsextm clausesyor T)

(proof)

lemma rtranclp-cdcly or-merged-bj-learn-bj-sat-ext-iff :
assumes (cdclyor-merged-bj-learn™™ S Thand dnv S)
shows (J|=sextm clausesyor S «— IEsextm clausesyor T)

(proof)

lemma cdcly or-restart-eq-sat-iff:
assumes
(edelyor-restart S Ty and
inv: ¢nv (fst S)
shows (I[=sextm clausesyor (fst S) «— I Esextm clausesyor (fst T)

{proof)

lemma rtranclp-cdcly or-restart-eq-sat-iff :
assumes
cedelyor-restart™ S T) and
inv: ¢nv (fst ) and n-d: (no-dup(trail (fst S))
shows (J|=sextm clausesyor (fst S) «— I =sextm clausesyor (fst T)

{proof)

lemma cdcly or-restart-all-decomposition-implies-m:
assumes
cedelyor-restart S T) and
inv: <nv (fst S)y and n-d: (mo-dup(trail (fst S))> and
(all-decomposition-implies-m (clausesyor (fst S))
(get-all-ann-decomposition (trail (fst S)))
shows (all-decomposition-implies-m (clausesyor (fst T))
(get-all-ann-decomposition (trail (fst T)))
(proof)

lemma rtranclp-cdcly or-restart-all-decomposition-implies-m:
assumes
cedelyor-restart™ S T) and
inv: <nv (fst S)y and n-d: (mo-dup(trail (fst S))» and
decomp: (all-decomposition-implies-m (clausesyor (fst S))
(get-all-ann-decomposition (trail (fst S)))
shows <all-decomposition-implies-m (clausesnyor (fst T))
(get-all-ann-decomposition (trail (fst T)))
(proof)

lemma full-cdcly or-restart-normal-form:
assumes
Sfull: full cdelyor-restart S T) and
inv: dnv (fst ) and n-d: (no-dup(trail (fst S))> and
decomp: (all-decomposition-implies-m (clausesyor (fst S))
(get-all-ann-decomposition (trail (fst S))) and
atms-cls: «atms-of-mm (clausesyor (fst S)) C atms-of-ms A> and
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atms-tradl: atm-of * lits-of-l (trail (fst S)) C atms-of-ms A and
fin: (finite A
shows (unsatisfiable (set-mset (clausesyor (fst 9)))
V lits-of-1 (trail (fst T)) Esextm clausesyor (fst S) A
satisfiable (set-mset (clausesyor (fst S)))

(proof)

corollary full-cdcly or-restart-normal-form-init-state:

assumes
ingt-state: <trail S = [ <clausesyor S = N> and
full: (full cdelyor-restart (S, 0) T) and
inv: nv S

shows (unsatisfiable (set-mset N)
V lits-of-1 (trail (fst T)) =sextm N A satisfiable (set-mset N)

{proof)

end — End of locale cdcly or-merge-bj-learn-with-backtrack-restarts.

end

theory CDCL-WNOT

imports CDCL-NOT CDCL-W-Merge
begin

2.3 Link between Weidenbach’s and NOT’s CDCL

2.3.1 Inclusion of the states

declare upt.simps(2)[simp del]

fun convert-ann-lit-from-W where
convert-ann-lit-from-W (Propagated L -) = Propagated L () |
convert-ann-lit-from-W (Decided L) = Decided L

abbreviation convert-trail-from-W ::
("v, 'mark) ann-lits
= ('v, unit) ann-lits where
convert-trail-from-W = map convert-ann-lit-from- W

lemma lits-of-I-convert-trail-from- W simpl:
lits-of-1 (convert-trail-from-W M) = lits-of-l M
(proof)

lemma lit-of-convert-trail-from- W|simp]:
lit-of (convert-ann-lit-from-W L) = lit-of L
(proof)

lemma no-dup-convert-from-W|simp):
no-dup (convert-trail-from-W M) <— no-dup M
(proof)

lemma convert-trail-from- W-true-annots|simp):
convert-trail-from-W M fas C +— M [=as C

(proof)

lemma defined-lit-convert-trail-from- Wsimp]:
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defined-lit (convert-trail-from-W S) = defined-lit S
(proof)

lemma is-decided-convert-trail-from- W simp]:
tis-decided (convert-ann-lit-from-W L) = is-decided L»
{proof)

lemma count-decided-conver-Trail-from- W [simp:
(count-decided (convert-trail-from-W M) = count-decided M)
{proof)

The values 0 and {#} are dummy values.

consts dummy-cls :: 'cls
fun convert-ann-lit-from-NOT

= (v, 'mark) ann-lit = ('v, 'cls) ann-lit where
convert-ann-lit-from-NOT (Propagated L -) = Propagated L dummy-cls |
convert-ann-lit-from-NOT (Decided L) = Decided L

abbreviation convert-trail-from-NOT where
convert-trail-from-NOT = map convert-ann-lit-from-NOT

lemma undefined-lit-convert-trail-from-NOT[simp]:
undefined-lit (convert-trail-from-NOT F) L +— undefined-lit F L
(proof)

lemma [its-of-I-convert-trail-from-NOT:
lits-of-1 (convert-trail-from-NOT F) = lits-of-1 F
(proof)

lemma convert-trail-from- W-from-NOT[simp]:
convert-trail-from-W (convert-trail-from-NOT M) = M
(proof)

lemma convert-trail-from- W-convert-lit-from-NOT [simp]:
convert-ann-lit-from-W (convert-ann-lit-from-NOT L) = L

{proof)

abbreviation trailyor where
trailyor S = convert-trail-from-W (fst S)

lemma undefined-lit-convert-trail-from- W{iff]:
undefined-lit (convert-trail-from-W M) L <— undefined-lit M L
(proof)

lemma lit-of-convert-ann-lit-from-NOT [ iff]:
lit-of (convert-ann-lit-from-NOT L) = lit-of L
(proof)

sublocale stateyy C dpll-state-ops where
trail = \S. convert-trail-from-W (trail S) and
clausesyor = clauses and
prepend-trail = AL S. cons-trail (convert-ann-lit-from-NOT L) S and
tl-trail = AS. tl-trail S and
add-clsyor = AC S. add-learned-cls C S and
remove-clsyor = NC' S. remove-cls C' S

{proof)
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sublocale stateyy C dpll-state where
trail = \S. convert-trail-from-W (trail S) and
clausesyor = clauses and
prepend-trail = AL S. cons-trail (convert-ann-lit-from-NOT L) S and
tl-trail = \S. tl-trail S and
add-clsyor = AC S. add-learned-cls C' S and
remove-clsyor = NC' S. remove-cls C S

(proof)

context statey,

begin

declare state-simpyor|[simp del]
end

2.3.2 Inclusion of Weidendenbch’s CDCL without Strategy

sublocale conflict-driven-clause-learningy C cdcly or-merge-bj-learn-ops where
trail = AS. convert-trail-from-W (trail S) and
clausesyor = clauses and
prepend-trail = AL S. cons-trail (convert-ann-lit-from-NOT L) S and
tl-trail = AS. tl-trail S and
add-clsyor = AC' S. add-learned-cls C S and
remove-clsyor = NC S. remove-cls C'S and
decide-conds = \- -. True and
propagate-conds = \- - -. True and
forget-conds = X- S. conflicting S = None and
backjump-l-cond = XC C' L' S T. backjump-l-cond C C' L' S T
A distinct-mset C' N L' ¢# C' A —tautology (add-mset L' C”)
(proof)

sublocale conflict-driven-clause-learningyw C cdcly or-merge-bj-learn-proxy where
trail = \S. convert-trail-from-W (trail S) and
clausesyor = clauses and
prepend-trail = AL S. cons-trail (convert-ann-lit-from-NOT L) S and
tl-trail = A\S. tl-trail S and
add-clsyor = AC S. add-learned-cls C S and
remove-clsyor = NC S. remove-cls C'S and
decide-conds = \- -. True and
propagate-conds = A- - -. True and
forget-conds = - S. conflicting S = None and
backjump-l-cond = backjump-Il-cond and
v = IMUNOT
(proof)

sublocale conflict-driven-clause-learningyw C cdcly or-merge-bj-learn where
trail = AS. convert-trail-from-W (trail S) and
clausesyor = clauses and
prepend-trail = AL S. cons-trail (convert-ann-lit-from-NOT L) S and
tl-trail = AS. tl-trail S and
add-clsyor = AC S. add-learned-cls C S and
remove-clsyor = NC' S. remove-cls C S and
decide-conds = A\- -. True and
propagate-conds = A- - -. True and
forget-conds = X- S. conflicting S = None and
backjump-l-cond = backjump-Il-cond and
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U = MNMUNOT
(proof)

context conflict-driven-clause-learningy
begin

Notations are lost while proving locale inclusion:

notation state-eqyor (infix ~yor 50)

2.3.3 Additional Lemmas between NOT and W states

lemma trailyy -eq-reduce-trail-tonor-eq:
trail S = trail T = trail (reduce-trail-tonor F S) = trail (reduce-trail-tonor F T)

(proof)

lemma trail-reduce-trail-ton oT-add-learned-cls:
no-dup (trail S) =

trail (reduce-trail-toyor M (add-learned-cls D S)) = trail (reduce-trail-toyor M S)
(proof)

lemma reduce-trail-ton o -reduce-trail-convert:
reduce-trail-tonor C S = reduce-trail-to (convert-trail-from-NOT C) S

{proof)

lemma reduce-trail-to-map|simp]:
reduce-trail-to (map f M) S = reduce-trail-to M S

{proof)

lemma reduce-trail-ton o-map[simpl:
reduce-trail-tonor (map f M) S = reduce-trail-toyor M S

{proof)

lemma skip-or-resolve-state-change:

assumes skip-or-resolve** S T

shows
AM. trail S = M Q trail T N (Ym € set M. —is-decided m)
clauses S = clauses T
backtrack-lvl S = backtrack-lvl T
init-clss S = init-clss T
learned-clss S = learned-clss T

(proof)

2.3.4 Inclusion of Weidenbach’s CDCL in NOT’s CDCL

This lemma shows the inclusion of Weidenbach’s CDCL cdcly -merge (with merging) in NOT’s
cdclyor-merged-bj-learn.

lemma cdclyy -merge-is-cdcl y o -merged-bj-learn:
assumes
inv: cdely -all-struct-inv S and
cdclyy -restart: cdcly -merge S T
shows cdcly or-merged-bj-learn S T
V (no-step cdcly -merge T N conflicting T # None)
(proof)
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abbreviation cdclyor-restart where
cdclyor-restart = restart-ops.cdcly or-raw-restart cdelyor restart

lemma cdclyy -merge-restart-is-cdcl y o 7-merged-bj-learn-restart-no-step:
assumes
inwv: cdelyy -all-struct-inv S and
cdclyy -restart: cdclyy -merge-restart S T
shows cdclyor-restart*™ S T V (no-step cdcly-merge T A conflicting T # None)

(proof)

abbreviation ppy :: ‘st = nat where
urw S = (if no-step edcly -merge S then 0 else 1+ucpcor’-merged (set-mset (init-clss S)) S)

lemma cdclyy -merge-ppywy -decreasing:
assumes
inv: cdely -all-struct-inv S and
fw: cdelyy-merge S T
shows upw T < pupw S

(proof)

lemma wf-cdely -merge: wf {(T, S). cdcly -all-struct-inv S A cdcly -merge S T}
(proof)

lemma tranclp-cdcly -merge-cdcly -merge-trancl:
{(T, S). cdclw-all-struct-inv S A cdcly -merget™ S T}
C {(T, ). cdcly -all-struct-inv S A cdcly -merge S T}
(proof)

lemma wf-tranclp-cdcly -merge: wf {(T, S). cdcly -all-struct-inv S A cdcly -merge™ S T}

(proof)

lemma wf-cdely -bj-all-struct: wf {(T, S). cdclw -all-struct-inv S A edcly-bj S T}
(proof)

lemma cdclyy -conflicting-true-cdcly, -merge-restart:
assumes cdcly S V and confl: conflicting S = None
shows (cdcly -merge S V' A conflicting V- = None) V (conflicting V' # None A conflict S V')
(proof)

lemma trancl-cdclyy -conflicting-true-cdcly, -merge-restart:
assumes cdcly ™ S V and inv: cdclyy -M-level-inv S and conflicting S = None
shows (cdclyy-merget™ S V A conflicting V = None)
V (3T U. cdelw-merge*™ S T A conflicting V # None A conflict T U A cdcly-bj** U V)
(proof)

lemma wf-cdely: wf {(T, S). cdclw -all-struct-inv S A edelyw S T}
{proof)

lemma wf-cdcly -stgy:
wwf {(T, S). cdcly -all-struct-inv S A edely -stgy S Th

(proof)

end
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2.3.5 Inclusion of Weidendenbch’s CDCL with Strategy

context conflict-driven-clause-learningw
begin

abbreviation propagate-conds where
propagate-conds = A\-. propagate

abbreviation (input) decide-conds where
decide-conds S T = decide S T N no-step conflict S N\ no-step propagate S

abbreviation backjump-I-conds-stgy :: 'v clause = v clause = 'v literal = 'st = 'st = bool where
backjump-l-conds-stgy C C' L SV =
(3T U. conflict S T A full skip-or-resolve T U A conflicting T = Some C A
mark-of (hd-trail V') = add-mset L C' A backtrack U V)

abbreviation invyor-stgy where
imvyor-stgy S = conflicting S = None A cdcly -all-struct-inv S N\ no-smaller-propa S N
cdclyy -stgy-invariant S A propagated-clauses-clauses S

interpretation cdclyy -with-strategy: cdclyor-merge-bj-learn-ops where
trail = \S. convert-trail-from-W (trail S) and
clausesyor = clauses and
prepend-trail = AL S. cons-trail (convert-ann-lit-from-NOT L) S and
tl-trail = AS. tl-trail S and
add-clsyor = AC S. add-learned-cls C' S and
remove-clsyor = AC S. remove-cls C'S and
decide-conds = decide-conds and
propagate-conds = propagate-conds and
forget-conds = X- -. False and
backjump-l-cond = \C C' L' S T. backjump-l-conds-stgqy C C' L' S T
A distinct-mset C' N L' ¢# C' A —tautology (add-mset L' C”)
(proof)

interpretation cdcly -with-strategy: cdclyor-merge-bj-learn-proxy where
trail = AS. convert-trail-from-W (trail S) and
clausesyor = clauses and
prepend-trail = XL S. cons-trail (convert-ann-lit-from-NOT L) S and
tl-trail = AS. tl-trail S and
add-clsyor = AC' S. add-learned-cls C S and
remove-clsyor = NC S. remove-cls C'S and
decide-conds = decide-conds and
propagate-conds = propagate-conds and
forget-conds = \- -. False and
backjump-I-cond = backjump-Il-conds-stgy and
nY = MMINOoT-StgyY
(proof)

lemma cdclyy -with-strategy-cdcl y o -merged-bj-learn-conflict:
assumes
cdclyy -with-strategy.cdcly or-merged-bj-learn S T
conflicting S = None
shows
conflicting T = None
(proof)

lemma cdclyy -with-strategy-no-forget y or[iff]: cdcly -with-strategy.forgetyor S T <— False
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{proof)

lemma cdclyy -with-strategy-cdcl y o -merged-bj-learn-cdclyy -stgy:
assumes
cdclyy -with-strategy. cdcl y o -merged-bj-learn SV
shows
cdelyy -stgy*™ SV

(proof)

lemma rtranclp-transition-function:
(R** a b= 3fj. Vi<j. R (fi) (f (Suc))) AfO=aNnfj=b
(proof)

lemma cdclyy -bj-cdely -stgy: (cdcly -bj S T = cdcly -stgy S T)
(proof)

lemma cdclyy -restart-propagated-clauses-clauses:
(cdelyy -restart S T = propagated-clauses-clauses S = propagated-clauses-clauses T)

(proof)

lemma rtranclp-cdclyy -restart-propagated-clauses-clauses:
(cdelyy -restart™ S T = propagated-clauses-clauses S = propagated-clauses-clauses T)

{proof)

lemma rtranclp-cdclyy -stgy-propagated-clauses-clauses:
(cdely -stgy™ S T = propagated-clauses-clauses S = propagated-clauses-clauses T

{proof)

lemma conflicting-clause-bt-lvl-gt-0-backjump:
assumes
nv: dnvyor-stgy S) and
C: «C €% clauses S> and
tr-C: (rail S F=as CNot C) and
bt: (backtrack-lvl S > O
shows 3 T U V. conflict S T A full skip-or-resolve T U A backtrack U V)

(proof)

lemma conflict-full-skip-or-resolve-backtrack-backjump-I:
assumes
conf: conflict S T)> and
Sfull: <full skip-or-resolve T U> and
bt: <backtrack U V) and
inv: <cdclyy -all-struct-inv S
shows (cdclyy -with-strategy.backjump-1 .S V)

(proof)

lemma is-decided-o-convert-ann-lit-from- W{simp]:
(is-decided o convert-ann-lit-from-W = is-decided

{proof)

lemma cdclyy -with-strategy-propagate y o 7-propagate-iff [iff ]:
(edclyy -with-strategy.propagatenor S T <— propagate S T) (is 2NOT +— ?W)
(proof)

interpretation cdclyy -with-strategy: cdclyor-merge-bj-learn where
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trail = AS. convert-trail-from-W (trail S) and
clausesyor = clauses and
prepend-trail = AL S. cons-trail (convert-ann-lit-from-NOT L) S and
tl-trail = \S. tl-trail S and
add-clsyor = AC S. add-learned-cls C S and
remove-clsyor = NC' S. remove-cls C S and
decide-conds = decide-conds and
propagate-conds = propagate-conds and
forget-conds = \- -. False and
backjump-l-cond = backjump-Il-conds-stgy and
Y = MMINOoT-StgY

(proof)

thm cdclyy -with-strategy.full-cdcly o 7-merged-bj-learn-final-state
end

end

theory CDCL-W-Full

imports CDCL-W-Termination CDCL-WNOT
begin

context conflict-driven-clause-learningw
begin
lemma rtranclp-cdcly -merge-stgy-distinct-mset-clauses:
assumes
mvR: cdclyy -all-struct-inv R and
st: cdelyy-s™* R S and
smaller: (no-smaller-propa R) and
dist: distinct-mset (clauses R)
shows distinct-mset (clauses S)

(proof )
end

end

theory CDCL-W-Restart
imports CDCL-W-Full
begin
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Chapter 3

Extensions on Weidenbach’s CDCL

We here extend our calculus.

3.1 Restarts

context conflict-driven-clause-learningyy
begin

This is an unrestricted version.

inductive cdclyy -restart-stgy for S T :: (st x nat) where
edely -stgy (fst S) (fst T) = snd S = snd T = cdcly -restart-stgy S T |
restart (fst S) (fst T) = snd T = Suc (snd S) = cdcly -restart-stgy S T

lemma cdclyy -stgy-cdcly -restart: <cdcly -stgy S S’ = cdely -restart S S
(proof)

lemma cdclyy -restart-stgy-cdclyy -restart:
(edclyy -restart-stgy S T = cdcly -restart (fst S) (fst T)

{proof)

lemma rtranclp-cdclyy -restart-stgy-cdclyy -restart:
edelyy -restart-stgy** S T = cdcly -restart™™ (fst S) (fst T)

(proof)

lemma cdclyy -stgy-cdclyy -restart-stgy:
(edely-stgy S T = cdelyw -restart-stgy (S, n) (T, n)

{proof)

lemma rtranclp-cdclyy -stgy-cdcly -restart-stgy:
edely -stgy*™ S T = cdelw -restart-stgy*™ (S, n) (T, n)

{proof)

lemma cdclyy -restart-delyy -all-struct-inv:
(edclyy -restart-stgy S T = cdcly -all-struct-inv (fst S) = cdcly -all-struct-inv (fst T)

{proof)

lemma rtranclp-cdclyy -restart-dclyy -all-struct-inv:
edelyy -restart-stgy** S T = cdcly -all-struct-inv (fst S) = cdcly -all-struct-inv (fst T)

(proof)

lemma restart-cdclyy -stgy-invariant:
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(restart S T = cdclyy -stgy-invariant T)
(proof)

lemma cdclyy -restart-dclyy -stgy-invariant:
edelyy -restart-stgy S T = cdcly -all-struct-inv (fst S) = cdelw -stgy-invariant (fst S) =
cdclyy -stgy-invariant (fst T)
(proof)

lemma rtranclp-cdclyy -restart-dclyy -stgy-invariant:
(edelyy -restart-stgy*™ S T = cdcly -all-struct-inv (fst S) = cdelw -stgy-invariant (fst S) =
cdclyy -stgy-invariant (fst T)
(proof)

end

locale cdclyy -restart-restart-ops =
conflict-driven-clause-learningw
state-eq
state
— functions for the state:
— access functions:
trail init-clss learned-clss conflicting
— changing state:
cons-trail tl-trail add-learned-cls remove-cls
update-conflicting

— get state:

init-state

for

state-eq :: (st = ‘st = bool) (infix ~ 50) and

state :: (st = ('v, 'v clause) ann-lits x v clauses x 'v clauses X v clause option X
by and

trail :: st = ('v, v clause) ann-lits) and

ingt-clss :: (st = 'v clauses) and

learned-clss :: (st = v clauses) and

conflicting :: st = 'v clause option) and

cons-trail :: (v, 'v clause) ann-lit = ‘st = 'st) and
tl-trail :: (st = sty and

add-learned-cls :: ('v clause = 'st = sty and
remove-cls :: ('v clause = 'st = 'sty and
update-conflicting :: ('v clause option = 'st = 'st» and

init-state :: (v clauses = sty +
fixes
[ <nat = nab

locale cdclyy -restart-restart =
cdclyy -restart-restart-ops +
assumes
f: cunbounded >

The condition of the differences of cardinality has to be strict. Otherwise, you could be in
a strange state, where nothing remains to do, but a restart is done. See the proof of well-
foundedness. The same applies for the cdelyy-stgytt S T: With a cdcly -stgyt S T, this rules
could be applied one after the other, doing nothing each time.
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context cdclyy -restart-restart-ops

begin

inductive cdclyy -merge-with-restart where

restart-step:
(edelw -stgy™ " (card (set-mset (learned-clss T)) — card (set-mset (learned-clss S)))) S T
= card (set-mset (learned-clss T)) — card (set-mset (learned-clss S)) > fn
= restart T U = cdcly -merge-with-restart (S, n) (U, Suc n) |

restart-full: (fulll cdclw-stgy S T = cdcly -merge-with-restart (S, n) (T, Suc n)

lemma cdclyy -merge-with-restart-rtranclp-cdclyy -restart:
(edely -merge-with-restart S T == cdclyy -restart*™ (fst S) (fst T)

{proof)

lemma cdclyy -merge-with-restart-increasing-number:
(cdcly -merge-with-restart S T — snd T = 1 4 snd S)

{proof)

lemma <fulll cdcly-stgy S T = cdcly -merge-with-restart (S, n) (T, Suc n))

(proof)

lemma cdclyy -all-struct-inv-learned-clss-bound:
assumes nv: (cdcly -all-struct-inv S)
shows (set-mset (learned-clss S) C simple-clss (atms-of-mm (init-clss S))»

(proof)

lemma cdclyy -merge-with-restart-init-clss:
(edely -merge-with-restart S T == cdcly -M-level-inv (fst §) =
init-clss (fst S) = init-clss (fst T)
{proof)

lemma (in cdclyy -restart-restart)
awf {(T, S). cdclw-all-struct-inv (fst S) A cdclw -merge-with-restart S T}

(proof)

lemma cdclyy -merge-with-restart-distinct-mset-clauses:
assumes invR: (cdcly -all-struct-inv (fst R)) and
st: <cdcly -merge-with-restart R S) and
dist: (distinct-mset (clauses (fst R))> and
R: no-smaller-propa (fst R))
shows «distinct-mset (clauses (fst S))

(proof)

inductive cdclyy -restart-with-restart where
restart-step:
(cdely -stgy*™ S T —
card (set-mset (learned-clss T)) — card (set-mset (learned-clss S)) > fn =
restart T U —
cdely -restart-with-restart (S, n) (U, Suc n) |
restart-full: fulll cdcly-stgy S T = cdcly -restart-with-restart (S, n) (T, Suc n)

lemma cdclyy -restart-with-restart-rtranclp-cdclyy -restart:
(edclyy -restart-with-restart S T = cdclyy -restart™™ (fst S) (fst T)»

{proof)

lemma cdclyy -restart-with-restart-increasing-number:
cedelyy -restart-with-restart S T = snd T = 1 + snd S)
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{proof)

lemma <fulll cdcly-stgy S T = cdcly -restart-with-restart (S, n) (T, Suc n)

{proof)

lemma cdclyy -restart-with-restart-init-clss:
edelyy -restart-with-restart S T = cdely -M-level-inv (fst S) =
ingt-clss (fst S) = indt-clss (fst T)
(proof)

theorem (in cdclyy -restart-restart)
wf {(T, S). cdely -all-struct-inv (fst S) A cdclw -restart-with-restart S T}

(proof)

lemma cdclyy -restart-with-restart-distinct-mset-clauses:
assumes nvR: cdcly -all-struct-inv (fst R)) and
st: <edelyy -restart-with-restart R S) and
dist: «distinct-mset (clauses (fst R))> and
R: (no-smaller-propa (fst R)
shows (distinct-mset (clauses (fst S)))

{proof)

end

locale [uby-sequence =
fixes ur :: nat
assumes (ur > ()
begin

lemma exists-luby-decomp:

fixes 7 ::nat

shows Jkunat. (2 (k—1)<iNi<2k—-1)Vi=2"k—-1D
(proof)

Luby sequences are defined by:

o 2k — 1 if i = (2:'a)k — (1:a)

o luby-sequence-core (i — 2F =1 4+ 1), if (2:/a)F =1 < jand i < (2:'a)F — (1:a)

Then the sequence is then scaled by a constant unit run (called ur here), strictly positive.

function luby-sequence-core :: (nat = nat) where
(uby-sequence-core i =

(if k. i=2"k — 1

then 2~ ((SOME k. i = 27k — 1) — 1)

else luby-sequence-core (i — 27 ((SOME k. 27 (k—1)< iNi < 2k —1)— 1)+ 1))
(proof)

termination

(proof)

declare luby-sequence-core.simps[simp del]
lemma two-pover-n-eq-two-power-n'-eq:

assumes H: «(2:nat) = (kuinat) — 1 =2 "k'— D
shows &' = kb
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(proof)

lemma [uby-sequence-core-two-power-minus-one:
(uby-sequence-core (27k — 1) = 27 (k—1)) (is «<?L = ?K))
(proof)

lemma different-luby-decomposition-false:
assumes
H: 2" (k- Suc 0) < i and
k.« < 27 k"— Suc 0) and

k-k" <k > kD
shows (False
{proof)

lemma [uby-sequence-core-not-two-power-minus-one:
assumes
k-i: <2 = (k— 1) < and
-k < 27k — 1D
shows «uby-sequence-core i = luby-sequence-core (i — 2 = (k — 1) + 1)

(proof)

lemma unbounded-luby-sequence-core: (unbounded luby-sequence-core)

{proof)

abbreviation luby-sequence :: (nat = nat) where
(uby-sequence n = ur * luby-sequence-core m)

lemma bounded-luby-sequence: (unbounded luby-sequence
(proof)

lemma [uby-sequence-core-0: (luby-sequence-core 0 = 1)

(proof)

lemma <luby-sequence-core n > 1)

(proof)

end

locale luby-sequence-restart =
luby-sequence ur +
conflict-driven-clause-learningw
— functions for the state:
state-eq state
— access functions:
trail init-clss learned-clss conflicting
— changing state:
cons-trail tl-trail add-learned-cls remove-cls
update-conflicting

— get state:

wnit-state

for

ur :: nat and

state-eq :: (st = ‘st = bool) (infix ~ 50) and

state :: st = ('v, 'v clause) ann-lits x 'v clauses x 'v clauses x 'v clause option x
by and

trail :: st = (v, "v clause) ann-litsy and
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hd-trail :: (st = ('v, "v clause) ann-lity and
init-clss :: st = v clauses) and
learned-clss :: (st = 'v clauses) and
conflicting :: st = 'v clause option) and

cons-trail :: (('v, 'v clause) ann-lit = ‘st = ’'st) and
tl-trail :: <'st = sty and

add-learned-cls :: ('v clause = 'st = ’st» and
remove-cls :: (v clause = 'st = 'st) and
update-conflicting :: (v clause option = 'st = 'st» and

init-state = ('v clauses = st
begin

sublocale cdclyy -restart-restart where
f = luby-sequence
(proof)

end

end

theory CDCL-W-Incremental
imports CDCL-W-Full
begin

3.2 Incremental SAT solving

locale stateyw -adding-init-clause-no-state =
statew -no-state
state-eq
state
— functions about the state:
— getter:
trail init-clss learned-clss conflicting
— setter:
cons-trail tl-trail add-learned-cls remove-cls
update-conflicting

— Some specific states:

init-state

for

state-eq :: ‘st = 'st = bool (infix ~ 50) and

state :: 'st = ('v, 'v clause) ann-lits X v clauses X 'v clauses X v clause option X
‘b and

trail : 'st = (v, v clause) ann-lits and

init-clss :: 'st = v clauses and

learned-clss :: 'st = v clauses and

conflicting :: 'st = v clause option and

cons-trail = ("v, 'v clause) ann-lit = 'st = 'st and
tl-trail :: 'st = st and

add-learned-cls :: 'v clause = 'st = 'st and
remove-cls :: 'v clause = ‘st = ’'st and
update-conflicting :: 'v clause option = 'st = st and
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init-state :: "v clauses = 'st +
fixes
add-init-cls :: 'v clause = 'st = 'st
assumes
add-init-cls:
state st = (M, N, U, S’)
state (add-init-cls C st) = (M, {#C#} + N, U, S’)

locale statey -adding-init-clause-ops =
statey -adding-init-clause-no-state

state-eq

state

— functions about the state:
— getter:

trail init-clss learned-clss conflicting
— setter:

cons-trail tl-trail add-learned-cls remove-cls update-conflicting

— Some specific states:
init-state
add-init-cls
for
state-eq :: 'st = st = bool (infix ~ 50) and
state :: ‘st = (v, 'v clause) ann-lits x 'v clauses x v clauses x v clause option x
b and
trail :: 'st = (v, 'v clause) ann-lits and
init-clss :: 'st = 'v clauses and
learned-clss :: 'st = 'v clauses and
conflicting :: 'st = v clause option and

cons-trail :: ('v, 'v clause) ann-lit = st = ‘st and
tl-trail :: 'st = 'st and

add-learned-cls :: 'v clause = 'st = 'st and
remove-cls :: 'v clause = 'st = ’'st and
update-conflicting :: 'v clause option = 'st = 'st and

init-state :: 'v clauses = st and
add-init-cls :: 'v clause = 'st = 'st +
assumes
state-prop[simp]:
state S = (trail S, init-clss S, learned-clss S, conflicting S, additional-info S)

locale stateyw -adding-init-clause =
statew -adding-init-clause-ops

state-eq

state

— functions about the state:
— getter:

trail init-clss learned-clss conflicting
— setter:

cons-trail tl-trail add-learned-cls remove-cls update-conflicting

— Some specific states:
init-state add-init-cls
for
state-eq :: ‘st = 'st = bool (infix ~ 50) and
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state :: ‘st = (v, 'v clause) ann-lits x 'v clauses x v clauses x v clause option x
‘b and

trail :: 'st = (v, "v clause) ann-lits and

ingt-clss 1 'st = 'v clauses and

learned-clss :: 'st = v clauses and

conflicting :: 'st = v clause option and

cons-trail :: ("v, 'v clause) ann-lit = ‘st = ‘st and
tl-trail :: 'st = ‘st and

add-learned-cls :: 'v clause = st = 'st and
remove-cls :: 'v clause = 'st = ‘st and
update-conflicting :: 'v clause option = 'st = ’st and

init-state :: v clauses = st and
add-init-cls : 'v clause = st = st
begin

sublocale statey,

(proof)

lemma
trail-add-init-cls[simp):
trail (add-init-cls C st) = trail st and
init-clss-add-init-cls[simp):
init-clss (add-init-cls C st) = {#C#} + init-clss st
and
learned-clss-add-init-cls[simp):
learned-clss (add-init-cls C st) = learned-clss st and
conflicting-add-init-cls[simp):
conflicting (add-init-cls C st) = conflicting st
(proof)

lemma clauses-add-init-cls[simp]:
clauses (add-init-cls N S) = {#N+#} + init-clss S + learned-clss S

(proof)

lemma reduce-trail-to-add-init-cls[simp):
trail (reduce-trail-to F' (add-init-cls C' S)) = trail (reduce-trail-to F S)
{proof)

lemma conflicting-add-init-cls-iff-conflicting| simp]:
conflicting (add-init-cls C'S) = None <— conflicting S = None
(proof)

end

locale conflict-driven-clause-learning-with-adding-init-clausey =
stateyw -adding-init-clause
state-eq
state
— functions for the state:
— access functions:
trail init-clss learned-clss conflicting
— changing state:
cons-trail tl-trail add-learned-cls remove-cls update-conflicting

— get state:
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init-state
— Adding a clause:
add-init-cls
for
state-eq :: 'st = 'st = bool (infix ~ 50) and
state :: ‘st = (v, 'v clause) ann-lits x 'v clauses x v clauses x v clause option x
‘b and
trail :: 'st = (v, "v clause) ann-lits and
init-clss :: 'st = v clauses and
learned-clss :: 'st = v clauses and
conflicting :: 'st = v clause option and

cons-trail :: ("v, 'v clause) ann-lit = ‘st = ‘st and
tl-trail :: 'st = ‘st and

add-learned-cls :: 'v clause = 'st = 'st and
remove-cls :: 'v clause = st = 'st and
update-conflicting :: 'v clause option = 'st = ’st and

init-state :: 'v clauses = 'st and
add-init-cls : 'v clause = st = st
begin

sublocale conflict-driven-clause-learningw

(proof)

This invariant holds all the invariant related to the strategy. See the structural invariant in
cdelyy -all-struct-inv

When we add a new clause, we reduce the trail until we get to tho first literal included in C.
Then we can mark the conflict.

fun cut-trail-wrt-clause where
cut-trail-wrt-clause C [|] S = S |
cut-trail-wrt-clause C' (Decided L # M) S =
(if —L €# C then S
else cut-trail-wrt-clause C M (tl-trail S)) |
cut-trail-wrt-clause C' (Propagated L - # M) S =
(if =L €# C then S
else cut-trail-wrt-clause C M (tl-trail S))

definition add-new-clause-and-update :: 'v clause = 'st = ’st where
add-new-clause-and-update C'S =
(if trail S =as CNot C
then update-conflicting (Some C) (a
(cut-trail-wrt-clause C (trail S) S)
else add-init-cls C S)

dd-init-cls C
)

lemma init-clss-cut-trail-wrt-clause[simp]:
indt-clss (cut-trail-wrt-clause C M S) = init-clss S

(proof)

lemma learned-clss-cut-trail-wrt-clause]simp):
learned-clss (cut-trail-wrt-clause C M S) = learned-clss S

{proof)

lemma conflicting-clss-cut-trail-wrt-clause[simp]:
conflicting (cut-trail-wrt-clause C M S) = conflicting S
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{proof)

lemma trail-cut-trail-wrt-clause:
AM. trail S = M Q trail (cut-trail-wrt-clause C (trail S) S)

(proof)

lemma n-dup-no-dup-trail-cut-trail-wrt-clause[ simp):
assumes n-d: no-dup (trail T)
shows no-dup (trail (cut-trail-wrt-clause C (trail T) T))

(proof)
lemma cut-trail-wrt-clause-backtrack-lvl-length-decided:
assumes
backtrack-lwl T = count-decided (trail T')
shows

backtrack-ll (cut-trail-wrt-clause C (trail T) T) =
count-decided (trail (cut-trail-wrt-clause C (trail T) T))

{proof)

lemma cut-trail-wrt-clause- CNot-trail:
assumes trail T =as CNot C
shows
(trail ((cut-trail-wrt-clause C (trail T) T))) [=as CNot C

(proof)

lemma cut-trail-wrt-clause-hd-trail-in-or-empty-trail:
(WL e#C. —L ¢ lits-of-l (trail T)) A trail (cut-trail-wrt-clause C (trail T) T) = [])
V (=lit-of (hd (trail (cut-trail-wrt-clause C (trail T) T))) €# C
A length (trail (cut-trail-wrt-clause C (trail T) T)) > 1)
(proof)

We can fully run cdclyy -restart-s or add a clause. Remark that we use cdclyy -restart-s to avoid
an explicit skip, resolve, and backtrack normalisation to get rid of the conflict C' if possible.

inductive incremental-cdclyy :: 'st = 'st = bool for S where
add-confl:
trail S F=asm init-clss S = distinct-mset C = conflicting S = None —
trail S |Eas CNot C =
full cdelyy -stgy
(update-conflicting (Some C')
(add-init-cls C (cut-trail-wrt-clause C (trail S) S))) T =
incremental-cdcly S T |
add-no-confl:
trail S |=asm init-clss S = distinct-mset C = conflicting S = None —>
=trail S E=as CNot C =
full cdely -stgy (add-init-cls C S) T =
incremental-cdcly, S T

lemma cdclyy -all-struct-inv-add-new-clause-and-update-cdclyy -all-struct-inv:
assumes
inv-T: cdelyy -all-struct-inv T and
tr-T-N[simpl: trail T =asm N and
tr-Clsimpl: trail T [=as CNot C and
[simp]: distinct-mset C
shows cdclyy -all-struct-inv (add-new-clause-and-update C' T') (is cdcly -all-struct-inv ¢T7)

(proof)
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lemma cdclyy -all-struct-inv-add-new-clause-and-update-cdclyy -stgy-inv:
assumes
inv-s: cdclyy -stgy-invariant T and
inv: cdelyy -all-struct-inv T and
tr-T-N[simpl: trail T F=asm N and
tr-C[simp]: trail T F=as CNot C and
[simp]: distinct-mset C
shows cdclyy -stgy-invariant (add-new-clause-and-update C T')
(is cdcly -stgy-invariant 2T7)

(proof)

lemma incremental-cdclyy -inv:
assumes
inc: incremental-cdclyy S T and
inv: cdelyy -all-struct-inv S and
s-inv: cdclyy -stgy-invariant S and
learned-entailed: <cdclyy -learned-clauses-entailed-by-init S
shows
cdelyy -all-struct-inv T and
cdclyy -stgy-invariant T and
learned-entailed: (cdclyy -learned-clauses-entailed-by-init T)

{proof)

lemma rtranclp-incremental-cdclyy -inv:
assumes
inc: incremental-cdely** S T and
inv: cdelyy -all-struct-inv S and
s-tnv: cdclyy -stgy-invariant S and
learned-entailed: <cdclyy -learned-clauses-entailed-by-init S
shows
cdelyy -all-struct-inv T and
cdclyy -stgy-invariant T and
(cdclyy -learned-clauses-entailed-by-init T)

(proof)

lemma incremental-conclusive-state:

assumes
inc: incremental-cdcly, S T and
inwv: cdely -all-struct-inv S and
s-inv: cdclyy -stgy-invariant S and
learned-entailed: <cdclyy -learned-clauses-entailed-by-init S

shows conflicting T = Some {#} A unsatisfiable (set-mset (init-clss T))
V conflicting T = None A trail T =asm init-clss T N satisfiable (set-mset (init-clss T))

{proof)

lemma tranclp-incremental-correct:

assumes
inc: incremental-cdcly ™ S T and
inv: cdelyy -all-struct-inv S and
s-inv: cdclyy -stgy-invariant S and
learned-entailed: <cdclyy -learned-clauses-entailed-by-init S

shows conflicting T = Some {#} A unsatisfiable (set-mset (init-clss T))
V conflicting T = None A trail T =asm init-clss T N satisfiable (set-mset (init-clss T))

{proof)

end
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end

theory DPLL-CDCL-W-Implementation

imports
Entailment-Definition. Partial-Annotated- Herbrand-Interpretation
CDCL-W-Level

begin
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Chapter 4

List-based Implementation of DPLL
and CDCL

We can now reuse all the theorems to go towards an implementation using 2-watched literals:

e CDCL_W_Abstract_State.thy defines a better-suited state: the operation operating on it
are more constrained, allowing simpler proofs and less edge cases later.

4.1 Simple List-Based Implementation of the DPLL and CDCL

The idea of the list-based implementation is to test the stack: the theories about the calculi,
adapting the theorems to a simple implementation and the code exportation. The implemen-
tation are very simple ans simply iterate over-and-over on lists.

4.1.1 Common Rules
Propagation

The following theorem holds:

lemma lits-of-l-unfold:
(Ve e set C. —c € lits-of-l Ms) <— Ms [=as CNot (mset C)
{proof)

The right-hand version is written at a high-level, but only the left-hand side is executable.

definition is-unit-clause :: 'a literal list = ('a, 'b) ann-lits = 'a literal option
where
is-unit-clause | M =
(case List.filter (Aa. atm-of a ¢ atm-of * lits-of-l M) | of
a # || = if M =as CNot (mset | — {#a+#}) then Some a else None
| - = None)

definition is-unit-clause-code :: 'a literal list = ('a, 'b) ann-lits
= 'a literal option where
is-unit-clause-code | M =
(case List.filter (Aa. atm-of a ¢ atm-of  lits-of-l M) 1 of
a # [] = if (Ve €set (removel al). —c € lits-of-l M) then Some a else None
| - = None)
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lemma is-unit-clause-is-unit-clause-code|codel:
is-unit-clause | M = is-unit-clause-code | M

(proof)

lemma is-unit-clause-some-undef:
assumes is-unit-clause [ M = Some a
shows undefined-lit M a

(proof)

lemma is-unit-clause-some-CNot: is-unit-clause | M = Some o = M =as CNot (mset | — {#a#})

{proof)

lemma is-unit-clause-some-in: is-unit-clause | M = Some a = a € set |

{proof)

lemma is-unit-clause-Nil[simp)|: is-unit-clause [| M = None
{proof)

Unit propagation for all clauses

Finding the first clause to propagate

fun find-first-unit-clause :: 'a literal list list = ('a, 'b) ann-lits
= ('a literal x 'a literal list) option where
find-first-unit-clause (a # 1) M =
(case is-unit-clause a M of
None = find-first-unit-clause | M
| Some L = Some (L, a)) |
find-first-unit-clause || - = None

lemma find-first-unit-clause-some:
find-first-unit-clause | M = Some (a, ¢)
= c € setl N M [=as CNot (mset ¢ — {#a#}) N undefined-lit M a A a € set ¢
(proof)

lemma propagate-is-unit-clause-not-None:
assumes
M: M [as CNot (mset ¢ — {#a#}) and
undef: undefined-lit M a and
ac: a € set ¢
shows is-unit-clause ¢ M # None

(proof)

lemma find-first-unit-clause-none:
c € set | = M [=as CNot (mset ¢ — {#a#}) = undefined-lit M a => a € set ¢
= find-first-unit-clause | M # None

{proof)

Decide

fun find-first-unused-var :: 'a literal list list = 'a literal set = 'a literal option where
find-first-unused-var (a # 1) M =
(case List.find (Nlit. lit ¢ M N =lit ¢ M) a of
None = find-first-unused-var [ M
| Some a = Some a) |
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find-first-unused-var [| - = None

lemma find-none[iff]:
List.find (\lit. lit ¢ M N —lit ¢ M) a = None +— atm-of ‘ set a C atm-of * M
(proof)

lemma find-some: List.find (Nlit. lit ¢ M N —lit ¢ M) a = Someb=becsetaNb¢ MN—-b¢ M
{proof)

lemma find-first-unused-var-None[iff]:
find-first-unused-var I M = None +— (Y a € set l. atm-of ‘ set a C atm-of * M)

{proof)

lemma find-first-unused-var-Some-not-all-incl:
assumes find-first-unused-var | M = Some c
shows —(Va € set . atm-of ‘ set a C atm-of ¢ M)

(proof)

lemma find-first-unused-var-Some:
find-first-unused-var | M = Some a = (Im € setl.a € setm ANa ¢ M N —a ¢ M)

{proof)

lemma find-first-unused-var-undefined:
find-first-unused-var 1 (lits-of-l Ms) = Some a = undefined-lit Ms a

(proof)

4.1.2 CDCL specific functions

Level

fun mazimum-level-code:: 'a literal list = ('a, 'b) ann-lits = nat
where
mazimum-level-code [| - = 0 |
mazimum-level-code (L # Ls) M = max (get-level M L) (maximum-level-code Ls M)

lemma mazimum-level-code-eq-get-mazimum-level[simp:
mazimum-level-code D M = get-mazimum-level M (mset D)

(proof)

lemma [code]:
fixes M :: (‘a, 'b) ann-lits
shows get-maximum-level M (mset D) = mazimum-level-code D M

(proof)

Backjumping

fun find-level-decomp where
find-level-decomp M [] D k = None |
find-level-decomp M (L # Ls) D k =
(case (get-level M L, mazimum-level-code (D @Q Ls) M) of
(¢, j) = if i = k AN j < i then Some (L, j) else find-level-decomp M Ls (L#D) k

lemma find-level-decomp-some:
assumes find-level-decomp M Ls D k = Some (L, j)
shows L € set Ls A get-mazimum-level M (mset (removel L (Ls @ D))) = j A get-level M L = k
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{proof)

lemma find-level-decomp-none:
assumes find-level-decomp M Ls E k = None and mset (L#D) = mset (Ls Q F)
shows —(L € set Ls A get-mazimum-level M (mset D) < k N\ k = get-level M L)

{proof)

fun bt-cut where

bt-cut i (Propagated - - # Ls) = bt-cut i Ls |

bt-cut i (Decided K # Ls) = (if count-decided Ls = i then Some (Decided K # Ls) else bt-cut i Ls) |
bt-cut i [| = None

lemma bt-cut-some-decomp:
assumes no-dup M and bt-cut i M = Some M’
shows 3K M2 M1. M = M2 @ M’ AN M’ = Decided K # M1 A get-level M K = (i+1)

{proof)

lemma bt-cut-not-none:
assumes no-dup M and M = M2 @ Decided K # M’ and get-level M K = (i+1)
shows bt-cut i M # None

{proof)

lemma get-all-ann-decomposition-ex:
IN. (Decided K # M', N) € set (get-all-ann-decomposition (M2QDecided K # M'))

(proof)

lemma bt-cut-in-get-all-ann-decomposition:
assumes no-dup M and bt-cut i M = Some M’
shows IM2. (M', M2) € set (get-all-ann-decomposition M)

(proof)

fun do-backtrack-step where
do-backtrack-step (M, N, U, Some D) =
(case find-level-decomp M D [ (count-decided M) of
None = (M, N, U, Some D)
| Some (L, j) =
(case bt-cut § M of
Some (Decided - # Ls) = (Propagated L D # Ls, N, D # U, None)
| -= (M, N, U, Some D))
) |

do-backtrack-step S = S

end

theory DPLL-W-Implementation

imports DPLL-CDCL-W-Implementation DPLL-W HOL— Library. Code- Target-Numeral
begin

4.1.3 Simple Implementation of DPLL
Combining the propagate and decide: a DPLL step

definition DPLL-step :: int dpllyy -ann-lits x int literal list list
= int dplly -ann-lits x int literal list list where
DPLL-step = (A(Ms, N).
(case find-first-unit-clause N Ms of
Some (L, -) = (Propagated L () # Ms, N)
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| - =
if 3C € set N. (V¢ € set C. —c € lits-of-1 Ms)
then
(case backtrack-split Ms of
(-, L # M) = (Propagated (— (lit-of L)) () # M, N)
| ('7 ’) = (MS, N)

else
(case find-first-unused-var N (lits-of-l Ms) of
Some a = (Decided a # Ms, N)
| None = (Ms, N))))

Example of propagation:

value DPLL-step ([Decided (Neg 1)], [[Pos (1::int), Neg 2]])

We define the conversion function between the states as defined in Prop-DPLL (with multisets)
and here (with lists).

abbreviation toS = \(Ms::(int, unit) ann-lits)
(N:: int literal list list). (Ms, mset (map mset N))
abbreviation toS’' = A\(Ms::(int, unit) ann-lits,
N:: int literal list list). (Ms, mset (map mset N))

Proof of correctness of DPLL-step

lemma DPLL-step-is-a-dpllyy -step:
assumes step: (Ms’, N') = DPLL-step (Ms, N)
and neq: (Ms, N) # (Ms’, N')
shows dplly (toS Ms N) (toS Ms' N”)

(proof)

lemma DPLL-step-stuck-final-state:
assumes step: (Ms, N) = DPLL-step (Ms, N)
shows conclusive-dpllyy -state (toS Ms N)
(proof)

Adding invariants

Invariant tested in the function function DPLL-ci :: int dplly -ann-lits = int literal list list
= int dplly -ann-lits x int literal list list where
DPLL-ci Ms N =
(if —dplly -all-inv (Ms, mset (map mset N))
then (Ms, N)
else
let (Ms’, N') = DPLL-step (Ms, N) in
if (Ms', N") = (Ms, N) then (Ms, N) else DPLL-ci Ms' N)
(proof)

termination

(proof)

No invariant tested function (domintros) DPLL-part:: int dplly -ann-lits = int literal list list =
int dplly -ann-lits x int literal list list where
DPLL-part Ms N =
(let (Ms', Ny = DPLL-step (Ms, N) in
if (Ms'y Ny = (Ms, N) then (Ms, N) else DPLL-part Ms’ N)
(proof)
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lemma snd-DPLL-step[simp):
snd (DPLL-step (Ms, N)) = N
{proof)

lemma dplly -all-inv-implieS-2-eq3-and-dom:
assumes dplly -all-inv (Ms, mset (map mset N))
shows DPLL-ci Ms N = DPLL-part Ms N N DPLL-part-dom (Ms, N)

(proof)

lemma DPLL-ci-dpllyy -rtranclp:
assumes DPLL-ci Ms N = (Ms', N')
shows dplly** (toS Ms N) (toS Ms' N)

{proof)

lemma dplly -all-inv-dpllyy -tranclp-irrefi:
assumes dplly -all-inv (Ms, N)
and dplly ™+ (Ms, N) (Ms, N)
shows Fulse

(proof)

lemma DPLL-ci-final-state:
assumes step: DPLL-ci Ms N = (Ms, N)
and inv: dplly -all-inv (toS Ms N)
shows conclusive-dpllyy -state (toS Ms N)
(proof)

lemma DPLL-step-obtains:
obtains Ms’ where (Ms’, N) = DPLL-step (Ms, N)
{proof)

lemma DPLL-ci-obtains:
obtains Ms’ where (Ms’, N) = DPLL-ci Ms N

(proof)

lemma DPLL-ci-no-more-step:
assumes step: DPLL-ci Ms N = (Ms', N')
shows DPLL-ci Ms’ N' = (Ms’, N’)
(proof)

lemma DPLL-part-dplly -all-inv-final:
fixes M Ms": (int, unit) ann-lits and
N :: int literal list list
assumes inv: dplly -all-inv (Ms, mset (map mset N))
and MsN: DPLL-part Ms N = (Ms’, N)
shows conclusive-dpllyy -state (toS Ms' N) A dpllw™** (toS Ms N) (toS Ms’ N)
(proof)

Embedding the invariant into the type

Defining the type typedef dpliy -state =
{(M::(int, unit) ann-lits, N::int literal list list).
dplly -all-inv (toS M N)}
morphisms rough-state-of state-of
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(proof)

lemma
DPLL-part-dom ([], N)

{proof)

Some type classes instantiation dpliyy -state :: equal

begin

definition equal-dplly -state :: dplly -state = dplly -state = bool where
equal-dplly -state S S’ = (rough-state-of S = rough-state-of S”)
instance

{proof)

end

DPLL definition DPLL-step’ :: dplly -state = dplly -state where
DPLL-step’ S = state-of (DPLL-step (rough-state-of S))

declare rough-state-of-inverse[simp]

lemma DPLL-step-dplly -conc-inv:
DPLL-step (rough-state-of S) € {(M, N). dpllw -all-inv (toS M N)}
(proof)

lemma rough-state-of-DPLL-step’-DPLL-step|simp:
rough-state-of (DPLL-step’ S) = DPLL-step (rough-state-of .S)
(proof)

function DPLL-tot:: dplly -state = dplly -state where
DPLL-tot S =

(let S’ = DPLL-step’ S in

if 8" = S then S else DPLL-tot S”)

(proof)

termination

(proof)

lemma [code]:
DPLL-tot S =
(let S = DPLL-step’ S in
if "= S then S else DPLL-tot S’) {proof)

lemma DPLL-tot-DPLL-step-DPLL-tot[simp|: DPLL-tot (DPLL-step’ S) = DPLL-tot S
{proof)

lemma DOPLL-step’-DPLL-tot[simp]:
DPLL-step’ (DPLL-tot S) = DPLL-tot S

{proof)

lemma DPLL-tot-final-state:
assumes DPLL-tot S = S
shows conclusive-dpllyy -state (toS’ (rough-state-of S))

(proof)

lemma DPLL-tot-star:
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assumes rough-state-of (DPLL-tot S) = S’
shows dplly** (toS’ (rough-state-of S)) (toS’ S’
{proof)

lemma rough-state-of-rough-state-of-Nil[simp]:
rough-state-of (state-of ([J, N)) = ([J, N)
(proof)

Theorem of correctness

lemma DPLL-tot-correct:
assumes rough-state-of (DPLL-tot (state-of (([J, N)))) = (M, N')
and (M', N") = toS’ (M, N')
shows M’ |=asm N’ «— satisfiable (set-mset N

(proof)

Code export

A conversion to DPLL-W-Implementation.dplly -state definition Con :: (int, unit) ann-lits x
int literal list list
= dplly -state where
Con zs = state-of (if dplly -all-inv (toS (fst xs) (snd zs)) then xs else ([], []))
lemma [code abstypel:
Con (rough-state-of S) = S
{proof)

declare rough-state-of-DPLL-step’-DPLL-step[code abstract]

lemma Con-DPLL-step-rough-state-of-state-of [simp]:
Con (DPLL-step (rough-state-of s)) = state-of (DPLL-step (rough-state-of s))
(proof)

A slightly different version of DPLL-tot where the returned boolean indicates the result.

definition DPLL-tot-rep where
DPLL-tot-rep S =
(let (M, N) = (rough-state-of (DPLL-tot S)) in (VA € set N. (3a€set A. a € lits-of-1 M), M))

One version of the generated SML code is here, but not included in the generated document.
The only differences are:

e export ‘a literal from the SML Module Clausal-Logic;
e export the constructor Con from DPLL-W-Implementation;

e export the int constructor from Arith.

All these allows to test on the code on some examples.

end
theory CDCL-W-Implementation
imports DPLL-CDCL-W-Implementation CDCL-W-Termination
HOL— Library. Code-Target-Numeral
begin
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4.1.4 List-based CDCL Implementation

We here have a very simple implementation of Weidenbach’s CDCL, based on the same principle
as the implementation of DPLL: iterating over-and-over on lists. We do not use any fancy data-
structure (see the two-watched literals for a better suited data-structure).

The goal was (as for DPLL) to test the infrastructure and see if an important lemma was missing
to prove the correctness and the termination of a simple implementation.

Types and Instantiation

notation image-mset (infixr ‘# 90)
type-synonym ’a cdclyy -restart-mark = 'a clause

type-synonym ‘v cdclyy -restart-ann-lit = ('v, 'v cdely -restart-mark) ann-lit
type-synonym ‘v cdcly -restart-ann-lits = (v, v cdclyy -restart-mark) ann-lits
type-synonym 'v cdclyy -restart-state =

v edelyy -restart-ann-lits X 'v clauses x 'v clauses x 'v clause option

abbreviation raw-trail :: ‘a x 'b x 'c x 'd = 'a where
raw-trail = (MM, -). M)

abbreviation raw-cons-trail :: 'a = ‘a list X b x ‘¢ x 'd = 'a list x 'b x 'c x 'd
where
raw-cons-trail = (AL (M, S). (L#M, S))

abbreviation raw-tl-trail :: 'a list x 'b x ¢ x 'd = 'a list x 'b x 'c x 'd where
raw-tl-trail = (MM, S). (t1 M, S))

abbreviation raw-init-clss :: 'a x 'b x ‘c x 'd = 'b where
raw-init-clss = A(M, N, -). N

abbreviation raw-learned-clss :: 'a x 'b x 'c x 'd = 'c¢c where
raw-learned-clss = \(M, N, U, -). U

abbreviation raw-conflicting :: 'a x 'b x 'c x 'd = 'd where
raw-conflicting = A\(M, N, U, D). D

abbreviation raw-update-conflicting :: 'd = 'a X 'b x ‘¢ X 'd = 'a x 'b x ‘¢ x 'd
where
raw-update-conflicting = \S (M, N, U, -). (M, N, U, S)

abbreviation SO-cdcly -restart N = (([J, N, {#}, None):: v cdcly -restart-state)

abbreviation raw-add-learned-clss where
raw-add-learned-clss = \C (M, N, U, S). (M, N, {#C#} + U, S)

abbreviation raw-remove-cls where
raw-remove-cls = A\C (M, N, U, S). (M, removeAll-mset C N, removeAll-mset C U, S)

lemma raw-trail-conv: raw-trail (M, N, U, D) = M and
clauses-conv: raw-ingt-clss (M, N, U, D) = N and
raw-learned-clss-conv: raw-learned-clss (M, N, U, D) = U and
raw-conflicting-conv: raw-conflicting (M, N, U, D) = D
(proof)
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lemma state-conv:
S = (raw-trail S, raw-init-clss S, raw-learned-clss S, raw-conflicting S)

{proof)

definition state where
(state S = (raw-trail S, raw-init-clss S, raw-learned-clss S, raw-conflicting S, ())

interpretation statey
(=)
state
raw-trail raw-init-clss raw-learned-clss raw-conflicting
AL (M, S). (L # M, S)

AM, S). (H M, S)

AC (M, N, U, S). (M, N, add-mset C U, S)

AC (M, N, U, S). (M, removeAll-mset C N, removeAll-mset C U, S)
AD (M, N, U, -). (M, N, U, D)

AN. ([l, N, {#}, None)

(proof)

declare state-simp[simp del]

interpretation conflict-driven-clause-learningy
(=) state
raw-trail raw-init-clss raw-learned-clss
raw-conflicting

AL (M, S). (L # M, S)

MM, S). (11 M, S)

AC (M, N, U, S). (M, N, add-mset C U, S)

AC (M, N, U, S). (M, removeAll-mset C N, removeAll-mset C U, S)
AD (M, N, U, -). (M, N, U, D)

AN. ([, N, {#}, None)

{proof)

declare clauses-def[simp]

lemma reduce-trail-to-empty-trail[simp):
reduce-trail-to F ([], aa, ab, b) = ([], aa, ab, b)
(proof)

lemma reduce-trail-to”:
reduce-trail-to F' S =
((if length (raw-trail S) > length F
then drop (length (raw-trail S) — length F) (raw-trail S)
else []), raw-init-clss S, raw-learned-clss S, raw-conflicting S)
(is 28 = -)
(proof)

Definition of the rules

Types lemma true-raw-init-clss-remdups|simp):
I =s (mset o remdups) ‘ N «— I s mset ‘N
{proof)

lemma true-clss-raw-remdups-mset-mset|simp):
d Es (AL. remdups-mset (mset L)) ‘ N' <— I =s mset ‘* N
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{proof)

declare satisfiable-caracliff del]
lemma satisfiable-mset-remdups|simp]:
satisfiable ((mset o remdups) ¢ N) «— satisfiable (mset  N)
satisfiable ((A\L. remdups-mset (mset L)) ‘ N') +— satisfiable (mset * N”)

{proof)

type-synonym ‘v cdclyy -restart-state-inv-st = ('v, 'v literal list) ann-lit list x
"v literal list list x 'v literal list list x 'v literal list option

We need some functions to convert between our abstract state v cdcly -restart-state and the
concrete state ‘v cdclyy -restart-state-inv-st.

fun convert :: ('a, ‘c list) ann-lit = ('a, 'c multiset) ann-lit where
convert (Propagated L C) = Propagated L (mset C) |
convert (Decided K) = Decided K

abbreviation convertC :: 'a list option = 'a multiset option where
convertC = map-option mset

lemma convert-Propagated|elim!]:
convert z = Propagated L C = (3 C'. z = Propagated L C' N C = mset C)

{proof)

lemma is-decided-convert[simp): is-decided (convert x) = is-decided x

{proof)

lemma is-decided-convert-is-decided|simp]: «(is-decided o convert) = (is-decided))
{proof)

lemma get-level-map-convert[simp]:
get-level (map convert M) x = get-level M

{proof)

lemma get-mazimum-level-map-convert[simpl:
get-mazimum-level (map convert M) D = get-mazimum-level M D

{proof)

lemma count-decided-convert|simpl:
(count-decided (map convert M) = count-decided M)

(proof)

lemma atm-lit-of-convert[simp):
lit-of (convert z) = lit-of ©
(proof)

lemma no-dup-convert[simp]:
(no-dup (map convert M) = no-dup M)

{proof)

Conversion function

fun toS :: 'v cdclyy -restart-state-inv-st = v cdclyy -restart-state where
toS (M, N, U, C) = (map convert M, mset (map mset N), mset (map mset U), convertC C')

Definition an abstract type
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typedef 'v cdcly -restart-state-inv = {S::'v cdcly -restart-state-inv-st. cdelyy -all-struct-inv (t0S S)}
morphisms rough-state-of state-of

(proof)

instantiation cdcly -restart-state-inv :: (type) equal
begin
definition equal-cdclyy -restart-state-inv :: 'v cdclyy -restart-state-iny =
"v edelyy -restart-state-inv = bool where
equal-cdely -restart-state-inv S S’ = (rough-state-of S = rough-state-of S”)
instance

(proof )
end

lemma lits-of-map-convert[simp|: lits-of-1 (map convert M) = lits-of-l M

{proof)

lemma undefined-lit-map-convert[iff]:
undefined-lit (map convert M) L +— undefined-lit M L

{proof)

lemma true-annot-map-convert[simpl: map convert M Fa N +— M |Ea N

{proof)

lemma true-annots-map-convert[simp|: map convert M =as N «— M f=as N

{proof)

lemmas propagateF

lemma find-first-unit-clause-some-is-propagate:
assumes H: find-first-unit-clause (N Q@ U) M = Some (L, C)
shows propagate (toS (M, N, U, None)) (toS (Propagated L C # M, N, U, None))
(proof)

The Transitions

Propagate definition do-propagate-step :: (v cdcly -restart-state-inv-st = v cdely -restart-state-inv-st)
where
do-propagate-step S =
(case S of
(M, N, U, None) =
(case find-first-unit-clause (N @ U) M of
Some (L, C) = (Propagated L C # M, N, U, None)
| None = (M, N, U, None))
| S =9)

lemma do-propagate-step:
do-propagate-step S # S = propagate (toS S) (toS (do-propagate-step S))
(proof)

lemma do-propagate-step-option|simp]:
raw-conflicting S # None = do-propagate-step S = S
(proof)

lemma do-propagate-step-no-step:

assumes prop-step: do-propagate-step S = S
shows no-step propagate (toS S)
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(proof)

Conflict fun find-conflict where
find-conflict M [| = None |
find-conflict M (N # Ns) = (if (V¢ € set N. —c € lits-of-l M) then Some N else find-conflict M Ns)

lemma find-conflict-Some:
find-conflict M Ns = Some N => N € set Ns A M {=as CNot (mset N)

(proof)

lemma find-conflict-None:
find-conflict M Ns = None <— (VN € set Ns. =M [=as CNot (mset N))

{proof)

lemma find-conflict-None-no-confi:
find-conflict M (NQU) = None «+— no-step conflict (toS (M, N, U, None))
{proof)

definition do-conflict-step :: (v cdcly -restart-state-inv-st = v cdcly -restart-state-inv-st) where
do-conflict-step S =
(case S of
(M, N, U, None) =
(case find-conflict M (N @Q U) of
Some a = (M, N, U, Some a)
| None = (M, N, U, None))
| S =9)

lemma do-conflict-step:
do-conflict-step S # S = conflict (toS S) (toS (do-conflict-step S))
{proof)

lemma do-conflict-step-no-step:
do-conflict-step S = S = no-step conflict (toS S)
(proof)

lemma do-conflict-step-option[simp):
raw-conflicting S # None = do-conflict-step S = S
(proof)

lemma do-conflict-step-raw-conflicting|dest):
do-conflict-step S # S = raw-conflicting (do-conflict-step S) # None
(proof)

definition do-cp-step where

do-cp-step S =
(do-propagate-step o do-conflict-step) S

lemma cdclyy -all-struct-inv-rough-state[simpl: cdelw -all-struct-inv (toS (rough-state-of S))
(proof)

lemma [simp]: cdclw -all-struct-inv (toS S) = rough-state-of (state-of S) = S

(proof)

Skip fun do-skip-step :: 'v cdclyy -restart-state-inv-st = 'v cdclyy -restart-state-inv-st where
do-skip-step (Propagated L C # Ls, N, U, Some D) =
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(if =L ¢ set D A D # |]

then (Ls, N, U, Some D)

else (Propagated L C #Ls, N, U, Some D)) |
do-skip-step S = S

lemma do-skip-step:
do-skip-step S # S = skip (t0S S) (toS (do-skip-step S))
{proof)

lemma do-skip-step-no:
do-skip-step S = S = no-step skip (toS S)
(proof)

lemma do-skip-step-raw-trail-is-None[iff]:
do-skip-step S = (a, b, ¢, None) «— S = (a, b, ¢, None)
{proof)

Resolve fun mazimum-level-code:: 'a literal list = (‘a, 'a literal list) ann-lit list = nat
where

mazimum-level-code [| - = 0 |

maximum-level-code (L # Ls) M = max (get-level M L) (mazimum-level-code Ls M)

lemma mazimum-level-code-eg-get-mazimum-level|code, simp]:
mazimum-level-code D M = get-mazimum-level M (mset D)

(proof)

fun do-resolve-step :: v cdcly -restart-state-inv-st = 'v cdclyy -restart-state-inv-st where
do-resolve-step (Propagated L C # Ls, N, U, Some D) =
(if —L € set D A mazimum-level-code (removel (—L) D) (Propagated L C # Ls) = count-decided Ls
then (Ls, N, U, Some (remdups (removel L C' @ removel (—L) D)))
else (Propagated L C # Ls, N, U, Some D)) |
do-resolve-step S = S

lemma do-resolve-step:
cdelyy -all-struct-inv (toS S) = do-resolve-step S # S
= resolve (toS S) (toS (do-resolve-step S))

(proof)

lemma do-resolve-step-no:
do-resolve-step S = § = no-step resolve (toS S)

(proof)

lemma rough-state-of-state-of-resolve[simp]:
cdely -all-struct-inv (toS S) =
rough-state-of (state-of (do-resolve-step S)) = do-resolve-step S

{proof)

lemma do-resolve-step-raw-trail-is-None[iff]:
do-resolve-step S = (a, b, ¢, None) +— S = (a, b, ¢, None)

{proof)

Backjumping lemma get-all-ann-decomposition-map-convert:
(get-all-ann-decomposition (map convert M)) =
map (A(a, b). (map convert a, map convert b)) (get-all-ann-decomposition M)

{proof)
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lemma do-backtrack-step:
assumes
db: do-backtrack-step S # S and
inv: cdcly -all-struct-inv (toS S)
shows backtrack (toS S) (toS (do-backtrack-step S))
(proof)

lemma map-eq-list-length:
map f L = L' = length L = length L’
(proof)

lemma map-mmset-of-mlit-eq-cons:
assumes map convert M = a Q ¢
obtains a’ ¢’ where
M =a’ Q¢ and
a = map convert a’ and
¢ = map convert c’

(proof)

lemma Decided-convert-iff:
Decided K = convert za +— za = Decided K

(proof)
declare conflict-is-false-with-level-def [simp del]

lemma do-backtrack-step-no:
assumes
db: do-backtrack-step S = S and
inv: cdclyy -all-struct-inv (toS S) and
ns: (no-step skip (toS S)) (no-step resolve (toS S)
shows no-step backtrack (toS S)

(proof)

lemma rough-state-of-state-of-backtrack|simp):
assumes inv: cdcly -all-struct-inv (toS S)
shows rough-state-of (state-of (do-backtrack-step S)) = do-backtrack-step S

(proof)

Decide fun do-decide-step where
do-decide-step (M, N, U, None) =
(case find-first-unused-var N (lits-of-l M) of
None = (M, N, U, None)
| Some L = (Decided L # M, N, U, None)) |
do-decide-step S = S

lemma do-decide-step:
do-decide-step S # S = decide (t0S S) (toS (do-decide-step S))

(proof)

lemma do-decide-step-no:
do-decide-step S = S = no-step decide (toS S)
{proof)

lemma rough-state-of-state-of-do-decide-step|simp]:

145



cdclyy -all-struct-inv (toS S) == rough-state-of (state-of (do-decide-step S)) = do-decide-step S
(proof)

lemma rough-state-of-state-of-do-skip-step[simp]:
cdclyy -all-struct-inv (toS S) = rough-state-of (state-of (do-skip-step S)) = do-skip-step S
(proof)

Code generation

Type definition There are two invariants: one while applying conflict and propagate and one
for the other rules

declare rough-state-of-inverse[simp add|

definition Con where
Con zs = state-of (if cdely -all-struct-inv (toS (fst zs, snd xs)) then s
else ([], [}, I, None))

lemma [code abstype]:
Con (rough-state-of S) = S
{proof)

definition do-cp-step’ where
do-cp-step’ S = state-of (do-cp-step (rough-state-of S))

typedef v cdclyy -restart-state-inv-from-init-state =
{S:: v edely -restart-state-inv-st. cdelyy -all-struct-inv (toS S)
A cdely -stgy** (SO0-cdclyy -restart (raw-init-clss (toS S))) (toS S)}
morphisms rough-state-from-init-state-of state-from-init-state-of

(proof)

instantiation cdcly -restart-state-inv-from-init-state :: (type) equal
begin
definition equal-cdclyy -restart-state-inv-from-init-state :: 'v cdclyy -restart-state-inv-from-init-state =
v edelyy -restart-state-inv-from-init-state = bool where
equal-cdclyy -restart-state-inv-from-init-state S S’ <—
(rough-state-from-init-state-of S = rough-state-from-init-state-of S’)
instance

(proof)

end

definition Conl where
Conl S = state-from-init-state-of (if cdcly -all-struct-inv (toS (fst S, snd S))
A cdely -stgy** (SO0-cdclyy -restart (raw-init-clss (toS S))) (toS S) then S else ([], [], [], None))

lemma [code abstypel:
Conl (rough-state-from-init-state-of S) = S
(proof)

definition id-of-I-to:: 'v cdclyy -restart-state-inv-from-init-state = v cdclyy -restart-state-inv where
id-of-I-to S = state-of (rough-state-from-init-state-of S)

lemma [code abstract]:

rough-state-of (id-of-I-to S) = rough-state-from-init-state-of S
(proof)

lemma in-clauses-rough-state-of-is-distinct:
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ceset (raw-init-clss (rough-state-of S) Q raw-learned-clss (rough-state-of S)) = distinct ¢
{proof)

The other rules fun do-if-not-equal where
do-if-not-equal [| S = S |
do-if-not-equal (f # fs) S =

(let T =fSin

if T # S then T else do-if-not-equal fs S)

fun do-cdcl-step where

do-cdcl-step S =
do-if-not-equal [do-conflict-step, do-propagate-step, do-skip-step, do-resolve-step,
do-backtrack-step, do-decide-step] S

lemma do-cdcl-step:
assumes inv: cdely -all-struct-inv (toS S) and
st: do-cdcl-step S # S
shows cdcly -stgy (toS S) (toS (do-cdcl-step S))
{proof)

lemma do-cdcl-step-no:
assumes inv: cdely -all-struct-inv (toS S) and
st: do-cdcl-step S = S
shows no-step cdcly (toS S)
(proof)

lemma rough-state-of-state-of-do-cdcl-step[simp]:
rough-state-of (state-of (do-cdcl-step (rough-state-of S))) = do-cdcl-step (rough-state-of S)
(proof)

definition do-cdclyy -stgy-step :: 'v cdclyy -restart-state-inv = 'v cdclyy -restart-state-inv where
do-cdclyy -stgy-step S =
state-of (do-cdcl-step (rough-state-of S))

lemma rough-state-of-do-cdcly -stgy-step[code abstract]:
rough-state-of (do-cdcly -stgy-step S) = do-cdcl-step (rough-state-of S)
(proof)

definition do-cdclyy -stgy-step’ where
do-cdelyy -stgy-step’ S = state-from-init-state-of (rough-state-of (do-cdely -stgy-step (id-of-I-to S)))

Correction of the transformation lemma do-cdclyy -stgy-step:
assumes do-cdclyy -stgy-step S # S
shows cdclyy-stgy (toS (rough-state-of S)) (toS (rough-state-of (do-cdclyy -stgy-step S)))

(proof)

lemma length-raw-trail-toS[simp):
length (raw-trail (toS S)) = length (raw-trail S)
(proof)
lemma raw-conflicting-no True-iff-toS|simpl:
raw-conflicting (toS S) # None +— raw-conflicting S # None
(proof)

lemma raw-trail-toS-neg-imp-raw-trail-neq:
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raw-trail (toS S) # raw-trail (toS S') = raw-trail S # raw-trail S’
{proof)

lemma do-cp-step-neg-raw-trail-increase:
Jec. raw-trail (do-cp-step S) = ¢ Q raw-trail S A (Y m € set c. = is-decided m)
(proof)

lemma do-cp-step-raw-conflicting:
raw-conflicting (rough-state-of S) # None => do-cp-step’ S = S
(proof)

lemma do-decide-step-not-raw-conflicting-one-more-decide:
assumes
raw-conflicting S = None and
do-decide-step S # S
shows Suc (length (filter is-decided (raw-trail S)))
= length (filter is-decided (raw-trail (do-decide-step S)))
(proof)

lemma do-decide-step-not-raw-conflicting-one-more-decide-bt:
assumes raw-conflicting S # None and
do-decide-step S # S
shows length (filter is-decided (raw-trail S)) < length (filter is-decided (raw-trail (do-decide-step S)))
(proof)

lemma count-decided-raw-trail-toS:
count-decided (raw-trail (toS S)) = count-decided (raw-trail S)

{proof)

lemma rough-state-of-state-of-do-skip-step-rough-state-of [simp]:
rough-state-of (state-of (do-skip-step (rough-state-of S))) = do-skip-step (rough-state-of S)
(proof)

lemma raw-conflicting-do-resolve-step-iff [iff]:
raw-conflicting (do-resolve-step S) = None +— raw-conflicting S = None

{proof)

lemma raw-conflicting-do-skip-step-iff [iff]:
raw-conflicting (do-skip-step S) = None <— raw-conflicting S = None

(proof)

lemma raw-conflicting-do-decide-step-iff [iff]:
raw-conflicting (do-decide-step S) = None <— raw-conflicting S = None

{proof)

lemma raw-conflicting-do-backtrack-step-imp[simp]:
do-backtrack-step S # S = raw-conflicting (do-backtrack-step S) = None
(proof)

lemma do-skip-step-eq-iff-raw-trail-eq:
do-skip-step S = S +— raw-trail (do-skip-step S) = raw-trail S
(proof)

lemma do-decide-step-eq-iff-raw-trail-eq:
do-decide-step S = S <— raw-trail (do-decide-step S) = raw-trail S

(proof)
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lemma do-backtrack-step-eq-iff-raw-trail-eq:
assumes no-dup (raw-trail S)
shows do-backtrack-step S = S +— raw-trail (do-backtrack-step S) = raw-trail S

{proof)

lemma do-resolve-step-eq-iff-raw-trail-eq:
do-resolve-step S = S <— raw-trail (do-resolve-step S) = raw-trail S

{proof)

lemma do-cdclyy -stgy-step-no:
assumes S: do-cdclyy -stgy-step S = S
shows no-step cdcly -stgy (toS (rough-state-of S))

(proof)

lemma toS-rough-state-of-state-of-rough-state-from-init-state-of [simpl:
toS (rough-state-of (state-of (rough-state-from-init-state-of S)))
= t0S (rough-state-from-init-state-of S)
(proof)

lemma cdclyy -stgy-is-rtranclp-cdclyy -restart:
cdely-stgy S T = cdcly -restart™ S T

(proof)

lemma cdclyy -stgy-init-raw-init-clss:
cdely-stgy S T = cdcly -M-level-inv S = raw-init-clss S = raw-init-clss T

{proof)

lemma clauses-toS-rough-state-of-do-cdclyy -stgy-step|simp]:
raw-init-clss (toS (rough-state-of (do-cdclyy -stgy-step (state-of (rough-state-from-init-state-of S)))))
= raw-init-clss (toS (rough-state-from-init-state-of S)) (is - = raw-init-clss (toS ?25))

{proof)

lemma rough-state-from-init-state-of-do-cdclyy -stgy-step’[code abstract]:
rough-state-from-init-state-of (do-cdclyy -stgy-step’ S) =

rough-state-of (do-cdclyy -stgy-step (id-of-I-to S))
(proof)

All rules together function do-all-cdcly -stgy where
do-all-cdcly -stgy S =

(let T = do-cdely -stgy-step’ S in

if T = S then S else do-all-cdcly -stgy T')
{proof)

termination

(proof)

thm do-all-cdclyy -stgy.induct
lemma do-all-cdclyy -stgy-induct:

(AS. (do-cdelw -stgy-step” S # S = P (do-cdcly -stgy-step’ S)) = P S) = P a0
(proof)

lemma no-step-cdclyy -stgy-cdclyy -restart-all:
fixes S :: 'a cdclyy -restart-state-inv-from-init-state
shows no-step cdcly -stgy (toS (rough-state-from-init-state-of (do-all-cdely -stgy S)))
(proof)
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lemma do-all-cdclyy -stgy-is-rtranclp-cdclyy -stgy:
cdely -stgy*™ (toS (rough-state-from-init-state-of S))
(toS (rough-state-from-init-state-of (do-all-cdcly -stgy S)))
(proof)

Final theorem:

lemma DPLL-tot-correct:
assumes
r: rough-state-from-init-state-of (do-all-cdely -stgy (state-from-init-state-of
(([], map remdups N, [], None)))) = S and
S: (M', N, U, E) = toS S
shows (E # Some {#} A satisfiable (set (map mset N)))
V (E = Some {#} N unsatisfiable (set (map mset N)))

(proof)

The Code The SML code is skipped in the documentation, but stays to ensure that some
version of the exported code is working. The only difference between the generated code and
the one used here is the export of the constructor Conl.

(proof)
theory CDCL-Abstract-Clause-Representation

imports Entailment-Definition. Partial- Herbrand-Interpretation
begin

type-synonym v clause = v literal multiset
type-synonym v clauses = 'v clause multiset

4.1.5 Abstract Clause Representation

We will abstract the representation of clause and clauses via two locales. We expect our rep-
resentation to behave like multiset, but the internal representation can be done using list or
whatever other representation.

We assume the following;:
e there is an equivalent to adding and removing a literal and to taking the union of clauses.

locale raw-cls =

fixes

mset-cls :: 'cls = 'v clause
begin
end

The two following locales are the exact same locale, but we need two different locales. Otherwise,
instantiating raw-clss would lead to duplicate constants.

locale abstract-with-indexr =
fixes
get-lit :: 'a = it = 'conc option and
convert-to-mset :: 'a = 'conc multiset
assumes
in-clss-mset-cls[dest]:
get-lit Cs a = Some e => e €# convert-to-mset Cs and
in-mset-cls-exists-preimage:
b €# convert-to-mset Cs = 3b’. get-lit Cs b’ = Some b
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locale abstract-with-index2 =
fixes
get-lit :: 'a = it = 'conc option and
convert-to-mset :: ‘a = ’'conc multiset
assumes
in-clss-mset-clss|dest]:
get-lit Cs a = Some e => e €# convert-to-mset Cs and
in-mset-clss-exists-preimage:
b €# convert-to-mset Cs = Ib’. get-lit Cs b’ = Some b

locale raw-clss =
abstract-with-index get-lit mset-cls +
abstract-with-index2 get-cls mset-clss
for
get-lit :: 'cls = 'lit = v literal option and
mset-cls :: 'cls = v clause and

get-cls :: 'clss = 'cls-it = ’cls option and
mset-clss:: 'clss = 'cls multiset
begin

definition cls-lit :: ‘cls = 'lit = 'v literal (infix | 49) where
C | a = the (get-lit C a)

definition clss-cls :: ‘clss = 'cls-it = 'cls (infix | 49) where
C | a = the (get-cls C a)

definition in-cls :: 'lit = ’'cls = bool (infix €] 49) where
a €} Cs = get-lit Cs a # None

definition in-clss :: 'cls-it = 'clss = bool (infix €| 49) where
a €l Cs = get-cls Cs a # None

definition raw-clss where
raw-clss S = image-mset mset-cls (mset-clss S)

end

experiment
begin
fun safe-nth where
safe-nth (z # -) 0 = Some x|
safe-nth (- # xs) (Suc n) = safe-nth xs n |
safe-nth [] - = None

lemma safe-nth-nth: n < length | = safe-nth I n = Some (nth I n)

(proof)

lemma safe-nth-None: n > length | = safe-nth | n = None

(proof)

lemma safe-nth-Some-iff: safe-nth | n = Some m <— n < length | A m = nth ln

(proof)

lemma safe-nth-None-iff: safe-nth [ n = None <— n > length [
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(proof)

interpretation abstract-with-index
safe-nth
mset

(proof)

interpretation abstract-with-index2
safe-nth
mset
(proof)

interpretation list-cls: raw-clss
safe-nth mset
safe-nth mset

(proof)
end

end
theory CDCL-W-Abstract-State
imports CDCL-W-Full CDCL-W-Restart

begin

4.2 Instantiation of Weidenbach’s CDCL by Multisets

We first instantiate the locale of Weidenbach’s locale. Then we refine it to a 2-WL program.

type-synonym ‘v cdclyy -restart-mset = ('v, v clause) ann-lit list x
v clauses x
v clauses x
v clause option

We use definition, otherwise we could not use the simplification theorems we have already shown.

fun trail :: "v cdely -restart-mset = ('v, "v clause) ann-lit list where
trail (M, -) = M

fun init-clss :: "v cdclyy -restart-mset = v clauses where
init-clss (-, N, -) = N

fun learned-clss :: 'v cdclyy -restart-mset = v clauses where
learned-clss (-, -, U, -) = U

fun conflicting :: 'v cdcly -restart-mset = 'v clause option where

conflicting (-, -, -, C) = C

fun cons-trail :: (v, 'v clause) ann-lit = 'v cdcly -restart-mset = 'v cdcly -restart-mset where
cons-trail L (M, R) = (L # M, R)

fun tl-trail where
ti-trail (M, R) = (tl M, R)

fun add-learned-cls where
add-learned-cls C (M, N, U, R) = (M, N, {#C+#} + U, R)
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fun remove-cls where
remove-cls C (M, N, U, R) = (M, removeAll-mset C N, removeAll-mset C U, R)

fun wupdate-conflicting where
update-conflicting D (M, N, U, -) = (M, N, U, D)

fun init-state where
init-state N = ([], N, {#}, None)

declare trail.simps[simp del| cons-trail.simps[simp del| ti-trail.simps[simp del]
add-learned-cls.simps[simp del] remove-cls.simps|simp del]
update-conflicting.simps[simp del] init-clss.simps|simp del] learned-clss.simps[simp del]
conflicting.simps[simp del] init-state.simps[simp del]

lemmas cdclyy -restart-mset-state = trail.simps cons-trail.simps tl-trail.simps add-learned-cls.simps
remove-cls.simps update-conflicting.simps init-clss.simps learned-clss.simps
conflicting.simps init-state.simps

definition state where
(state S = (trail S, init-clss S, learned-clss S, conflicting S, ()

interpretation cdclyy -restart-mset: statey -ops where
state = state and
trail = trail and
init-clss = init-clss and
learned-clss = learned-clss and
conflicting = conflicting and

cons-trail = cons-trail and

tl-trail = tl-trail and

add-learned-cls = add-learned-cls and
remove-cls = remove-cls and
update-conflicting = update-conflicting and
init-state = init-state

(proof)

definition state-eq :: 'v cdcly -restart-mset = v cdcly -restart-mset = bool (infix ~m 50) where
(S ~m T +— state S = state T)

interpretation cdclyy -restart-mset: stateyy where
state = state and
trail = trail and
init-clss = init-clss and
learned-clss = learned-clss and
conflicting = conflicting and
state-eq = state-eq and
cons-trail = cons-trail and
tl-trail = tl-trail and
add-learned-cls = add-learned-cls and
remove-cls = remove-cls and
update-conflicting = update-conflicting and
init-state = init-state

{proof)

abbreviation backtrack-ll :: 'v cdelyy -restart-mset = nat where
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backtrack-lvl = cdclyy -restart-mset.backtrack-lvl

interpretation cdcly -restart-mset: conflict-driven-clause-learningy, where
state = state and
trail = trail and
init-clss = init-clss and
learned-clss = learned-clss and
conflicting = conflicting and

state-eq = state-eq and

cons-trail = cons-trail and

tl-trail = tl-trail and

add-learned-cls = add-learned-cls and
remove-cls = remove-cls and
update-conflicting = update-conflicting and
init-state = init-state

{proof)

lemma cdclyy -restart-mset-state-eq-eq: state-eq = (=)
(proof)

lemma clauses-def: <cdcly -restart-mset.clauses (M, N, U, C) = N + U
(proof)

lemma cdclyy -restart-mset-reduce-trail-to:
cdclyy -restart-mset.reduce-trail-to F' S =
((if length (trail S) > length F
then drop (length (trail S) — length F) (trail S)
else []), init-clss S, learned-clss S, conflicting S)
(is 5 = -)
(proof)

lemma full-cdclyy -init-state:
(full cdely -restart-mset.cdcly -stgy (init-state {#}) S +— S = init-state {#}
(proof)

locale twi-restart-ops =
fixes
[ <nat = nab
begin

interpretation cdclyy -restart-mset: cdclyy -restart-restart-ops where
state = state and
trail = trail and
init-clss = init-clss and
learned-clss = learned-clss and
conflicting = conflicting and

state-eq = state-eq and

cons-trail = cons-trail and

tl-trail = tl-trail and

add-learned-cls = add-learned-cls and
remove-cls = remove-cls and
update-conflicting = update-conflicting and
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init-state = init-state and
f=7f
(proof)

end

locale twl-restart =
twi-restart-ops f for f :: (nat = nat) +
assumes
f: «unbounded f)
begin

interpretation cdclyy -restart-mset: cdclyy -restart-restart where
state = state and
trail = trail and
init-clss = init-clss and
learned-clss = learned-clss and
conflicting = conflicting and

state-eq = state-eq and

cons-trail = cons-trail and

tl-trail = tl-trail and

add-learned-cls = add-learned-cls and
remove-cls = remove-cls and
update-conflicting = update-conflicting and
init-state = init-state and

f=r

(proof)

end

context conflict-driven-clause-learningyw
begin

lemma distinct-cdclyy -state-alt-def:
(distinct-cdclyy -state S =
((V T. conflicting S = Some T — distinct-mset T) A
distinct-mset-mset (clauses S) A
(Y L mark. Propagated L mark € set (trail S) — distinct-mset mark)))

(proof)

end

lemma cdclyy -stgy-cdclyy -init-state-empty-no-step:
(edelyy -restart-mset.cdcly -stgy (init-state {#}) S +— False)

(proof)

lemma cdclyy -stgy-cdclyy -init-state:
(edelyy -restart-mset.cdclyy -stgy*™ (init-state {#}) S +— S = init-state {#}

{proof)

end
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